-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.tex
1297 lines (1216 loc) · 97.4 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[journal]{IEEEtran}
% \documentclass[journal,12pt,onecolumn,draftclsnofoot]{IEEEtran}
\usepackage[table]{xcolor}
\usepackage{adjustbox}
\usepackage{algorithm}
\usepackage{algpseudocode}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{bookmark}
\usepackage{booktabs}
\usepackage[makeroom]{cancel}
\usepackage[american]{circuitikz}
\usepackage{cite}
\usepackage{fixmath}
\usepackage[acronym]{glossaries-extra}
\usepackage{hyperref}
\usepackage{import}
\usepackage{mathtools}
\usepackage{microtype}
\usepackage[short]{optidef}
\usepackage{pgfplots}
\usepackage{ragged2e}
\usepackage[subtle]{savetrees}
\usepackage{siunitx}
\usepackage{stfloats}
\usepackage[caption=false,font=footnotesize,subrefformat=parens,labelformat=parens]{subfig}
\usepackage{tabularx}
\usepackage{tikz}
% page limit hacks
% \usepackage{setspace}
% ! \usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm]{geometry}
% \abovedisplayskip=1mm
% \belowdisplayskip=1mm
% \abovedisplayshortskip=1mm
% \belowdisplayshortskip=1mm
% \setlength{\jot}{0.1mm}
% \setlength{\floatsep}{1mm}
% \setlength{\textfloatsep}{1mm}
% \setlength{\intextsep}{1mm}
% \setlength{\skip\footins}{2mm}
% amsthm
\newtheorem{proposition}{Proposition}
\newtheorem{remark}{Remark}
% PGF/TikZ
\usetikzlibrary{arrows,calc,matrix,patterns,plotmarks,positioning,shapes}
\usetikzlibrary{decorations.pathmorphing,decorations.pathreplacing,decorations.shapes,shapes.geometric}
\usepgfplotslibrary{groupplots,patchplots}
\pgfplotsset{compat=newest}
% tabularx, ragged2e
\newcolumntype{L}{>{\RaggedRight}X}
\newcolumntype{C}{>{\centering\arraybackslash}X}
\renewcommand\tabularxcolumn[1]{m{#1}}
% algpseudocode
\makeatletter
\renewcommand{\fnum@algorithm}{\fname@algorithm{} \thealgorithm:}
\newcommand\setalgorithmcaptionfont[1]{%
\let\my@floatc@ruled\floatc@ruled % save \floatc@ruled
\def\floatc@ruled{%
\global\let\floatc@ruled\my@floatc@ruled % restore \floatc@ruled
#1\floatc@ruled}}
\makeatother
\algrenewcommand{\algorithmicrequire}{\textbf{Input:}}
\algrenewcommand{\algorithmicensure}{\textbf{Output:}}
\algrenewcommand{\algorithmicwhile}{\textbf{While}}
\algrenewcommand{\algorithmicend}{\textbf{End}}
\algrenewcommand{\algorithmicrepeat}{\textbf{Repeat}}
\algrenewcommand{\algorithmicuntil}{\textbf{Until}}
\algrenewcommand{\algorithmicdo}{}
% glossaries-extra
\glsdisablehyper
\setabbreviationstyle[acronym]{long-short}
\newacronym{af}{AF}{Amplify-and-Forward}
\newacronym{ambc}{AmBC}{Ambient Backscatter Communication}
\newacronym{ap}{AP}{Access Point}
\newacronym{awgn}{AWGN}{Additive White Gaussian Noise}
\newacronym{bcd}{BCD}{Block Coordinate Descent}
\newacronym{bc}{BackCom}{Backscatter Communication}
\newacronym{bibo}{BIBO}{Binary-Input Binary-Output}
\newacronym{bpcu}{\si{bpcu}}{bits per channel use}
\newacronym{bpsphz}{\si{bps/Hz}}{bits per second per Hertz}
\newacronym{clt}{CLT}{Central Limit Theorem}
\newacronym{cw}{CW}{Continuous Waveform}
\newacronym{cp}{CP}{Canonical Polyadic}
\newacronym{cr}{CR}{Cognitive Radio}
\newacronym{cscg}{CSCG}{Circularly Symmetric Complex Gaussian}
\newacronym{csi}{CSI}{Channel State Information}
\newacronym{dc}{DC}{Direct Current}
\newacronym{df}{DF}{Decode-and-Forward}
\newacronym{dmc}{DMC}{Discrete Memoryless Channel}
\newacronym{dmtc}{DMTC}{Discrete Memoryless Thresholding Channel}
\newacronym{dmmac}{DMMAC}{Discrete Memoryless Multiple Access Channel}
\newacronym{dcmc}{DCMC}{Discrete-input Continuous-output Memoryless Channel}
\newacronym{dp}{DP}{Dynamic Programming}
\newacronym{fdma}{FDMA}{Frequency-Division Multiple Access}
\newacronym{iid}{i.i.d.}{independent and identically distributed}
\newacronym{ioe}{IoE}{Internet of Everything}
\newacronym{iot}{IoT}{Internet of Things}
\newacronym{kkt}{KKT}{Karush-Kuhn-Tucker}
\newacronym{m2m}{M2M}{Machine to Machine}
\newacronym{mac}{MAC}{Multiple Access Channel}
\newacronym{mc}{MC}{Multiplication Coding}
\newacronym{miso}{MISO}{Multiple-Input Single-Output}
\newacronym{mimo}{MIMO}{Multiple-Input Multiple-Output}
\newacronym{ml}{ML}{Maximum-Likelihood}
\newacronym{mrt}{MRT}{Maximum Ratio Transmission}
\newacronym{noma}{NOMA}{Non-Orthogonal Multiple Access}
\newacronym{ofdm}{OFDM}{Orthogonal Frequency-Division Multiplexing}
\newacronym{pdf}{PDF}{Probability Density Function}
\newacronym{pga}{PGA}{Projected Gradient Ascent}
\newacronym{psk}{PSK}{Phase Shift Keying}
\newacronym{qam}{QAM}{Quadrature Amplitude Modulation}
\newacronym{qos}{QoS}{Quality of Service}
\newacronym{rf}{RF}{Radio-Frequency}
\newacronym{rfid}{RFID}{Radio-Frequency Identification}
\newacronym{ris}{RIS}{Reconfigurable Intelligent Surface}
\newacronym{sc}{SC}{Superposition Coding}
\newacronym{sic}{SIC}{Successive Interference Cancellation}
\newacronym{simo}{SIMO}{Single-Input Multiple-Output}
\newacronym{sinr}{SINR}{Signal-to-Interference-plus-Noise Ratio}
\newacronym{smawk}{SMAWK}{Shor-Moran-Aggarwal-Wilber-Klawe}
\newacronym{snr}{SNR}{Signal-to-Noise Ratio}
\newacronym{sr}{SR}{Symbiotic Radio}
\newacronym{swipt}{SWIPT}{Simultaneous Wireless Information and Power Transfer}
\newacronym{tdma}{TDMA}{Time-Division Multiple Access}
\newacronym{ue}{UE}{user}
\newacronym{wit}{WIT}{Wireless Information Transfer}
\newacronym{wpcn}{WPCN}{Wireless Powered Communication Network}
\newacronym{wpt}{WPT}{Wireless Power Transfer}
\newacronym{mbc}{MBC}{Monostatic \glsentryshort{bc}}
\newacronym{bbc}{BBC}{Bistatic \glsentryshort{bc}}
\newacronym{bls}{BLS}{Backtracking Line Search}
\newacronym{mrc}{MRC}{Maximal Ratio Combining}
\newacronym{sdma}{SDMA}{Space-Division Multiple Access}
\newacronym{nlos}{NLoS}{Non-Line-of-Sight}
\newacronym{zf}{ZF}{Zero-Forcing}
\newacronym{mmse}{MMSE}{Minimum Mean-Square-Error}
\newacronym{fpga}{FPGA}{Field-Programmable Gate Array}
\newacronym{ber}{BER}{Bit Error Rate}
\begin{document}
\title{RIScatter: Unifying Backscatter Communication and Reconfigurable Intelligent Surface}
\author{
\IEEEauthorblockN{
Yang~Zhao,~\IEEEmembership{Member,~IEEE,}
and~Bruno~Clerckx,~\IEEEmembership{Fellow,~IEEE}
}
\thanks{
The authors are with the Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail: \{yang.zhao18, b.clerckx\}@imperial.ac.uk).
B. Clerckx is also with Silicon Austria Labs (SAL), Graz A-8010, Austria.
}
}
\maketitle
\begin{abstract}
\gls{bc} nodes harvest energy from and modulate information over external carriers.
\gls{ris} adapts phase shift response to alter channel strength in specific directions.
In this paper, we unify those two seemingly different technologies (and their derivatives) into one architecture called RIScatter.
RIScatter is a batteryless cognitive radio that recycles ambient signal in an adaptive and customizable manner, where dispersed or co-located scatter nodes partially modulate their information and partially engineer the wireless channel.
The key is to render the probability distribution of reflection states as a joint function of the information source, \gls{csi}, and relative priority of coexisting links.
This enables RIScatter to softly bridge \gls{bc} and \gls{ris}; reduce to either in special cases; or evolve in a mixed form for heterogeneous traffic control and universal hardware design.
We also propose a low-complexity \gls{sic}-free receiver that exploits the properties of RIScatter.
For a single-user multi-node network, we characterize the achievable primary-(total-)backscatter rate region by optimizing the input distribution at scatter nodes, the active beamforming at the \gls{ap}, and the energy decision regions at the user.
Simulations demonstrate RIScatter nodes can shift between backscatter modulation and passive beamforming.
\end{abstract}
\begin{IEEEkeywords}
Backscatter communication, reconfigurable intelligent surface, active-passive coexisting network, input distribution design, \gls{sic}-free receiver.
\end{IEEEkeywords}
\glsresetall
\begin{section}{Introduction}
\label{sc:introduction}
\IEEEPARstart{F}{uture} wireless network is envisioned to provide high throughput, uniform coverage, pervasive connectivity, heterogeneous control, and cognitive intelligence for trillions of low-power devices.
\gls{bc} separates a transmitter into a \gls{rf} carrier emitter with power-hungry elements (e.g., synthesizer and amplifier) and an information-bearing node with power-efficient components (e.g., harvester and modulator) \cite{Boyer2014}.
