-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommands.py
1077 lines (926 loc) · 33.6 KB
/
commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from memory import Memory
from registers import Registers
class Commands(object):
def __init__(self, state: Registers, memory: Memory):
self._state = state
self._memory = memory
self._address_size = self._memory.address_size
self._register_size = self._state.general_register_size # assuming opcode size and rgeneral
# register size are always the same
def execute_command(self, opcode, command, *args):
command = command.lower()
if command == 'and':
self.logical_and(*args)
elif command in ['bset', 'bclr', 'brset', 'brclear', 'jsr', 'jmp', 'adc', 'add']:
method = getattr(self, command)
method(int(opcode, 16), *args)
else:
method = getattr(self, command)
method(*args)
def nop(self):
self._state.pc += 1
def __update_flags_for_add_op(self, target, value):
if self.__valid_register_size(target) and self.__valid_register_size(value):
result = (target + value) % (0xFF+1)
half_result = result & 0x0F
half_target = target & 0x0F
c = 1 if result < target else 0
h = 1 if half_result < half_target else 0
n = (result & 0x80) >> 7
z = 0 if result else 1
self._state.update_flags({'C': c, 'H': h, 'N': n, 'Z': z})
def __valid_register_size(self, value):
return self._state.is_valid_general_register_value(value)
def _get_flag_change(self, before, after, wrap_type):
bits_in_general_reg = len(bin(self._state.general_register_size)) - 2
negative = 1 if after >> (bits_in_general_reg - 1) else 0
zero = 0 if after else 1
if wrap_type == "underflow":
carry = 1 if after > before else 0
else:
carry = 1 if after < before else 0
return {'N': negative, 'Z': zero, 'C': carry}
def _add(self, value):
"""
add to accumulator
"""
self.__update_flags_for_add_op(self._state.a, value)
self._state.a = (self._state.a + value) % (self._state.general_register_size+1)
def add(self, opcode, value):
if opcode == 0xAB: # IMM ii
self._state.pc += 2
if opcode == 0xBB: # DIR dd
value = self._memory.read(value)
self._state.pc += 2
if opcode == 0xCB: # EXT hh kk
value = self._memory.read(value)
self._state.pc += 3
if opcode == 0xDB: # IX2 ee ff
effective_address = value + self._state.x
value = self._memory.read(effective_address)
self._state.pc += 3
if opcode == 0xEB: # IX1 ff
effective_address = value + self._state.x
value = self._memory.read(effective_address)
self._state.pc += 2
if opcode == 0xFB: # IX
value = self._memory.read(self._state.x)
self._state.pc += 1
self._add(value)
def adc(self, opcode, value=None):
"""
add to the accumulator with carry
"""
carry = self._state.ccr.get('C')
self._add(carry)
if opcode == 0xA9: # IMM ii
self._state.pc += 2
if opcode == 0xB9: #DIR dd - direct addressing
value = self._memory.read(value)
self._state.pc += 2
if opcode == 0xC9: # EXT hh ll - extended direct addressing
value = self._memory.read(value)
self._state.pc += 3 # one more because we have an extra byte in ext
if opcode == 0xD9: # IX2 ee ff - indexed 16 bit
effective_address = self._state.x + value
value = self._memory.read(effective_address)
self._state.pc += 3
if opcode == 0xE9: # IX1 ff - indexed 8 bit
effective_address = self._state.x + value
value = self._memory.read(effective_address)
self._state.pc += 2
if opcode == 0xF9: # IX - indexed no offset
effective_address = self._state.x
value = self._memory.read(effective_address)
self._state.pc += 1 # just opcode baby
self._add(value)
def _sub(self, value):
bits_in_general_reg = len(bin(self._state.general_register_size)) - 2
result = (self._state.a - value) % (self._state.general_register_size+1)
flags = self._get_flag_change(value, result, "underflow")
negative, zero, carry = flags['N'], flags['Z'], flags['C']
self._state.update_flags({'N': negative, 'Z': zero, 'C': carry})
self._state.a = result
def sub(self, opcode, value):
"""
subtract from accumulator
"""
