forked from ldecicco-USGS/passive_tox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_text_data.R
337 lines (258 loc) · 10.3 KB
/
get_text_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Script to fill in numbers in the manuscript text
library(tidyverse)
library(toxEval)
source(file = "read_chemicalSummary.R")
source(file = "R/mixtures/mix_script.R")
source(file = "R/analyze/open_land_use.R")
#Land use information
df_lu <- open_land_use()
#Ranges of different land uses
range(df_lu$Developed)
range(df_lu$`Planted/Cultivated`)
range(df_lu$Forest)
range(df_lu$Wetland)
#Get some info on ToxCast assays
# Original assays:
ToxCast_ACC <- ToxCast_ACC
tox_list <- create_toxEval(file.path(Sys.getenv("PASSIVE_PATH"),
"data","data_for_git_repo","clean",
"passive.xlsx"))
ToxCast_IN_STUDY <- ToxCast_ACC %>%
filter(CAS %in% tox_list$chem_info$CAS)
length(unique(ToxCast_IN_STUDY$endPoint)) #Assays available for chems in this study
length(unique(chemicalSummary$endPoint)) #Assays used in this study after filtering
length(unique(chemicalSummary$CAS)) #number of chemicals with associated assays after filtering
chemicalSummary %>%
filter(EAR > 0) %>%
distinct(CAS) #Number of detected chemicals with associated assays after filtering
#Number of assays per chemical
num_assays <- ToxCast_IN_STUDY %>%
group_by(CAS) %>%
summarize(num_assays = length(unique(endPoint)))
range(num_assays$num_assays)
num_assays <- chemicalSummary %>%
filter(EAR > 0) %>%
group_by(CAS) %>%
summarize(num_assays = length(unique(endPoint)))
range(num_assays$num_assays)# 1-57 assays used per chemical
#CAS numbers for detected chemicals (143 chemicals detected)
x <- tox_list$chem_data %>%
filter(Value > 0) %>%
select(CAS) %>%
distinct() %>%
pull()
length(x) #detected chemicals
y <- ToxCast_ACC %>%
filter(CAS %in% x) %>%
select(CAS) %>%
distinct()
# Number of detected chemicals in Tox with hits:
nrow(y)
chem_data<- tox_list$chem_data
length(unique(chem_data$CAS[chem_data$Value > 0]))
#THIS DOES INCLUDE PCBs!
# x <- graph_chem_data(chemicalSummary) %>%
# filter(meanEAR > 10^-3)
#
# x %>%
# group_by(chnm) %>%
# summarize(nsites = length(unique(site))) %>%
# filter(nsites >= 10) %>%
# ungroup()
ALL_TOX_DATA <- readRDS(file.path(Sys.getenv("PASSIVE_PATH"),
"data","data_for_git_repo","raw",
"all_tox_32.rds"))
num_chems_tested <- ALL_TOX_DATA %>%
filter(casn %in% x)
# Of those detected, how many are represented in ToxCast (121 chemicals)
# and how many of those had measureable effects (102)
length(unique(num_chems_tested$casn))
length(unique(num_chems_tested$casn))/length(x)
length(unique(chemicalSummary$chnm[chemicalSummary$EAR > 0]))
n_endpoints <- chemicalSummary %>%
filter(EAR > 0) %>%
group_by(CAS, chnm) %>%
summarize(n_eps = length(unique(endPoint))) %>%
ungroup() %>%
arrange(desc(n_eps))
# How many samples at each site
n_samples <- chemicalSummary %>%
select(site, date) %>%
distinct() %>%
group_by(site) %>%
summarize(n_samples = length(unique(date))) %>%
ungroup() %>%
arrange(desc(n_samples)) %>%
pull(n_samples)
#how many sites were sampled (69), and how many of those had more than one sample (24)
length(n_samples)
length(n_samples[n_samples > 1])
#Isolate chemicals not in ToxCast
tox_list <- create_toxEval(file.path(Sys.getenv("PASSIVE_PATH"),
"data","data_for_git_repo","clean",
