forked from jtassarotti/polaris
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpermutation.v
1122 lines (1092 loc) · 48.2 KB
/
permutation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From discprob.basic Require Import base order nify sval.
From discprob.prob Require Import prob countable finite stochastic_order uniform.
From discprob.monad Require Import monad monad_hoare.
From discprob.monad Require quicksort quicksort_cost.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype.
From mathcomp Require Import tuple finfun bigop prime binomial finset.
From Coq Require Import Omega Psatz Program.Wf MSets.MSetInterface MSets.MSetGenTree Structures.OrdersEx.
Local Open Scope nat_scope.
(* TODO: should make unif generic over ``cost'' or not, so don't have to repeat this
across other examples *)
Require Import Reals Fourier FunctionalExtensionality.
Program Definition unif n : ldist { x : nat | (leq x n) } :=
mklDist [ seq (1/(INR (n.+1)), (exist _ (nat_of_ord i) _)) | i <- enum 'I_(n.+1) ] _ _.
Next Obligation. intros n (?&?); rewrite -ltnS. done. Qed.
Next Obligation.
intros ?.
apply /allP => r.
rewrite -map_comp //= (@eq_map _ _ _ (λ x, 1 / INR (S n))); last by done.
rewrite (nat_of_ord_map_iota (S n) (λ x, 1 / INR (S n))).
rewrite //=. induction (iota 1 n) => //=.
- rewrite in_cons. move /orP => [Heq|Hin]; eauto.
move /eqP in Heq. rewrite Heq.
destruct (Rle_dec) as [|Hn]; [ by auto | exfalso; apply Hn].
left. apply Rdiv_lt_0_compat; first fourier.
destruct n; first fourier.
replace 0 with (INR O) by auto.
cut (INR 0 < INR (S n)); intros; first by fourier.
apply lt_INR. omega.
- rewrite in_cons. move /orP => [Heq|Hin]; eauto.
move /eqP in Heq. rewrite Heq.
destruct (Rle_dec 0 (1 / _)) as [|Hn]; [ by auto | exfalso; apply Hn].
left. apply Rdiv_lt_0_compat; first fourier.
destruct n; first by fourier.
replace 0 with (INR O) by auto.
cut (INR 0 < INR (S n)); intros; first by fourier.
apply lt_INR; omega.
Qed.
Next Obligation.
intros ?.
rewrite -map_comp //= (@eq_map _ _ _ (λ x, 1 / INR (S n))); last by done.
rewrite (nat_of_ord_map_iota (S n) (λ x, 1 / INR (S n))).
cut (∀ o k, \big[Rplus/0]_(a<-[seq (1 / INR n.+1) | i <- iota k o]) a
= INR (o) / INR (n.+1)).
{
intros Hcut. specialize (Hcut (n.+1) O). rewrite //= in Hcut.
rewrite Hcut. apply /eqP => //=. field.
apply Rgt_not_eq.
destruct n; first fourier.
replace 0 with (INR O) by auto.
cut (INR 0 < INR (S n)); first by intros; fourier.
apply lt_INR; omega.
}
induction o => k.
- rewrite big_nil. replace (INR 0) with 0 by auto. rewrite /Rdiv Rmult_0_l //.
- rewrite big_cons. rewrite (S_INR o).
rewrite Rdiv_plus_distr IHo. ring.
Qed.
Lemma unif_all n x (Hle: (x <= n)%nat):
exist _ x Hle \in [seq i.2 | i <- outcomes (unif n)].
Proof.
apply /mapP.
set (a := exist _ x Hle).
replace (a) with (1/INR (S n), a).2; last done.
do 2 apply /mapP; eexists; eauto.
rewrite /unif => //=.
apply /mapP => //=.
assert (Hlt: (x < S n)%nat) by auto.
exists (Ordinal Hlt).
- apply mem_enum.
- rewrite /a; repeat f_equal. apply bool_irrelevance.
Qed.
Lemma unif_pr n a :
a \in [seq i.2 | i <- outcomes (unif n)] →
pr_eq (rvar_of_ldist (unif n)) a = 1 / INR (S n).
Proof.
intros Hin. rewrite pr_rvar_ldist /unif//=.
rewrite big_map -big_filter //=.
destruct a as (x&Hle) => //=.
assert (Hlt: (x < S n)%nat) by auto.
rewrite (bigD1_seq (Ordinal Hlt)) => //=.
- rewrite -[a in _ = a]Rplus_0_r; f_equal.
rewrite -big_filter -filter_predI big_filter. apply big_pred0.
intros i => //=. apply negbTE. apply /andP => [] []. move /eqP => Heq.
move /eqP => []. intros. subst. apply Heq.
destruct i. f_equal. apply bool_irrelevance.
- rewrite mem_filter. apply /andP; split; auto.
* apply /eqP; f_equal; auto. f_equal. apply bool_irrelevance.
* apply mem_enum.
- apply /filter_uniq/enum_uniq.
Qed.
Lemma unif_sval n n':
n = n' →
map sval (undup (map snd (unif n))) = map sval (undup (map snd (unif n'))).
Proof.
intros Heq. rewrite /unif. subst. auto.
Qed.
Section perm.
Variable (A: eqType).
Program Definition draw_next (a : A) (l: list A) : ldist { x : A | x \in (a :: l) } :=
idx ← unif (size l);
mret (exist _ (nth a (a :: l) (sval idx)) _).
Next Obligation. intros a l (?&?); rewrite mem_nth //. Qed.
Definition rand_perm_list : list A → ldist (list A).
refine(Fix (measure_wf lt_wf size) (fun _ => ldist (list A))
(fun l rand_perm_list =>
match l as l' return (l = l' → ldist (list A)) with
| [::] => λ eq, mret [::]
| [::a] => λ eq, mret [::a]
| (a :: b :: l') => λ eq,
p ← draw_next a (b :: l');
rest ← rand_perm_list (rem (sval p) (a :: b :: l')) _;
mret (sval p :: rest)
end (Init.Logic.eq_refl))); rewrite /MR; auto.
