-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
54 lines (44 loc) · 1.67 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchvision import datasets, transforms
def predict_img(image):
image_tensor = test_trainsforms(image).float()
image_tensor = image_tensor.unsqueeze_(0)
input = Variable(image_tensor).to(device)
output = model(input)
index = output.data.cpu().numpy().argmax()
return index
def get_random_images(num):
data = datasets.ImageFolder(val_dir, transform=test_trainsforms)
classes = data.classes
indices = list(range(len(data)))
np.random.shuffle(indices)
idx = indices[:num]
from torch.utils.data.sampler import SubsetRandomSampler
sampler = SubsetRandomSampler(idx)
loader = DataLoader(data, sampler=sampler, batch_size=num)
dataiter = iter(loader)
images, labels = dataiter.next()
return images,labels,classes
if __name__ == '__main__':
val_dir = './data/val/'
test_trainsforms = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(), ])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load('./save_model/model.pth')
model.eval()
to_pil = transforms.ToPILImage()
images, labels, classes= get_random_images(3)
fig = plt.figure(figsize=(10, 5))
for i in range(len(images)):
image = to_pil(images[i])
index = predict_img(image)
sub = fig.add_subplot(1, len(images), i+1)
res = int(labels[i]) == index
str(sub.set_title(str(classes[index])+":"+str(res)))
plt.axis('off')
plt.imshow(image)
plt.show()