Skip to content

exponential smoothing in Pyspark #16

Open
@NamrataRade

Description

@NamrataRade

Hello, I have a pandas code for exponential smoothening. But I am not able to do the same in pyspark.
def exponential_smoothing(x, alpha):
result = []
for value in x:
if result:
smoothed_value = alpha * value + (1 - alpha) * result[-1]
else:
smoothed_value = value
result.append(smoothed_value)
return result
def apply_exponential_smoothing(df, alpha):
df['product_area_sales_value_N_mean_T'] = df.groupby(['area_id', 'product_id'])['product_area_sales_value_N_mean'].transform(lambda x: exponential_smoothing(x, alpha))
df['product_area_sales_unit_N_mean_T'] = df.groupby(['area_id', 'product_id'])['product_area_sales_unit_N_mean'].transform(lambda x: exponential_smoothing(x, alpha))
return df

tmp3 = apply_exponential_smoothing(tmp3, alpha=0.8)
this is the code. here in pyspark, I am not able to fetch previous row smoothen value. there is no such functionality in pyspark. Please suggest solution in spark

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions