forked from dbolya/yolact
-
Notifications
You must be signed in to change notification settings - Fork 2
/
backbone.py
445 lines (326 loc) · 15.9 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import torch
import torch.nn as nn
import pickle
from collections import OrderedDict
class Bottleneck(nn.Module):
""" Adapted from torchvision.models.resnet """
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=nn.BatchNorm2d, dilation=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False, dilation=dilation)
self.bn1 = norm_layer(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation, bias=False, dilation=dilation)
self.bn2 = norm_layer(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False, dilation=dilation)
self.bn3 = norm_layer(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNetBackbone(nn.Module):
""" Adapted from torchvision.models.resnet """
def __init__(self, layers, atrous_layers=[], block=Bottleneck, norm_layer=nn.BatchNorm2d):
super().__init__()
# These will be populated by _make_layer
self.num_base_layers = len(layers)
self.layers = nn.ModuleList()
self.channels = []
self.norm_layer = norm_layer
self.dilation = 1
self.atrous_layers = atrous_layers
# From torchvision.models.resnet.Resnet
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self._make_layer(block, 64, layers[0])
self._make_layer(block, 128, layers[1], stride=2)
self._make_layer(block, 256, layers[2], stride=2)
self._make_layer(block, 512, layers[3], stride=2)
# This contains every module that should be initialized by loading in pretrained weights.
# Any extra layers added onto this that won't be initialized by init_backbone will not be
# in this list. That way, Yolact::init_weights knows which backbone weights to initialize
# with xavier, and which ones to leave alone.
self.backbone_modules = [m for m in self.modules() if isinstance(m, nn.Conv2d)]
def _make_layer(self, block, planes, blocks, stride=1):
""" Here one layer means a string of n Bottleneck blocks. """
downsample = None
# This is actually just to create the connection between layers, and not necessarily to
# downsample. Even if the second condition is met, it only downsamples when stride != 1
if stride != 1 or self.inplanes != planes * block.expansion:
if len(self.layers) in self.atrous_layers:
self.dilation += 1
stride = 1
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False,
dilation=self.dilation),
self.norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.norm_layer, self.dilation))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, norm_layer=self.norm_layer))
layer = nn.Sequential(*layers)
self.channels.append(planes * block.expansion)
self.layers.append(layer)
return layer
def forward(self, x):
""" Returns a list of convouts for each layer. """
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
outs = []
for layer in self.layers:
x = layer(x)
outs.append(x)
return tuple(outs)
def init_backbone(self, path):
""" Initializes the backbone weights for training. """
state_dict = torch.load(path)
# Replace layer1 -> layers.0 etc.
keys = list(state_dict)
for key in keys:
if key.startswith('layer'):
idx = int(key[5])
new_key = 'layers.' + str(idx-1) + key[6:]
state_dict[new_key] = state_dict.pop(key)
# Note: Using strict=False is berry scary. Triple check this.
self.load_state_dict(state_dict, strict=False)
def add_layer(self, conv_channels=1024, downsample=2, depth=1, block=Bottleneck):
""" Add a downsample layer to the backbone as per what SSD does. """
self._make_layer(block, conv_channels // block.expansion, blocks=depth, stride=downsample)
class ResNetBackboneGN(ResNetBackbone):
def __init__(self, layers, num_groups=32):
super().__init__(layers, norm_layer=lambda x: nn.GroupNorm(num_groups, x))
def init_backbone(self, path):
""" The path here comes from detectron. So we load it differently. """
with open(path, 'rb') as f:
state_dict = pickle.load(f, encoding='latin1') # From the detectron source
state_dict = state_dict['blobs']
our_state_dict_keys = list(self.state_dict().keys())
new_state_dict = {}
gn_trans = lambda x: ('gn_s' if x == 'weight' else 'gn_b')
layeridx2res = lambda x: 'res' + str(int(x)+2)
block2branch = lambda x: 'branch2' + ('a', 'b', 'c')[int(x[-1:])-1]
# Transcribe each Detectron weights name to a Yolact weights name
for key in our_state_dict_keys:
parts = key.split('.')
