forked from jtassarotti/polaris
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquicksort_cost.v
917 lines (875 loc) · 35.4 KB
/
quicksort_cost.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
From discprob.basic Require Import base order nify seq_ext.
From discprob.prob Require Import prob countable finite stochastic_order.
From discprob.monad Require Import monad monad_cost_hoare monad_cost quicksort quicksort_correct.
From discprob.monad Require Import max_triangle.
From discprob.rec Require Import rec_convert quicksort_rec.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype.
From mathcomp Require Import tuple finfun bigop prime binomial finset.
From mathcomp Require Import path.
Require Import Reals Fourier Psatz Omega.
Definition h (l: seq nat) :=
match l with
| [::] => mret ([::], [::])
| [::a] => mret ([::], [::])
| a :: l =>
p ← draw_pivot a l;
spl ← dist_ret _ (partition' (sval p) (a :: l));
mret (lower (sval spl), upper (sval spl))
end.
Definition rsize (l: seq nat) := INR (size l).
Definition m x :=
match (Rlt_dec x (4/3)) with
| left _ => 0
| _ => x * (3/4)
end.
Lemma uniq_unif n:
uniq (outcomes (unif n)).
Proof.
rewrite /unif//=.
rewrite map_inj_uniq.
- apply enum_uniq.
- intros (?&?) (?&?). inversion 1; auto.
subst; f_equal. apply bool_irrelevance.
Qed.
Lemma uniq_unif2 n:
uniq ([seq i.2 | i <- outcomes (unif n)]).
Proof.
rewrite /unif//=.
rewrite map_inj_in_uniq.
- apply uniq_unif.
- intros (?&?) (?&?).
move /mapP => [? ? Heq1]. inversion Heq1; subst.
move /mapP => [? ? Heq2]. inversion Heq2; subst.
rewrite //=. inversion 1. repeat f_equal.
apply val_inj => //=.
Qed.
Lemma unif_all n x (Hle: (x <= n)%nat):
(O, exist _ x Hle) \in [seq i.2 | i <- outcomes (unif n)].
Proof.
apply /mapP.
set (a := exist _ x Hle).
replace (O, a) with (1/INR (S n), (O, a)).2; last done.
do 2 apply /mapP; eexists; eauto.
rewrite /unif => //=.
apply /mapP => //=.
assert (Hlt: (x < S n)%nat) by auto.
exists (Ordinal Hlt).
- apply mem_enum.
- rewrite /a; repeat f_equal. apply bool_irrelevance.
Qed.
Lemma unif_all2 n x (Hle: (x <= n)%nat):
exist _ x Hle \in [seq i.2.2 | i <- outcomes (unif n)].
Proof.
apply /mapP.
set (a := exist _ x Hle).
replace (a) with (1/INR (S n), (O, a)).2.2; last done.
do 2 apply /mapP; eexists; eauto.
rewrite /unif => //=.
apply /mapP => //=.
assert (Hlt: (x < S n)%nat) by auto.
exists (Ordinal Hlt).
- apply mem_enum.
- rewrite /a; repeat f_equal. apply bool_irrelevance.
Qed.
Lemma unif_cost n a c :
(c, a) \in [seq i.2 | i <- outcomes (unif n)] →
c = O.
Proof.
replace (c, a) with (1/INR (S n), (c, a)).2; last done.
move /mapP => [[r' [c' a']] Hin].
move: Hin. rewrite /unif//=.
move /mapP => [[c'' a''] Hin] [] => ??? []. subst. done.
Qed.
Lemma unif_cost2 n:
[seq (O, (i.2.2)) | i <- unif n] = [seq i.2 | i <- unif n].
Proof.
apply eq_in_map.
intros (r, (c, a)) Hin.
rewrite //=. f_equal; symmetry.
eapply (unif_cost n a).
apply /mapP; eauto.
Qed.
Lemma unif_cost3 n:
[seq (O, i) | i <- [seq i.2.2 | i <- unif n]] = [seq i.2 | i <- unif n].
Proof.
rewrite -map_comp -unif_cost2 => //=.
Qed.
Lemma unif_pr n a :
a \in [seq i.2 | i <- outcomes (unif n)] →
pr_eq (rvar_of_ldist (unif n)) a = 1 / INR (S n).
Proof.
intros Hin. rewrite pr_rvar_ldist /unif//=.
rewrite big_map -big_filter //=.
destruct a as (c&(x&Hle)) => //=.
assert (c = O); last subst.
{ eapply unif_cost. apply Hin. }
assert (Hlt: (x < S n)%nat) by auto.
rewrite (bigD1_seq (Ordinal Hlt)) => //=.
- rewrite -[a in _ = a]Rplus_0_r; f_equal.
rewrite -big_filter -filter_predI big_filter. apply big_pred0.
intros i => //=. apply negbTE. apply /andP => [] []. move /eqP => Heq.
move /eqP => []. intros. subst. apply Heq.
destruct i. f_equal. apply bool_irrelevance.
- rewrite mem_filter. apply /andP; split; auto.
* apply /eqP; f_equal; auto. f_equal. apply bool_irrelevance.
* apply mem_enum.
- apply /filter_uniq/enum_uniq.
Qed.
Lemma partition_split l pv:
let x := partition' pv l in
lower (sval x.2) = [ seq n <- l | ltn n pv] ∧
middle (sval x.2) = [ seq n <- l | n == pv] ∧
upper (sval x.2) = [ seq n <- l | ltn pv n].
Proof.
induction l as [|a l]; first by rewrite //=.
rewrite //=; case (ltngtP a pv) => //= ?;
destruct (IHl) as (?&?&?); repeat split; auto; f_equal; done.
