-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbuild_network.py
86 lines (75 loc) · 3.27 KB
/
build_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from __future__ import absolute_import, print_function, unicode_literals
from builtins import dict, str
import sys
from os.path import join as pjoin
import pandas as pd
from indra.tools import assemble_corpus as ac
from process_abs import get_valid_genes
from indra.tools.gene_network import GeneNetwork
from indra import biopax
from assemble_cx import assemble_cx
from assemble_sif import assemble_sif
def read_phosphosite_owl(fname):
bp = biopax.process_owl(fname)
for stmt in bp.statements:
for ev in stmt.evidence:
ev.source_api = 'phosphosite'
ev.epistemics = {'direct': True}
return bp.statements
if __name__ == '__main__':
if len(sys.argv) < 2:
assemble_models = ['pysb', 'sif', 'cx']
else:
model_types = sys.argv[1:]
if 'all' in model_types:
assemble_models = ['pysb', 'sif', 'cx']
else:
assemble_models = sys.argv[1:]
print('Assembling the following model types: %s' % \
', '.join(assemble_models))
print('##############')
outf = 'output/'
reassemble = False
def build_prior(genes, out_file):
gn = GeneNetwork(genes, basename=pjoin(outf, 'pertbio'))
stmts = gn.get_statements(filter=False)
ac.dump_statements(stmts, out_file)
return stmts
if not reassemble:
stmts = ac.load_statements(pjoin(outf, 'preassembled.pkl'))
else:
data_genes = get_valid_genes()
prior_stmts = build_prior(data_genes, pjoin(outf, 'prior.pkl'))
prior_stmts = ac.map_grounding(prior_stmts,
save=pjoin(outf, 'gmapped_prior.pkl'))
#prior_stmts = ac.load_statements(pjoin(outf, 'prior.pkl'))
reach_stmts = ac.load_statements(pjoin(outf, 'pertbio_stmts.pkl'))
reach_stmts = ac.filter_no_hypothesis(reach_stmts)
phosphosite_stmts = read_phosphosite_owl(
'../indra/models/phase3_eval/sources/Kinase_substrates.owl')
reading_stmts = reach_stmts + phosphosite_stmts
reading_stmts = ac.map_grounding(reading_stmts,
save=pjoin(outf, 'gmapped_reading.pkl'))
stmts = prior_stmts + reading_stmts
stmts = ac.filter_grounded_only(stmts)
stmts = ac.filter_genes_only(stmts, specific_only=False)
stmts = ac.filter_human_only(stmts)
stmts = ac.expand_families(stmts)
#stmts = ac.filter_gene_list(stmts, data_genes, 'one')
stmts = ac.map_sequence(stmts, save=pjoin(outf, 'smapped.pkl'))
#stmts = ac.load_statements(pjoin(outf, 'smapped.pkl'))
stmts = ac.run_preassembly(stmts, return_toplevel=False,
save=pjoin(outf, 'preassembled.pkl'),
poolsize=16)
### PySB assembly
if 'pysb' in assemble_models:
pysb_model = assemble_pysb(stmts, data_genes,
pjoin(outf, 'pertbio_model_pysb.py'))
### SIF assembly
if 'sif' in assemble_models:
sif_str = assemble_sif(stmts, pjoin(outf,
'pertbio_high_belief_direct.sif'))
### CX assembly
if 'cx' in assemble_models:
cxa = assemble_cx(stmts, pjoin(outf, 'pertbio_full_high_belief.cx'),
'direct')