"passive.xlsx"))
CAS_in_study <- tox_list$chem_info$CAS
#Determine chems detected without a corresponding ToxCast assay or no active assays
CAS_detected_in_toxcast <- unique(chemicalSummary$CAS[chemicalSummary$EAR > 0])
CAS_detected <- x
chems_detected_not_in_ToxCast <- x[!(x %in% CAS_detected_in_toxcast)]
chem_info <- tox_list$chem_info
detected_no_ToxCast <- left_join(data.frame(CAS = chems_detected_not_in_ToxCast),tox_list$chem_info[1:3])
#identify chemicals with EAR > threshold of 0.001
#RESULTS: Num sites exceeded at least once = 29
# Num sites exceeded at 10% of sites = 12
# All chems with exceedances were monitored at all 69 sites
thresh <- 0.001
Site_proportion_threshold <- 0
max_EAR_chnm <- chemicalSummary %>%
group_by(site,CAS,chnm,date) %>%
summarize(EARsum = sum(EAR)) %>%
ungroup() %>%
group_by(site,CAS,chnm) %>%
summarize(EARmax = max(EARsum)) %>%
group_by(chnm,CAS) %>%
summarize(Num_sites = length(unique(site)),
num_sites_exceed = sum(EARmax > thresh),
EARmax = max(EARmax)) %>%
ungroup() %>%
arrange(desc(EARmax))
exceedances <- max_EAR_chnm %>%
# filter(EARmax > thresh) %>%
arrange(desc(num_sites_exceed))
priority_chems_EAR <- exceedances # %>%
# filter(num_sites_exceed/Num_sites >=0.1)
unique(exceedances$chnm)
saveRDS(priority_chems_EAR,"R/analyze/out/priority_chems_EAR.rds")
num_sites_monitored <- tox_list$chem_data %>%
group_by(CAS) %>%
summarise(sites_monitored = length(unique(SiteID)))
site_exceed <- chemicalSummary %>%
group_by(site,CAS,chnm,date) %>%
summarize(EARsum = sum(EAR)) %>%
ungroup() %>%
group_by(chnm, CAS, site) %>%
summarize(maxEAR = max(EARsum),
num_sites_exceeded = sum(maxEAR > thresh)) %>%
ungroup() %>%
left_join(num_sites_monitored, by = "CAS") %>%
mutate(proportion_sites_exceeded = num_sites_exceeded/sites_monitored) %>%
filter(proportion_sites_exceeded > Site_proportion_threshold)
#Menthol comparisons
#Pblication on in-vitro: https://doi.org/10.1016/0009-2797(83)90031-5
#convert mM to ug/L
menthol_endpoints <- c(0.32,0.76) #mM (m-moles/L)
menthol_mw <- 156.27/1000 #g/mole/1000 = g/m-moles
menthol_endpoints_gL <- menthol_endpoints*(menthol_mw) #g/L
menthol_endpoints_ugL <- menthol_endpoints * 1000000 #ug/L
#ECOTOX text numbers
source(file.path("R","report","chem_priority_summary_Table2.R"))
t2 <- get_table_2()
priority_chems.orig <- readRDS("R/analyze/out/priority_chem_EAR_TQ.rds")
site_thresh <- 0.1
t2$ToxCast <- as.numeric(t2$ToxCast)
t2$ECOTOX_group_1 <- as.numeric(t2$ECOTOX_group_1)
t2$ECOTOX_group_2 <- as.numeric(t2$ECOTOX_group_2)
t2_exceed <- t2 %>%
mutate(g1_exceed = ECOTOX_group_1/sites_monitored,
g2_exceed = ECOTOX_group_2/sites_monitored,
EAR_exceed = ToxCast/sites_monitored,
max_ecotox = pmax(g1_exceed,g2_exceed,na.rm=TRUE)) %>%
mutate(g1_boolean = g1_exceed > site_thresh,
g2_boolean = g2_exceed > site_thresh,
EAR_boolean = EAR_exceed > site_thresh)
t2_exceed$EAR_G1_exceed <- rowSums(t2_exceed[,c("g1_boolean","EAR_boolean")],na.rm=TRUE)
t2_exceed$EAR_G2_exceed <- rowSums(t2_exceed[,c("EAR_boolean","g2_boolean")],na.rm=TRUE)
t2_exceed$G1_G2_exceed <- rowSums(t2_exceed[,c("g1_boolean","g2_boolean")],na.rm=TRUE)
t2_exceed$sum_exceed <- rowSums(t2_exceed[,c("g1_boolean","g2_boolean","EAR_boolean")],na.rm=TRUE)
#Determine info for text