The receiver (reader) can be either co-located or separated with the carrier emitter, known as \gls{mbc} and \gls{bbc} in Fig.~\subref*{fg:mbc} and \subref*{fg:bbc}, respectively.
Relevant applications such as \gls{rfid} \cite{Dobkin2012,Landt2005} and passive sensor network \cite{Vannucci2008,Assimonis2016} have been extensively researched, standardized, and commercialized to embrace the \gls{ioe}.
However, conventional backscatter nodes only respond when externally inquired by a nearby reader.
\gls{ambc} in Fig.~\subref*{fg:ambc} was proposed a decade ago where battery-free nodes recycle ambient signals (e.g., radio, television and Wi-Fi) to harvest energy and establish connections \cite{Liu2013b}.
It does not require dedicated power source, carrier emitter, or frequency spectrum, but the backscatter decoding is subject to the strong interference from the primary (legacy) link.
To tackle this, cooperative \gls{ambc} \cite{Yang2018} employs a co-located receiver to decode both coexisting links, and the concept was further refined as \gls{sr} in Fig.~\subref*{fg:sr} \cite{Liang2020}.
Specifically, the active transmitter generates \gls{rf} wave carrying primary information, the passive node creates a rich-scattering environment and superimposes its own information, and the co-located receiver cooperatively decodes both links.
In those \gls{bc} applications, the scatter node is considered as an \emph{information source} and the reflection pattern depends exclusively on the information symbol.
On the other hand, \gls{ris} in Fig.~\subref*{fg:ris} is a smart signal reflector with numerous passive elements of adjustable phase shifts.
It customizes the wireless environment for signal enhancement, interference suppression, scattering enrichment, and/or non-line-of-sight bypassing \cite{Wu2021b}.
Each \gls{ris} element is considered as a \emph{channel shaper} and the reflection pattern depends exclusively on the \gls{csi}.
As a special case of \gls{cr}, active and passive transmissions coexist and interplay in \gls{ambc} and \gls{sr}.
Such a coexistence is classified into commensal (overlay), parasitic (underlay), and competitive (interfering) paradigms, and their achievable rate and outage performance were investigated in \cite{Guo2019b,Ding2020}.
The achievable rate and optimal input distribution for binary-input \gls{ambc} were investigated in \cite{Qian2019b}, but its impact on the primary link was omitted.
% For binary-input \gls{ambc}, are investigated in \cite{Qian2019b}, but the authors did not consider its impact on the primary link.
% The \gls{ber} performance of \gls{ml}, linear, and \gls{sic} receivers are derived over flat fading channels \cite{Yang2018}.
% The authors of \cite{Hassani2023} analyzed the energy efficiency and achievable rate region for an \gls{ambc}-aided multi-user downlink \gls{noma} system.
In \cite{Hassani2023}, the authors analyzed the energy efficiency and achievable rate region for an \gls{ambc}-aided multi-user downlink \gls{noma} system.
However, they assumed equal symbol duration and perfect synchronization for the coexisting links.
Importantly, active-passive coexisting networks have three special and important properties:
\begin{enumerate}
\item Primary and backscatter symbols are superimposed by \emph{double modulation} (i.e., multiplication coding);
\item Backscatter signal strength is much weaker than primary due to \emph{double fading};
\item The spreading factor (i.e., backscatter symbol duration over primary) is usually large\footnote{The load-switching interval of low-power backscatter modulators is usually \num{0.1} to \qty{10}{\us} \cite{Torres2021}, accounting for a typical spreading factor between \num{10} and \num{e3}.}.
\end{enumerate}
The second property motivated \cite{Long2020a,Liang2020,Guo2019b,Ding2020,Hassani2023,Zhou2019a,Wu2021a,Xu2021a,Yang2021a,Yang2018,Han2021,Zhang2022,Dai2023} to view \gls{sr} as a multiplicative \gls{noma} and perform \gls{sic} from primary to backscatter link.
During primary decoding, the backscatter signal can be modelled as channel uncertainty or multiplicative interference, when the spreading factor is large or small.
Decoding each backscatter symbol also requires multiple \gls{sic} followed by a \gls{mrc} over primary blocks, which is operation-intensive and \gls{csi}-sensitive.
Under those assumptions, the achievable rate region of cell-free \gls{sr} was characterized in \cite{Dai2023}.
When the spreading factor is sufficiently large, the primary achievable rate under semi-coherent detection\footnote{In this paper, semi-coherent detection refers to the primary/backscatter decoding with known \gls{csi} and unknown backscatter/primary symbols.} asymptotically approaches its coherent counterpart such that both links are approximately interference-free \cite{Long2020a}.
However, this assumption severely limits the backscatter throughput.
\begin{figure}[!t]
\centering
\subfloat[\gls{mbc}]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/mbc.tex}
}
\label{fg:mbc}
}
\subfloat[\gls{bbc}]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/bbc.tex}
}
\label{fg:bbc}
}
\\
\subfloat[\gls{ambc}]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/ambc.tex}
}
\label{fg:ambc}
}
\subfloat[\gls{sr}]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/sr.tex}
}
\label{fg:sr}
}
\\
\subfloat[\gls{ris}]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/ris.tex}
}
\label{fg:ris}
}
\subfloat[RIScatter]{
\resizebox{0.48\linewidth}{!}{
\input{assets/illustration/riscatter.tex}
}
\label{fg:riscatter}
}
\caption{
Illustration of scattering applications.
The blue flow(s) constitutes the primary link while the magenta/green flow denotes the backscatter link.
}
\label{fg:scatter_illustration}
\end{figure}
\begin{table*}[!t]
\caption{Comparison of Scattering Applications}
\label{tb:scattering_applications}
\rowcolors{2}{gray!25}{white}
\renewcommand{\arraystretch}{1.4}
\begin{tabularx}{\textwidth}{CCCCCC}
\toprule
\hiderowcolors
& \glsentryshort{mbc}/\glsentryshort{bbc} & \glsentryshort{ambc} & \glsentryshort{sr} (large spreading factor) & \glsentryshort{ris} & RIScatter \\ \midrule
\showrowcolors
Information link(s) & Backscatter & Coexisting & Coexisting & Primary & Coexisting \\
Primary signal on backscatter decoding & Carrier & Multiplicative interference & Spreading code & --- & Energy uncertainty \\
Backscatter signal on primary decoding & --- & Multiplicative interference & \glsentryshort{csi} uncertainty & Passive beamforming & Dynamic passive beamforming \\
Cooperative devices & --- & No & Primary transmitter and co-located receiver & --- & Primary transmitter, scatter nodes, and co-located receiver \\
Sequential decoding & --- & No & Primary-to-backscatter, \glsentryshort{sic} and \glsentryshort{mrc} & --- & Backscatter-to-primary, no \glsentryshort{sic}/\glsentryshort{mrc} \\
Reflection pattern depends on & Information source & Information source & Information source & \glsentryshort{csi} & Information source, \glsentryshort{csi}, and \glsentryshort{qos} \\
Reflection state distribution & Equiprobable & Equiprobable & Equiprobable or Gaussian & Degenerate & Flexible \\
Load-switching speed & Fast & Slow & Slow & Quasi-static & Arbitrary \\ \bottomrule
\end{tabularx}
\end{table*}
On the other hand, static \gls{ris} that employs fixed reflection pattern per channel block has been extensively studied in wireless communication, sensing, and power literature \cite{Wu2018,Zhang2019a,Lin2022,Liu2022,Feng2022,Zhao2022}.
Dynamic \gls{ris} performs time sharing between different phase shifts and introduces artificial channel diversity within each channel block.
The idea was first proposed to fine-tune the \gls{ofdm} resource blocks \cite{Yang2020}, then extended to the downlink power and uplink information phases of \gls{wpcn} \cite{Wu2021,Wu2021d,Hua2022a}.
However, dynamic \gls{ris} carries no information because the reflection state at a specific time is known to the receiver.
\gls{ris} can also be used as an information source, and prototypes have been developed for \gls{psk} \cite{Tang2019a} and \gls{qam} \cite{Dai2020a}.
From an information-theoretic perspective, the authors of \cite{Karasik2020} reported that joint transmitter-\gls{ris} encoding achieves the capacity of \gls{ris}-aided finite-input channel, and using \gls{ris} as a naive passive beamformer to maximize the receive \gls{snr} is generally rate-suboptimal.
This inspired \cite{Liu2019d,Bereyhi2020,Xu2020b,Zhang2021d,Hu2021b,Hua2022,Basar2020,Ma2020a,Yuan2021,Hu2021a} to combine passive beamforming and backscatter modulation in the overall \gls{ris} design.
In particular, \emph{symbol level precoding} maps the information symbols to the optimized \gls{ris} coefficient sets \cite{Liu2019d,Bereyhi2020}, \emph{overlay modulation} superposes the information symbols over a common auxiliary matrix \cite{Xu2020b,Zhang2021d,Hu2021b,Hua2022}, \emph{spatial modulation} switches between the reflection coefficient sets that maximize \gls{snr} at different receive antennas \cite{Basar2020,Ma2020a,Yuan2021}, and \emph{index modulation} employs dedicated reflection elements (resp. information elements) for passive beamforming (resp. backscatter modulation) \cite{Hu2021a}.
Those \gls{ris}-based backscatter modulation schemes incur advanced hardware architecture and high optimization complexity.
In contrast, \cite{Vardakis2023} exploited commodity \gls{rfid} tags, powered and controlled by a software-defined radio reader at a different frequency, to perform passive beamforming (but no backscatter modulation) towards a legacy user. \label{cm:2.5}
% The authors demonstrated the feasibility of using batteryless devices to adaptively enhance the \gls{snr} of a primary link, but did not consider backscatter modulation at.
Most relevant literature considered either Gaussian codebook \cite{Guo2019b,Ding2020,Long2020a,Zhou2019a,Wu2021a,Xu2021a,Yang2021a,Hu2021b} that is impractical for low-power nodes, or finite equiprobable inputs \cite{Yang2018,Liang2020,Han2021,Zhang2022,Liu2019d,Bereyhi2020,Xu2020b,Zhang2021d,Hua2022,Basar2020,Ma2020a,Yuan2021,Hu2021a} that does not fully exploit the \gls{csi} and properties of active-passive coexisting networks.
Those problems are addressed in this paper and the contributions are summarized below.
