-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathexample_sparseKMeans.m
90 lines (79 loc) · 3.24 KB
/
example_sparseKMeans.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
%{
Example testing kmeans using Matlab's stat toolbox version,
our own version, and our own version that uses the sparsification feature
[email protected], Aug 4 2015
%}
% Setup path, install mex files if necessary:
setup_kmeans
%% Generate synthetic data
rng(234);
k = 5;
% p = 100; n = 2e3;
p = 512; n = 5e3; % Used this to make the .png image
centersTrue = randn(p,k);
X = randn(p,n);
for ki = 1:k
X(:, (ki-1)*n/k+1:ki*(n/k) ) = repmat(centersTrue(:,ki), 1,n/k) + ...
.1*randn(p,n/k);
end
figure(1); clf; plot( centersTrue(1,:),centersTrue(2,:), 'o','markersize',12);
hold all; plot( X(1,:), X(2,:), '*' );
title('First two dimensions of the data');
%% various versions
nReplicates = 20;
% -- Matlab's version. Do not run this for n>1e4
% Peculiarities about Matlab:
% - for R2014a, I cannot run 'Start','Sample' beacuse I get an error
% with how their code calls randsample.
% - "dist" is really distance *squared*
% - therefore objective should be sqrt(sum(sumd)), not norm(sumd)
% - they expect samples to be rows, e.g., n x p matrix. Output
% follows the same convention
tic
[indx,centers,sumd,dist] = kmeans( X', k ,'Start','uniform','Replicates',nReplicates);
time_Matlab = toc;
obj_Matlab = sqrt(sum(sumd));
centers_Matlab = centers';
fprintf('stats toolbox version:\tobjective %.3e, time %.2e\n', obj_Matlab, time_Matlab );
% -- Our version, nothing fancy yet, just replicating same results as Matlab
% but a smarter implementation
warning('off','kmeans_sparsified:dropCluster');
tic
[indx,centers,sumd,dist_sketch] = kmeans_sparsified( X, k,'ColumnSamples',true,...
'Display','off','Replicates',nReplicates,'Sparsify',false, 'start','++');
time_faster = toc;
obj_faster = norm(dist_sketch);
centers_faster = centers;
fprintf('our version:\t\tobjective %.3e, time %.2e\n', obj_faster, time_faster );
% -- Our version, sampling the data to make it very fast
% (Note: it will not necessarily be much faster until n>1e4 or so)
SparsityLevel = 0.05;
tic
[indx,centers,sumd,dist_sketch] = kmeans_sparsified( X, k,'ColumnSamples',true,...
'Display','off','Replicates',nReplicates,...
'Sparsify',true,'SparsityLevel',SparsityLevel );
time_fastest = toc;
obj_fastest = norm(dist_sketch);
centers_fastest = centers;
fprintf('our sparse version:\tobjective %.3e, time %.2e\n', obj_fastest, time_fastest );
%% Plot results
figure(1); clf;
str = {};
plot( X(1,:), X(2,:), 'k*' );
str{1}=sprintf('data samples (p=%d, n=%d)',p,n);
hold all;
plot( centers_Matlab(1,:), centers_Matlab(2,:), 'ws','markersize',...
17,'markerfacecolor','b' ,'linewidth',2 );
str{end+1}=sprintf('K-means (stat toolbox), %.2f seconds',time_Matlab);
plot( centers_faster(1,:), centers_faster(2,:), 'w^','markersize',...
12,'markerfacecolor','g' ,'linewidth',2 );
str{end+1}=sprintf('K-means (our toolbox), %.2f seconds',time_faster);
plot( centers_fastest(1,:), centers_fastest(2,:), ...
'wd','markersize',12,'markerfacecolor','r','linewidth',2 );
str{end+1}=sprintf('Sparsified K-means (%.0f%% sparse), %.2f seconds',...
100*SparsityLevel,time_fastest);
set(gca,'fontsize',12);
legend(str);
xlabel('dimension 1');
ylabel('dimension 2');
title('First two dimensions of the data');