-
Notifications
You must be signed in to change notification settings - Fork 195
/
Storydiffusion_node.py
2234 lines (2093 loc) · 112 KB
/
Storydiffusion_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import random
import gc
import logging
import numpy as np
import torch
import os
from PIL import ImageFont,Image
from diffusers import StableDiffusionXLPipeline, DiffusionPipeline,EulerDiscreteScheduler, UNet2DConditionModel,UniPCMultistepScheduler, AutoencoderKL
from transformers import CLIPVisionModelWithProjection
from transformers import CLIPImageProcessor
import datetime
import folder_paths
from comfy.clip_vision import load as clip_load
from comfy.model_management import total_vram
from .utils.utils import get_comic
from .utils.load_models_utils import load_models
from .model_loader_utils import (story_maker_loader,kolor_loader,phi2narry,
extract_content_from_brackets,narry_list,remove_punctuation_from_strings,phi_list,center_crop_s,center_crop,
narry_list_pil,setup_seed,find_directories,
apply_style,get_scheduler,apply_style_positive,SD35Wrapper,load_images_list,
nomarl_upscale,SAMPLER_NAMES,SCHEDULER_NAMES,lora_lightning_list,pre_checkpoint,get_easy_function,sd35_loader)
from .utils.gradio_utils import cal_attn_indice_xl_effcient_memory,is_torch2_available,process_original_prompt,get_ref_character,character_to_dict
from .ip_adapter.attention_processor import IPAttnProcessor2_0
if is_torch2_available():
from .utils.gradio_utils import AttnProcessor2_0 as AttnProcessor
else:
from .utils.gradio_utils import AttnProcessor
import torch.nn.functional as F
import copy
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
global sa32, sa64
global write
global height_s, width_s
import transformers
transformers_v=float(transformers.__version__.rsplit(".",1)[0])
photomaker_dir=os.path.join(folder_paths.models_dir, "photomaker")
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
dir_path = os.path.dirname(os.path.abspath(__file__))
fonts_path = os.path.join(dir_path, "fonts")
fonts_lists = os.listdir(fonts_path)
base_pt = os.path.join(photomaker_dir,"pt")
if not os.path.exists(base_pt):
os.makedirs(base_pt)
def set_attention_processor(unet, id_length, is_ipadapter=False):
global attn_procs
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if name.startswith("up_blocks"):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
else:
attn_procs[name] = AttnProcessor()
else:
if is_ipadapter:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1,
num_tokens=4,
).to(unet.device, dtype=torch.float16)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
def load_single_character_weights(unet, filepath):
"""
从指定文件中加载权重到 attention_processor 类的 id_bank 中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重文件的路径。
"""
# 使用torch.load来读取权重
weights_to_load = torch.load(filepath, map_location=torch.device("cpu"))
weights_to_load.eval()
character = weights_to_load["character"]
description = weights_to_load["description"]
#print(character)
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 转移权重到GPU(如果GPU可用的话)并赋值给id_bank
attn_processor.id_bank[character] = {}
for step_key in weights_to_load[attn_name].keys():
attn_processor.id_bank[character][step_key] = [
tensor.to(unet.device)
for tensor in weights_to_load[attn_name][step_key]
]
print("successsfully,load_single_character_weights")
def load_character_files_on_running(unet, character_files: str):
if character_files == "":
return False
weights_list = os.listdir(character_files)#获取路径下的权重列表
#character_files_arr = character_files.splitlines()
for character_file in weights_list:
path_cur=os.path.join(character_files,character_file)
load_single_character_weights(unet, path_cur)
return True
def save_single_character_weights(unet, character, description, filepath):
"""
保存 attention_processor 类中的 id_bank GPU Tensor 列表到指定文件中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重要保存到的文件路径。
"""
weights_to_save = {}
weights_to_save["description"] = description
weights_to_save["character"] = character
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 将每个 Tensor 转到 CPU 并转为列表,以确保它可以被序列化
#print(attn_name, attn_processor)
weights_to_save[attn_name] = {}
for step_key in attn_processor.id_bank[character].keys():
weights_to_save[attn_name][step_key] = [
tensor.cpu()
for tensor in attn_processor.id_bank[character][step_key]
]
# 使用torch.save保存权重
torch.save(weights_to_save, filepath)
def save_results(unet):
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
weight_folder_name =os.path.join(base_pt,f"{timestamp}")
#创建文件夹
if not os.path.exists(weight_folder_name):
os.makedirs(weight_folder_name)
global character_dict
for char in character_dict:
description = character_dict[char]
