-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
41 lines (30 loc) · 1.28 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
def resetSeed():
np.random.seed(1)
#gets image generators for training and validation
def getGenerator(images, masks, augmentation = False, batch_size=32):
resetSeed()
seed = 1
#if there is no augmentation the img is only rescaled by
#dividing by 255 this ensures a range of 0-1 for all pixel values
if augmentation:
data_gen_args = dict(rescale=1./255,
horizontal_flip = True,
vertical_flip = True,
rotation_range = 90,
brightness_range = (0.5, 1.5))
else:
data_gen_args = dict(rescale=1./255)
#do the same for img and masks to ensure mask stays the same
image_datagen = ImageDataGenerator(**data_gen_args)
mask_datagen = ImageDataGenerator(**data_gen_args)
image_datagen.fit(images, augment=True, seed=seed)
mask_datagen.fit(masks, augment=True, seed=seed)
save_dir = './data/augmented/'
image_generator = image_datagen.flow(x = images, batch_size=batch_size, seed=seed)
# save_to_dir=save_dir)
mask_generator = mask_datagen.flow(x = masks, batch_size=batch_size, seed=seed)
# save_to_dir=save_dir)
generator = zip(image_generator, mask_generator)
return generator