-
Notifications
You must be signed in to change notification settings - Fork 0
/
Question_answer_multi_input_keras.py
31 lines (24 loc) · 1.27 KB
/
Question_answer_multi_input_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from keras.models import Model
from keras import layers
from keras import Input
text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500
text_input = Input(shape=(None,), dtype='int32', name='text')
embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)
question_input = Input(shape=(None,), dtype='int32',name='question')
embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)
concatenated = layers.concatenate([encoded_text, encoded_question],axis=-1)
answer = layers.Dense(answer_vocabulary_size,activation='softmax')(concatenated)
model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['acc'])
import numpy as np
num_samples = 1000
max_length = 100
text = np.random.randint(1, text_vocabulary_size,size=(num_samples, max_length))
question = np.random.randint(1, question_vocabulary_size, size=(num_samples, max_length))
answers = np.random.randint(0, 1,size=(num_samples, answer_vocabulary_size))
model.fit([text, question], answers, epochs=10, batch_size=32)
#model.fit({'text': text, 'question': question}, answers,epochs=10, batch_size=128)