forked from praschky/nighttimelights
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnightlightLitPixels.py
149 lines (133 loc) · 5.28 KB
/
nightlightLitPixels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Import required modules.
import os
import numpy as np
import math
import csv
from osgeo import gdal, ogr, osr
# Directory containing input data.
in_dir = r'/home/ubuntu/NighttimeLights'
# Suffixes of files.
suffixes = ['web.avg_vis', 'web.stable_lights.avg_vis']
# Dict with input/output file paths and unique IDs.
zones = {
'gadm': [
r'/home/ubuntu/NighttimeLights/gadm28/gadm28.shp',
r'/home/ubuntu/NighttimeLights/nightlight_lit_gadm28.csv',
'OBJECTID'
],
}
# Spatial attributes of imagery tileset.
xorigin = -180.0041666666500078
yorigin = 75.0041666666499935
xend = 180.0041652266500023
yend = -65.0041661066500041
cell_width = 0.00833333
cell_height = -0.00833333
ysize = 16801
xsize = 43201
wgs84 = osr.SpatialReference()
wgs84.ImportFromEPSG(4326)
projection = wgs84.ExportToWkt()
# Open input rasters.
rasters = {}
for year in range(1992, 2014):
rasters[year] = {}
for suffix in suffixes:
in_raster = [i for i in os.listdir(in_dir) if all([os.path.splitext(i)[1] == '.tif', str(year) in i, suffix in i])][0]
rasters[year][suffix] = gdal.Open(os.path.join(in_dir, in_raster))
# Iterate over input zones layers.
for zone, values in zones.items():
layer_name, out_csv, zone_id = values
print(layer_name)
# Open output csv file.
out_file = open(out_csv, 'w', newline='')
writer = csv.writer(out_file)
header = [zone_id]
for year in range(1992, 2014):
for suffix in suffixes:
header.append(str(year) + '_' + suffix)
writer.writerow(header)
# Open input layer and set up transform.
in_ds = ogr.Open(layer_name)
in_lyr = in_ds.GetLayer()
gadm_sr = in_lyr.GetSpatialRef()
if gadm_sr != wgs84:
transform = osr.CoordinateTransformation(gadm_sr, wgs84)
else:
transform = None
driver = ogr.GetDriverByName('MEMORY')
gadm_ds = driver.CreateDataSource('temp')
# Read features and check for intersection with tiles.
for count, feat in enumerate(in_lyr):
process = True
oid = feat.GetField(zone_id)
row = [oid]
if oid is None:
process = False
geom = feat.GetGeometryRef()
if geom is None:
process = False
if process:
if transform is not None:
geom.Transform(transform)
xmin, xmax, ymin, ymax = geom.GetEnvelope()
# Create in-memory layer for zone.
gadm_lyr = gadm_ds.CreateLayer('temp', srs=wgs84)
defn = gadm_lyr.GetLayerDefn()
out_feat = ogr.Feature(defn)
out_feat.SetGeometry(geom.Clone())
gadm_lyr.CreateFeature(out_feat)
# Generate new extent for tile.
cells_left = math.floor((xmin - xorigin) / cell_width)
cells_top = math.floor((ymax - yorigin) / cell_height)
cells_right = math.ceil(((xmin - xorigin) + (xmax - xmin)) / cell_width)
cells_bottom = math.ceil(((ymax - yorigin) - (ymax - ymin)) / cell_height)
if cells_left == cells_right:
cells_right += 1
if cells_top == cells_bottom:
cells_bottom += 1
if cells_left < 0:
cells_left = 0
if cells_top < 0:
cells_top = 0
if cells_bottom >= ysize:
cells_bottom = ysize - 1
if cells_right >= xsize:
cells_right = xsize - 1
xmin = xorigin + (cell_width * cells_left)
xmax = xorigin + (cell_width * cells_right)
ymin = yorigin + (cell_height * cells_bottom)
ymax = yorigin + (cell_height * cells_top)
# Convert zone polygon to raster.
driver = gdal.GetDriverByName('MEM')
dst_geotransform = (xmin, cell_width, 0, ymax, 0, cell_height)
dst_xsize = cells_right - cells_left
dst_ysize = cells_bottom - cells_top
if all([dst_xsize > 0, dst_ysize > 0]):
ds = driver.Create('', dst_xsize, dst_ysize, 1, gdal.GDT_Byte)
ds.SetProjection(projection)
ds.SetGeoTransform(dst_geotransform)
band = ds.GetRasterBand(1)
band.SetNoDataValue(0)
band = None
gdal.RasterizeLayer(ds, [1], gadm_lyr, options=["ALL_TOUCHED=TRUE"])
# Read zone raster to memory.
band = ds.GetRasterBand(1)
gadm_arr = band.ReadAsArray()
band = None
ds = None
gadm_lyr = None
# Iterate over rasters.
for year in range(1992, 2014):
for suffix in suffixes:
in_raster = rasters[year][suffix]
# Read rasters and add values to arrays.
arr = in_raster.ReadAsArray(cells_left, cells_top, dst_xsize, dst_ysize)
values = arr[gadm_arr == 255]
lit = np.sum((values > 0) & (values != 255))
tot = values.shape[0]
row.append(lit/tot)
writer.writerow(row)
in_lyr = None
in_ds = None
gadm_ds = None