if opcode == 0xA0: # IMM ii
self._state.pc += 2
if opcode == 0xB0: # DIR dd
value = self._memory.read(value)
self._state.pc += 2
if opcode == 0xC0: # EXT hh kk
value = self._memory.read(value)
self._state.pc += 3
if opcode == 0xD0: # IX2 ee ff
effective_address = value + self._state.x
value = self._memory.read(effective_address)
self._state.pc += 3
if opcode == 0xE0: # IX1 ff
effective_address = value + self._state.x
value = self._memory.read(effective_address)
self._state.pc += 2
if opcode == 0xF0: # IX
value = self._memory.read(self._state.x)
self._state.pc += 1
self._sub(value)
def sbc(self, opcode, value):
"""
suntract from accumulator with borrow
"""
if opcode == 0xA2: # IMM ii
self._state.pc += 2
if opcode == 0xB2: #DIR dd - direct addressing
value = self._memory.read(value)
self._state.pc += 2
if opcode == 0xC2: # EXT hh ll - extended direct addressing
value = self._memory.read(value)
self._state.pc += 3 # one more because we have an extra byte in ext
if opcode == 0xD2: # IX2 ee ff - indexed 16 bit
effective_address = self._state.x + value
value = self._memory.read(effective_address)
self._state.pc += 3
if opcode == 0xE2: # IX1 ff - indexed 8 bit
effective_address = self._state.x + value
value = self._memory.read(effective_address)
self._state.pc += 2
if opcode == 0xF2: # IX - indexed no offset
effective_address = self._state.x
value = self._memory.read(effective_address)
self._state.pc += 1 # just opcode baby
current_carry = self._state.ccr.get('C')
self._sub(value)
self._sub(current_carry)
def mul(self):
"""
doesnt exist in 6805 microprocessor opcodes , maybe just for younger family members
multiply the accumulator by index register (x)
"""
self._state.a *= self._state.x # fixme - need to look for opcode and add flag stuff (mul doesnt exist in doc)
self._state.pc += 1
def _neg(self, value):
result = value ^ 0xFF % (self._state.general_register_size+1)
bits_in_general_reg = len(bin(self._state.general_register_size)) - 2
# negative = 1 if result >> (bits_in_general_reg - 1) else 0
# zero = 0 if result else 1
# carry = 1 if result > value else 0
flags = self._get_flag_change(value, result, "overflow")
negative, zero, carry = flags['N'], flags['Z'], flags['C']
self._state.update_flags({'N': negative, 'Z': zero, 'C': carry})
return result
def neg(self, opcode, operand):
"""
negate a memory location
"""
value = None
address = operand
if opcode == 0xB2: #DIR dd - direct addressing
value = self._memory.read(operand)
self._state.pc += 2
if opcode == 0xE2: # IX1 ff - indexed 8 bit
address = self._state.x + operand
value = self._memory.read(address)
self._state.pc += 2
if opcode == 0xF2: # IX - indexed no offset
address = self._state.x
value = self._memory.read(address)
self._state.pc += 1 # just opcode baby
value = self._neg(value)
self._memory.write(address, value)
def nega(self):
"""
negate the accumulator
"""
value = self._neg(self._state.a)
self._state.a = value
self._state.pc += 1
def negx(self):
"""
negate the index register
"""
value = self._neg(self._state.x)
self._state.x = value
self._state.pc += 1
def lda(self, address):
"""
load the accumulator
"""
bits_in_general_reg = len(bin(self._state.general_register_size)) - 2
self._state.a = self._memory.read(address)
result = self._state.a
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def ldx(self, address):
"""
load the index register
"""
self._memory.write(address, self._state.x)
result = self._state.x
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def sta(self, address):
"""
store the accumulator
"""
self._memory.write(address, self._state.a)
result = self._state.a
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.a += 2
def stx(self, address):
"""
store the index register
"""
self._memory.write(address, self._state.x)
result = self._state.x
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def tax(self):
"""
transfer the accumulator to the index register
"""
self._state.x = self._state.a
self._state.pc += 1
def txa(self):
"""
transfer the index register to the accumulator
"""
self._state.a = self._state.x
self._state.pc += 1
def clr(self, address):
"""
clear a memory location
"""
self._memory.write(address, 0x0)
self._state.update_flags({'N': 0, 'Z': 1})
self._state.pc += 2
def clra(self):
"""
clear the accumulator
"""
self._state.a = 0x0
self._state.update_flags({'N': 0, 'Z': 1})
self._state.pc += 1
def clrx(self):
"""
clear the index register
"""
self._state.x = 0x0
self._state.update_flags({'N': 0, 'Z': 1})
self._state.pc += 1
def inc(self, address):
"""
increment a memory location by one
"""
value = self._memory.read(address)
result = (value + 1) & 0xFF
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._memory.write(address, result)
self._state.pc += 2
def inca(self):
"""
increment the acuumulator by one
"""
result = self._state.a + 1
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.a = result
self._state.pc += 1
def incx(self):
"""
increment the index register by one
"""
result = self._state.x + 1
flags = self._get_flag_change(result, result, "overflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.x = result
self._state.pc += 1
def dec(self, address):
"""
decrement a memory location by one
"""
value = self._memory.read(address)
result = (value - 1) & 0xFF
flags = self._get_flag_change(result, result, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._memory.write(address, result)
self._state.pc += 2
def deca(self):
"""
decrement accumulator by one
"""
result = self._state.a - 1
flags = self._get_flag_change(result, result, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.a = result
self._state.pc += 1
def decx(self):
"""
decrement index register by one
"""
result = self._state.x - 1
flags = self._get_flag_change(result, result, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.x = result
self._state.pc += 1
def logical_and(self, value):
"""
logical and of the accumulator and operand
"""
self._state.a &= value
flags = self._get_flag_change(self._state.a, self._state.a, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def ora(self, value):
"""
logical or of the accumulator and operand
"""
self._state.a |= value
flags = self._get_flag_change(self._state.a, self._state.a, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def eor(self, value):
"""
exclusivve or of the accumulator and an operand
"""
self._state.a ^= value
flags = self._get_flag_change(self._state.a, self._state.a, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'N': negative, 'Z': zero})
self._state.pc += 2
def _com(self, target, size):
target = (~target) % size # artifacts of 2's compliment and dynamic sizes(meh)
carry = 1 # according to the doc its always turned into 1 , makes sense i guess...
flags = self._get_flag_change(self._state.a, self._state.a, "underflow")
negative, zero = flags['N'], flags['Z']
self._state.update_flags({'C': carry, 'N': negative, 'Z': zero})
return target
def com(self, address):
"""
get one's complement of a memory location (the 'not' bitwise operation)
"""
value = self._memory.read(address)
value = self._com(value, self._address_size)
self._memory.write(address, value)
self._state.pc += 2
def coma(self):
"""
get ones complement of the accumulator
"""
value = self._com(self._state.a, self._register_size)
self._state.a = value
self._state.pc += 1
def comx(self):
"""
get ones complement of the index register
"""
value = self._com(self._state.a, self._register_size)
self._state.x = value
self._state.pc += 1
def asl(self, address):
"""
arithmetically shift a memory location left by one bit
"""
if self._state._is_valid_address(address):
value = self._memory.read(address)
value = self._arithmetical_left_shift(value)
self._memory.write(address, value)
self._state.pc += 2
def asla(self):
"""
arithmetically shift the accumulator left by one bit
