-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathcustom_optimizers.py
112 lines (101 loc) · 5.41 KB
/
custom_optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from keras import backend as K
from keras.optimizers import Optimizer
from keras.utils.generic_utils import get_from_module
import theano.tensor as T
class RMSprop_and_natGrad(Optimizer):
'''RMSProp optimizer with the capability to do natural gradient steps.
It is recommended to leave the parameters of this optimizer
at their default values
(except the learning rate, which can be freely tuned).
This optimizer is usually a good choice for recurrent
neural networks.
# Arguments
lr: float >= 0. Learning rate.
rho: float >= 0.
epsilon: float >= 0. Fuzz factor.
decay: float >= 0. Learning rate decay over each update.
'''
def __init__(self, lr=0.001, rho=0.9, epsilon=1e-8, decay=0., lr_natGrad=None,
**kwargs):
super(RMSprop_and_natGrad, self).__init__(**kwargs)
self.__dict__.update(locals())
self.lr = K.variable(lr)
if lr_natGrad is None:
self.lr_natGrad = K.variable(lr)
else:
self.lr_natGrad = K.variable(lr_natGrad)
self.rho = K.variable(rho)
self.decay = K.variable(decay)
self.inital_decay = decay
self.iterations = K.variable(0.)
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
shapes = [K.get_variable_shape(p) for p in params]
accumulators = [K.zeros(shape) for shape in shapes]
self.weights = accumulators
self.updates = []
lr = self.lr
if self.inital_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
self.updates.append(K.update_add(self.iterations, 1))
for param, grad, accum, shape in zip(params, grads, accumulators, shapes):
if ('natGrad' in param.name):
if ('natGradRMS' in param.name):
#apply RMSprop rule to gradient before natural gradient step
new_accum = self.rho * accum + (1. - self.rho) * K.square(grad)
self.updates.append(K.update(accum, new_accum))
grad = grad / (K.sqrt(new_accum) + self.epsilon)
elif ('unitaryAug' in param.name):
#we don't care about the accumulated RMS for the natural gradient step
self.updates.append(K.update(accum, accum))
#do a natural gradient step
if ('unitaryAug' in param.name):
#unitary natural gradient step on augmented ReIm matrix
j=K.cast(1j,'complex64')
A=K.cast(K.transpose(param[:shape[1]/2,:shape[1]/2]),'complex64')
B=K.cast(K.transpose(param[:shape[1]/2,shape[1]/2:]),'complex64')
X=A+j*B
C=K.cast(K.transpose(grad[:shape[1]/2,:shape[1]/2]),'complex64')
D=K.cast(K.transpose(grad[:shape[1]/2,shape[1]/2:]),'complex64')
# build skew-Hermitian matrix A
# from equation (8) of [Wisdom,Powers,Hershey,Le Roux,Atlas 2016]
# GX^H = CA^T + DB^T + jDA^T - jCB^T
GXH = K.dot(C,K.transpose(A)) + K.dot(D,K.transpose(B)) \
+ j*K.dot(D,K.transpose(A)) - j*K.dot(C,K.transpose(B))
Askew = GXH - K.transpose(T.conj(GXH))
I = K.eye(shape[1]/2)
two=K.cast(2,'complex64')
CayleyDenom = I+(self.lr_natGrad/two)*Askew
CayleyNumer = I-(self.lr_natGrad/two)*Askew
# multiplicative gradient step along Stiefel manifold
# equation (9) of [Wisdom,Powers,Hershey,Le Roux,Atlas 2016]
Xnew = K.dot(K.dot(T.nlinalg.matrix_inverse(CayleyDenom),CayleyNumer),X)
# convert to ReIm augmented form
XnewRe = K.transpose(T.real(Xnew))
XnewIm = K.transpose(T.imag(Xnew))
new_param = K.concatenate( (K.concatenate((XnewRe,XnewIm),axis=1),K.concatenate(((-1)*XnewIm,XnewRe),axis=1)),axis=0 )
else:
#do the usual RMSprop update using lr_natGrad as learning rate
# update accumulator
new_accum = self.rho * accum + (1. - self.rho) * K.square(grad)
self.updates.append(K.update(accum, new_accum))
new_param = param - self.lr_natGrad * grad / (K.sqrt(new_accum) + self.epsilon)
else:
#do the usual RMSprop update
# update accumulator
new_accum = self.rho * accum + (1. - self.rho) * K.square(grad)
self.updates.append(K.update(accum, new_accum))
new_param = param - lr * grad / (K.sqrt(new_accum) + self.epsilon)
# apply constraints
if param in constraints:
c = constraints[param]
new_param = c(new_param)
self.updates.append(K.update(param, new_param))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'lr_natGrad': float(K.get_value(self.lr_natGrad)),
'rho': float(K.get_value(self.rho)),
'epsilon': self.epsilon}
base_config = super(RMSprop_and_natGrad, self).get_config()
return dict(list(base_config.items()) + list(config.items()))