- abstract (destruct p as (x&Hin); rewrite size_rem //; subst; rewrite //=).
Defined.
Lemma rand_perm_list_unfold_aux l:
rand_perm_list l =
match l as l' return (l = l' → ldist (list A)) with
| [::] => λ eq, mret [::]
| [::a] => λ eq, mret [::a]
| (a :: b :: l') => λ eq,
p ← draw_next a (b :: l');
rest ← rand_perm_list (rem (sval p) (a :: b :: l'));
mret (sval p :: rest)
end (Init.Logic.eq_refl).
Proof. rewrite /rand_perm_list quicksort.easy_fix_eq; done. Qed.
Lemma rand_perm_list_unfold l:
rand_perm_list l =
(match l with
| [::] => mret [::]
| [::a] => mret [::a]
| (a :: l) => p ← draw_next a l;
rest ← rand_perm_list (rem (sval p) (a :: l));
mret (sval p :: rest)
end).
Proof. rewrite rand_perm_list_unfold_aux. destruct l => //. destruct l => //. Qed.
End perm.
Arguments rand_perm_list {_}.
Arguments draw_next {_}.
Lemma draw_next_pr {A: eqType} (a': A) l a:
uniq (a' :: l) →
sval a \in (a' :: l) →
pr_eq (rvar_of_ldist (draw_next a' l)) a = 1 / INR (size (a' :: l)).
Proof.
intros Huniq Hin. rewrite /draw_next.
rewrite pr_mbind_ldist2.
assert (Hpf: (index (sval a) (a' :: l) <= size l)%nat).
{ rewrite -index_mem in Hin. rewrite //= in Hin. }
rewrite (@big_rem _ _ _ _ (undup (map snd (unif (size l))))
(exist _ (index (sval a) (a' :: l)) Hpf)); last first.
{ rewrite mem_undup. apply unif_all. }
rewrite -[a in _ = a]Rplus_0_r.
rewrite rem_filter; last apply undup_uniq.
rewrite big_filter.
rewrite big1; last first.
{ intros (n&Hle) Hn0. apply Rmult_eq_0_compat_l.
rewrite pr_mret_simpl //. destruct a. case: ifP; auto.
intros Heq. move /eqP in Heq. inversion Heq as [[Heqx]].
rewrite /sval in Hn0. cut (n = index x (a' :: l)).
{ intros Hidx. exfalso. move /negP in Hn0. apply Hn0.
apply /eqP. clear -Hidx. subst. f_equal. apply bool_irrelevance. }
symmetry. rewrite -Heqx. apply index_uniq; auto. }
apply Rplus_eq_compat_r.
rewrite pr_mret_simpl. case: ifP; last first.
{ move /negP => Hfalse. exfalso; apply Hfalse. apply /eqP.
destruct a as (a&Hin').
apply sval_inj_pred. rewrite /sval.
apply nth_index. auto.
}
intros. rewrite Rmult_1_r unif_pr; first done.
apply unif_all.
Qed.
Lemma draw_next_all {A: eqType} (a: A) l x Hin:
uniq (a :: l) →
exist _ x Hin \in [seq i.2 | i <- outcomes (draw_next a l)].
Proof.
intros Huniq.
rewrite -mem_undup.
rewrite -img_rvar_of_ldist'.
apply pr_img. rewrite draw_next_pr //.
apply Rlt_gt, Rdiv_lt_0_compat; first nra.
specialize (pos_INR (size l)).
rewrite S_INR. rewrite //=. rewrite -/size. nra.
Qed.
Definition gen_perm (n: nat) := rand_perm_list (Finite.enum [finType of 'I_n]).
Lemma perm_eq_nil (A: eqType) (l: list A): perm_eq l [::] → l = [::].
Proof.
move /perm_eq_size. destruct l => //=.
Qed.
Lemma perm_eq_singleton (A: eqType) (l: list A) (a: A): perm_eq l [::a] → l = [::a].
Proof.
destruct l => //=.
- rewrite perm_eq_sym. move /perm_eq_nil => //.
- destruct l as [| b l] => //=.
* move /perm_eqP. intros Heq. specialize (Heq (pred1 a)).
rewrite //= in Heq. f_equal.
move: Heq. case: eqP; auto. rewrite eq_refl //=.
* move /perm_eq_size => //=.
Qed.
Lemma perm_eq_rem {A: eqType} (l1 l2: list A) x:
perm_eq l1 l2 → perm_eq (rem x l1) (rem x l2).
Proof.
intros Heq.
case_eq (x \in l1).
- rewrite -(perm_cons x).
intros Hin. eapply perm_eq_trans.
* rewrite perm_eq_sym. apply perm_to_rem. done.
* eapply perm_eq_trans; first apply Heq. apply perm_to_rem.
rewrite -(perm_eq_mem Heq) //.
- intros Hnin. rewrite ?rem_id //.
* rewrite -(perm_eq_mem Heq). apply /negP. rewrite Hnin. done.
* apply /negP. rewrite Hnin. done.
Qed.
Lemma rand_perm_list_initial {A: eqType} (l1 l2 lt: seq A):
perm_eq l1 l2 →
pr_eq (rvar_of_ldist (rand_perm_list l1)) lt =
pr_eq (rvar_of_ldist (rand_perm_list l2)) lt.
Proof.
remember (size l1) as k eqn:Heq.
revert l1 l2 lt Heq.
induction k as [k IH] using (well_founded_induction lt_wf) => l1 l2 lt Heq Hperm.
destruct l1 as [| a1 l1]; last destruct l1 as [| b1 l1].
- rewrite perm_eq_sym in Hperm; apply perm_eq_nil in Hperm; subst.
done.
- rewrite perm_eq_sym in Hperm; apply perm_eq_singleton in Hperm; subst.
done.
- destruct l2 as [| a2 l2]; last destruct l2 as [| b2 l2].