\emph{First,} we propose RIScatter as a novel protocol that unifies \gls{bc} and \gls{ris} by adaptive reflection state (backscatter input) distribution design.
The concept is shown in Fig.~\subref*{fg:riscatter}, where one or more RIScatter nodes ride over an active transmission to simultaneously modulate their information and engineer the wireless channel.
A co-located receiver cooperatively decodes both coexisting links.
Each reflection state is simultaneously a passive beamforming codeword and part of information codeword.
The reflection pattern over time is semi-random and guided by the input probability assigned to each state.
This probability distribution is carefully designed to incorporate the backscatter information, \gls{csi}, and \gls{qos}\footnote{\gls{qos} refers to the relative priority of the primary link.\label{fn:qos}}.
Such an adaptive channel coding boils down to the degenerate distribution of \gls{ris} when the primary link is prioritized, and outperforms the uniform distribution of \gls{bc} (by accounting the \gls{csi}) when the backscatter link is prioritized.
Table~\ref{tb:scattering_applications} compares RIScatter to \gls{bc} and \gls{ris}.
However, two major challenges for RIScatter are the receiver design and input distribution design.
This is the first paper to unify \gls{bc} and \gls{ris} from the perspective of input distribution.
\emph{Second,} we address the first challenge and propose a low-complexity \gls{sic}-free receiver.
It semi-coherently decodes the weak backscatter signal using an energy detector, re-encodes for the exact reflection pattern, then coherently decodes the primary link.
Thanks to double modulation, backscatter detection can be viewed as part of channel training, and the impact of backscatter modulation can be modelled as dynamic passive beamforming afterwards.
The proposed receiver may be built over legacy receivers with minor hardware upgrade, as it only requires one additional energy comparison and re-encoding per backscatter symbol (instead of primary symbol).
The energy detector can also be tailored for arbitrary input distribution and spreading factor to increase backscatter throughput.
This is the first paper to propose a \gls{sic}-free cooperative receiver for active-passive coexisting networks.
\emph{Third,} we address the second challenge in a single-user multi-node \gls{miso} scenario.
We characterize the achievable primary-(total-)backscatter rate region by optimizing the input distribution at RIScatter nodes, the active beamforming at the \gls{ap}, and the energy decision regions at the user under different \gls{qos}.
A \gls{bcd} algorithm is proposed where the \gls{kkt} input distribution is numerically evaluated by the converging point of a sequence, the active beamforming is optimized by \gls{pga}, and the decision regions are refined by state-of-the-art sequential quantizer designs for \gls{dmtc}.
Uniquely, our optimization problem takes into account the \gls{csi}, \gls{qos}, and backscatter constellation, and the resulting input distribution is applicable to other detection schemes.
This is also the first paper to reveal the importance of backscatter input distribution and decision region designs in active-passive coexisting networks.
% \emph{Fourth,} we provide numerical results to demonstrate the benefits of RIScatter and proposed algorithms.
% The observations include:
% 1) adaptive reflection state distribution design can flexibly shift between backscatter modulation and passive beamforming;
% 2) when the primary link is prioritized, input distribution becomes degenerate and RIScatter nodes coincide with discrete \gls{ris};
% 3) when the backscatter link is prioritized, adaptive RIScatter encoding achieves higher backscatter rate than conventional line-coded \gls{bc} with equiprobable inputs;
% 4) co-located RIScatter nodes can further leverage total backscatter rate by joint encoding;
% 5) the proposed receiver maintains the passive beamforming benefit and provides comparable backscatter rate to \gls{sic}-based \gls{sr}, with re-encoding costs reduced to $1/N$ and no re-precoding/cancellation;
% 6) it also supports scatter nodes with faster load-switching speed for potentially higher throughput;
% 7) \gls{pga} active beamformer effectively increases the primary (resp. backscatter) rate by boosting the receive \gls{snr} (resp. widening the energy gap under different reflection states), and can smoothly transition in between under different \gls{qos};
% 8) distribution-aware backscatter detectors provide higher backscatter rate than the conventional \gls{ml} detector.
% \end{subsection}
\emph{Notations:}
Italic, bold lower-case, and bold upper-case letters denote scalars, vectors and matrices, respectively.
$\boldsymbol{0}$ and $\boldsymbol{1}$ denote zero and one array of appropriate size, respectively. $\mathbb{I}^{x \times y}$, $\mathbb{R}_+^{x \times y}$, and $\mathbb{C}^{x \times y}$ denote the unit, real nonnegative, and complex spaces of dimension $x \times y$, respectively.
$j$ denotes the imaginary unit.
$\mathrm{diag}(\cdot)$ returns a square matrix with the input vector on its main diagonal and zeros elsewhere.
$\mathrm{card}(\cdot)$ returns the cardinality of a set.
$\log(\cdot)$ denotes logarithm of base $e$.
$(\cdot)^*$, $(\cdot)^\mathsf{T}$, $(\cdot)^\mathsf{H}$, $\lvert{\cdot}\rvert$, and $\lVert{\cdot}\rVert$ denote the conjugate, transpose, conjugate transpose (Hermitian), absolute value, and Euclidean norm operators, respectively.
$(\cdot)^{(r)}$ and $(\cdot)^{\star}$ denote the $r$-th iterated and optimal results, respectively.
The distribution of a \gls{cscg} random variable with zero mean and variance $\sigma^2$ is denoted by $\mathcal{CN}(0,\sigma^2)$, and $\sim$ means ``distributed as''.
\end{section}
\begin{section}{RIScatter}
\label{sc:riscatter}
\begin{subsection}{Principles}
\label{sc:principles}
\gls{rf} wave scattering or reflecting are often manipulated by passive antennas or programmable metamaterial \cite{Liang2022}.
The former receives the impinging signals and reradiates some back to the space, while the latter reflects at the space-cell boundary and mainly applies a phase shift.
In the scattered signal, the structural mode component depends on the scatterer geometry and material.
Its impact is usually modelled as part of environment multipath \cite{Thomas2012,Liang2020}, or simply a baseband \gls{dc} offset when the impinging signal is a \gls{cw} \cite{Boyer2014}.
On the other hand, the antenna mode component depends on the impedance mismatch and is widely exploited in scattering applications.
For an antenna (resp. metamaterial) scatterer with $M$ reflection states, the reflection coefficient at state $m \in \mathcal{M} \triangleq \{1,\ldots,M\}$ is \cite{VanHuynh2017,Liang2022}
\begin{equation}
\Gamma_m = \frac{Z_m - Z^*}{Z_m + Z},
\label{eq:reflection_coefficient}
\end{equation}
where $Z_m$ is the antenna load (resp. metamaterial cell) impedance at state $m$, and $Z$ is the antenna input (resp. medium characteristic) impedance.
Specifically,
\begin{itemize}
\item \gls{bc}: The scatterer is an information source with random reflection pattern over time.
The reflection coefficient is used merely as part of information codeword \cite{Thomas2012a}
\begin{equation}
\Gamma_m = \alpha_m \frac{c_m}{\max_{m'} \lvert c_{m'} \rvert},
\label{eq:backscatter_modulation}
\end{equation}
where $\alpha_m \in \mathbb{I}$ is the amplitude scattering ratio at state $m$, and $c_m$ is the corresponding constellation point.
\item \gls{ris}: The scatterer is a channel shaper with deterministic reflection pattern over time.
The reflection coefficient is used merely as a passive beamforming codeword \cite{Wu2018}
\begin{equation}
\Gamma_m = \alpha_m \exp(j \theta_m),
\label{eq:passive_beamforming}
\end{equation}
where $\theta_m$ is the phase shift at state $m$.\footnote{Most papers assume $\alpha_m = \alpha$, with $\alpha \ll 1$ for \gls{bc} and $\alpha=1$ for \gls{ris}.\label{fn:scattering_ratio}}
\end{itemize}
RIScatter generalizes \gls{bc} and \gls{ris} from a probabilistic perspective.
Each reflection coefficient simultaneously acts as a passive beamforming codeword and part of information codeword.
As shown in Fig.~\ref{fg:scatter_comparison}, the reflection pattern of each RIScatter node over time is semi-random and guided by the input probability assigned to each state.
This probability distribution is carefully designed to incorporate the backscatter information, \gls{csi}, and \gls{qos}, in order to strike a balance between backscatter modulation and passive beamforming.
\begin{figure}[!t]
\centering
\subfloat[Input Distribution]{
\resizebox{0.8\columnwidth}{!}{
\input{assets/illustration/input_distribution.tex}
}
\label{fg:input_distribution}
}
\\
\subfloat[Reflection Pattern]{
\resizebox{0.8\columnwidth}{!}{
\input{assets/illustration/time_structure.tex}
}
\label{fg:time_structure}
}
\caption{
Input distribution and reflection pattern of scattering applications.
``PB'', ``BB'', and ``CB'' refer to primary symbol block, backscatter symbol block, and channel block, respectively.
Shadowing means presence of primary link.
In this example, the optimal passive beamformer corresponds to state \num{2}.
The spreading factor is \num{4} for RIScatter and \num{8} for \gls{ambc}/\gls{sr}.
\gls{bc} and \gls{ris} can be viewed as extreme cases of RIScatter, where the input distribution boils down to uniform and degenerate, respectively.
}
\label{fg:scatter_comparison}
\end{figure}
\begin{remark}
Unlike dynamic \gls{ris} that simply performs a time sharing between reflection states, RIScatter conveys additional information by randomizing the reflection pattern over time while still guaranteeing the probability of occurrence of each state.
Upon successful backscatter detection, the impact of RIScatter nodes on the primary link can be modelled as dynamic passive beamforming.
\label{re:dynamic_passive_beamforming}
\end{remark}
RIScatter nodes can be implemented, for example, by adding an integrated receiver\footnote{The aim is to coordinate the node with the active source and to acquire the optimized input distribution, instead of decoding the primary information dedicated for the user. The node receiver can be implemented using simple circuits or even integrated with the rectifier \cite{Kim2021a} to reduce cost and complexity.\label{fn:integrated_receiver}} \cite{Kim2021a} and adaptive encoder \cite{He2020e} to off-the-shelf passive \gls{rfid} tags.
