-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathuast_stability_checker.py
264 lines (243 loc) · 13.2 KB
/
uast_stability_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Module to check if predictions change the UAST structure of the processed files."""
import difflib
from itertools import chain
from logging import getLogger
from typing import Dict, Mapping, Optional, Sequence, Tuple, Union # noqa: F401
import bblfsh
from lookout.core.api.service_data_pb2 import File
from lookout.core.data_requests import parse_uast
import numpy
from lookout.style.format.code_generator import CodeGenerationBaseError, CodeGenerator
from lookout.style.format.feature_extractor import FeatureExtractor
from lookout.style.format.rules import QuotedNodeTripleMapping
from lookout.style.format.virtual_node import VirtualNode
class UASTStabilityChecker:
"""
Check if predictions change the UAST structure of the processed files.
See `check()` or `file_check()` for more info.
"""
_log = getLogger("UASTStabilityChecker")
_check_return_type = Tuple[numpy.ndarray, numpy.ndarray, Sequence[VirtualNode], numpy.ndarray,
numpy.ndarray]
def __init__(self, feature_extractor: FeatureExtractor, debug: bool=False):
"""
Construct a UASTStabilityChecker.
:param feature_extractor: Feature extraction class that was used to generate data for \
the check.
:param debug: Logs code diff for unsafe predictions with debug level.
"""
self._feature_extractor = feature_extractor
self._code_generator = CodeGenerator(self._feature_extractor, skip_errors=False)
self._parsing_cache = {} # type: Dict[int, Optional[Tuple[bblfsh.Node, int, int]]]
self._debug = debug
def _parse_code(self, vnode: VirtualNode, parent: bblfsh.Node, content: str,
stub: "bblfsh.aliases.ProtocolServiceStub",
node_parents: Mapping[int, bblfsh.Node], path: str,
) -> Optional[Tuple[bblfsh.Node, int, int]]:
"""
Find a parent node that Babelfish can parse and parse it.
Iterates over the parents of the current virtual node until it is parsable and returns the
parsed UAST or None if it reaches the root without finding a parsable parent.
The cache will be used to avoid recomputations for parents that have already been
considered.
:param vnode: Vnode that is modified. Used to check that we retrieve the correct parent.
:param parent: First virtual node to try to parse. Will go up in the tree if it fails.
:param content: Content of the file.
:param stub: Babelfish GRPC service stub.
:param node_parents: Parents mapping of the input UASTs.
:param path: Path of the file being parsed.
:return: tuple of the parsed UAST and the corresponding starting and ending offsets. \
None if Babelfish failed to parse the whole file.
"""
descendants = []
current_ancestor = parent
while current_ancestor is not None:
if id(current_ancestor) in self._parsing_cache:
result = self._parsing_cache[id(current_ancestor)]
break
descendants.append(current_ancestor)
start, end = (current_ancestor.start_position.offset,
current_ancestor.end_position.offset)
if start <= vnode.start.offset and end > vnode.end.offset:
uast, errors = parse_uast(stub, content[start:end], filename="", unicode=True,
language=self._feature_extractor.language)
if not errors:
result = uast, start, end
break
current_ancestor = node_parents.get(id(current_ancestor), None)
else:
result = None
self._log.warning("skipped file %s, due to errors in parsing the whole content", path)
for descendant in descendants:
self._parsing_cache[id(descendant)] = result
return result
def _check_file(
self, y: numpy.ndarray, y_pred: numpy.ndarray, vnodes_y: Sequence[VirtualNode],
vnodes: Sequence[VirtualNode], file: File, stub: "bblfsh.aliases.ProtocolServiceStub",
vnode_parents: Mapping[int, bblfsh.Node], node_parents: Mapping[int, bblfsh.Node],
rule_winners: numpy.ndarray, grouped_quote_predictions: QuotedNodeTripleMapping,
) -> _check_return_type:
# TODO(warenlg): Add current algorithm description.
# TODO(vmarkovtsev): Apply ML to not parse all the parents.
self._parsing_cache = {}
unsafe_preds = set()
file_content = file.content
vnodes_i = 0
changes = numpy.where((y_pred != -1) & (y != y_pred))[0]
start_offset_to_vnodes = {}
end_offset_to_vnodes = {}
for i, vnode in enumerate(vnodes):
if vnode.start.offset not in start_offset_to_vnodes:
# NOOP always included
start_offset_to_vnodes[vnode.start.offset] = i
for i, vnode in enumerate(vnodes[::-1]):
if vnode.end.offset not in end_offset_to_vnodes:
# NOOP always included that is why we have reverse order in this loop
end_offset_to_vnodes[vnode.end.offset] = len(vnodes) - i
for i in changes:
vnode_y = vnodes_y[i]
while vnode_y is not vnodes[vnodes_i]:
vnodes_i += 1
if vnodes_i >= len(vnodes):
raise AssertionError("vnodes_y and vnodes are not consistent.")
