diff --git a/main.py b/main.py index 95745a0..add8aa1 100644 --- a/main.py +++ b/main.py @@ -16,6 +16,7 @@ import random import math from collections import namedtuple +csvgen = True # import statistics Vertex = namedtuple('vertex', 'x y') # This'll make the vertex tuple that we'll use for the chromosones. @@ -31,9 +32,9 @@ # pass -mutation_rate = 3 # (out of 100) +mutation_rate = 2 # (out of 100) -population_size = 256 +population_size = 64 def chromosonegen(): @@ -184,7 +185,7 @@ def roulette_generate(fitness_dict, genmethod): def checker(a, b): returns = False - while n in a: + for n in a: for m in b: if n == m: returns = True @@ -218,10 +219,13 @@ def mutation_chance(mutation_rate): def random_mutation(individual): - # x = random.randint(0, 128) + x = random.randint(0, 128) # print (individual.chromosone) # chromosone_regen(individual) - individual = chromosone_scramble(individual) + if x < 64: + individual.chromosone = chromosone_scramble(individual) + else: + individual.chromosone = chromosone_regen(individual) # print (individual.chromosone) # if x < 8: # individual = bound_mutation(individual) @@ -231,7 +235,7 @@ def random_mutation(individual): # individual = chromosone_scramble(individual) # else: # individual = arithmatic_mutation(individual) - return individual + return individual.chromosone # def bound_mutation(individual): @@ -267,17 +271,32 @@ def random_mutation(individual): # temp[y].y = individual.chromosone[y].z / a # return temp +def return_highest_fitness_value(fitness_dict): + y = [] + for x in fitness_dict: + y.append(fitness_dict[x]) + + return sorted(y)[0] + + +def return_highest_fitness_chromosone(fitness_dict): + max_fitness_object = 360 + max_fitness = 360 + for x in fitness_dict: + if fitness_dict[x] < max_fitness: + max_fitness_object = x + max_fitness = fitness_dict[max_fitness_object] + return max_fitness_object.chromosone + def chromosone_regen(individual): - individual.chromosone = chromosonegen - return individual + individual.chromosone = chromosonegen() + return individual.chromosone def chromosone_scramble(individual): # for x in range(random.randint(0, 100)): - individual.chromosone = \ - point_swap(individual.chromosone, individual.chromosone) - return individual + return point_swap(individual.chromosone, individual.chromosone) popset = initiate_population() @@ -290,18 +309,29 @@ def chromosone_scramble(individual): # print (y.chromosone) y = 0 -for n in range(1024): +if csvgen: + csv = open('csv.txt', 'w') + csvtemp = "" + +exit = False + +while exit is False: + y += 1 + for n in range(0, len(popset)): + if mutation_chance(mutation_rate): + # print ("before: " + str(popset[n].chromosone)) + popset[n].chromosone = random_mutation(popset[n]) + # print ("after: " + str(popset[n].chromosone)) x = make_fitness_dict(popset) + print ("Generation " + str(y) + ". Top score is " + + str(return_highest_fitness_value(x)) + " with a chromosone of " + + str(return_highest_fitness_chromosone(x))) + if csvgen: + csvtemp += str(y) + "," + str(return_highest_fitness_value(x)) + "\n" + if return_highest_fitness_value(x) < 32: + exit = True + print (return_highest_fitness_chromosone(x)) popset = generate_generation(popset) - y += 1 - print ("Generation " + str(y) + ". Example roulette selection is " + - str(evaluator(fitness_select(x)))) - # for n in range(0, len(popset)): - # if mutation_chance(mutation_rate): - # popset[n] = random_mutation(popset[n]) - fitlist = [] - for z in x: - fitlist.append(x[z]) - a = findmax(x, fitlist[0]) - print (a.chromosone) +if csvgen: + csv.write(csvtemp)