-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
198 lines (163 loc) · 6.14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from torchvision import transforms
import torchvision.transforms.functional as F
import numpy as np
import cv2
import time
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D
from tqdm import tqdm
def try_gpu(i=0):
"""Return gpu(i) if exists, otherwise return cpu()."""
if torch.cuda.device_count() >= i + 1:
return torch.device(f'cuda:{i}')
return torch.device('cpu')
# 计时功能类
class Timer:
"""Record multiple running times."""
def __init__(self):
self.times = []
self.start()
def start(self):
"""Start the timer."""
self.tik = time.time()
def stop(self):
"""Stop the timer and record the time in a list."""
self.times.append(time.time() - self.tik)
return self.times[-1]
def avg(self):
"""Return the average time."""
return sum(self.times) / len(self.times)
def sum(self):
"""Return the sum of time."""
return sum(self.times)
def cumsum(self):
"""Return the accumulated time."""
return np.array(self.times).cumsum().tolist()
# 数据容器类
class Accumulator:
"""For accumulating sums over `n` variables."""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# 计算分类结果正确的个数
def accuracy(y_hat, y): # 验证见utils_0.py
"""Compute the number of correct predictions."""
# print(y_hat)
# print(y)
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = torch.argmax(y_hat, dim=1) # 此后y_hat为一维向量
cmp = y_hat.to(y.dtype) == y
return float(torch.sum(cmp))
# 计算分类结果正确率
def evaluate_accuracy_gpu(net, data_iter, device=None):
"""Compute the accuracy for a model on a dataset using a GPU."""
net.eval() # Set the model to evaluation mode
if not device:
device = next(iter(net.parameters())).device
# No. of correct predictions, no. of predictions
metric = Accumulator(2)
with torch.no_grad():
for x, y in tqdm(data_iter):
x = x.to(device)
y = y.to(device)
metric.add(accuracy(net(x).to(device), y), y.numel())
return metric[0] / metric[1]
# 用于pgd攻击的范围验证函数
def where(cond, x, y):
cond = cond.float()
return (cond*x) + ((1-cond)*y)
# 计算各个类别分类结果的正确率
def evaluate_accuracy_per_class(net, data_iter, num_class, device=None):
net.eval() # Set the model to evaluation mode
if not device:
device = next(iter(net.parameters())).device
# No. of correct predictions, no. of predictions
count = [0] * num_class * 2
with torch.no_grad():
for x, y in data_iter:
x = x.to(device)
y = y.to(device)
y_hat = net(x)
y_hat = torch.argmax(y_hat, dim=1)
for i, label in enumerate(y):
count[label] += 1 # count的前十位记录总数
if y_hat[i] == label: # 即判断结果等于标签
count[label+num_class] += 1 # count的后十位记录正确个数
print(count)
acc = []
for i in range(num_class):
acc.append(count[i+num_class] / count[i])
plt.bar(range(len(acc)), acc)
# plt.xticks(range(len(acc)))
plt.xticks(range(len(acc)))
plt.xlabel('class_code')
plt.ylabel('accuracy')
for i in range(len(acc)):
plt.text(x= i- 0.3 , y=acc[i], s = acc[i])
plt.legend(loc='best')
plt.title("cifar10-vgg Single category recognition rate")
plt.show()
# 检查错分样本的错分类别
def check_per_class(net, data_iter, num_class, device=None):
net.eval() # Set the model to evaluation mode
if not device:
device = next(iter(net.parameters())).device
# No. of correct predictions, no. of predictions
count = [[0]*num_class for i in range(num_class)]
with torch.no_grad():
for x, y in data_iter:
x = x.to(device)
y = y.to(device)
y_hat = net(x)
y_hat = torch.argmax(y_hat, dim=1)
for i, label in enumerate(y):
if y_hat[i] != label: # 即判断结果不标签
count[label][y_hat[i]] += 1 # count的后十位记录正确个数
print(count)
fig = plt.figure(figsize=(9, 6))
ax3 = Axes3D(fig)
for i in range(len(count)):
ax3.bar(range(len(count[i])), count[i], zs=i, zdir='x', alpha=0.7, width=0.5)
ax3.set_xlabel('label')
ax3.set_ylabel('label_hat')
ax3.set_zlabel('number')
plt.show()
class AddPepperNoise(torch.nn.Module):
def __init__(self, snr) -> None:
super().__init__()
self.snr = snr
def forward(self, img): # img是PIL
img_ = F.to_tensor(img).permute(1, 2, 0).cpu().detach().numpy() # (3, h, w)
h, w, c = img_.shape
signal_pct = self.snr
noise_pct = (1 - self.snr)
mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
mask = np.repeat(mask, c, axis=2)
img_[mask == 1] = 1. # 盐噪声
img_[mask == 2] = 0. # 椒噪声
img_ = F.to_pil_image(torch.tensor(img_, dtype=torch.float32).permute(2, 0, 1))
return img_
class AddRandomNoise(torch.nn.Module):
def __init__(self, epsilon) -> None:
super().__init__()
self.epsilon = epsilon
def forward(self, img): # img是tensor
noise = self.epsilon * torch.rand(img.shape)
img_ = torch.clip(img + noise, 0., 1.)
return img_
class BilateralFilter(torch.nn.Module):
def __init__(self, kernal_size, std) -> None:
super().__init__()
self.kernal_size = kernal_size
self.std = std
def forward(self, img): # img是tensor
img_ = img.permute(1, 2, 0).numpy() # (h,w,c)
img_ = cv2.bilateralFilter(img_.copy(), self.kernal_size, self.std, self.std)
img = torch.tensor(img_).permute(2, 0, 1) # (c,h,w)
return img