-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotate_image.m
228 lines (199 loc) · 8.91 KB
/
rotate_image.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
function [out_image_m,out_ref_points_m] = rotate_image( degree, in_image_m, in_ref_points_m )
%
% rotate_image - rotates an image given inside a matrix by the amount of "degree" counter-clockwise
% using linear interpolation of the output grid points from the back-rotated input points
% in this way, the output image will never have a "blank" point
%
% Format: [out_image_m,out_ref_points_m] = rotate_image( degree, in_image_m, in_ref_points_m )
%
% Input: degree - rotation degree in dergees, counter-clockwise
% in_image_m - input image, given inside a matrix (gray level image only)
% in_ref_points_m - points on the image wich their output coordinates will be given
% after the rotation. given format of this matrix is:
% [ x1,x2,...,xn;y1,y2,...,yn]
%
% Output: out_image_m - the output image
% out_ref_points_m - the position of the input handle points after the rotation.
% this element is given in "in_ref_points_m" exists
% format of the matrix is the same as of "in_ref_points_m"
%
% NOTE: By definition of rotation, in order to perserve all the image inside the
% rotated image space, the output image will be a matrix with a bigger size.
%
% NO INPUT ARGs - Launch demo and exit
if (nargin == 0)
rotate_image_demo;
out_image_m = [];
return;
end
% check input
if ~exist('in_ref_points_m')
in_ref_points_m = [];
end
% check for easy cases
switch (mod(degree,360))
case 0,
out_image_m = in_image_m;
out_ref_points_m = in_ref_points_m;
return;
case 90,
out_image_m = in_image_m(:,end:-1:1)';
out_ref_points_m = in_ref_points_m(end:-1:1,:);
out_ref_points_m(2,:) = size(out_image_m,1) - out_ref_points_m(2,:);
return;
case 180, % TBD for rotation of the ref_points
out_image_m = in_image_m(end:-1:1,end:-1:1);
out_ref_points_m = in_ref_points_m;
out_ref_points_m(2,:) = size(out_image_m,2) - out_ref_points_m(2,:);
out_ref_points_m(1,:) = size(out_image_m,1) - out_ref_points_m(1,:);
return;
case 270,
out_image_m = in_image_m(end:-1:1,:)';
out_ref_points_m = in_ref_points_m(end:-1:1,:);
out_ref_points_m(1,:) = size(out_image_m,2) - out_ref_points_m(1,:);
return;
otherwise, % enter the routine and do some calculations
end
% wrap input image by zeros from all sides
zeros_row = zeros(1,size(in_image_m,2)+2);
zeros_column = zeros(size(in_image_m,1),1);
in_image_m = [zeros_row; zeros_column,in_image_m,zeros_column; zeros_row ];
% build the rotation matrix
degree_rad = degree * pi / 180;
R = [ cos(degree_rad), sin(degree_rad); sin(-degree_rad) cos(degree_rad) ];
% input and output size of matrices (output size is found by rotation of 4 corners)
in_size_x = size(in_image_m,2);
in_size_y = size(in_image_m,1);
in_mid_x = (in_size_x-1) / 2;
in_mid_y = (in_size_y-1) / 2;
in_corners_m = [ [0,0,in_size_x-1,in_size_x-1] - in_mid_x;
[0,in_size_y-1,in_size_y-1,0] - in_mid_y ];
out_corners_m = R * in_corners_m;
% the grid (integer grid) of the output image and the output image
[out_x_r,out_y_r] = rotated_grid( out_corners_m );
out_size_x = max( out_x_r ) - min( out_x_r ) + 1;
out_size_y = max( out_y_r ) - min( out_y_r ) + 1;
out_image_m = zeros( ceil( out_size_y ),ceil( out_size_x ) );
out_points_span = (out_x_r-min(out_x_r))*ceil(out_size_y) + out_y_r - min(out_y_r) + 1;
if ~isempty( in_ref_points_m )
out_ref_points_m = (R * [in_ref_points_m(1,:)-in_mid_x;in_ref_points_m(2,:)-in_mid_y]);
out_ref_points_m = [out_ref_points_m(1,:)-min( out_x_r )+1;out_ref_points_m(2,:)-min( out_y_r )+1];
else
out_ref_points_m = [];
end
% % for debug
% out_image_m(out_points_span) = 1;
% return;
% % end of for debug
% the position of points of the output grid in terms of the input grid
in_cords_dp_m = inv(R) * [out_x_r;out_y_r];
x_span_left = floor(in_cords_dp_m(1,:) + in_mid_x + 10*eps );
y_span_down = floor(in_cords_dp_m(2,:) + in_mid_y + 10*eps );
x_span_right = x_span_left + 1;
y_span_up = y_span_down + 1;
dx_r = in_cords_dp_m(1,:) - floor( in_cords_dp_m(1,:) + 10*eps );
dy_r = in_cords_dp_m(2,:) - floor( in_cords_dp_m(2,:) + 10*eps );
point_span_0_0 = x_span_left*ceil(in_size_y) + y_span_down + 1; % position of combined index in output matrix
point_span_1_0 = x_span_left*ceil(in_size_y) + y_span_up + 1;
point_span_0_1 = x_span_right*ceil(in_size_y) + y_span_down + 1;
point_span_1_1 = x_span_right*ceil(in_size_y) + y_span_up + 1;
out_image_m(out_points_span) = ...
in_image_m( point_span_0_0 ).*(1-dx_r).*(1-dy_r) + ...
in_image_m( point_span_1_0 ).*(1-dx_r).*( dy_r) + ...
in_image_m( point_span_0_1 ).*( dx_r).*(1-dy_r) + ...
in_image_m( point_span_1_1 ).*( dx_r).*( dy_r);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Inner function implementation %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x_r,y_r] = rotated_grid( rect_points_m )
%
% rotated_grid - creates a grid of points bounded inside a rotated RECTANGLE
%
% Format: [x_m,y_m] = rotated_grid( rect_points_m )
%
% Input: rect_points_m - a set of (x;y) points which define a rectangle ordered clock-wise
% ( format: [x1,x2,x3,x4;y1,y2,y3,y4] )
%
% Output: x_r,y_r - 2 row vectors which hold the x and y positions of
% the output grid
%
% NOTE: THE ASSUMPTION IS THAT THE RECTANGLE IS ORDERED CLOCK-WISE !!!
% AND THAT THE GIVEN CO-ORDINATES ARE A RECTANGLE !
%
% make sure that the first point of the clock-wise-ordered rectange is of the most left point
[temp,idx] = min( rect_points_m(1,:) );
if ( idx > 1 )
rect_points_m = [ rect_points_m(:,idx:end) , rect_points_m(:,1:idx-1) ];
end
% put into variables so it is easier to access/read the numbers
x1 = rect_points_m(1,1);
x2 = rect_points_m(1,2);
x3 = rect_points_m(1,3);
x4 = rect_points_m(1,4);
y1 = rect_points_m(2,1);
y2 = rect_points_m(2,2);
y3 = rect_points_m(2,3);
y4 = rect_points_m(2,4);
% initialization for grid creation
clipped_top = floor( y2 );
clipped_bottom = ceil( y4 );
fraction_bottom = clipped_bottom - y4;
rows = ( clipped_top - clipped_bottom );
left_crossover = y1 - y4;
right_crossover = y3 - y4;
% calculate the position of the edges (left and right) along the y axis
m = [0:rows] + fraction_bottom ;
switch (y1)
case y2, x_left = repmat( ceil( x4 ),size(m) );
case y4, x_left = repmat( ceil( x2 ),size(m) );
otherwise
x_left = ( m >= left_crossover ).*ceil( x2 - (x1-x2)/(y1-y2)*(rows-m+2*fraction_bottom) ) + ...
( m < left_crossover ).*ceil( x4 + (x1-x4)/(y1-y4)*m );
end
switch (y3)
case y2, x_right = repmat( floor( x4 ),size(m) );
case y4, x_right = repmat( floor( x2 ),size(m) );
otherwise
x_right = ( m >= right_crossover ).*floor( x2 - (x3-x2)/(y3-y2)*(rows-m+2*fraction_bottom) ) + ...
( m < right_crossover ).*floor( x4 + (x3-x4)/(y3-y4)*m );
end
% build the output vectors (initialize)
vec_length = sum(x_right-x_left+1);
x_r = zeros(1,vec_length );
y_r = zeros(1,vec_length );
% build the grid into the output vectors
cursor = 1;
for n = 1:length(m)
if ( x_right(n) >= x_left(n) )
span = cursor:(x_right(n) - x_left(n) + cursor);
x_r( span ) = x_left(n):x_right(n);
y_r( span ) = m(n) + y4;
cursor = cursor + x_right(n) - x_left(n) + 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Demo implementation of this routine %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rotate_image_demo
% plot the "child" image, and get it's matrix
close all;
h = imagesc;
in_image_m = get( h,'cdata' );
set( get( h,'parent' ),'ydir','reverse' );
title( 'original image' );
% create targets on the image
[sy,sx] = size( in_image_m );
hold on;
in_ref_points_m = [ [0.05 0.05 0.5 0.95 0.75 0.95]*sx; [0.05 0.7 0.95 0.7 0.3 0.05]*sy ];
plot( in_ref_points_m(1,:),in_ref_points_m(2,:),'k','linewidth',2 );
hold off;
% loop over selected angles and plot the roated image with it's targets
for degree = [0 15 25 30 45 60 75 90]
[out_image_m,out_ref_points_m] = rotate_image( degree, in_image_m, in_ref_points_m );
figure;
imagesc( out_image_m );
title( sprintf( 'Rotated image by %d degrees',degree ) );
hold on;
plot( out_ref_points_m(1,:),out_ref_points_m(2,:),'k','linewidth',2 );
hold off;
end