-
Notifications
You must be signed in to change notification settings - Fork 20
/
app.py
320 lines (279 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from os.path import basename, splitext, join
from io import BytesIO
import tempfile
import gradio as gr
from gradio_model3dgscamera import Model3DGSCamera
import numpy as np
from scipy.spatial import KDTree
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, to_pil_image
from einops import rearrange, repeat
from torch import Tensor
from jaxtyping import Float
from extern.ZoeDepth.zoedepth.utils.misc import colorize
from genwarp import GenWarp
from genwarp.ops import (
camera_lookat, get_projection_matrix, get_viewport_matrix
)
IMAGE_SIZE = 512
NEAR, FAR = 0.01, 100
FOVY = np.deg2rad(55)
# Crop the image to the shorter side.
def crop(img: Image) -> Image:
W, H = img.size
if W < H:
left, right = 0, W
top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
else:
left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
top, bottom = 0, H
return img.crop((left, top, right, bottom))
def unproject(depth):
fovy_deg = 55
H, W = depth.shape[2:4]
mean_depth = depth.mean(dim=(2, 3)).squeeze()
viewport_mtx = get_viewport_matrix(
IMAGE_SIZE, IMAGE_SIZE,
batch_size=1
).to(depth)
# Projection matrix.
fovy = torch.ones(1) * FOVY
proj_mtx = get_projection_matrix(
fovy=fovy,
aspect_wh=1.,
near=NEAR,
far=FAR
).to(depth)
view_mtx = camera_lookat(
torch.tensor([[0., 0., 0.]]),
torch.tensor([[0., 0., 1.]]),
torch.tensor([[0., -1., 0.]])
).to(depth)
scr_mtx = (viewport_mtx @ proj_mtx).to(depth)
grid = torch.stack(torch.meshgrid(
torch.arange(W), torch.arange(H), indexing='xy'), dim=-1
).to(depth)[None] # BHW2
screen = F.pad(grid, (0, 1), 'constant', 0)
screen = F.pad(screen, (0, 1), 'constant', 1)
screen_flat = rearrange(screen, 'b h w c -> b (h w) c')
eye = screen_flat @ torch.linalg.inv_ex(
scr_mtx.float()
)[0].mT.to(depth)
eye = eye * rearrange(depth, 'b c h w -> b (h w) c')
eye[..., 3] = 1
points = eye @ torch.linalg.inv_ex(view_mtx.float())[0].mT.to(depth)
points = points[0, :, :3]
# Translate to the origin.
points[..., 2] -= mean_depth
camera_pos = (0, 0, -mean_depth)
view_mtx = camera_lookat(
torch.tensor([[0., 0., -mean_depth]]),
torch.tensor([[0., 0., 0.]]),
torch.tensor([[0., -1., 0.]])
).to(depth)
return points, camera_pos, view_mtx, proj_mtx
def calc_dist2(points: np.ndarray):
dists, _ = KDTree(points).query(points, k=4)
mean_dists = (dists[:, 1:] ** 2).mean(1)
return mean_dists
def save_as_splat(
filepath: str,
xyz: np.ndarray,
rgb: np.ndarray
):
# To gaussian splat
inv_sigmoid = lambda x: np.log(x / (1 - x))
dist2 = np.clip(calc_dist2(xyz), a_min=0.0000001, a_max=None)
scales = np.repeat(np.log(np.sqrt(dist2))[..., np.newaxis], 3, axis=1)
rots = np.zeros((xyz.shape[0], 4))
rots[:, 0] = 1
opacities = inv_sigmoid(0.1 * np.ones((xyz.shape[0], 1)))
sorted_indices = np.argsort((
-np.exp(np.sum(scales, axis=-1, keepdims=True))
/ (1 + np.exp(-opacities))
).squeeze())
buffer = BytesIO()
for idx in sorted_indices:
position = xyz[idx]
scale = np.exp(scales[idx]).astype(np.float32)
rot = rots[idx].astype(np.float32)
color = np.concatenate(
(rgb[idx], 1 / (1 + np.exp(-opacities[idx]))),
axis=-1
)
buffer.write(position.tobytes())
buffer.write(scale.tobytes())
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
buffer.write(
((rot / np.linalg.norm(rot)) * 128 + 128)
.clip(0, 255)
.astype(np.uint8)
.tobytes()
)
with open(filepath, "wb") as f:
f.write(buffer.getvalue())
def view_from_rt(position, rotation):
t = np.array(position)
euler = np.array(rotation)
cx = np.cos(euler[0])
sx = np.sin(euler[0])
cy = np.cos(euler[1])
sy = np.sin(euler[1])
cz = np.cos(euler[2])
sz = np.sin(euler[2])
R = np.array([
cy * cz + sy * sx * sz,
-cy * sz + sy * sx * cz,
sy * cx,
cx * sz,
cx * cz,
-sx,
-sy * cz + cy * sx * sz,
sy * sz + cy * sx * cz,
cy * cx
])
view_mtx = np.array([
[R[0], R[1], R[2], 0],
[R[3], R[4], R[5], 0],
[R[6], R[7], R[8], 0],
[
-t[0] * R[0] - t[1] * R[3] - t[2] * R[6],
-t[0] * R[1] - t[1] * R[4] - t[2] * R[7],
-t[0] * R[2] - t[1] * R[5] - t[2] * R[8],
1
]
]).T
B = np.array([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]
])
return B @ view_mtx
# ZoeDepth
if 'mde' not in globals():
mde = torch.hub.load(
'./extern/ZoeDepth',
'ZoeD_N',
source='local',
pretrained=True,
trust_repo=True
).to('cuda')
# GenWarp
if 'genwarp_nvs' not in globals():
genwarp_cfg = dict(
pretrained_model_path='checkpoints',
checkpoint_name='multi1',
half_precision_weights=True
)
genwarp_nvs = GenWarp(cfg=genwarp_cfg)
with tempfile.TemporaryDirectory() as tmpdir:
with gr.Blocks(
title='GenWarp Demo',
css='img {display: inline;}'
) as demo:
# Internal states.
src_image = gr.State()
src_depth = gr.State()
proj_mtx = gr.State()
src_view_mtx = gr.State()
# Blocks.
gr.Markdown(
"""
# GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping
[![Project Site](https://img.shields.io/badge/Project-Web-green)](https://genwarp-nvs.github.io/)
[![Spaces](https://img.shields.io/badge/Spaces-Demo-yellow?logo=huggingface)](https://huggingface.co/spaces/Sony/GenWarp)
[![Github](https://img.shields.io/badge/Github-Repo-orange?logo=github)](https://github.com/sony/genwarp/)
[![Models](https://img.shields.io/badge/Models-checkpoints-blue?logo=huggingface)](https://huggingface.co/Sony/genwarp)
[![arXiv](https://img.shields.io/badge/arXiv-2405.17251-red?logo=arxiv)](https://arxiv.org/abs/2405.17251)
## Introduction
This is an official demo for the paper "[GenWarp: Single Image to Novel Views with Semantic-Preserving Generative Warping](https://genwarp-nvs.github.io/)". Genwarp can generate novel view images from a single input conditioned on camera poses. In this demo, we offer a basic use of inference of the model. For detailed information, please refer the [paper](https://arxiv.org/abs/2405.17251).
## How to Use
1. Upload a reference image to "Reference Input"
- You can also select a image from "Examples"
2. Move the camera to your desired view in "Unprojected 3DGS" 3D viewer
3. Hit "Generate a novel view" button and check the result
"""
)
file = gr.File(label='Reference Input', file_types=['image'])
examples = gr.Examples(
examples=['./assets/pexels-heyho-5998120_19mm.jpg',
'./assets/pexels-itsterrymag-12639296_24mm.jpg'],
inputs=file
)
with gr.Row():
image_widget = gr.Image(
label='Reference View', type='filepath',
interactive=False
)
depth_widget = gr.Image(label='Estimated Depth', type='pil')
viewer = Model3DGSCamera(
label = 'Unprojected 3DGS',
width=IMAGE_SIZE,
height=IMAGE_SIZE,
camera_width=IMAGE_SIZE,
camera_height=IMAGE_SIZE,
camera_fx=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
camera_fy=IMAGE_SIZE / (np.tan(FOVY / 2.)) / 2.,
camera_near=NEAR,
camera_far=FAR
)
button = gr.Button('Generate a novel view', size='lg', variant='primary')
with gr.Row():
warped_widget = gr.Image(
label='Warped Image', type='pil', interactive=False
)
gen_widget = gr.Image(
label='Generated View', type='pil', interactive=False
)
# Callbacks
def cb_mde(image_file: str):
image = to_tensor(crop(Image.open(
image_file
).convert('RGB')).resize((IMAGE_SIZE, IMAGE_SIZE)))[None].cuda()
depth = mde.infer(image)
depth_image = to_pil_image(colorize(depth[0]))
return to_pil_image(image[0]), depth_image, image, depth
def cb_3d(image, depth, image_file):
xyz, camera_pos, view_mtx, proj_mtx = unproject(depth)
rgb = rearrange(image, 'b c h w -> b (h w) c')[0]
splat_file = join(tmpdir, f'./{splitext(basename(image_file))[0]}.splat')
save_as_splat(splat_file, xyz.cpu().detach().numpy(), rgb.cpu().detach().numpy())
return (splat_file, camera_pos, None), view_mtx, proj_mtx
def cb_generate(viewer, image, depth, src_view_mtx, proj_mtx):
src_camera_pos = viewer[1]
src_camera_rot = viewer[2]
tar_view_mtx = view_from_rt(src_camera_pos, src_camera_rot)
tar_view_mtx = torch.from_numpy(tar_view_mtx).to(image)
rel_view_mtx = (
tar_view_mtx @ torch.linalg.inv(src_view_mtx.to(image))
).to(image)
# GenWarp.
renders = genwarp_nvs(
src_image=image.half(),
src_depth=depth.half(),
rel_view_mtx=rel_view_mtx.half(),
src_proj_mtx=proj_mtx.half(),
tar_proj_mtx=proj_mtx.half()
)
warped = renders['warped']
synthesized = renders['synthesized']
warped_pil = to_pil_image(warped[0])
synthesized_pil = to_pil_image(synthesized[0])
return warped_pil, synthesized_pil
# Events
file.change(
fn=cb_mde,
inputs=file,
outputs=[image_widget, depth_widget, src_image, src_depth]
).then(
fn=cb_3d,
inputs=[src_image, src_depth, image_widget],
outputs=[viewer, src_view_mtx, proj_mtx])
button.click(
fn=cb_generate,
inputs=[viewer, src_image, src_depth, src_view_mtx, proj_mtx],
outputs=[warped_widget, gen_widget])
demo.launch()