-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgene_sweep_analysis.py
149 lines (128 loc) · 5.5 KB
/
gene_sweep_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/python
import sys, os
import pandas as pd
"""gene_sweep_analysis.py: looking for regions where SNPs sweep"""
__author__ = "Sarah Stevens"
__email__ = "[email protected]"
def usage():
print "Usage: gene_sweep_analysis.py file_loc.csv windowsize covfile"
print "windowsize specifies how many SNPs in a row must sweep in a region, must be an integer and > 1"
if len(sys.argv) != 4:
usage()
sys.exit(2)
#input values
input = pd.read_table(sys.argv[1],sep=',')
reg_value = int(sys.argv[2]) # sets size of region to check for sweep, ex. 3 SNPs in a row
#years = ['Y2005', 'Y2007', 'Y2008', 'Y2009', 'Y2012', 'Y2013'] #tb_hyp years
years = ['Y2007', 'Y2008', 'Y2009'] #tb_epi years
covfile= pd.read_table(sys.argv[3],sep='\t')
#functions
def check_sweep(input_list, chrom_list, reg): #checks each sliding window to see if there are the right number of trues in a row, provided they are on the same contig
outlist=[]
for i, row in enumerate(input_list):
if i < (len(input_list)-(reg-1)):
for j in range(0,reg):
index=i+j
if chrom_list[i] != chrom_list[index]: #breaks it if the first SNP and any SNP in the window are not in the same contig
break
elif input_list[index]==False:
break
else:
outlist.append(i)
return outlist
def make_indexlist(sweepfilt_dict, reg, cov_bools): #makes list of all the rows which are actually in the gene region that sweeps, doesn't add the SNPs in years with too low coverage
all_sweep=list() #all the lines which sweep
for item in sweepfilt_dict:
cyear = 'X'+item[1:] #year for coverage
if cov_bools[cyear].iloc[0]==False:
continue
for i in sweepfilt_dict[item]:
for j in range(0,reg):
index=j+i
if index not in all_sweep:
all_sweep.append(index)
return sorted(all_sweep)
def check_byfirstyear(sweep_indict, years_list): # compares each year's sweeping regions and removes those which were considered swept in the first year
sweep_filt=dict() #regions that sweep in each year, excluding those which were already true in the first year
for i, name in enumerate(years_list):
if i == 0:
pass
else:
sweeps_set=list(set(sweep_indict[name]) - set(sweep_indict[years_list[0]]))
if sweeps_set:
sweep_filt[name]=sweeps_set
return sweep_filt
def check_bypreviousyear(sweep_indict, years_list): # compares each year's sweeping regions and removes those which were considered swept in the year before
sweep_filt=dict() #regions that sweep in each year, excluding those which were already true in the previous year
for i, name in enumerate(years_list):
if i == 0:
pass
else:
sweeps_set=list(set(sweep_indict[name]) - set(sweep_indict[years_list[i-1]]))
if sweeps_set:
sweep_filt[name]=sweeps_set
return sweep_filt
def check_byfixedyear(sweep_indict, years_list): # compares each year's sweeping regions, looking for those which are not in any year prior, but in all of the following years
sweep_filt=dict() #regions that sweep in each year, excluding those which were already true in 1st year
for i, name in enumerate(years_list):
if i == 0:
pass
else:
sweeps_set=list(sweep_indict[name])### don't actually need to convert to a list! ever for these anyway...go check these
for j in range(0,i): # removes any windows found in previous years
sweeps_set=list(set(sweeps_set) - set(sweep_indict[years_list[j]]))
for j in range(i+1,len(years_list)): # removes any windows not found in subsequent years
sweeps_set=list(set(sweeps_set) & set(sweep_indict[years_list[j]]))
if sweeps_set:
sweep_filt[name]=sweeps_set
return sweep_filt
sweep_dict=dict() #regions that are T in each year
for name in years:
sweeps_fd=check_sweep(((input[name] > 0.95) | (input[name] < 0.05)), input['CHROM'], reg_value) # returning the list of regions that sweep
sweep_dict[name]=sweeps_fd
sweep_filt=check_byfixedyear(sweep_dict, years) #checking that the sweeping regions are actually fixed (F before, T after)
##print sweep_filt
##print swept_regions
#make counts of each year
counts=dict()
for item in sweep_filt:
counts[item] = len(sweep_filt[item])
#print counts
#getting the coverage for that year
filename=sys.argv[1].split('_')[0]
covs = covfile[covfile['id'] == filename]
covs = covs > 10
#writing counts to output those which pass the coverage requirement above
header='window_size\t'
outline=filename+'_'+str(reg_value)+'\t'
for name in years: # loop to put together header and output line of counts
header=header+name+'\t'
cyear = 'X'+name[1:] #year for coverage
cov = covs[cyear]
if (name in counts) and (cov.iloc[0] == True): #checks if year has any count
outline=outline+str(counts[name])+'\t'
elif name == years[0]: # writes na if this is the first year
outline=outline+'na'+'\t'
elif (cov.iloc[0] == False) and (name != years[0]): #if coverage is low and it isn't the first year
outline=outline+'low_cov'+'\t'
else: #writes 0 if there is were no windows found
outline=outline+'0'+'\t'
#write counts to output
header=header[:-1]+'\n'
outline=outline[:-1]+'\n'
outname=os.path.splitext(sys.argv[1])[0]+"_counts.tsv"
if os.path.isfile(outname):
with open(outname, "a") as output: #check to see if append will open a new file if doesnt exist
output.write(outline)
else:
with open(outname, "w") as output:
output.write(header+outline)
"""
swept_SNPs = make_indexlist(sweep_filt, reg_value, covs)
###print len(swept_SNPs)
outdf=pd.DataFrame(columns=input.columns.values)
for index in swept_SNPs:
outdf=outdf.append(input.loc[index])
outtablename=os.path.splitext(sys.argv[1])[0]+"_SNPs.tsv"
outdf.to_csv(outtablename,sep='\t')
"""