The block diagram, equivalent circuit, and scatter model are illustrated in Fig.~\ref{fg:riscatter_node}.
\begin{figure*}[!t]
\centering
\subfloat[Block Diagram]{
\resizebox{0.32\linewidth}{!}{
\input{assets/illustration/block_diagram.tex}
}
\label{fg:block_diagram}
}
\subfloat[Equivalent Circuit]{
\resizebox{0.37\linewidth}{!}{
\input{assets/illustration/equivalent_circuit.tex}
}
\label{fg:equivalent_circuit}
}
\subfloat[Scatter Model]{
\resizebox{0.28\linewidth}{!}{
\input{assets/illustration/scatter_model.tex}
}
\label{fg:scatter_model}
}
\caption{
Block diagram, equivalent circuit, and scatter model of a RIScatter node.
The solid and dashed vectors represent signal and energy flows.
The scatter antenna behaves as a constant power source, where the voltage $V_0$ and current $I_0$ are introduced by incident electric field $\vec{E}_{\text{I}}$ and magnetic field $\vec{H}_{\text{I}}$ \cite{Huang2021}.
}
\label{fg:riscatter_node}
\end{figure*}
% To exploit the benefits of RIScatter, we also propose a low-complexity receiver that semi-coherently decodes the backscatter link, re-encodes to recover the reflection pattern, and coherently decodes the primary link.
% The detail will be covered in Section~\ref{st:system_model}.
\end{subsection}
\begin{subsection}{System Model}
\label{sc:system_model}
\begin{figure}[!t]
\centering
\def\svgwidth{0.7\columnwidth}
\footnotesize{
\import{assets/illustration/}{riscatter_network.pdf_tex}
}
\caption{A single-user multi-node RIScatter network.}
\label{fg:riscatter_network}
\end{figure}
As shown in Fig.~\ref{fg:riscatter_network}, we consider a RIScatter network where a $Q$-antenna \gls{ap} serves a single-antenna user and $K$ nearby dispersed or co-located RIScatter nodes.
Without loss of generality, we assume all nodes have $M$ available reflection states.
In the primary point-to-point system, the \gls{ap} transmits information to the user over a multipath channel\footnote{It is assumed the primary symbol duration is much longer than multipath delay spread (i.e., no inter-symbol interference).} enhanced by RIScatter nodes.
In the backscatter multiple access system, the \gls{ap} acts as a carrier emitter, the RIScatter nodes modulate over the scattered signal, and the user jointly decodes all nodes.\footnote{It is assumed the signal going through two or more RIScatter nodes is too weak to be received by the user.}
For simplicity, we consider a quasi-static block fading model and focus on a specific channel block where the \gls{csi} remains constant.
Denote the \gls{ap}-user direct channel as $\boldsymbol{h}_{\text{D}}^\mathsf{H} \in \mathbb{C}^{1 \times Q}$, the \gls{ap}-node $k \in \mathcal{K} \triangleq \{1,\ldots,K\}$ forward channel as $\boldsymbol{h}_{\text{F},k}^\mathsf{H} \in \mathbb{C}^{1 \times Q}$, the node $k$-user backward channel as $h_{\text{B},k}$, and the cascaded \gls{ap}-node $k$-user channel as $\boldsymbol{h}_{\text{C},k}^\mathsf{H} \triangleq h_{\text{B},k} \boldsymbol{h}_{\text{F},k}^\mathsf{H} \in \mathbb{C}^{1 \times Q}$.
We assume the direct and cascaded \gls{csi} are available at the \gls{ap} and user\footnote{The cascaded \gls{csi} can be estimated by sequential \cite{Bharadia2015,Yang2015b,Guo2019g} or parallel \cite{Jin2021a} approaches for dispersed nodes, or group-based \cite{Zheng2019} or hierarchical \cite{You2019} approaches for co-located nodes. The impact of channel estimation error will be investigated in Section~\ref{sc:simulation_results}.}.
Let $\alpha_k \in \mathbb{I}$ be the amplitude scattering ratio of node $k$, $x_k \in \mathcal{X} \triangleq \{c_1,\ldots,c_M\}$ be the (coded) backscatter symbol of node $k$, and $x_{\mathcal{K}} \triangleq (x_1,\ldots,x_K)$ be the backscatter symbol tuple of all nodes.
Due to double modulation, the composite channel is a function of backscatter symbol tuple\footnote{\eqref{eq:equivalent_channel_bc} and \eqref{eq:equivalent_channel_ris} are often used in \gls{bc} and \gls{ris} literature, respectively.}
\begin{subequations}
\label{eq:equivalent_channel}
\begin{align}
\boldsymbol{h}^\mathsf{H}(x_{\mathcal{K}})
& \triangleq \boldsymbol{h}_{\text{D}}^\mathsf{H} + \sum_{k} \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} x_k \label{eq:equivalent_channel_bc} \\
& = \boldsymbol{h}_{\text{D}}^\mathsf{H} + \boldsymbol{x}^\mathsf{H} \mathrm{diag}(\boldsymbol{\alpha}) \boldsymbol{H}_{\text{C}}, \label{eq:equivalent_channel_ris}
\end{align}
\end{subequations}
where $\boldsymbol{\alpha} \triangleq [\alpha_1,\ldots,\alpha_K]^\mathsf{T} \in \mathbb{I}^{K}$, $\boldsymbol{x} \triangleq [x_1,\ldots,x_K]^\mathsf{H} \in \mathcal{X}^{K}$, and $\boldsymbol{H}_{\text{C}} \triangleq [\boldsymbol{h}_{\text{C},1},\ldots,\boldsymbol{h}_{\text{C},K}]^\mathsf{H} \in \mathbb{C}^{K \times Q}$.
Without loss of generality, we assume the spreading factor $N$ is a positive integer.
Within one backscatter block, the signal received by the user at primary block $n \in \mathcal{N} \triangleq \{1,\ldots,N\}$ is
\begin{equation}
y[n] = \boldsymbol{h}^\mathsf{H}(x_{\mathcal{K}}) \boldsymbol{w} s[n] + v[n],
\label{eq:receive_signal}
\end{equation}
where $\boldsymbol{w} \in \mathbb{C}^{Q}$ is the active beamformer satisfying $\lVert \boldsymbol{w} \rVert^2 \le P$, $P$ is the maximum average transmit power, $s \sim \mathcal{CN}(0,1)$ is the primary symbol, and $v \sim \mathcal{CN}(0,\sigma_v^2)$ is the \gls{awgn} with variance $\sigma_v^2$.
Let $m_k \in \mathcal{M} \triangleq \{1,\ldots,M\}$ be the reflection state index of node $k$, and $m_{\mathcal{K}} \triangleq (m_1,\ldots,m_K)$ be the state index tuple of all nodes.
The backscatter symbol $x_k$ (resp. symbol tuple $x_{\mathcal{K}}$) is a random variable that takes value $x_{m_k}$ (resp. value tuple $x_{m_{\mathcal{K}}}$) with probability $p(x_{m_k})$ (resp. $p(x_{m_{\mathcal{K}}})$).
\begin{remark}
Dispersed RIScatter nodes encode independently such that
\begin{equation}
p(x_{m_{\mathcal{K}}}) = \prod_k p(x_{m_k}).
\label{eq:equivalent_distribution}
\end{equation}
When multiple nodes are co-located, they can jointly encode by designing the joint probability $p(x_{m_{\mathcal{K}}})$ directly.
\label{re:independent_encoding}
\end{remark}
Let $z=\sum_{n} \bigl\lvert y[n] \bigr\rvert^2$ be the receive energy per backscatter block.
When $x_{m_\mathcal{K}}$ is transmitted, the receive signal $y$ follows \gls{cscg} distribution $\mathcal{CN}(0,\sigma_{m_{\mathcal{K}}}^2)$ with variance
\begin{equation}
\sigma_{m_{\mathcal{K}}}^2 = \lvert \boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}}) \boldsymbol{w} \rvert^2 + \sigma_v^2,
\label{eq:receive_variance}
\end{equation}
and $z$ follows Gamma distribution with conditional \gls{pdf}
\begin{equation}
f(z|x_{m_{\mathcal{K}}}) = \frac{z^{N-1} \exp(-z/\sigma_{m_{\mathcal{K}}}^2)}{\sigma_{m_{\mathcal{K}}}^{2N} (N-1)!}.
\label{eq:energy_distribution}
\end{equation}
\begin{remark}
We have assumed Gaussian codebook for the primary source and finite support for the backscatter nodes, since they are relatively practical and widely adopted in relevant literatures \cite{Qian2019b,Xu2020b,Zhang2021d,Hua2022,Hu2021a,Qian2019}.
The proposed framework is extendable to non-Gaussian primary source, and the conditional \gls{pdf} \eqref{eq:energy_distribution} can be approximated using \gls{clt} for large $N$.
\label{re:non_gaussian}
\end{remark}
The user first jointly decodes the backscatter message of all nodes using a low-complexity energy detector.\footnote{The reliability of the energy detector is improved by the adaptive input distribution and thresholding design. With high-order modulation or large number of scatter nodes, the reliability can be further enhanced by increasing the spreading factor or using error correction codes with low code-rate. In practice, users can decode backscatter nodes ranging from a few to hundreds of meters in the presence of noise and interference, and the backscatter throughput can reach few Kbps to tens of Mbps \cite{Wu2022e}.\label{fn:energy_detector}}
The energy detector formulates a \gls{dmtc} of size $M^K \times M^K$.
\begin{remark}
The capacity-achieving decision region design for \gls{dmtc} with non-binary inputs in arbitrary distribution remains an open issue.
It was proved deterministic detectors can be rate-optimal, but non-convex regions (consist of non-adjacent partitions) are generally required and the optimal number of thresholds is unknown \cite{Nguyen2018,Nguyen2021}.
Next, we restrict the energy detector to convex deterministic decision regions and consider sequential threshold design.
\end{remark}
Let $L = M^K$ be the number of decision regions.
Sort $\{\sigma_{m_{\mathcal{K}}}^2\}$ in ascending order and denote the result sequence as $\sigma_1^2,\ldots,\sigma_L^2$.
With sequential thresholding, the decision region of backscatter symbol tuple $l \in \mathcal{L} \triangleq \{1,\ldots,L\}$ is\footnote{$m_{\mathcal{K}}$ and $l$ are one-to-one mapped. Both notations are used interchangeably in the following context.}
\begin{equation}
\mathcal{R}_{l} \triangleq [t_{l-1},t_l), \quad 0 \le t_{l-1} \le t_l,
\end{equation}
where $t_l$ is the decision threshold between hypotheses $x_{l}$ and $x_{l+1}$.