save_single_character_weights(unet,char,description,os.path.join(weight_folder_name, f'{char}.pt'))
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
id_length=4,
device=device,
dtype=torch.float16,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
# 生成一个0到1之间的随机数
global total_count, attn_count, cur_step, indices1024, indices4096
global sa32, sa64
global write
global height_s, width_s
global character_dict
global character_index_dict, invert_character_index_dict, cur_character, ref_indexs_dict, ref_totals, cur_character
if attn_count == 0 and cur_step == 0:
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height_s,
width_s,
device=self.device,
dtype=self.dtype,
)
if write:
assert len(cur_character) == 1
if hidden_states.shape[1] == (height_s // 32) * (width_s // 32):
indices = indices1024
else:
indices = indices4096
# print(f"white:{cur_step}")
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(-1, img_nums, nums_token, channel)
# print(img_nums,len(indices),hidden_states.shape,self.total_length)
if cur_character[0] not in self.id_bank:
self.id_bank[cur_character[0]] = {}
self.id_bank[cur_character[0]][cur_step] = [
hidden_states[:, img_ind, indices[img_ind], :]
.reshape(2, -1, channel)
.clone()
for img_ind in range(img_nums)
]
hidden_states = hidden_states.reshape(-1, nums_token, channel)
# self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
else:
# encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),self.id_bank[cur_step][1].to(self.device)))
# TODO: ADD Multipersion Control
encoder_arr = []
for character in cur_character:
encoder_arr = encoder_arr + [
tensor.to(self.device)
for tensor in self.id_bank[character][cur_step]
]
# 判断随机数是否大于0.5
if cur_step < 1:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 20:
rand_num = 0.3
else:
rand_num = 0.1
# print(f"hidden state shape {hidden_states.shape[1]}")
if random_number > rand_num:
if hidden_states.shape[1] == (height_s // 32) * (width_s // 32):
indices = indices1024
else:
indices = indices4096
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
if write:
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(
-1, img_nums, nums_token, channel
)
encoder_arr = [
hidden_states[:, img_ind, indices[img_ind], :].reshape(
2, -1, channel
)
for img_ind in range(img_nums)
]
for img_ind in range(img_nums):
# print(img_nums)
# assert img_nums != 1
img_ind_list = [i for i in range(img_nums)]
# print(img_ind_list,img_ind)
img_ind_list.remove(img_ind)
# print(img_ind,invert_character_index_dict[img_ind])
# print(character_index_dict[invert_character_index_dict[img_ind]])
# print(img_ind_list)
# print(img_ind,img_ind_list)
encoder_hidden_states_tmp = torch.cat(
[encoder_arr[img_ind] for img_ind in img_ind_list]
+ [hidden_states[:, img_ind, :, :]],
dim=1,
)
hidden_states[:, img_ind, :, :] = self.__call2__(
attn,
hidden_states[:, img_ind, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
else:
_, nums_token, channel = hidden_states.shape
# img_nums = total_batch_size // 2
# encoder_hidden_states = encoder_hidden_states.reshape(-1,img_nums,nums_token,channel)
hidden_states = hidden_states.reshape(2, -1, nums_token, channel)
# encoder_arr = [encoder_hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
encoder_hidden_states_tmp = torch.cat(
encoder_arr + [hidden_states[:, 0, :, :]], dim=1
)
hidden_states[:, 0, :, :] = self.__call2__(
attn,
hidden_states[:, 0, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
hidden_states = hidden_states.reshape(-1, nums_token, channel)
else:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height_s,
width_s,
device=self.device,
dtype=self.dtype,
)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height_s, width_s = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height_s * width_s
).transpose(1, 2)
batch_size, sequence_length, channel = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
# else:
# encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height_s, width_s
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def process_generation(
pipe,
upload_images,
model_type,
_num_steps,
style_name,
denoise_or_ip_sacle,
_style_strength_ratio,
cfg,
seed_,
id_length,
general_prompt,
negative_prompt,
prompt_array,
width,
height,
load_chars,
lora,
trigger_words, photomake_mode, use_kolor, use_flux, make_dual_only, kolor_face, pulid, story_maker,
input_id_emb_s_dict, input_id_img_s_dict, input_id_emb_un_dict, input_id_cloth_dict, guidance, condition_image,
empty_emb_zero, use_cf, cf_scheduler, controlnet_path, controlnet_scale, cn_dict,input_tag_dict,SD35_mode,use_wrapper
): # Corrected font_choice usage
if len(general_prompt.splitlines()) >= 3:
raise "Support for more than three characters is temporarily unavailable due to VRAM limitations, but this issue will be resolved soon."