transcribed_key = ''
if (parts[0] == 'conv1'):
transcribed_key = 'conv1_w'
elif (parts[0] == 'bn1'):
transcribed_key = 'conv1_' + gn_trans(parts[1])
elif (parts[0] == 'layers'):
if int(parts[1]) >= self.num_base_layers: continue
transcribed_key = layeridx2res(parts[1])
transcribed_key += '_' + parts[2] + '_'
if parts[3] == 'downsample':
transcribed_key += 'branch1_'
if parts[4] == '0':
transcribed_key += 'w'
else:
transcribed_key += gn_trans(parts[5])
else:
transcribed_key += block2branch(parts[3]) + '_'
if 'conv' in parts[3]:
transcribed_key += 'w'
else:
transcribed_key += gn_trans(parts[4])
new_state_dict[key] = torch.Tensor(state_dict[transcribed_key])
# strict=False because we may have extra unitialized layers at this point
self.load_state_dict(new_state_dict, strict=False)
def darknetconvlayer(in_channels, out_channels, *args, **kwdargs):
"""
Implements a conv, activation, then batch norm.
Arguments are passed into the conv layer.
"""
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, *args, **kwdargs, bias=False),
nn.BatchNorm2d(out_channels),
# Darknet uses 0.1 here.
# See https://github.com/pjreddie/darknet/blob/680d3bde1924c8ee2d1c1dea54d3e56a05ca9a26/src/activations.h#L39
nn.LeakyReLU(0.1, inplace=True)
)
class DarkNetBlock(nn.Module):
""" Note: channels is the lesser of the two. The output will be expansion * channels. """
expansion = 2
def __init__(self, in_channels, channels):
super().__init__()
self.conv1 = darknetconvlayer(in_channels, channels, kernel_size=1)
self.conv2 = darknetconvlayer(channels, channels * self.expansion, kernel_size=3, padding=1)
def forward(self, x):
return self.conv2(self.conv1(x)) + x
class DarkNetBackbone(nn.Module):
"""
An implementation of YOLOv3's Darnet53 in
https://pjreddie.com/media/files/papers/YOLOv3.pdf
This is based off of the implementation of Resnet above.
"""
def __init__(self, layers=[1, 2, 8, 8, 4], block=DarkNetBlock):
super().__init__()
# These will be populated by _make_layer
self.num_base_layers = len(layers)
self.layers = nn.ModuleList()
self.channels = []
self._preconv = darknetconvlayer(3, 32, kernel_size=3, padding=1)
self.in_channels = 32
self._make_layer(block, 32, layers[0])
self._make_layer(block, 64, layers[1])
self._make_layer(block, 128, layers[2])
self._make_layer(block, 256, layers[3])
self._make_layer(block, 512, layers[4])
# This contains every module that should be initialized by loading in pretrained weights.
# Any extra layers added onto this that won't be initialized by init_backbone will not be
# in this list. That way, Yolact::init_weights knows which backbone weights to initialize
# with xavier, and which ones to leave alone.
self.backbone_modules = [m for m in self.modules() if isinstance(m, nn.Conv2d)]
def _make_layer(self, block, channels, num_blocks, stride=2):
""" Here one layer means a string of n blocks. """
layer_list = []
# The downsample layer
layer_list.append(
darknetconvlayer(self.in_channels, channels * block.expansion,
kernel_size=3, padding=1, stride=stride))
# Each block inputs channels and outputs channels * expansion
self.in_channels = channels * block.expansion
layer_list += [block(self.in_channels, channels) for _ in range(num_blocks)]
self.channels.append(self.in_channels)
self.layers.append(nn.Sequential(*layer_list))
def forward(self, x):
""" Returns a list of convouts for each layer. """
x = self._preconv(x)
outs = []
for layer in self.layers:
x = layer(x)
outs.append(x)
return tuple(outs)
def add_layer(self, conv_channels=1024, stride=2, depth=1, block=DarkNetBlock):
""" Add a downsample layer to the backbone as per what SSD does. """
self._make_layer(block, conv_channels // block.expansion, num_blocks=depth, stride=stride)
def init_backbone(self, path):
""" Initializes the backbone weights for training. """
# Note: Using strict=False is berry scary. Triple check this.
self.load_state_dict(torch.load(path), strict=False)
class VGGBackbone(nn.Module):
"""
Args:
- cfg: A list of layers given as lists. Layers can be either 'M' signifying
a max pooling layer, a number signifying that many feature maps in
a conv layer, or a tuple of 'M' or a number and a kwdargs dict to pass
into the function that creates the layer (e.g. nn.MaxPool2d for 'M').
