forked from lindermanlab/S5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_qtrain.py
280 lines (271 loc) · 8.66 KB
/
run_qtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
from s5.utils.util import str2bool
from s5.qtrain import train
from s5.dataloading import Datasets
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--load_run_name", type=str, default=None,
help="name of the checkpoint to load. if None, use the run_name."
)
parser.add_argument(
"--run_name", type=str, default=None,
help="name of this run (for wandb and checkpoint folder). if None, no checkpoints are made."
)
parser.add_argument(
"--checkpoint_dir", type=str, default=None,
help="parent folder where all checkpoints are stored. if None, no checkpoints are made."
)
parser.add_argument(
"--checkpoint_interval_steps", type=int, default=5,
help="how frequently to store checkpoints."
)
parser.add_argument(
"--checkpoint_max_to_keep", type=int, default=3,
help="how many checkpoints to keep."
)
parser.add_argument(
"--USE_WANDB", type=str2bool, default=False, help="log with wandb?"
)
parser.add_argument(
"--wandb_apikey", type=str, default=None, help="wandb api key"
)
parser.add_argument(
"--wandb_project", type=str, default=None, help="wandb project name"
)
parser.add_argument(
"--wandb_entity",
type=str,
default=None,
help="wandb entity name, e.g. username",
)
parser.add_argument(
"--dir_name",
type=str,
default="./cache_dir",
help="name of directory where data is cached",
)
parser.add_argument(
"--dataset",
type=str,
choices=Datasets.keys(),
default="mnist-classification",
help="dataset name",
)
# Quantization Parameters
parser.add_argument(
"--a_bits",
type=int,
default=None,
help="quantization for A matrix (if None, use full precision)",
)
parser.add_argument(
"--b_bits",
type=int,
default=None,
help="quantization for B matrix (if None, use full precision)",
)
parser.add_argument(
"--c_bits",
type=int,
default=None,
help="quantization for C matrix (if None, use full precision)",
)
parser.add_argument(
"--d_bits",
type=int,
default=None,
help="quantization for D matrix (if None, use full precision)",
)
parser.add_argument(
"--non_ssm_bits",
type=int,
default=None,
help="quantization for non-SSM operations (if None, use full precision)",
)
parser.add_argument(
'--ssm_act_bits',
type=int,
default=None,
help="quantization of the activations (if None, use full precision)"
)
parser.add_argument(
'--non_ssm_act_bits',
type=int,
default=None,
help="quantization of the activations (if None, use full precision)"
)
parser.add_argument(
'--qgelu_approx',
type=str2bool,
default=False,
help="use quantized gelu approximation"
)
parser.add_argument(
'--hard_sigmoid',
type=str2bool,
default=False,
help="use hard sigmoid instead of sigmoid"
)
parser.add_argument(
'--use_layernorm_bias', type=str2bool, default=True,
help="whether to use a bias in the (unquantized) layernorm."
)
# Model Parameters
parser.add_argument(
"--n_layers", type=int, default=6, help="Number of layers in the network"
)
parser.add_argument(
"--d_model",
type=int,
default=128,
help="Number of features, i.e. H, " "dimension of layer inputs/outputs",
)
parser.add_argument(
"--ssm_size_base", type=int, default=256, help="SSM Latent size, i.e. P"
)
parser.add_argument(
"--blocks", type=int, default=8, help="How many blocks, J, to initialize with"
)
parser.add_argument(
"--C_init",
type=str,
default="trunc_standard_normal",
choices=["trunc_standard_normal", "lecun_normal", "complex_normal"],
help="Options for initialization of C: \\"
"trunc_standard_normal: sample from trunc. std. normal then multiply by V \\ "
"lecun_normal sample from lecun normal, then multiply by V\\ "
"complex_normal: sample directly from complex standard normal",
)
parser.add_argument(
"--discretization", type=str, default="zoh", choices=["zoh", "bilinear"]
)
parser.add_argument(
"--mode",
type=str,
default="pool",
choices=["pool", "last"],
help="options: (for classification tasks) \\"
" pool: mean pooling \\"
"last: take last element",
)
parser.add_argument(
"--activation_fn",
default="half_glu1",
type=str,
choices=["full_glu", "half_glu1", "half_glu2", "gelu"],
)
parser.add_argument(
"--conj_sym",
type=str2bool,
default=True,
help="whether to enforce conjugate symmetry",
)
parser.add_argument(
"--clip_eigs",
type=str2bool,
default=False,
help="whether to enforce the left-half plane condition",
)
parser.add_argument(
"--bidirectional",
type=str2bool,
default=False,
help="whether to use bidirectional model",
)
parser.add_argument(
"--dt_min",
type=float,
default=0.001,
help="min value to sample initial timescale params from",
)
parser.add_argument(
"--dt_max",
type=float,
default=0.1,
help="max value to sample initial timescale params from",
)
# Optimization Parameters
parser.add_argument(
"--prenorm",
type=str2bool,
default=True,
help="True: use prenorm, False: use postnorm",
)
parser.add_argument(
"--batchnorm",
type=str2bool,
default=True,
help="True: use batchnorm, False: use layernorm",
)
parser.add_argument(
"--bn_momentum", type=float, default=0.95, help="batchnorm momentum"
)
parser.add_argument("--bsz", type=int, default=64, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="max number of epochs")
parser.add_argument(
"--early_stop_patience",
type=int,
default=1000,
help="number of epochs to continue training when val loss plateaus",
)
parser.add_argument(
"--ssm_lr_base", type=float, default=1e-3, help="initial ssm learning rate"
)
parser.add_argument(
"--lr_factor",
type=float,
default=1,
help="global learning rate = lr_factor*ssm_lr_base",
)
parser.add_argument(
"--dt_global",
type=str2bool,
default=False,
help="Treat timescale parameter as global parameter or SSM parameter",
)
parser.add_argument("--lr_min", type=float, default=0, help="minimum learning rate")
parser.add_argument(
"--cosine_anneal",
type=str2bool,
default=True,
help="whether to use cosine annealing schedule",
)
parser.add_argument(
"--warmup_end", type=int, default=1, help="epoch to end linear warmup"
)
parser.add_argument(
"--lr_patience",
type=int,
default=1000000,
help="patience before decaying learning rate for lr_decay_on_val_plateau",
)
parser.add_argument(
"--reduce_factor",
type=float,
default=1.0,
help="factor to decay learning rate for lr_decay_on_val_plateau",
)
parser.add_argument(
"--p_dropout", type=float, default=0.0, help="probability of dropout"
)
parser.add_argument(
"--weight_decay", type=float, default=0.05, help="weight decay value"
)
parser.add_argument(
"--opt_config",
type=str,
default="standard",
choices=["standard", "BandCdecay", "BfastandCdecay", "noBCdecay", "qaft"],
help="Opt configurations: \\ "
"standard: no weight decay on B (ssm lr), weight decay on C (global lr) \\"
"BandCdecay: weight decay on B (ssm lr), weight decay on C (global lr) \\"
"BfastandCdecay: weight decay on B (global lr), weight decay on C (global lr) \\"
"noBCdecay: no weight decay on B (ssm lr), no weight decay on C (ssm lr) \\"
"qaft: quantization-aware fine-tuning (standard, using SGD+momentum) \\",
)
parser.add_argument(
"--grad_clip_threshold", type=float, default=None, help="max norm for gradient clipping."
)
parser.add_argument("--jax_seed", type=int, default=1919, help="seed randomness")
train(parser.parse_args())