{ apply perm_eq_nil in Hperm; subst. congruence. }
{ apply perm_eq_singleton in Hperm; subst. congruence. }
rewrite ?rand_perm_list_unfold.
rewrite /draw_next. rewrite ?ldist_assoc.
rewrite ?pr_mbind_ldist2.
destruct (quicksort_cost.perm_eq_bij a1 _ _ Hperm) as (h&Hhspec&Hhsize&Hinv&Hinj).
assert (Hbound: ∀ x, (x <= size (b1 :: l1))%nat → (h x <= size (b2 :: l2))%nat).
{ rewrite //= => x Hle.
apply (perm_eq_size) in Hperm.
rewrite //= in Hperm.
assert (h x < S (S (size l1)))%nat as Hsize'.
{ apply Hhsize. rewrite //=. }
nify. omega.
}
set (h' := λ x : {y : nat | (y <= (size (b1 :: l1)))%nat} ,
match x with
| exist n Hpf => (exist _ (h n) (Hbound n Hpf) :
{x : nat | (x <= size (b2 :: l2))%nat})
end).
eapply (sum_reidx_map _ _ _ _ h').
* intros (n&Hle) Hin. f_equal.
{ rewrite ?unif_pr //; rewrite /h'; try apply unif_all.
apply perm_eq_size in Hperm. rewrite //= in Hperm. inversion Hperm as [Hsize].
rewrite /size -/size Hsize. done. }
rewrite 2!ldist_left_id /h'/sval.
symmetry.
rewrite (set_nth_default a1); last first.
{ rewrite //=. by apply Hbound. }
symmetry.
eapply eq_dist_ldist_bind_congr.
** intros lt'. eapply IH; eauto.
rewrite size_rem; subst => //=; nify; try omega.
{ apply /mem_nth => //=. }
rewrite Hhspec; last by rewrite //=.
apply perm_eq_rem; auto.
** intros a x. rewrite ?pr_mret_simpl Hhspec. eauto.
rewrite //=.
* intros a Hin _; split; auto. rewrite mem_undup.
destruct (h' a); apply unif_all.
* intros (x&Hx) Hin _ Hfalse. exfalso. apply Hfalse.
edestruct (Hinv x) as (x'&Hlt&?); eauto.
{ apply perm_eq_size in Hperm. clear -Hx Hperm.
rewrite //= in Hx, Hperm. nify. rewrite //=. omega. }
exists (exist _ x' Hlt); repeat split.
** rewrite mem_undup. apply unif_all.
** rewrite /h'//=; subst.
f_equal => //=. apply bool_irrelevance.
* apply undup_uniq.
* apply undup_uniq.
* intros (x&?) (x'&?) _ Heqh'.
rewrite /h' in Heqh'. inversion Heqh' as [Heqh]. eapply Hinj in Heqh; eauto.
subst. f_equal. apply bool_irrelevance.
Qed.
(*
Lemma rand_perm_gen_then_draw {A: eqType} (a: A) (l: seq A):
eq_dist (rvar_of_ldist (rand_perm_list l))
(rvar_of_ldist (sigma ← gen_perm (size l);
mret ([seq (nth a l (nat_of_ord i)) | i <- sigma]))).
Proof.
remember (size l) as k eqn:Heq.
revert l Heq.
induction k as [k IH] using (well_founded_induction lt_wf) => l Heq => lt.
destruct l as [| b1 l]; last destruct l as [| b2 l].
- subst. rewrite /size/gen_perm.
assert (Finite.enum [finType of 'I_0] = [::]) as ->.
{ destruct (Finite.enum _) as [| o l] => //=. inversion o. nify. omega. }
rewrite ?rand_perm_list_unfold.
rewrite ldist_left_id. rewrite pr_mret_simpl; done.
- rewrite rand_perm_list_unfold.
rewrite /gen_perm. rewrite ?rand_perm_list_unfold.
subst. specialize (size_enum_ord 1).
rewrite enumT.
destruct (Finite.enum) as [| o le]; first by done.
destruct le; last by done.
intros ?. rewrite ldist_left_id. rewrite ?pr_mret_simpl //=.
assert (nat_of_ord o = O) as Hnat.
{ destruct o as (x&Hlt) => //=. clear -Hlt. rewrite //= in Hlt. nify. omega. }
rewrite Hnat //=.
- rewrite /gen_perm.
Abort.
*)
Lemma rand_perm_list_id {A: eqType} (l1: seq A):
uniq l1 →
pr_eq (rvar_of_ldist (rand_perm_list l1)) l1 = 1 / INR ((size l1)`!).
Proof.
remember (size l1) as k eqn:Heq.
revert l1 Heq.
induction k as [k IH] using (well_founded_induction lt_wf) => l1 Heq Huniq1.
destruct l1 as [| a1 l1]; last destruct l1 as [| b1 l1].
- rewrite rand_perm_list_unfold. subst. rewrite //=. rewrite pr_mret_simpl eq_refl.
field.
- rewrite rand_perm_list_unfold. subst. rewrite //=. rewrite pr_mret_simpl eq_refl.
field.
- rewrite ?rand_perm_list_unfold ?ldist_assoc ?pr_mbind_ldist2.
assert (Hpf: (O <= size (b1 :: l1))%nat).
{ rewrite //=. }
rewrite (@big_rem _ _ _ _ (undup (map snd (unif (size (b1 :: l1))))) (exist _ O Hpf)); last first.
{ rewrite mem_undup. apply unif_all. }
rewrite -[a in _ = a]Rplus_0_r.
rewrite rem_filter; last apply undup_uniq.
rewrite big_filter.
rewrite big1; last first.
{ intros (n&Hle) Hn0. apply Rmult_eq_0_compat_l.
rewrite ldist_left_id /sval. rewrite ?pr_mbind_mret_inj0 //. intros rest.
destruct n; rewrite //= in Hn0.
intros Heq'.
assert (nth a1 [:: a1, b1 & l1] (S n) == nth a1 [:: a1, b1 & l1] O) as Hidx.
