-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtm.html
131 lines (131 loc) · 4.72 KB
/
tm.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>
Transverse Mercator Projection
</title>
<meta name="description" content="Transverse Mercator Projection" />
<meta name="keywords"
content="transverse Mercator projection,
Gauss-Krueger projection,
universal transverse Mercator,
UTM,
conformal projections,
WGS84 ellipsoid,
latitude and longitude" />
<meta name="author" content="Charles F. F. Karney" />
<link rel="stylesheet" type="text/css" href="default.css">
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
</head>
<body topmargin=10 leftmargin=10>
<h3>Transverse Mercator Projection</h3>
<p>
This page is a web resource for the paper
<blockquote>
Charles F. F. Karney,<br>
<a href="https://doi.org/10.1007/s00190-011-0445-3">
<i>Transverse Mercator with an accuracy of a few nanometers</i></a>,<br>
J. Geodesy <b>85</b>(8), 475–485 (Aug. 2011);<br>
preprint <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>
(<a href="https://arxiv.org/pdf/1002.1417">pdf</a>);<br>
<a href="tm-addenda.html">addenda</a>.
</blockquote>
The implementation of the series and exact algorithms are
available as part of GeographicLib which is licensed under the
<a href="http://www.opensource.org/licenses/MIT">MIT/X11 License</a>;
see <a href="html/LICENSE.txt">LICENSE.txt</a> for the terms.
</p>
<ul>
<li>
<a href="index.html">GeographicLib home page</a>
<li>
<a href="html">GeographicLib documentation</a>
<ul>
<li>
The C++ class
<a href="html/classGeographicLib_1_1TransverseMercator.html">
TransverseMercator</a>, which implements the Krüger
series method.
<li>
The C++ class
<a href="html/classGeographicLib_1_1TransverseMercatorExact.html">
TransverseMercatorExact</a>, which implements the Lee's exact
method.
<li>
The utility
<a href="html/TransverseMercatorProj.1.html">
TransverseMercatorProj</a>, for testing the implementations.
<li>
The utility
<a href="html/GeoConvert.1.html">
GeoConvert</a>, for UTM and MGRS conversions and an
<a href="cgi-bin/GeoConvert">
online coordinate converter</a>.
</ul>
<li>
<a href="https://sourceforge.net/projects/geographiclib/files/distrib">
Download GeographicLib</a>
</ul>
<p>
Additional material:
</p>
<ul>
<li>
A good way to visualize the transverse Mercator projection
over the entire global is using
<a href="tm-grid.kmz"
type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>,
which is a Google Earth KML file showing the transverse
Mercator grid (in red) for the WGS84 ellipsoid with grid
spacing 1000 km in the <i>x</i> and <i>y</i> directions. The
scale, <i>k</i> = 0.9998035, has been adjusted so that the
distance from the equator to a pole is 10000 km.<br> If you
open the "tm-grid" folder in Google Earth and check on the
"spherical-transverse-mercator" subfolder, you will also see
the corresponding spherical transverse Mercator grid (in
yellow) conformally mapped to the WGS84 ellipsoid. (This
doesn't have a constant scale on the central meridian.)
<li>
<a href="https://doi.org/10.5281/zenodo.32470">
<i>Test data for the transverse Mercator projection</i></a> <br>
Use only the entries with latitude ≥ 0 for testing an
algorithm with the standard convention for the branch cut.
<li>
Maxima implementation of Lee's exact method (arbitrary precision):
<a href="html/tm.mac">tm.mac</a>
and <a href="html/ellint.mac">ellint.mac</a>. There is brief
documentation at the top of tm.mac.
<li>
The paper gives Krüger's series accurate to 8th order;
<ul>
<li>
<a href="html/transversemercator.html#tmseries">
Krüger's series to 10th order</a>;
<li>
Krüger's series to 30th order,
<a href="html/tmseries30.html">tmseries30.html</a>;
<li>
Maxima code to generate Krüger's series to arbitrary order,
<a href="html/tmseries.mac">tmseries.mac</a> (there is brief
documentation at the top of the file);
<li>
<a href="http://maxima.sourceforge.net/">download maxima</a>.
</ul>
<li>
<a href="https://doi.org/10.2312/GFZ.b103-krueger28">
Krüger's 1912 paper</a>.
<li>
<a href="https://doi.org/10.3138/X687-1574-4325-WM62">
Relevant section of Lee's 1976 paper</a> (price $15).
</ul>
<hr>
<address>Charles Karney
<a href="mailto:[email protected]"><[email protected]></a>
(2017-09-30)</address>
<br>
<a href="https://geographiclib.sourceforge.io">
GeographicLib home
</a>
</body>
</html>