Qed.
Lemma sorted_nth_trans {A: eqType} (R: rel A) s (Ht: transitive R)
(Hsorted : sorted R s) x0 a b:
(a < b < size s)%nat ->
R (nth x0 s a) (nth x0 s b).
Proof.
move /andP => [Hab Hbs]. revert s Ht Hsorted Hbs. nify.
induction Hab => s Ht Hsorted Hbs.
- induction s.
* rewrite //= in Hbs.
* move /pathP in Hsorted => //=. apply Hsorted. rewrite //= in Hbs.
- induction s.
* rewrite //= in Hbs.
* rewrite //=. eapply Ht; last apply IHHab; eauto.
move /pathP in Hsorted => //=. apply Hsorted.
** nify. rewrite //= in Hbs. omega.
** rewrite //= in Hsorted. destruct s => //=.
move /andP in Hsorted. destruct Hsorted as (?&?); eauto.
Qed.
Lemma sorted_nth_trans_refl {A : eqType} T (s: seq A) (Hr: reflexive T) (Ht: transitive T)
(Hsorted : sorted T s) x0 a b:
(a <= b < size s)%nat -> T (nth x0 s a) (nth x0 s b).
Proof.
move /andP => [Hab Hbs].
rewrite leq_eqVlt in Hab. move /orP in Hab. destruct Hab as [Heq|Hab].
- move /eqP in Heq; subst; apply Hr.
- apply sorted_nth_trans; auto. apply /andP; split => //.
Qed.
Lemma eq_filter_in (T: eqType) (a1 a2: T → bool) (l: seq T):
(∀ i, i \in l → a1 i = a2 i) →
filter a1 l = filter a2 l.
Proof.
induction l => //=.
intros Hin. rewrite Hin; last first.
- rewrite in_cons eq_refl //.
- rewrite IHl => //.
intros i Hin'; apply Hin. by rewrite in_cons Hin' orbT.
Qed.
Lemma lower_split_sorted l1 l2 x:
sorted leq (l1 ++ x :: l2) →
∃ lmid, ([seq n <- l1 ++ x :: l2 | n < x] ++ lmid = l1)%nat.
Proof.
revert l2 x. induction l1 => l2 x Hsorted.
- exists [::].
rewrite cat0s cats0.
etransitivity; first eapply eq_filter_in; last apply filter_pred0.
intros i Hin => //=.
rewrite //= in Hsorted.
replace x with (nth O (x :: l2) 0) => //.
rewrite -(nth_index O Hin). apply negbTE. rewrite -leqNgt.
apply sorted_nth_trans_refl; auto.
* by intros => ?.
* rewrite /= => ?????. eapply leq_trans; eauto.
* apply /andP; split; auto. rewrite index_mem. done.
- rewrite /=. case: ifP.
* intros. edestruct IHl1 as (lmid&Heq).
{ eapply path_sorted. rewrite //= in Hsorted. eauto. }
exists lmid => /=. f_equal; done.
* move /negbT. rewrite -leqNgt => Hle. exists (a :: l1).
rewrite -[a in _ = a]cat0s; f_equal => //.
etransitivity; first eapply eq_filter_in; last apply filter_pred0.
intros i Hin => //=.
rewrite //= in Hsorted.
apply negbTE. rewrite -leqNgt. apply (leq_trans Hle).
replace a with (nth O (a :: l1 ++ x :: l2) 0) => //.
assert (Hin': i \in a :: (l1 ++ x :: l2)).
{ rewrite in_cons Hin orbT //. }
rewrite -(nth_index O Hin').
apply sorted_nth_trans_refl; auto.
** by intros => ?.
** rewrite /= => ?????. eapply leq_trans; eauto.
** apply /andP; split; auto. rewrite index_mem. done.
Qed.
Lemma lower_split_size_sorted l1 l2 x:
sorted leq (l1 ++ x :: l2) →
(size [seq n <- l1 ++ x :: l2 | n < x] <= size l1)%nat.
Proof.
intros (lmid&Heq)%lower_split_sorted.
rewrite -[a in (_ <= size a)%nat]Heq.
rewrite size_cat. rewrite -plusE. apply /leP. destruct size; omega.
Qed.
Lemma lower_split_size_sorted_nth l x a:
sorted leq l →
(x < size l →
size [seq n <- l | n < nth a l x] <= x)%nat.
Proof.
rewrite nth_legacy => Hsort Hlt.
edestruct (@nth_split _ x l a) as (l1&l2&Heq&Hlen).
{ rewrite -size_legacy. apply /ltP. auto. }
rewrite {2}Heq.
rewrite -{3}Hlen. apply lower_split_size_sorted. rewrite Heq in Hsort => //.
Qed.
Lemma sorted_cat_inv {A: eqType} (R: rel A) (HTrans: transitive R) (l1 l2: seq A):
sorted R (l1 ++ l2) → sorted R l1 ∧ sorted R l2.
Proof.
intros HS; split; eapply subseq_sorted; try apply HS; auto.
- rewrite -[a in subseq a _]cats0.
apply cat_subseq; eauto using sub0seq.
- rewrite -[a in subseq a _]cat0s.
apply cat_subseq; eauto using sub0seq.
Qed.
Lemma upper_split_sorted l1 l2 x:
sorted leq (l1 ++ x :: l2) →
(∃ lmid, lmid ++ [seq n <- l1 ++ x :: l2 | x < n] = l2)%nat.
Proof.
revert l1 x. induction l2 as [| a l2] using rev_ind => l1 x Hsorted.
- exists [::].
rewrite ?cat0s ?cats0.
etransitivity; first eapply eq_filter_in; last apply filter_pred0.
intros i Hin => //=.
rewrite //= in Hsorted.
replace x with (nth O (l1 ++ [:: x]) (size l1)); last first.