{ rewrite //=. apply /eqP. inversion Heq' as [[Hhd Htl]]. rewrite Hhd. done. }
rewrite nth_uniq in Hidx; auto.
}
apply Rplus_eq_compat_r.
subst. rewrite {1}factS. rewrite -/size.
transitivity ((1/ INR (S (S (size l1)))) * (1 / INR ((S (size l1))`!))); last first.
{ symmetry. rewrite mult_INR ?S_INR. field. split.
* rewrite factS mult_INR ?S_INR. specialize (pos_INR (size l1)).
intros. apply Rgt_not_eq. specialize (fact_gt0 (size l1)). intros Hgt0. nify.
apply lt_INR in Hgt0. replace (INR 0) with 0 in Hgt0; auto; nra.
* specialize (pos_INR (size l1)). nra.
}
f_equal.
* rewrite unif_pr; first by auto. apply unif_all.
* rewrite ldist_left_id /sval. rewrite pr_mbind_mret_inj; last first.
{ intros a b; congruence. }
rewrite /nth. rewrite {1}/rem //= eq_refl. apply IH; auto.
rewrite cons_uniq in Huniq1. move /andP in Huniq1. intuition.
Qed.
Lemma pr_rand_perm_list {A: eqType} (l1 l2: seq A):
uniq l1 →
perm_eq l1 l2 →
pr_eq (rvar_of_ldist (rand_perm_list l1)) l2 = 1 / INR ((size l1)`!).
Proof.
intros Huniq Hperm.
rewrite (rand_perm_list_initial l1 l2) //.
rewrite rand_perm_list_id; last first.
{ rewrite -(perm_eq_uniq Hperm). done. }
apply perm_eq_size in Hperm. rewrite Hperm. done.
Qed.
Lemma rand_perm_list_id' {A: eqType} (l1 l2: seq A):
uniq l1 →
uniq l2 →
size l1 = size l2 →
pr_eq (rvar_of_ldist (rand_perm_list l1)) l1 =
pr_eq (rvar_of_ldist (rand_perm_list l2)) l2.
Proof.
intros Hu1 Hu2 Hsize. rewrite ?rand_perm_list_id // Hsize. done.
Qed.
Lemma rand_perm_list_correct {A: eqType} (l: list A):
mspec (rand_perm_list l) (λ l': list A, perm_eq l l').
Proof.
remember (size l) as k eqn: Heq.
revert l Heq.
induction k as [k IH] using (well_founded_induction lt_wf) => l Heq.
destruct l as [| a l]; last destruct l as [| b l].
- rewrite rand_perm_list_unfold. apply mspec_mret => //=.
- rewrite rand_perm_list_unfold. apply mspec_mret => //=.
- rewrite rand_perm_list_unfold.
tbind (λ x, sval x \in a :: b :: l).
{ intros (?&?) => //. }
intros (x&Hin) _.
rewrite /sval. tbind (λ l', perm_eq (rem x [:: a, b & l]) l').
{
eapply IH; eauto. subst. rewrite size_rem //=.
}
intros l' Hperm.
apply mspec_mret.
eapply perm_eq_trans; first apply (perm_to_rem Hin); eauto.
rewrite perm_cons. done.
Qed.
Lemma img_rand_perm_list {A: eqType} (l: list A):
uniq l →
img (rvar_of_ldist (rand_perm_list l)) =i perm_eq l.
Proof.
intros Huniq l'. rewrite img_rvar_of_ldist' mem_undup.
case_eq (l' \in (map snd (rand_perm_list l))).
* intros Htrue. rewrite Htrue.
symmetry. apply rand_perm_list_correct. rewrite /output. auto.
* intros Hnotin.
case_eq (l' \in perm_eq l); rewrite //=.
intros Hl'. exfalso.
move /negP in Hnotin. apply Hnotin.
rewrite -mem_undup.
rewrite -img_rvar_of_ldist'.
apply pr_img. rewrite pr_rand_perm_list //.
specialize (fact_gt0 (size l)). intros Hgt. nify.
apply lt_INR in Hgt. replace (INR 0) with 0 in Hgt by auto.
apply Rlt_gt, Rdiv_lt_0_compat; nra.
Qed.
Lemma permutation_uniform {A: eqType} (l: list A):
uniq l →
uniform_on (rvar_of_ldist (rand_perm_list l)) (img (rvar_of_ldist (rand_perm_list l))).
Proof.
intros Huniq l1 l2 Hin1 Hin2.
rewrite ?pr_rand_perm_list //.
- specialize (img_rand_perm_list l Huniq l2). rewrite /in_mem/mem//=. intros <-. auto.
- specialize (img_rand_perm_list l Huniq l1). rewrite /in_mem/mem//=. intros <-. auto.
Qed.
Lemma INR_fact_gt0 n:
0 < INR (n`!).
Proof.
replace 0 with (INR 0) by auto. apply lt_INR. specialize (fact_gt0 n). intros. nify. done.
Qed.
Lemma filter_rem {A: eqType} (x: A) (s: seq A) (P: pred A):
filter P (rem x s) = rem x (filter P s).
Proof.
induction s => //=.
case: ifP => //=.
- case: ifP.
* rewrite //=. intros ? ->. done.
* rewrite //=; intros HP Heq. rewrite rem_id //.
apply /negP. rewrite mem_filter. move /andP. intros (HP'&?).
move /eqP in Heq. subst. move /negP in HP. apply HP. auto.
- intros Hneq. case: ifP => //= HP. rewrite Hneq. f_equal.
auto.
Qed.
