Skip to content

Latest commit

 

History

History
 
 

tadw

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Network Representation Learning with Rich Text Information (TADW)

Dataset Statics

Dataset # Nodes # Edges # Classes
Cora 2,708 10,556 7
Citeseer 3,327 9,228 6

Refer to Planetoid.

Performance

For all the datasets: The training ratio is 50% for linear SVM.

Dataset Paper(10%) Paper(20%) Paper(30%) Paper(40%) Paper(50%) Our(tf) Our(th) Our(pd) Our(ms)
Cora 82.4 85.0 85.6 86.0 86.7 84.43(±0.37) 84.42(±0.96) 84.34(±0.64) 84.08(±0.53)
Citeseer 70.6 71.9 73.3 73.7 74.2 74.09(±1.11) 74.41(±0.58) 73.92(±0.72) 73.87(±0.57)
TL_BACKEND="tensorflow" python tadw_trainer.py --dataset cora --lr 0.2 --n_epoch 100 --embedding_dim 80 --lamda 0.2 --svdft 200 
TL_BACKEND="torch" python tadw_trainer.py --dataset cora --lr 0.2 --n_epoch 100 --embedding_dim 80 --lamda 0.2 --svdft 200
TL_BACKEND="paddle" python tadw_trainer.py --dataset cora --lr 0.2 --n_epoch 100 --embedding_dim 80 --lamda 0.2 --svdft 200
TL_BACKEND="mindspore" python tadw_trainer.py --dataset cora --lr 0.2 --n_epoch 100 --embedding_dim 80 --lamda 0.2 --svdft 200
TL_BACKEND="torch" python tadw_trainer.py --dataset citeseer --lr 0.1 --n_epoch 50 --embedding_dim 500 --lamda 0.5 --svdft 300
TL_BACKEND="tensorflow" python tadw_trainer.py --dataset citeseer --lr 0.1 --n_epoch 50 --embedding_dim 500 --lamda 0.5 --svdft 300
TL_BACKEND="paddle" python tadw_trainer.py --dataset citeseer --lr 0.1 --n_epoch 50 --embedding_dim 500 --lamda 0.5 --svdft 300
TL_BACKEND="mindspore" python tadw_trainer.py --dataset citeseer --lr 0.1 --n_epoch 50 --embedding_dim 500 --lamda 0.5 --svdft 300