An example is shown in Fig.~\ref{fg:energy_distribution}.
\begin{figure}[!t]
\centering
\resizebox{0.8\columnwidth}{!}{
\input{assets/illustration/energy_distribution.tex}
}
\caption{
\gls{pdf} of the receive energy per backscatter block conditioned on different reflection state.
}
\label{fg:energy_distribution}
\end{figure}
When the threshold vector $\boldsymbol{t} \triangleq [t_0,\ldots,t_L]^\mathsf{T} \in \mathbb{R}_+^{L+1}$ is given, we can formulate a \gls{dmmac} with transition probability from input $x_{m_{\mathcal{K}}}$ to output $\hat{x}_{m_{\mathcal{K}}'}$ as
\begin{equation}
q(\hat{x}_{m_{\mathcal{K}}'}|x_{m_{\mathcal{K}}}) = \int_{\mathcal{R}_{m_{\mathcal{K}}'}} f(z|x_{m_{\mathcal{K}}}) \, d z.
\label{eq:dmmac}
\end{equation}
The backscatter mutual information is
\begin{equation}
I_{\text{B}}(x_{\mathcal{K}};\hat{x}_{\mathcal{K}}) = \sum_{m_{\mathcal{K}}} p(x_{m_{\mathcal{K}}}) I_{\text{B}}(x_{m_{\mathcal{K}}};\hat{x}_{\mathcal{K}}),
\label{eq:backscatter_mutual_information}
\end{equation}
where $I_{\text{B}}(x_{m_{\mathcal{K}}};\hat{x}_{\mathcal{K}})$ is the backscatter information function
\begin{equation}
I_{\text{B}}(x_{m_{\mathcal{K}}};\hat{x}_{\mathcal{K}}) \triangleq \sum_{m_{\mathcal{K}}'} q(\hat{x}_{m_{\mathcal{K}}'}|x_{m_{\mathcal{K}}}) \log \frac{q(\hat{x}_{m_{\mathcal{K}}'}|x_{m_{\mathcal{K}}})}{p(\hat{x}_{m_{\mathcal{K}}'})}.
\label{eq:backscatter_information_function}
\end{equation}
Once the backscatter information is successfully decoded, the user re-encodes to recover the reflection pattern, constructs the composite channel by \eqref{eq:equivalent_channel}, then coherently decodes the primary link.
The primary mutual information is
\begin{equation}
I_{\text{P}}(s;y|x_{\mathcal{K}}) = \sum_{m_{\mathcal{K}}} p(x_{m_{\mathcal{K}}}) I_{\text{P}}(s;y|x_{m_{\mathcal{K}}}),
\label{eq:primary_mutual_information}
\end{equation}
where $I_{\text{P}}(s;y|x_{m_{\mathcal{K}}})$ is the primary information function
\begin{equation}
I_{\text{P}}(s;y|x_{m_{\mathcal{K}}}) \triangleq \log \Bigl(1 + \frac{\lvert \boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}}) \boldsymbol{w} \rvert^2}{\sigma_v^2}\Bigr).
\label{eq:primary_information_function}
\end{equation}
\end{subsection}
\end{section}
\begin{section}{Rate-Region Characterization}
With a slight abuse of notation, we define the weighed sum mutual information and information function as
\begin{align}
I(x_{\mathcal{K}})
& \triangleq \rho I_{\text{P}}(s;y|x_{\mathcal{K}}) + (1 - \rho) I_{\text{B}}(x_{\mathcal{K}};\hat{x}_{\mathcal{K}}),\label{eq:weighted_sum_mutual_information} \\
I(x_{m_\mathcal{K}})
& \triangleq \rho I_{\text{P}}(s;y|x_{m_{\mathcal{K}}}) + (1 - \rho) I_{\text{B}}(x_{m_{\mathcal{K}}};\hat{x}_{\mathcal{K}}),\label{eq:weighted_sum_information_function}
\end{align}
where $\rho \in \mathbb{I}$ is the \gls{qos}.
To obtain the achievable primary-(total-)backscatter rate region, we consider the weighted sum mutual information maximization problem with independent encoding at all nodes\footnote{Joint encoding over multiple nodes can be viewed as its special case with an augmented backscatter source.\label{fn:joint_encoding}}
\begin{maxi!}
{\scriptstyle{\{\boldsymbol{p}_k\}_{k \in \mathcal{K}},\boldsymbol{w},\boldsymbol{t}}}{I(x_{\mathcal{K}})}{\label{op:weighted_sum_rate}}{\label{ob:weighted_sum_rate}}
\addConstraint{\boldsymbol{1}^\mathsf{T} \boldsymbol{p}_k}{=1,}{\quad \forall k}{\label{co:sum_probability}}
\addConstraint{\boldsymbol{p}_k}{\ge \boldsymbol{0},}{\quad \forall k}{\label{co:nonnegative_probability}}
\addConstraint{\lVert \boldsymbol{w} \rVert^2}{\le P}{\label{co:transmit_power}}
\addConstraint{t_{l-1}}{\le t_l,}{\quad \forall l}{\label{co:sequential_threshold}}
\addConstraint{\boldsymbol{t}}{\ge \boldsymbol{0},}{\label{co:nonnegative_threshold}}
\end{maxi!}
where $\boldsymbol{p}_k = [p(x_{1_k}), \ldots, p(x_{M_k})]^\mathsf{T} \in \mathbb{I}^M$ is the input distribution of node $k$.
Problem \eqref{op:weighted_sum_rate} generalizes \gls{bc} by allowing \gls{csi}- and \gls{qos}-adaptive input distribution and decision region design.
On the other hand, it also relaxes the feasible domain of discrete \gls{ris} phase shift selection problems from the vertices of $M$-dimensional probability simplex to the simplex itself.
The original problem is highly non-convex and we propose a \gls{bcd} algorithm that iteratively updates $\{\boldsymbol{p}_k\}_{k \in \mathcal{K}}$, $\boldsymbol{w}$ and $\boldsymbol{t}$.
\begin{subsection}{Input Distribution}
\label{sc:input_distribution}
For any given $\boldsymbol{w}$ and $\boldsymbol{t}$, we can formulate a \gls{dmmac} by \eqref{eq:dmmac} and simplify \eqref{op:weighted_sum_rate} to
\begin{maxi!}
{\scriptstyle{\{\boldsymbol{p}_k\}_{k \in \mathcal{K}}}}{I(x_{\mathcal{K}})}{\label{op:input_distribution}}{}
\addConstraint{\eqref{co:sum_probability},\eqref{co:nonnegative_probability},}
\end{maxi!}
which involves the product term \eqref{eq:equivalent_distribution} and is generally non-convex (unless $K=1$).
Following \cite{Rezaeian2004}, we first recast the \gls{kkt} conditions to their equivalent forms, then propose a numerical solution that guarantees those conditions on the converging point of a sequence.
\begin{proposition}
The \gls{kkt} optimality conditions for problem \eqref{op:input_distribution} are equivalent to, $\forall k,m_k$,
\begin{subequations}
\label{eq:input_kkt_condition}
\begin{alignat}{2}
I_k^\star(x_{m_k}) & = I^\star(x_{\mathcal{K}}), \quad & & \text{if} \ p^\star(x_{m_k}) > 0,\label{eq:probable_states} \\
I_k^\star(x_{m_k}) & \le I^\star(x_{\mathcal{K}}), \quad & & \text{if} \ p^\star(x_{m_k}) = 0,\label{eq:dropped_states}
\end{alignat}
\end{subequations}
where $I_k(x_{m_k})$ is the weighted sum marginal information
\begin{align}
I_k(x_{m_k})
& \triangleq \sum_{m_{\mathcal{K} \setminus \{k\}}} p(x_{m_{\mathcal{K} \setminus \{k\}}}) I(x_{m_\mathcal{K}}).
\label{eq:weighted_sum_marginal_information}
\end{align}
\label{pr:input_kkt_condition}
\end{proposition}
\begin{proof}
Please refer to Appendix \ref{ap:input_kkt_condition}.
\label{pf:input_kkt_condition}
\end{proof}
For each RIScatter node, \eqref{eq:probable_states} suggests each probable state should produce the same marginal information (averaged over all states of other nodes), while \eqref{eq:dropped_states} suggests any state with potentially less marginal information should not be used.
\begin{proposition}
For any strictly positive initializer $\{\boldsymbol{p}_k^{(0)}\}_{k \in \mathcal{K}}$, the \gls{kkt} input probability of node $k$ at state $m_k$ is given by the converging point of the sequence
\begin{equation}
p^{(r+1)}(x_{m_k}) = \frac{p^{(r)}(x_{m_k}) \exp \Bigl( \frac{\rho}{1 - \rho} I_k^{(r)}(x_{m_k}) \Bigr)}{\sum_{m_k'} p^{(r)}(x_{m_k'}) \exp \Bigl( \frac{\rho}{1 - \rho} I_k^{(r)}(x_{m_k'}) \Bigr)},
\label{eq:input_kkt_solution}
\end{equation}
where $r$ is the iteration index.
\label{pr:input_kkt_solution}
\end{proposition}
\begin{proof}
Please refer to Appendix \ref{ap:input_kkt_solution}.
\label{pf:input_kkt_solution}
\end{proof}
At iteration $r+1$, the input distribution of node $k$ is updated over $\bigl\{\{\boldsymbol{p}_q^{(r+1)}\}_{q=1}^{k-1},\{\boldsymbol{p}_q^{(r)}\}_{q=k}^{K}\bigr\}$.
The \gls{kkt} input distribution design is summarized in Algorithm \ref{al:input_distribution}.