(* TODO: there's a tremendous amount of redundancy and symmetry in the case work *)
Lemma pr_shuffle_then_split {A: eqType} (l: list A) (P Q: pred A) l1 l2 a0
(Ha0: ∀ a, ((~~ P a) ∧ (~~ Q a)) ↔ a = a0)
(HPQ: ∀ a, ~~ (P a && Q a)):
uniq l →
perm_eq (filter P l) l1 →
perm_eq (filter Q l) l2 →
pr_eq (rvar_of_ldist (lrand ← rand_perm_list l; mret (filter P lrand, filter Q lrand)))
(l1, l2) = (1 / INR (size l1)`!) * (1 / INR (size l2)`!).
Proof.
remember (size l) as k eqn:Heq.
revert l l1 l2 Heq.
induction k as [k IH] using (well_founded_induction lt_wf)
=> l l1 l2 Heq Huniq Hperm1 Hperm2.
assert (Ha0Q: ~ Q a0).
{
intros HQ.
specialize (proj2 (Ha0 a0) Init.Logic.eq_refl); auto.
intros (?&?). subst. apply /negP; eauto.
}
assert (Ha0P: ~ P a0).
{
intros HP.
specialize (proj2 (Ha0 a0) Init.Logic.eq_refl); auto.
intros (?&_). subst. apply /negP; eauto.
}
assert (size l = size l1 + size l2 + (a0 \in l))%nat as Hsize_combine.
{
apply perm_eq_size in Hperm1.
apply perm_eq_size in Hperm2.
rewrite -Hperm1.
rewrite -Hperm2.
rewrite ?size_filter.
rewrite -count_predT -count_predUI.
rewrite (@eq_in_count _ (predI P Q) pred0); last first.
{ intros a Hin => //=. apply /negP. specialize (HPQ a). move /negP in HPQ. auto. }
rewrite count_pred0 addn0.
rewrite -count_uniq_mem //.
rewrite -count_predUI //=.
rewrite (@eq_in_count _ (predI (predU P Q) (pred1 a0)) pred0); last first.
{ intros a Hin => //=. apply /andP. intros (Hor&Heq').
move /eqP in Heq'. move /orP in Hor. destruct Hor; subst; auto. }
rewrite count_pred0 addn0. apply eq_in_count.
intros a Hin. rewrite //=. symmetry. apply /orP.
specialize (Ha0 a).
destruct (P a) => //=; auto; [].
destruct (Q a) => //=; auto; [].
right. apply /eqP. apply Ha0; auto.
}
destruct l as [| a1 l]; last destruct l as [| a2 l].
- subst.
rewrite ?rand_perm_list_unfold ?ldist_left_id ?pr_mret_simpl //=.
rewrite //= in Hperm1 Hperm2.
rewrite perm_eq_sym in Hperm1. apply perm_eq_nil in Hperm1.
rewrite perm_eq_sym in Hperm2. apply perm_eq_nil in Hperm2.
subst. rewrite eq_refl //=. field.
- rewrite ?rand_perm_list_unfold ?ldist_left_id ?pr_mret_simpl //=.
rewrite //= in Hperm1 Hperm2.
move: Hperm1 Hperm2.
case: (P a1);
case: (Q a1);
intros Hperm1; rewrite perm_eq_sym in Hperm1;
intros Hperm2; rewrite perm_eq_sym in Hperm2;
try (apply perm_eq_nil in Hperm1);
try (apply perm_eq_singleton in Hperm1);
try (apply perm_eq_nil in Hperm2);
try (apply perm_eq_singleton in Hperm2);
subst; rewrite ?eq_refl //=; field.
- rewrite ?rand_perm_list_unfold ldist_assoc.
destruct l1 as [| a1_ l1]; destruct l2 as [| a2_ l2].
* exfalso. apply perm_eq_nil in Hperm1. apply perm_eq_nil in Hperm2.
{ assert (a1 = a2).
{ transitivity a0.
** apply Ha0; split.
*** move: Hperm1. rewrite //=. case: ifP; auto; try congruence.
*** move: Hperm2. rewrite //=. case: ifP; auto; try congruence.
** symmetry; apply Ha0; split.
*** move: Hperm1. rewrite //=. repeat case: ifP; auto; try congruence.
*** move: Hperm2. rewrite //=. repeat case: ifP; auto; try congruence.
}
subst. rewrite //= in Huniq. move /andP in Huniq. rewrite in_cons eq_refl //= in Huniq.
intuition.
}
* rewrite pr_mbind_ldist2.
assert (Q a2_) as HQa2.
{
cut (is_true (a2_ \in (filter Q [:: a1, a2 & l]))).
{ rewrite mem_filter. move /andP. intuition. }
rewrite (perm_eq_mem Hperm2) in_cons eq_refl //.
}
assert (Hpf: a2_ \in (a1 :: a2 :: l)).
{ apply perm_eq_mem in Hperm2.
specialize (Hperm2 a2_). rewrite mem_filter in Hperm2.
symmetry in Hperm2. rewrite in_cons eq_refl //= in Hperm2.
symmetry in Hperm2. move /andP in Hperm2. destruct Hperm2; auto.
}
rewrite (@big_rem _ _ _ _ (undup _) (exist _ (a2_) Hpf)); last first.
{ rewrite mem_undup. apply draw_next_all. auto. }
case_eq (a0 \in (a1 :: a2 :: l)).
** intros Hpf'.
rewrite (@big_rem _ _ _ _ (rem _ (undup _)) (exist _ (a0) Hpf')); last first.
{
rewrite rem_filter; last apply undup_uniq.
rewrite mem_filter. apply /andP; split.
- rewrite //=. apply /eqP => Heq'. inversion Heq' as [[Heq'']].
subst. auto.
- rewrite mem_undup. by apply draw_next_all.
}
rewrite (rem_filter (exist _ _ Hpf')); last first.
{ apply rem_uniq, undup_uniq. }
rewrite (rem_filter (exist _ a2_ Hpf)); last first.
{ apply undup_uniq. }
rewrite -filter_predI.
rewrite big_filter.
rewrite big1.
{ rewrite ?draw_next_pr //.
rewrite /sval. rewrite ?ldist_fmap_bind. simpl filter.
rewrite HQa2.
assert ( P a2_ = false) as ->.
