diff --git a/jwst/resample/tests/test_resample_step.py b/jwst/resample/tests/test_resample_step.py index c9eb4ec1b5..597e6882a6 100644 --- a/jwst/resample/tests/test_resample_step.py +++ b/jwst/resample/tests/test_resample_step.py @@ -884,15 +884,17 @@ def test_custom_refwcs_resample_imaging(nircam_rate, output_shape2, match, rng = np.random.default_rng(seed=77) im.data[:, :] = rng.random(im.data.shape) - crpix = (600, 550) - crval = (22.04, 11.98) + if output_shape2 is None: + crpix = None + else: + crpix = (output_shape2[-1] // 2, output_shape2[-2] // 2) + crval = tuple(np.mean(im.meta.wcs.footprint(), axis=0)) rotation = 15 ratio = 0.7 - # first pass - create a reference output WCS: result = ResampleStep.call( im, - output_shape=(1205, 1100), + output_shape=output_shape2, crpix=crpix, crval=crval, rotation=rotation, @@ -901,11 +903,15 @@ def test_custom_refwcs_resample_imaging(nircam_rate, output_shape2, match, # make sure results are nontrivial data1 = result.data + weight1 = result.wht + assert not np.all(np.isnan(data1)) + if crpix is not None: + assert np.allclose(result.meta.wcs(*crpix), crval, rtol=1e-12, atol=0) + refwcs = str(tmp_path / "resample_refwcs.asdf") - result.meta.wcs.bounding_box = [(-0.5, 1204.5), (-0.5, 1099.5)] - asdf.AsdfFile({"wcs": result.meta.wcs}).write_to(refwcs) + asdf.AsdfFile({"wcs": result.meta.wcs, "array_shape": data1.shape}).write_to(refwcs) result = ResampleStep.call( im, @@ -914,6 +920,7 @@ def test_custom_refwcs_resample_imaging(nircam_rate, output_shape2, match, ) data2 = result.data + weight2 = result.wht assert not np.all(np.isnan(data2)) if output_shape2 is not None: @@ -922,17 +929,21 @@ def test_custom_refwcs_resample_imaging(nircam_rate, output_shape2, match, if match: # test output image shape assert data1.shape == data2.shape - assert np.allclose(data1, data2, equal_nan=True) + assert np.allclose(data1, data2, equal_nan=True, rtol=1.0e-7, atol=1e-7) # make sure pixel values are similar, accounting for scale factor # (assuming inputs are in surface brightness units) - iscale = np.sqrt(im.meta.photometry.pixelarea_steradians - / compute_image_pixel_area(im.meta.wcs)) + iscale2 = ( + im.meta.photometry.pixelarea_steradians / + compute_image_pixel_area(im.meta.wcs) + ) + input_mean = np.nanmean(im.data) - output_mean_1 = np.nanmean(data1) - output_mean_2 = np.nanmean(data2) - assert np.isclose(input_mean * iscale**2, output_mean_1, atol=1e-4) - assert np.isclose(input_mean * iscale**2, output_mean_2, atol=1e-4) + total_weight = np.sum(weight1) + output_mean_1 = np.nansum(data1 * weight1) / total_weight + output_mean_2 = np.nansum(data2 * weight2) / total_weight + assert np.isclose(input_mean * iscale2, output_mean_1) + assert np.isclose(input_mean * iscale2, output_mean_2) im.close() result.close()