-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
141 lines (113 loc) · 4.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.utils.subgraph import k_hop_subgraph
from feat_func import data_process
from models import GEARSage
from utils import DGraphFin
from utils.evaluator import Evaluator
from utils.utils import prepare_folder
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def train(model, data, optimizer):
model.train()
optimizer.zero_grad()
neg_idx = data.train_neg[
torch.randperm(data.train_neg.size(0))[: data.train_pos.size(0)]
]
train_idx = torch.cat([data.train_pos, neg_idx], dim=0)
nodeandneighbor, edge_index, node_map, mask = k_hop_subgraph(
train_idx, 3, data.edge_index, relabel_nodes=True, num_nodes=data.x.size(0)
)
out = model(
data.x[nodeandneighbor],
edge_index,
data.edge_attr[mask],
data.edge_timestamp[mask],
data.edge_direct[mask],
)
loss = F.nll_loss(out[node_map], data.y[train_idx])
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 2.0)
optimizer.step()
torch.cuda.empty_cache()
return loss.item()
@torch.no_grad()
def test(model, data):
model.eval()
out = model(
data.x, data.edge_index, data.edge_attr, data.edge_timestamp, data.edge_direct,
)
y_pred = out.exp()
return y_pred
def main():
parser = argparse.ArgumentParser(description="GEARSage for DGraphFin Dataset")
parser.add_argument("--dataset", type=str, default="DGraphFin")
parser.add_argument("--model", type=str, default="GEARSage")
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--epochs", type=int, default=500)
parser.add_argument("--hiddens", type=int, default=96)
parser.add_argument("--layers", type=int, default=3)
parser.add_argument("--dropout", type=float, default=0.3)
args = parser.parse_args()
print(args)
device = f"cuda:{args.device}" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
model_dir = prepare_folder(args.dataset, args.model)
print("model_dir:", model_dir)
set_seed(42)
dataset = DGraphFin(root="./dataset", name="DGraphFin")
nlabels = 2
data = dataset[0]
split_idx = {
"train": data.train_mask,
"valid": data.valid_mask,
"test": data.test_mask,
}
data = data_process(data).to(device)
train_idx = split_idx["train"].to(device)
data.train_pos = train_idx[data.y[train_idx] == 1]
data.train_neg = train_idx[data.y[train_idx] == 0]
model = GEARSage(
in_channels=data.x.size(-1),
hidden_channels=args.hiddens,
out_channels=nlabels,
num_layers=args.layers,
dropout=args.dropout,
activation="elu",
bn=True,
).to(device)
print(f"Model {args.model} initialized")
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0.0)
best_auc = 0.0
evaluator = Evaluator("auc")
y_train, y_valid = data.y[data.train_mask], data.y[data.valid_mask]
for epoch in range(1, args.epochs + 1):
loss = train(model, data, optimizer)
out = test(model, data)
preds_train, preds_valid = out[data.train_mask], out[data.valid_mask]
train_auc = evaluator.eval(y_train, preds_train)["auc"]
valid_auc = evaluator.eval(y_valid, preds_valid)["auc"]
if valid_auc >= best_auc:
best_auc = valid_auc
torch.save(model.state_dict(), model_dir + "model.pt")
preds = out[data.test_mask].cpu().numpy()
print(
f"Epoch: {epoch:02d}, "
f"Loss: {loss:.4f}, "
f"Train: {train_auc:.2%}, "
f"Valid: {valid_auc:.2%},"
f"Best: {best_auc:.4%},"
)
test_auc = evaluator.eval(data.y[data.test_mask], preds)["auc"]
print(f"test_auc: {test_auc}")
if __name__ == "__main__":
main()