-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmall.R
44 lines (37 loc) · 1.09 KB
/
small.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
###################################################################
library(rootWishart)
library(rWishart)
library(corpcor)
# Simulate CDF of lambda_min of doubly singular beta ensemble
# and compare to the exact formula
p=20
m=19
q=2
n=500
#generate singular wishart matrices with Sigma = I_p
A=rSingularWishart(n, m, diag(1, p))
B=rSingularWishart(n, q, diag(1, p))
lmin<-rep(0,n)
rnks<-rep(0,n)
for(i in 1:n){
svdA <- eigen(A[,,i])
rankVr <- corpcor::rank.condition(A[,,i])$rank
rnks[i] <- rankVr
eigVecA <- svdA$vectors[, 1:rankVr]
eigValAInv <- sqrt(1/svdA$values[1:rankVr])
Xp <- eigVecA %*% diag(eigValAInv)
C <- crossprod(Xp, B[,,i] %*% Xp)
svdC <- corpcor::fast.svd(C)
Xpp <- svdC$u
singWeights <- Xp %*% Xpp
smallestRoot <- (crossprod(singWeights, B[,,i] %*% singWeights))[q,q]
lmin[i] <- smallestRoot
}
lmin <- sort(lmin)
#rescale to doubleWishart package setting:
lvalmin <- sort(lmin/(1+lmin))
#plot empirical cdf:
DW<-doubleWishart(lvalmin, p=q, n=p-m+q, m = m, type = "multiple")
# plot on the original scale:
plot(ecdf(lmin), pch='.')
points(lmin, DW, col='red', pch='.')