forked from jmfaleiro/multiversioning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean.py
executable file
·307 lines (274 loc) · 9.88 KB
/
clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/python
import os
import sys
import math
def confidence_interval(vals):
# vals.sort()
# cutoff = int(float(len(vals)) * 0.7)
# temp = vals[0:cutoff]
# vals = temp
sample_mean = sum(vals) / float(len(vals))
dev = 0
for v in vals:
dev += (sample_mean - v) * (sample_mean - v)
s = math.sqrt(dev / float(len(vals)))
conf_min = sample_mean - 1.96 * s
conf_max = sample_mean + 1.96 * s
return [sample_mean/float(1000), conf_min/float(1000), conf_max/float(1000)]
def compute_avg_records(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("threads:"):
threads_str = s[len("threads:"):]
threads = int(threads_str)
elif s.startswith("theta:"):
theta_str = s[len("theta:"):]
theta = float(theta_str)
elif s.startswith("records:"):
records_str = s[len("records:"):]
records = int(records_str)
contention = 1.0 / float(records)
throughput = (1.0*txns)/time
if not contention in throughput_dict:
throughput_dict[contention] = []
throughput_dict[contention].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def compute_avg_locking_theta(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("threads:"):
threads_str = s[len("threads:"):]
threads = int(threads_str)
elif s.startswith("theta:"):
theta_str = s[len("theta:"):]
theta = float(theta_str)
throughput = (1.0*txns)/time
if not theta in throughput_dict:
throughput_dict[theta] = []
throughput_dict[theta].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def compute_avg_mv_theta(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
threads = 0
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("ccthreads:"):
threads_str = s[len("ccthreads:"):]
threads += int(threads_str)
elif s.startswith("workerthreads:"):
threads_str = s[len("workerthreads:"):]
threads += int(threads_str)
elif s.startswith("theta:"):
theta_str = s[len("theta:"):]
theta = float(theta_str)
throughput = (1.0*txns)/time
if not theta in throughput_dict:
throughput_dict[theta] = []
throughput_dict[theta].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def compute_avg_mv(input_file, only_worker):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
threads = 0
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("ccthreads:") and (not only_worker):
threads_str = s[len("ccthreads:"):]
threads += int(threads_str)
elif s.startswith("workerthreads:"):
threads_str = s[len("workerthreads:"):]
threads += int(threads_str)
throughput = (1.0*txns)/time
if not threads in throughput_dict:
throughput_dict[threads] = []
throughput_dict[threads].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def compute_avg_locking(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("threads:"):
threads_str = s[len("threads:"):]
threads = int(threads_str)
throughput = (1.0*txns)/time
if not threads in throughput_dict:
throughput_dict[threads] = []
throughput_dict[threads].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def compute_avg_hot(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
splits = line.split()
sz = 10
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("txn_size:"):
sz_str = s[len("txn_size:"):]
sz = int(sz_str)
elif s.startswith("hot_position:"):
hot_str = s[len("hot_position:"):]
hot = int(hot_str)
key = float(sz - (hot + 1)) / float(sz)
throughput = float(txns) / float(time)
if not key in throughput_dict:
throughput_dict[key] = []
throughput_dict[key].append(throughput*1000)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
return throughput_dict
def write_output(output_dict, output_filename):
outpt = open(output_filename, 'w')
keys = output_dict.keys()
print keys
keys.sort()
for k in keys:
output_lst = confidence_interval(output_dict[k])
output_line = str(k) + " " + str(output_lst[0]) + " " + str(output_lst[1]) + " " + str(output_lst[2]) + "\n"
outpt.write(output_line)
outpt.close()
def theta_fn(input_type, input_file, output_file):
if input_type == "locking":
my_dict = compute_avg_locking_theta(input_file)
elif input_type == "mv":
my_dict = compute_avg_mv_theta(input_file)
write_output(my_dict, output_file)
def hot_fn(input_file, output_file):
my_dict = compute_avg_hot(input_file)
write_output(my_dict, output_file)
def clean_fn(input_type, input_file, output_file, only_worker=False):
if input_type == "locking":
my_dict = compute_avg_locking(input_file)
elif input_type == "mv":
my_dict = compute_avg_mv(input_file, only_worker)
elif input_type == "occ":
my_dict = compute_avg_locking(input_file)
write_output(my_dict, output_file)
def list_times(input_file):
ret = []
inpt = open(input_file)
for line in inpt:
splits = line.split()
cur = {}
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
cur["time"] = time
elif s.startswith("ccthreads:"):
threads_str = s[len("ccthreads:"):]
threads = int(threads_str)
cur["threads"] = threads
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
cur["txns"] = txns
if "threads" in cur and "time" in cur and "txns" in cur:
ret.append(cur)
break
inpt.close()
return ret
def cc_throughput(input_file):
inpt = open(input_file)
throughput_dict = {}
for line in inpt:
threads = 0
splits = line.split()
for s in splits:
if s.startswith("time:"):
time_str = s[len("time:"):]
time = float(time_str)
elif s.startswith("txns:"):
txns_str = s[len("txns:"):]
txns = int(txns_str)
elif s.startswith("ccthreads:"):
threads_str = s[len("ccthreads:"):]
threads = int(threads_str)
throughput = (1.0*txns)/time
if not threads in throughput_dict:
throughput_dict[threads] = []
throughput_dict[threads].append(throughput)
for key in throughput_dict:
thpt_list = throughput_dict[key]
thpt_list.sort()
inpt.close()
print throughput_dict
return throughput_dict
def cc_fn(input_file, output_file):
my_dict = cc_throughput(input_file)
write_output(my_dict, output_file)
def records_fn(input_file, output_file):
my_dict = compute_avg_records(input_file)
write_output(my_dict, output_file)
def main():
records_fn(sys.argv[1], sys.argv[2])
if __name__ == "__main__":
main()