From 67815c2f73f4a8240f1c3d6460171c0d34e36c91 Mon Sep 17 00:00:00 2001 From: sschuma Date: Tue, 8 May 2018 14:02:11 +0200 Subject: [PATCH 1/2] remove file --- Beispiel_stokes.ipynb | 362 ------------------------------------------ 1 file changed, 362 deletions(-) delete mode 100644 Beispiel_stokes.ipynb diff --git a/Beispiel_stokes.ipynb b/Beispiel_stokes.ipynb deleted file mode 100644 index de17d90..0000000 --- a/Beispiel_stokes.ipynb +++ /dev/null @@ -1,362 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Übung: Fall mit Stokes Reibung\n", - "\n", - "Dieses Notebook ist eine Art Lückentext mit dessen Hilfe Ihr ein einfaches pyhsikalisches Problem, den Fall mit Stokes-Reibung berechnen und darstellen könnt. (siehe Hausaufgabe 3.1)\n", - "\n", - "Die Formel zur Berechnung der Höhe lautet:\n", - "\n", - "\\begin{align*}\n", - " h(t)= \\left( \\frac{m}{\\beta}\\right) \\cdot \\left(v_0 + \\frac{m\\cdot g}{\\beta}\\right) \\left(1-\\exp\\left(-\\frac{\\beta t}{m} \\right) \\right) - \\frac{mg}{\\beta} \\cdot t +h_0\n", - "\\end{align*}\n", - "\n", - "$\\beta$ ist ein Reibungskoeffizient für die Reibungskraft, die sich proportional zur Fallgeschwindigkeit $v$ verhält, und $v_0=0$ [ms$^{-1}$] die Anfangsgeschwindigkeit.\n", - "$h_0$ ist die Ausgangshöhe und $g$ ist die Erdbeschleunigung 9.81 [ms$^{-2}$].\n", - "\n", - "Wir wollen im Folgenden den zeitlichen Verlauf des Falls für verschiedene Reibungskoeffizienten berechnen.\n", - "Die Starbedingungen seien:\n", - "\n", - "$$v_0=0$$\n", - "$$\\beta=[1,0.6,0.4]$$\n", - "$$h_0=0$$\n", - "$$m=1$$\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Importieren der Bibliotheken\n", - "\n", - "Zunächst importieren wir die Bibliotheken, die wir im Folgenden verwenden wollen." - ] - }, - { - "cell_type": "code", - "execution_count": 325, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np \n", - "import matplotlib.pyplot as plt\n", - "from scipy.constants import g \n", - "\n", - "#Scipy enthält neben vielen nützlichen Funktionen, \n", - "#u.a. zur Optimierung und numerischen Integration,\n", - "#auch die gängigen pyhsikalischen Konstanten. \n", - "#Hier importieren wir uns lediglich g\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Definieren der Funktionen\n", - "\n", - "Als nächstes wollen wir Funktionen definieren, die uns die gewünschten Werte berechnen.\n", - "Dazu sollte man sich anhand der Aufgabenstellung überlegen was berechnet werden soll.\n", - "Unsere Grundfunktion ist natürlich die in der Aufgabenstellung angegebene Formel zur Berechnung der Höhe.\n", - "\n", - "Also definieren wir zunächst eine Funktion, die uns als Rückgabewert unsere aktuelle Höhe liefert:" - ] - }, - { - "cell_type": "code", - "execution_count": 326, - "metadata": {}, - "outputs": [], - "source": [ - "def h_t(fric, t, h0, v0=0):\n", - " return fric*(v0+fric*g)*(1-np.exp(-t/fric))-fric*g*t+h0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Diese Funktion können wir nun direkt testen!\n", - "Hierfür überlegen wir uns die Startbedingungen, die Inkrementierung und eine Abbruchbedingung.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 328, - "metadata": {}, - "outputs": [], - "source": [ - "# Ergänze die Startbedinungen (v0, h0,t0,m ,beta)\n", - "\n", - "v0=0\n", - "h0=h=10\n", - "t=0\n", - "m=1\n", - "b=0.5\n", - "fric=m/b\n", - "\n", - "# Definiere einen Zeitschritt dt und erstelle eine while-Schleife,\n", - "# die die Zeit inkrementiert und die entspechende Höhe ausrechnet\n", - "# Die Schleife soll stoppen wenn unser Objekt eine Höhe von 0 erreicht hat.\n", - "dt=1\n", - "\n", - "while h>=0:\n", - " h=h_t(fric,t,h0,v0)\n", - " t=t+dt\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sofern unsere Schleife funktioniert und sinnvolle Werte liefert, sind wir eigendlich schon in der Lage die Aufgabe zu lösen. Dafür würden wir Startbedinungen verändern und die Zelle mit den neuen Werten erneut ausführen.\n", - "Schöner wäre es allerdings, wenn man dise Aufgabe etwas abkürzen könnte.\n", - "\n", - "Dafür wollen wir unsere Berechungsschleife in eine weitere Funktion einbauen, die als Argumente die Starbedingungen nimmt und die Ergebnisse in Arrays speichert.\n", - "So können wir einfach unsere Bedinungen ändern und die Werte speichern um sie später gemeinsam darzustellen." - ] - }, - { - "cell_type": "code", - "execution_count": 329, - "metadata": {}, - "outputs": [], - "source": [ - "# Definiere eine Funktion, die die Startbedingungen als Argumente besitzt \n", - "# und Arrays mit den berechneten Höhen bzw den Zeitschitten zurück liefert.\n", - "\n", - "def run(h0, dt, beta, m=1, v0=0):\n", - " print(\"An object of mass\",m, \"kg falls from a hight of\", h0, \"m.\\n\"\n", - " \"beta=\",beta,\"dt=\",dt,\"v0=\",v0,\"\\n\") \n", - " fric = m/beta\n", - " hoehe=h0\n", - " t=dt\n", - " \n", - " time= np.array([0]) #Array für die Zeitpunkte der Berechnung (erster Wert: t0=0)\n", - " hight=np.array([h0]) #Array für die Zeitpunkte der Berechnung (erster Wert: h0)\n", - " \n", - " \n", - " while hoehe >= 0.:\n", - " hoehe= h_t(fric,t,h0)\n", - " hight=np.append(hight,[hoehe])\n", - " time=np.append(time,[t])\n", - " t= t+dt\n", - " #print(time)\n", - " return time, hight" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Berechnung\n", - "\n", - "Es ist vollbracht! Wollen wir unsere Kurve mit verschiedenen Startwerten berechnen und vergleichen.\n", - "Variiere hierfür zunächste den Reibungskoeffizienten $\\beta$. Speichere die von der Funktion zurückgegebenen Arrays für jedes Parameter-Set in zwei neue Variablen.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 330, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "An object of mass 1 kg falls from a hight of 1000 m.\n", - "beta= 1.0 dt= 0.5 v0= 0 \n", - "\n", - "An object of mass 1 kg falls from a hight of 1000 m.\n", - "beta= 0.5 dt= 0.5 v0= 0 \n", - "\n", - "An object of mass 1 kg falls from a hight of 1000 m.\n", - "beta= 0.4 dt= 0.5 v0= 0 \n", - "\n" - ] - } - ], - "source": [ - "# Berechne die Bahnkurve für beta=[1.0,0.7,0.4] \n", - "# mit einem Zeitschritt von dt=0.5 und einer Starhöhe von h0=100m\n", - "time,hight=run(1000,0.5,1.0)\n", - "\n", - "time2,hight2=run(1000,0.5,0.5)\n", - "time3,hight3=run(1000,0.5,0.4)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Darstellung der Ergebnisse\n", - "\n", - "Im folgenden wollen die die Trajektorie unseres Fallenden Gegenstands plotten und unsere Endgeschwindigkeit bestimmen.