{ rewrite nth_cat ltnn subnn //. }
rewrite -(nth_index O Hin). apply negbTE. rewrite -leqNgt.
apply sorted_nth_trans_refl; auto.
* by intros => ?.
* rewrite /= => ?????. eapply leq_trans; eauto.
* apply /andP; split; auto.
** rewrite -index_mem size_cat //= in Hin. rewrite -ltnS //. move: Hin. by nat_norm.
** rewrite size_cat //=. nat_norm => //.
- edestruct (IHl2 l1 x) as (lmid&Heq).
{
rewrite -cat_cons catA in Hsorted.
apply sorted_cat_inv in Hsorted; first (destruct Hsorted; auto).
intros ?????. eauto using leq_trans.
}
rewrite -cat_cons catA filter_cat.
rewrite {2}/filter.
case: ifP => Hlt.
* exists lmid. rewrite catA Heq. done.
* exists (lmid ++ [::a]).
rewrite cats0. rewrite -[a in _ = a]cats0.
cut ([seq n <- l1 ++ x :: l2 | x < n] = [::])%nat.
{
intros Hnil. rewrite ?Hnil -Heq ?Hnil ?cats0 ?cat0s. done.
}
etransitivity; first eapply eq_filter_in; last apply filter_pred0.
intros i Hin => //=.
apply negbTE. rewrite -leqNgt. apply negbT in Hlt. rewrite -leqNgt in Hlt.
eapply leq_trans; last apply Hlt.
replace a with (nth O (l1 ++ x :: (l2 ++ [:: a])) (size (l1 ++ x :: l2 ))); last first.
{ rewrite -cat_cons catA nth_cat ltnn subnn //. }
assert (Hin': i \in l1 ++ x:: l2 ++ [:: a]).
{ rewrite -cat_cons catA. rewrite mem_cat Hin //. }
rewrite -(nth_index O Hin').
apply sorted_nth_trans_refl; auto.
** by intros => ?.
** rewrite /= => ?????. eapply leq_trans; eauto.
** apply /andP; split; auto.
*** rewrite -index_mem ?size_cat //= ?size_cat in Hin'.
move: Hin'.
rewrite ?size_cat //= -?plusE. move /leP => Hle'. apply /leP. destruct (size l2); omega.
*** repeat (rewrite ?size_cat //=). rewrite -?plusE. apply /ltP => //=. omega.
Qed.
Lemma upper_split_size_sorted l1 l2 x:
sorted leq (l1 ++ x :: l2) →
(size [seq n <- l1 ++ x :: l2 | x < n] <= size l2)%nat.
Proof.
intros (lmid&Heq)%upper_split_sorted.
rewrite -[a in (_ <= size a)%nat]Heq.
rewrite size_cat. rewrite -plusE. apply /leP. destruct size; omega.
Qed.
Lemma upper_split_size_sorted_nth l x a:
sorted leq l →
(x < size l →
size [seq n <- l | nth a l x < n] <= size l - x - 1)%nat.
Proof.
rewrite nth_legacy => Hsort Hlt.
edestruct (@nth_split _ x l a) as (l1&l2&Heq&Hlen).
{ rewrite -size_legacy. apply /ltP. auto. }
rewrite {2}Heq.
assert (Hlen': (length l2 <= length l - x - 1)%nat).
{ rewrite Heq app_length //=. rewrite -?plusE -?minusE. apply /leP. rewrite -Hlen //=. omega. }
eapply leq_trans; last apply Hlen'.
apply upper_split_size_sorted. rewrite Heq in Hsort => //.
Qed.
Lemma perm_filter {T: eqType} {P: pred T} (s t: seq T):
perm_eq s t → perm_eq [seq i <- s | P i] [seq i <- t | P i].
Proof.
move /perm_eqP => Hcount.
apply /perm_eqP => P'. rewrite ?count_filter. apply Hcount.
Qed.
Lemma perm_eq_bij {A: eqType} (a: A) (l1 l2: seq A):
perm_eq l1 l2 →
(∃ f : nat → nat,
(∀ x, x < size l1 → nth a l1 x = nth a l2 (f x))%nat ∧
(∀ x, x < size l1 → f x < size l1)%nat ∧
(∀ x, x < size l1 → ∃ x', x' < size l1 ∧ f x' = x)%nat ∧
(∀ x x', x < size l1 → x' < size l1 → f x = f x' → x = x')%nat).
Proof.
intros Hperm.
assert (Hsize: size l1 = size l2).
{ apply perm_eq_size => //. }
move /perm_eq_iotaP in Hperm. specialize (Hperm a).
destruct Hperm as [Is Hperm Heq].
assert (HsizeIs: size Is = size l2) by (rewrite (perm_eq_size Hperm) size_iota //).
exists (λ x, nth O Is x).
repeat split.
- intros x Hlt.
rewrite Heq => //=. erewrite nth_map; auto; rewrite HsizeIs; nify; omega.
- intros x Hlt.
assert (Hin: nth O Is x \in Is).
{ apply nth_lt_size. nify. omega. }
apply perm_eq_mem in Hperm. specialize (Hperm (nth O Is x)).
rewrite Hperm mem_iota in Hin. move /andP in Hin. destruct Hin as (?&?).
nify. omega.
- intros x lt. exists (index x Is); split.
* rewrite Hsize -(size_iota O (size l2)) -(perm_eq_size Hperm) index_mem.
rewrite (perm_eq_mem Hperm) mem_iota. apply /andP; split; nify; omega.
* apply nth_index.
rewrite (perm_eq_mem Hperm) mem_iota. apply /andP; split; nify; omega.