{ apply /negP. intros HP. specialize (HPQ a2_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
assert ( P a0 = false) as -> by (apply /negP; auto).
assert ( Q a0 = false) as -> by (apply /negP; auto).
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, a2_ :: snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, a2_ :: snd ls)) ([::], l2)); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, snd ls)) ([::], l2)); last first.
{ intros (?&?) (?&?). rewrite //=. }
rewrite (IH (size (rem a2_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq);
first (rewrite (IH (size (rem a0 [:: a1, a2 & l]))));
try (rewrite size_rem //=); try by apply rem_uniq.
**** simpl size. rewrite fact0. replace (INR 1) with 1 by auto.
rewrite ?S_INR ?factS mult_INR ?S_INR //=.
rewrite Hpf' //= in Hsize_combine.
assert (size l = size l2) as ->.
{ nify. omega. }
field => //=.
specialize (INR_fact_gt0 (size l2)); intros.
specialize (pos_INR (size l2)); intros.
repeat split; nra.
**** subst. rewrite //=.
**** rewrite filter_rem. replace [::] with (rem a0 [::]) by auto.
apply perm_eq_rem. done.
**** rewrite filter_rem. replace (a2_ :: l2) with (rem a0 (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm2) mem_filter. move /andP. intros (?&?); auto.
**** subst. rewrite //=.
**** rewrite filter_rem. replace [::] with (rem a2_ [::]) by auto.
apply perm_eq_rem. done.
**** rewrite filter_rem. replace (l2) with (rem a2_ (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
}
intros (i&?) Hin. apply Rmult_eq_0_compat_l.
rewrite //= in Hin.
rewrite ldist_fmap_bind.
apply pr_mbind_mret_inj0. intros lrest.
intros Heq'. inversion Heq' as [[Heq1 Heq2]].
case_eq (P i); first (intros HP; rewrite HP in Heq1; inversion Heq1).
intros HnP.
case_eq (Q i).
{ intros HQ. rewrite HQ in Heq2. inversion Heq2. move /andP in Hin.
destruct Hin as (_&Hin). move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnQ.
assert (i = a0).
{ apply Ha0. rewrite HnP HnQ //. }
subst.
move /andP in Hin. destruct Hin as (Hin&?). move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance.
** intros Hpf'.
rewrite (rem_filter (exist _ a2_ Hpf)); last first.
{ apply undup_uniq. }
rewrite big_filter.
rewrite big1.
{ rewrite ?draw_next_pr //.
rewrite /sval. rewrite ?ldist_fmap_bind. simpl filter.
rewrite HQa2.
assert ( P a2_ = false) as ->.
{ apply /negP. intros HP. specialize (HPQ a2_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, a2_ :: snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, a2_ :: snd ls)) ([::], l2)); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite (IH (size (rem a2_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq).
**** simpl size. rewrite fact0. replace (INR 1) with 1 by auto.
rewrite ?S_INR ?factS mult_INR ?S_INR //=.
rewrite Hpf' //= in Hsize_combine.
assert (S (size l) = size l2) as <-.
{ nify. omega. }
rewrite factS mult_INR ?S_INR.
field => //=.
specialize (INR_fact_gt0 (size l)); intros.
specialize (pos_INR (size l)); intros.
repeat split; nra.
**** subst. rewrite //=.
**** rewrite filter_rem. replace [::] with (rem a2_ [::]) by auto.
apply perm_eq_rem. done.
**** rewrite filter_rem. replace (l2) with (rem a2_ (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
}
intros (i&Hin') Hin. apply Rmult_eq_0_compat_l.
rewrite //= in Hin.
rewrite ldist_fmap_bind.
apply pr_mbind_mret_inj0. intros lrest.
intros Heq'. inversion Heq' as [[Heq1 Heq2]].
case_eq (P i); first (intros HP; rewrite HP in Heq1; inversion Heq1).
intros HnP.
case_eq (Q i).
{ intros HQ. rewrite HQ in Heq2. inversion Heq2.
move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnQ.
assert (i = a0).
{ apply Ha0. rewrite HnP HnQ //. }
subst. clear -Hin' Hpf'. move /negP in Hpf'. apply Hpf'.
rewrite /in_mem. done.
* rewrite pr_mbind_ldist2.
assert (P a1_) as HPa2.
{
cut (is_true (a1_ \in (filter P [:: a1, a2 & l]))).
{ rewrite mem_filter. move /andP. intuition. }
rewrite (perm_eq_mem Hperm1) in_cons eq_refl //.
}
assert (Hpf: a1_ \in (a1 :: a2 :: l)).
{ apply perm_eq_mem in Hperm1.
specialize (Hperm1 a1_). rewrite mem_filter in Hperm1.
symmetry in Hperm1. rewrite in_cons eq_refl //= in Hperm1.
symmetry in Hperm1. move /andP in Hperm1. destruct Hperm1; auto.
}
rewrite (@big_rem _ _ _ _ (undup _) (exist _ (a1_) Hpf)); last first.
{ rewrite mem_undup. apply draw_next_all. auto. }
case_eq (a0 \in (a1 :: a2 :: l)).
** intros Hpf'.
rewrite (@big_rem _ _ _ _ (rem _ (undup _)) (exist _ (a0) Hpf')); last first.
{
rewrite rem_filter; last apply undup_uniq.
rewrite mem_filter. apply /andP; split.
- rewrite //=. apply /eqP => Heq'. inversion Heq' as [[Heq'']].
subst. auto.
- rewrite mem_undup. by apply draw_next_all.
}
rewrite (rem_filter (exist _ _ Hpf')); last first.
{ apply rem_uniq, undup_uniq. }
rewrite (rem_filter (exist _ a1_ Hpf)); last first.
{ apply undup_uniq. }
rewrite -filter_predI.
rewrite big_filter.
rewrite big1.
{ rewrite ?draw_next_pr //.
rewrite /sval. rewrite ?ldist_fmap_bind. simpl filter.
rewrite HPa2.
assert ( Q a1_ = false) as ->.
