forked from smartbugs/smartbugs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsmartBugs.py
executable file
·267 lines (226 loc) · 11.1 KB
/
smartBugs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3
import os, sys, multiprocessing, json, datetime, time, hashlib, random
import git
import src.docker_api as docker_api
import src.cli as cli
import src.config as config
import src.logging as log
import src.colors as col
import src.parsing as parsing
import src.output_parser.SarifHolder as SarifHolder
def process_datasets(logqueue, settings):
if 'dataset' not in settings or not settings['dataset']:
return
if 'all' in settings['dataset']:
settings['dataset'] = config.DATASET_CHOICES
for dataset in settings['dataset']:
base_name = dataset.split('/')[0]
base_path = config.DATASETS[base_name]
if config.is_remote_info(base_path):
(url, base_path, subsets) = config.get_remote_info(base_path)
global_path = os.path.join(config.DATASETS_PARENT, base_path)
if os.path.isdir(base_path): # locally installed
log.message(logqueue, f"Using remote dataset [{base_path} <- {url}]")
elif os.path.isdir(global_path): # globally installed
log.message(logqueue, f"Using remote dataset [{global_path} <- {url}]")
base_path = global_path
else: # local copy does not exist; we need to clone it
time.sleep(1)
answer = input(f"{base_name} is a remote dataset. Do you want to create a local copy? [Y/n] ").strip()
if answer.lower() in ['yes', 'y', '']:
print(f"Cloning remote dataset [{base_path} <- {url}]... ", flush=True, end='')
git.Repo.clone_from(url, base_path)
print("Done.", flush=True)
else:
log.message(logqueue, col.error(f"ABORTING: cannot proceed without local copy of remote dataset {base_name}"))
sys.exit(1)
if dataset == base_name: # basename included
settings["file"].append(base_path)
if dataset != base_name and base_name not in settings["dataset"]:
subset_name = dataset.split('/')[1]
settings["file"].append(os.path.join(base_path, subsets[subset_name]))
elif os.path.isdir(base_path): # locally installed
settings["file"].append(base_path)
else: # globally installed, hopefully
global_path = os.path.join(config.DATASETS_PARENT, base_path)
settings["file"].append(global_path)
def collect_files(logqueue, settings):
files_to_analyze = set()
for file in settings["file"]:
if os.path.basename(file).endswith('.sol'):
files_to_analyze.add(file)
# analyse dirs recursively
elif os.path.isdir(file):
if settings["import_path"] == "FILE":
settings["import_path"] = file
for root, dirs, files in os.walk(file):
for name in files:
if name.endswith('.sol'):
# if its running on a windows machine
if os.name == 'nt':
files_to_analyze.add(os.path.join(root, name).replace('\\', '/'))
else:
files_to_analyze.add(os.path.join(root, name))
else:
log.message(logqueue, col.warning(f"{file} is neither a directory nor a solidity file"))
# Use base name as file id if unique, otherwise append md5hash of full file name
clashes = set()
ids = set()
file_ids = []
for file in files_to_analyze:
id = os.path.splitext(os.path.basename(file))[0]
file_ids.append((file,id))
if id in ids:
clashes.add(id)
else:
ids.add(id)
files_to_analyze = []
for file, id in file_ids:
if id in clashes:
files_to_analyze.append((file,f"{id}.{hashlib.md5(file).hexdigest()[0:8]}"))
else:
files_to_analyze.append((file,id))
return files_to_analyze
def collect_tools(logqueue, settings):
if 'all' in settings["tool"]:
settings["tool"] = config.TOOL_CHOICES
tools_to_use = []
for toolname in settings["tool"]:
tool_folder = os.path.join('results', toolname, settings["execution_name"])
os.makedirs(tool_folder, exist_ok=True)
tool = config.TOOLS[toolname]
if "docker_image" not in tool or tool["docker_image"] == None:
log.message(logqueue, col.error(f"{toolname}: docker image not provided, check you config file."))
