-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
62 lines (52 loc) · 1.78 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from fastapi import FastAPI, Form, Request
from fastapi.responses import HTMLResponse
from fastapi.templating import Jinja2Templates
import pickle
import pandas as pd
# FastAPI 애플리케이션 초기화
app = FastAPI()
# 템플릿 설정
templates = Jinja2Templates(directory="templates")
# 모델과 벡터라이저 로드
with open("model_and_vectorizer.dump", "rb") as f:
loaded_data = pickle.load(f)
loaded_model = loaded_data['model']
loaded_vectorizer = loaded_data['vectorizer']
# 메인 페이지 (HTML 입력창)
@app.get("/", response_class=HTMLResponse)
async def home(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
# POST 엔드포인트: 예측
@app.post("/predict", response_class=HTMLResponse)
async def predict(
request: Request,
title: str = Form(...),
content: str = Form(...)
):
if not title or not content:
return templates.TemplateResponse(
"index.html",
{"request": request, "error": "Invalid input. Provide both 'title' and 'content'."}
)
# 제목과 내용을 결합
combined_text = title + " " + content
new_data = pd.DataFrame({"data": [combined_text]})
# 벡터화 및 예측
X_new_tfidf = loaded_vectorizer.transform(new_data['data'])
res = loaded_model.predict(X_new_tfidf)
percentage = loaded_model.predict_proba(X_new_tfidf)[0]
percentage0 = percentage[0]
percentage1 = percentage[1]
# 결과 HTML 렌더링
return templates.TemplateResponse(
"result.html",
{
"request": request,
"prediction": res[0],
"percentage0": percentage0,
"percentage1": percentage1,
}
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)