- intros x x' Hlt Hlt'. move /eqP. rewrite nth_uniq; first by move /eqP.
* rewrite HsizeIs; nify; omega.
* rewrite HsizeIs; nify; omega.
* rewrite (perm_eq_uniq Hperm). apply iota_uniq.
Qed.
Lemma Ex_max_partition_sum l:
Ex (rvar_comp (rvar_of_ldist (h l)) (λ x, Rmax (rsize (x.2.1)) (rsize (x.2.2)))) <=
match (size l) with
| O => 0
| _ => \big[Rplus/0]_(i < size l) (/INR (size l) * (Rmax (INR i) (INR (size l - i - 1))))
end.
Proof.
destruct l as [| a l].
- rewrite Ex_fin_comp.
rewrite -(big_map _ (λ x, true) (λ a, pr_eq _ a * _ (_ (fst (snd a))) (_ (snd (snd a))))).
rewrite img_rvar_of_ldist//=/img/undup//= !big_cons ?big_nil.
rewrite pr_mret_simpl //= /m/rsize//=.
rewrite Rmax_left //; last (fourier).
rewrite /INR. ring_simplify. fourier.
- destruct l as [| b0 l0].
{
rewrite Ex_fin_comp.
rewrite -(big_map _ (λ x, true) (λ a, pr_eq _ a * _ (_ (fst (snd a))) (_ (snd (snd a))))).
rewrite img_rvar_of_ldist//=/img/undup//= !big_cons ?big_nil.
rewrite pr_mret_simpl //= /m/rsize//=.
rewrite Rmax_left //; last (fourier).
replace (INR 0) with 0 by auto. ring_simplify.
apply Rle_big0 => i _ //=.
destruct i as (i&Hlt) => //=. assert (i = O) as -> by (nify; omega).
replace (1 - 0 - 1)%nat with O by (nify; omega).
replace (INR 0) with 0 by auto. rewrite Rmax_left; last fourier.
replace (INR 1) with 1 by auto. fourier.
}
remember (b0 :: l0) as l eqn:Heql0.
replace (size (a :: l)) with (S (size l)) by auto.
rewrite -(Ex_mbind_mret (h (a :: l))).
rewrite /h Heql0. rewrite -Heql0. clear l0 Heql0.
rewrite ldist_assoc. rewrite ldist_assoc.
rewrite Ex_mbind_ldist2.
rewrite undup_id; last first.
{ apply uniq_unif2. }
rewrite -unif_cost3 big_map.
edestruct (perm_eq_bij O) as (f&Hfspec&Hfsize&Hinv&Hinj).
{ rewrite perm_eq_sym. apply (perm_eqlE (perm_sort leq (a :: l))). }
eapply sum_reidx_map_le with
(h := (λ (H : {x : nat | (x <= size l)%nat}),
let (x, i) := H in
(Ordinal (n:=(size l).+1) (m:=f x) (Hfsize x i)))).
* intros (x, Hle) Hin.
rewrite unif_pr. rewrite /Rdiv Rmult_1_l. apply Rmult_le_compat_l.
** left. apply Rinv_0_lt_compat. apply lt_0_INR. rewrite //=. omega.
** rewrite -ldist_assoc. rewrite Ex_mbind_mret.
apply Ex_bound.
rewrite ldist_cost_bind_fold.
rewrite ?ldist_left_id.
assert (Hlt: (x < size (a :: l))%nat) by auto.
rewrite //= in Hlt.
eapply (@cspec_mspec _ _ (λ x0 : (seq nat * seq nat),
Rmax (rsize x0.1) (rsize x0.2)
<= Rmax (INR (f (Ordinal (n:= S (size l)) Hle)))
(INR (S (size l) - (f (Ordinal (n := S (size l)) Hle))
- 1)))).
tbind (λ y, nth 0%nat (a :: l) x = sval y).
{ apply mspec_mret => //=. }
intros (pv&Hin') Heq.
tbind (λ x, lower (sval x) = [ seq n <- (a :: l) | ltn n pv] ∧
middle (sval x) = [ seq n <- (a :: l) | n == pv] ∧
upper (sval x) = [ seq n <- (a :: l) | ltn pv n]).
{ apply mspec_mret. apply partition_split. }
remember (a :: l) as l0 eqn:Heql0.
assert (Hsize: S (size l) = (size l0)) by (rewrite Heql0; auto).
intros (spl&Hin'') => //=. intros (Hl&Hm&Hu).
apply mspec_mret => //=.
rewrite /rsize.
rewrite ?Rmax_INR. apply le_INR.
rewrite Hl Hu.
apply Nat.max_le_compat.
*** rewrite //= in Heq. rewrite -Heq.
apply /leP. rewrite Hfspec.
specialize (perm_eqlE (perm_sort leq l0)) => Hperm.
rewrite -(perm_eq_size (perm_filter _ _ Hperm)).
apply lower_split_size_sorted_nth; auto.
**** apply sort_sorted => ??. apply leq_total.
**** rewrite (perm_eq_size (perm_eqlE (perm_sort leq l0))) /=.
apply Hfsize. rewrite Heql0. done.
**** rewrite Heql0 //=.
*** rewrite //= in Heq. rewrite -Heq.
apply /leP. rewrite Hfspec.
assert (Hsize': (size l).+1 = size l0) by rewrite Heql0 //.
rewrite Hsize'.
specialize (perm_eqlE (perm_sort leq l0)) => Hperm.
rewrite -(perm_eq_size (perm_eqlE (perm_sort leq l0))).
rewrite -(perm_eq_size (perm_filter _ _ Hperm)).
apply upper_split_size_sorted_nth; auto.