"""
value = self._state.a
self._state.a = self._arithmetical_left_shift(value)
self._state.pc += 1
def aslx(self):
"""
arithmetically shift the index register left by one bit
"""
value = self._state.x
self._state.x = self._arithmetical_left_shift(value)
self._state.pc += 1
def asr(self, address):
"""
arithmetically shift a memory location right by one bit
"""
if self._state._is_valid_address(address):
value = self._memory.read(address)
value = self._arithmetic_right_shift(value)
self._memory.write(address, value)
self._state.pc += 2
def asra(self):
"""
arithmetically shift the accumulator right by one bit
"""
value = self._state.a
self._state.a = self._arithmetic_right_shift(value)
self._state.pc += 1
def asrx(self):
"""
arithmetically shift the index register by one bit
"""
value = self._state.x
self._state.x = self._arithmetic_right_shift(value)
self._state.pc += 1
def lsl(self, address):
"""
logically shift a memory location left by one bit
"""
if self._state._is_valid_address(address):
value = self._memory.read(address)
value = self._logical_left_shift(value)
self._memory.write(address, value)
self._state.pc += 2
def lsla(self):
"""
LSLA logically shift the accumulator left by one bit
"""
value = self._state.a
self._state.a = self._logical_left_shift(value)
self._state.pc += 1
def lslx(self):
"""
LSLX logically shift the index register left by one bit
"""
value = self._state.x
self._state.x = self._logical_left_shift(value)
self._state.pc += 1
def lsr(self, address):
"""
LSR logically shift a memory location right by one bit
"""
if self._state._is_valid_address(address):
value = self._memory.read(address)
value = self._logical_right_shift(value)
self._memory.write(address, value)
self._state.pc += 2
def lsra(self):
"""
LSRA logically shift the accumulator right by one bit
"""
value = self._state.a
self._state.a = self._logical_right_shift(value)
self._state.pc += 1
def lsrx(self):
"""
LSRX logically shift the index register right by one bit
"""
value = self._state.x
self._state.x = self._logical_right_shift(value)
self._state.pc += 1
def rol(self, address):
"""
ROL rotate a memory location left by one bit
"""
value = self._memory.read(address)
value = self._rol(value, 1)
self._memory.write(address, value)
self._state.pc += 2
def rola(self):
"""
ROLA rotate the accumulator left by one bit
"""
self._state.a = self._rol(self._state.a, 1)
self._state.pc += 1
def rolx(self):
"""
ROLX rotate the index register left by one bit
"""
self._state.x = self._rol(self._state.x, 1)
self._state.pc += 1
def ror(self, address):
"""
ROR rotate a memory location right by one bit
"""
value = self._memory.read(address)
value = self._ror(value, 1)
self._memory.write(address, value)
self._state.pc += 2
def rora(self):
"""
RORA rotate the accumulator right by one bit
"""
self._state.a = self._ror(self._state.a, 1)
self._state.pc += 1
def rorx(self):
"""
RORX rotate the index register right by one bit
"""
self._state.x = self._ror(self._state.x, 1)
self._state.pc += 1
def bit(self):
"""
BIT bit test the accumulator and set the N or Z flags
"""
self._test(self._state.a)
self._state.pc += 1
def cmp(self, value):
"""
CMP compare an operand to the accumulator
"""
self._cmp(self._state.a, value)
self._state.pc += 2
def cpx(self, value):
"""
CPX compare an operand to the index register
"""
self._cmp(self._state.x, value)
self._state.pc += 2
def tst(self, address):
"""
TST test a memory location and set the N or Z flags
"""
value = self._memory.read(address)
self._test(value)
self._state.pc += 2
def tsta(self):
"""
TSTA test the accumulator and set the N or Z flags
"""
value = self._state.a
self._test(value)
self._state.pc += 1
def tstx(self):
"""
TSTX test the index register and set the N or Z flags
"""
self._test(self._state.x)
self._state.pc += 1
def bcc(self, address_offset):
"""
BCC branch if carry clear (C = 0)
"""
if self._state.ccr.get('C') == 0:
self._branch(address_offset)
self._state.pc += 2
def bcs(self, address_offset):
"""
BCS branch if carry set (C = 1)
"""
if self._state.ccr.get('C') == 1:
self._branch(address_offset)
self._state.pc += 2
def beq(self, address_offset):
"""
BEQ branch if equal (Z = 0)
"""
if self._state.ccr.get('Z') == 0:
self._branch(address_offset)
self._state.pc += 2
def bne(self, address_offset):
"""
BNE branch if not equal (Z = 1)
"""
if self._state.ccr.get('Z') == 1:
self._branch(address_offset)
self._state.pc += 2
def bhcc(self, address_offset):
"""
branch if half carry clear (H = 0)
"""
if self._state.ccr.get('H') == 0:
self._branch(address_offset)
self._state.pc += 2
def bhcs(self, address_offset):
"""
branch if half carry set (H = 1)
"""
if self._state.ccr.get('H') == 1:
self._branch(address_offset)
self._state.pc += 2
def bhi(self, address_offset):
"""
branch if higher (C or Z = 0)
"""
c_flag = self._state.ccr.get('C')
z_flag = self._state.ccr.get('Z')
if c_flag == 0 or z_flag == 0:
self._branch(address_offset)
self._state.pc += 2
def bhs(self, address_offset):
"""
branch if half carry is set (H =1)
"""
if self._state.ccr.get('H') == 1:
self._branch(address_offset)
self._state.pc += 2
def bls(self, address_offset):
"""
BLS branch if lower or same (C or Z = 1)
"""
c_flag = self._state.ccr.get('C')
z_flag = self._state.ccr.get('Z')
if c_flag or z_flag:
self._branch(address_offset)
self._state.pc += 2
def blo(self, address_offset):
"""
BLO branch if lower (C = 1)
"""
if self._state.ccr.get('C') == 1:
self._branch(address_offset)
self._state.pc += 2
def bmi(self, address_offset):
"""
branch if minus (N = 1)
"""
if self._state.ccr.get('N') == 1:
self._branch(address_offset)
self._state.pc += 2
def bpl(self, address_offset):
"""
branch if plus (N = 0)
"""
if self._state.ccr.get('N') == 0:
self._branch(address_offset)
self._state.pc += 2
def bmc(self, address_offset):
"""
BMC branch if interrupts are not masted (I = 0)
"""
if self._state.ccr.get('I') == 0:
self._branch(address_offset)
self._state.pc += 2
def bms(self, address_offset):
"""
BMS branch if interrupts are masked (I = 1)
"""
if self._state.ccr.get('I') == 1:
self._branch(address_offset)
self._state.pc += 2
# special branches
def bih(self, address_offset):
"""
branch if IRQ pin is high
"""
#fixme implement
self._state.pc += 2
def bil(self, address_offset):
"""
branch if IRQ pin is low
"""
# fixme implement
self._state.pc += 2
def bra(self, address_offset):
"""
branch always
"""
self._branch(address_offset)
self._state.pc += 2
def brn(self, address_offset):
"""
branch never ( another nop? )
"""
# todo - is this another nop?
self._state.pc += 2
def bsr(self, address_offset):
"""
branch to subroutine and save return address on stack
"""
self._state.push(self._state.pc)
self._state._sp -= 1
self._state.pc += 2
self._branch(address_offset)
# single bit operations
def bclr(self, opcode, address):
"""
clear the designated memory bit
"""
bit = (opcode & 0xE) / 2
value = self._memory.read(address)
mask = (1 << bit) ^ 0xFF
value &= mask
self._memory.write(address, value)
self._state.pc += 2
def bset(self, opcode, address):
"""
set the designated memory bit
"""
bit = (opcode & 0xE) / 2
value = self._memory.read(address)
mask = (1 << bit)
value |= mask
self._memory.write(address, value)
self._state.pc += 2
def brclr(self, opcode, value, address):
"""
branch if the designated memory bit is clear
"""
bit = (opcode & 0x0E) / 2
mask = (1 << bit)
address = self._state.pc + address if (value & mask) == 0 else self._state.pc
self._state.pc = address
def brset(self, opcode, value, address_offset):
"""
branch if the designated memory bit is set
"""
bit = (opcode & 0x0E) / 2
address = self._state.pc + address_offset
mask = (1 << bit)
address = self._state.pc + address_offset if (value & mask) != 0 else self._state.pc
self._state.pc = address
# jumps and returns
def jmp(self, opcode, address=0x00):
