forked from SeanNaren/deepspeech.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SequenceError.lua
43 lines (39 loc) · 1.56 KB
/
SequenceError.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
local SequenceError = torch.class("SequenceError")
-- Calculates a sequence error rate (aka Levenshtein edit distance)
function SequenceError:sequenceErrorRate(target, prediction)
local d = torch.Tensor(#target + 1, #prediction + 1):zero()
for i = 1, #target + 1 do
for j = 1, #prediction + 1 do
if (i == 1) then
d[1][j] = j - 1
elseif (j == 1) then
d[i][1] = i - 1
end
end
end
for i = 2, #target + 1 do
for j = 2, #prediction + 1 do
if (target[i - 1] == prediction[j - 1]) then
d[i][j] = d[i - 1][j - 1]
else
local substitution = d[i - 1][j - 1] + 1
local insertion = d[i][j - 1] + 1
local deletion = d[i - 1][j] + 1
d[i][j] = torch.min(torch.Tensor({ substitution, insertion, deletion }))
end
end
end
local errorRate = d[#target + 1][#prediction + 1] / #target
return errorRate
end
function SequenceError:calculateCER(targetTranscript, predictTranscript)
return self:sequenceErrorRate(targetTranscript, predictTranscript)
end
function SequenceError:calculateWER(targetTranscript, predictTranscript)
-- convert to words before calculation
local targetWords = {}
for word in targetTranscript:gmatch("%S+") do table.insert(targetWords, word) end
local predictedWords = {}
for word in predictTranscript:gmatch("%S+") do table.insert(predictedWords, word) end
return self:sequenceErrorRate(targetWords, predictedWords)
end