**** apply sort_sorted => ??. apply leq_total.
**** rewrite (perm_eq_size (perm_eqlE (perm_sort leq l0))) /=.
apply Hfsize. rewrite Heql0. done.
**** rewrite Heql0 //=.
** rewrite -unif_cost3 //. apply /mapP. eexists; eauto.
* intros (?&?) Hin; split; auto.
rewrite /index_enum. rewrite -enumT. rewrite mem_enum => //=.
* intros b Hin _ Hfalse. contradiction Hfalse.
destruct b as (m, Hle).
destruct (Hinv m Hle) as (x'&Hle'&Heq).
exists (exist _ x' Hle'); repeat split; auto.
** apply unif_all2.
** apply ord_inj => //=.
* eapply map_uniq with (f := λ x, (O, x)). rewrite unif_cost3. eapply uniq_unif2.
* rewrite /index_enum. rewrite -enumT. apply enum_uniq.
* intros (?&?) (?&?) _ => //=. inversion 1; subst. apply /val_inj/Hinj => //=.
Qed.
Lemma INR_half k:
(odd k → INR (k./2) = INR k / 2 - /2) ∧
(~~ odd k → INR (k./2) = INR k / 2).
Proof.
induction k.
- rewrite //=; replace (INR 0) with 0 by auto. split; intros; try done. field.
- rewrite //=; split.
* intros. rewrite uphalf_half. destruct (odd k); rewrite //=.
rewrite ?S_INR ?plus_INR. destruct IHk as (_&IHk). rewrite IHk => //.
replace (INR 0) with 0 by auto. destruct k => //=; field.
* rewrite negbK => Hodd.
rewrite uphalf_half Hodd //=.
specialize (S_INR). rewrite //= => ->.
specialize (S_INR). rewrite //= => ->.
destruct IHk as (IHk&_). rewrite IHk => //. replace (INR 1) with 1 by auto. field.
Qed.
Lemma INR_uphalf_half_odd k: odd k → INR (uphalf k * half k) = (INR k + 1) * (INR k - 1) / 4.
Proof.
intros Hodd. rewrite uphalf_half Hodd //=. nify.
rewrite mult_INR plus_INR.
destruct (INR_half k) as (Hhalf&_).
rewrite ?Hhalf //=.
replace (INR 1) with 1 by auto. field.
Qed.
Lemma INR_uphalf_half_even k: ~~ odd k → INR (uphalf k * half k) = (INR k) * (INR k) / 4.
Proof.
move /negbTE => Heven.
rewrite uphalf_half Heven add0n //=. nify.
rewrite mult_INR.
destruct (INR_half k) as (_&Hhalf).
rewrite ?Hhalf; last by (rewrite Heven).
field.
Qed.
Lemma succ_product_even k:
~~ odd (S k * k).
Proof.
rewrite odd_mul => //=. destruct (odd k) => //=.
Qed.
Lemma sum_le_m l:
match (size l) with
| O => 0
| _ => \big[Rplus/0]_(i < size l) (/INR (size l) * (Rmax (INR i) (INR (size l - i - 1))))
end ≤
m (rsize l).
Proof.
rewrite /rsize.
remember (size l) as k eqn:Heqk. clear Heqk l.
induction k => //=.
- rewrite /m. destruct (Rlt_dec) => //=; try fourier.
- rewrite -big_distrr => /=.
eapply Rle_trans.
{
apply Rmult_le_compat_l.
{ left. apply Rinv_0_lt_compat. replace 0 with (INR 0) by auto.
apply (lt_INR 0 (S k)). omega. }
{ right. eapply eq_bigr => i /=. rewrite Rmax_INR => //. }
}
rewrite big_INR.
specialize (max_triangular_sum (S k)). rewrite big_mkord => ->.
rewrite bin2.
destruct k.
{ rewrite plus_INR mult_INR => //=.
replace (INR 0) with 0 by auto.
replace (INR 1) with 1 by auto.
rewrite /m//=. destruct (Rlt_dec) => //=; fourier.
}
rewrite /m. rewrite S_INR. destruct (Rlt_dec).
{ rewrite ?S_INR. intros. exfalso.
specialize (pos_INR k). intros. nra. }
rewrite plus_INR.
destruct (INR_half ((S (S k)) * (S k))) as (_&Hhalf).
rewrite Hhalf; last apply succ_product_even.
case_eq (odd (S (S k))) => Hparity.
* rewrite INR_uphalf_half_odd //. nify.
rewrite mult_INR ?S_INR.
specialize (pos_INR k) => Hpos.
apply (Rmult_le_reg_l (INR k + 1 + 1 )); first by fourier.
field_simplify; last first.
{ apply Rgt_not_eq. fourier. }
nra.
* rewrite INR_uphalf_half_even //; last by (rewrite Hparity). nify.
rewrite mult_INR ?S_INR.
specialize (pos_INR k) => Hpos.
apply (Rmult_le_reg_l (INR k + 1 + 1 )); first by fourier.
field_simplify; last first.
{ apply Rgt_not_eq. fourier. }
nra.
Qed.
Lemma Ex_max_partition l:
Ex (rvar_comp (rvar_of_ldist (h l)) (λ x, Rmax (rsize (x.2.1)) (rsize (x.2.2)))) <=
m (rsize l).
Proof.
eapply Rle_trans; [ apply Ex_max_partition_sum | apply sum_le_m ].
Qed.
Definition T := λ x, rvar_comp (rvar_of_ldist (qs x)) (λ x, INR (fst x)).
Definition a x :=
match (Rle_dec x 1) with
| left _ => 0
| _ => x
end.
Definition h' x := rvar_comp (rvar_of_ldist (h x)) snd.