sys.exit(1)
image = tool["docker_image"]
docker_api.pull_image(logqueue, image)
tools_to_use.append((tool,tool_folder))
return tools_to_use
def collect_tasks(files_to_analyze, tools_to_use, skip_existing):
tasks = []
for file,id in files_to_analyze:
for tool,tool_folder in tools_to_use:
results_folder = os.path.join(tool_folder, id)
os.makedirs(results_folder, exist_ok=True)
if skip_existing and os.path.exists(os.path.join(results_folder,'result.json')):
continue
tasks.append((file, id, tool, results_folder))
return tasks
def analyzer(logqueue, taskqueue, sarifqueue, tasks_started, tasks_completed, total_time,
import_path, output_version, n_processes, n_tasks):
while True:
task = taskqueue.get()
if task is None:
return
(file, id, tool, results_folder) = task
with tasks_started.get_lock():
tasks_started.value += 1
n_started = tasks_started.value
log.message(logqueue, f"Analyzing file [{n_started}/{n_tasks}]: {col.file(file)} [{col.tool(tool['name'])}]", None)
results, result_log, result_tar = docker_api.run(logqueue, file, tool, results_folder)
try:
results, sarif = parsing.parse_results(logqueue, results, result_log, result_tar, import_path)
if output_version in ("v1", "all"):
with open(os.path.join(results_folder, 'result.json'), 'w') as f:
json.dump(results, f, indent=2, sort_keys=True)
if sarif is not None:
sarifqueue.put((id, tool["name"], sarif, results_folder))
except Exception as err:
log.message(logqueue, col.error(f"Error parsing output of {tool['name']} for file {file}\n{err}"))
with total_time.get_lock(), tasks_completed.get_lock(), tasks_started.get_lock():
total_time.value += results["duration"]
total = total_time.value
tasks_completed.value += 1
n_completed = tasks_completed.value
n_started = tasks_started.value
# estimated time to completion = avg.time per task * remaining tasks / no.processes
# we assume that the tasks that have started but haven't yet completed run into a timeout
timeout = 30 * 60
etc = (total+(n_started-n_completed)*timeout) / n_started * (n_tasks-n_completed) / n_processes
etc = datetime.timedelta(seconds=round(etc))
duration = datetime.timedelta(seconds=round(results["duration"]))
log.message(logqueue,
f"Done [{n_completed}/{n_tasks}, ETC {etc}]: {col.file(file)} [{col.tool(tool['name'])}] in {duration}",
f"[{n_completed}/{n_tasks}] {file} [{tool['name']}] in {duration}")
def sarif_collector(sarifqueue, execution_name, output_version, aggregate_sarif, unique_sarif_output):
sarif_outputs = {}
while True:
run = sarifqueue.get()
if run is None:
break
id, toolname, sarif, results_folder = run
if output_version in ("v2","all"):
with open(os.path.join(results_folder, "result.sarif"), "w") as f:
sarif_holder = SarifHolder.SarifHolder()
sarif_holder.addRun(sarif)
json.dump(sarif_holder.printToolRun(tool=toolname), f, indent=2, sort_keys=True)
if id in sarif_outputs:
sarif_holder = sarif_outputs[id]
else:
sarif_holder = SarifHolder.SarifHolder()
sarif_holder.addRun(sarif)
sarif_outputs[id] = sarif_holder
if aggregate_sarif:
sarif_folder = os.path.join("results", execution_name)
os.makedirs(sarif_folder, exist_ok=True)
for id in sarif_outputs:
with open(os.path.join(sarif_folder,f"{id}.sarif"), "w") as sarif_file:
json.dump(sarif_outputs[id].print(), sarif_file, indent=2, sort_keys=True)
if unique_sarif_output:
sarif_holder = SarifHolder.SarifHolder()
for sarif_output in sarif_outputs.values():
for run in sarif_output.sarif.runs:
sarif_holder.addRun(run)
sarif_file_path = os.path.join("results", f"{execution_name}.sarif")
with open(sarif_file_path, 'w') as sarif_file:
json.dump(sarif_holder.print(), sarif_file, indent=2, sort_keys=True)
def smartbugs(settings):
# spawn processes (instead of forking), to obtain the same behavior on Linux and MacOS
mp = multiprocessing.get_context("spawn")
# shared memory
logqueue = mp.Queue()
taskqueue = mp.Queue()
sarifqueue = mp.Queue()
tasks_started = mp.Value('L', 0)
tasks_completed = mp.Value('L', 0)
total_time = mp.Value('f', 0.0)
# start shared logging
log.start(logqueue, settings["execution_name"], append=settings["skip_existing"])
try:
log.message(logqueue, col.success("Welcome to SmartBugs!"), f"Arguments passed: {sys.argv}")
start_time = time.time()
# preparation
process_datasets(logqueue, settings)
files_to_analyze = collect_files(logqueue, settings)
tools_to_use = collect_tools(logqueue, settings)
tasks = collect_tasks(files_to_analyze, tools_to_use, settings["skip_existing"])
# parallel execution
# fill task queue, add sentinels to stop analyzers
random.shuffle(tasks)
for task in tasks:
taskqueue.put(task)
for _ in range(settings["processes"]):
taskqueue.put(None)
# set up and start analyzers
shared = (logqueue, taskqueue, sarifqueue, tasks_started, tasks_completed, total_time)
constants = (settings["import_path"], settings["output_version"], settings["processes"], len(tasks))
analyzers = [ mp.Process(target=analyzer, args=shared+constants) for _ in range(settings["processes"]) ]
for a in analyzers:
a.start()
# set up and start sarif collector
constants = (settings["execution_name"],settings["output_version"], settings["aggregate_sarif"],settings["unique_sarif_output"])
collector = mp.Process(target=sarif_collector, args=(sarifqueue,)+constants)
collector.start()
# wait for analyzers to finish
for a in analyzers:
a.join()
# wait for sarif collector to finish
sarifqueue.put(None)
collector.join()
# good bye
duration = datetime.timedelta(seconds=round(time.time()-start_time))
log.message(logqueue, f"Analysis completed. \nIt took {duration} to analyse all files.")
finally:
log.stop(logqueue)
if __name__ == '__main__':
smartbugs(cli.arguments())