-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
174 lines (127 loc) · 5.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""Module providing an API for NSFW image detection."""
import io
import hashlib
import logging
import aiohttp
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from transformers import pipeline
from transformers.pipelines import PipelineException
from PIL import Image
from cachetools import Cache
import tensorflow as tf
from models import (
FileImageDetectionResponse,
UrlImageDetectionResponse,
ImageUrlsRequest,
)
app = FastAPI()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Initialize Cache with no TTL
cache = Cache(maxsize=1000)
# Load the model using the transformers pipeline
model = pipeline("image-classification", model="falconsai/nsfw_image_detection")
# Detect the device used by TensorFlow
DEVICE = "GPU" if tf.config.list_physical_devices("GPU") else "CPU"
logging.info("TensorFlow version: %s", tf.__version__)
logging.info("Model is using: %s", DEVICE)
if DEVICE == "GPU":
logging.info("GPUs available: %d", len(tf.config.list_physical_devices("GPU")))
async def download_image(image_url: str) -> bytes:
"""Download an image from a URL."""
async with aiohttp.ClientSession() as session:
async with session.get(image_url) as response:
if response.status != 200:
raise HTTPException(
status_code=response.status, detail="Image could not be retrieved."
)
return await response.read()
def hash_data(data):
"""Function for hashing image data."""
return hashlib.sha256(data).hexdigest()
@app.post("/v1/detect", response_model=FileImageDetectionResponse)
async def classify_image(file: UploadFile = File(None)):
"""Function analyzing image."""
if file is None:
raise HTTPException(
status_code=400,
detail="An image file must be provided.",
)
try:
logging.info("Processing %s", file.filename)
# Read the image file
image_data = await file.read()
image_hash = hash_data(image_data)
if image_hash in cache:
# Return cached entry
logging.info("Returning cached entry for %s", file.filename)
cached_response = cache[image_hash]
response_data = {**cached_response, "file_name": file.filename}
return FileImageDetectionResponse(**response_data)
image = Image.open(io.BytesIO(image_data))
# Use the model to classify the image
results = model(image)
# Find the prediction with the highest confidence using the max() function
best_prediction = max(results, key=lambda x: x["score"])
# Calculate the confidence score, rounded to the nearest tenth and as a percentage
confidence_percentage = round(best_prediction["score"] * 100, 1)
# Prepare the custom response data
response_data = {
"is_nsfw": best_prediction["label"] == "nsfw",
"confidence_percentage": confidence_percentage,
}
# Populate hash
cache[image_hash] = response_data.copy()
# Add file_name to the API response
response_data["file_name"] = file.filename
return FileImageDetectionResponse(**response_data)
except PipelineException as e:
logging.error("Error processing image: %s", str(e))
raise HTTPException(
status_code=500, detail=f"Error processing image: {str(e)}"
) from e
@app.post("/v1/detect/urls", response_model=list[UrlImageDetectionResponse])
async def classify_images(request: ImageUrlsRequest):
"""Function analyzing images from URLs."""
response_data = []
for image_url in request.urls:
try:
logging.info("Downloading image from URL: %s", image_url)
image_data = await download_image(image_url)
image_hash = hash_data(image_data)
if image_hash in cache:
# Return cached entry
logging.info("Returning cached entry for %s", image_url)
cached_response = cache[image_hash]
response = {**cached_response, "url": image_url}
response_data.append(response)
continue
image = Image.open(io.BytesIO(image_data))
# Use the model to classify the image
results = model(image)
# Find the prediction with the highest confidence using the max() function
best_prediction = max(results, key=lambda x: x["score"])
# Calculate the confidence score, rounded to the nearest tenth and as a percentage
confidence_percentage = round(best_prediction["score"] * 100, 1)
# Prepare the custom response data
detection_result = {
"is_nsfw": best_prediction["label"] == "nsfw",
"confidence_percentage": confidence_percentage,
}
# Populate hash
cache[image_hash] = detection_result.copy()
# Add url to the API response
detection_result["url"] = image_url
response_data.append(detection_result)
except PipelineException as e:
logging.error("Error processing image from %s: %s", image_url, str(e))
raise HTTPException(
status_code=500,
detail=f"Error processing image from {image_url}: {str(e)}",
) from e
return JSONResponse(status_code=200, content=response_data)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)