"""
JMP jumpt to specified address
"""
self._state.push(self._state.pc) # save the return address hun , its dangerous outside ;)
if opcode == 0xfc: # indexed no offser (first bytes is 0x00 second is from the index reg)
self._state.pc += 1 # just the instruction , no params
self._state.pc = self._state.x
if opcode == 0xec: # indexed 8bit offset (
self._state.pc += 2 # opcode + rel (i know it doesnt matter but i used em for ref - dont judge me :))
effective_address = self._state.x + address # index reg plus the following byte (both unsigned) (can access up to 0x01fe) looks legit
self._state.pc = effective_address
if opcode == 0xdc: # Indexed, 16-bit offset addressing mode
self._state.pc += 3
effective_address = self._state.x + address # this offset is 2 bytes in size not one , dont be fooled
self._state.pc = effective_address
if opcode == 0xcc: # this is extended mode
self._state.pc += 3
self._state.pc = address # 2 bytes, simply go there biach
if opcode == 0xbc: # direct
self._state.pc += 2
self._state.pc = address
def jsr(self, opcode, address=0x00):
"""
JSR jump to subroutine and save return address on stack
"""
self._state.push(self._state.pc) # save the return address hun , its dangerous outside ;)
if opcode == 0xfd: # indexed no offser (first bytes is 0x00 second is from the index reg)
self._state.pc += 1 # just the instruction , no params
self._state.pc = self._state.x
if opcode == 0xed: # indexed 8bit offset (
self._state.pc += 2 # opcode + rel (i know it doesnt matter but i used em for ref - dont judge me :))
effective_address = self._state.x + address # index reg plus the following byte (both unsigned) (can access up to 0x01fe) looks legit
self._state.pc = effective_address
if opcode == 0xdd: # Indexed, 16-bit offset addressing mode
self._state.pc += 3
effective_address = self._state.x + address # this offset is 2 bytes in size not one , dont be fooled
self._state.pc = effective_address
if opcode == 0xcd: # this is extended mode
self._state.pc += 3
self._state.pc = address # 2 bytes, simply go there biach
if opcode == 0xbd: # direct
self._state.pc += 2
self._state.pc = address
def rts(self):
"""
RTS pull address from stack and return from subroutine
"""
address = self._state.pop()
self._state.pc += 1
self._state.pc = address
def rti(self):
"""
RTI pull registers from stack and return from interrupt
"""
ccr = self._state.pop()
a = self._state.pop()
x = self._state.pop()
pc = self._state.pop() # fixme - PCL PCH (does it matter if its all hardware?)
self._state.update_flags(ccr)
self._state.a = a
self._state.x = x
self._state.pc = pc
# misc control
def clc(self):
"""
CLC clear the condition code register carry bit
"""
self._state.clear_flag('C')
self._state.pc += 1
def sec(self):
"""
SEC set the condition code register carry bit
"""
self._state.set_flag('C')
self._state.pc += 1
def cli(self):
"""
CLI clear the condition code register interrupt mask bit
"""
self._state.clear_flag('I')
self._state.pc += 1
def sei(self):
"""
SEI set the condition code register interrupt mask bit
"""
self._state.set_flag('I')
self._state.pc += 1
def swi(self):
"""
SWI software initiated interrupt
"""
ccr = self._state.ccr
a = self._state.a
x = self._state.x
pc = self._state.pc
self._state.push(pc) # fixme - PCL PCH (does it matter if its all hardware?)
self._state.push(x)
self._state.push(a)
self._state.push(ccr)
def rsp(self):
"""
RSP reset the stack pointer to $00FF
"""
self._state.reset_stack_pointer(0x00FF)
self._state.pc += 1
def wait(self):
"""
WAIT enable interrupts and halt the CPU
"""
# fixme - yet again - wat - hardware software watware?
def stop(self):
"""
STOP enable interrupts and stop the oscillator
"""
# fixme - if i halt myself how can i stop halting? man this pic emulation is becoming philosophical
# helper functions
def _arithmetic_right_shift(self, value):
most_segnificant_bit = 0x80 & value