{ apply /negP. intros HP. specialize (HPQ a1_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
assert ( P a0 = false) as -> by (apply /negP; auto).
assert ( Q a0 = false) as -> by (apply /negP; auto).
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (a1_ :: fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (a1_ :: fst ls, snd ls)) (l1, [::])); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, snd ls)) (l1, [::])); last first.
{ intros (?&?) (?&?). rewrite //=. }
rewrite (IH (size (rem a1_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq);
first (rewrite (IH (size (rem a0 [:: a1, a2 & l]))));
try (rewrite size_rem //=); try by apply rem_uniq.
**** simpl size. rewrite fact0. replace (INR 1) with 1 by auto.
rewrite ?S_INR ?factS mult_INR ?S_INR //=.
rewrite Hpf' //= in Hsize_combine.
assert (size l = size l1) as ->.
{ nify. omega. }
field => //=.
specialize (INR_fact_gt0 (size l1)); intros.
specialize (pos_INR (size l1)); intros.
repeat split; nra.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (a1_ :: l1) with (rem a0 (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm1) mem_filter. move /andP. intros (?&?); auto.
**** rewrite filter_rem. replace [::] with (rem a0 [::]) by auto.
apply perm_eq_rem. done.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (l1) with (rem a1_ (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
**** rewrite filter_rem. replace [::] with (rem a1_ [::]) by auto.
apply perm_eq_rem. done.
}
intros (i&?) Hin. apply Rmult_eq_0_compat_l.
rewrite //= in Hin.
rewrite ldist_fmap_bind.
apply pr_mbind_mret_inj0. intros lrest.
intros Heq'. inversion Heq' as [[Heq1 Heq2]].
case_eq (Q i); first (intros HQ; rewrite HQ in Heq2; inversion Heq2).
intros HnQ.
case_eq (P i).
{ intros HP. rewrite HP in Heq1. inversion Heq1. move /andP in Hin.
destruct Hin as (_&Hin). move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnP.
assert (i = a0).
{ apply Ha0. rewrite HnP HnQ //. }
subst.
move /andP in Hin. destruct Hin as (Hin&?). move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance.
** intros Hpf'.
rewrite (rem_filter (exist _ a1_ Hpf)); last first.
{ apply undup_uniq. }
rewrite big_filter.
rewrite big1.
{ rewrite ?draw_next_pr //.
rewrite /sval. rewrite ?ldist_fmap_bind. simpl filter.
rewrite HPa2.
assert ( Q a1_ = false) as ->.
{ apply /negP. intros HP. specialize (HPQ a1_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (a1_ :: fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (a1_ :: fst ls, snd ls)) (l1, [::])); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite (IH (size (rem a1_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq).
**** simpl size. rewrite fact0. replace (INR 1) with 1 by auto.
rewrite ?S_INR ?factS mult_INR ?S_INR //=.
rewrite Hpf' //= in Hsize_combine.
assert (S (size l) = size l1) as <-.
{ nify. omega. }
rewrite factS mult_INR ?S_INR.
field => //=.
specialize (INR_fact_gt0 (size l)); intros.
specialize (pos_INR (size l)); intros.
repeat split; nra.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (l1) with (rem a1_ (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
**** rewrite filter_rem. replace [::] with (rem a1_ [::]) by auto.
apply perm_eq_rem. done.
}
intros (i&Hin') Hin. apply Rmult_eq_0_compat_l.
rewrite //= in Hin.
rewrite ldist_fmap_bind.
apply pr_mbind_mret_inj0. intros lrest.
intros Heq'. inversion Heq' as [[Heq1 Heq2]].
case_eq (Q i); first (intros HQ; rewrite HQ in Heq2; inversion Heq2).
intros HnQ.
case_eq (P i).
{ intros HP. rewrite HP in Heq1. inversion Heq1.
move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnP.
assert (i = a0).
{ apply Ha0. rewrite HnP HnQ //. }
subst. clear -Hin' Hpf'. move /negP in Hpf'. apply Hpf'.
rewrite /in_mem. done.
* rewrite pr_mbind_ldist2.
assert (P a1_) as HPa1.
{
cut (is_true (a1_ \in (filter P [:: a1, a2 & l]))).
{ rewrite mem_filter. move /andP. intuition. }
rewrite (perm_eq_mem Hperm1) in_cons eq_refl //.
}
assert (Q a2_) as HQa2.
{
cut (is_true (a2_ \in (filter Q [:: a1, a2 & l]))).
{ rewrite mem_filter. move /andP. intuition. }
rewrite (perm_eq_mem Hperm2) in_cons eq_refl //.
}
assert (Hpf1: a1_ \in (a1 :: a2 :: l)).
{ apply perm_eq_mem in Hperm1.
specialize (Hperm1 a1_). rewrite mem_filter in Hperm1.
symmetry in Hperm1. rewrite in_cons eq_refl //= in Hperm1.
symmetry in Hperm1. move /andP in Hperm1. destruct Hperm1; auto.
}
rewrite (@big_rem _ _ _ _ (undup _) (exist _ (a1_) Hpf1)); last first.
{ rewrite mem_undup. apply draw_next_all. auto. }
assert (Hpf2: a2_ \in ((a1 :: a2 :: l))).
{ apply perm_eq_mem in Hperm2.
specialize (Hperm2 a2_). rewrite mem_filter in Hperm2.
symmetry in Hperm2. rewrite in_cons eq_refl //= in Hperm2.
symmetry in Hperm2. move /andP in Hperm2. destruct Hperm2; auto.
}
rewrite (@big_rem _ _ _ _ (rem _ (undup _)) (exist _ (a2_) Hpf2)); last first.
{ rewrite rem_filter; last by apply undup_uniq. rewrite mem_filter mem_undup.
apply /andP; split.