Lemma Trec:
∀ x r, pr_eq (T x) r =
\big[Rplus/0]_(x' : imgT (h' x))
(pr_eq (h' x) (sval x') *
pr_eq (rvar_comp (rvar_pair (T (fst (sval x'))) (T (snd (sval x'))))
(fun xy => (fst xy) + (snd xy))) (r - a (rsize x))).
Proof.
intros ls r.
induction ls as [| a0 ls].
- rewrite /T. rewrite -pr_mbind_mret.
rewrite -(big_map _ (λ x, true)
(λ x',
(pr_eq (h' [::]) x' *
pr_eq (rvar_comp
(rvar_pair
(rvar_comp (rvar_of_ldist (qs x'.1)) (λ x, INR x.1))
(rvar_comp (rvar_of_ldist (qs x'.2)) (λ x, INR x.1)))
(λ xy : prod_eqType R_eqType R_eqType, xy.1 + xy.2)) (r - a (rsize [::]))))).
rewrite img_rvar_comp map_comp.
rewrite img_rvar_of_ldist /h.
rewrite big_cons big_nil Rplus_0_r.
rewrite /a/rsize/size.
replace (INR 0) with 0 by auto.
destruct (Rle_dec); last nra.
specialize (pr_rvar_ldist ((x ← qs [::]; mret (INR x.1)))) => -> //=.
rewrite big_cons big_nil /=.
rewrite /pr_eq; rewrite 2!pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if (snd v) == _ then
pr_eq _ v
else
0)).
rewrite -(big_map _ (λ x, true) (λ v, if (fst v) + (snd v) == r - 0 then
pr_eq _ v
else
0)).
rewrite (eq_big_perm _ (img_pair_rv _ _ _ _)).
rewrite allpairs_comp.
rewrite img_rvar_comp.
rewrite map_comp //=.
rewrite (map_comp fst).
specialize (img_rvar_of_ldist (qs [::])) => ->.
rewrite Rmult_1_r Rplus_0_r.
specialize (img_rvar_of_ldist (h [::])) => ->.
rewrite //= !big_cons !big_nil ?Rplus_0_r //= ?Rminus_0_r.
rewrite [a in _ = _ * a]big_cons ?big_nil //= ?Rplus_0_r.
case: ifP; last first.
{ intros; field. }
rewrite pr_mret_simpl //=. intros. ring_simplify. rewrite pr_eq_rvar_pair //=.
rewrite /pr_eq pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if INR (fst (v)) == 0 then pr_eq _ v else 0)).
rewrite -(big_map _ (λ x, true) (λ v, if INR (fst (v)) == 0 then pr_eq _ v else 0)).
specialize (img_rvar_of_ldist (qs [::])) => -> //=.
rewrite ?big_cons ?big_nil //= eq_refl.
rewrite pr_mret_simpl //=. field.
- destruct ls as [| b0 ls0].
{ rewrite /T. rewrite -pr_mbind_mret.
rewrite -(big_map _ (λ x, true)
(λ x',
(pr_eq (h' _) x' *
pr_eq (rvar_comp
(rvar_pair
(rvar_comp (rvar_of_ldist (qs x'.1)) (λ x, INR x.1))
(rvar_comp (rvar_of_ldist (qs x'.2)) (λ x, INR x.1)))
(λ xy : prod_eqType R_eqType R_eqType, xy.1 + xy.2)) (r - a (rsize _))))).
rewrite img_rvar_comp map_comp.
rewrite img_rvar_of_ldist /h.
rewrite big_cons big_nil Rplus_0_r.
rewrite /a/rsize/size.
replace (INR 1) with 1 by auto.
destruct (Rle_dec); last nra.
specialize (pr_rvar_ldist ((x ← qs [:: a0]; mret (INR x.1)))) => -> //=.
rewrite big_cons big_nil /=.
rewrite /h'/h.
rewrite {1}/pr_eq. rewrite 1!pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if (snd v) == _ then
pr_eq _ v
else
0)).
specialize (img_rvar_of_ldist (h [::a0])) => ->. rewrite /h.
rewrite ?big_cons ?big_nil ?Rplus_0_r //= ?Rminus_0_r.
rewrite pr_mret_simpl //=. ring_simplify.
rewrite {1}/pr_eq. rewrite 1!pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if (fst v) + (snd v) == r then
pr_eq _ v
else
0)).
rewrite (eq_big_perm _ (img_pair_rv _ _ _ _)).
rewrite allpairs_comp.
rewrite img_rvar_comp map_comp (map_comp fst).
specialize (img_rvar_of_ldist (qs [::])) => -> //=.
rewrite ?big_cons ?big_nil //=. replace (INR 0) with 0 by auto.
rewrite ?Rplus_0_r.
case: ifP; intros; last field.
rewrite pr_eq_rvar_pair.
f_equal.
* rewrite /pr_eq pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if INR (fst (v)) == 0 then pr_eq _ v else 0)).
specialize (img_rvar_of_ldist (qs [::])) => -> //=.
rewrite ?big_cons ?big_nil //= eq_refl.
rewrite pr_mret_simpl //=. field.
* rewrite /pr_eq pr_eq_alt_comp.
rewrite -(big_map _ (λ x, true) (λ v, if INR (fst (v)) == 0 then pr_eq _ v else 0)).
specialize (img_rvar_of_ldist (qs [::])) => -> //=.
rewrite ?big_cons ?big_nil //= eq_refl.
rewrite pr_mret_simpl //=. field.
}
remember (b0 :: ls0) as ls eqn:Heql0.
rewrite /T.
rewrite qs_unfold.
transitivity
(pr_eq (rvar_comp (rvar_of_ldist
('(ll, lu) ← h (a0 :: ls);
lls ← qs ll;
lus ← qs lu;
mret (lls, lus))) (λ x, INR (fst x))) r); last first.
{
rewrite /h'.
rewrite -(big_map _ (λ x, true)
(λ x',
(pr_eq (h' _) x' *
pr_eq (rvar_comp
(rvar_pair
(rvar_comp (rvar_of_ldist (qs x'.1)) (λ x, INR x.1))
(rvar_comp (rvar_of_ldist (qs x'.2)) (λ x, INR x.1)))
(λ xy : prod_eqType R_eqType R_eqType, xy.1 + xy.2)) (r - a (rsize _))))).
rewrite img_rvar_comp map_comp.
rewrite img_rvar_of_ldist.
rewrite (cost_bind_const (size (a0 :: ls))).
* rewrite -undup_map. rewrite -map_comp.
eapply eq_bigr. intros (ll&lu) _.
f_equal.
specialize (ldist_cost_pair (qs ll) (qs lu) (λ a b, (a, b))
(λ x, INR (x + size (a0 :: ls)))) => ->.
rewrite !rvar_pair_comp !rvar_comp_comp.
rewrite {1}/pr_eq {1}[a in _ = a]/pr_eq.
rewrite ?pr_eq_alt_comp /=. eapply eq_bigr => x ?.
apply if_case_match. rewrite ?plus_INR /rsize//=/a//=.
rewrite Heql0 //=. specialize (S_INR (size ls0)) => /= => ->.
destruct (Rle_dec).
{specialize (pos_INR (size ls0)). intros. nra. }
apply /eqP.
apply /eqP. case: ifP; first by (move /eqP => ->; nra).
move /eqP. intros. nra.
* intros d'. rewrite map_comp. move /mapP. intros [? Hin Heq]. rewrite Heq.
cut (cspec (h (a0 :: ls )) (λ x, fst x = size (a0 :: ls))); first by auto.
rewrite /h. rewrite Heql0. rewrite -Heql0.
cbind (λ x, fst x = O).
{
rewrite /draw_pivot.
cbind (λ x, fst x = O).
{ rewrite /cspec/coutput. destruct y as (c, a).
rewrite /fst. eapply unif_cost; auto. }
intros (c0, pv) => /= ->.
apply cspec_mret => //=.
}
intros (?, pv) ->.
cbind (λ x, fst x = size (a0 :: ls)).
{
eapply cspec_dist_ret.
clear. rewrite /snd. destruct pv as (pv&?). rewrite /sval.
remember (a0 :: ls) as l. clear.
induction l as [| a l] => //=.
destruct (ltngtP a pv) => //=; nify; rewrite /partition' /= in IHl; rewrite IHl; omega.
}
intros (c, spl) ->.
apply cspec_mret => //=. nify. omega.
}
(* TODO TODO: a good deal of this could be automated *)
rewrite Heql0.
rewrite /h.
rewrite -?pr_mbind_mret.
f_equal.
apply outcomes_eq_dist.
rewrite ?ldist_assoc.
f_equal; eapply ldist_bind_ext.
intros (?&?).
eapply ldist_bind_ext.
intros (?&?).
rewrite ?ldist_assoc.
eapply ldist_bind_ext.
intros (?&?).
rewrite ?ldist_assoc.
rewrite ?ldist_left_id ?ldist_right_id.
rewrite ?ldist_assoc.
eapply ldist_bind_ext.
intros (?&?).
rewrite ?ldist_assoc.
eapply ldist_bind_ext.
intros (?&?).
rewrite ?ldist_left_id ?ldist_right_id.
f_equal => //=. f_equal. nify. omega.
Qed.
Definition k := -/ ln(3/4).
Theorem bound x w:
rsize x > 1 →
pr_gt (T x) (rsize x * (k * ln (rsize x) + 1) + INR w * rsize x)
≤ (rsize x) * (3/4)^w.
Proof.
specialize (quicksort_rec.recurrence_work3.qs_work_bound _ _ _ _ T h').
rewrite /size/rsize => Hrec. eapply Hrec; clear.
- intros x' n. rewrite //=. apply Rle_ge. apply pos_INR.
- intros l ?. rewrite //=.
rewrite /quicksort_rec.recurrence_work3.size //=.
cut (∀ n, INR (length (fst (snd (rvar_of_ldist (h l) n)))) +
INR (length (snd (snd (rvar_of_ldist (h l) n)))) <=
INR (length l)); first by rewrite //=.
intros n'. apply fun_to_cspec.
rewrite /h.
destruct l as [| a l].
{ apply cspec_mret => //=. replace (INR 0) with 0 by auto. nra. }
destruct l as [| b l0].
{ apply cspec_mret => //=. replace (INR 0) with 0 by auto. replace (INR 1) with 1 by auto. nra. }
remember (b::l0) as l eqn:Heql0.
clear b l0 Heql0.
eapply (cspec_mspec _ (λ x, INR (length (fst x)) + INR (length (snd x)) <= INR (length _))).
tbind (λ x, sval x \in a :: l).
{ intros (?&?) => //. }
intros (pv&Hin) _.
tbind (λ x, lower (sval x) = [ seq n <- (a :: l) | ltn n pv] ∧
middle (sval x) = [ seq n <- (a :: l) | n == pv] ∧
upper (sval x) = [ seq n <- (a :: l) | ltn pv n]).
{ remember (a :: l) as l0 eqn:Heql0.
apply mspec_mret => //=. clear. induction l0 as [|a l]; first by rewrite //=.
rewrite //=; case (ltngtP a pv) => //= ?;
destruct (IHl) as (?&?&?); repeat split; auto; f_equal; done.
}
remember (a :: l) as l0 eqn:Heql0.
intros (spl&Hin') => //= ?. apply mspec_mret.
move /andP in Hin'.
destruct Hin' as (pf1&pf2); move /implyP in pf2.
replace (length l0) with (size l0) by auto.
rewrite -(perm_eq_size pf1) //= ?size_cat -?plusE //.
assert (Hlt: (lt O (size (middle spl)))) by
( apply /ltP; apply pf2 => //=; destruct p; eauto; subst; rewrite //=).
rewrite -plus_INR. apply le_INR. rewrite //=.
assert (length (lower spl) = size (lower spl)) as Heq by auto.
rewrite Heq. clear Heq.
assert (length (upper spl) = size (upper spl)) as Heq by auto.
rewrite Heq. clear Heq.
clear -Hlt. rewrite //=. omega.
- rewrite /quicksort_rec.recurrence_work3.size //=.
intros l ? Hgt. rewrite //=.
cut (∀ n, INR (length (fst (snd (rvar_of_ldist (h l) n)))) +
INR (length (snd (snd (rvar_of_ldist (h l) n)))) <=
INR (length l) - 1); first by rewrite //=.
intros n'. apply fun_to_cspec.
rewrite /h.
destruct l as [| a l].
{ move : Hgt. rewrite //=. replace (INR 0) with 0 by auto. nra. }
destruct l as [| b l0].
{ move : Hgt. rewrite //=. replace (INR 1) with 1 by auto. nra. }
remember (b::l0) as l eqn:Heql0.
clear b l0 Heql0.
eapply (cspec_mspec _ (λ x, INR (length (fst x)) + INR (length (snd x)) <= INR (length _) - 1)).
tbind (λ x, sval x \in a :: l).
{ intros (?&?) => //. }
intros (pv&Hin) _.
tbind (λ x, lower (sval x) = [ seq n <- (a :: l) | ltn n pv] ∧
middle (sval x) = [ seq n <- (a :: l) | n == pv] ∧
upper (sval x) = [ seq n <- (a :: l) | ltn pv n]).
{ remember (a :: l) as l0 eqn:Heql0.
apply mspec_mret => //=. clear. induction l0 as [|a l]; first by rewrite //=.
rewrite //=; case (ltngtP a pv) => //= ?;
destruct (IHl) as (?&?&?); repeat split; auto; f_equal; done.
}
remember (a :: l) as l0 eqn:Heql0.
intros (spl&Hin') => //= ?. apply mspec_mret.
move /andP in Hin'.
destruct Hin' as (pf1&pf2); move /implyP in pf2.
replace (length l0) with (size l0) by auto.
rewrite -(perm_eq_size pf1) //= ?size_cat -?plusE //.
assert (Hlt: (lt O (size (middle spl)))) by
( apply /ltP; apply pf2 => //=; destruct p; eauto; subst; rewrite //=).
rewrite ?plus_INR.
assert (length (lower spl) = size (lower spl)) as Heq by auto.
rewrite Heq. clear Heq.
assert (length (upper spl) = size (upper spl)) as Heq by auto.
rewrite Heq. clear Heq.
specialize (pos_INR (size (lower (spl)))).
specialize (pos_INR (size (upper (spl)))).
rewrite //=. intros.
assert (Hge1: 1 <= INR (size (middle spl))).
{ replace 1 with (INR 1) by auto. apply le_INR. omega. }
rewrite //= in Hge1. nra.
- rewrite /quicksort_rec.recurrence_work3.size/quicksort_rec.recurrence_work3.d //=.
intros x n Hle.
replace 1 with (INR 1) in Hle by auto. apply INR_le in Hle.
cut (INR (fst (rvar_of_ldist (qs x) n)) = 0); first by rewrite //=.
apply fun_to_cspec.
destruct x; [| destruct x].
* rewrite qs_unfold.
apply cspec_mret => //=.
* rewrite qs_unfold.
apply cspec_mret => //=.
* rewrite //= in Hle. omega.
- intros. eapply (rec_pr_rec_gt _ rsize _ _ _ _ T h' (λ x, true)); auto; intros; apply Trec.
- intros x. rewrite /quicksort_rec.recurrence_work3.size/quicksort_rec.recurrence_work3.d //=.
eapply Ex_max_partition.
Qed.
From Interval Require Import Interval_tactic.
Remark concrete:
∀ l, rsize l = 10 ^ 8 →
pr_gt (T l) (10^8 * (8 * 1/(ln 2) * ln (10^8))) ≤ 1/(10^10).
Proof.
intros l Hsize.
transitivity (pr_gt (T l) (10^8 * (k * ln (rsize l) + 1) + 147 * 10^8)).
- apply Rge_le, pr_gt_contra.
rewrite Hsize. rewrite /k. interval.
- replace 147 with (INR 147); last first.
{ vm_compute. nra. }
rewrite -Hsize.
etransitivity; first apply bound; auto; try nra. rewrite Hsize. interval.
Qed.
Remark concrete2:
∀ l, rsize l = 10 ^ 7 →
pr_gt (T l) (10^7 * (8 * 1/(ln 2) * ln (10^7))) ≤ 1/(10^9).
Proof.
intros l Hsize.
transitivity (pr_gt (T l) (10^7 * (k * ln (rsize l) + 1) + 129 * 10^7)).
- apply Rge_le, pr_gt_contra.
rewrite Hsize. rewrite /k. interval.
- replace 129 with (INR 129); last first.
{ vm_compute. nra. }
rewrite -Hsize.
etransitivity; first apply bound; auto; try nra. rewrite Hsize. interval.
Qed.