\n", - "\n", - "### Trajektorie" - ] - }, - { - "cell_type": "code", - "execution_count": 331, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAElCAYAAADz3wVRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd0FVXXwOHfTiMk9N5rKDF0QocIKl3poCgIolJEqgro+732AiLSRAQEVBQU6SBVRRM6oUPoNaH3nn6+P+7wGoSElHtzU/az1qzkzpw5s+/NWtl3Zs7sI8YYlFJKqcRycXYASiml0hdNHEoppZJEE4dSSqkk0cShlFIqSTRxKKWUShJNHEoppZJEE4dKU0TkRxF53/r9KRE5Yad+G4vIPnv0lczjfywi3znr+IkhIqtF5AXr91dE5C8nh6TSKE0cyiFE5ISI3BWRW3GWIs6KxxjzlzHGLyn7iEh7EdklIjdE5JKI/C4iJaxtaS4RWP/sY6zP+rqI7BCRlond3xjTzBjzkyNjVBmDJg7lSM8YY7LFWc44O6CHERG3h6yrAMwEBgE5gdLAN0Bs6kaXZEHGmGxAbuBbYK6IZHdyTCqD0cShUpWIuIjIPBE5JyLXROQvEfFNRj9uImJEpJ+IHBWRmyLynoiUE5FN1lnCHBFxt9rfd9lLRMJE5C0R2QPcecghqgNHrDMVY4y5aYyZZ4wJE5GngWHAC9a3+21Wn8VEZJmIXBGRwyLSK57YPURkrrW4W5/JO9b7uCQiP4tIbqutl4jMFpHL1ue1RUTyPerzMcbEArOAbIBPnGM3sD6fayKyU0QC4mxbJyI943TjIiJfW2cv+0Wkyb8+v8ZxXv/vDExEfKy/zYtWu4siMiJOWy/rkuQ1EQkRkRH2uiSpUocmDuUMy4ByQCFgL7Z/cMnVFKgGNAD+A3wNPAeUxPbPv0sC+z4HtMR2RvFv24DKIjJGRJqIiPe9DcaYZcDnwE/WmVRNa9MvwHGgCPAs8LmIPB63UxHxAhYDN4HnjDFRwFCgNRAAFANuAxOsXV4CvKz1eYHXgPBHfCb3zqJeAiKBUGtdcWAJ8B6QBxgBLBCRvPF0Ux84AOQDPgIWikiuRx37X/v7AM2BD0SknLX+Q2yfUSlrW7ck9KnSAE0cypEWWd8qr4nIIrB9EzbGfGd9gw8H3gdqxv3HnESjrL52A/uBlcaYE8aYq8AqbMkjPuONMWHGmLv/3mCMOQw0AUoAvwKXRWSG9Y//ASJSGqgNjDDGhBtjtmO71NU9TrOcVkwHgFesswKAPsA7xpjTcT6TLiLiAkRh+8ftY4yJMcYEG2NuJfCeGorINeAu8BnwvDHmkrXtRWCJMWaV9XdYCewCWsTT11lgojEmyhgzGziGLdEm1vtxPot9QFVrfRfgE2PMNWNMKPBVEvpUaYAmDuVI7YwxuaylHYCIuIrI5yJyTERuAEesto+8/BKP83F+v/uQ19kS2Dc0oY6NMRuMMZ2NMfmwnQ08AbwdT/MiwCVjzO04604CReO8bgD4YUt2cauLlgCW3kuywB7AAAWA74Dfsd2rOC0iI63LdI3jDDrYFaevdcaYXNjOKJYDDeNsKwl0jZPMrwF1rdgfJuxfcZ5MoO0DjDHn4ry8wz9/i8Lc/9kn+HdQac8DNwWVcrAXgVbY/gmfxHb55SIgTogl0aWhjTFbrLOmSvHsewbIJyLecZJHCeB0nDbLgUPAHyLS2Bhz0Vofhu3MYHM8h38feN86q1kJ7DfGfE8CSdEYc1NE+gFHRWSmdUYWCsw0xvRLzHvGdnksrhLW+wTb5bS4Z1+FEtknwDmr70PW6+JJ2FelAXrGoVJbdiACuIztH88nzg3n4UTkcWt4awHrtS/wDLDJanIeKCUiAmCMOQ4EA5+KSBYRqYbtHsN9w1uNMZ8C84Df49xb+Mba795Q3wIi0sb6/QkRqWRdtrqB7dJVTGLeg5WYZgD/tVbNAtqLSFPrzM/Tun8T31lEYRF53TrDeQ4oiy1xAewEnrO21QY6JCYmy1zgHRHJJSLFgP5J2FelAZo4VGqbie1b6xls1703ODeceF0F2gN7ReQWtrOFucAYa/svgAdwRUS2WOuexXbT/xy25PCOMWbtvzs2xrwHrADWWDebv8T2D/kPEbmJ7TOpZTUvAizAljT2YbtsNScJ72Ms0EZE/IwxJ6z39F9sZ3mngDeI///ABmyX1q5gO+vpaN07AttAhIrANau/2UmI6T1sifcEsBrb5xqRhP2Vk4lO5KSUciYRGYDtftiTzo5FJY6ecSilUpWIFBWR+tbzK77AEGChs+NSiac3x5VSqS0LMA3bcxxXsV16m+LMgFTS6KUqpZRSSaKXqpRSSiWJJg6llFJJoolDKaVUkmjiUEoplSSaOJRSSiWJJg6llFJJoolDKaVUkmjiUEoplSSaOJRSSiWJJg6llFJJoolDKaVUkmjiUEoplSSaOJRSSiWJwxKHiMwQkQsisjfOujwiskZEDls/c1vrRUQmiMgREdktIjXi7NPDan9YRHo4Kl6llFKJ48gzju+AFv9aNwL4wxhTDvjDeg3QEtuUm+WA3sBksCUabNNM1gFqA+/dSzZKKaWcw2GJwxgTiG2u4rjaAt9bv38PtIuz/gdjswnIJSKFgebAGmPMFWuu4zU8mIyUUkqlotSeAbCgMeYsgDHmrIgUsNYXBULjtAuz1sW3/gEi0hvb2Qqu2Vxruudzx82At8lCvpwl8PTwsPNbUUqpjGXbtm2XjDH5H9UurUwdKw9ZZxJY/+BKY6YCUwF8/cqboZ92JvDCanZ6hFMsMoaG7u3o1f4NCufMar+olVIqAxGRk4lpl9qjqs5bl6Cwfl6w1ocBxeO0KwacSWB9gryz5uDVtp8w69WtjPUdRKSrCwvMz3w6uRtf/XGIyOhYu7wZpZTKjFI7cSwB7o2M6gEsjrP+RWt0VV3gunVJaxXQTERyWzfFm1nrEu2p2q8wr/MqKrpm46/Chwjd1od2E/9mZ+g1+7wjpZTKZBw5HHcOsBGoICJhIvIyMBJoKiKHgabWa4DlwDHgCDANeA3AGHMF+AjYai0fWuuSJHf2Isx4/i8aehZmRYGLNIx9l05fB/Lh0hBuR0Sn8J0qpVTmIsY89JZBuubv72+Cg4MfWB8RE8Hr89uy9U4YQ28V4/2w/hTJ7c3oTlWpVzavEyJVSjlKVFQUYWFhhIeHOzuUNMfT05NixYrh7u5+33oR2WaM8X/U/pkqcQDcjrpNz3mtOBV+iXEe1Xn7dC9OXLlLrwalGdaiAp7urqkcrVLKEY4fP0727NnJmzcvIg8bZ5M5GWO4fPkyN2/epHTp0vdtS2ziyHQlR7zdvZnU9leyuXnzwd1t/Fp1LS/WK8mM9cdpPSGIXXrvQ6kMITw8XJPGQ4gIefPmTdGZWKZLHAAFvAowtvk0Lri785/jc3iv+A5+fLkOdyJj6DB5A1+uPqgjr5TKADRpPFxKP5dMmTgAqhSoyjt1/sPGrFn5Nui/NHTbz8rBAbStVoQJfx6h/dfrOXjuprPDVEqpNCfTJg6AjhW60LpEU77OmZ2tC3uS824YX3apxpTuNTl3PZxnJq5jyt9HiYnNePeBlFIquTJ14hAR3m34McWzFeGdXJ5cn/McRNykuV8hVg0JoEnF/Hy24gDPTd3Iycu3nR2uUkqlCZk6cQB4uXsxqvGXXHJz4yO5hFnYD4whX7YsfNOtJmOfrcqBczdpMS6IHzedJCOOQlNKOda7775L5cqVKV++PFOnTk1WH7169aJAgQJUqlTJztElXaZPHAB++fzoX30Aq7y9WB76BwSNAWxnJO2rF2P1kAD8S+Xm/xbtpefMrZy/oePClVKJs2rVKnbs2MHOnTuZP38+ixYtSlY/PXv2ZOXKlXaOLnk0cVhe8nuJqvmr8kmBgpz/+zM48sf/thXOmZUfetXmo7Z+bD5+mWZjA1m665Els5RSiiVLltCzZ0+ioqL46quv6NixY7L6CQgIIE+ePHaOLnnSSnVcp3N1ceWThp/QaUlH3i9SnK/nv4z0CYRcJQDb2Uf3eqVo4JOPoXN3MWDODtaEnOfDtn7k8tKS7UqlZR8s3UfImRt27fOxIjl47xm/R7bbtm0btWrVIm/evJQqVYqxY8fet71Ro0bcvPngCM4vvviCp556ym7x2pOeccRRMkdJBtUYzDq3GJZkcYG5PSA64r42ZfJnY17ferzZrDzL95yl+bhA/j500UkRK6XSstjYWMLCwujZsyeXLl2iZs2afPnll/e1CQoKYufOnQ8saTVpgJ5xPOB53+dZc3INo1xDqHd8FwVWvQOtx9zXxs3VhdefKEfjCgUY8stOeszYQve6JXm7VUW8PPQjVSqtScyZgSMcPHiQcuXKAZA1a1YaNGjAuXPn7muTHs849L/cv7iICx/U/4COSzryabmajNv6LZSoB5U7PdC2UtGcLB3QkDGrD/LtuuMEHb7ImC7VqFlSp0VXSsGOHTuIiIggJiaG6OhoZs+ezYQJE+5rExQU5KTokk8vVT1EqZyl6FetH39EnGNN8SqwdBBcOvzQtp7urvyn9WPMebUuUTGGzt9sYPSqA1qyRCnFzp07uXv3LmXLlqVBgwb06NGDqlWrJquvrl27Uq9ePQ4ePEixYsWYPn26naNNPD3jiEcPvx6sOrGKz+5coM5lD3L82hNe+R3cHz71bN0yeVk5uBEfLQth0tqjrD1wkbHPVqNCoeypG7hSKs3YsWMHs2bNssuzF3PmzLFDRPahZxzxcHdx5/3673M54hrjqzSD83thxfAE98nu6c7nnaoy7UV/Lty0lSyZGqglS5TKrA4cOEDFihWdHYbdaeJIgF9eP7r5dmPu+Q3sqNUdtn8Pe+Y9cr+mjxVk1WBbyZJPlx+g67RNhF65kwoRK6XSktDQUNzcMt6FHU0cj9C/Wn8Kexfmw+jTRBWvY7vfcfnoI/fLa5UsGdO5KvvP3KDFuEDmbg3VkiVKqXRPE8cjeLl78Xbttzly7QjfV2kBru7waw+IenTZERGhY81irBjciCrFcjFs/m5e/SGYizcjHrmvUkqlVZo4EqFJiSY8UfwJphycw+kWn8C5PbD6/xK9f7HcXvz0Sh3effoxgg5fovm4QFbuPevAiJVSynE0cSTS23XeRkT49NIGTJ3XYOs02L800fu7uAi9Gpbmt4ENKZorK31/3M7QuTu5ER7lwKiVUsr+NHEkUiHvQrxW9TUCwwL5s2JjKFIdFveHa6eS1I9PgewseK0+g54sx+KdZ2gxNpD1Ry45JmillHIATRxJ8MJjL+CTy4dR28Zwp93XEBsL816GmKSdNbi7ujCkaXkW9KuPp4crL3y7mQ+W7iM8KsZBkSullP1o4kgCdxd3/lv3v5y9fZapoauhzXgI2wJrP01Wf1WL5+K3AY3oWb8UM9efoPWEIHaHXbNz1EopZV+aOJKoRsEatCnbhu9DvudY8epQ40VYNxaOrk1Wf1k9XHm/jR8/vlyHO5ExtP96A+N+P0RUjJYsUUqlTZo4kmFozaFkdcvKp5s/xTQfCfnKw4LecOtCsvtsWC4fKwcH0LZqEcb9fpiOkzdw5MItO0atlHIWe0wdu3LlSipUqICPjw8jR46Mt12pUqWoXLky1apVw9/fP7khJ0gTRzLkzZqXgdUHsvnsZladCYLOMyHiBizsa7vvkUw5s7rz5bPVmPxCDUKv3KH1hCBmrj9OrJYsUSrdssfUsTExMfTv358VK1YQEhLCnDlzCAkJibf92rVr2blzJ8HBwSkJPV6aOJKpc/nO+ObxZXTwaO7kKQ3NP4Wjf8DGr1Lcd8vKhVk1JICGPvn4YGkI3aZv5vS1u3aIWimV2uwxdeyWLVvw8fGhTJkyeHh48Nxzz7F48WIHRJs4Ga+ISipxdXHlnTrv0H1Fd77Z9Q1D/YfAsb/gjw+gVAMoWjNF/RfI7sm3Pfz5ZWsoHy0LocXYQD5o60f76kUREfu8CaUyixUjbA/u2lOhytAy/ktG99hj6tjTp09TvHjx/20rVqwYmzdvfujxRIRmzZohIvTp04fevXsn5V0lip5xpEC1AtVo79OeWSGzOHbjOLSZANkLw7xeEJ7y+Y1FhOdql2DFoAAqFs7O0Lm76Pfjdi7f0pIlSqUH9po69mE17uL7Arl+/Xq2b9/OihUrmDRpEoGBgfZ9U+gZR4oNqjGI30/9zmebP2Nq06lIx29hZktYNgQ6fgt2ODsokdeLn3vX49ugY4xZfYjm44IY2aEyTz1W0A7vQKlMIBFnBo5gr6ljixUrRmho6P+2hYWFUaRIkYce8976AgUK0L59e7Zs2UJAQIBd3s89esaRQnmz5uX1aq+z6ewm1pxcAyXqQuO3Ye882DnbbsdxdRH6PF6WJQMakD97Fl75IZjh83ZzKyLabsdQStlX3KljIyIimD17Nu3atbuvTWLOOGrVqsXhw4c5fvw4kZGR/Pzzz7Rp0+aB492+fft/Sej27dusXr3aLpNI/ZsmDjvoUqEL5XOX54vgL7gbfRcavQGlGsHyN+Odcja5KhbKwaL+9XmtcVl+3RZKi3GBbD522a7HUErZh72mjnVzc+Orr76iefPm+Pr60qVLF/z8/P63vVWrVpw5c4bz58/TsGFDqlatSu3atWndujUtWrSw51sCQDLi/BD+/v7GUcPQ4hN8LpiXVr1Enyp9eL3663DjDExuADmL2aacdcti92NuO3mFoXN3cerKHV5tVIahTcvj6e5q9+MolR7t378fX19fp8bQtGlTxo4d65Bv/Sn1sM9HRLYZYx758IeecdiJfyF/WpVuxcy9Mwm9GQo5ikC7r+HcbljznkOOWbNkHpYPbMTztUswNfAYbb9az74z1x1yLKVU0unUsXYkIkNEZJ+I7BWROSLiKSKlRWSziBwWkV9ExMNqm8V6fcTaXsoZMSfG0JpDcXVx5fOtn9tWVGgJtfvA5slwaJVDjumdxY1P2ldm5ku1uHonknaT1jNp7RGitWSJUk6nU8faiYgUBQYC/saYSoAr8BwwChhrjCkHXAVetnZ5GbhqjPEBxlrt0qSC3gXpU6UPf4X+RVBYkG1l0w+hYGVY1A9uOG7ypiYVCrB6SADN/QoxetVBukzZyPFLtx12PKVU5uWsS1VuQFYRcQO8gLPAE8A8a/v3wL2hB22t11jbn5Q0/ARc98e6UypHKUZtHUVUTBS4e0KnGRB1Fxb2hljHlU7P5eXBV8/XYELX6hy5cItW44OYtemkznOulLKrVE8cxpjTwBfAKWwJ4zqwDbhmjLk3tjQMKGr9XhQItfaNttrn/Xe/ItJbRIJFJPjixYuOfRMJ8HD1YFitYZy8cZJZ+2fZVuYvDy1HwfFAWD/O4TG0qVqE1UMex79Ubv67aC89Zm7l3PVHz5GulFKJ4YxLVbmxnUWUBooA3kDLhzS99zX5YWcXD3yFNsZMNcb4G2P88+fPb69wk6VRsUY0LtaYKbumcOGOVTG3enfwaw9/fgKhWx0eQ6GcnvzQqzYftavE1uNXaD4ukCW7zjj8uEqpjM8Zl6qeAo4bYy4aY6KABUB9IJd16QqgGHDvv1wYUBzA2p4TuJK6ISfdsFrDiIqNYuw2qy6NCDw9DnIUhfm9INzxo59EhO51S7J8UCPK5Pdm4JwdvD57O9fuRDr82EqpjMsZieMUUFdEvKx7FU8CIcBaoJPVpgdwr/TjEus11vY/TTq4aF88R3F6+vVk2bFl7Liww7Yyay7oNB2un4algyGV3kbpfN782qcebzWvwMq952g2NpC/DiZ/7hClVObmjHscm7Hd5N4O7LFimAoMB4aKyBFs9zCmW7tMB/Ja64cCI1I75uR6pfIrFPAqwGebPyPm3k3x4rWhyduwbwHs+DHVYnFzdaF/Ex8W9W9ALi93es7cyn8W7uFOpJYsUUoljVNGVRlj3jPGVDTGVDLGdDfGRBhjjhljahtjfIwxnY0xEVbbcOu1j7X9mDNiTg4vdy/e9H+T/Vf2s/DIwn82NBxqK0myYpjdS5I8SqWiOVnyekN6B5Rh9pZTtBwfxLaTV1M1BqVU+qZPjjtYi1ItqFmwJhO2T+B6hHVfw8UVOkwFN0+Y9xJEp26ZdE93V95p5cvPr9YlJtbQ+ZsNjF51gMhofWhQKUdIraljQ0NDadKkCb6+vvj5+TF+/PiUhB0vTRwOJiK8XfttrkdeZ/Kuyf9s+F9Jkj0OK0nyKHXK5GXFoEZ0rlmcSWuP0nbSeg6cS/k8Ikqpf6Tm1LFubm6MGTOG/fv3s2nTJiZNmpTgFLPJpYkjFVTIU4HO5Tvz84GfOXw1zqWpVChJ8ijZPd0Z1akK377oz8Wb4bSZuJ4pfx8lRuc5V8ouUnPq2MKFC1OjRg0AsmfPjq+vL6dPn07xe/i3jFdEJY16vdrrrDi+glFbRjGt2bR/Zu9q+iGcXG8rSdJvA2Qv5JT4nnqsIKtKBPDOwj18tuIAf+y/wJguVSmex8sp8ShlT6O2jOLAlQN27bNinooMrz38ke1Se+rYe06cOMGOHTuoU6dOYt5OkugZRyrJ5ZmLAdUHsPncZv449cc/G+6VJIm8Awv7QKzz7jPkzZaFb7rV5MsuVdl/9gYtxgXy85ZTWrJEqWRyxtSxALdu3aJjx46MGzeOHDly2O8NWfSMIxV1Kt+JuYfmMnrraBoWbYinm6dtQ/4KtpIkSwfChvHQcIjTYhQROtQoRp0yeXnr112MWLCHNSHn+axjZQpk93RaXEqlRGLODBzBGVPHRkVF0bFjR1544QU6dOhgr7dyP2NMhltq1qxp0qotZ7eYSt9VMl/v/Pr+DbGxxvzyojEf5DEmNNg5wf1LTEysmbHumCn/n+Wm2gerzPLdZ5wdklKJFhIS4uwQzE8//WTq1atnoqOjTXh4uAkICDA7d+5Mcj9RUVGmdOnS5tixYyYiIsJUqVLF7N2794F2sbGxpnv37mbQoEGP7PNhnw8QbBLxP1YvVaWyWoVq0axkM2bsmcHZW3HKrIvAM+MhexGrJInzRze5uAgvNSjNbwMbUjyPF/1+2s7QX3Zy/W6Us0NTKl1I7alj169fz6xZs/jzzz+pVq0a1apVY/ny5fZ8S4BOHesUZ26doc2iNjQu3pgvHv/i/o2nNsPMllCpA3SYZksoaUBUTCyT1h5h4p9HKJA9C190rkoDn3zODkupeOnUsQnTqWPTmSLZitCrUi9WnVjF1nP/qpRbog40fhv2/Aq75jgnwIdwd3Vh8FPlWdCvPlk9XHnh2828v2QfdyMdN7+IUumdTh2r7OqlSi9RyLsQo7aM+qeO1T2NhkLJhvDbm3DpiHMCjEfV4rlYPrARLzUoxXcbTtB6YhC7Qq85Oyyl0iSdOlbZVVa3rLzp/yYHrx5k3qF592/8X0kSD9v9jui0VQbd092V957x46dX6nA3MoYOkzcwds0honSec6UyBU0cTtSsZDP8C/ozcefEf+pY3ZOzKLSdBGd3wR8fOCfAR2jgk4+VgwNoW60I4/84TIevN3DkwoPDCpVSGYsmDicSEUbUHsHNyJtM2jnpwQYVW0OtV2DjV3D499QPMBFyZnXnyy7V+KZbDU5fu0vrCeuYse44sVqyRKUBGXHwjz2k9HPRxOFk9+pYzT049/46Vvc0+xgKPAaL+sKttDv5UotKhVk5uBENffLx4bIQXvh2M6ev3XV2WCoT8/T05PLly5o8/sUYw+XLl/H0TP4DvTocNw24Fn6N1gtb45vH9/46Vvdc2A9TG0PJBvDCPHBJu/neGMPc4FA+XBqCiwjvt/GjQ42iCZZHUMoRoqKiCAsLIzw83NmhpDmenp4UK1YMd3f3+9YndjiuJo40Ys6BOXy6+VPGNh7LUyWferBB8AxYNgSafgQNBqZ+gEkUeuUOb8zdxZYTV2juV5BP21cmb7Yszg5LKZUAfY4jnelcvjPlcpfji+AvCI9+yDekmi+B7zPwx4dwenvqB5hExfN4Mad3Xd5pVZG1By7SfFwga0LOOzsspZQdaOJII9xc3BhRawSnb53m+33fP9hABJ6ZANkKwLxeEJH2Ry+5ugi9A8qydEBDCmT35NUfghk2bxc3w7VkiVLpmSaONKR24do0LdmU6Xunc+72uQcbeOWBjt/CtZOw/K3UDzCZKhTKzqL+DejfpCzztoXRcnwQm45ddnZYSqlk0sSRxrzh/wYxsTF8ue3LhzcoWR8ChtnKkez6JXWDSwEPNxfeal6RX/vWx81F6DptE5/8FkJ4lJYsUSq90cSRxhTNVpSelXqy4vgKtp+P515GwFtQoh78NhSuHEvdAFOoZsncLB/UiBfqlGBa0HHafLWOvaevP3pHpVSaoYkjDXq50ssU9CrIyC0jH6xjBeDqZquc6+IK815OcyVJHsXLw42P21Xm+161uXYninaT1vPVn4eJ1pIlSqULmjjSIC93L4bWHMr+K/tZdGTRwxvlKg5tJsKZ7bD2k9QN0E4eL5+f1UMCaFm5MF+sPkTnKRs5fum2s8NSSj2CJo40qmXpltQoUIMJOyZwIzKeSZ0ea2sbprt+HBz9M3UDtJNcXh5M7FqdCV2rc+zibVqND2LWxhP6tK9SaZgmjjTqXh2rq+FX+WbXN/E3bP4p5K8IC/vCrYupF6CdtalahNVDAqhVOg//XbyPF2ds4dx1feJXqbRIE0ca5pvXlw7lOjBn/xyOXYvnJriHF3SaAXevwaJ+EJt+7xMUzOHJ9y/V4uN2lQg+cZVmY/9m8c7Tzg5LKfUvmjjSuIE1BpLVLSufb/08/ss3Bf2g+SdwZA1sTuDsJB0QEbrVLcmKQY3wKZCNQT/v5PXZ27l6O30NAFAqI9PEkcbl8cxDv2r9WH9mPX+H/R1/w1qvQIVWsOZdOLMz9QJ0kFL5vJnbpx5vNa/Aqn3naD4ukLUH0251YKUyE00c6cBzFZ+jTM4yfL71cyJj4vnmLWKb+Mk7H8x/GSJupW6QDuDm6kL/Jj4s6t+A3F4evDRzK/9ZuIfbEdHODk2pTE0TRzrg7uLO8FrDCb0ZyqyQWfE39Mpjm3L28lFYMTz1AnQwvyI5Wfx6A/oElGH2llO0mhDEtpNXnB2WUplWvIkpMiupAAAgAElEQVRDRPIkYsmVmsFmZvWL1qdxscZM3T2Vi3cSGD1VOgAavQE7f4Q98+Jvl854urvyditffuldj5hYQ+dvNjJq5QEio9PvYACl0qt45+MQkXDgDJDQDDyuxpgSjggsJdLjfByJcerGKdotbkfL0i35pGECD/3FRMHMVnDxAPQNgtylUi3G1HArIpqPl4Xw89ZQfAvnYOyzValYKIezw1Iq3bPHfBz7jTFljDGl41sALXGaikrkKEH3x7qz5OgS9lzcE39DV3dbFV0E5r9iSyQZSLYsbozsWIXpPfy5eDOCNhPX883fR4nRec6VShUJJY56idg/MW0eICK5RGSeiBwQkf0iUs+69LVGRA5bP3NbbUVEJojIERHZLSI1knPMjKJ3ld7ky5qPkVtGEmsSuEyTuyQ8Mw7CtsJfn6VegKnoSd+CrBrciCcqFmDkigM8N3Ujpy7fcXZYSmV48SYOY8z/HtsVkdwiUkVEatxb/t0micYDK40xFYGqwH5gBPCHMaYc8If1GqAlUM5aegOTk3nMDMHb3ZvBNQaz+9Julh1blnDjSh2gencI+hKOJTCUNx3Lmy0Lk7vVYOyzVTlw7iYtxwfy85ZTWrJEKQd65JzjIvIR0BM4CtxrbIwxTyTrgCI5gF1AGRPn4CJyEGhsjDkrIoWBv4wxFURkivX7nH+3i+8YGfUexz2xJpZuy7tx9vZZlrVfhre7d/yNI2/DlMch8hb0XQ/eeVMv0FR25tpd3pq3i/VHLtvOQjpWpkB2T2eHpVS6Yc85x7sAZY0xjY0xTawlWUnDUga4CMwUkR0i8q2IeAMF7yUD62cBq31RIDTO/mHWuvuISG8RCRaR4IsX02/NpsRwERdG1B7BpbuXmLp7asKNPbxtJUnuXIbF/SEDfxMvkisrs3rV4b1nHmP9kUs0HxvI8j3xfr9QSiVTYhLHXsCew27dgBrAZGNMdeA2/1yWepiHjep64L+fMWaqMcbfGOOfP39++0SahlXJX4U2ZdswK2QWp26cSrhx4SrQ9EM4tAK2TEudAJ3ExUV4qUFpfhvYiOJ5vHjtp+0M+WUn1+9mrAECSjlTYhLHZ8AOEVklIkvuLSk4ZhgQZozZbL2ehy2RnLcuUWH9vBCnffE4+xfDNkw40xtcYzDuLu6MDh796MZ1+kK55rD6/+DcXscH52Q+BbIxv199hjxVniW7ztBiXCDrDl9ydlhKZQiJSRzfA6OAkcCYOEuyGGPOAaEiUsFa9SQQAiwBeljregCLrd+XAC9ao6vqAtcTur+RmeT3yk/vKr35K/QvNpzekHBjEWj3NWTNDfN6QWTGH33k7urCoKfKsfC1+nh5uNJt+mbeX7KPu5E6z7lSKZGYm+N/G2Met+tBRaoB3wIewDHgJWxJbC5QAjgFdDbGXBERAb4CWgB3gJeMMQne+c7oN8fjioyJpP3i9ri5uDGvzTzcXdwT3uHYX/BDO6jxIrSZkCoxpgXhUTF8vvIgM9Yfp0x+b77sUo1qxbXwgVJxJfbmeGISx5dABLZv/hH31htjtqc0SEfJTIkD4K/Qvxjw5wCG1xpOt8e6PXqH39+HdWOh8/fg187h8aUlG45c4s1fd3H+ZgT9m/gw4Akf3F21ZJtSYN/EsfYhq5M9HDc1ZLbEYYyh7+992XNxD8s6LCOPZ56Ed4iJghnN4fIR6LsOcqW5qjEOdSM8iveX7GPB9tNUKpqDsV2qUa5gdmeHpZTT2W04bpwhuE3sNBxX2ZmIMLzWcO5G32XijomP3sHVHTpOt80WOP9ViMlcZcpzeLrzZZdqfNOtBmeuhdN64jqmrztOrJYsUSpREqqO+/Sjdk5MG5U6yuQqw3MVn2P+ofnsv7z/0TvkKQ1Pj4XQTfD3KMcHmAa1qFSYVYMDCCiXj4+WhfD8t5sIu5rxBw0olVIJVcfdDzxPwtVxvzPGVHFEYCmR2S5V3XMj8gZPL3ia0jlL812L77CNK3iEhX1h9y/QYxmUauD4INMgYwy/BofxwdJ9uIjwXhs/OtYomrjPT6kMJMX3OETkLx7yoN2/XDHGdEx6eI6VWRMHwK+HfuXDjR8yOmA0LUq3ePQOETdhSgBER9jud3g94v5IBhZ65Q5v/LqLLcev0OyxgnzaoTL5smVxdlhKpRq73RxPjzJz4oiJjaHrb125GnGVJe2WkNUt66N3OrMDvm0K5ZvDsz/anvnIpGJjDdPXHWf0qoPkyOrGp+0r08yvkLPDUipV2LNWlUpHXF1cGV57OOdun2Pm3pmJ26lIdXjqPTiwDIJnODbANM7FRXg1oAxLBzSkQHZPes/axlu/7uJmuJYsUeoeTRwZUM2CNWlZqiUz9s7gzK1EVmep2x/KPgmr3oHzIY4NMB2oUCg7i/o34PUmPszfHkaLcUFsOqbzlikFmjgyrCE1hyAIY4ITWR3GxQXaT4EsOWwlSaLuOjbAdMDDzYU3m1dgXr/6uLsKXadt4uNlIYRHackSlbklKnGISH0ReV5EXry3ODowlTKFsxWmV6VerD65mq3ntiZup2z5of03cHE/rPqPYwNMR2qUyM3yQY3oVqck3647zjMT17H39HVnh6WU0zwycYjILOALoCFQy1oeefNEOV/PSj0p7F2YUVtGERObyG/JPk9C/QEQPB32P2KGwUzEy8ONj9pV4vtetbkRHkW7SeuZ+MdhomMSmL5XqQwqMWcc/kADY8xrxpgB1jLQ0YGplMvqlpU3/N/g4NWDzD88P/E7PvEuFK5mm/jpepjjAkyHHi+fn9WDH6dV5cKMWXOITt9s5NjFW84OS6lUldiJnHQ8YjrVrGQz/Av6M3HHRK5HJPLyipuHbdbAmChY0AcSe7aSSeT0cmdC1+pM7Fqd45du02pCED9sPKHznKtMIzGJIx8QYseJnFQqEhFG1B7BjcgbTN41OfE75i0LrcfAyXUQlOzpVzK0Z6oWYfWQAOqWycu7i/fx4owtnL2ugwpUxpeY6rgPnYvDGPO3QyKyg8z8AGB8Ptr4EfMPz2feM/Pwye2TuJ2MgQW9Ye98eGk5lKjr2CDTKWMMs7ec4uNl+3F3FT5qV4k2VYtoyRKV7uiT45o47nM1/CqtF7amUt5KTGk6JfH/1MJvwJRGtstVfYNsMwiqhzpx6TZD5+5k+6lrtK5cmI/bVSK3t4ezw1Iq0VL85LiIrLN+3hSRG3GWmyJyw57BKsfL7Zmb/tX6s/HsRtaGPmyKlXh45oCOM+DmWVg62HYWoh6qVD5vfu1bn2EtKrA65BzNxgWy9sAFZ4ellN3FmziMMQ2tn9mNMTniLNmNMTlSL0RlL89WeBafXD6M3jqaiJiIR+9wT7Ga8MR/IWQRbP/ecQFmAK4uwmuNfVjUvwF5vDx46butvL1gD7cjMtecJypj0yfHMxE3FzeG1RpG2K0wZoXMStrO9QdCmcawYgRcPOiI8DIUvyI5WTKgAX0eL8PPW0/RcnwQwSeuODsspexCE0cmU69IPZoUb8LU3VO5cCcJl1HulSTx8LJKkoQ7LsgMIoubK2+39OWX3vUwGLpM2ciolQeIiNbhzSp908SRCb3l/xbRsdGM2zYuaTtmLwTtvoHze2HNu44JLgOqXToPKwYF8Gyt4kz+6yhtv1rP/rN6m1ClX4kpOfLAvKIPW6fSj+I5itPDrwdLjy1l18VdSdu5fDOo0w+2TIGDKxwTYAaULYsbn3WowvQe/ly6FUmbr9Yx+a+jxOg85yodSswZR9OHrGtp70BU6nq18qvkz5qfkZtHEmuSWG+p6QdQqDIseg1uJLJsuwLgSd+CrB4SwFO+BRm18gDPTtnIycu3nR2WUkmS0HDcfiKyB6ggIrvjLMeB3akXonIEL3cvhtQcwt7Le1l6dGnSdnbLYhuiGx1ue0BQS5IkSR5vD75+oQZjn63KwfM3aTk+iNmbT2nJEpVuJHTGMRt4Blhi/by31DTGdEuF2JSDtS7Tmir5qzBu+zhuRyXxW2/+8tDyczgRBOuTeK9EISK0r16MVYMDqF4iF+8s3EOv77Zy4YYOOlBpX0LPcVw3xpwwxnQFwoAowADZRKREagWoHMdFXHi79ttcunuJKbunJL2D6t3ArwP8+QmEJnLOD3WfIrmyMqtXHT5o48fGY5dpNi6Q33afdXZYSiUoMTfHXwfOA2uA36xFJ2rIICrlq0Tbsm2ZFTKLkzdOJm1nEXh6LOQsCvN7QbhObpQcLi5Cj/ql+G1gI0rm8aL/7O0M/nkH1+/oPOcqbUrMzfHBQAVjjJ8xprK1VHF0YCr1DK45mCyuWRi9dXTSd86aCzpOh+unYdkQLUmSAmXzZ2N+v/oMeao8y3afpfm4QIIOX3R2WEo9IDGJIxTQr5IZWL6s+ehTpQ9/h/3NutPrkt5B8drQ5B1bFd2dP9k/wEzEzdWFQU+VY8Fr9cnm6Ub36Vt4b/Fe7kbqAASVdsRbHVdEhlq/+gEVsF2i+l+BI2PMlw6PLpm0Om7SRcZE0n5xe1xdXJnfZj7uLu5J6yA2Bn5oC6e3Q5+/IV85xwSaiYRHxfD5yoPMWH+cMvm8GdOlKtVLaHVi5Tgpro4LZLeWU9jub3jEWZfdHkGqtMPD1YNhtYZx/Ppxfj7wc9I7cHGFDlNtswfO6wXRSSiiqB7K092Vd595jNmv1iEiOpaOkzcwZvVBonSec+VkOh+H+h9jDP1+78fui7tZ1mEZeTzzJL2TA8vh565Q73Vo/on9g8ykboRH8eHSEOZtC6NS0RyM7VKNcgX1+5uyL3uccdzraGncKWOtZZaIDBIRT/uEq9ICEWFY7WHcjb7LhO0TktdJxVZQuzds/AoOr7FvgJlYDk93vuhclW+61eTMtXBaT1zHt0HHiNWSJcoJEnNz/BhwC5hmLTewDc8tb71WGUiZnGXo6tuVBYcXsP/y/uR10vQjKFgJFvaFm+ftG2Am16JSIVYNDiCgXH4+/m0/XadtIuzqHWeHpTKZxCSO6saY540xS62lG1DbGNMfqOHg+JQT9K3al9yeuRm5ZWTyymC4e9qG6EbehoV9IFavydtT/uxZmPZiTT7vVIV9Z27QYlwQvwaHaskSlWoSkzjyx31S3Po9n/UyMrkHFhFXEdkhIsus16VFZLOIHBaRX0TEw1qfxXp9xNpeKrnHVImTwyMHA6oPYPuF7aw8sTJ5nRSoCC0+g2NrYUMyL3upeIkIXfyLs2JQI/yK5OCtebvpPWsbl27poATleIlJHG8A60RkrYj8BQQBb4mIN5CSeUQHAXGvhYwCxhpjygFXgZet9S8DV40xPsBYq51ysPY+7fHN48uY4DHciUrmpZCaPcG3Dfz5EZzeZtf4lE3xPF7MebUu/9fal78PXaT52EBW7zvn7LBUBvfIxGGMWQ6Uw/YE+b2nyH8zxtw2xiSrup2IFANaA99arwV4AphnNfkeaGf93pZ/EtQ84EmrvXIgVxdXhtcezvk755mxd0byOhGBNhMgWyGY9zKE6+RFjuDiIrzSqAzLBjSkUE5Pes/axpu/7uJGuJYsUY6RUFn1J6yfHbD9ky8LlAFaWetSYhwwDLh38TsvcM0YE229DgOKWr8Xxfb0Otb261b7f8fbW0SCRST44kUt02APNQvWpGWplny37zvO3ErmvBtZc0PHb+HaSVj+pn0DVPcpXzA7C19rwIAnfFiwPYyW44LYcPSSs8NSGVBCZxyPWz+fecjydHIPKCJPAxeMMXGvXTzsDMIkYts/K4yZaozxN8b458+fP7nhqX8Z6j8UQRgTPCb5nZSsB48Ph92/wK5kPFyoEs3DzYU3mlVgXr/6eLi58Py0zXy0LITwKC1ZouzHLb4Nxpj3rJ8v2fmYDYA2ItIK8ARyYDsDySUibtZZRTHg3lfcMKA4ECYibkBO4IqdY1LxKORdiJcrv8yknZPYem4rtQrVSl5Hjd6EY3/Db29AsVqQt6x9A1X3qVEiN78NbMjIFQeYvu44gYcu8mWXalQultPZoakMIDEPAGYRkedF5B0ReffektwDGmPeNsYUM8aUAp4D/jTGvACsBTpZzXoAi63fl1ivsbb/aXTcYarq6deTIt5FGLllJDHJne3P1c1WksTFDea/DNHJHpCnEsnLw40P21bih161uRkeTfuv1zPhj8NEa8kSlUKJGVW1GNsN6mjgdpzF3oYDQ0XkCLZ7GNOt9dOBvNb6ocAIBxxbJcDTzZM3/N/g0NVDzD88P/kd5SoObb+CMztsI61Uqggon59VgwNoXaUwX645RMdvNnL04i1nh6XSsUfWqhKRvcaYSqkUj11orSr7M8bw8uqXOXz1MMvaLyNnlhRc8lg2BIJnQLcF4POk/YJUj7Rs9xn+b9FewqNieLulL93rlsTFRQcpKhu71aoCNohIZTvEpNIxEWF4reHciLzB5F2TU9ZZs08gv6+tJMktHQGXmp6uUoRVgwOoWyYv7y3Zx4sztnDm2l1nh6XSmYSG4+4Rkd1AQ2C7iBwUkd1x1qtMpkKeCnQq14mfD/zMkatHkt+Rhxd0mgERN2BRXy1JksoK5vBkZs9afNq+MttPXaX5uEAW7TitJUtUoiU0kVPJhHY0xiRxgurUo5eqHOdq+FVaL2yNX14/pjadSoqexdwyzfZsR/NPoV5/+wWpEu3k5dsMnbuLbSev0qpyIT5uV5k83h7ODks5SYovVRljTia02DdclV7k9sxN/2r92XR2E3+G/pmyzmq9AhVaw5r34MxO+wSokqRkXm/m9qnH8BYVWRNynubjAvnzgFY0VglLzD0Ope7zbIVn8cnlw+ito4mISUFRPRHbKCvv/LYhuhE60scZXF2Efo3Lsrh/Q/J6e9Dru2DeXrCb2xHRj95ZZUqaOFSSubm4Mbz2cE7fOs2skFkp68wrD3ScBpePwoph9glQJctjRXKw+PUG9H28LD9vDaXl+CC2ntBnbdWDNHGoZKlbuC5PFH+Cqbuncv52Ci9tlGoIAW/Bzp9gz7xHt1cOk8XNlREtKzK3Tz0Mhi5TNvLZiv1ERGvJEvUPTRwq2d6s9SbRsdGM3z4+5Z09PhyK14Glg+HK8ZT3p1KkVqk8rBgUwHO1SjDl72O0/Wo9IWe0urGy0cShkq149uL08OvB0mNL2XVxV8o6c3WzVdEVF9v9jhgtCe5s2bK48VmHyszo6c+lW5G0nbSOr/86QozOc57paeJQKfJq5VcpkLUAn23+jFiTwucxcpWANuNtkz6t/dQ+AaoUe6JiQVYPCaDpYwX5fOVBukzZyMnLjqg6pNILTRwqRbzcvRhcczD7Lu9jydElKe/Qrz3UeBHWjYVjf6W8P2UXebw9mPR8DcY/V43D52/ScnwQP20+qQ8NZlKaOFSKtS7Tmir5qzBu2zhuRdphSG2LkZCvHCzoA7d1IqK0QkRoW60oq4YEUKNEbv6zcC8vfbeVCzfCnR2aSmWaOFSKuYgLb9d+m8vhl5m6Z2rKO/TwtpUkuXsFFvcH/VabphTOmZUfetXmgzZ+bDp2mWbjAlm2O5kzRKp0SROHsotK+SrRzqcds0JmcfKGHQoLFKoMTT+CQythix2SkbIrFxehR/1S/DawESXzevP67B0M+nkH1+/ooIbMQBOHsptBNQaRxTULo7eOtk+HdfpAueaw+v/g3B779Knsqmz+bMzvW4+hTcvz2+6zNB8XSOAhrXic0WniUHaTL2s++lTpw99hf7Pu9LqUdygC7SZD1jwwrxdE6kietMjN1YWBT5Zj4WsNyObpxosztvDu4r3cidSSJRmVJg5lV918u1EyR0lGbRlFlD2exfDOCx2mwKXDsGJ4yvtTDlO5WE6WDWjIKw1LM2vTSVpPWMf2U1edHZZyAE0cyq7cXd0ZVmsYJ26cYPaB2fbptExjaDgEdsyCfQvt06dyCE93V/7v6ceY/UpdIqNj6TR5A2NWHyQyWudcyUg0cSi7a1S0EQ2KNuCbXd9w+e5l+3Ta5B0o6g9LBsFVreqf1tUrm5cVgxvRoUYxJv55hPZfr+fQ+ZvODkvZiSYOZXciwrBawwiPDmfijon26dTV3VaSBAMLXoUYvX6e1uXwdOeLzlWZ0r0m566H8/TEdXwbdIxYLVmS7mniUA5RJmcZuvp2ZcHhBYRcDrFPp3lKw9NjIXQz/D3KPn0qh2vuV4hVQwJ4vHx+Pv5tP12nbSL0yh1nh6VSQBOHcpi+VfuS2zM3o7aMsl9pisqdoNoLEPQFnLDDyC2VKvJly8LU7jUZ3akK+87coOX4IOYGh2rJknRKE4dymBweORhQfQDbL2xn5YmV9uu45eeQuzTMfxXu6ERD6YWI0Nm/OCsHN6JS0RwMm7ebV3/YxsWbKZhFUjmFJg7lUO192uObx5cxwWO4E2WnyxNZstlKkty+CEsGaEmSdKZYbi9mv1KX/2vtS+Dhi7QYF8jKveecHZZKAk0cyqFcXVwZUXsE5++cZ8beGfbruEg1aPoBHFgGW7+1X78qVbi4CK80KsNvAxpSOJcnfX/cxhtzd3EjXEuWpAeaOJTD1ShYg5alWzJz70xO3zptv47r9AOfprDqP3B+n/36VammXMHsLHytAQOf8GHRztO0HBfEhqNaETmt08ShUsXQmkNxdXFlTPAY+3Xq4mIrSeKZE+a9DJE6Uic9cnd1YWizCszrW48sbi48P20zHy4NITxK5zlPqzRxqFRRyLsQvSr1Ys3JNWw5u8V+HWfLD+2/gYv7YdU79utXpbrqJXLz28BG9KhXkhnrj/P0xHXsCbvu7LDUQ2jiUKmmp19PingXYeTWkUTH2vEBPp8nof5A2DYTQuwwC6FymqwernzQthKzXq7NrfBo2n+9nvG/HyYqRkuWpCWaOFSq8XTz5A3/Nzh89TDzD823b+dP/BeKVLeNsroeZt++VaprVC4/qwYH8HSVwoz9/RCdJm/g6EU7zC6p7EITh0pVTUs2pVahWkzcOZHrEXa8DOHmAR2nQ2y07fmOWL0+nt7l9HJn3HPVmfR8DU5euUOr8UF8t/64lixJAzRxqFQlIgyvNZybkTf5eufX9u08b1loPQZObYBAO00mpZyudZXCrB4cQP2yeXl/aQgvztjCmWt3nR1WpqaJQ6W6Cnkq0Ll8Z345+AuHrx62b+dVn4Mqz9pqWZ3caN++ldMUyOHJjJ61+KxDZbafukrzcYEs3BGmJUucRBOHcorXq72Ot7s3o7basY7VPa2+gFwlYf4rcFcnEsooRISutUuwYlAjKhTMzpBfdvHaT9u5cjvS2aFlOqmeOESkuIisFZH9IrJPRAZZ6/OIyBoROWz9zG2tFxGZICJHRGS3iNRI7ZiV/eXyzMVr1V5j89nN/Bn6p30798wBnabDrXOwZKCWJMlgSub15pc+9RjeoiK/7z9Ps7GB/LH/vLPDylScccYRDbxhjPEF6gL9ReQxYATwhzGmHPCH9RqgJVDOWnoDk1M/ZOUIz1Z4Fp9cPozeOpqIGDsXuita0zbSav8S2PadfftWTufqIvRrXJYlrzckXzYPXv4+mBHzd3MrQudpSQ2pnjiMMWeNMdut328C+4GiQFvge6vZ90A76/e2wA/GZhOQS0QKp3LYygHcXNwYXns4p2+d5od9P9j/APUHQpkmsPJtuHDA/v0rp/MtnIPFrzegX+OyzA0OpeX4QLYc14rJjubUexwiUgqoDmwGChpjzoItuQAFrGZFgdA4u4VZ6/7dV28RCRaR4IsXLzoybGVHdQvX5ckSTzJtzzTO37bz5QYXF9tT5R7eMK8XRIXbt3+VJmRxc2V4i4rM7VMPQXh26kY+W76fiGgdku0oTkscIpINmA8MNsbcSKjpQ9Y9cNHaGDPVGONvjPHPnz+/vcJUqeAN/zeIiY1h3PZx9u88eyFb8riwD9b81/79qzTDv1QeVgxqRNfaJZgSeIw2E9ez74yWLHEEpyQOEXHHljR+MsYssFafv3cJyvp5wVofBhSPs3sx4Exqxaocr3j24vTw68GyY8vYeWGn/Q9QrinU7Q9bpsKB5fbvX6UZ3lnc+LR9ZWb2rMWVO5G0m7SeSWuPEKMPDdqVM0ZVCTAd2G+M+TLOpiVAD+v3HsDiOOtftEZX1QWu37ukpTKOVyq/QoGsBRi5ZSSxxgF1iZ56DwpVgcX94YZ+78jomlQswOrBATR7rBCjVx2ky5SNnLh029lhZRjOOONoAHQHnhCRndbSChgJNBWRw0BT6zXAcuAYcASYBrzmhJiVg3m5ezG45mD2Xd7H4iOLH71DUrllgU4zIToCFvTWkiSZQG5vD756vjrjn6vG4fM3aTk+iB83ndSHBu1AMuKH6O/vb4KDg50dhkoiYwzdV3Qn7GYYy9ovI5tHNvsfZMdPsPg1eOL/IOAt+/ev0qSz1+8ybN5ugg5f4vHy+fm8UxUK5vB0dlhpjohsM8b4P6qdPjmu0gwRYUTtEVwOv8zU3VMdc5Bqz0OljrD2Mwi147wgKk0rnDMrP/SqzYdt/dh8/DLNxgaydJdeskwuTRwqTamUrxLtfNoxa/8sTlw/Yf8DiMDTYyFnUdusgXev2f8YKk0SEV6sV4rlAxtROp83A+bsYOCcHVy7oyVLkkoTh0pzBtUYRBbXLIwOdlCFW8+c0HEG3DgNy4ZoSZJMpkz+bMzrW483m5Vn+Z6zNB8XyN+H9NmvpNDEodKcfFnz0adKHwLDAgkKC3LMQYrXgibvwL4FsONHxxxDpVluri68/kQ5FvVvQA5Pd3rM2MJ/F+3lTqSWLEkMTRwqTerm242SOUry+dbPiYqJcsxBGg6BUo1gxTC4ZOfy7ipdqFQ0J0sHNOSVhqX5cfNJWo0PYttJraj8KJo4VJrk7urOsFrDOHHjBHMOzHHMQVxcocNUcPOEeS/ZhuqqTMfT3ZX/e/oxZr9Sl6gYQ+dvNjB61QEio3We8/ho4lBpVkCxABoWbcjkXZO5fPeyYw6Sowi0mwzn9sDv7zvmGCpdqAOebNkAAA4sSURBVFc2LysHN6JjjWJMWnuUdpPWc/DcTWeHlSZp4lBp2rBawwiPDmfijomOO0iFFlC7D2z6Gg6tdtxxVJqX3dOd0Z2rMrV7Tc7fCOeZieuY+v/t3Xl0FdUdwPHvLwuEhCVA2EygibIvEiFg2CJVyyJKsIobbaOCikpZlaUeT6u1imJlKbiAAkVEiwFZRENV8CQHyk5YAihhUQIIGhaBCGG5/WMmNVKWBDLvvZn3+5zDSeYxeb97c/Pye3Nz53czd2jJkvNo4lABLaFKAg80eYC52+eyJX+Lc4F+8zzUag7zHodj3zkXR7lCl2a1WTwkhc6NavDiJ9u4f8oK9hwq8HezAoYmDhXw+rfsT9WIqoxeNdq5chHhEXD3VCg8AR89Bud0fjvYxVQsz1u/b82rvVuyZd+PdBuXyezVe7RkCZo4lAtUKleJgTcMZP3B9Xy661PnAtVoBN1Hw84vYfkE5+Io1xAR7m4dR8bgTlwfF83wORt5ZMYavj8W3AspNHEoV+hVvxdNqjXhtbWvUXDawSmDVmnQNBWW/BXy1joXR7lKXNVI3ut3I8/e3pTM7T/QdVwmGZuDt0i3Jg7lCqEhoYxsO5IDBQeYunmqc4FE4I7xUKkOzHkYTl5qjzEVTEJChL4dE1j0x47ERleg/8x1DJ2dzY8nHbrPKIBp4lCu0apWK7ondGd6znT2Ht/rXKAKVeGut+HIt7BoqJYkUb/QoFYl5j7RnoG3NGB+9j66jc1kWe4P/m6WT2niUK4ytPVQQiSEv6/5u7OB6iVD51Gw6UPY8IGzsZTrhIeGMPQ3DZnzeHsiwkPp8/ZKnluYw8nTwbHPiyYO5Sq1o2rTt3lfPvvmM1btd7gseqdh8KsOsGgY5O9wNpZypcS60Swa2IkH28czbdluekzIYmOe9ysua+JQrpPWLI3YirGMXj2aM+ccLEpXVJIkNBzSH4YzWn5b/b8K5UL5S89mzOx7IwWFZ7nz9eWM+/xrTp/17pJuTRzKdSLCIhiWNIzth7eT/nW6s8GqxEHqRNifDUuedzaWcrWODWLIGJxCz5bXMO7z7dz1xnJyDx73d7McoYlDudKt9W6lTe02TMyeyNFTR50N1uQOSOoLy/8BuZ87G0u5WpUK4Yy9N5HX+7Riz6ECekzIYtqyXZzzWMkSTRzKlUSEEW1GcKzwGJOyJzkfsOvfoEYT+Kg/HD/ofDzlare1qMPiwSl0qB/Dcwu38Lt3VrL3yE/+blaZ0cShXKtRtUb0btib2V/NZvthh/fTCK9glSQ5dcxKHlqSRF1GzcoRvJOWxEu/bUH2niN0G5vJ3HV5nihZoolDudqAxAFEhUfx8uqXnX9B1moKXV+EHV9YlXSVugwR4f629cgYlELjOpUYOnsDj89cR/5xd5cs0cShXC06IponE59k5f6VLPl2ifMBkx6Gxrdbe3fsW+98POUJ9apH8sGj7RjVvTFLth2k67gsPt9ywN/NumKaOJTr3dPoHupH12fMmjGcOuvwOzkR6PkPqFjTWqJ7Sjf6USUTGiI8dtN1LPhjB2IqlqPfjDWMSN/I8VPu2+dcE4dyvbCQMEa0HcHe43uZkTPD+YCR1az7Ow7vhk+GOx9PeUrj2pWZP6ADT3S+jg/X7qHbuExW7nRoh0uHaOJQnpBcJ5lb6t3ClE1TOHDCB1MA8R0h5WnYMAs2fuh8POUp5cNCGd6tMbMfa0doiHDflBW8+MlW15Qs0cShPOOppKc4e+4sY9eN9U3AlOFQNxk+HgKHdvompvKUpPhqfDKwE/e3rcfkzJ2kTlxGzj6H70sqA5o4lGfEVYojrVkai3YuIvtgtvMBQ8PgrikQEgJz+sHZ4Cuvra5eVPkwXryzBdMeasPhgkJ6TVrGpKW5nAngkiWaOJSn9GvRj5qRNRm9ajTnjA9eeNH14I4JsHctLHnB+XjKs37dqCaLB6fQpVltxiz+inve+g+7fjjh72ZdkCYO5SmR4ZEMaT2EnPwc5ufO903QZr2g9YOwbDzsWOqbmMqTqkaVY9IDrRh/XyK5B49z2/gs3l3xTcDdNKiJQ3lOj4QetKzRkvHrxnO80EdF5rq+BDEN4aPH4ERwbeqjyl5qYiz/HnITSfFVeXbeZtKmrea7oyf93az/0cShPEdEGNV2FPkn85m8cbJvgpaLtEqS/HQE5j2huwaqq1a7SgQzHm7LX1ObsWpXPl3HZbJgwz5/NwvQxKE8qllMM3rV78W7W99l99Hdvglauzl0eQG2L4aVb/kmpvI0EeH37eL5dFAKCTFRDHx/PQNmreNIgX/3htHEoTxrUKtBlA8tz5g1Y3wXtO0j0LA7fPYs7N/gu7jK0xJiokjv346nujQkY/N3dBmbyZdf+a9KsyYO5VkxFWLof31/MvMyycrL8k1QEUidBJHVIb0vFAbmqhjlPmGhIQy4uQHznuxAdGQ4D05bzTMfbaKg0PclS1yTOESkm4h8JSK5IjLS3+1R7tCnSR/iK8fzyupXOO2r+yyiqsOdb0F+LnyqJUlU2WoeW4UFAzrySKcEZq36lu7js1j7zSGftsEViUNEQoFJQHegKXC/iDT1b6uUG4SHhvN0m6fZ/eNuZm2b5bvA194EnYbC+pmweY7v4qqgEBEeyjM9mvL+I8mcOWvo/eZ/eCVjG4VnfHPToCsSB9AWyDXG7DTGFAIfAKl+bpNyiZS4FDrGduTNDW/yw08+XCrbeRTEtYGFg62CiEqVseRrq5MxuBO9W9fl9S93kDppGcdOOn9lHeZ4hLIRC+wpdpwH3Fj8BBF5FHjUPjwlIpt91LZAEgME400EJe53DWo43JSL+FOCE8+q4x1cLtvvb4DKg68qxq9KcpJbEodc4LFfLJQ3xkwGJgOIyBpjTJIvGhZItN/BRfsdXAKp326ZqsoD6hY7jgMC404YpZQKMm5JHKuBBiKSICLlgPuABX5uk1JKBSVXTFUZY86IyABgMRAKTDXG5FziS3xUZyLgaL+Di/Y7uARMvyXQqi4qpZQKbG6ZqlJKKRUgNHEopZQqFc8ljmApTSIidUVkqYhsFZEcERlkP15NRD4Tke32x6r+bmtZE5FQEVkvIh/bxwkistLu87/sBRSeIyLRIpIuItvscW/n9fEWkSH2z/dmEXlfRCK8Ot4iMlVEDha/B+1i4yuWCfbvuY0i0sqXbfVU4giy0iRngGHGmCZAMvCk3deRwBfGmAbAF/ax1wwCthY7fhkYa/f5MNDXL61y3nggwxjTGGiJ9T3w7HiLSCwwEEgyxjTHWhhzH94d7+lAt/Meu9j4dgca2P8eBd7wURsBjyUOgqg0iTFmvzFmnf35MaxfIrFY/f2nfdo/gV7+aaEzRCQO6AG8bR8LcDOQbp/iuT4DiEhlIAV4B8AYU2iMOYLHxxtr5WcFEQkDIoH9eHS8jTGZwPnVCi82vqnADGNZAUSLSB3ftNR7ieNCpUli/dQWnxGReOAGYCVQyxizH6zkAtT0X8scMQ4YDhRVc6sOHDHGFNWW9uqYXwt8D0yzp+neFpEoPDzexpi9wKvAt1gJ4yiwluAY7yIXG1+//q7zWuK4bGkSrxGRisAcYLAx5kd/t8dJInI7cNAYs7b4wxc41YtjHga0At4wxtwAnMBD01IXYs/npwIJwDVAFNYUzfm8ON6X49efe68ljqAqTSIi4VhJ4z1jzFz74QNFl6z2R/9tE1b2OgA9RWQ31jTkzVhXINH2VAZ4d8zzgDxjzEr7OB0rkXh5vG8FdhljvjfGnAbmAu0JjvEucrHx9evvOq8ljqApTWLP7b8DbDXGvFbsvxYAafbnacB8X7fNKcaYUcaYOGNMPNbYLjHG9AGWAnfbp3mqz0WMMd8Be0Skkf3QLcAWPDzeWFNUySISaf+8F/XZ8+NdzMXGdwHwB3t1VTJwtGhKyxc8d+e4iNyG9S60qDTJ3/zcJEeISEcgC9jEz/P9f8L6O8dsoB7WC6+3Mca324P5gIh0Bp4yxtwuItdiXYFUA9YDvzPGnPJn+5wgIolYiwLKATuBh7De/Hl2vEXkOeBerFWE64F+WHP5nhtvEXkf6IxVPv0A8GdgHhcYXzuRTsRahVUAPGSMWeOztnotcSillHKW16aqlFJKOUwTh1JKqVLRxKGUUqpUNHEopZQqFU0cSimlSkUTh1JKqVLRxKGUzS5b/kSx42tEJP1SX3OFcXqWpuS/iMSLyE8ikn2Z894TkUMicvelzlPqaul9HErZ7GKRH9slvANGadolItPtc8s84SlVRK84lPrZaOA6EckWkTH2O/3NACLyoIjME5GFIrJLRAaIyFC7Uu0KEalmn3ediGSIyFoRyRKRxucHsZ9rov35dHtDnuUisrMkVwsiEiUii0Rkg73B0b1l/H1Q6pLCLn+KUkFjJNDcGJMI/3unX1xzrPL1EUAuMMIYc4OIjAX+gFXqZjLQ3xizXURuBF7HKsZ4KXWAjkBjrBpEl7ta6AbsM8b0sNtZpUS9U6qMaOJQquSW2ptmHRORo8BC+/FNwPV2ifv2wIdWKSEAypfgeecZY84BW0SkVgnO3wS8KiIvY01LZZWqF0pdJU0cSpVc8UJ654odn8N6LYVgbTKUeBXPe6F9Fn7BGPO1iLQGbgNeEpF/G2OeL2VMpa6Y/o1DqZ8dAypd6RfbG2ntEpHeYJW+F5GWZdW4IiJyDVBgjJmJtUNeq7KOodSlaOJQymaMyQeW2X9wHnOFT9MH6CsiG4AcnNnzvgWwyl6e+wzwggMxlLooXY6rVIDT5bgq0OgVh1KB7yxQpSQ3AAI3ASd90ioVtPSKQymlVKnoFYdSSqlS0cShlFKqVDRxKKWUKhVNHEoppUrlv7+RhlOm3t5WAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Wir