-
Notifications
You must be signed in to change notification settings - Fork 7
/
multiple_linear_regression.R
46 lines (39 loc) · 1.57 KB
/
multiple_linear_regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Multiple Linear Regression
# Importing the dataset
dataset = read.csv('50_Startups.csv')
# Encoding categorical data
dataset$State = factor(dataset$State,
levels = c('New York', 'California', 'Florida'),
labels = c(1, 2, 3))
# Splitting the dataset into the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Profit, SplitRatio = 0.8)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
# Feature Scaling
# training_set = scale(training_set)
# test_set = scale(test_set)
# Fitting Multiple Linear Regression to the Training set
regressor = lm(formula = Profit ~ .,
data = training_set)
# Predicting the Test set results
y_pred = predict(regressor, newdata = test_set)
# Building the optimal model using Backward Elimination
regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend + State,
data = dataset)
summary(regressor)
# Optional Step: Remove State2 only (as opposed to removing State directly)
# regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend + factor(State, exclude = 2),
# data = dataset)
# summary(regressor)
regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend,
data = dataset)
summary(regressor)
regressor = lm(formula = Profit ~ R.D.Spend + Marketing.Spend,
data = dataset)
summary(regressor)
regressor = lm(formula = Profit ~ R.D.Spend,
data = dataset)
summary(regressor)