\setalgorithmcaptionfont{\small}
\begin{algorithm}[!t]
\small
\caption{Input Distribution Evaluation by a Sequence}
\label{al:input_distribution}
\begin{algorithmic}[1]
\Require $K$, $N$, $\boldsymbol{h}_{\text{D}}^\mathsf{H}$, $\boldsymbol{H}_{\text{C}}$, $\boldsymbol{\alpha}$, $\mathcal{X}$, $\sigma_v^2$, $\rho$, $\boldsymbol{w}$, $\boldsymbol{t}$, $\epsilon$
\Ensure $\{\boldsymbol{p}_k^\star\}_{k \in \mathcal{K}}$
\State Set $\boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:equivalent_channel}
\State \phantom{Set} $\sigma^2_{m_{\mathcal{K}}}$, $\forall m_{\mathcal{K}}$ by \eqref{eq:receive_variance}
\State \phantom{Set} $f(z|x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:energy_distribution}
\State \phantom{Set} $q(\hat{x}_{m_{\mathcal{K}}'}|x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}, m_{\mathcal{K}}'$ by \eqref{eq:dmmac}
\State Initialize $r \gets 0$
\State \phantom{Initialize} $\boldsymbol{p}_k^{(0)} > \boldsymbol{0}$, $\forall k$
\State Get $p^{(r)}(x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:equivalent_distribution} \label{st:input_distribution_begin}
\State \phantom{Get} $I^{(r)}(x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:backscatter_information_function}, \eqref{eq:primary_information_function}, \eqref{eq:weighted_sum_information_function}
\State \phantom{Get} $I^{(r)}_k(x_{m_k})$, $\forall k,m_k$ by \eqref{eq:weighted_sum_marginal_information}
\State \phantom{Get} $I^{(r)}(x_{\mathcal{K}})$ by \eqref{eq:backscatter_mutual_information}, \eqref{eq:primary_mutual_information}, \eqref{eq:weighted_sum_mutual_information} \label{st:input_distribution_end}
\Repeat
\State Update $r \gets r+1$
\State \phantom{Update} $\boldsymbol{p}_k^{(r)}$, $\forall k$ by \eqref{eq:input_kkt_solution}
\State Redo step \ref{st:input_distribution_begin}--\ref{st:input_distribution_end}
\Until $I^{(r)}(x_{\mathcal{K}}) - I^{(r-1)}(x_{\mathcal{K}}) \le \epsilon$
\end{algorithmic}
\end{algorithm}
\begin{remark}
The insufficiency of the \gls{kkt} conditions for problem \eqref{op:input_distribution} implies that the proposed method may not converge to the global-optimal solution.
However, simulation results in Section~\ref{sc:simulation_results} will show that the average performance gap is indistinguishable at a moderate $K$.
\label{re:input_kkt_distribution}
\end{remark}
\end{subsection}
\begin{subsection}{Active Beamforming}
For any given $\{\boldsymbol{p}_k\}_{k \in \mathcal{K}}$ and $\boldsymbol{t}$, problem \eqref{op:weighted_sum_rate} reduces to
\begin{maxi!}
{\scriptstyle{\boldsymbol{w}}}{I(x_{\mathcal{K}})}{\label{op:active_beamforming}}{\label{ob:active_beamforming}}
\addConstraint{\eqref{co:transmit_power},}
\end{maxi!}
which is still non-convex due to the integration and entropy terms.
Note the \gls{dmmac} $q(x_l|x_{m_{\mathcal{K}}})$ depends on the variance of accumulated receive energy $\sigma_{m_{\mathcal{K}}}^2$, which is a function of $\boldsymbol{w}$.
Plugging \eqref{eq:energy_distribution} into \eqref{eq:dmmac}, we have
\begin{align}
q(x_l|x_{m_{\mathcal{K}}})
& = \frac{\int_{{t_{l-1}}/{\sigma_{m_{\mathcal{K}}}^2}}^{{t_l}/{\sigma_{m_{\mathcal{K}}}^2}} z^{N-1} \exp(-z) \, d z}{(N-1)!} \\
& = Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr),
\label{eq:dmmac_gamma}
\end{align}
where $Q(N, b_1, b_2) \triangleq \int_{b_1}^{b_2} z^{N-1} \exp(-z) / (N - 1)! \, d z$ is the regularized incomplete Gamma function.
Its series expansion is given by \cite[Theorem 3]{Jameson2016}
\begin{align}
Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)
& = \exp \Bigl(-\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2}\Bigr) \sum_{n=0}^{N-1} \frac{\bigl(\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2}\bigr)^n}{n!} \nonumber \\
& \quad - \exp \Bigl(-\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr) \sum_{n=0}^{N-1} \frac{\bigl(\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\bigr)^n}{n!},
\label{eq:regularized_incomplete_gamma}
\end{align}
whose gradient with respect to $\boldsymbol{w}^*$ is
\begin{align}
\nabla_{\boldsymbol{w}^*} Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)
& = \frac{\boldsymbol{h}(x_{m_{\mathcal{K}}})\boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})\boldsymbol{w}}{(\sigma_{m_{\mathcal{K}}}^2)^2} \nonumber \\
& \quad \times \Bigl(g_{m_{\mathcal{K}}}(t_l) - g_{m_{\mathcal{K}}}(t_{l-1})\Bigr),
\label{eq:regularized_incomplete_gamma_gradient}
\end{align}
where
\begin{equation}
g_{m_{\mathcal{K}}}(t_l) = t_l\exp\Bigl(-\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)\Bigl(-1+\sum_{n=1}^{N-1} \frac{\bigl(n - \frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\bigr) \bigl(\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\bigr)^{n-1}}{n!}\Bigr).
\label{eq:regularized_incomplete_gamma_gradient_component}
\end{equation}
On top of \eqref{eq:regularized_incomplete_gamma} and \eqref{eq:regularized_incomplete_gamma_gradient}, we rewrite $I(x_{\mathcal{K}})$ and $\nabla_{\boldsymbol{w}^*} I(x_{\mathcal{K}})$ as \eqref{eq:weighted_sum_mutual_information_explicit} and \eqref{eq:weighted_sum_mutual_information_gradient} at the end of page \pageref{eq:weighted_sum_mutual_information_explicit}, respectively.
\begin{figure*}[!b]
\hrule
\begin{equation}
I(x_{\mathcal{K}})=\sum_{m_{\mathcal{K}}}p(x_{m_{\mathcal{K}}})\Biggl(\rho\log\Bigl(1+\frac{\lvert\boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})\boldsymbol{w}\rvert^2}{\sigma_v^2}\Bigr)+(1-\rho)\sum_l Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr) \log \frac{Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)}{\sum_{m_{\mathcal{K}}'} p(x_{m_{\mathcal{K}}'}) Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}'}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}'}^2}\Bigr)}\Biggr)
\label{eq:weighted_sum_mutual_information_explicit}
\end{equation}
\begin{align}
\nabla_{\boldsymbol{w}^*} I(x_{\mathcal{K}})
& = \sum_{m_{\mathcal{K}}}p(x_{m_{\mathcal{K}}})\Biggl(\rho\frac{\boldsymbol{h}(x_{m_{\mathcal{K}}})\boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})\boldsymbol{w}}{\sigma_{m_{\mathcal{K}}}^2}+(1-\rho)\sum_l\biggl(\log\frac{Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)}{\sum_{m_{\mathcal{K}}'}p(x_{m_{\mathcal{K}}'})Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}'}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}'}^2}\Bigr)}+1\biggr)\nonumber \\
& \qquad \times \nabla_{\boldsymbol{w}^*} Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)-\frac{Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\Bigr)\sum_{m_{\mathcal{K}}'}p(x_{m_{\mathcal{K}}'})\nabla_{\boldsymbol{w}^*}Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}'}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}'}^2}\Bigr)}{\sum_{m_{\mathcal{K}}'}p(x_{m_{\mathcal{K}}'})Q\Bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}'}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}'}^2}\Bigr)}\Biggr)
\label{eq:weighted_sum_mutual_information_gradient}
\end{align}
\end{figure*}
Problem \eqref{op:active_beamforming} can thus be solved by the \gls{pga} method.
At iteration $r+1$, the unregulated active beamformer is updated by
\begin{equation}
\bar{\boldsymbol{w}}^{(r+1)} = \boldsymbol{w}^{(r)}+\gamma\nabla_{\boldsymbol{w}^*} I^{(r)}(x_{\mathcal{K}}),
\label{eq:beamforming_gradient_ascent}
\end{equation}
where $\gamma$ is the step size (refinable by backtracking line search \cite[Section 9.2]{Boyd2004}).
Then, $\bar{\boldsymbol{w}}$ is projected onto the feasible domain \eqref{co:transmit_power} to retrieve the active beamformer
\begin{equation}
\boldsymbol{w} = \frac{\sqrt{P} \bar{\boldsymbol{w}}}{\max\bigl(\sqrt{P},\lVert\bar{\boldsymbol{w}}\rVert\bigr)}.
\label{eq:beamforming_projection}
\end{equation}
The \gls{pga} active beamforming design is summarized in Algorithm \ref{al:active_beamforming}.