gehen hier genau wie im Einführungteil vor\n", - "# Zuerst erstellen wir die einzelnen Graphen mit plt.plot\n", - "# und Setzen unsere Plot-Eigenschaften, wie Titel usw.\n", - "# zum Schluss wir alles mit plot.show() ausgegeben\n", - "\n", - "\n", - "# Ergänze den Plot um die weiteren Datensets\n", - "plt.plot(time,hight, label=r'$\\beta=1$')\n", - "plt.plot(time2,hight2, label=r'$\\beta=0.5$')\n", - "plt.plot(time3,hight3, label=r'$\\beta=0.2$')\n", - "\n", - "# Ergänze sinnvolle Werte für\n", - "\n", - "#den Wertebereich von x,y-Achse\n", - "plt.xlim(0, ) \n", - "plt.ylim(0 ,1000) \n", - "\n", - "# Titel für den Plot und die Achsen\n", - "plt.xlabel('time in [s]') \n", - "plt.ylabel('hight in [m]')\n", - "plt.title(\"Fall mir Stokes-Reibung\\n\")\n", - "plt.legend() # Fasst die vergebenen Label in einer Legende zusammen\n", - "\n", - "plt.show()\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Engeschwindigkeit\n", - "\n", - "Die Endgeschwindigkeit, enschpricht der Steigung des linearen Bereichs unserer Bahnkurve.\n", - "Für $t\\rightarrow\\infty$ erwarten wir, dass sich unsere Geschwindkeit \n", - "\n", - "$\\frac{\\text{d}h(t)}{\\text{d} t}= v(t)=-\\frac{mg}{\\beta}\\cdot(1-\\exp(-\\frac{\\beta t}{m})) + v_0 \\cdot \\exp(-\\frac{\\beta t}{m})$\n", - "\n", - "den Wert $-\\frac{mg}{\\beta}$ annähert.\n", - "\n", - "Das Wollen wir im Folgenden überprüfen. \n", - "Hierzu wollen wir zum Einen mit einem Linearen Fit die Steigung bestimmen und zum anderen mit Hilfe der numpy.gradient funktion die Geschwindigkeiten in Abhängikeit zur Zeit plotten, um uns das Ergebnis zu veranschaulichen." - ] - }, - { - "cell_type": "code", - "execution_count": 332, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Wir erreichen eine Endgeschwindigkeit von 9.80659914875 m/s\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAElCAYAAADp4+XfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcXFWZ//HP03unl6wd6E4IHZIQQghEDLhEMcoi4oqogPxEhJ/Bhfm5Cy4DuIyjDoo6qDMoCIOCIIsigygGVAQJJiZAFgIIgXTWTjrpfa16fn/c200n9FLdXVW3U/f75tWvqrs/t26op845955j7o6IiMRXXtQBiIhItJQIRERiTolARCTmlAhERGJOiUBEJOaUCEREYk6JQDLKzH5uZleG708xs81p2u8yM1ufjn2N8vhfN7Mbojp+KszsD2Z2Xvj+/5rZnyIOScYpJQJJiZltNrN2M2vp91cTVTzu/id3XziSbczsTDN73MyazGy3mf3RzGaFy8bdF3v45Z0IP+tGM1tjZm9JdXt3P83df5HJGCU3KBHISLzd3cv7/W2LOqCBmFnBAPPmAz8DPgFMBGYD/wUksxvdiD3k7uXAZOCnwG1mVhFxTJJjlAhkTMwsz8xuN7MdZrbPzP5kZgtGsZ8CM3Mz+6iZ/dPMms3sCjObZ2aPhr/ibzGzwnD9/aqZzKzOzD5nZk8CbQMc4hXAs2FJwt292d1vd/c6M3sb8HngvPDX9+pwnzPN7B4zazCzZ8zswkFiLzKz28K/wvAz+WJ4HrvN7JdmNjlcd4KZ3Wxme8LP6zEzmzbc5+PuSeAmoByY2+/YS8PPZ5+ZrTWzk/ot+6uZXdBvN3lm9qOwdLHRzN54wOe3rN90XwnJzOaG1+b8cL16M7us37oTwirAfWa2wcwuS1cVoGSHEoGkwz3APOBQYB3BF9ZonQosBpYCXwJ+BJwDHE7wZf6+IbY9B3gLwS/+A60GFpnZd8zsjWZW1rvA3e8Bvg38IizpvDJcdCvwPFADnA1828ze0H+nZjYB+A3QDJzj7t3Ap4G3AicBM4FW4AfhJh8CJoTzpwIfAzqG+Ux6SzkfArqALeG8w4C7gSuAKcBlwJ1mNnWQ3bwWeAqYBnwNuMvMJg137AO2nwu8GfiKmc0L53+V4DOqDZf9nxHsU8YBJQIZiV+Hv/r2mdmvIfil6u43hL+wO4ArgVf2/6IdoW+F+3oC2Ajc5+6b3X0v8HuCZDCY77t7nbu3H7jA3Z8B3gjMAn4F7DGz68Mv8pcxs9nAicBl7t7h7v8gqFr6QL/VJoYxPQX83/BXO8DFwBfdfWu/z+R9ZpYHdBN8Ec9194S7r3L3liHO6XVmtg9oB/4deL+77w6XnQ/c7e6/D6/DfcDjwOmD7Gs78J/u3u3uNwPPESTOVF3Z77NYDxwXzn8f8G/uvs/dtwDXjGCfMg4oEchIvMvdJ4V/7wIws3wz+7aZPWdmTcCz4brDVncMYme/9+0DTJcPse2WoXbs7o+4+3vdfRrBr/U3AV8YZPUaYLe7t/ab9wIwo9/0UmAhQfLq33vjLOC3vUkTeBJwYDpwA/BHgrr+rWb2zbBabFm/RvjH++3rr+4+ieAX/73A6/otOxw4t19y3ge8Oox9IHUHxPnCEOu+jLvv6DfZxkvXopr9P/shr4OMPy9rVBMZofOBMwi+VF8gqO6oByyCWFLuStfdHwtLNccMsu02YJqZlfVLBrOArf3WuRd4GlhhZsvcvT6cX0fwy33lIIe/ErgyLHXcB2x09xsZIsm5e7OZfRT4p5n9LCwxbQF+5u4fTeWcCaqj+psVnicE1Vf9S0eHprhPgB3hvp8Opw8bwbYyDqhEIGNVAXQCewi+SP4t2nAGZmZvCG/HnB5OLwDeDjwarrITqDUzA3D354FVwDfMrNjMFhPU0e93O6a7fwO4Hfhjv7r5/wq36701dbqZvSN8/yYzOyasJmoiqCpKpHIOYaK5HvjXcNZNwJlmdmpYMisJ2z8G+5VfbWaXhCWQc4A5BIkIYC1wTrjsRODdqcQUug34oplNMrOZwMdHsK2MA0oEMlY/I/hVuY2g3viRaMMZ1F7gTGCdmbUQ/Jq/DfhOuPxWoAhoMLPHwnlnEzSC7yD4sv+iuz944I7d/Qrgd8D9YePrdwm+YFeYWTPBZ3JCuHoNcCdBElhPUE10ywjO42rgHWa20N03h+f0rwSlsBeBzzD4/9ePEFRlNRCUSs4K214gaJg/CtgX7u/mEcR0BUEi3Qz8geBz7RzB9hIx08A0IpJOZvYvBO1JJ0cdi6RGJQIRGRMzm2Fmrw2fn1gAfAq4K+q4JHVqLBaRsSoGfkLwHMFegqqu/44yIBkZVQ2JiMScqoZERGJOiUBEJOaUCEREYk6JQEQk5pQIRERiTolARCTmlAhERGJOiUBEJOaUCEREYk6JQEQk5pQIRERiTolARCTmlAhERGJOiUBEJOaUCEREYk6JQEQk5g6KEcqmTZvmtbW1UYchInJQWb169W53rxpuvYMiEdTW1rJq1aqowxAROaiY2QuprKeqIRGRmMtYIjCzw8zsQTPbaGbrzewT4fwrzWyrma0N/87IVAwiIjK8TFYN9QCfcfd/mFkFsNrM7g+XXe3uV2Xw2CIikqKMJQJ33w5sD983m9lGYEamjiciua27u5u6ujo6OjqiDmXcKSkpYebMmRQWFo5q+6w0FptZLfAKYCWwFLjEzM4HVhGUGvYOsM1yYDnArFmzshGmiIxjdXV1VFRUUFtbi5lFHc644e7s2bOHuro6Zs+ePap9ZLyx2MzKgTuAT7p7E/BjYA6wmKDE8J2BtnP3a919ibsvqaoa9u4nEclxHR0dTJ06VUngAGbG1KlTx1RSymgiMLNCgiTwC3e/E8Ddd7p7wt2TwE+AEzMZg4jkDiWBgY31c8lY1ZAFkV0HbHT37/abXx22HwCcCazLVAwHI3enI9FBS1cLLd0ttPe009HTQUeig65EF93JbroT3XQnu0l4gp5kDwlPkPRk35+7kyR437vPvvfhf+HES8ftPzHEvJGcx3jx2prXcvwhx0cdhsi4lck2gqXAB4AnzWxtOO+LwLlmtpjga2gzcHEGYxh33J1trdt4Zu8zbG7cTF1LHdtbt1PfVs+ejj3s69hHV7Ir6jDTwhgfv94mFE5QIhAZQibvGvorDPhNcG+mjjlebW7czJ/r/szK7St5YvcTNHY29i2rLKqkuqya6ROmM3/KfCYXT6ayuJKKwgrKisooLSiltKCUkvwSivOLKcwvpCCvgMK8QgrzCsmzPPItn3zLx8z6pgHyLA8zw7C+V6Bvuvd9LxW7ReLpoOhi4mDU3NXM3f+8m7ueuYtNezcBUFtZy8mzTmbh1IUcOflIZk+czcTiiRFHKiIjdfnll3PXXXfR2dnJZz/7WZYvXz7ifVx44YXcc889TJ8+nXXroq0hVyJIs7buNm5YfwM/3/BzmrubWTh1IZeecCknzzqZ6vLqqMMTkTH6/e9/z5o1a1i7di0bNmzg0ksvHVUiuOCCC7jkkks4//zzMxDlyCgRpNFDdQ/x1Ue/yo7WHZw862Q+vOjDLJy2MOqwRCSN7r77bi644AK6u7u55pprOOuss0a1n5NOOonNmzenN7hRUiJIg0QywdWrr+bGDTcyd9Jcbjz9RjVOimTQV367ng3bmtK6z6NrKrni7cP/cFu9ejUnnHACU6dOpba2lquvvnq/5a9//etpbm5+2XZXXXUVp5xyStriTSclgjHq6Ong0r9cygNbHuDs+WfzuRM+R3F+cdRhiUgGJJNJ6urquOCCCzj77LO5+OKL+e