diff --git a/inference.py b/inference.py index 98070cec..ea2936fa 100644 --- a/inference.py +++ b/inference.py @@ -283,7 +283,7 @@ def main(args): df = pandas.DataFrame.from_dict(pred_boxes, orient='index') df = df.fillna(0) - df.to_csv(f"{OUT_DIR}/boxes.csv", index=False, sep=' ') + df.to_csv(f"{OUT_DIR}/boxes.csv", index=False) if args['log_json']: log_json.update(orig_image, image_name, draw_boxes, labels, CLASSES) diff --git a/requirements.txt b/requirements.txt index a1b21cc6..235e5eb0 100644 --- a/requirements.txt +++ b/requirements.txt @@ -33,6 +33,9 @@ torchmetrics # Evaluation # Transformer based models. vision_transformers +# SAHI inference +sahi + # Export----------------------------------- # onnxruntime==1.15 # CPU execution. # onnx==1.12.0 diff --git a/sahi_inference.py b/sahi_inference.py new file mode 100644 index 00000000..f3542d7e --- /dev/null +++ b/sahi_inference.py @@ -0,0 +1,335 @@ +""" +SAHI image inference with Faster RCNN pretrained models. +Only available for torchvision models. +Model Keys that can be used: +- fasterrcnn_resnet50_fpn_v2 +- fasterrcnn_resnet50_fpn +- fasterrcnn_mobilenet_v3_large_fpn +- fasterrcnn_mobilenetv3_large_320_fpn +""" + +import numpy as np +import cv2 +import torch +import os +import time +import argparse +import yaml +import matplotlib.pyplot as plt +import pandas +import glob as glob + +from sahi import AutoDetectionModel +from sahi.predict import get_sliced_prediction +from sahi.utils.file import list_files + +from models.create_fasterrcnn_model import create_model +from utils.annotations import inference_annotations, convert_detections +from utils.general import set_infer_dir +from utils.transforms import resize +from utils.logging import LogJSON + +def collect_all_images(dir_test): + """ + Function to return a list of image paths. + + :param dir_test: Directory containing images or single image path. + + Returns: + test_images: List containing all image paths. + """ + test_images = [] + if os.path.isdir(dir_test): + image_file_types = ['*.jpg', '*.jpeg', '*.png', '*.ppm'] + for file_type in image_file_types: + test_images.extend(glob.glob(f"{dir_test}/{file_type}")) + else: + test_images.append(dir_test) + return test_images + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument( + '-i', + '--input', + help='folder path to input image (one image or a folder path)' + ) + parser.add_argument( + '-o', + '--output', + default=None, + help='folder path to output data' + ) + parser.add_argument( + '--data', + default=None, + help='(optional) path to the data config file' + ) + parser.add_argument( + '-m', + '--model', + default=None, + help='name of the model' + ) + parser.add_argument( + '-w', + '--weights', + default=None, + help='path to trained checkpoint weights if providing custom YAML file' + ) + parser.add_argument( + '-th', + '--threshold', + default=0.3, + type=float, + help='detection threshold' + ) + parser.add_argument( + '-si', + '--show', + action='store_true', + help='visualize output only if this argument is passed' + ) + parser.add_argument( + '-mpl', + '--mpl-show', + dest='mpl_show', + action='store_true', + help='visualize using matplotlib, helpful in notebooks' + ) + parser.add_argument( + '-d', + '--device', + default=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'), + help='computation/training device, default is GPU if GPU present' + ) + parser.add_argument( + '-ims', + '--imgsz', + default=None, + type=int, + help='resize image to, by default use the original frame/image size' + ) + parser.add_argument( + '-nlb', + '--no-labels', + dest='no_labels', + action='store_true', + help='do not show labels on top of bounding boxes' + ) + parser.add_argument( + '--square-img', + dest='square_img', + action='store_true', + help='whether to use square image resize, else use aspect ratio resize' + ) + parser.add_argument( + '--classes', + nargs='+', + type=int, + default=None, + help='filter classes by visualization, --classes 1 2 3' + ) + parser.add_argument( + '--track', + action='store_true' + ) + parser.add_argument( + '--log-json', + dest='log_json', + action='store_true', + help='store a json log file in COCO format in the output directory' + ) + parser.add_argument( + '-t', + '--table', + dest='table', + action='store_true', + help='outputs a csv file with a table summarizing the predicted boxes' + ) + parser.add_argument( + '--slice-height', + type=int, + default=512, + help='slice height for SAHI' + ) + parser.add_argument( + '--slice-width', + type=int, + default=512, + help='slice width for SAHI' + ) + parser.add_argument( + '--overlap-height-ratio', + type=float, + default=0.2, + help='overlap