* rewrite //=. apply /eqP. intros Heq'. inversion Heq'. subst.
specialize (HPQ a1_). move /negP in HPQ. apply HPQ. apply /andP; split; auto.
* apply draw_next_all; auto.
}
case_eq (a0 \in (a1 :: a2 :: l)).
** intros Hpf'.
rewrite (@big_rem _ _ _ _ (rem _ (rem _ (undup _))) (exist _ (a0) Hpf')); last first.
{
rewrite ?rem_filter //; [| apply undup_uniq | apply filter_uniq, undup_uniq
| apply undup_uniq ].
rewrite ?mem_filter. repeat (apply /andP; split).
- rewrite //=. apply /eqP => Heq'. inversion Heq' as [[Heq'']].
subst. auto.
- rewrite //=. apply /eqP => Heq'. inversion Heq' as [[Heq'']].
subst. auto.
- rewrite mem_undup. by apply draw_next_all.
}
rewrite (rem_filter (exist _ _ Hpf')); last first.
{ apply rem_uniq, rem_uniq, undup_uniq. }
rewrite (rem_filter (exist _ a1_ Hpf1)); last first.
{ apply undup_uniq. }
rewrite (rem_filter (exist _ a2_ Hpf2)); last first.
{ apply filter_uniq, undup_uniq. }
rewrite -?filter_predI.
rewrite big_filter.
rewrite big1.
{ rewrite ?draw_next_pr //.
rewrite /sval. rewrite ?ldist_fmap_bind. simpl filter.
rewrite HPa1 HQa2.
assert ( Q a1_ = false) as HnQ1.
{ apply /negP. intros HP. specialize (HPQ a1_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
rewrite HnQ1.
assert ( P a2_ = false) as HnP2.
{ apply /negP. intros HP. specialize (HPQ a2_). move /negP in (HPQ).
apply HPQ. apply /andP. intuition. }
rewrite HnP2.
assert ( P a0 = false) as -> by (apply /negP; auto).
assert ( Q a0 = false) as -> by (apply /negP; auto).
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, snd ls)) (a1_ :: l1, a2_ ::l2)); last first.
{ intros (?&?) (?&?). rewrite //=. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (a1_ :: fst ls, snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (a1_ :: fst ls, snd ls)) (l1, a2_ :: l2)); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite -(ldist_fmap_bind _ (λ l, ([seq x <- l | P x],
[seq x <- l | Q x]))
(λ ls, mret (fst ls, a2_ :: snd ls))).
rewrite (pr_mbind_mret_inj _ (λ ls, (fst ls, a2_ :: snd ls)) (a1_ :: l1, l2)); last first.
{ intros (?&?) (?&?). rewrite //=. inversion 1. congruence. }
rewrite (IH (size (rem a1_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq);
first rewrite (IH (size (rem a2_ [:: a1, a2 & l]))); eauto;
try (rewrite size_rem //=); try (by apply rem_uniq);
first (rewrite (IH (size (rem a0 [:: a1, a2 & l]))));
try (rewrite size_rem //=); try by apply rem_uniq.
**** simpl size. replace (INR 1) with 1 by auto.
rewrite ?S_INR ?factS mult_INR ?S_INR //=.
rewrite Hpf' //= in Hsize_combine.
assert (size l = size l1 + size l2 + 1)%nat as ->.
{ nify. omega. }
rewrite ?S_INR ?factS ?plus_INR ?mult_INR ?S_INR //=.
field => //=.
specialize (INR_fact_gt0 (size l1)); intros.
specialize (INR_fact_gt0 (size l2)); intros.
specialize (pos_INR (size l1)); intros.
specialize (pos_INR (size l2)); intros.
repeat split; nra.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (a1_ :: l1) with (rem a0 (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm1) mem_filter. move /andP. intros (?&?); auto.
**** rewrite filter_rem. replace (a2_ :: l2) with (rem a0 (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm2) mem_filter. move /andP. intros (?&?); auto.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (a1_ :: l1) with (rem a2_ (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm1) mem_filter. move /andP. intros (?&?); auto.
move /negP in HnP2. auto.
**** rewrite filter_rem. replace (l2) with (rem a2_ (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
**** subst. rewrite //=.
**** rewrite filter_rem. replace (l1) with (rem a1_ (a1_ :: l1)); first
by apply perm_eq_rem.
rewrite //= eq_refl. done.
**** rewrite filter_rem. replace (a2_ :: l2) with (rem a1_ (a2_ :: l2)); first
by apply perm_eq_rem.
rewrite rem_id //. apply /negP.
rewrite -(perm_eq_mem Hperm2) mem_filter. move /andP. intros (?&?); auto.
move /negP in HnQ1. auto.
}
intros (i&?) Hin. apply Rmult_eq_0_compat_l.
rewrite //= in Hin.
rewrite ldist_fmap_bind.
apply pr_mbind_mret_inj0. intros lrest.
intros Heq'. inversion Heq' as [[Heq1 Heq2]].
case_eq (Q i).
{ intros HQ. rewrite HQ in Heq2. inversion Heq2. move /andP in Hin.
destruct Hin as (Hin&_). move /andP in Hin. destruct Hin as (_&Hin).
move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnQ.
case_eq (P i).
{ intros HP. rewrite HP in Heq1. inversion Heq1. move /andP in Hin.
destruct Hin as (_&Hin). move /negP in Hin. apply Hin. subst.
apply /eqP; f_equal. apply bool_irrelevance. }
intros HnP.
assert (i = a0).
{ apply Ha0. rewrite HnP HnQ //. }
subst.
move /andP in Hin. destruct Hin as (Hin&?). move /andP in Hin.
destruct Hin as (Hin&_). move /negP in Hin. apply Hin.
apply /eqP; f_equal. apply bool_irrelevance.
** intros Hpf'.
rewrite (rem_filter (exist _ a1_ Hpf1)); last first.
{ apply undup_uniq. }
rewrite (rem_filter (exist _ a2_ Hpf2)); last first.
{ apply filter_uniq, undup_uniq. }