if id(vnode_y) in grouped_quote_predictions:
# quote types are special case
group = grouped_quote_predictions[id(vnode_y)]
if group is None:
# already handled with the previous vnode
continue
vnode1, vnode2, vnode3 = group
content_before = file_content[vnode1.start.offset:vnode3.end.offset]
content_after = (self._feature_extractor.label_to_str(y_pred[i]) + vnode2.value +
self._feature_extractor.label_to_str(y_pred[i + 1]))
parsed_before, errors = parse_uast(
stub, content_before, filename="", unicode=True,
language=self._feature_extractor.language)
if not errors:
parsed_after, errors = parse_uast(
stub, content_after, filename="", unicode=True,
language=self._feature_extractor.language)
if not self.check_uasts_equivalent(parsed_before, parsed_after):
unsafe_preds.add(i)
unsafe_preds.add(i + 1) # Second quote
continue
parsed_before = self._parse_code(vnode_y, vnode_parents[id(vnode_y)], file_content,
stub, node_parents, vnode_y.path)
if parsed_before is None:
continue
parent_before, start, end = parsed_before
vnode_start_index = start_offset_to_vnodes[start]
vnode_end_index = end_offset_to_vnodes[end]
assert vnode_start_index <= vnodes_i < vnode_end_index, \
"Tried to fix vnode %d by using vnodes %d to %d of %d total vnodes" % (
vnodes_i, vnode_start_index, vnode_end_index, len(vnodes))
try:
content_after = self._code_generator.generate_one_change(
vnodes[vnode_start_index:vnode_end_index],
vnodes_i - vnode_start_index, y_pred[i])
except CodeGenerationBaseError as e:
self._log.debug("Code generator can't generate code: %s", repr(e.args))
unsafe_preds.add(i)
continue
parent_after, errors_after = parse_uast(
stub, content_after, filename="", language=self._feature_extractor.language,
unicode=True)
if errors_after:
unsafe_preds.add(i)
continue
if not self.check_uasts_equivalent(parent_before, parent_after):
if self._debug:
self._log.debug(
"Bad prediction\nfile:%s\nDiff:\n%s\n\n", vnode_y.path,
"\n".join(line for line in difflib.unified_diff(
file_content[start:end].splitlines(), content_after.splitlines(),
fromfile="original", tofile="suggested", lineterm="")))
unsafe_preds.add(i)
self._log.info("%d filtered out of %d with changes", len(unsafe_preds), changes.shape[0])
safe_preds = numpy.array([i for i in range(len(y)) if i not in unsafe_preds],
dtype=numpy.int32)
vnodes_y = [vn for i, vn in enumerate(list(vnodes_y)) if i not in unsafe_preds]
return y[safe_preds], y_pred[safe_preds], vnodes_y, rule_winners[safe_preds], safe_preds
def check(
self, y: numpy.ndarray, y_pred: numpy.ndarray, vnodes_y: Sequence[VirtualNode],
vnodes: Sequence[VirtualNode], files: Sequence[File],
stub: "bblfsh.aliases.ProtocolServiceStub", vnode_parents: Mapping[int, bblfsh.Node],
node_parents: Mapping[int, bblfsh.Node], rule_winners: numpy.ndarray,
grouped_quote_predictions: QuotedNodeTripleMapping,
) -> _check_return_type:
"""
Filter the model's predictions that modify the UAST apart from changing Node positions.
:param y: Numpy 1-dimensional array of labels.
:param y_pred: Numpy 1-dimensional array of predicted labels by the model.
:param vnodes_y: Sequence of the labeled `VirtualNode`-s corresponding to labeled samples.
:param vnodes: Sequence of all the `VirtualNode`-s corresponding to the input.
:param files: File or Sequence of File-s with content, uast and path.
:param stub: Babelfish GRPC service stub.
:param vnode_parents: `VirtualNode`-s' parents mapping as the LCA of the closest \
left and right babelfish nodes.
:param node_parents: Parents mapping of the input UASTs.
:param rule_winners: Numpy array with the indexes of the winning rules for each sample.
:param grouped_quote_predictions: Quotes predictions (handled differenlty from the rest).
:return: List of predictions indices that are considered valid i.e. that are not breaking \
the UAST.
"""
if len(files) == 1:
return self._check_file(y, y_pred, vnodes_y, vnodes, files[0], stub, vnode_parents,
node_parents, rule_winners, grouped_quote_predictions)
# There is more then one file in data and data splitting is required.
# The logic of the next code is about splitting mostly.
current_path = vnodes_y[0].path
file_vnodes_indexes = {current_path: [0, None]}
for i, vnode in enumerate(vnodes):
if vnode.path != current_path:
file_vnodes_indexes[current_path][1] = i
file_vnodes_indexes[vnode.path] = [i, None]
current_path = vnode.path
file_vnodes_indexes[current_path][1] = len(vnodes)
files = {file.path: file for file in files}
current_path = vnodes_y[0].path
i_start = 0
check_result = []
for i, vnode_y in enumerate(vnodes_y):
if vnode_y.path != current_path or i + 1 == len(vnodes_y):
file_vnodes = vnodes[file_vnodes_indexes[current_path][0]:
file_vnodes_indexes[current_path][1]]
check_result.append(list(self._check_file(
y[i_start:i], y_pred[i_start:i], vnodes_y[i_start:i], file_vnodes,
files[current_path], stub, vnode_parents, node_parents,
rule_winners[i_start:i], grouped_quote_predictions)))
check_result[-1][-1] += i_start
current_path = vnode_y.path
i_start = i
res = []
for res_i in zip(*check_result):
if isinstance(res_i[0], list):
res.append(list(chain(*res_i)))
else:
res.append(numpy.concatenate(res_i))
pass
return tuple(res)
@staticmethod
def check_uasts_equivalent(uast1: bblfsh.Node, uast2: bblfsh.Node) -> bool:
"""
Check if 2 UAST nodes are identical regarding `roles`, `internal_type` and `token` of \
their subtree members.
:param uast1: The bblfsh.Node of the first UAST to compare.
:param uast2: The bblfsh.Node of the second UAST to compare.
:return: True if the 2 input UASTs are identical and False otherwise.
"""
queue1 = [uast1]
queue2 = [uast2]
while queue1 or queue2:
try:
node1 = queue1.pop()
node2 = queue2.pop()
except IndexError:
return False
for child1, child2 in zip(node1.children, node2.children):
if (child1.roles != child2.roles or child1.internal_type != child2.internal_type
or child1.token != child2.token):
return False
queue1.extend(node1.children)
queue2.extend(node2.children)
return True