\setalgorithmcaptionfont{\small}
\begin{algorithm}[!t]
\small
\caption{Active Beamforming Optimization by \gls{pga}}
\label{al:active_beamforming}
\begin{algorithmic}[1]
\Require $Q$, $N$, $\boldsymbol{h}_{\text{D}}^\mathsf{H}$, $\boldsymbol{H}_{\text{C}}$, $\boldsymbol{\alpha}$, $\mathcal{X}$, $P$, $\sigma_v^2$, $\rho$, $\{\boldsymbol{p}_k\}_{k \in \mathcal{K}}$, $\boldsymbol{t}$, $\alpha$, $\beta$, $\gamma$, $\epsilon$
\Ensure $\boldsymbol{w}^\star$
\State Set $\boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:equivalent_channel}
\State \phantom{Set} $p(x_{m_{\mathcal{K}}})$, $\forall m_{\mathcal{K}}$ by \eqref{eq:equivalent_distribution}
\State Initialize $r \gets 0$
\State \phantom{Initialize} $\boldsymbol{w}^{(0)}$, $\lVert\boldsymbol{w}^{(0)}\rVert^2 \le P$
\State Get $(\sigma_{m_{\mathcal{K}}}^{(r)})^2$, $\forall m_{\mathcal{K}}$ by \eqref{eq:receive_variance} \label{st:gradient_descent_begin}
\State \phantom{Get} $Q^{(r)}\bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\bigr)$, $\forall m_{\mathcal{K}},l$ by \eqref{eq:regularized_incomplete_gamma}
\State \phantom{Get} $I^{(r)}(x_{\mathcal{K}})$ by \eqref{eq:weighted_sum_mutual_information_explicit} \label{st:gradient_descent_end}
\State \phantom{Get} $\nabla_{\boldsymbol{w}^*} Q^{(r)}\bigl(N,\frac{t_{l-1}}{\sigma_{m_{\mathcal{K}}}^2},\frac{t_l}{\sigma_{m_{\mathcal{K}}}^2}\bigr)$, $\forall m_{\mathcal{K}},l$ by \eqref{eq:regularized_incomplete_gamma_gradient} \label{st:gradient_update_start}
\State \phantom{Get} $\nabla_{\boldsymbol{w}^*} I^{(r)}(x_{\mathcal{K}})$ by \eqref{eq:weighted_sum_mutual_information_gradient} \label{st:gradient_update_end}
\Repeat
\State Update $r \gets r+1$
\State \phantom{Update} $\gamma^{(r)}\gets\gamma$
\State \phantom{Update} $\bar{\boldsymbol{w}}^{(r)}$ by \eqref{eq:beamforming_gradient_ascent} \label{st:backtracking_line_search_begin}
\State \phantom{Update} $\boldsymbol{w}^{(r)}$ by \eqref{eq:beamforming_projection}
\State Redo step \ref{st:gradient_descent_begin}--\ref{st:gradient_descent_end} \label{st:backtracking_line_search_end}
\While{$I^{(r)}(x_{\mathcal{K}})<I^{(r-1)}(x_{\mathcal{K}})+\alpha\gamma\lVert\nabla_{\boldsymbol{w}^*}I^{(r-1)}(x_{\mathcal{K}})\rVert^2$}
\State Set $\gamma^{(r)}\gets\beta\gamma^{(r)}$
\State Redo step \ref{st:backtracking_line_search_begin}--\ref{st:backtracking_line_search_end}
\EndWhile
\State Redo step \ref{st:gradient_update_start}, \ref{st:gradient_update_end}
\Until $\lVert\boldsymbol{w}^{(r)}-\boldsymbol{w}^{(r-1)}\rVert \le \epsilon$
\end{algorithmic}
\end{algorithm}
\end{subsection}
\begin{subsection}{Decision Threshold}
For any given $\{\boldsymbol{p}_k\}_{k \in \mathcal{K}}$ and $\boldsymbol{w}$, problem \eqref{op:weighted_sum_rate} reduces to
\begin{maxi!}
{\scriptstyle{\boldsymbol{t}}}{I(x_{\mathcal{K}})}{\label{op:decision_threshold}}{\label{ob:decision_threshold}}
\addConstraint{\eqref{co:sequential_threshold},\eqref{co:nonnegative_threshold},}
\end{maxi!}
which is still non-convex since $\boldsymbol{t}$ appears on the limits of integration \eqref{eq:dmmac}.
Instead of solving it directly, we constrain the feasible domain from continuous space $\mathbb{R}_+^{L+1}$ to discrete candidates (i.e., fine-grained energy levels) $\mathcal{T}^{L+1}$.
As shown in Fig.~\ref{fg:discrete_outputs}, the decision regions are formulated by grouping adjacent energy bins.
\begin{figure}[!t]
\centering
\resizebox{0.9\columnwidth}{!}{
\input{assets/illustration/discrete_outputs.tex}
}
\caption{The thresholds are chosen from fine-grained candidates instead of the continuous space. Each decision region consists of at least one bin.}
\label{fg:discrete_outputs}
\end{figure}
\begin{remark}
The design of the energy detector does not affect the primary achievable rate, since the composite channel \eqref{eq:equivalent_channel} can always be determined after backscatter decoding and re-encoding.
This implies that any thresholding maximizing the total backscatter rate is optimal for problem \eqref{op:decision_threshold}.
\label{re:backscatter_decision}
\end{remark}
\begin{remark}
In terms of total backscatter rate, the nodes can be viewed as an augmented source, and problem \eqref{op:decision_threshold} becomes the rate-optimal quantizer design for \gls{dmtc}.
\label{re:augmented_source}
\end{remark}
Thanks to Remark \ref{re:backscatter_decision} and \ref{re:augmented_source}, problem \eqref{op:decision_threshold} can be recast as
\begin{maxi!}
{\scriptstyle{\boldsymbol{t} \in \mathcal{T}^{L+1}}}{I_{\text{B}}(x_{\mathcal{K}};\hat{x}_{\mathcal{K}})}{\label{op:decision_threshold_discrete}}{\label{ob:decision_threshold_discrete}}
\addConstraint{\eqref{co:sequential_threshold},}
\end{maxi!}
whose global optimal solution has been obtained in recent works.
\cite{He2021} started from the quadrangle inequality and proposed a \gls{dp} method accelerated by the \gls{smawk} algorithm with computational complexity $\mathcal{O}\bigl(L^2(\mathrm{card}(\mathcal{T})-L)\bigr)$.
On the other hand, \cite{Nguyen2020a} started from the optimality condition for three neighbor thresholds and presented a traverse-then-bisect algorithm with complexity $\mathcal{O}\bigl(\mathrm{card}(\mathcal{T})L\log(\mathrm{card}(\mathcal{T})L)\bigr)$.
In Section \ref{sc:simulation_results}, both schemes will be compared with the \gls{ml} scheme \cite{Qian2019}
\begin{equation}
t_{l}^{\text{\gls{ml}}} = N \frac{\sigma_{l-1}^2 \sigma_{l}^2}{\sigma_{l-1}^2 - \sigma_{l}^2} \log \frac{\sigma_{l-1}^2}{\sigma_{l}^2}, \quad l \in \mathcal{L} \setminus \{L\},
\label{eq:detection_threshold_ml}
\end{equation}
which is suboptimal for problem \eqref{op:decision_threshold} unless all nodes are with equiprobable inputs.
\end{subsection}
\end{section}
\begin{section}{Simulation Results}
\label{sc:simulation_results}
In this section, we provide numerical results to evaluate the proposed algorithms.
We assume the AP-user distance is \qty{10}{m} and at least one RIScatter nodes are randomly dropped in a disk centered at the user with radius $r$.
The \gls{ap} is with maximum average transmit power $P=\qty{36}{dBm}$ and all nodes employs $M$-\gls{qam} with $\alpha=0.5$.
For all channels involved, we consider a distance-dependent path loss model
\begin{equation}
L(d) = L_0 \biggl(\frac{d_0}{d}\biggr)^\gamma,
\end{equation}
together with a Rician fading model
\begin{equation}
\boldsymbol{H} = \sqrt{\frac{\kappa}{1+\kappa}} \bar{\boldsymbol{H}} + \sqrt{\frac{1}{1+\kappa}} \tilde{\boldsymbol{H}},
\end{equation}
where $d$ is the transmission distance, $L_0=-\qty{30}{dB}$ is the reference path loss at $d_0=\qty{1}{m}$, $\kappa$ is the Rician K-factor, $\bar{\boldsymbol{H}}$ is the deterministic line-of-sight component with unit-magnitude entries, and $\tilde{\boldsymbol{H}}$ is the Rayleigh fading component with standard \gls{iid} \gls{cscg} entries.
We choose $\gamma_{\text{D}}=2.6$, $\gamma_{\text{F}}=2.4$, $\gamma_{\text{B}}=2$, and $\kappa_{\text{D}}=\kappa_{\text{F}}=\kappa_{\text{B}}=5$ for direct, forward and backward links.
The finite decision threshold domain $\mathcal{T}$ is obtained by $b$-bit uniform discretization over the critical interval defined by the $1-\varepsilon$ confidence bounds of edge hypotheses (i.e., lower bound of $x_1$ and upper bound of $x_L$).
We set $b=9$ and $\varepsilon=\num{e-3}$.
All achievable rate regions are averaged over \num{e3} channel realizations.\footnote{The code is publicly available at \url{https://github.com/snowztail/riscatter/}.}
\begin{subsection}{Evaluation of Proposed Algorithms}
\begin{subsubsection}{Initialization}
To characterize the achievable rate region, we progressively obtain all boundary points by successively increasing $\rho$ and solving problem \eqref{op:weighted_sum_rate}.
For $\rho=0$ where the backscatter link is prioritized, we initialize Algorithm \ref{al:input_distribution} and \ref{al:active_beamforming} by uniform input distribution and \gls{mrt} towards the sum cascaded channel $\sum_{k} \boldsymbol{h}_{\text{C},k}^\mathsf{H}$, respectively.
At the following points, both algorithms are initialized by the solutions at the previous point.
\end{subsubsection}
\begin{subsubsection}{Convergence}
\label{sc:convergence}
\begin{figure}[!t]
\centering
\resizebox{0.75\columnwidth}{!}{
\input{assets/simulation/wsr_convergence.tex}
}
\caption{Typical convergence curves at $\rho=0$ for $Q=4$, $K=8$, $M=2$, $N=20$, $\sigma_v^2=\qty{-40}{dBm}$ and $r=\qty{2}{m}$.}
\label{fg:wsr_convergence}
\end{figure}
The \gls{bcd} algorithm is convergent for problem \eqref{op:weighted_sum_rate} since the input distribution and active beamforming subproblems converge and the thresholding subproblem attains global optimality.
In company with \gls{bcd}, we also plotted the convergence results of \gls{kkt} and \gls{pga} algorithms in Fig.~\ref{fg:wsr_convergence} to show how much performance is gained by solving each subproblem.
It is observed that Algorithm \ref{al:input_distribution} and \ref{al:active_beamforming} take around \num{100} and \num{10} iterations to converge, respectively.
Overall, the \gls{bcd} algorithm requires at most \num{5} iterations to converge.
As $\rho$ increases (not presented here), the convergence of all three algorithms are much faster thanks to the progressive initialization.
\end{subsubsection}
\end{subsection}
\begin{subsection}{Comparison of Scattering Applications}
On top of the setup in Fig.~\ref{fg:riscatter_network}, we consider RIScatter and the following benchmark applications:
\begin{itemize}
\item \emph{Legacy:} Legacy transmission without scatter nodes.
\item \emph{\gls{bbc}:} The primary signal is \gls{cw} and the receive signal is
\begin{equation}
y^{\text{\gls{bbc}}}[n] = \Bigl(\boldsymbol{h}_{\text{D}}^\mathsf{H} + \sum_{k} \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} x_k\Bigr) \boldsymbol{w} + v[n].
\end{equation}
The total backscatter rate approaches $K \log M$ when $N$ is sufficiently large.
\item \emph{\gls{ambc}:} The user decodes each link independently and semi-coherently while treating the other as interference.