# _model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
if not use_kolor and not use_flux and not story_maker:
if model_type == "img2img" and "img" not in general_prompt:
raise 'if using normal SDXL img2img ,need add the triger word " img " behind the class word you want to customize, such as: man img or woman img'
global total_length, attn_procs, cur_model_type
global write
global cur_step, attn_count
# load_chars = load_character_files_on_running(unet, character_files=char_files)
prompts_origin = prompt_array.splitlines()
prompts_origin = [i.strip() for i in prompts_origin]
prompts_origin = [i for i in prompts_origin if '[' in i] # 删除空行
# print(prompts_origin)
prompts = [prompt for prompt in prompts_origin if not len(extract_content_from_brackets(prompt)) >= 2] # 剔除双角色
add_trigger_words = " " + trigger_words + " style "
if lora:
if lora in lora_lightning_list:
prompts = remove_punctuation_from_strings(prompts)
else:
prompts = remove_punctuation_from_strings(prompts)
prompts = [item + add_trigger_words for item in prompts]
global character_index_dict, invert_character_index_dict, ref_indexs_dict, ref_totals
global character_dict
character_dict, character_list = character_to_dict(general_prompt, lora, add_trigger_words)
# print(character_dict)
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(f"start_merge_step:{start_merge_step}")
# generator = torch.Generator(device=device).manual_seed(seed_)
clipped_prompts = prompts[:]
nc_indexs = []
for ind, prompt in enumerate(clipped_prompts):
if "[NC]" in prompt:
nc_indexs.append(ind)
if ind < id_length:
raise f"The first {id_length} row is id prompts, cannot use [NC]!"
prompts = [
prompt if "[NC]" not in prompt else prompt.replace("[NC]", "")
for prompt in clipped_prompts
]
if lora:
if lora in lora_lightning_list:
prompts = [
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
]
else:
prompts = [
prompt.rpartition("#")[0] + add_trigger_words if "#" in prompt else prompt for prompt in prompts
]
else:
prompts = [
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
]
img_mode = False
if kolor_face or pulid or (story_maker and not make_dual_only) or model_type == "img2img":
img_mode = True
# id_prompts = prompts[:id_length]
(
character_index_dict,
invert_character_index_dict,
replace_prompts,
ref_indexs_dict,
ref_totals,
) = process_original_prompt(character_dict, prompts, id_length, img_mode)
if input_tag_dict:
if len(input_tag_dict)<len(replace_prompts):
raise "The number of input condition images is less than the number of scene prompts!"
replace_prompts=[prompt +" " + input_tag_dict[i] for i,prompt in enumerate(replace_prompts)]
#print(input_tag_dict)
#print(replace_prompts)
#[' a woman img, wearing a white T-shirt wake up in the bed ;', ' a man img,wearing a suit,black hair. is working.']
# print(character_index_dict,invert_character_index_dict,replace_prompts,ref_indexs_dict,ref_totals)
# character_index_dict:{'[Taylor]': [0, 3], '[sam]': [1, 2]},if 1 role {'[Taylor]': [0, 1, 2]}
# invert_character_index_dict:{0: ['[Taylor]'], 1: ['[sam]'], 2: ['[sam]'], 3: ['[Taylor]']},if 1 role {0: ['[Taylor]'], 1: ['[Taylor]'], 2: ['[Taylor]']}
# ref_indexs_dict:{'[Taylor]': [0, 3], '[sam]': [1, 2]},if 1 role {'[Taylor]': [0]}
# ref_totals: [0, 3, 1, 2] if 1 role [0]
if model_type == "img2img":
# _upload_images = [_upload_images]
input_id_images_dict = {}
if len(upload_images) != len(character_dict.keys()):
raise f"You upload images({len(upload_images)}) is not equal to the number of characters({len(character_dict.keys())})!"
for ind, img in enumerate(upload_images):
input_id_images_dict[character_list[ind]] = [img] # 已经pil转化了 不用load {a:[img],b:[img]}
# input_id_images_dict[character_list[ind]] = [load_image(img)]
# real_prompts = prompts[id_length:]
# if device == "cuda":
# torch.cuda.empty_cache()
write = True
cur_step = 0
attn_count = 0
total_results = []
id_images = []
results_dict = {}
p_num = 0
global cur_character
if not load_chars:
for character_key in character_dict.keys(): # 先生成角色对应第一句场景提示词的图片,图生图是批次生成
character_key_str = character_key
cur_character = [character_key]
ref_indexs = ref_indexs_dict[character_key]
current_prompts = [replace_prompts[ref_ind] for ref_ind in ref_indexs]
if model_type == "txt2img":
setup_seed(seed_)
generator = torch.Generator(device=device).manual_seed(seed_)
cur_step = 0
cur_positive_prompts, cur_negative_prompt = apply_style(
style_name, current_prompts, negative_prompt
)
print(f"Sampler {character_key_str} 's cur_positive_prompts :{cur_positive_prompts}")
if model_type == "txt2img":
if use_flux:
if not use_cf:
id_images = pipe(
prompt=cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance,
output_type="pil",
max_sequence_length=256,
height=height,
width=width,
generator=generator
).images
else:
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
id_images = []
cfg = 1.0
for index, text in enumerate(cur_positive_prompts):
id_image = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,
cfg=cfg,
guidance=guidance,
seed=seed_,
prompt=text,
negative_prompt=cur_negative_prompt[index],
cf_scheduler=cf_scheduler,
denoise=denoise_or_ip_sacle,
image=None
)
id_images.append(id_image)
else:
if use_cf:
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
id_images = []
for index, text in enumerate(cur_positive_prompts):
id_image = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,
cfg=cfg,
guidance=guidance,
seed=seed_,
prompt=text,
negative_prompt=cur_negative_prompt[index],
cf_scheduler=cf_scheduler,
denoise=denoise_or_ip_sacle,
image=None
)
id_images.append(id_image)
elif SD35_mode:
if use_wrapper:
id_images = pipe(
cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance,
height=height,
width=width,
negative_prompt=cur_negative_prompt,
max_sequence_length=512,
generator=generator
)
else:
id_images = pipe(
cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance,
height=height,
width=width,
negative_prompt=cur_negative_prompt,
max_sequence_length=512,
generator=generator
).images
else:
if use_kolor:
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
id_images = pipe(
cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=cfg,
height=height,
width=width,
negative_prompt=cur_negative_prompt,
generator=generator
).images
elif model_type == "img2img":
if use_kolor:
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
if kolor_face:
crop_image = input_id_img_s_dict[character_key_str][0]
face_embeds = input_id_emb_s_dict[character_key_str][0]
face_embeds = face_embeds.to(device, dtype=torch.float16)
if id_length > 1:
id_images = []
for index, i in enumerate(cur_positive_prompts):
id_image = pipe(
prompt=i,
negative_prompt=cur_negative_prompt[index],
height=height,
width=width,
num_inference_steps=_num_steps,
guidance_scale=cfg,
num_images_per_prompt=1,
generator=generator,
face_crop_image=crop_image,
face_insightface_embeds=face_embeds,
).images
id_images.append(id_image)
else:
id_images = pipe(
prompt=cur_positive_prompts,
negative_prompt=cur_negative_prompt,
height=height,
width=width,
num_inference_steps=_num_steps,
guidance_scale=cfg,
num_images_per_prompt=1,
generator=generator,
face_crop_image=crop_image,
face_insightface_embeds=face_embeds,
).images
else:
pipe.set_ip_adapter_scale([denoise_or_ip_sacle])
id_images = pipe(
prompt=cur_positive_prompts,
ip_adapter_image=input_id_images_dict[character_key],
negative_prompt=cur_negative_prompt,
num_inference_steps=_num_steps,
height=height,
width=width,
guidance_scale=cfg,
num_images_per_prompt=1,
generator=generator,
).images
elif use_flux:
if pulid:
id_embeddings = input_id_emb_s_dict[character_key_str][0]
uncond_id_embeddings = input_id_emb_un_dict[character_key_str][0]
if id_length > 1:
id_images = []
for index, i in enumerate(cur_positive_prompts):
id_image = pipe.generate_image(
prompt=i,
seed=seed_,
start_step=2,
num_steps=_num_steps,
height=height,
width=width,
id_embeddings=id_embeddings,
uncond_id_embeddings=uncond_id_embeddings,
id_weight=1,
guidance=guidance,
true_cfg=1.0,
max_sequence_length=128,
)
id_images.append(id_image)
else:
id_images = pipe.generate_image(
prompt=cur_positive_prompts,
seed=seed_,
start_step=2,
num_steps=_num_steps,
height=height,
width=width,
id_embeddings=id_embeddings,
uncond_id_embeddings=uncond_id_embeddings,
id_weight=1,
guidance=guidance,
true_cfg=1.0,
max_sequence_length=128,
)
id_images = [id_images]
elif use_cf:
cfg = 1.0
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
id_images = []
for index, text in enumerate(cur_positive_prompts):
id_image = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,
cfg=cfg,
guidance=guidance,
seed=seed_,
prompt=text,
negative_prompt=cur_negative_prompt[index],
cf_scheduler=cf_scheduler,
denoise=denoise_or_ip_sacle,
image=input_id_images_dict[character_key][0]
)
id_images.append(id_image)
else:
cfg = cfg if cfg <= 1 else cfg / 10 if 1 < cfg <= 10 else cfg / 100
id_images = pipe(
prompt=cur_positive_prompts,
image=input_id_images_dict[character_key],
strength=cfg,
latents=None,
num_inference_steps=_num_steps,
height=height,
width=width,
output_type="pil",
max_sequence_length=256,
guidance_scale=guidance,
generator=generator,
).images
elif story_maker and not make_dual_only:
img = input_id_images_dict[character_key][0]
# print(character_key_str,input_id_images_dict)
mask_image = input_id_img_s_dict[character_key_str][0]
face_info = input_id_emb_s_dict[character_key_str][0]
cloth_info = None
if isinstance(condition_image, torch.Tensor):
cloth_info = input_id_cloth_dict[character_key_str][0]
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
if id_length > 1:
id_images = []
for index, i in enumerate(cur_positive_prompts):
id_image = pipe(
image=img if not controlnet_path else [img, cn_dict[ref_indexs[index]][
0]] if cn_dict else img,
mask_image=mask_image,
face_info=face_info,
prompt=i,
negative_prompt=cur_negative_prompt[index],
ip_adapter_scale=denoise_or_ip_sacle, lora_scale=0.8,
controlnet_conditioning_scale=controlnet_scale,
num_inference_steps=_num_steps,
guidance_scale=cfg,
height=height, width=width,
generator=generator,
cloth=cloth_info,
).images
id_images.append(id_image)
else:
id_images = pipe(
image=img if not controlnet_path else [img, cn_dict[ref_indexs[0]][0]] if cn_dict else img,
mask_image=mask_image,
face_info=face_info,
prompt=cur_positive_prompts,
negative_prompt=cur_negative_prompt,
ip_adapter_scale=denoise_or_ip_sacle, lora_scale=0.8,
num_inference_steps=_num_steps,
guidance_scale=cfg,
height=height, width=width,
generator=generator,
cloth=cloth_info,
).images
else:
if use_cf:
cur_negative_prompt = [cur_negative_prompt]
cur_negative_prompt = cur_negative_prompt * len(cur_positive_prompts) if len(
cur_negative_prompt) != len(cur_positive_prompts) else cur_negative_prompt
id_images = []
for index, text in enumerate(cur_positive_prompts):
id_image = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,
cfg=cfg,
guidance=guidance,
seed=seed_,
prompt=text,
negative_prompt=cur_negative_prompt[index],
cf_scheduler=cf_scheduler,
denoise=denoise_or_ip_sacle,
image=input_id_images_dict[character_key][0]
)
id_images.append(id_image)
elif SD35_mode:
if use_wrapper:
id_images = pipe(
cur_positive_prompts,
image=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=cfg,
strength=denoise_or_ip_sacle,
negative_prompt=cur_negative_prompt,
generator=generator,
max_sequence_length=512
)
else:
id_images = pipe(
cur_positive_prompts,
image=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=cfg,
strength=denoise_or_ip_sacle,
negative_prompt=cur_negative_prompt,
generator=generator,
max_sequence_length=512
).images
else:
if photomake_mode == "v2":
id_embeds = input_id_emb_s_dict[character_key_str][0]
id_images = pipe(
cur_positive_prompts,
input_id_images=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=cfg,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=cur_negative_prompt,
id_embeds=id_embeds,
generator=generator
).images
else:
# print("v1 mode,load_chars", cur_positive_prompts, negative_prompt,character_key )
id_images = pipe(
cur_positive_prompts,
input_id_images=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=cfg,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=cur_negative_prompt,
generator=generator
).images
else:
raise NotImplementedError(
"You should choice between original and Photomaker!",
f"But you choice {model_type}",
)
p_num += 1
# total_results = id_images + total_results
# yield total_results
if story_maker and not make_dual_only and id_length > 1 and model_type == "img2img":
for index, ind in enumerate(character_index_dict[character_key]):
results_dict[ref_totals[ind]] = id_images[index]
elif pulid and id_length > 1 and model_type == "img2img":
for index, ind in enumerate(character_index_dict[character_key]):
results_dict[ref_totals[ind]] = id_images[index]
elif kolor_face and id_length > 1 and model_type == "img2img":
for index, ind in enumerate(character_index_dict[character_key]):
results_dict[ref_totals[ind]] = id_images[index]
elif use_flux and use_cf and id_length > 1 and model_type == "img2img":
for index, ind in enumerate(character_index_dict[character_key]):
results_dict[ref_totals[ind]] = id_images[index]
elif use_cf and not use_flux and id_length > 1 and model_type == "img2img":
for index, ind in enumerate(character_index_dict[character_key]):
results_dict[ref_totals[ind]] = id_images[index]
else:
for ind, img in enumerate(id_images):
results_dict[ref_indexs[ind]] = img
# real_images = []
# print(results_dict)
yield [results_dict[ind] for ind in results_dict.keys()]
write = False
if not load_chars:
real_prompts_inds = [
ind for ind in range(len(prompts)) if ind not in ref_totals
]
else:
real_prompts_inds = [ind for ind in range(len(prompts))]
print(real_prompts_inds)
real_prompt_no, negative_prompt_style = apply_style_positive(style_name, "real_prompt")
negative_prompt = str(negative_prompt) + str(negative_prompt_style)
# print(f"real_prompts_inds is {real_prompts_inds}")
for real_prompts_ind in real_prompts_inds: #
real_prompt = replace_prompts[real_prompts_ind]
cur_character = get_ref_character(prompts[real_prompts_ind], character_dict)
if model_type == "txt2img":
setup_seed(seed_)
generator = torch.Generator(device=device).manual_seed(seed_)
if len(cur_character) > 1 and model_type == "img2img":
raise "Temporarily Not Support Multiple character in Ref Image Mode!"
cur_step = 0
real_prompt, negative_prompt_style_no = apply_style_positive(style_name, real_prompt)
print(f"Sample real_prompt : {real_prompt}")
if model_type == "txt2img":
# print(results_dict,real_prompts_ind)
if use_flux:
if not use_cf:
results_dict[real_prompts_ind] = pipe(
prompt=real_prompt,
num_inference_steps=_num_steps,
guidance_scale=guidance,
output_type="pil",
max_sequence_length=256,
height=height,
width=width,
generator=torch.Generator("cpu").manual_seed(seed_)
).images[0]
else:
cfg = 1.0
results_dict[real_prompts_ind] = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,
cfg=cfg,
guidance=guidance,
seed=seed_,
prompt=real_prompt,
negative_prompt=negative_prompt,
cf_scheduler=cf_scheduler,
denoise=denoise_or_ip_sacle,
image=None
)
else:
if use_cf:
results_dict[real_prompts_ind] = pipe.generate_image(
width=width,
height=height,
num_steps=_num_steps,