# General
# How many of the detected chems were represented
benchmarks <- read_xlsx(path = file.path(path_to_data, "data", "toxEval input file", "passive_benchmarks_all.xlsx"),sheet = "Benchmarks")
ecotox_CAS_nums <- (unique(benchmarks$CAS)) #106 chemicals
max(as.data.frame(table(benchmarks$CAS))[,2])
#Compare ecotox and toxcast chems analyzed
sum(ecotox_CAS_nums %in% CAS_detected_in_toxcast ) #83 chems in both ecotox and toxcast
106 - 83 # chems in ecotox but not in toxcast
dim(y)[1] - 83 # chems in toxcast but not in ecotox
# Priority chems
# 1. how many EAR priorities and which chems
# 2. how many ECOTOX priorities and which chems
# 3. how many Group 1 priorities and which chems
# 4. how many Group 2 priorities and which chems
# 5. What chems match between all three
# EAR and Group 1
# EAR and Group 2
# Group 1 and Group 2
#1. how many EAR priorities and which chems
sum(t2_exceed$EAR_boolean,na.rm=TRUE) # 10 chems
test <- t2_exceed %>%
filter(EAR_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals
#2. how many ECOTOX priorities and which chems
sum(t2_exceed$g1_boolean + t2_exceed$g2_boolean > 0,na.rm=TRUE) # 14 chems
test <- t2_exceed %>%
filter(g1_boolean | g2_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals
#3. how many Group 1 priorities and which chems
sum(t2_exceed$g1_boolean,na.rm=TRUE) # 14 chems
test <- t2_exceed %>%
filter(g1_boolean) %>%
arrange(Class,Chemicals)
group_1 <- test$Chemicals; group_1
#4. how many Group 2 priorities and which chems
sum(t2_exceed$g2_boolean,na.rm=TRUE) # 14 chems
test <- t2_exceed %>%
filter(g2_boolean) %>%
arrange(Class,Chemicals)
group_2 <- test$Chemicals; group_2
# How many common among Group 1 and 2
sum(group_2 %in% group_1)
#5. What chems match between all three
# EAR and Group 1
# EAR and Group 2
# Group 1 and Group 2
# EAR and G1 (same as EAR and G2)
test <- t2_exceed %>%
filter(EAR_boolean & g1_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals
# EAR and G1 (same as EAR and G2)
test <- t2_exceed %>%
filter(EAR_boolean & g2_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals
# G1 and G2
test <- t2_exceed %>%
filter(g1_boolean & g2_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals
test <- t2_exceed %>%
filter(g1_boolean | g2_boolean) %>%
arrange(Class,Chemicals)
test$Chemicals # 11 total ECOTOX priority chems
# 2 chems with EAR exceedance, 6 without EAR exceedance, 3 not in toxcast
sum(test$ToxCast < 7,na.rm=TRUE)
sum(test$ToxCast >= 7,na.rm=TRUE)
sum(is.na(test$ToxCast))
priority_chems <- priority_chems.orig %>%
mutate(g1_exceed = ECOTOX_group_1/sites_monitored,
g2_exceed = ECOTOX_group_2/sites_monitored,
EAR_exceed ) %>%
arrange(desc(g2_exceed)) %>%
filter(g1_exceed >= site_thresh | g2_exceed >= site_thresh)
group1_chems <- t2 %>%
filter(!(ECOTOX_group_1=="--")) %>%
filter(as.numeric(ECOTOX_group_1)/sites_monitored >= site_thresh)
group1_chems$Chemicals
group2_chems <- t2 %>%
filter(!(ECOTOX_group_1=="--")) %>%
filter(as.numeric(ECOTOX_group_2)/sites_monitored >= site_thresh)
group2_chems$Chemicals
group2_chems$Chemicals %in% group1_chems$Chemicals
which(group1_chems$ECOTOX_group_1 == "--")
#SI information
#Are there any remaining NHEERL assays after filtering?
length(grep("NHEERL",chemicalSummary$endPoint,ignore.case = TRUE)) #yes there are
unique(grep("NHEERL",chemicalSummary$endPoint,ignore.case = TRUE,value = TRUE)) #yes there are