53v8uXv/zlvnUeeuihCCMcHSWCMehOdPPJP32SR7Y+wmUnXsZ5C86LOiSRWEjll3smbNq0iXnz5gFQWlrK0qVL2bFjx37rqEQQI+7Ovz7yrzy89WGufM2VnHXk6OoJReTgsWbNGjo7O0kkEvT09HDzzTfzgx/8YL91DsYSgQamGaWbn7qZ/33uf7lk8SVKAiIxsXbtWtrb25kzZw5Lly7lgx/8IMcdd9yo9nXuuefymte8hk2bNjFz5kyuu+66NEebOpUIRmH9nvVcteoqls1cxvJjR37bmIgcnNasWcNNN93EMcccM+Z93XLLLWmIKD1UIhihnmQPX3nkK0wpnsLXX/d1PY0rEiNPPfUURx11VNRhpJ1KBCN066Zb2diwkavecJWeChaJmS1btkQdQkaoRDACjZ2N/HDND1las5TTDj8t6nBERNJCiWAEbtpwE83dzXzqlZ9SlZCI5AwlghQ1djby840/59TDT2X+lPlRhyMikjZKBCm6ddOttHa38pHjPhJ1KCIiaaVEkIJEMsGvnv4Vr6p+FUdOPjLqcERE0kqJIAV/qfsLO1p3cM78c6IORUQk7ZQIUnDr07cyvXQ6yw5bFnUoIiJpp0QwjN3tu/nbtr/xzrnvpCBPj12ISO5RIhjGihdWkPQkp88+PepQRGScuPzyy1m0aBFHHnkk11577aj2cd999zF//nzmzp3LN7/5zUHXq62tZdGiRSxevJglS5aMNuQhKREM477N93HExCOYN2le1KGIyDjQf6jKO+64g1//+tcj3kcikeDjH/84v/vd79iwYQO33HILGzZsGHT9Bx98kLVr17Jq1aqxhD4oJYIh7Grbxeqdqzm99nQ9QCYiQHqGqnzssceYO3cuRxxxBEVFRZxzzjn85je/yUC0qVGl9xD+tOVPOM6ph58adSgi0t/vLoMdT6Z3n4cugrcMXkXTKx1DVW7dupXDDjusb9nMmTNZuXLlgMczM0477TTMjIsvvpjly9Pf47ESwRAe2fYI1WXVzJk0J+pQRGQcSNdQle7+snmD1To8/PDD1NTUsGvXLk499VSOOuooTjrppNGfxACUCAbRnexm5faVvLn2zaoWEhlvUvjlngnpGqpy5syZ+/VkWldXR01NzYDH7J0/ffp0zjzzTB577DElgmx5sv5JWrpbWDpjadShiMg4ka6hKk844QSeeeYZnn/+eWbMmMEvf/lLbr755pet19raSjKZpKKigtbWVv7whz9w+eWXp+18eikRDOLhbQ+TZ3mceOiJUYciIuNE/6Eqp02bxsc+9rFRDVVZUFDANddcw5vf/GYSiQQXXnghCxcu7Ft+xhln8NOf/pSOjg7OPPNMAHp6enj/+9/P6aen/1Z2JYJBPLrtURZNW6TBZ0SkTzqHqjzjjDM444wzBlx277339r1//PHHx3ys4ej20QG097SzYc8GlhySmYc3ROTgpKEqY2T97vX0eA+Lpy+OOhQRGUc0VGWMrK1fC8BxVSOv+xMROdgoEQzg8V2PU1tZy+SSyVGHIiKScUoEB3B31tavVbWQiMSGEsEBXmh6gX2d+1hcpUQgIvGgRHCAdXvWAbCoalHEkYiIZEfGEoGZHWZmD5rZRjNbb2afCOdPMbP7zeyZ8HVcVcRvathEUV4RsyfOjjoUEZGsyGSJoAf4jLsvAF4NfNzMjgYuA1a4+zxgRTg9bmxq2MScSXMozCuMOhQRkazIWCJw9+3u/o/wfTOwEZgBvBO4MVztRuBdmYphpNydTXs3cdSU3HtgRERkMFlpIzCzWuAVwErgEHffDkGyAKYPss1yM1tlZqvq6+uzESa723fT0NHA/Cnzs3I8ETk4ZWuoyi1btvDGN76RBQsWsHDhQr7//e+PJexBZTwRmFk5cAfwSXdvSnU7d7/W3Ze4+5KqqqrMBdjPpr2bAJg/WYlARAaWzaEqCwoK+M53vsPGjRt59NFH+eEPfzjkkJajldEuJsyskCAJ/MLd7wxn7zSzanffbmbVwK5MxjASTzU8BcCRU47M/MF6uqC7DXo6gr9ENyS6gtdkAjwRviZf+sPBff9XXnoZYOLlBhgQQ9Jsci1UZeHfkEQi3UNVAn1DVR599NH7rVddXU11dTUAFRUVLFiwgK1bt75svbHKWCKwYDSX64CN7v7dfovuBj4IfDN8jW6gzgM83fA0M8pnUFlUObYdte4OhtHb/TTs3QyNddCyM5jf0QidTcGXvuSmpZ+EU78SdRQ57VuPfavvh1u6HDXlKC498dJh18v2UJW9Nm/ezJo1a3jVq16VyumMSCZLBEuBDwBPmtnacN4XCRLAbWZ2EfAi8N4MxjAiz+x7hnmT5o18w0Q3PLsCnr4PnvsT7H3+pWWFZTBxBpQfAtXHQelkKK6A4vJgWWEJ5BdDQTHkFUB+YfCalw+WF/7lgxlgwTQE09a/Zq/fKGrDjqimEdcyquKQqCOQDIliqEqAlpYWzjrrLL73ve9RWTnGH6oDyFgicPe/Mvg3zsmZOu5oJZIJXmx6kdfNeF3qG7U1wMr/gr9fB227oagCZr8eXnkB1CyGqgVQPj2FL2YRGYlUfrlnQhRDVXZ3d3PWWWdx3nnn8e53vztdp7IfdUMd2t66na5kF7WVtcOvnEzAquthxdegsxHmnwHHnw9zToaCoozHKiLRyPZQle7ORRddxIIFC/j0pz+dtvM4kBJBaHPTZgBqJ9YOvWJbA9x+ITz3IByxDN7873BIehtuRGR8yvZQlc899xw33XQTixYtYvHioP+zb3zjG4OObDZaSgShF5peABi6RNC4FW58W9D4+7bvBVVAqvYRiY1sD1VZU1MzYHtCuikRhJ5vfJ6KogqmlEwZeIXmHUESaN0NH7wHZqW/5V5ExjcNVZnjNjdtprayduCW+0Q3/OqCIBmcfzccdkLW4xOR6Gmoyhy3uXHz4NVCD3wNXvwbvP0HSgIiknOUCIC27jZ2tu0cuKF421p4+AdBe8Cx4+aRBxGRtFEiAF5sfhEYoKE4mYR7Pwtl0+AUPSkqErVsNJwejMb6uSgRAHXNdQDMqpy1/4L1d0Ld34MkUDopgshEpFdJSQl79uxRMjiAu7Nnzx5KSkpGvQ81FgNbW7YCUFPe78k+d/jr92DafDju3IgiE5FeM2fOpK6ujmx1S38wKSkpYebMmaPeXokA2NayjfLC8v07m3t2Bex8Et75I8hTwUkkaoWFhcyerSFkM0HfcASJYL/SAMAjP4DKGbBIDcQiktuUCICtrVv3TwT7XoTn/xzcKaS+g0Qkx8U+Ebg721q2MaN8xkszn7gteD32fdEEJSKSRbFPBE1dTbR2t1JTFpYI3OGJW2HWa4KRpkREclzsE8G2lm0AL5UItj8ejCx27NkRRiUikj1KBGEi6GsjePo+wGDBO6ILSkQki2KfCF72DMGzf4QZx0PZ1AijEhHJntgngm2t2ygrLAueIWhrgK2rYe6pUYclIpI1gz5QZmbHp7B9t7s/mcZ4sm5ry1aqy6qD7qefexA8CXNPiTosEZGsGerJ4j8Df2fwAegBZgO16Qwo23a17eLQskODiWdXQOnkoGpIRCQmhkoEf3f3Nw21sZk9kOZ4sq6+rZ4FUxYEE5sfgtrXQ15+tEGJiGTRoG0EwyWBVNcZz3qSPezp2EPVhCpo3hk8UXyYhqAUkXhJqdM5MzuWoAqob313vzNDMWVNQ0cDSU9SVVoFW1cFM2dqBDIRiZdhE4GZXQ8cC6wHkuFsBw76RFDfFnRnO33CdHjqQcgrhOrjIo5KRCS7UikRvNrdj854JBHY1bYLIKgaqlsF1cdC4egHdxARORil8hzB38wspxPB9KIpsO0fqhYSkVhKpURwI0Ey2AF0EtxO6u5+bEYjy4Jd7bvIszymNO+A7jYlAhGJpVQSwfXAB4AneamNICfUt9UzrWQa+bs2BjPUPiAiMZRKInjR3e/OeCQR2NW+K2gf2LUB8othsobBE5H4SSURPGVmNwO/JagaAnLj9tH6tvqgs7ltT0HVkZCvIZxFJH5S+eYrJUgAp/WblzO3jy6uWgy7HoDapVGHIyISiWETgbt/KBuBZFtXoou9nXupKqqEpjqYviDqkEREIjHo7aNmtny4jVNZZ7za3b4bgEN6eoIZ03PyDlkRkWENVSK4zMx2D7HcgE8A16Y3pOyobw+eKp7ati+YUXVUhNGIiERnuG6o3z7M9vcPtiDsmuJtwC53PyacdyXwYaA+XO2L7n5vytGmUUN7AwBTm3dBUTlMPCyKMEREIjdoIkhD28ANwDXA/xww/2p3v2qM+x6zvZ17AZi8dwtMOxLyYj9Ym4jEVMa+/dz9L0BDpvY/Vg0dQWiT926BqXMijkZEJDpR/Ay+xMyeMLPrzWzyYCuZ2XIzW2Vmq+rr6wdbbdQaOhooLSiltHErTK5N+/5FRA4W2U4EPwbmAIuB7cB3BlvR3a919yXuvqSqqirtgezt2MuUwgrwhBKBiMRaKuMRFANn8fKBab460oO5+85++/0JcM9I95Euezv2MiW/NJhQIhCRGEvlyeLfAI3Aavp1MTEaZlbt7tvDyTOBdWPZ31g0dDRQ1VsgUiIQkRhLJRHMdPfTR7pjM7sFWAZMM7M64ApgmZktJuiiYjNw8Uj3my4NHQ0c6cWQXwQV1VGFISISuVQSwSNmtsjdnxzJjt393AFmXzeSfWSKuwdVQ3mTYNLhkJcfdUgiIpFJJRG8DrjAzJ4nRwamaetpoyvZxZTOZlULiUjspZII3pLxKLKs96niya17oPqkiKMREYnWoInAzCrdvQlozmI8WdHQGSSCKR0tKhGISOwNVSK4maCvoNUEjbvWb5kDR2Qwroza2xF0LzElkYTJh0ccjYhItIbqa+ht4WvOjd/Y273ElEQCKmsijkZEJFqx7Gmtr5+hZBIqlAhEJN5imQj2duyl1AoowaAs/d1XiIgcTGKZCBo6GphiBVB+iAasF5HYGzYRmNlVZrYwG8Fky77OfUxKup4oFhEhtRLBU8C1ZrbSzD5iZhMzHVSmNXU1MbGnR4lARIQUEoG7/9TdlwLnE/RA+oSZ3Wxmb8x0cJnS1NlEZXcHVCoRiIik1EZgZvnAUeHfbuBx4NNm9ssMxpYxTZ2NTOzuUIlARITUxiP4LsEg9g8A33D3x8JF3zKzTZkMLhPcncauRiqTSSUCERFS62toHfBld28bYNmJaY4n49p62kh4komJpKqGRERIrWrovAOTgJmtAHD3xoxElUGNnUHIlXqYTEQEGLrTuRJgAsHAMpN5qa+hSuCg/QZt6moCehPBoRFHIyISvaGqhi4GPknwpf+PfvObgB9mMqhM6isRWCGUHPR3woqIjNlQnc59H/i+mf2Lu/9nFmPKqL4SQelUMBtmbRGR3DdU1dCb3P0BYKuZvfvA5e5+Z0Yjy5DeEsHE0mkRRyIiMj4MVTX0BoJbRt8+wDIHDspE0FcimKDO5kREYOiqoSvC1w9lL5zMa+xspNCd0glTow5FRGRcSKXTuW+Y2aR+05PN7OuZDStzmjqbqEwmMXU/LSICpPYcwVvcfV/vhLvvBc7IXEiZ1di+O3iYrExtBCIikFoiyDez4t4JMysFiodYf1xr6mgIniFQ1ZCICJBaFxM/B1aY2c8IGokvBG7MaFQZ1NSxj+nJJExQiUBEBFJIBO7+bTN7AjglnPU1d/99ZsPKnKbuZuYmklCmEoGICKRWIgBYAxQSlAjWZC6czGvsbmViMqESgYhIKJW7ht4HPAa8B3gfsNLM3pPpwDKhJ9lDS7JLbQQiIv2kUiL4EnCCu+8CMLMq4I/A7ZkMLBOau5oBqKQAiiZEHI2IyPiQyl1Deb1JILQnxe3Gnb6nigvLI45ERGT8SKVEcJ+Z/R64JZw+G7g3cyFlTktXCwAVxRURRyIiMn6kctfQ58zsLGApwZgE17r7XRmPLANauoNEUFas7qdFRHqldNeQu98B3JHhWDKuNxFUlKihWESk11DdUDcT3C76skWAu3tlxqLKkN6qoTLdOioi0meo3kdzriK9pWMvAOXqcE5EpE9Kd/+Y2evM7EPh+2lmNjuFba43s11mtq7fvClmdr+ZPRO+Th596CPX2loPQHlZdTYPKyIyrqXyQNkVwKXAF8JZRQT9Dw3nBuD0A+ZdBqxw93nAinA6a1o69lCcTFKonkdFRPqkUiI4E3gH0Arg7tuAYauN3P0vQMMBs9/JSx3W3Qi8K+VI06Cls5EydyidNPzKIiIxkUoi6HJ3J2w4NrOyMRzvEHffDhC+Th9sRTNbbmarzGxVfX39GA75kpbOZiqSSSjR7aMiIr1SuX30NjP7b2CSmX2YoBvqn2Q2LHD3a4FrAZYsWTLQ3Usj1trdQlkKicDd+Wd9K0/vbGZLQxtb9raxr62bju4E7d0J2rsSdPYkSXqwbrANOB6+BvMdwAe+9UpEJBXffPciXnVEZm95T+WBsqvM7FSgCZgPXO7u94/yeDvNrNrdt5tZNbBr2C3SqKWnlfKkQ8nAVUO7Wzq56W8vcNuqLWxv7OibP7G0kKnlRZQW5lNamE9ZcQGTJ+RhZpgF99MGr+F0+J6+ZYZl5xRFJMdUlBRm/BjDJgIz+xTwqzF8+fd3N/BB4Jvh62/SsM+UtfR0MDOZhOKXPwLxh/U7+PwdT7CvrZtl86v4lzfN49iZE5k1dQKVWbgQIiJRSaVqqBL4vZk1AL8Ebnf3ncNtZGa3AMuAaWZWB1xBkABuM7OLgBeB94428NFoTXRSbgWQt3/TyO2r6/jsrx5nYU0lty5/DfMPzblHKEREBpVK1dBXgK+Y2bEEHc792czq3P2UYbY7d5BFJ488zPRoTnZTlle037zHnm/gC3c+wdK5U7n+ghMoLsiPKDoRkWiMpDvpXcAOgm6oB73bZ7xyd1rpoTy/uG9eTyLJ529/nBmTSvnR+1+pJCAisZTKA2UfNbM/ETwANg34sLsfm+nA0q0j0UECKM8v7Zt355qtbN7TxpfeejQTJ6gdQETiKZU2gsOBT7r72kwHk0m9Hc6VFwYjk3UnkvznA8+waMZETllw0BVwRETSJpU2gqx2A5EpfWMRFAUNwX95up4tDe18+QNHY6abO0Ukvg7KISdHo7W7FYCK8NbR+zfspLy4gGXz1ROpiMRbbBJBS2cwXnFZ8SSSSeePG3fxhvlVaiAWkdiLTyJoDR5iLi+ZzNq6fexu6eS0ow+JOCoRkejFJxG07wagfMJU7t+wk/w8Y9mRaiQWEYlNImht3wNA+YQq/v58A8fNnKhbRkXFsJ8tAAAKXklEQVREiFEiaA6HqSwpqWLj9iaOmaGuqEVEIEaJoLWzkZJkkj2JMlq7Ehxd/fKO50RE4ig2iaClq5nypLNpX3DKR9coEYiIQIwSQWtXKxM8ybo9kJ9nHHmIehgVEYEYJYL2njbKks7jO3uYU1VGSaGeHxARgRglgrZEB6WWx4YdLSxQ+4CISJ/YJIL2RBelFLCtsUMNxSIi/cQmEbR5N8UE1UFzqsojjkZEZPyIUSLooSjsbLV6UknE0YiIjB+xSQTtnqTAg0RQM7F0mLVFROIjNomgDSffCykpzGOSupYQEekTi0TQneymy4BEITUTSzUQjYhIP7FIBO097QD0JArVPiAicoB4JILuIBF0dRdSrfYBEZH9xCIRtHXuA6Cjq5CaiSoRiIj0F49E0BaMRdCTLKV6kkoEIiL9xSIRtIdjEfQkS6hWiUBEZD+xSARtYSLoSk6gRiUCEZH9xCQRNALQmSxTiUBE5ACxSATtYWNxXn4FFSV6mExEpL9YJIK2rhYASoqnRhyJiMj4E4tE0N7VDEBJ6eSIIxERGX9ikQjaulvJd6dIiUBE5GVikQjau9uYkHRKyyZFHYqIyLgTi0TQ1tNOqSeZMKEs6lBERMadWCSC1kQHJUmYOKEo6lBERMadgigOamabgWYgAfS4+5JMHq+1p4MiN41DICIygEgSQeiN7r47GwdqS3RRlMxjYqkSgYjIgWJRNdSW7KYwqZHJREQGElUicOAPZrbazJYPtIKZLTezVWa2qr6+fkwHaydBfjJfJQIRkQFElQiWuvvxwFuAj5vZSQeu4O7XuvsSd19SVVU1poP1Dlw/sVSNxSIiB4okEbj7tvB1F3AXcGImj9duSSxZoKohEZEBZD0RmFmZmVX0vgdOA9Zl8pjtBnnJQlUNiYgMIIq7hg4B7jKz3uPf7O73Zepg3YlueswwiinMj0XbuIjIiGQ9Ebj7c8Bx2Tpeb8+jBaZxCEREBpLzP5Fb23YBUJg3IeJIRETGp5xPBHubtwJQmlcZcSQiIuNTzieCPY0vAlBUOD3iSERExqecTwR7W7YBUFJSE3EkIiLjU84ngobWHQBMKJ8VcSQiIuNTzieC3W27KUo6JZVKBCIiA8n5RLCnvYFJySQVFRqdTERkILmfCLpaqEwYh07ScwQiIgPJ+USwN9FOaSKfQytLow5FRGRcyvlE0Eg3RT2FVE9UiUBEZCC5nwgsSWGyVD2PiogMIqcTQXtXK+15RrFVEHZyJyIiB8jpRLC38QUASvJ1x5CIyGByOxHs2wxAefHYRjgTEcllOZ0I6sMSQUX5jIgjEREZv3I6EWzfVwfA1Il6qlhEZDA5nQh2NgX9DNVMmxdxJCIi41dOJ4I9YT9DNYfOjjoUEZFxK4oxi7OmqLOTuT0JaqZURB2KiMi4ldOJoGLa5TT/fR2T9TCZiMigcjoRHFo9k2MWl+lhMhGRIeR0IjjnxFmcc6LuGBIRGUpONxaLiMjwlAhERGJOiUBEJOaUCEREYk6JQEQk5pQIRERiTolARCTmlAhERGLO3D3qGIZlZvXAC6PcfBqwO43hjGc619wUp3OFeJ1vps/1cHcfdmSugyIRjIWZrXL3JVHHkQ0619wUp3OFeJ3veDlXVQ2JiMScEoGISMzFIRFcG3UAWaRzzU1xOleI1/mOi3PN+TYCEREZWhxKBCIiMgQlAhGRmMvpRGBmp5vZJjN71swuizqedDKzw8zsQTPbaGbrzewT4fwpZna/mT0Tvk6OOtZ0MbN8M1tjZveE07PNbGV4rreaWVHUMaaDmU0ys9vN7Knw+r4mV6+rmX0q/Pe7zsxuMbOSXLmuZna9me0ys3X95g14HS3wg/C76gkzOz6bseZsIjCzfOCHwFuAo4FzzezoaKNKqx7gM+6+AHg18PHw/C4DVrj7PGBFOJ0rPgFs7Df9LeDq8Fz3AhdFElX6fR+4z92PAo4jOOecu65mNgP4f8ASdz8GyAfOIXeu6w3A6QfMG+w6vgWYF/4tB36cpRiBHE4EwInAs+7+nLt3Ab8E3hlxTGnj7tvd/R/h+2aCL4sZBOd4Y7jajcC7ookwvcxsJvBW4KfhtAFvAm4PV8mJczWzSuAk4DoAd+9y933k6HUlGC631MwKgAnAdnLkurr7X4CGA2YPdh3fCfyPBx4FJplZdXYize1EMAPY0m+6LpyXc8ysFngFsBI4xN23Q5AsgOnRRZZW3wM+DyTD6anAPnfvCadz5foeAdQDPwurwX5qZmXk4HV1963AVcCLBAmgEVhNbl7XXoNdx0i/r3I5EdgA83LuXlkzKwfuAD7p7k1Rx5MJZvY2YJe7r+4/e4BVc+H6FgDHAz9291cAreRANdBAwvrxdwKzgRqgjKCK5EC5cF2HE+m/51xOBHXAYf2mZwLbIoolI8yskCAJ/MLd7wxn7+wtUoavu6KKL42WAu8ws80EVXxvIighTAqrFCB3rm8dUOfuK8Pp2wkSQy5e11OA59293t27gTuB15Kb17XXYNcx0u+rXE4EfwfmhXcgFBE0Qt0dcUxpE9aRXwdsdPfv9lt0N/DB8P0Hgd9kO7Z0c/cvuPtMd68luI4PuPt5wIPAe8LVcuVcdwBbzGx+OOtkYAM5eF0JqoRebWYTwn/Pveeac9e1n8Gu493A+eHdQ68GGnurkLLC3XP2DzgDeBr4J/ClqONJ87m9jqDo+ASwNvw7g6DufAXwTPg6JepY03zey4B7wvdHAI8BzwK/Aoqjji9N57gYWBVe218Dk3P1ugJfAZ4C1gE3AcW5cl2BWwjaProJfvFfNNh1JKga+mH4XfUkwZ1UWYtVXUyIiMRcLlcNiYhICpQIRERiTolARCTmlAhERGJOiUBEJOaUCEREYk6JQHJW2J3zx/pN15jZ7UNtM8rjvGMk3ZybWa2ZtZvZ2mHW+4WZNZjZe4ZaT2Ss9ByB5KywM757POjieNwYSVxmdkO4btoTmEgvlQgkl30TmGNma83sP8Jf4usAzOwCM/u1mf3WzJ43s0vM7NNhj5+PmtmUcL05Znafma02s4fM7KgDDxLu65rw/Q3hACOPmNlzqfyaN7MyM/tfM3s8HKDl7DR/DiJDKhh+FZGD1mXAMe6+GPp+ifd3DEH33SUE3Rlc6u6vMLOrgfMJOra7FviIuz9jZq8CfkTQ6d1Qqgm6ADmKoA+Z4X7Nnw5sc/e3hnFOTOnsRNJEiUDi7EEPBvVpNrNG4Lfh/CeBY8Muvl8L/CroEw0I+sIZzq/dPQlsMLNDUlj/SeAqM/sWQTXQQyM6C5ExUiKQOOvs9z7ZbzpJ8P9GHsEgKYvHsN+B+pnfj7s/bWavJOg08N/N7A/u/tURHlNk1NRGILmsGagY7cYeDPTzvJm9F/oGGD8uXcH1MrMaoM3df04wYldWBy4XUSKQnOXue4CHwwbY/xjlbs4DLjKzx4H1ZGbc60XAY+HtpF8Cvp6BY4gMSrePimSZbh+V8UYlApHsSwATU3mgDHgD0JGVqCS2VCIQEYk5lQhERGJOiUBEJOaUCEREYk6JQEQk5v4/xNgrwxKJ0+AAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Schaue dir mit \n", - "#np.ployfit?\n", - "#np.gradient?\n", - "#np.abs?\n", - "#Die Dokumentation der verwendeten Befehle an, um zu verstehen, \n", - "#Was diese Funktionen tun und welche Argumente sie benötigen\n", - "\n", - "# Wir definieren zwei Parameter m.b für unseren linearen Fit (y=m*x+b)\n", - "# Da wir nur den Linearen Bereich unserer Funktion betrachten wollen,\n", - "# schließen wir über sclicing die Ersten Werte aus\n", - "m,b = np.polyfit(time[10:], hight[10:], 1)\n", - "print(\"Wir erreichen eine Endgeschwindigkeit von\",np.abs(m),\"m/s\")\n", - "# Berechne nach dem gleichen Schema auch die Endgeschwindigkeiten der beiden anderen Datensets:\n", - "\n", - "# Hier Werden die Geschwindigkeiten berechnet und geplottet\n", - "# (natürlich hätte man in unserem Fall die Geschwindigkeit auch direkt ausrechnen können,\n", - "# aber für Fälle in denen nicht die exakte Lösung bekannt ist kann man die Funktion np.gradient verwenden)\n", - "\n", - "# Ergänze die Plot-Beschriftung und die beiden weiteren Datensätze.\n", - "\n", - "v=np.abs(np.gradient(hight,0.5))\n", - "v2=np.abs(np.gradient(hight2,0.5))\n", - "v3=np.abs(np.gradient(hight3,0.5))\n", - "\n", - "\n", - "# Titel für den Plot und die Achsen\n", - "plt.xlabel('time in [s]') \n", - "plt.ylabel('velocity in [m]')\n", - "plt.title(\"Fall mir Stokes-Reibung\\n\")\n", - "\n", - "plt.plot(time,v, label=r'$\\beta=1$')\n", - "plt.plot(time2,v2, label=r'$\\beta=0.5$')\n", - "plt.plot(time3,v3, label=r'$\\beta=0.2$')\n", - "plt.legend()\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From eab8833a5eae2516607af8264ee74bb4e90c90b1 Mon Sep 17 00:00:00 2001 From: sschuma Date: Tue, 8 May 2018 17:30:35 +0200 Subject: [PATCH 2/2] fix initial conditions --- Uebung_Stokes.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Uebung_Stokes.ipynb b/Uebung_Stokes.ipynb index 9960098..e4574a0 100644 --- a/Uebung_Stokes.ipynb +++ b/Uebung_Stokes.ipynb @@ -22,7 +22,7 @@ "\n", "$$v_0=0$$\n", "$$\\beta=[1,0.6,0.4]$$\n", - "$$h_0=0$$\n", + "$$h_0=10$$\n", "$$m=1$$\n", "(in Analogie zum Übungsblatt $\\gamma=\\frac{\\beta}{m}$)" ]