- extra_args: A list of lists of arguments to pass into add_layer.
- norm_layers: Layers indices that need to pass through an l2norm layer.
"""
def __init__(self, cfg, extra_args=[], norm_layers=[]):
super().__init__()
self.channels = []
self.layers = nn.ModuleList()
self.in_channels = 3
self.extra_args = list(reversed(extra_args)) # So I can use it as a stack
# Keeps track of what the corresponding key will be in the state dict of the
# pretrained model. For instance, layers.0.2 for us is 2 for the pretrained
# model but layers.1.1 is 5.
self.total_layer_count = 0
self.state_dict_lookup = {}
for idx, layer_cfg in enumerate(cfg):
self._make_layer(layer_cfg)
self.norms = nn.ModuleList([nn.BatchNorm2d(self.channels[l]) for l in norm_layers])
self.norm_lookup = {l: idx for idx, l in enumerate(norm_layers)}
# These modules will be initialized by init_backbone,
# so don't overwrite their initialization later.
self.backbone_modules = [m for m in self.modules() if isinstance(m, nn.Conv2d)]
def _make_layer(self, cfg):
"""
Each layer is a sequence of conv layers usually preceded by a max pooling.
Adapted from torchvision.models.vgg.make_layers.
"""
layers = []
for v in cfg:
# VGG in SSD requires some special layers, so allow layers to be tuples of
# (<M or num_features>, kwdargs dict)
args = None
if isinstance(v, tuple):
args = v[1]
v = v[0]
# v should be either M or a number
if v == 'M':
# Set default arguments
if args is None:
args = {'kernel_size': 2, 'stride': 2}
layers.append(nn.MaxPool2d(**args))
else:
# See the comment in __init__ for an explanation of this
cur_layer_idx = self.total_layer_count + len(layers)
self.state_dict_lookup[cur_layer_idx] = '%d.%d' % (len(self.layers), len(layers))
# Set default arguments
if args is None:
args = {'kernel_size': 3, 'padding': 1}
# Add the layers
layers.append(nn.Conv2d(self.in_channels, v, **args))
layers.append(nn.ReLU(inplace=True))
self.in_channels = v
self.total_layer_count += len(layers)
self.channels.append(self.in_channels)
self.layers.append(nn.Sequential(*layers))
def forward(self, x):
""" Returns a list of convouts for each layer. """
outs = []
for idx, layer in enumerate(self.layers):
x = layer(x)
# Apply an l2norm module to the selected layers
# Note that this differs from the original implemenetation
if idx in self.norm_lookup:
x = self.norms[self.norm_lookup[idx]](x)
outs.append(x)
return tuple(outs)
def transform_key(self, k):
""" Transform e.g. features.24.bias to layers.4.1.bias """
vals = k.split('.')
layerIdx = self.state_dict_lookup[int(vals[0])]
return 'layers.%s.%s' % (layerIdx, vals[1])
def init_backbone(self, path):
""" Initializes the backbone weights for training. """
state_dict = torch.load(path)
state_dict = OrderedDict([(self.transform_key(k), v) for k,v in state_dict.items()])
self.load_state_dict(state_dict, strict=False)
def add_layer(self, conv_channels=128, downsample=2):
""" Add a downsample layer to the backbone as per what SSD does. """
if len(self.extra_args) > 0:
conv_channels, downsample = self.extra_args.pop()
padding = 1 if downsample > 1 else 0
layer = nn.Sequential(
nn.Conv2d(self.in_channels, conv_channels, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(conv_channels, conv_channels*2, kernel_size=3, stride=downsample, padding=padding),
nn.ReLU(inplace=True)
)
self.in_channels = conv_channels*2
self.channels.append(self.in_channels)
self.layers.append(layer)
def construct_backbone(cfg):
""" Constructs a backbone given a backbone config object (see config.py). """
backbone = cfg.type(*cfg.args)
# Add downsampling layers until we reach the number we need
num_layers = max(cfg.selected_layers) + 1
while len(backbone.layers) < num_layers:
backbone.add_layer()
return backbone