The primary achievable rate is approximately\footnote{The scattered component is treated as interference with average power $\mathbb{E}\bigl\{\sum_{k} \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} x_k \boldsymbol{w}s[n]\bigr\} = \sum_{k} \lvert \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} \boldsymbol{w} \rvert^2$ \cite{Long2020a}.\label{fn:ambc}}
\begin{equation}
I_{\text{P}}^{\text{\gls{ambc}}}(s;y) \approx \log \Bigl(1 + \frac{\lvert\boldsymbol{h}_{\text{D}}^\mathsf{H}\boldsymbol{w}\rvert^2}{\sum_{k}\lvert \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} \boldsymbol{w}\rvert^2+\sigma_v^2}\Bigr),
\end{equation}
while the total backscatter rate follows \eqref{eq:backscatter_mutual_information} with uniform input distribution.
\item \emph{\gls{sr}:} For a sufficiently large $N$, the average primary rate under semi-coherent detection asymptotically approaches \eqref{eq:primary_mutual_information} with uniform input distribution \cite{Long2020a}.
When $s[n]$ is successfully decoded and the direct interference $\boldsymbol{h}_{\text{D}}^\mathsf{H} \boldsymbol{w} s[n]$ is perfectly cancelled, the intermediate signal is
\begin{equation}
\hat{y}^{\text{\gls{sr}}}[n] = \sum_{k} \alpha_k \boldsymbol{h}_{\text{C},k}^\mathsf{H} x_k \boldsymbol{w} s[n] + v[n].
\label{eq:intermediate_signal}
\end{equation}
The total backscatter rate approaches $K \log M$.
\item \emph{\gls{ris}:} The reflection pattern is deterministic and the total backscatter rate is zero.
The primary achievable rate is a special case of \eqref{eq:primary_mutual_information}
\begin{equation}
I_{\text{P}}^{\text{\gls{ris}}}(s;y|x_{\mathcal{K}}) = I_{\text{P}}(s;y|x_{m_{\mathcal{K}}^{\star}}) = \log \Bigl(1 + \frac{\lvert \boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}^{\star}}) \boldsymbol{w} \rvert^2}{\sigma_v^2}\Bigr),
\end{equation}
where $m_{\mathcal{K}}^{\star} = \arg \max_{m_{\mathcal{K}}} I_{\text{P}}^{\text{\gls{ris}}}(s;y|x_{m_{\mathcal{K}}})$.
\end{itemize}
\begin{figure}[!t]
\centering
\resizebox{0.65\columnwidth}{!}{
\input{assets/simulation/region_comparison.tex}
}
\caption{Typical achievable rate region/points of scattering applications for $Q=1$, $K=1$, $M=4$, $N=\num{e3}$, $\sigma_v^2=\qty{-40}{dBm}$ and $r=\qty{2}{m}$.}
\label{fg:region_comparison}
\end{figure}
Fig.~\ref{fg:region_comparison} compares the typical achievable rate region/points of RIScatter and those strategies.
\emph{First,} we observe \gls{bbc} and \gls{sr} achieve the best backscatter performance thanks to the coherent decoding.
For \gls{sr}, this comes with the cost of $N$ re-encoding, precoding, subtraction together with a time-domain \gls{mrc} per backscatter symbol.
Since \gls{sr} requires a very large $N$ to guarantee the primary rate, the signal processing cost at the receiver can be prohibitive, and the backscatter \emph{throughput} can be severely constrained.
\emph{Second,} the average primary rate slightly decreases/increases in the presence of a \gls{ambc}/\gls{ris} node, and the benefit of \gls{sr} is not obvious.
This is because the cascaded channel is around \qty{25}{dB} weaker than the direct channel.
Here, \gls{ris} ensures a constructive superposition of the direct and scattered components, while \gls{sr} only creates a quasi-static rich-scattering environment that marginally enhances the average primary rate.
When $N$ is moderate, the randomly scattered signals should be modelled as interference rather than stable multipath, and the \gls{sr} point should move vertically towards the \gls{ambc} point.
\emph{Third,} RIScatter enables a flexible primary-backscatter tradeoff with adaptive input distribution design.
In terms of maximum primary achievable rate, RIScatter coincides with \gls{ris} and outperforms the others by using the static reflection pattern that maximizes the primary \gls{snr} all the time.
On the other hand, its maximum backscatter achievable rate is higher than that of \gls{ambc}.
This is because the adaptive channel coding of RIScatter outperforms the equiprobable inputs of \gls{ambc}, especially at the low backscatter \gls{snr} caused by double fading.
When multiple antenna is available at the \gls{ap}, active beamforming can be optimized for RIScatter nodes and the advantage over \gls{ambc} should be more prominent.
\end{subsection}
\begin{subsection}{Input Distribution under Different \gls{qos}}
\begin{figure}[!t]
\centering
\resizebox{0.65\columnwidth}{!}{
\input{assets/simulation/distribution_weights.tex}
}
\caption{Typical RIScatter reflection state distribution at different $\rho$ for $Q=1$, $K=1$, $M=4$, $N=20$, $\sigma_v^2=\qty{-40}{dBm}$ and $r=\qty{2}{m}$.}
\label{fg:distribution_weights}
\end{figure}
The objective is to demonstrate RIScatter nodes can leverage \gls{csi}- and \gls{qos}-adaptive input distribution design to balance backscatter modulation and passive beamforming.
For one RIScatter node with $M=4$, we evaluate the \gls{kkt} input distribution at different \gls{qos} and present the result in Fig.~\ref{fg:distribution_weights}.
At $\rho=0$ where the backscatter performance is prioritized, the optimal input distribution is \num{0} on two states and nearly uniform on the other two.
This is inline with Shannon's observation that binary antipodal inputs is good enough for channel capacity at low \gls{snr} \cite{Shannon1948}.
When the scattered signal is relatively weak, the conditional energy \gls{pdf} under different hypotheses can be closely spaced as in Fig.~\ref{fg:energy_distribution}.
The extreme states producing the lowest/highest energy are always assigned with non-zero probability, while the middles cannot provide enough energy diversity and end up unused.
At $\rho=1$ where the primary link is prioritized, the optimal input distribution is $[0, 0, 1, 0]^\mathsf{T}$ since state 3 provides higher primary \gls{snr} than other states.
That is, the reflection pattern becomes deterministic and the RIScatter node boils down to a static discrete \gls{ris} element.
Increasing $\rho$ from \num{0} to \num{1} creates a smooth transition from backscatter modulation to passive beamforming, suggesting RIScatter unifies \gls{bc} and \gls{ris} from a probabilistic perspective.
\end{subsection}
\begin{subsection}{Rate Region by Different Schemes}
\begin{figure}[!t]
\centering
\subfloat[Input Distribution, $Q=1$\label{fg:region_distribution}]{
\resizebox{0.6\columnwidth}{!}{
\input{assets/simulation/region_distribution.tex}
}
}
\\
\subfloat[Active Beamforming, $Q=4$\label{fg:region_beamforming}]{
\resizebox{0.48\columnwidth}{!}{
\input{assets/simulation/region_beamforming.tex}
}
}
\subfloat[Decision Threshold, $Q=4$\label{fg:region_threshold}]{
\resizebox{0.48\columnwidth}{!}{
\input{assets/simulation/region_threshold.tex}
}
}
\caption{
Average primary-total-backscatter rate regions by different input distribution, active beamforming, and decision threshold schemes for $K=2$, $M=4$, $N=20$, $\sigma_v^2=\qty{-40}{dBm}$ and $r=\qty{2}{m}$.
}
\end{figure}
\begin{subsubsection}{Input Distribution}
We compare these input distribution designs for problem \eqref{op:input_distribution}:
\begin{itemize}
\item \emph{Cooperation:} Joint encoding using a joint probability array $p(x_{m_{\mathcal{K}}})$ with $M^K$ entries by Algorithm \ref{al:input_distribution};
\item \emph{Exhaustion:} Exhaustive search over the $M$-dimensional probability simplex with resolution $\Delta p = \num{e-2}$;
\item \emph{\gls{kkt}:} Solution by Algorithm \ref{al:input_distribution};
\item \emph{Equiprobable:} Uniform input distribution.
\end{itemize}
We also consider these independent distribution recovery methods from the joint probability array:
\begin{itemize}
\item \emph{Marginalization:} Marginal probability distributions;
\item \emph{Decomposition:} Normalized rank-\num{1} \gls{cp} decomposed tensors by \texttt{Tensor Toolbox} \cite{Bader2022};
\item \emph{Randomization:} Gaussian randomization with the guidance of correlation matrix \cite{Calvo2010}.
\end{itemize}
Fig.~\subref*{fg:region_distribution} shows their average achievable rate regions.
Cooperation achieves the outer bound of all schemes, but joint encoding over passive devices may incur additional hardware cost.
Besides, the average rate performance of Exhaustion and \gls{kkt} completely coincide with each other when $K=2$.
This confirms Remark \ref{re:input_kkt_distribution} that the \gls{kkt} input distribution can be good enough when $K$ is moderate.
Equiprobable experiences minor backscatter and major primary rate losses without exploiting \gls{csi} and \gls{qos}, and those gaps should be larger when $M$ or $K$ increases.
Marginalization provides a close performance to \gls{kkt}, but Randomization and Decomposition fail our expectations for most channel realizations.
Those observations emphasize the importance of adaptive RIScatter encoding and demonstrate the advantage of the proposed \gls{kkt} input distribution design.
\end{subsubsection}
\begin{subsubsection}{Active Beamforming}
We consider three typical active beamforming schemes for problem \eqref{op:active_beamforming}:
\begin{itemize}
\item \emph{\gls{pga}:} Solution by Algorithm \ref{al:active_beamforming};
\item \emph{E-\gls{mrt}:} \gls{mrt} towards the ergodic composite channel $\sum_{m_{\mathcal{K}}} p(x_{m_{\mathcal{K}}}) \boldsymbol{h}^\mathsf{H}(x_{m_{\mathcal{K}}})$;
\item \emph{D-\gls{mrt}:} \gls{mrt} towards the direct channel $\boldsymbol{h}_{\text{D}}^\mathsf{H}$.
\end{itemize}
Fig.~\subref*{fg:region_beamforming} presents the average achievable rate regions for those schemes.
In the low-$\rho$ regime, the proposed \gls{pga} beamformer significantly outperforms both \gls{mrt} schemes in terms of total backscatter rate.
This is because the semi-coherent backscatter decoding relies on the relative energy difference under different backscatter symbol tuples.