height ratio for SAHI' + ) + parser.add_argument( + '--overlap-width-ratio', + type=float, + default=0.2, + help='overlap width ratio for SAHI' + ) + args = vars(parser.parse_args()) + return args + +def main(args): + np.random.seed(42) + + data_configs = None + if args['data'] is not None: + with open(args['data']) as file: + data_configs = yaml.safe_load(file) + NUM_CLASSES = data_configs['NC'] + CLASSES = data_configs['CLASSES'] + + DEVICE = args['device'] + OUT_DIR = args['output'] if args['output'] is not None else set_infer_dir() + if not os.path.exists(OUT_DIR): + os.makedirs(OUT_DIR) + + if args['weights'] is None: + if data_configs is None: + with open(os.path.join('data_configs', 'test_image_config.yaml')) as file: + data_configs = yaml.safe_load(file) + NUM_CLASSES = data_configs['NC'] + CLASSES = data_configs['CLASSES'] + try: + build_model = create_model[args['model']] + model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True) + except: + build_model = create_model['fasterrcnn_resnet50_fpn_v2'] + model, coco_model = build_model(num_classes=NUM_CLASSES, coco_model=True) + else: + checkpoint = torch.load(args['weights'], map_location=DEVICE) + if data_configs is None: + data_configs = True + NUM_CLASSES = checkpoint['data']['NC'] + CLASSES = checkpoint['data']['CLASSES'] + try: + print('Building from model name arguments...') + build_model = create_model[str(args['model'])] + except: + build_model = create_model[checkpoint['model_name']] + model = build_model(num_classes=NUM_CLASSES, coco_model=False) + model.load_state_dict(checkpoint['model_state_dict']) + model.to(DEVICE).eval() + + detection_model = AutoDetectionModel.from_pretrained( + model_type='torchvision', + model=model, + confidence_threshold=args['threshold'], + device=args['device'] + ) + + COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) + if args['input'] is None: + DIR_TEST = data_configs['image_path'] + else: + DIR_TEST = args['input'] + test_images = collect_all_images(DIR_TEST) + print(f"Test instances: {len(test_images)}") + + detection_threshold = args['threshold'] + pred_boxes = {} + box_id = 1 + + if args['log_json']: + log_json = LogJSON(os.path.join(OUT_DIR, 'log.json')) + + frame_count = 0 + total_fps = 0 + for i, image_path in enumerate(test_images): + image_name = os.path.splitext(os.path.basename(image_path))[0] + orig_image = cv2.imread(image_path) + frame_height, frame_width, _ = orig_image.shape + RESIZE_TO = args['imgsz'] if args['imgsz'] is not None else frame_width + + start_time = time.time() + result = get_sliced_prediction( + image_path, + detection_model, + slice_height=args['slice_height'], + slice_width=args['slice_width'], + overlap_height_ratio=args['overlap_height_ratio'], + overlap_width_ratio=args['overlap_width_ratio'] + ) + end_time = time.time() + + fps = 1 / (end_time - start_time) + total_fps += fps + frame_count += 1 + + boxes = [] + scores = [] + pred_classes = [] + for object_prediction in result.object_prediction_list: + boxes.append(object_prediction.bbox.to_xyxy()) + scores.append(object_prediction.score.value) + pred_classes.append(object_prediction.category.name) + + if len(boxes) > 0: + draw_boxes = np.array(boxes) + orig_image = inference_annotations( + draw_boxes, + pred_classes, + scores, + CLASSES, + COLORS, + orig_image, + resize(orig_image, RESIZE_TO, square=args['square_img']), + args + ) + + if args['show']: + cv2.imshow('Prediction', orig_image) + cv2.waitKey(1) + if args['mpl_show']: + plt.imshow(orig_image[:, :, ::-1]) + plt.axis('off') + plt.show() + + if args['table']: + for box, label in zip(draw_boxes, pred_classes): + xmin, ymin, xmax, ymax = box + width = xmax - xmin + height = ymax - ymin + pred_boxes[box_id] = { + "image": image_name, + "label": str(label), + "xmin": xmin, + "xmax": xmax, + "ymin": ymin, + "ymax": ymax, + "width": width, + "height": height, + "area": width * height + } + box_id += 1 + + if args['log_json']: + log_json.update(orig_image, image_name, draw_boxes, pred_classes, CLASSES) + + cv2.imwrite(f"{OUT_DIR}/{image_name}.jpg", orig_image) + print(f"Image {i+1} done...") + print('-'*50) + + print('TEST PREDICTIONS COMPLETE') + cv2.destroyAllWindows() + + if args['log_json']: + log_json.save(os.path.join(OUT_DIR, 'log.json')) + + if args['table']: + df = pandas.DataFrame.from_dict(pred_boxes, orient='index') + df = df.fillna(0) + df.to_csv(f"{OUT_DIR}/boxes.csv", index=False) + + avg_fps = total_fps / frame_count + print(f"Average FPS: {avg_fps:.3f}") + print('Path to output files: '+OUT_DIR) + +if __name__ == '__main__': + args = parse_opt() + main(args) \ No newline at end of file