diff --git a/inst/analysis/compute_droplet_cellwise_logliks.R b/inst/analysis/compute_droplet_cellwise_logliks.R new file mode 100644 index 0000000..52e8c62 --- /dev/null +++ b/inst/analysis/compute_droplet_cellwise_logliks.R @@ -0,0 +1,55 @@ +# sinteractive -p mstephens -c 4 --mem=16G --time=2:00:00 +# module load R/3.5.1 +library(Matrix) +library(ggplot2) +library(cowplot) +source("../code/loglik.R") +datadir <- "/project2/mstephens/eweine/fastglmpca_experiments" +load(file.path(datadir,"droplet.RData")) +counts <- t(counts) +fit1 <- readRDS(file.path(datadir, + paste("droplets_fastglmpca_fit_10_factors_5105", + "iter_28_cores_dec_23.rds",sep = "_"))) +fit2 <- readRDS(file.path(datadir, + paste("droplets_glmpca_fit_10_factors_10_hrs", + "avagrad_optimizer_minibatch_stochastic", + "dec_23.rds",sep = "_"))) +fit3 <- readRDS(file.path(datadir, + paste("droplets_scGBM_fit_10_factors_no_beta", + "infer_10_hrs.rds",sep = "_"))) +glmpca_pois_loglik <- function (Y, H) + Y*H - exp(H) - lfactorial(as.matrix(Y)) +H1 <- glmpca_pois_loglik(counts,logrates_fastglmpca(fit1)) +H2 <- glmpca_pois_loglik(counts,logrates_glmpca(fit2)) +H3 <- glmpca_pois_loglik(counts,logrates_scgbm(fit3)) + +tissue_colors <- c("royalblue", # basal + "firebrick", # ciliated + "forestgreen", # club + "gold", # goblet + "darkmagenta", # ionocyte + "darkorange", # neuroendocrine + "skyblue") # tuft + +# Compare the cell-wise logliks. +pdat <- cbind(samples, + data.frame(fastglmpca = colSums(H1), + glmpca = colSums(H2), + scgbm = colSums(H3))) +x <- with(pdat,c(scgbm,glmpca,fastglmpca)) +p1 <- ggplot(pdat,aes(x = glmpca,y = fastglmpca,color = tissue)) + + geom_point(show.legend = FALSE) + + geom_abline(intercept = 0,slope = 1,color = "black",linetype = "dotted") + + scale_color_manual(values = tissue_colors) + + xlim(min(x),max(x)) + + ylim(min(x),max(x)) + + theme_cowplot(font_size = 12) +p2 <- ggplot(pdat,aes(x = scgbm,y = fastglmpca,color = tissue)) + + geom_point(show.legend = FALSE) + + geom_abline(intercept = 0,slope = 1,color = "black",linetype = "dotted") + + scale_color_manual(values = tissue_colors) + + xlim(min(x),max(x)) + + ylim(min(x),max(x)) + + theme_cowplot(font_size = 12) +ggsave("droplet_loglik_cellwise1.eps",p1,height = 3,width = 3.25) +ggsave("droplet_loglik_cellwise2.eps",p2,height = 3,width = 3.25)