You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi thank you for sharing this repo.
I have successfully trained a model with fasterrcnn_squeezenet1_1_small_head.
But while converting the model to onnx, I get some error.
"torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator get_pool_ceil_padding, input size not accessible. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues [Caused by the value '219 defined in (%219 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=1, device=cpu) = onnx::Relu(%input.7), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.activation.ReLU::backbone.1 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/functional.py:1469:0
)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Relu'.]"
"Inputs:
#0: input.7 defined in (%input.7 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2]](%input.3, %backbone.0.weight, %backbone.0.bias), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.conv.Conv2d::backbone.0 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/modules/conv.py:456:0
) (type 'Tensor')
Outputs:
#0: 219 defined in (%219 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=1, device=cpu) = onnx::Relu(%input.7), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.activation.ReLU::backbone.1 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/functional.py:1469:0
) (type 'Tensor')"
If you have any idea how to tackle this that will be helpful.
thanks.
The text was updated successfully, but these errors were encountered:
Hi. Can you please check that you have PyTorch version at least 1.12.1 and ONNX version 1.12.0?
I trained Faster RCNN ResNet FPN V2 with PyTorch 2.2.0 and was able to successfully covert with ONNX version 1.120. I have also update the requirements file with proper ONNX versions for conversion and GPU and CPU inference.
Hi thank you for sharing this repo.
I have successfully trained a model with fasterrcnn_squeezenet1_1_small_head.
But while converting the model to onnx, I get some error.
"torch.onnx.errors.SymbolicValueError: Unsupported: ONNX export of operator get_pool_ceil_padding, input size not accessible. Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues [Caused by the value '219 defined in (%219 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=1, device=cpu) = onnx::Relu(%input.7), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.activation.ReLU::backbone.1 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/functional.py:1469:0
)' (type 'Tensor') in the TorchScript graph. The containing node has kind 'onnx::Relu'.]"
"Inputs:
#0: input.7 defined in (%input.7 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=0, device=cpu) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2]](%input.3, %backbone.0.weight, %backbone.0.bias), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.conv.Conv2d::backbone.0 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/modules/conv.py:456:0
) (type 'Tensor')
Outputs:
#0: 219 defined in (%219 : Float(1, 64, *, *, strides=[10188864, 159201, 399, 1], requires_grad=1, device=cpu) = onnx::Relu(%input.7), scope: torchvision.models.detection.faster_rcnn.FasterRCNN::/torch.nn.modules.container.Sequential::backbone/torch.nn.modules.activation.ReLU::backbone.1 # /home/subhajit/miniconda3/envs/detectron/lib/python3.8/site-packages/torch/nn/functional.py:1469:0
) (type 'Tensor')"
The text was updated successfully, but these errors were encountered: