From 843db24b6da1d8ee3551211fb293e7ddaad1ffc8 Mon Sep 17 00:00:00 2001 From: Evgeny Smirnov Date: Sat, 15 Feb 2025 12:39:08 +0100 Subject: [PATCH] v0.4.0: environment variables support, backward integration, interface simplification, tests (#34) * Save and plot nonzero items by default. Remove experiments * Refactor find method to accept extra parameters; fixed bug with wrong titles and asteroids without MMRs * Add CITATION.cff * Add order function * Added find_resonances function. * Added nasa source for initial data * New interface to resonances.Simulation. More parameters in constructor. Full support of NASA as a source. Full control of the data. Correct building and using .bin file when data is saved. Simplified interface for creating 1 or many MMRs from strings or lists. * Update astdys to 0.9.3. Make sim.date object, not str. Add date parameter when retrieving data from horizon. Started work on sim configuration update. Fix tests * Shift from .json to .env. Fixed bug with small monotony stuff. * flake8 updates * Adding more tests for coverage. * Added full support for backward integration * Update documentation * Update README * Update poetry --- CITATION.cff | 12 + README.md | 17 + docs/about.md | 3 - docs/config.md | 118 +- docs/core.ipynb | 21 +- docs/examples.ipynb | 565 +--- docs/examples/asteroids.json | 129 - docs/examples/simulation-shape.json | 63 - docs/index.md | 4 +- docs/install.md | 8 +- docs/libration.md | 2 - docs/matrix.md | 2 +- docs/quick-start.ipynb | 635 +++- poetry.lock | 2947 +++++++++-------- pyproject.toml | 15 +- resonances/.env.dist | 48 + resonances/__init__.py | 3 +- resonances/body.py | 2 +- resonances/config.json | 41 - resonances/config.py | 48 +- resonances/data/util.py | 38 + resonances/experiment/finder.py | 36 - resonances/finder.py | 99 +- resonances/horizons.py | 30 + resonances/logger.py | 4 +- resonances/matrix/matrix.py | 14 +- resonances/matrix/three_body_matrix.py | 8 +- resonances/matrix/two_body_matrix.py | 8 +- resonances/resonance/factory.py | 63 +- resonances/resonance/libration.py | 7 +- resonances/resonance/plot.py | 33 +- resonances/resonance/three_body.py | 3 + resonances/resonance/two_body.py | 3 + resonances/simulation.py | 255 +- tests/resonances/data/test_util.py | 40 +- .../matrix/test_three_body_matrix.py | 2 +- ...st_create_resonance.py => test_factory.py} | 27 +- tests/resonances/resonance/test_libration.py | 10 +- tests/resonances/resonance/test_plot.py | 8 +- tests/resonances/resonance/test_three_body.py | 11 + tests/resonances/resonance/test_two_body.py | 11 + tests/resonances/test_body.py | 1 - tests/resonances/test_config.py | 34 +- tests/resonances/test_finder.py | 39 +- tests/resonances/test_simulation.py | 190 +- tests/test_backward.py | 29 + tests/test_finder.py | 40 + tests/test_nasa.py | 21 + tests/test_real_mmrs.py | 62 + tests/test_real_sim.py | 59 - tests/tools.py | 25 +- 51 files changed, 3452 insertions(+), 2441 deletions(-) create mode 100644 CITATION.cff delete mode 100644 docs/examples/asteroids.json delete mode 100644 docs/examples/simulation-shape.json create mode 100644 resonances/.env.dist delete mode 100644 resonances/config.json delete mode 100644 resonances/experiment/finder.py create mode 100644 resonances/horizons.py rename tests/resonances/resonance/{test_create_resonance.py => test_factory.py} (61%) create mode 100644 tests/test_backward.py create mode 100644 tests/test_finder.py create mode 100644 tests/test_nasa.py create mode 100644 tests/test_real_mmrs.py delete mode 100644 tests/test_real_sim.py diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 0000000..d76a1c6 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,12 @@ +cff-version: 1.2.0 +message: "If you use this software, please cite it as below." +authors: + - family-names: Smirnov + given-names: Evgeny + orcid: https://orcid.org/0000-0001-8264-8668 +title: "resonances python package" +version: 0.3.1 +identifiers: + - type: doi + value: 10.1016/j.ascom.2023.100707 +date-released: 2023-03-18 \ No newline at end of file diff --git a/README.md b/README.md index 2c11e16..06f6cc6 100644 --- a/README.md +++ b/README.md @@ -11,6 +11,23 @@ For more information, [read the documentation](https://smirik.github.io/resonanc ## What's new +### February 2025 + +1. Full support for `nasa` Horizon source of the initial data. +1. `find` and `check` methods for quick identification of the resonant status of objects. +1. `create_mmr` method now supports variaty of options: string, a list of strings, an object, a list of objects. +1. `Simulation` constructor got many new parameters allowing to change the settings directly when instantiating. +1. Instead of `config.json`, `.env.dist` is now used. Furthermore, a developer can specify `.env` in the directory, which will overwrite the default parameters or just use environment variables. +1. MMRs now have `order` function. +1. Added full support for backward integration (`dt=-1.0`, `tmax=-600000`). +1. Minor updates to graphs. + +### October 2024 + +1. The `resonances.find` method now accepts extra parameters: `name`, `sigma2`, and `sigma3`, [see the documentation](https://smirik.github.io/resonances/). +2. Fixed bug with wrong titles on the plots (periodograms for the resonant angle and semi-major axis). +3. Fixed bug when adding an asteroid that has no relevant MMRs (previously it caused exception). + ### July 2024 1. Now you can choose the type of the output image: it could be either ` pdf`` or `png`. diff --git a/docs/about.md b/docs/about.md index a71af6e..48e5f87 100644 --- a/docs/about.md +++ b/docs/about.md @@ -17,10 +17,7 @@ Whenever you use this package, we are kindly asking you to refer to one of the f 1. **The package itself**: - Smirnov, E. A. (2023). A new python package for identifying celestial bodies trapped in mean-motion resonances. Astronomy and Computing. https://doi.org/10.1016/j.ascom.2023.100707 2. **The Libration module and automatic identification of librations**: - - Smirnov, E. A. (2023). A new python package for identifying celestial bodies trapped in mean-motion resonances. Astronomy and Computing, 100707. https://doi.org/10.1016/j.ascom.2023.100707 - 3. **Mass identification of mean-motion resonances:** - - Smirnov, E. A., & Dovgalev, I. S. (2018). Identification of Asteroids in Two-Body Resonances. Solar System Research, 52(4), 347–354. https://doi.org/10.1134/S0038094618040056 - Smirnov, E. A., Dovgalev, I. S. & Popova, E. A. Asteroids in three-body mean motion resonances with planets. Icarus (2017) doi:10.1016/j.icarus.2017.09.032. diff --git a/docs/config.md b/docs/config.md index fe7864a..f14f7b2 100644 --- a/docs/config.md +++ b/docs/config.md @@ -1,9 +1,34 @@ # Config -All default config values are stored in `config.json` file in the source code. It is not recommended to change anything there. +All default config values are stored in a file called .env.dist in the source code. It is not recommended to change anything in that file directly. If you need to change a specific config value, you can do it in the following way: +If you need to change a specific config value, you have several options: + +1. Create a `.env` file in your working directory to override selected variables. +2. Set environment variables directly in your system or through your shell. +3. Modify some of the parameters when creating a Simulation (use IDE hint to see all available options): + +```python +import resonances + +sim = resonances.Simulation(name='test', integrator='whfast', save='all', save_path='output/my_lovely_folder') +``` + +A resonances.Simulation object has several properties that mirror these config values. Note that in Python code I usually use underscore notation (e.g., plot_type). This could be done after instantiating the object: + +```python +import resonances + +sim = resonances.Simulation(...) +# for example +sim.save_path = 'output/another_lovely_folder' +sim.plot = 'nonzero' +``` + +4. Set or update them at runtime in Python with: + ```python import resonances resonances.config.set(KEY, VALUE) @@ -19,54 +44,52 @@ if resonances.config.has('integration.dt'): print(resonances.config.get('integration.dt')) ``` -## Simulation properties +Under the hood, resonances reads configuration in the following priority: -A resonances Simulation object has several properties that can be defined before running. They serve the same purpose as the config values (note that a comma is replaced with an underscore: instead of `plot.type`, the simulation object has `sim.plot_type`). - -```python -import resonances -sim = resonances.Simulation() -``` - -- `sim.data_source` (str): can have two options - `astdys` or `nasa`. It defines what source should be used to gather initial data for the asteroids if they are passed as numbers (without orbital elements). **This is in progress** and only `astdys` should be used at the moment. +1. Parameters when instantiating the Simulation object. +1. `.env` file. +1. Environment variables. +1. The defaults in .env.dist. ## Saving options -- `save` (bool): if `true`, the results of the integration (including the plots) will be saved. If it is `false`, nothing will be saved. All options below work only if `save` is true. -- `save` (string or None): whether or not save the result of the simulation. There are five options: `all`, `nonzero`, `resonant`, `candidates`, `None`. `nonzero` will save all resonant cases and all cases that are unclear and require manual verification. `candidates` will save only those that require manual verification. -- `plot` : the same as for `sim.save`. -- `save_summary` (bool): save summary of the simulation as a dataframe (available through `get_simulation_summary()` method) -- `plot.path` (str): path to save plots. -- `plot.type` (str): `save` - save plot as a file, `show` - just show (if false), `both` - both options. Valid only for plots specified by `plot`. +Below is the list of options. When lowercase is used, it refers to the arguments of the constructor of Simulation. When uppercase is used, it refers to the `.env.dist`. + +- `save`/`SAVE_MODE` (string or None): whether or not save the result of the simulation. There are five options: `all`, `nonzero`, `resonant`, `candidates`, `None`. `nonzero` will save all resonant cases and all cases that are unclear and require manual verification (`status != 0`). `candidates` will save only those that require manual verification (`status < 0`). `resonant` will save only resonant objects (`status>0`). +- `save_path`/`SAVE_PATH`: directory where to save the output CSV files (data only). If you do not specify `save_path` when creating Simulation object, it will use `SAVE_PATH` with a sub-directory based on the current timestamp. In other words, unless explicitly specified, the app will create a subdirectory in `SAVE_PATH` to differentiate multiple runs. +- `plot`/`PLOT_MODE` : the same as for `sim.save` but for graphs. +- `save_summary`/`SAVE_SUMMARY` (bool): save summary of the simulation as a dataframe (available through `get_simulation_summary()` method) +- `plot_path`/`PLOT_PATH` (str): the same as `save_path`. +- `plot_type`/`PLOT_TYPE` (str): determines what to do with graphs. `save` - only save graphs as files (default), `show` - just show (if false), `both` - both options. Valid only for plots specified by `plot`. In other words, if you set `plot` as `None`, no graphs will be plotted. ## Libration options See [Libration section](libration.md) for explanation! -- `libration.oscillation.filter.cutoff` (float): used to cutoff the frequencies that are higher that this value. By default, it is set to `0.001`, which means that all oscillations with periods lower than `1000` (effectively, `500`) will be removed by the filter. -- `libration.oscillation.filter.order` (int): used for `butter` filter. By default, `2`, -- `libration.periodogram.frequency.min` (float): the minimal frequency of the librations that will be taken into account. By default, `0.00001`. Corresponds to the period of oscillations equal to `100000` years. -- `libration.periodogram.frequency.max` (float): the maximum frequency of the librations that will be taken into account. By default, `0.002`. Corresponds to the period of oscillations equal to `500` years. -- `libration.periodogram.critical` (float): the critical value of the peaks on the periodograms that is counted as significant. By default, `0.1`. -- `libration.periodogram.soft` (float): the _soft_ critical value of the peaks on the periodograms that is counted as significant. Used when you _really_ want to find some librations. By default, `0.05`. -- `libration.period.min` (int): the number of years to remove from the beginning and end. If you want to disable the cut of these points, just set it to `0`. See [Libration section](libration.md) for explanation! -- `libration.period.critical` (int): the critical value of the maximum libration period used to identify is there libration or not. By default, `20000` years. -- `libration.monotony.critical` (list): critical values for the metric `monotony`. By default, `[0.4, 0.6]`. +- `LIBRATION_FILTER_CUTOFF` (float): used to cutoff the frequencies that are higher that this value. By default, it is set to `0.0005`, which means that all oscillations with periods lower than `500` will be removed by the filter. +- `LIBRATION_FILTER_ORDER` (int): used for `butter` filter. By default, `2`, +- `LIBRATION_FREQ_MIN` (float): the minimal frequency of the librations that will be taken into account. By default, `0.00001`. Corresponds to the period of oscillations equal to `100000` years. +- `LIBRATION_FREQ_MAX` (float): the maximum frequency of the librations that will be taken into account. By default, `0.002`. Corresponds to the period of oscillations equal to `500` years. +- `LIBRATION_CRITICAL` (float): the critical value of the peaks on the periodograms that is counted as significant. By default, `0.1`. +- `LIBRATION_SOFT` (float): the _soft_ critical value of the peaks on the periodograms that is counted as significant. Used when you _really_ want to find some librations. By default, `0.05`. +- `LIBRATION_PERIOD_MIN` (int): the number of years to remove from the beginning and end. If you want to disable the cut of these points, just set it to `0`. See [Libration section](libration.md) for explanation! +- `LIBRATION_PERIOD_CRITICAL` (int): the critical value of the maximum libration period used to identify is there libration or not. By default, `20000` years. +- `LIBRATION_MONOTONY_CRITICAL` (list): critical values for the metric `monotony`. By default, `[0.4, 0.6]`. ## Integration options See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html) for explanation of the integrator's settings. -- `integration.tmax` (int): the end of the integration. Please note that `rebound` does not use years as time steps but years divided into 2π. Therefore, if you want to integrate for 1000 years, the value `integration.tmax` should be set to `1000*2π` ~ `6283`. By default, `628319` (approx. 100000 years). -- `integration.dt` (float): the step of the integration (or the initial step for some integrators). By default, `0.1`. -- `integration.integrator` (string): the default integrator from rebound. By default, `SABA(10,6,4)`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html). -- `integration.integrator.safe_mode` (int): the parameter of the integration. By default, `0`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html) -- `integration.integrator.corrector` (int): the parameter of the corrector for symplectic integrators. By default, `17`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html) -- `solar_system_file` (str): the name of the cache file used to store the initial data of the Sun, planets, and Pluto. It is used to speed up the creation of the simulation. By default, `cache/solar.bin`. +- `tmax`/`INTEGRATION_TMAX` (int): the end of the integration. Please note that `rebound` does not use years as time steps but years divided into 2π. Therefore, if you want to integrate for 1000 years, the value `INTEGRATION_TMAX` should be set to `1000*2π` ~ `6283`. By default, `628319` (approx. 100000 years). Note that you can integrate backwards. In this case, `INTEGRATION_TMAX` can be set to `-628319`. +- `dt`/`INTEGRATION_DT` (float): the step of the integration (or the initial step for some integrators). By default, `0.1`. +- `integrator`/`INTEGRATION_INTEGRATOR` (string): the default integrator from rebound. By default, `SABA(10,6,4)`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html). +- `integrator_safe_mode`/`INTEGRATION_SAFE_MODE` (int): the parameter of the integration. By default, `0`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html) +- `integrator_corrector`/`INTEGRATION_CORRECTOR` (int): the parameter of the corrector for symplectic integrators. By default, `17`. See [rebound documentation](https://rebound.readthedocs.io/en/latest/integrators.html) +- `SOLAR_SYSTEM_FILE` (str): the name of the cache file used to store the initial data of the Sun, planets, and Pluto. It is used to speed up the creation of the simulation. By default, `cache/solar.bin`. Note that in order to avoid issues with initial date&time, the app will automatically add postfix equals to the current timestamp, i.e., `cache/solar_12345.bin`. ### Access to the parameters of `rebound` -Note that while `resonances` provides a wrapper for rebound integrators, you may invoke directly some properties or methods in rebound. You can access the simulation object of rebound directly as an attribute `sim.sim`: +While resonances wraps many Rebound integrator settings, you can still manipulate Rebound directly. You can access the simulation object of rebound directly as an attribute `sim.sim`: ```python sim = resonances.Simulation() @@ -77,19 +100,18 @@ sim.sim.ri_whfast.corrector = 17 sim.sim.dt = 0.01 ``` -`resonances` will not override these values. It sets it only once through initialisation from config. +`resonances` will not override these values if Simulation has been already instantiated. It sets it only once through initialisation from config. - +- `source`/`DATA_SOURCE` (str): which source to use for the initial data. By default, it is set to `nasa`. Could be `astdys`. Note that the planet's data will be always taken from NASA Horizon. +- `ASTDYS_URL` (str): the URl of the AstDyS catalogue used to download at the first run. +- `ASTDYS_CATALOG` (str): if AstDyS catalogue is already downloaded, you may specify its location. By default, `cache/allnum.cat`. +- `CATALOG_PATH` (str): the path of the file used to store the converted AstDyS catalogue (in csv). ## Matrices -The mean motion resonance represents a commensurability between the frequencies of several bodies and an asteroid, which implies the oscillations of the resonant angle. The resonant angle has integer coefficients for every variable included. While there are almost no limitations on the values of these integers, the number of possible resonances is infinite. Thus, it should be somehow limited to avoid an infinite loop. These limitations are in `matrix.` section of the config. +The mean motion resonance represents a commensurability between the frequencies of several bodies and an asteroid, which implies the oscillations of the resonant angle. The resonant angle has integer coefficients for every variable included. While there are almost no limitations on the values of these integers, the number of possible resonances is infinite. Thus, it should be somehow limited to avoid an infinite loop. These limitations are in `MATRIX_` section of the config. For more details, please see [Matrix page](matrix.md) and the following papers (note that they have different approaches to setting up the limits): @@ -97,13 +119,15 @@ For more details, please see [Matrix page](matrix.md) and the following papers ( 1. Smirnov, E. A. & Shevchenko, I. I. Massive identification of asteroids in three-body resonances. Icarus 222, 220–228 (2013). 1. Nesvorný, D. & Morbidelli, A. Three-Body Mean Motion Resonances and the Chaotic Structure of the Asteroid Belt. The Astronomical Journal 116, 3029–3037 (1998). -- `matrix.3body.primary_max` (int): the maximum value of the integer for the first planet for three-body resonances. Should be always positive. -- `matrix.3body.coefficients_max` (int): the maximum value of the integer for the other planet and the asteroid in three-body resonance. Should be always positive. -- `matrix.3body.max_order` (int): the maximum value of the order of the three-body mean motion resonance. The order is the absolute value of the sum of the integers for the mean longitudes. Should be always positive. -- `matrix.3body.file` (str): the path to the file where the app dumps the calculated values of the corresponding semi-major axis. -- `matrix.2body.*` (mixed): the same but for two-body resonances. +**Important:** If you have change any of the values below, **DELETE** manually the generated csv-files (e.g., `cache/mmr-3body.csv`) to force the app to regenerate the matrices. Otherwise, the app will simply use old generated files. + +- `MATRIX_3BODY_PRIMARY_MAX` (int): the maximum value of the integer for the first planet for three-body resonances. Should be always positive. Default is `8`. +- `MATRIX_3BODY_COEF_MAX` (int): the maximum absolute value of the integer for the other planet and the asteroid in three-body resonance. Should be always positive. +- `MATRIX_3BODY_ORDER_MAX` (int): the maximum value of the order of the three-body mean motion resonance. The order is the absolute value of the sum of the integers for the mean longitudes. Should be always positive. +- `MATRIX_3BODY_FILE` (str): the path to the file where the app dumps the calculated values of the corresponding semi-major axis. You can review the generated CSV file and make modifications if needed. The default option is `cache/mmr-3body.csv`. +- `MATRIX_2BODY_*` (mixed): the same but for two-body resonances. ## Other -- `log.file` (str): the path to the file where the app stores log data. -- `log.level` (str): the default level what the app should store in the log file (options: `debug`, `info`, `warning`, `error`, `critical`). The default value is `info`. +- `LOG_FILE` (str): the path to the file where the app stores log data. +- `LOG_LEVEL` (str): the default level what the app should store in the log file (options: `debug`, `info`, `warning`, `error`, `critical`). The default value is `info`. diff --git a/docs/core.ipynb b/docs/core.ipynb index ad0cac2..fd561d9 100644 --- a/docs/core.ipynb +++ b/docs/core.ipynb @@ -213,7 +213,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note, if AstDyS catalogue is already downloaded, the package **will not check** whether it is updated. On the contrary, it will use the old version. However, the `astdys` component has a special method `rebuild' that updates the catalogue. Hence, one might use this method for the final run." + "Note, if AstDyS catalogue is already downloaded, the package **will not check** whether it is updated. On the contrary, it will use the old version. However, the `astdys` component has a special method `rebuild' that updates the catalogue. Hence, one might use this method for the final run. \n", + "\n", + "Or you can simply delete the downloaded and converted files..." ] }, { @@ -245,11 +247,11 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "sim.save = 'nonzero' # other options: 'resonant' (only resonant), 'nonzero' (resonant and candidates), None (do not save anything)\n", + "sim.save = 'nonzero' # other options: 'resonant' (only resonant), 'nonzero' (resonant and candidates), None (do not save anything), 'all'\n", "sim.plot = None # the same as above\n", "sim.plot_type = 'save' # other options: 'show' (show the plot), 'save' (save the plot), 'both', and None (do not plot anything)" ] @@ -263,7 +265,7 @@ "\n", "Please be aware of [default values](../config) — it saves some space for each simulation. There is no need to override if you are OK with them.\n", "\n", - "You may also want to change the output directory — just rewrite the config `sim.save_path` and `sim.plot_path` after initialisation or make `config.json` file.\n", + "You may also want to change the output directory — just rewrite the config `sim.save_path` and `sim.plot_path` after initialisation or make `.env` file or set the environment variable up.\n", "\n", "You may add as many objects as you want. However, when the number of asteroids is very high, it might delay the integration process. The usual suggestion is to integrate 100-1000 objects simultaneously, but it depends on the computer's characteristics.\n", "\n", @@ -432,7 +434,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -446,14 +448,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" + "version": "3.11.9" }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "cd427db76977a9ac7182f48fec693ea25b2d6de175c77dfc5a78e40d10994c7e" - } - } + "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 diff --git a/docs/examples.ipynb b/docs/examples.ipynb index 896ebdf..9941467 100644 --- a/docs/examples.ipynb +++ b/docs/examples.ipynb @@ -7,279 +7,49 @@ "source": [ "# Examples \n", "\n", - "Below are some examples of how the package could be used in astronomical studies. While there are more use cases, the most common are outlined below.\n", - "\n", - "## Examine an object\n", - "\n", - "Let's start with the first example. Let one wants to identify all three-body and two-body resonances of an asteroid. One has to perform the following steps:\n", - "\n", - "1. set up the model, including planets and their initial conditions;\n", - "2. add an object (or objects), which is examined;\n", - "3. find possible resonances, in which the object can be trapped in;\n", - "4. integrate the differential equations of motion for a long period of time (usually, $\\approx 10^5$ yrs);\n", - "5. identify the resonant status of the object based on the analysis of the resonant angle, semi-major axis, and other variables.\n", - "\n", - "Without loss of generality, let's examine the following case:\n", - "\n", - "1. The target object is the asteroid 463 Lola.\n", - "2. The planets are Jupiter and Saturn for both, three-body and two-body cases.\n", - "\n", - "To perform this, there is a function `find`." + "Below are some examples of how the package could be used in astronomical studies. While there are more use cases, the most common are outlined below." ] }, { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVfs38O8mIY00SiCUkNB7L6FIUSIBAxJUmggExAqP8FjBFsASsPBTEVH0kSCICEoTBIwQgiBFmhBAilTpLQk1QPa8f/DumE02ye5mZqd9P9eV64Ld2dlz7lNm7mlrEUIIEBEREREREZHsvNQuABEREREREZFRMekmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIyrcmTJ8NiscBisWDTpk2FLnfkyBE88cQTiIqKgp+fHypWrIh7770XCxYssFtu//79eOKJJ9C8eXOEh4fDz88P0dHR6NmzJ1avXq10dcjELl++jCpVqsBisaB79+4F3j969Gih7zly8uRJfPTRR+jWrRuqVasGX19fRERE4OGHH8bmzZsL/dzy5csRHx+PChUqoFSpUihfvjwaNWqE4cOHY8mSJS7VaerUqRg2bBiaNGkCHx8fWCwWrF271qV1yGH8+PGyfrfFYkGXLl1kWZeWXbt2DXPmzEG/fv1Qp04dBAQEICwsDJ07d8Z3332ndvGIiDzKR+0CEBGpISMjA0lJSShdujSuXbtW6HKpqalISEgAAPTq1Qs1atTA5cuXsWvXLvz666/o27evtOzu3buxcOFCtGvXDu3bt0dISAhOnjyJJUuWYPny5Xj77bfx2muvKV01MqFRo0YhKytLtvVNnToVkydPRs2aNdGtWzeEh4fj4MGDWLx4MRYvXoy5c+eif//+dp+ZMGECxo8fj8DAQPTs2RPR0dG4c+cO9uzZg++//x4HDhxA7969nS7Dc889BwCoVKkSwsPDcebMGdnqR8r77bffMHjwYJQrVw5du3bFww8/jHPnzmHhwoV49NFHsWHDBnz66adqF5OIyCOYdBOR6dy+fRtDhw5Fs2bNULt2bcyZM8fhcsePH8cjjzyCKlWq4Ndff0W1atXs3r9z547d/3v16oWHH34YFovF7vVTp06hefPmmDBhAkaOHImwsDBZ60Pm9uOPP2Lu3Ln49NNPMWrUKFnW2aZNG6xduxadO3e2e/23335D165d8cwzzyAhIQF+fn4A7p5JnzhxIiIjI7Fp0yZUrlzZ7nM3btwo8gy5I8uWLUPLli0RERGBp59+Gl988UXJKkUeFRERgdmzZ6Nfv37w9fWVXn/33XcRExODadOmYciQIWjTpo2KpSQi8gxeXk5EpvPOO+9gz549+Prrr+Ht7V3ocu+++y6ys7Px+eefF0i4AcDHx/64pZ+fX4GEGwAqV66MDh064Pbt2zh27FiJyt6lSxdYLBbcvHkTr7/+OmrWrIlSpUph/Pjx0jJHjhzBiBEjUK1aNfj5+aFSpUpITEx0+N3bt2/HI488Ii0bHh6O1q1b45133imwbEZGBvr164cKFSrAz88P1atXx5gxY3Dx4sUCy0ZHRyM6OhpXr17F6NGjUblyZfj5+aFJkyb44YcfCix/4MABvPzyy2jRogXKlSsHf39/1KlTB2PHjsXVq1cLjcPt27cxfvx4REdHw8/PD3Xq1MFnn33mMHZCCMycORMdO3ZEWFgYAgMDUbt2bTz11FM4fvy43bJXrlxBUlISGjZsKF0WGxcXh/Xr1ztct1rOnz+PZ555BoMHD0Z8fLxs633ooYcKJNwA0LFjR9x77724fPkydu/eLb2+ZcsWWK1WPPTQQwUSbgAICAhw+ZLq+Ph4REREuFx2Z2VlZeHNN99EgwYNEBQUhJCQENSqVQtDhw6VxkqXLl0wYcIEAMC9994r3Y4SHR0trSctLQ3Dhw9H3bp1ERQUhKCgILRq1QozZsyw+761a9dK80N6erq0LovFgpSUFABFX8qekpJit2ze7+/Ro4c0xipWrIiOHTsW+H5Pa9asGR577DG7hBsAKlasiKeeegoAsG7dOjWKRkTkcTzTTUSmsn37drzzzjuYOHEiGjRoUOhyQggsWLAA5cqVw3333Ydt27YhPT0dVqsVzZo1w3333QcvL+eOW168eBGbN29GYGAgatSoIUs9Hn74Yfz555/o3r07wsLCUL16dQDA5s2bERcXh2vXrqFnz56oXbs2jh49im+//RYrVqzAxo0bpTLs3LkT7du3h7e3N3r37o2oqChkZmZi7969mDFjht2l8OvXr0dcXBxu3bqFRx55BNHR0di4cSM+/vhjLFu2DJs2bUL58uXtynj79m1069YNly9fxsMPP4zr169j3rx56NevH1auXIlu3bpJyy5cuBD/+9//cO+996JLly6wWq3YtGkTJk+ejPT0dKxbtw6lSpUqEIeBAwdiy5Yt6NGjB7y9vTF//nyMHDkSpUqVwhNPPCEtZ7Va0b9/f/zwww+oUqUKBg4ciJCQEBw9ehTz589Hjx49pAMrly5dQqdOnbBnzx506NABTz/9NLKzs7FkyRLpXn7bLQdqe/rpp+Ht7Y2PP/5Y1svLi2Jrh7wHncqVKwcAOHjwoEfKUFJCCMTFxWHz5s3o0KEDunfvDi8vLxw7dgxLly7F4MGDERUVhcTERAB3k+ShQ4dKyXbeq1UmT56MQ4cOoW3btujTpw8yMzOxcuVKPPXUU9i/fz8+/PBDAHcPRCUlJWHChAl26wbuJqjuWL58OXr16oWwsDD07t0blSpVwvnz5/Hnn39i9uzZePLJJ91ar9Ic9SEiIiPjbEdEppGTk4MhQ4agWbNmePnll4tc9siRI7h06RJatWqFp556qsBZo+bNm2Pp0qWoWrVqgc8eOHAAc+fORW5uLk6dOoWlS5ciMzMTn3/+OYKDg2Wpy6lTp7Br1y6ULVtWeu327dsYMGAArFYrtmzZgubNm0vvrV+/Hl26dMHo0aPx008/AQBmz56NnJwcLF68uMC9tnnPXlutViQmJuL69etYuXIl4uLipPdefvllvP/++3jllVfwv//9r0AZW7dujbVr10pnux599FHExsZiypQpdkn34MGD8fzzzxc4KzZx4kQkJSVh/vz5GDRoUIE4/PPPP8jIyEBISAgAYPTo0WjUqBE+/PBDu6T7s88+ww8//ICuXbvip59+QkBAgPTejRs3cOPGDen///nPf7Bnzx58+eWXGDFihPR6cnIyWrVqhSeffBLdu3eHv79/gfLklZmZiY8++qjIZfIbM2aM07cfzJkzBwsXLsTixYtRpkwZjyTdx48fx6+//opKlSqhcePG0usxMTGoVq0afv75Z/Ts2RMDBgxAmzZtULt2bYdXf6gtIyMDmzdvRkJCAhYtWmT3Xk5ODm7fvg0ASExMxNGjR5Geno7ExESHZ+unT58uHfSyuXPnDh544AF8/PHHGD16NKpVq4bo6GiMHz8eEyZMkP5dUl9//TWEEEhLS0PTpk3t3nN0BYojO3fuxOLFi53+zrCwMIwZM8aFUtrLzc3FN998A4vFgtjYWLfXQ0SkK4KIyCRefvll4evrK3bv3i29NnToUAFAbNy40W7ZjRs3CgDC29tbBAUFiZkzZ4pLly6JI0eOiCeeeEIAEDExMQ6/56effhIApL+goCAxe/ZsWerQuXNnAUAsWbKkwHsLFy4UAMTEiRMdfvahhx4SXl5eIisrSwghxPPPPy8AiFWrVhX5nevWrRMARI8ePQq8d+XKFVG2bFnh7+8vcnJypNejoqIEAHH48OECn4mKihJly5Yt8jttLl68KACIxMREu9dtcVizZk2Bz9jey87Oll6rX7++8Pb2FgcOHCjy+86fPy+8vb3Ffffd5/D9Tz75RAAQP/30U7FlP3LkiF0/cObvyJEjxa5XCCFOnjwpypQpIwYOHFjg++Li4goti6P3nHXr1i3RqVMnAUB88803Bd7fvn27aNiwoV19QkNDRc+ePcXChQvd/l4hhHjqqacEAJGWllai9djs2rVLALCLX2GSkpLc+u4ff/xRABApKSl2rwMQnTt3dvm7Zs6cKQCImTNnSq899NBDAoDYv3+/S2VztF5n/6Kiotz+LiGEGDdunAAghg8fXqL1EBHpCc90E5EpbNy4ER988AHGjx+PRo0aFbu81WoFcPeszFtvvSVdClqmTBnMmDEDu3btwubNm7F+/Xrcc889dp/t2bMnhBC4desWjh49ii+//BJDhgzBli1b8Mknn8hSH0cPH7L97Nn+/fsdnkU7c+YMrFYrDhw4gFatWqFfv3746KOP0KdPH/Tv3x/3338/OnXqhCpVqth9bseOHQDg8Cyf7f7VX375Bfv377c7+5n3sve8qlatio0bN9q9Jv7//dYpKSnIyMhAVlaW1AbA3bPmjrRs2dLh+oG7Z5qDg4Nx9epV7Nu3D7Vq1ULt2rUdrsfmjz/+QG5uLnJychzG0Hb59F9//YWePXsWua7o6GgIIYpcxl0jRoxAqVKl3O5PhZ2FL+zsq+1qh3Xr1uGJJ57A4MGDCyzTvHlz7N69Gxs3bkRaWhq2bduG9evXY9myZVi2bBkGDRqE2bNnw2Kx4OjRowXuTS7pGVRX1K9fH02aNMF3332Hf/75BwkJCejSpQuaNWvm9G0jNleuXMEHH3yAxYsX4++//y7wawiF9V05DBgwAAsXLkTbtm3x6KOPomvXrujYsWOBWz2KkpiYaHepu5I+//xzJCcno3nz5vj444898p1ERFrApJuIDO/OnTsYOnQomjRpgrFjxzr1mdDQUOnfDz74YIH3e/Xqhc2bN2Pr1q0Fkm4bX19f1KlTB++//z6uX7+OqVOnokePHujRo4d7FcmjYsWKBV67dOkSAODbb78t8rO2pCAmJgZr167Fu+++i7lz52LmzJkAgNatW2Py5Mm49957AQDZ2dmFfidw9yed8i5nkzeGefn4+Ngl1MDdn4f69NNPERkZiQcffBCVKlWSnow9YcIE5OTkOFyX7bLy/OsH7h4wASBddp3/YIIjthhu2LABGzZsKHS5on5mTmmzZs3CihUrsGDBApeSq7wyMzOlB4Tl5SjptlqtGD58OObOnYvHHnsMn3/+eaHrtVgsaN++Pdq3bw/g7sGUJUuWYMiQIfj222/x8MMPo0+fPjh69GiB74+KivJY0u3j44M1a9Zg/Pjx+PHHH/HCCy8AAMLDwzFq1Ci89tprRT5k0ebWrVvo0qULtm/fjubNm0s/keXj44OjR49i1qxZhfZdOfTt2xeLFy/GlClT8Pnnn2PatGmwWCy499578eGHH7p9r7gSvvrqKzz77LNo3LgxUlNTERQUpHaRiIg8hkk3ERne1atXpTOU+e8ZtmnXrh0AYNGiRUhISEDNmjXh7e2N3Nxch/fY2l7Ley9wUbp164bPPvsMa9eulSXpdnSfrC0B/emnn4o9C2vTsWNHrFixQvpJp59++gmfffYZ4uPjkZGRgRo1akjrPXv2rMN12H4/2VEC7Ixz585h2rRpaNKkCTZu3IjAwEC7dTtKDl1hS/5PnjxZ7LK2Orzwwgv44IMPSvS9St3TbbvyIO9vxOe1atUqWCwWNG3aFDt37nS4jLNn4a1WK4YNG4ZvvvkGAwcOREpKiktngi0WCxISEvDf//4XEydOxJo1a9CnTx906dJFsasAnFWuXDlMnToVn3zyCf766y+sWbMGU6dORVJSEkqVKoVx48YVu44lS5Zg+/btePzxx/HVV1/ZvTdv3jzMmjXLpTLZYpv/5wgBFHrPfu/evdG7d29cuXIFGzZskB5K2L17d/z111/F9idP3NP95Zdf4qmnnkKDBg2wevVq6cF7RERmwaSbiAzPz88Pjz/+uMP31q1bh4MHD+LBBx9EeHi49HRif39/tG/fHr/99hv27t1b4Gz23r17AcDup4OKYrvE1NETuOUSExMD4O6l9M4m3Ta2n3Tq0qULwsLC8OabbyI1NRVPPfWU9EC2tWvXFngA3bVr17B161YEBASgbt26bpX78OHDEEIgNjbWLuEG7v4udEkFBQWhQYMG2L9/Pw4ePFjkJeatW7eGxWIpcPm7Owo7m1yUxMTEYpOkdu3aOfwZtatXr+L7779H1apVERcX5/Bn7lyRN+Hu378/Zs+e7dTZX0e0fFbTYrGgfv36qF+/Ph588EFUq1YNS5culZJuW51tV07k9ffffwNAgQcRAoX3XS8vL4frAu7evgI4PkBkO9hSmODgYHTv3h3du3dHbm4uvv76a+nXDIqyc+dOl/qpq1ck2BLu+vXrY82aNQgPD3f6s0REhqHi/eRERKor7EFqQggxd+5cAUB07dpV3Lx5U3p93759IjAwUAQHB4tLly5Jr2/dulVYrdYC6zl69KiIjIwUAMT69esdfn/ehyMVxfaQMEdu3rwpqlWrJvz9/UV6enqB92/duiV+++036f+///67uHHjRoHlRo4cafcAqNzcXFGzZk0BQKSmptotO3bsWIcPRYqKiir0gUv563Dq1CkBQLRt21bk5uZKr584cUL63vwPnioqDraY5n0o2bRp0wQAERsbK65fv263/I0bN8TFixel//fv318AEO+9957D9ty0aZO4du2aw+9Wk5wPUsvNzZXi2LdvX3H79u0il9+8ebOYNWuWw/507tw5UadOHQFAzJs3z7nK5OPMg9RsDyFLSkoqdn1Hjhxx+NC6P/74QwAQXbp0kV779NNPCx2jtjni5Zdftnt97dq1olSpUg7LU758eREdHe2wXLYHON533312Y+H3338XPj4+BcqRnp4u7ty5U2A9PXv2FADE2rVrHX6Pp3z55ZfCYrGI+vXrizNnzqhaFiIiNfFMNxFRIWwPKfrhhx/QtGlTxMXFISsrCz/++CNu3ryJb775RjozBdy9JPnQoUPSzyd5eXnh77//xooVK3Dr1i28+OKL6NChg9132O5tluP3av38/PDDDz+gR48e6Ny5M+677z40btwYFosFx44dw2+//YZy5crhr7/+AnD394XT0tLQqVMnVK9eHf7+/ti+fTtWr16NGjVqoE+fPgDunplLSUlBXFwcHnjgAfTt2xdRUVHYuHEj1q5di5o1a2LSpElul7tSpUp4+OGH8eOPP6JVq1bo2rUrzp49i2XLlqFr167S2cSSeOaZZ5Ceno758+ejdu3aePDBBxESEoLjx49j1apV+N///if99vZnn32G/fv34+WXX8bs2bPRrl07hIWF4cSJE9i6dSsOHjyI06dPFzgrbyQTJ07ErFmzEBQUhDp16uDtt98usExCQoJ0z/CpU6cwdOhQjBo1Cp06dUK9evXg4+ODY8eOYdmyZbh69Sri4+MLvSTekUmTJkl91XblwaRJk6QHsCUkJNj9XrorY2nnzp146KGH0KZNGzRo0AARERE4efIkFi9eDC8vL/z3v/+Vlr333nthsVjw6quvYs+ePQgNDUVYWBhGjRqFXr16ITo6Gu+99x4yMjLQqFEj7N+/H8uWLUOfPn3www8/FPju++67D/Pnz0dCQgKaN28Ob29vPPjgg2jSpAnatm2LDh06YM2aNWjXrh06deqEY8eOYcmSJejVq1eBnzd77rnncOrUKdxzzz2Ijo6GxWLB+vXrsWXLFrRt27bQ5014wpo1a/Dkk09CCIFOnTph+vTpBZZp1qyZZn7znohIUWpn/UREairqTLcQQty+fVtMmTJFNGzYUPj5+YmQkBDRrVs3h2eQFixYIPr27Stq1KghSpcuLUqVKiWqVKkiHnroIbFy5UqH62/evHmBM+ZFKeoMr80///wjRo8eLWrXri2VuX79+mLEiBFi9erV0nIrV64UQ4YMEXXr1hXBwcEiKChINGjQQLz66qvi/PnzBda7a9cu8cgjj4jy5cuLUqVKiaioKDF69GiHy7pypluIuz899sILL4jo6Gjh5+cnateuLd566y1x69YtWc50CyGE1WoVX331lWjbtq0oXbq0CAwMFLVr1xZPP/20OH78uN2y169fF++9955o2bKlKF26tAgICBDVq1cXCQkJ4ptvvin2zK8aijqbfejQIQFA9OrVy6l12WJY1F/eM67Z2dlizpw5YvDgwaJhw4YiLCxM+Pj4iPDwcNG1a1fxv//9z+EZ2aLY2riwv/xnkPv06SO8vLyc+vmsEydOiLFjx4q2bduKChUqCF9fX1GtWjXx0EMPOZwLUlJSROPGjYWfn1+Bn806fPiwePjhh0V4eLgIDAwUrVu3FvPmzRNpaWkOy3n69GnRr18/Ub58eeHl5VUglhcuXBBDhgwRZcuWFQEBAaJt27Zi1apVDn8ybN68eaJfv36iZs2aIjAwUISGhoqmTZuKyZMniytXrjgTZsU481NkQ4cOVbWMRESeYhFC5SeZEBGZVHZ2NsqUKYMXXngB7733ntrFIQPbtGkT2rVrh2HDhuHrr79WuziKqFChArp06YL58+erXRQiIiI7rv0YJRERyWbDhg0oVaoUnn/+ebWLQga3ZMkSAP8+bM9o9u3bh/Pnzzv1xHEiIiJP45luIiIiA7p58ybefvtt7N69G0uXLkWlSpWwb9++Qn8/nYiIiJTBpJuIiMiAMjMzUbZsWYSFhaFLly6YPHlykT+XRkRERMpg0k1ERERERESkEN7TTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERESkCykpKbBYLDh69KjaRSEiInIak24iIjI8W7Jm+/Px8UGVKlWQmJiIkydPql08Ve3duxfjx49nIktERKQQH7ULQERE5CkTJ05E9erVcfPmTWzatAkpKSlYv349MjIy4O/vr3bxVLF3715MmDABXbp0QXR0tNrFISIiMhwm3UREZBo9evRAq1atAAAjRoxA+fLlMXnyZCxduhT9+vVTuXRERERkRLy8nIiITKtjx44AgL///tvu9b/++guPPPIIypYtC39/f7Rq1QpLly61W+b27duYMGECateuDX9/f5QrVw733HMPUlNT7ZZbs2YNOnbsiNKlSyMsLAy9e/fGvn377JYZP348LBYLDh06hMTERISFhSE0NBTDhg3D9evX7ZadOXMm7rvvPlSoUAF+fn5o0KABpk+fXqBu0dHR6NmzJ9avX482bdrA398fNWrUwDfffCMtk5KSgr59+wIA7r33Xuny+7Vr1xYas127diExMRE1atSAv78/IiIiMHz4cFy8eNHtOt24cQPPPfccypcvj+DgYDz44IM4efIkLBYLxo8fX2hZbFasWCHFODg4GPHx8dizZ0+xnyMiIvIEJt1ERGRatvuYy5QpI722Z88etG3bFvv27cPYsWPx4YcfonTp0khISMCiRYuk5caPH48JEybg3nvvxaefforXXnsN1apVw/bt26Vlfv31V8TFxeHcuXMYP348nn/+efz+++/o0KGDw3uo+/XrhytXriA5ORn9+vVDSkoKJkyYYLfM9OnTERUVhVdffRUffvghIiMj8eyzz2LatGkF1nfo0CE88sgjuP/++/Hhhx+iTJkySExMlBLSTp064bnnngMAvPrqq5g9ezZmz56N+vXrFxqz1NRUHD58GMOGDcPUqVMxYMAAzJs3Dw888ACEEG7VKTExEVOnTsUDDzyAyZMnIyAgAPHx8YWWIa/Zs2cjPj4eQUFBmDx5Mt544w3s3bsX99xzD+9TJyIibRBEREQGN3PmTAFA/Prrr+L8+fPixIkT4ocffhDh4eHCz89PnDhxQlq2a9euonHjxuLmzZvSa1arVbRv317Url1beq1p06YiPj6+yO9t1qyZqFChgrh48aL02p9//im8vLzEkCFDpNeSkpIEADF8+HC7z/fp00eUK1fO7rXr168X+J64uDhRo0YNu9eioqIEALFu3TrptXPnzgk/Pz/xwgsvSK8tWLBAABBpaWlF1qWo7//uu+8KfJezddq2bZsAIMaMGWO3XGJiogAgkpKSpNds7XjkyBEhhBBXrlwRYWFh4oknnrD77JkzZ0RoaGiB14mIiNTAM91ERGQasbGxCA8PR2RkJB555BGULl0aS5cuRdWqVQEAly5dwpo1a6SzsxcuXMCFCxdw8eJFxMXF4eDBg9LTzsPCwrBnzx4cPHjQ4XedPn0aO3fuRGJiIsqWLSu93qRJE9x///34+eefC3zm6aeftvt/x44dcfHiRWRnZ0uvBQQESP/OysrChQsX0LlzZxw+fBhZWVl2n2/QoIF0CT0AhIeHo27dujh8+LCzISsg7/ffvHkTFy5cQNu2bQHA7iy/s3VauXIlAODZZ5+1W+4///lPsWVJTU1FZmYmBg4cKLXVhQsX4O3tjZiYGKSlpblWOSIiIgXwQWpERGQa06ZNQ506dZCVlYWvv/4a69atg5+fn/T+oUOHIITAG2+8gTfeeMPhOs6dO4cqVapg4sSJ6N27N+rUqYNGjRqhe/fuGDx4MJo0aQIAOHbsGACgbt26BdZRv359rFq1CteuXUPp0qWl16tVq2a3nO2y98uXLyMkJAQAsGHDBiQlJWHjxo0F7o3OyspCaGhooeuzrfPy5cuFB6kYly5dwoQJEzBv3jycO3euwPfnV1ydjh07Bi8vL1SvXt1uuVq1ahVbFtsBj/vuu8/h+7aYERERqYlJNxERmUabNm2kp5cnJCTgnnvuwaOPPor9+/cjKCgIVqsVAPDiiy8iLi7O4TpsyWCnTp3w999/Y8mSJfjll1/w1Vdf4f/+7//w+eefY8SIEW6Vz9vb2+Hr4v/fK/3333+ja9euqFevHqZMmYLIyEj4+vri559/xv/93/9J5Xd2fe7o168ffv/9d7z00kto1qyZFLfu3bsX+H6lymBj+77Zs2cjIiKiwPs+PtzNISIi9XFrREREpuTt7Y3k5GTpQWhjx45FjRo1AAClSpVCbGxssesoW7Yshg0bhmHDhuHq1avo1KkTxo8fjxEjRiAqKgoAsH///gKf++uvv1C+fHm7s9zO+Omnn5CTk4OlS5fanUEuyWXUFovF6WUvX76M1atXY8KECXjzzTel1wu7xN4ZUVFRsFqtOHLkCGrXri29fujQoWI/W7NmTQBAhQoVnGovIiIiNfCebiIiMq0uXbqgTZs2+Oijj3Dz5k1UqFABXbp0wRdffIHTp08XWP78+fPSv/P/RFZQUBBq1aqFnJwcAEClSpXQrFkzzJo1C5mZmdJyGRkZ+OWXX/DAAw+4XF7bWeO8Z4mzsrIwc+ZMl9dlY0v885bRle8HgI8++sjt77ddUfDZZ5/ZvT516lSnPhsSEoJ3330Xt2/fLvB+3vYiIiJSC890ExGRqb300kvo27cvUlJS8PTTT2PatGm455570LhxYzzxxBOoUaMGzp49i40bN+Kff/7Bn3/+CeDuQ8q6dOmCli1bomzZsti6dSt++OEHjBo1Slr3+++/jx49eqBdu3Z4/PHHcePGDUydOhWhoaFO/f50ft26dYOvry969eqFp556ClevXsWXX36JChUqODxI4IxmzZrB29sbkydPRlZWFvz8/KTfAc8vJCQEnTp1wnvvvYfbt2+jSpUq+OWXX3DkyBG3vhsAWrZsiYcffhgfffQRLl68iLZt2yI9PR0HDhwAUPSZ+JCQEEyfPh2DBw9GixYtMGDAAISHh+P48eNYvnw5OnTogE8//dTtshEREcmBSTcREZnaQw89hJo1a+KDDz7AE088gQYNGmDr1q2YMGECUlJScPHiRVSoUAHNmze3u6T6ueeew9KlS/HLL78gJycHUVFRePvtt/HSSy9Jy8TGxmLlypVISkrCm2++iVKlSqFz586YPHlygQeHOaNu3br44Ycf8Prrr+PFF19EREQEnnnmGYSHh2P48OFu1T8iIgKff/45kpOT8fjjjyM3NxdpaWkOk24AmDt3Lv7zn/9g2rRpEEKgW7duWLFiBSpXruzW9wPAN998g4iICHz33XdYtGgRYmNj8f3336Nu3brw9/cv8rOPPvooKleujEmTJuH9999HTk4OqlSpgo4dO2LYsGFul4mIiEguFiHHk0yIiIiIZLRz5040b94cc+bMwaBBg9QuDhERkdt4TzcRERGp6saNGwVe++ijj+Dl5YVOnTqpUCIiIiL58PJyIiIiUtV7772Hbdu24d5774WPjw9WrFiBFStW4Mknn0RkZKTaxSMiIioRXl5OREREqkpNTcWECROwd+9eXL16FdWqVcPgwYPx2muv8be2iYhI95h0ExERERERESmE93QTERERERERKYRJNxEREREREZFCTHOjlNVqxalTpxAcHAyLxaJ2cYiIiIiIiEgBQghcuXIFlStXhpeX+ueZTZN0nzp1ik9AJSIiIiIiMokTJ06gatWqahfDPEl3cHAwgLuBDwkJUbk0REREREREpITs7GxERkZKOaDaTJN02y4pDwkJYdJNRERERERkcFq5rVj9C9yJiIiIiIiIDIpJtwqixy5XuwguY5mVpaey5qXXctvovfyAMergCOulXUaoQ156r4/ey5+fkeoTPXa5oeoDGKt9bFgnfdD7eGLSrRI9dZrosctxdFK82sVwix7irIcyFubopHjdll+v5XbESHUB9D3nGJ3R+presT20z2hzmZ63+44YqS75GbFueh5PTLpVoOcOoyd6irOeyuqI3iZ2W3n1HnfAGHUwEyPssBqxz+m5Tdge2mSEOhTFSPUz4hgyWp2McDCeSTcVyQidXMuMsNHSa//Qa7mNzghjgvRFr3OBUceKXtvDESPVJS+j1ou0ySi5CJNuFRl1g6k1Wo+zESYSQPtxttFLOV1lhHoZ6QqE4uixvfRYZqMz8ljRc3/Tc9ldofd6GiWZK4oR2sgomHSrRA+D3AgdXQ9xNgK9xVlv5S2OkepjpLoURs911HPZi6K3y/71VFZ3GKGfGaEORbHVT699Ua/ldoVR+qBR6sGkW2VaH/RG6ehaZMQjrFrvz1ovX0npuX56LjuRGoy2/TAKM81leu+Dei+/0RltLDHpVpGWB7uROrrezmDolZb7c156Kaer9FwvM11Wnpee5iUjHiTMTy/bCj2UUQ56aQ9HjD5W8tNbO+mtvCWh53EEGGssMenWAK0OBiN1dK3RapsbmVlirtd6mm2+MVt9SR5mPECl1znNLPTWF804hkgbmHSrTIuD3qhnNLS24TZijLV+RNWIMc/L6PUjdRh1m+CI1ucwwFzjXG91NdNYyUsP4wYwd8Kth/bJy4hjiUm3RuhtMOiN0QYuUWH0svNjY8QNq7P00FZaL59StFhvLZbJU8xcd5KXGbc3en/onVEw6dYALU0ARh+QWqifGZIMLcQ5L62VxxPMWGe90mpbmfWskBbra9a20BMzbNuLo9W5DNB22TxBT33TqG3FpFtDtNLJ9DQwXWHUemmNVuOs1XIpQS9HtbVePk/Qer/UevmUpLX+ada20MN8puWyeYoe+qceyqgkPVxdZWPEtmLSrRFa6Fx6GYglpWY9zXQkXCv9SSvl8DS99DO9lFNJWtwR0lp5PE1LiZ4WyqA2PcwTeiijJ2ixv5pp36s4tu2NFtsJ0Gb/kYsqSff48eNhsVjs/urVq1fkZxYsWIB69erB398fjRs3xs8//+yh0nqW2p3N6JOSmjtSaretJ2mtH2mtPGSu8eAsrcSElzLfpaXE2+xtAWjz4BSgjf6hFeyn+qD1dtJ6+dyl2pnuhg0b4vTp09Lf+vXrC132999/x8CBA/H4449jx44dSEhIQEJCAjIyMjxYYuWp2cnMtNFQM85GnUgKo3a/Uvv71abVnVQbs42HomgpwQPYNjZqx0Er/UFLtBQTHqByTIttRAVpLTZaK4/cVEu6fXx8EBERIf2VL1++0GU//vhjdO/eHS+99BLq16+Pt956Cy1atMCnn37qwRJ7jlqdzmwbDU/G2YyXNqmdRHBniPRG7TGj9ndrmZpx4Rz2L8ZC+7TYRlosk9q0FhMz7LOplnQfPHgQlStXRo0aNTBo0CAcP3680GU3btyI2NhYu9fi4uKwceNGpYvpcWp0NjPuZHkyzmaMr43ak6fa368FWjzbrbXyaIkW+qwWyqAlasXDjAdrnaGVOc0MSUJJaKmNqHBaiJFZxpIqSXdMTAxSUlKwcuVKTJ8+HUeOHEHHjh1x5coVh8ufOXMGFStWtHutYsWKOHPmTKHfkZOTg+zsbLs/KpzRO7ojnthwm2UiKY6nryrgzqr2sX2KxudOaIunEz22RfG0ECPOY45p4aodG7ZR4bQQG9v+mhbKojRVku4ePXqgb9++aNKkCeLi4vDzzz8jMzMT8+fPl+07kpOTERoaKv1FRkbKtm6leXLjroUJUW1Kx8AME0lR1Nj4mj3mjmhlrGulHFrG505olyf6Lw/WFk/t2PDAbvHUTry5rXGemm1kpnGkiZ8MCwsLQ506dXDo0CGH70dERODs2bN2r509exYRERGFrnPcuHHIysqS/k6cOCFrmT3BU4PATB0+PyXrzgn/X57a+DLmjmlljDOZ0C6OneJ5ot9yjLiGV4RomxqJd96fw+I4Kp6at8+YjSaS7qtXr+Lvv/9GpUqVHL7frl07rF692u611NRUtGvXrtB1+vn5ISQkxO5PTzy5cSflYsEJ/19Kx4Ib2eJp4QFdbB/nqHHfKtvGOUq1C8eIa3hFiD54MvHOO4bYRq5RY//AbG2kStL94osvIj09HUePHsXvv/+OPn36wNvbGwMHDgQADBkyBOPGjZOWHz16NFauXIkPP/wQf/31F8aPH4+tW7di1KhRahTfo7hxV54SGwSzXTLjLKUTCca8cFr4SUK2j+s8uaNKxcu7vZB7m5F3/eQ8/hKJ9nki8eYYcp+nr0gw6zZHlaT7n3/+wcCBA1G3bl3069cP5cqVw6ZNmxAeHg4AOH78OE6fPi0t3759e8ydOxczZsxA06ZN8cMPP2Dx4sVo1KiRGsX3GKUGASemguSMhVknE1co1aepeJ6OFecb93ni6hC2j+vynkWTI/k204OE5KbGWVRyjydu5+MYcl/+OY3PO5KfRQgh1C6EJ2RnZyM0NBRZWVm6u9RczsmEE1Ph8k4w7saH8XWO3HHi2QfnydHPXf0utk3JKDFebNg2JVeS9uHcJQ+l5xrOZfJQKo4cR/JTsq2UWK8jWsv9mHTrhBydlBuN4uU/sudsrLgT6zq5NpLc2LrHE/MB20Y+7s5Nha2L7SIvV8cTt8fyUzpJUGLdZsSD7vohZ+6Rl6faS2u5H5NuHSnp0XR3P2tGzm5k5dwRNpuS7shwR6jklJwXOOcoQ45xwzZRRv62Ke7yTLaDMpS4OlCu9dFdcrURtzPKkyP3yMuTbaW13I9Jtw65utPESalkHMWPG2L5uHLgggc55MfL/fTJnfhyW6A8tXcy6a6S9nWOFeW5OlYKO6jFNlKeo+1NcfHXwj6A1nI/Jt065ErCx0lJHtyR8pyiDnIw5sqQe+PI9vKMonaEbPI/aIptQmbhbp/nWFFHYXEv6ooRtpHnuHLljhYSbkB7uR+Tbp1y5amCWuj4RK7gQQ7P4sMa9amw7UBhlzazTchseK+9vvBstrY5e2BEK+2ltdyPSbfOcUIio2Lf9qySXK6cH9vMszhWiArn6k8fcRypj7fw6ZNWznDbaC33Y9JNREQAXE+itbaBJSJyBZM7IuPSWu7HpJuIiCTO3FPPM6tERESkZVrL/Zh0ExFRsbR6zxYRERFRflrL/bzULgAREWlf3iSbCTcRERGR83zULgAREekDk20iIiIi1/FMNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKUSVpDs5ORmtW7dGcHAwKlSogISEBOzfv7/Iz6SkpMBisdj9+fv7e6jERERERERERK5TJelOT0/HyJEjsWnTJqSmpuL27dvo1q0brl27VuTnQkJCcPr0aenv2LFjHioxERERERERket81PjSlStX2v0/JSUFFSpUwLZt29CpU6dCP2exWBAREaF08YiIiIiIiIhkoYl7urOysgAAZcuWLXK5q1evIioqCpGRkejduzf27NlT6LI5OTnIzs62+yMiIiIiIiLyJNWTbqvVijFjxqBDhw5o1KhRocvVrVsXX3/9NZYsWYI5c+bAarWiffv2+Oeffxwun5ycjNDQUOkvMjJSqSoQEREREREROWQRQgg1C/DMM89gxYoVWL9+PapWrer0527fvo369etj4MCBeOuttwq8n5OTg5ycHOn/2dnZiIyMRFZWFkJCQuyWjR67XPr30UnxbtSCiIiIiIiItCA7OxuhoaEOcz81qHJPt82oUaOwbNkyrFu3zqWEGwBKlSqF5s2b49ChQw7f9/Pzg5+fX7HryZtw5/2/LfmOHruciTgRkYHxwCsREREpSZWkWwiB//znP1i0aBHWrl2L6tWru7yO3Nxc7N69Gw888IDb5cifYOd9Pe9OGHfIiIj0Lf8B1qOT4h3O7YVtF4iIiIjcpUrSPXLkSMydOxdLlixBcHAwzpw5AwAIDQ1FQEAAAGDIkCGoUqUKkpOTAQATJ05E27ZtUatWLWRmZuL999/HsWPHMGLECJe/v7gkurCdrfw7bUREpH15E2nbvwtLrvMn46QeHgDRFl75R0TkPlXu6bZYLA5fnzlzJhITEwEAXbp0QXR0NFJSUgAA//3vf7Fw4UKcOXMGZcqUQcuWLfH222+jefPmTn2n7br+yDHz4eUX6PaGgxsdeXBniozKUcLGfq4ed+Yazk/q4hjSlsIOQrFN1McrMfWF7eVZWrunW/UHqXmKXIHnzljJFHcGiXGVHyd5z3E0PxTV59keyirJfM1EwzMcXYVg+3/+ZfK/Tspw5qAH20Rd+ePPfSvt48FEz2PSrRI5A8/E2z1FxY2TkfyYNHiWq/MC5xFlKRFftpm8XJ33uZ1QljuJtKNnJZCyipuH8l+RyXnLs5x9VgjbRXlMulUid+A5WFzDhER5PDuhjpLElP1cGUrGlbcYyUOONuL4kQ/bQ/u4rdE+R7+AZOPsCafCliXXMelWiRKB5yRWPDku72R8i+fqxphnJ0pGzjNuTOLk44mDSpyXSk7OPs/2KDk5Y8j2kJec22q2jbLkvp2J7VRyTLpVolTgOYk5JtfOL+NbvJLGiDF2HZMG7fHkwQseKHEfL/vXFraHdrFt9EPuuLKd5KG1pNtL7QLonaNLSMxOzrNNjG/R5JiYj06K588kuUDuhIt9vOTUiB3by3VK7Uhyx9Q9SrcHx0jJKdk2bB95cb+AisOkWwYcHAXZEjm51gUwvvkpeRScHFMqPtwRcp8aZwQ4J7lPyXZiezhP6XHDAyElo2RfdvbXNcg5Su8XkHEw6ZYJB8ddSl12yZ1ce0rsMDHGzvHETirbwDVqzL+c812jdJ/m/OU6pfswr6ByjycOJOY9McI2ck/eg+Q8mKhNjZJWqV0EO0y6ZcbBoRzu5NpT8uAGFeSJ+3i5I6Q/bKeieWrHNO/62SaFs7WHJ+d6tofrPNU+HDPu8dQvwXCfzFiYdMvI7IPDU0mJ2TcOnoiz2WOsNrPPJc5S+4Fm3GF1jpy3GznzXQDbxBHeiqF9asSJbeS8vAetPDWvcb/XPVqMGZNuBWixoZXm6TqbMcaAZ+rNhK8gNZI7bmj1gQ8iLJxaB0WYRBSO7aFdaj6xmtt956kVKz7zxXUZE+LULoIdJt0yM/PExTMZyvLkBplJxL8YB23SWrtwzNhTOxZm3hY7opX2ULscWqWVn4hi+xROzdjw1jPXaDVGTLoVotUGV4Kal0OZhVobZDP146Ko1d+YyBVNi/MA2+tfarcPx489LbQHFaSVhFvt79cDtWPExNt5areVI0y6FaDFhlaampfbmIUalzcD5opxXmo8cIico9U+yb5yl9bGjVb7i6dorf5aK48WcLxom5ZiYvZ9s+JobfuTF5NuBZlhQKh9uY0ZqDmBmCXGWmeGucRZWjkrVBS2l3ZouZ94klbioJVyaIXW5gq2T+G0FBstlUVLtJxwA0y6FaPlRpeb2nXV2kZLTlqomxkv0cz7dFK1aaEMWqPlmGi5bJ6g1Z0es81hNlqstxm3KY5o+QAi20cf2E7/0kMsmHQrTA+dwF1a2LlS+/s9QSt1NHJfzsss9dQjtg25QytzqFrMXn8t02Lb8PJle1rY13VEi2VSi5YPYOXFpFtBWm/8ktDaZKy18hiNkfuyI1qrL88M6WejamPG9jJjnbVMy+1h9jlN63Vn4k16oad9AybdHmDUSUsrHVwr5ZCbFo+uGrUv22i9flovn9K0Nh4Ko5dyKkGrdTdrkqfV9iDtt43Wy+cJWp8zzDqv5aeXvsqkW2F66Qiu4AA3JyP2ZUe0Wk+tlssTtHgAiuxxu6AtehkzZuw3eqqzmZM6PZ1BJX1g0u0hRpu0tDYJGW3DYKS6kLzYN/TBaHOSM7S2XXDEDG2ilzrqob8oRW9110ufkoveEm6ztY+NXg4u2jDp9gA9dYjimHVgq0GL/cbIiYQeJm8z3mdnprrqlV7aSOvjWw56SxYA/fQfOeixrnrqS3LQ2xjSSzmJSbdH6XGydUSrA9woCaER6kDKMWPirdU5xxlGbyc97qAavU300haAvsoqF73W2ejjJi89tpGZ2gfQZ32ZdHuIHgcwqUfr/UWPk11R9FYfrfcPusssB0j02B+N2CZ6rpOey24Gehzj7tDDFW+O6LHMctBbvZl0e5ieNyx6mIz0fhZDD2XXeh9wlx7rpYf+UhJ6mHOKo/fyF0Wv/c/IbaLHuumxzO7Q63gh/WAf0zZVk+5p06YhOjoa/v7+iImJwZYtW4pcfsGCBahXrx78/f3RuHFj/Pzzzx4qqTzMsmGhktFLP+Hkri699BO6y2jjRW+XlTtipDbRe130fsDcWXoeL0ZvI73XzSxXVgH6PSCvWtL9/fff4/nnn0dSUhK2b9+Opk2bIi4uDufOnXO4/O+//46BAwfi8ccfx44dO5CQkICEhARkZGR4uOSkdXrdMOipzHqc7Aqj18mb9MOoO0N6Hjd6LnthjFgno+B2Rh/03kZG3dYYhWpJ95QpU/DEE09g2LBhaNCgAT7//HMEBgbi66+/drj8xx9/jO7du+Oll15C/fr18dZbb6FFixb49NNPPVzyktPjYOAGwzMYY3KVHucTZxhtzjFSXYxCrwdo8zNCHQDjtEd+RquT0eoDGKtORt/W6LmtVEm6b926hW3btiE2Nvbfgnh5ITY2Fhs3bnT4mY0bN9otDwBxcXGFLp+Tk4Ps7Gy7Py0w+mDQEj0NTD2V1cYIO0h6Lz/nE/3Re58DjHdAxAjYHtpmlPYxSj0cMVrdjLCtKYxe28oihBCe/tJTp06hSpUq+P3339GuXTvp9Zdffhnp6enYvHlzgc/4+vpi1qxZGDhwoPTaZ599hgkTJuDs2bMFlh8/fjwmTJhQ4PWsrCyEhITIVBMiIiIiIiLSkuzsbISGhmom9zPs08vHjRuHrKws6e/EiRNqF4mIiIiIiIhMxkeNLy1fvjy8vb0LnKE+e/YsIiIiHH4mIiLCpeX9/Pzg5+cnT4GJiIiIiIiI3KDKmW5fX1+0bNkSq1evll6zWq1YvXq13eXmebVr185ueQBITU0tdHkiIiIiIiIitalyphsAnn/+eQwdOhStWrVCmzZt8NFHH+HatWsYNmwYAGDIkCGoUqUKkpOTAQCjR49G586d8eGHHyI+Ph7z5s3D1q1bMWPGDKe+z3brulYeqEZERERERETys+V8Kjy+zCHVku7+/fvj/PnzePPNN3HmzBk0a9YMK1euRMWKFQEAx48fh5fXvyfi27dvj7lz5+L111/Hq6++itq1a2Px4sVo1KiRU9938eJFAEBkZKT8lSEiIiIiIiJNuXjxIkJDQ9UuhjpPL1dDZmYmypQpg+PHj5c48K1bt8Yff/xR4jIZcT3Z2dmIjIzEiRMnSvykQC3VS0tlMWqMtbYercVZS7GRaz1ai7FR1yNXnLVUJ62th31Z+XUwxp5Zj1HjrKWyGDXGWltPVlYWqlWrhsuXLyMsLKzEZSop1c50e5rtrHloaGiJO7i3t7csj5436noAICQkxFBx1lJZbIwWYy2uB9BOnLUWGyPG2MjrAUoeZ63VSWvrAdiXlS4LwBh7Yj2A8eKspbLYGC3GWlwPALsrp9WkjVLozMiRI7keD9BSvbRUFjlprV5aW49cjNgHjRhjI69HDlqrk9bWIxet1UtL85dctBQbLa5HLlqql5bKIiet1Utr69ES01xerrUfSDcqxll5jLFnMM7KY4w9g3FWHmOsPMbYMxhn5THGnqG1OJvmTLefnx+SkpL4290KY5yVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznQTEREREREReZppznQTEREREREReRqTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFmCbpnjZtGqKjo+Hv74+YmBhs2bJF7SJpwrp169CrVy9UrlwZFosFixcvtntfCIE333wTlSpVQkBAAGJjY3Hw4EG7ZS5duoRBgwYhJCQEYWFhePzxx3H16lW7ZXbt2oWOHTvC398fkZGReO+99wqUZcGCBahXrx78/f3RuHFj/Pzzz7LXVw3Jyclo3bo1goODUaFCBSQkJGD//v12y9y8eRMjR45EuXLlEBQUhIcffhhnz561W+b48eOIj49HYGAgKlSogJdeegl37tyxW2bt2rVo0aIF/Pz8UKtWLaSkpBQoj1HHwvTp09GkSROEhIQgJCQE7dq1w4oVK6T3GWP5TZo0CRaLBWPGjJFeY5xLbvz48bBYLHZ/9erVk95njOVx8uRJPPbYYyhXrhwCAgLQuHFjbN26VXqf27+Si46OLtCXLRaL9Bu87Msll5ubizfeeAPVq1dHQEAAatasibfeegt5n5PMvlxyV65cwZgxYxAVFYWAgAC0b98ef/zxh/Q+Y+w6PeUgzpSlWMIE5s2bJ3x9fcXXX38t9uzZI5544gkRFhYmzp49q3bRVPfzzz+L1157TSxcuFAAEIsWLbJ7f9KkSSI0NFQsXrxY/Pnnn+LBBx8U1atXFzdu3JCW6d69u2jatKnYtGmT+O2330StWrXEwIEDpfezsrJExYoVxaBBg0RGRob47rvvREBAgPjiiy+kZTZs2CC8vb3Fe++9J/bu3Stef/11UapUKbF7927FY6C0uLg4MXPmTJGRkSF27twpHnjgAVGtWjVx9epVaZmnn35aREZGitWrV4utW7eKtm3bivbt20vv37lzRzRq1EjExsaKHTt2iJ9//lmUL19ejBs3Tlrm8OHDIjAwUDz//PNi7969YurUqcLb21usXLlSWsbIY2Hp0qVi+fLl4sCBA2L//v3i1VdfFaVKlRIZGRlCCMZYblu2bBHR0dGiSZMmYvTo0dLrjHPJJSUliYYNG4rTp09Lf+fPn5feZ4xL7tKlSyIqKkokJiaKzZs3i8OHD4tVq1aJQ4cOSctw+1dy586ds+vHqampAoBIS0sTQrAvy+Gdd94R5cqVE8uWLRNHjhwRCxYsEEFBQeLjjz+WlmFfLrl+/fqJBg0aiPT0dHHw4EGRlJQkQkJCxD///COEYIzdoaccxJmyFMcUSXebNm3EyJEjpf/n5uaKypUri+TkZBVLpT35O7zVahURERHi/fffl17LzMwUfn5+4rvvvhNCCLF3714BQPzxxx/SMitWrBAWi0WcPHlSCCHEZ599JsqUKSNycnKkZV555RVRt25d6f/9+vUT8fHxduWJiYkRTz31lKx11IJz584JACI9PV0IcTempUqVEgsWLJCW2bdvnwAgNm7cKIS4OzF5eXmJM2fOSMtMnz5dhISESHF9+eWXRcOGDe2+q3///iIuLk76v9nGQpkyZcRXX33FGMvsypUronbt2iI1NVV07txZSroZZ3kkJSWJpk2bOnyPMZbHK6+8Iu65555C3+f2TxmjR48WNWvWFFarlX1ZJvHx8WL48OF2rz300ENi0KBBQgj2ZTlcv35deHt7i2XLltm93qJFC/Haa68xxjLQcg7iTFmcYfjLy2/duoVt27YhNjZWes3LywuxsbHYuHGjiiXTviNHjuDMmTN2sQsNDUVMTIwUu40bNyIsLAytWrWSlomNjYWXlxc2b94sLdOpUyf4+vpKy8TFxWH//v24fPmytEze77EtY8Q2ysrKAgCULVsWALBt2zbcvn3brv716tVDtWrV7OLcuHFjVKxYUVomLi4O2dnZ2LNnj7RMUTE001jIzc3FvHnzcO3aNbRr144xltnIkSMRHx9fIBaMs3wOHjyIypUro0aNGhg0aBCOHz8OgDGWy9KlS9GqVSv07dsXFSpUQPPmzfHll19K73P7J79bt25hzpw5GD58OCwWC/uyTNq3b4/Vq1fjwIEDAIA///wT69evR48ePQCwL8vhzp07yM3Nhb+/v93rAQEBWL9+PWOsAC3F1JmyOMPwSfeFCxeQm5trN2EDQMWKFXHmzBmVSqUPtvgUFbszZ86gQoUKdu/7+PigbNmydss4Wkfe7yhsGaO1kdVqxZgxY9ChQwc0atQIwN26+/r6IiwszG7Z/HF2N4bZ2dm4ceOGKcbC7t27ERQUBD8/Pzz99NNYtGgRGjRowBjLaN68edi+fTuSk5MLvMc4yyMmJgYpKSlYuXIlpk+fjiNHjqBjx464cuUKYyyTw4cPY/r06ahduzZWrVqFZ555Bs899xxmzZoFgNs/JSxevBiZmZlITEwEwPlCLmPHjsWAAQNQr149lCpVCs2bN8eYMWMwaNAgAOzLcggODka7du3w1ltv4dSpU8jNzcWcOXOwceNGnD59mjFWgJZi6kxZnOHj9JJEVGIjR45ERkYG1q9fr3ZRDKlu3brYuXMnsrKy8MMPP2Do0KFIT09Xu1iGceLECYwePRqpqakFjviTfGxnqACgSZMmiImJQVRUFObPn4+AgAAVS2YcVqsVrVq1wrvvvgsAaN68OTIyMvD5559j6NChKpfOmP73v/+hR48eqFy5stpFMZT58+fj22+/xdy5c9GwYUPs3LkTY8aMQeXKldmXZTR79mwMHz4cVapUgbe3N1q0aIGBAwdi27ZtaheNdMLwZ7rLly8Pb2/vAk/DPHv2LCIiIlQqlT7Y4lNU7CIiInDu3Dm79+/cuYNLly7ZLeNoHXm/o7BljNRGo0aNwrJly5CWloaqVatKr0dERODWrVvIzMy0Wz5/nN2NYUhICAICAkwxFnx9fVGrVi20bNkSycnJaNq0KT7++GPGWCbbtm3DuXPn0KJFC/j4+MDHxwfp6en45JNP4OPjg4oVKzLOCggLC0OdOnVw6NAh9mWZVKpUCQ0aNLB7rX79+tJl/Nz+yevYsWP49ddfMWLECOk19mV5vPTSS9LZ7saNG2Pw4MH473//K12NxL4sj5o1ayI9PR1Xr17FiRMnsGXLFty+fRs1atRgjBWgpZg6UxZnGD7p9vX1RcuWLbF69WrpNavVitWrV6Ndu3Yqlkz7qlevjoiICLvYZWdnY/PmzVLs2rVrh8zMTLsjfWvWrIHVakVMTIy0zLp163D79m1pmdTUVNStWxdlypSRlsn7PbZljNBGQgiMGjUKixYtwpo1a1C9enW791u2bIlSpUrZ1X///v04fvy4XZx3795tN7mkpqYiJCRE2nEsLoZmHAtWqxU5OTmMsUy6du2K3bt3Y+fOndJfq1atMGjQIOnfjLP8rl69ir///huVKlViX5ZJhw4dCvx044EDBxAVFQWA2z+5zZw5ExUqVEB8fLz0GvuyPK5fvw4vL/vdeW9vb1itVgDsy3IrXbo0KlWqhMuXL2PVqlXo3bs3Y6wALcXUmbI4xelHrunYvHnzhJ+fn0hJSRF79+4VTz75pAgLC7N7GqZZXblyRezYsUPs2LFDABBTpkwRO3bsEMeOHRNC3H1EflhYmFiyZInYtWuX6N27t8PH9Tdv3lxs3rxZrF+/XtSuXdvucf2ZmZmiYsWKYvDgwSIjI0PMmzdPBAYGFnhcv4+Pj/jggw/Evn37RFJSkm5/AiG/Z555RoSGhoq1a9fa/XTK9evXpWWefvppUa1aNbFmzRqxdetW0a5dO9GuXTvpfdvPpnTr1k3s3LlTrFy5UoSHhzv82ZSXXnpJ7Nu3T0ybNs3hz6YYdSyMHTtWpKeniyNHjohdu3aJsWPHCovFIn755RchBGOslLxPLxeCcZbDCy+8INauXSuOHDkiNmzYIGJjY0X58uXFuXPnhBCMsRy2bNkifHx8xDvvvCMOHjwovv32WxEYGCjmzJkjLcPtnzxyc3NFtWrVxCuvvFLgPfblkhs6dKioUqWK9JNhCxcuFOXLlxcvv/yytAz7csmtXLlSrFixQhw+fFj88ssvomnTpiImJkbcunVLCMEYu0NPOYgzZSmOKZJuIYSYOnWqqFatmvD19RVt2rQRmzZtUrtImpCWliYAFPgbOnSoEOLuY/LfeOMNUbFiReHn5ye6du0q9u/fb7eOixcvioEDB4qgoCAREhIihg0bJq5cuWK3zJ9//inuuece4efnJ6pUqSImTZpUoCzz588XderUEb6+vqJhw4Zi+fLlitXbkxzFF4CYOXOmtMyNGzfEs88+K8qUKSMCAwNFnz59xOnTp+3Wc/ToUdGjRw8REBAgypcvL1544QVx+/Ztu2XS0tJEs2bNhK+vr6hRo4bdd9gYdSwMHz5cREVFCV9fXxEeHi66du0qJdxCMMZKyZ90M84l179/f1GpUiXh6+srqlSpIvr372/3+9GMsTx++ukn0ahRI+Hn5yfq1asnZsyYYfc+t3/yWLVqlQBQIHZCsC/LITs7W4wePVpUq1ZN+Pv7ixo1aojXXnvN7ieS2JdL7vvvvxc1atQQvr6+IiIiQowcOVJkZmZK7zPGrtNTDuJMWYpjEUII58+LExEREREREZGzDH9PNxEREREREZFamHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTEZEmHD16FBaLBSkpKdJr48ePh8ViUa9QLtJbeck1FosF48ePV7sYRESkM0y6iYjII1JSUmCxWBz+jR071un1vPvuu1i8eLFyBSWPYnsSEZHR+ahdACIiMpeJEyeievXqdq81atQIUVFRuHHjBkqVKlXk599991088sgjSEhIULCU5ClsTyIiMjom3URE5FE9evRAq1atHL7n7+/v4dLcdfPmTfj6+sLLS70LwK5fv47AwEDVvp+IiIiUwcvLiYhIExzd052fxWLBtWvXMGvWLOnS9MTEROn9kydPYvjw4ahYsSL8/PzQsGFDfP3113brWLt2LSwWC+bNm4fXX38dVapUQWBgILKzswEAmzdvRvfu3REaGorAwEB07twZGzZsKFCW9evXo3Xr1vD390fNmjXxxRdfOF3XLl26oFGjRti2bRs6deqEwMBAvPrqqwCAnJwcJCUloVatWvDz80NkZCRefvll5OTk2K0jNTUV99xzD8LCwhAUFIS6detK67A5d+4cHn/8cVSsWBH+/v5o2rQpZs2aZbeMLe4ffPABZsyYgZo1a8LPzw+tW7fGH3/8Ybfsrl27kJiYiBo1asDf3x8REREYPnw4Ll68aLec7d72Q4cOITExEWFhYQgNDcWwYcNw/fp1abni2jO/W7du4c0330TLli0RGhqK0qVLo2PHjkhLS3O7TgCwYMECNGjQAP7+/mjUqBEWLVqExMREREdHF1oWG2f6HBERmRvPdBMRkUdlZWXhwoULdq+VL1/eqc/Onj0bI0aMQJs2bfDkk08CAGrWrAkAOHv2LNq2bQuLxYJRo0YhPDwcK1aswOOPP47s7GyMGTPGbl1vvfUWfH198eKLLyInJwe+vr5Ys2YNevTogZYtWyIpKQleXl6YOXMm7rvvPvz2229o06YNAGD37t3o1q0bwsPDMX78eNy5cwdJSUmoWLGi03G4ePEievTogQEDBuCxxx5DxYoVYbVa8eCDD2L9+vV48sknUb9+fezevRv/93//hwMHDkj3Pu/Zswc9e/ZEkyZNMHHiRPj5+eHQoUN2Bwdu3LiBLl264NChQxg1ahSqV6+OBQsWIDExEZmZmRg9erRdeebOnYsrV67gqaeegsViwXvvvYeHHnoIhw8fli75T01NxeHDhzFs2DBERERgz549mDFjBvbs2YNNmzYVeIhcv379UL16dSQnJ2P79u346quvUKFCBUyePLnY9nQkOzsbX331FQYOHIgnnngCV65cwf/+9z/ExcVhy5YtaNasmct1Wr58Ofr374/GjRsjOTkZly9fxuOPP44qVaoU24au9jkiIjIpQURE5AEzZ84UABz+CSHEkSNHBAAxc+ZM6TNJSUki/6aqdOnSYujQoQXW//jjj4tKlSqJCxcu2L0+YMAAERoaKq5fvy6EECItLU0AEDVq1JBeE0IIq9UqateuLeLi4oTVapVev379uqhevbq4//77pdcSEhKEv7+/OHbsmPTa3r17hbe3d4HyOtK5c2cBQHz++ed2r8+ePVt4eXmJ3377ze71zz//XAAQGzZsEEII8X//938CgDh//nyh3/HRRx8JAGLOnDnSa7du3RLt2rUTQUFBIjs7Wwjxb9zLlSsnLl26JC27ZMkSAUD89NNPdrHI77vvvhMAxLp166TXbO02fPhwu2X79OkjypUrZ/daYe3pyJ07d0ROTo7da5cvXxYVK1a0+y5X6tS4cWNRtWpVceXKFem1tWvXCgAiKirK7rsAiKSkJOn/zvY5IiIyN15eTkREHjVt2jSkpqba/ZWUEAI//vgjevXqBSEELly4IP3FxcUhKysL27dvt/vM0KFDERAQIP1/586dOHjwIB599FFcvHhR+vy1a9fQtWtXrFu3DlarFbm5uVi1ahUSEhJQrVo16fP169dHXFyc02X28/PDsGHD7F5bsGAB6tevj3r16tnV4b777gMA6TLqsLAwAMCSJUtgtVodrv/nn39GREQEBg4cKL1WqlQpPPfcc7h69SrS09Ptlu/fvz/KlCkj/b9jx44AgMOHD0uv5Y3XzZs3ceHCBbRt2xYACsQXAJ5++mm7/3fs2BEXL16ULuV3lbe3N3x9fQEAVqsVly5dwp07d9CqVSuH319cnU6dOoXdu3djyJAhCAoKkpbr3LkzGjduXGRZ3OlzRERkTry8nIiIPKpNmzaFPkjNXefPn0dmZiZmzJiBGTNmOFzm3Llzdv/P/wT1gwcPAribjBcmKysLOTk5uHHjBmrXrl3g/bp16+Lnn392qsxVqlSREsi8Zdi3bx/Cw8OLrEP//v3x1VdfYcSIERg7diy6du2Khx56CI888oj0MLhjx46hdu3aBR4OV79+fen9vPIeQAAgJauXL1+WXrt06RImTJiAefPmFYhnVlZWgfIWtc6QkBCHdSzOrFmz8OGHH+Kvv/7C7du3pdfzt2dx3w/8G4NatWoV+GytWrWKTJrd6XNERGROTLqJiEj3bGd7H3vssUKT5iZNmtj9P+9Z27zreP/99wvcG2wTFBRU4IFm7sr//bYyNG7cGFOmTHH4mcjISOmz69atQ1paGpYvX46VK1fi+++/x3333YdffvkF3t7eLpensM8IIaR/9+vXD7///jteeuklNGvWDEFBQbBarejevbvDM+7OrNMVc+bMQWJiIhISEvDSSy+hQoUK8Pb2RnJyMv7++2/Fvz8vd/ocERGZE5NuIiLSlfwP6wKA8PBwBAcHIzc3F7GxsW6t1/YAr5CQkCLXER4ejoCAAOnMeF779+9367vzluHPP/9E165dHdYzLy8vL3Tt2hVdu3bFlClT8O677+K1115DWloaYmNjERUVhV27dsFqtdqd7f7rr78AAFFRUS6V7fLly1i9ejUmTJiAN998U3rdURxcUVw98/rhhx9Qo0YNLFy40O5zSUlJbn23LQaHDh0q8J6j1/KSo88REZE58J5uIiLSldKlSyMzM9PuNW9vbzz88MP48ccfkZGRUeAz58+fL3a9LVu2RM2aNfHBBx/g6tWrha7D29sbcXFxWLx4MY4fPy69v2/fPqxatcrF2tjr168fTp48iS+//LLAezdu3MC1a9cA3L3MOz/b2XnbmfgHHngAZ86cwffffy8tc+fOHUydOhVBQUHo3LmzS2WznTXOf5b4o48+cmk9+TlqT1fKsHnzZmzcuNGt765cuTIaNWqEb775xq7N09PTsXv37mLLUtI+R0RE5sAz3UREpCstW7bEr7/+iilTpqBy5cqoXr06YmJiMGnSJKSlpSEmJgZPPPEEGjRogEuXLmH79u349ddfHSaqeXl5eeGrr75Cjx490LBhQwwbNgxVqlTByZMnkZaWhpCQEPz0008AgAkTJmDlypXo2LEjnn32WSmZbdiwIXbt2uV23QYPHoz58+fj6aefRlpaGjp06IDc3Fz89ddfmD9/PlatWoVWrVph4sSJWLduHeLj4xEVFYVz587hs88+Q9WqVXHPPfcAAJ588kl88cUXSExMxLZt2xAdHY0ffvgBGzZswEcffYTg4GCXyhYSEoJOnTrhvffew+3bt1GlShX88ssvOHLkiNv1BQpvT0d69uyJhQsXok+fPoiPj8eRI0fw+eefo0GDBg4PlDjj3XffRe/evdGhQwcMGzYMly9fxqeffopGjRoVu86S9jkiIjIHJt1ERKQrU6ZMwZNPPonXX38dN27cwNChQxETE4OKFStiy5YtmDhxIhYuXIjPPvsM5cqVQ8OGDaXfhS5Oly5dsHHjRrz11lv49NNPcfXqVURERCAmJgZPPfWUtFyTJk2watUqPP/883jzzTdRtWpVTJgwAadPny5R0u3l5YXFixfj//7v//DNN99g0aJFCAwMRI0aNTB69GjUqVMHAPDggw/i6NGj+Prrr3HhwgWUL18enTt3xoQJExAaGgrg7n3fa9euxdixYzFr1ixkZ2ejbt26mDlzJhITE90q39y5c/Gf//wH06ZNgxAC3bp1w4oVK1C5cmW361xYezqSmJiIM2fO4IsvvsCqVavQoEEDzJkzBwsWLMDatWvd+v5evXrhu+++w/jx4zF27FjUrl0bKSkpmDVrFvbs2VPkZ+Xoc0REZHwWIcfTRIiIiIgMpFmzZggPD5flJ+2IiMjceE83ERERmdbt27dx584du9fWrl2LP//8E126dFGnUEREZCg8001ERESmdfToUcTGxuKxxx5D5cqV8ddff+Hzzz9HaGgoMjIyUK5cObWLSEREOsd7uomIiMi0ypQpg5YtW+Krr77C+fPnUbp0acTHx2PSpElMuImISBY8001ERERERESkEN7TTURERERERKQQJt1ERERERERECjHNPd1WqxWnTp1CcHAwLBaL2sUhIiIiIiIiBQghcOXKFVSuXBleXuqfZzZN0n3q1ClERkaqXQwiIiIiIiLygBMnTqBq1apqF8M8SXdwcDCAu4EPCQlRuTRERERERESkhOzsbERGRko5oNpMk3TbLikPCQlh0k1ERERERGRwWrmtWP0L3ImIiIiISNeixy5XuwiF0nLZ6F/RY5cbtq2YdBMRERFplG0n1Kg7omQMtv6pxX6q5bLRv/K2jxHbikk3EclOKzuI3FnVNrYNaVXeuUPNPmr77qOT4lUrg1ao3RaF0UI/UVv+fqqlWGi5bGrQen89OinesPMdk26SaHkQGoEZ46ulnVUzxl7LdY4eu9ywG1Z3aKm9tL5T5ila2fmzleHopHjTtolWz4DxoMi/8vZTrdFy2dSgxf2i/PsERpzvmHRriJo7OUbr2EVRY4dSqzsMSrBNnFqY1Lmh1WZ/y1smI25YXaWl+cHsB6scUauP8sCUPa0cBMmPB0UK0kostFAGLck7p2hxLBkdk26NUHOny0w7WWoclc77nWab5NSqr5H7sDO0dOCjMGYbC8XRUnuZfaeMya625B8PTOi0RetxyD+WtdJ/tEILsTDLnMukW0PU3Oky005W3jp6Ks5miGth1NrAcUN7l9b6nlk2ru5SMzZmHB/O8vT8UdQ4MWM7aXXO0Gq5PM1RHNTe5ppxnLhKD/3XSO3IpFuD1DgLawaOjpZ7+jtt32vUuDOh0i4t9zkjj4niFFZvteLBg1Xaxvn1LrX7ZVHfzfGiHRwv/9LqgbyiymW09mPSrQGFdTi1zsKqvTFTkhp1Ndqk4Q5P9imzJ/6O6q+VeBh1XikpLbQX26Z4nprH2Bb6UNjZXbKn1vMQyDnss57DpFuj1DoLS/JhfElrtNAnuYF3nlq3GZmZVg7aaaEMWlBce2hhTqPCqdmPOYZcw4MjymPSbXKclO5SauAzvvaUnmCdWb/ZJnkb9kV9YXtpk9Jnu806P7lDzQd1cnze5Wx/VevXYgpj5Cs63cGDI57BpFvDlJwUONn8S4kBz/gW5KmJtajvMdPkrjXcUXWPpy5nZttoB9vCNdzeqqu4/qpGf+YYco/WDo4YDZNulam5s2OmScmZOMs9ARSX/BltwnG2L/NAknq03O+0XDalFDdmtDJHm7FtiqNEPJxdJ9vjX54eI4w76ZEz+2daPThipPmOSbcOqPVzS0bp5M7Qys6t0SkdZ7O3o1bPWJppLtEbrfYZLVMyXmwL7XMmeeGcZ8+TDyHkGCoZPixSOUy6NU6pS585KTkmx0TA+BZP7gnXrBO4u7Twu+nkHO7Aa5Pc7eLqujie/sWnyhPJw5PzihnnMCbdOsHJXnlmnADUoFSc2X7O4eWYZMO2sefOAVO5DtQCro1NM7SdFg9ga608anMlHp54CCHbRx58WKQymHTrgJyTiJk7u7NKEiNO+s6Tqy+yT7vHk3HjmCgZJXdW2TbukzN2bIeS4VPl1aGVuGilHEbgibnI1e8wyvzIpFtH5JpUjNJ5lVCS2HDSd57cfVBLR9v1gHOAPql5OTMVrqQHakkfOG+WnJYOIHJfoGhqPixSrs9pDZNunZBjsjdKp3WVJy8Z5EbZNSXtk2ynkvHE76a7ekDELLQQGzPFWym2GLozlty5rNxMtJJEmXXfqTglubJPKwcQOfYcK8m85uy6zYhJt4rUuH/MzJ3dWe5MNu60i5GOsrrTl+Xqi+6sxyhxLwktzgVmahc1d1bdHa9Gbx9326Qk24ySfKfR20NLZ8W0OF/qlRK3TGoh+dcqdw+OyN3nefslk25dKemlz2a9h8Id7jzQxszxcldJdhzNsLF0hbsbNCV/N52JXeHcPVDn7mdL8r1mIccZs+LWET12ObcZClIiUXC3HEYfayWJtZzx4ThSjlztJMcJQyOMJybdOuRqxzP7DlpJzyQUFQPuPN1V0vq726fNHveSYvz0R47nTrDdlZE38c677cj//6OT4mVpA7Zj4dR6qnxeRm8ftZMxnjl1jpq3p8p5kNEIbc2kW2dcPdPBnSxlzl7INZEYpV08cYYo/3cZJXZaIPfBNe4MKcudo/6crzzDllDb/vIn2vw1EuXJeT8qH66qHHfbybb/xfnIOXKcZXbmJFRh3yvXvGeE8cSkW0VK3z/G5EQehZ29kGMiMcIkIof8MXaER0yLppWzMXzuhGe4shMk17gx+nyl1MPq2KfdI8cBopKcoWO7Kc+VhE6JWzPYxs5zZj8t//uMrz0ftQtgZiWZ1PNOUo7WwQ4vL8ZRec5M6HK1gxF3qOSYT+RKyjz9/Ak9kuvy4sJ2cPKPITPEtCTM0u/0Qo72KG4/qbDvtX2WiiZnjBwl3o6u6OHDvdTlbOLNmDqm26R70qRJGDduHEaPHo2PPvpI7eKoorijg7xnjDxF7o0vqUOuHV0qnlw7e0XtBLEtjI3tW7yiDkzlx7OorpE7Yc1/0JAHQOSh1BU8nmaEfmARQgi1C+GqP/74A/369UNISAjuvfdep5Lu7OxshIaGIisrCyEhIcoX0gl6OMKmhzKS+thPjMHdnRzuHLmOY0Zb9Ngeeiyzs5SomzOXmst9z71R2wcwfv2Mwijt5E49tJb76e6e7qtXr2LQoEH48ssvUaZMGbWLUyJGGARap/V7ELVePiMzWuzlfGiQuw9LkYPR2sURve4EGblt9NgeRqbk/fVF/ZHzjBIvI89rpC26S7pHjhyJ+Ph4xMbGFrlcTk4OsrOz7f60RC+D3CiTqla58xRiLWI/MY7CHhyYHy//c59e42WU+coRPdZLr/3IGXpsj/zYPqQFRumHRqiHrpLuefPmYfv27UhOTi522eTkZISGhkp/kZGRHiih8eh9YjXCINU6vfYRI/UNJe6ty3vmJ28CLvcT/B19t9HpdcwA5mgfPdFzXzI6to0+GHlOM1IfNEJddJN0nzhxAqNHj8a3334Lf3//YpcfN24csrKypL8TJ054oJTO08sg1/uZDT2UXS99wWj00DecpWQfUuNSTCO1jdEYtW04D2uLEdpD7/tPRTFC+9gYtY2MxgjjSTdJ97Zt23Du3Dm0aNECPj4+8PHxQXp6Oj755BP4+PggNzfXbnk/Pz+EhITY/WmJnjqOkSZXLdJTX3CE/UN9eu9DZsMxoz16HUNG7Ut6bY/82D6kJqP1P73XRzdJd9euXbF7927s3LlT+mvVqhUGDRqEnTt3wtvbW+0iGpaeJ1e9D1A90Gv/YN/QLqO3jV7HDGD8ttEbPfclM2D7aJ+R5zSj9T+910c3SXdwcDAaNWpk91e6dGmUK1cOjRo1Urt4LjPyINcSPQxQ9gV16KFvOMtofchIbWM0Rm0bvY4hvZa7OEatl1EYqX2MOqcZkd77nW6SbqPR0yDXeyfXOj31BUfYP9Sn9z5kNhwz2qLn8aPnshfGSHUy6lhnG+mD0eqm936n66R77dq1+Oijj9QuhuHpuZPrYcLRQxmLotf+ofe452WkugDGq09+eh0zgDHbxoh1Im3Q81gvipHGjFHbCDB23fRI10m3nhlpwtIyPUw4eiijERkp7kaqC2C8+hiJEdtGz3Uy4r6EkepkpLrkpecxQ/ql9/HEpFslepqw9NrJ5f7tYnJMrzHWa7lJ//Tc9/RcdiPS076Es4xUJyPVxaiMPKcZrW56H09MulWgt2RQr51cLzHWSzkLo9f+Aei77HnpvQ/lZ7T65KX3Pqf38jti5P6mR2wP7TNaGxlxXgOMVy+99zsm3SrQe6fRCz1NNnoqa37sz+rTc/9xxGj1yUvv4+XopHjDtY+e66P3/uSIntsjP7aPPhixnQDj1UvvfY9Jtwr01mn0Omj1Wm490Vtfzs8IfURvV844w2j1yUvvYwYwXvvovT5G6FNGZcS20ft4ccSI7WTEOukdk25yih4Hr57KbMSNmB7oqY8Uxqh9xwhtY1RGaxu918doc4CR6mOkutjofbyQful9PDHpVoEeO40ey6wnet2I6b1f6L38gH77jlkZoc8ZoQ5GYrQ5gPUhTzPinGbEOgH6Hk9MulWgxw6jxzLracLRU1nz0mO/yEvv5Qf023eKY9R6GaHPGaEOeRm1r+kV20PbjNg+RpvTAGPWCdB3/2PSrQI9dxg90dOEo6ey5sW+rD699p3iGLVeHDPao/e+ZrQ+pff2yI/to31GayPAmHUC9N3/mHSrQI8dxqiDl0pGj305L/Zr7TJq2+h9zADGaxu918cIfcrGiA+GNFL7APofL44YrY0AY9ZJ75h0k1P0OHj1tGHQU1mNRI/9Oj+j9h0jtI1RGaltjFAXI80BRqqLjdHqZIQxYwZG63c2eq4Xk24V6LHD6LHMetow6KmseemxX+Sl9/ID+u07ZmWEPmeEOhiJkeYAI9XFxoh1MhojzmlG7Xd6rheTbhXoscPoscx6mkT1VNa89Ngv8tJ7+QH99p3iGLVeRuhzRqiDjRH6mRHqYGOkuhiVEdvISHOa0em5/zHpVoGeO4xe6G0C1Vt5bfTel49Oitdt7G30Xv7CGLVeeh8zRmOEfmaEOtgYqS42RhvzbCN9MGKdAH33PybdHqbXzmLUwasVek3+9Fjm/Ni3yVOMMF4AY40ZI9WFtMko497GqGPGaO1ktPoYAZNucoreBq8eNwp6K7NRnjKrt76dnxHawBGj1sso9D5ubIxQDyONFSPVxcZIdTLCeDELI/W7vPRcLybdHqbXzqK3M7F6KquN3sqs176cn57robc+4yqj1U/PfS0/I9XFCIwyVoxSj7yMWCcjMtKcZuQ+p+e6Men2MD13Fj1NSHoqq43eyqznvpyXUephRHobE8UxUl8zSl2M0sdYD+3S20mLohixfWyM0kZGp+c+yKSbnKanCUlPZbXRY5lJXXre+DjDaGPC6O2lR0bpY6yHthll7Bu1fQDjtBFgrLo4otd+yKTbw4w+EMg8jNKX9VwPvW54zMpI7aXncUPkaUYZ+0Ye90ZpI8BYdTESixBCqF0IT8jOzkZoaCiysrIQEhKiWjmM8vApIqP0ZaPUg7TPSH3NSHUhIucYedwbuW5mpZXcz4Znuslpejpypqey2uixzKQuo/cZo9WPO3TaYqT+ZZS6GKUe+Rm1XkZipPnZ6P1Nr/Vj0u1hRhrUZG5G6ctGqQdpn153FBwxwrgxQh2MhGcatc/I7WOk+Zm0iUm3h+l5UOtpstVTWW30VmY99+W89FwPvfUZVxm9fnqm53FjY4Q62BhhrBihDoUxSt2MNGaMzCj9rTB6rR+TbtydRAr7k/t79NpRAP1MtnopZ356Lbfe6fnnXPRabmcZrX56nv9J24wwVoxQh8IYuW5GYaT52ej9Ta/181G7AGrJ32CFDTbbckYajKRNtuRPL31NL+V0hpHqQkVzZmOtRH/Q09h2hhHqYoQ6EHmS0ceM0eZp0hbdPL08OTkZCxcuxF9//YWAgAC0b98ekydPRt26dZ36vO0JdpFj5sPLLxCA85MHE28ie0bbMBmtPkYiV9vkTbaLWp+zy7nz/UbrY3qvk97LT+RJZhgvZqijmfDp5W5KT0/HyJEjsWnTJqSmpuL27dvo1q0brl275tJ6MibE4eikeJcGlW35kl7OoNfLIWz0Un69lNMRPZedPMssfUXOhNuZuT/vMnLGmDtypDS9zwl6L39RjFw3IzHCPG2GvqbXOurm8vKVK1fa/T8lJQUVKlTAtm3b0KlTJ4+Vw8xHweS+/FmpM0qkPLZX0QrbIDBurivpnOPulUq2+U7OM+1Ga3+561PcjpTR4qd1at2KYURK3j7m7O2SVDwjztNGpLfbMW10k3Tnl5WVBQAoW7asw/dzcnKQk5Mj/T87O7vE3yn3TphZ5U+28z60jnHVB6ONAbkPJDlaH/u555U03pzzi6bEQdiinq8i9/gxWpvKfTtEceuUe2wYrT2UVFiinf8hwHLGlO3jPk8eiGc7aZdu7unOy2q14sEHH0RmZibWr1/vcJnx48djwoQJBV6X47p+M++AlaTuzmwImJTIR8lJ3mhjQI76ONt32cdd427byBlnOdZltDEDeHbcuLt8cesyUpuo0R7ufqaw9RipPZTi6rbGmWWd/V62j2uKagM+P6RknKkn7+mWwciRI5GRkYF58+YVusy4ceOQlZUl/Z04cULWMrhzP4Fe70HIq6QJd3H3VMpxL6We4yxH2fOfEcr7l/99kocrO518RoTnyH0GriQxN8NOkKvcSdbkut/eLDumrijJrRh5P0+OybV9B1zb1sj13WYgV5zyXgVS2H4v98tKRo/zt+6S7lGjRmHZsmVIS0tD1apVC13Oz88PISEhdn9y0WNDy8UTO53cSLivuIMb3AjLr6T3DFPRSnKWW+1y5GXEtlbjXvu8n+FBEPnIcStGSb+fbVK0vEmcK7jN9yxXxxL3y9yjx1jpJukWQmDUqFFYtGgR1qxZg+rVq6taHld3mM28QXFnYJg1ViXh6hHwvJ9xldHax90EWK7LjqlwWuqjPFBir6SxKEkblXQOM2I7lrTPy/F5LY1XIynpPiQPVHmG2gcT3f1u8gzdJN0jR47EnDlzMHfuXAQHB+PMmTM4c+YMbty4oXbRqAglTUpcnXz0fnDDk8kfE0V7apzh4dFt+XliDjDbvCQ3ufo7x489rRyAMOvtd0rRyngxQxuV5MCRHAfhzX6LpdHpJumePn06srKy0KVLF1SqVEn6+/7771UrE896OEety9X0ytV6l/TIKhOIu9SKg7uXTxuxDRxxpY96Yj42S9yd4e78YfusXGUg97E9PEftB0KWZD1m2+a4Ss52MkuczUg3SbcQwuFfYmKi2kUzFU/vAJvxwIYal+ObLcYlpUS8XFknN8qF81Rs2F7uUyIenMPc317K3R5m3G47Q0uX3rN9CqeFdirJVY9m2d7ocZ7RTdKtZXprdE8yy+BXi1wHNsh1cm9gXcE5R11sL/coFQfOYe5hv/Qsd54FpFQ5SD5KjiOOUWNh0l1CnLwck3Oi0OPRLE+Sqw8yxs7hBlabzHSEX8+UbCOOH9cp1R7cbsuD7aNtcl/+n1dJHsZG2sSkWyacvAri4FeW3Ac2yHla2cCSerjT6hqlY+XK+OEBGu6zaJ2n2of9oOS09OBOtqe2MemWQXEDzmwbeKV+I5eTSUFy9yvGuGieiA/bwHVmm2P1yhNtxPHjPKXbw9ntNsevY55oH3IfH9xJrmLSTYpQY6Iw04ZbqQMbanyvVji7g6hkHzNL/3WVlg+6abVcZsTx4xz2WW3zdPuwP7hPiw/uJO1i0i0jswyKonaAlY6BGWKsdvJX3Hdzx1Z5RbWBmQ4uOUPNOcHZA1VGbi9n5iujx0CPPNkeZthuy81T7cM5rCBn5zRPMVPs3aGn+YVJt0w4KP6l5IM/SNkJhjEunKd2PNgGrlM7Znra6Budlq+K8ASt1V/tsak1xbWPltqOiubpvs2+UZDe5hcm3TLLPyjMNEj44A/P0dKDO4jUooV+qreNvqeZ7SyZ1qnVHloYq3rh6fbR2oEaKohXJBgDk24ZFdbZzTQI+OAP/TN7jB3tfHh6h4Q7QY45ionZ+ys5VtQtUOwznsV4k5FwDiF3MelWgBl2lvMnBWo/+MOIk2BhyZ9aD+4wYozzK6p+Rq+71uWPv5bmWR4kcUytmHCsOqbFOVyLZVKLmrEobA7jvKYd3M7oH5NumdkmzOixy003OLT04A+9U7uOan+/lqg5js144MMVWo+FmdqrsHGiZv3Ntg3WMiYM+mWWOSyvog5CmDEeWqanuYVJtwLyDkijD041Dy7Yvlcvg62k1JjszRLb/PLXW41xbPS5wx22jatW+6VWy6U0R31V7ViYefw42glVuz3oX4W1jxb6LPuJtukpwdSCRkmr1C6CHSbdCjk6KV4TE6iSbHVUo655ryjI+3+jUfPAQv6rNowa4/y0VO+8G1huaO9Sa84pjtbKowVaiEn+26C0UCa1qF13tW9L0yqtxCH/fpVWyqUVWp4/2Fb6eJA1k27SLa3ufMtFCwcWjBrb4tjqrZX6G/3gkpGYeYdVa3XPP4eajdbawyZvecw8p2kxDlrY79ASPYwhGzO3Vf6TJbYDJBkT4lQumT2LEEKoXQhPyM7ORmhoKLKyshASEqJ2cYiIyIC0uCPtKVqtu1bLpTSt1psJ3V1ajoOWz+p6kpbHUN7ysL0c01rux6SbiIiIiIhIJ2yJtpYP3qhNa7kfLy8nIiIiIiLSESbc+uKjdgGIiIiIiIjIOUy09YdnuomIiIiIiIgUwqSbiIiIiIiISCGmubzc9ry47OxslUtCRERERERESrHlfFp5Zrhpku6LFy8CACIjI1UuCRERERERESnt4sWLCA0NVbsY5km6y5YtCwA4fvx4iQPfunVr/PHHHyUukxHXk52djcjISJw4caLEj+fXUr20VBajxlhr69FanLUUG7nWo7UYG3U9csVZS3XS2nrYl5VfB2PsmfUYNc5aKotRY6y19WRlZaFatWpSDqg20yTdXl53b18PDQ0tcQf39vaW5ffejLoeAAgJCTFUnLVUFhujxViL6wG0E2etxcaIMTbyeoCSx1lrddLaegD2ZaXLAjDGnlgPYLw4a6ksNkaLsRbXA/ybA6pNG6XQmZEjR3I9HqClemmpLHLSWr20th65GLEPGjHGRl6PHLRWJ62tRy5aq5eW5i+5aCk2WlyPXLRULy2VRU5aq5fW1qMlFqGVu8sVlp2djdDQUGRlZcl25IQKYpyVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznT7+fkhKSkJfn5+ahfF0Bhn5THGnsE4K48x9gzGWXmMsfIYY89gnJXHGHuG1uJsmjPdRERERERERJ5mmjPdRERERERERJ7GpJuIiIiIiIhIIUy6iYiIiIiIiBTCpJuIiIiIiIhIIaZJuqdNm4bo6Gj4+/sjJiYGW7ZsUbtImrBu3Tr06tULlStXhsViweLFi+3eF0LgzTffRKVKlRAQEIDY2FgcPHjQbplLly5h0KBBCAkJQVhYGB5//HFcvXrVbpldu3ahY8eO8Pf3R2RkJN57770CZVmwYAHq1asHf39/NG7cGD///LPs9VVDcnIyWrdujeDgYFSoUAEJCQnYv3+/3TI3b97EyJEjUa5cOQQFBeHhhx/G2bNn7ZY5fvw44uPjERgYiAoVKuCll17CnTt37JZZu3YtWrRoAT8/P9SqVQspKSkFymPUsTB9+nQ0adIEISEhCAkJQbt27bBixQrpfcZYfpMmTYLFYsGYMWOk1xjnkhs/fjwsFovdX7169aT3GWN5nDx5Eo899hjKlSuHgIAANG7cGFu3bpXe5/av5KKjowv0ZYvFIv0GL/tyyeXm5uKNN95A9erVERAQgJo1a+Ktt95C3ucksy+X3JUrVzBmzBhERUUhICAA7du3xx9//CG9zxi7Tk85iDNlKZYwgXnz5glfX1/x9ddfiz179ognnnhChIWFibNnz6pdNNX9/PPP4rXXXhMLFy4UAMSiRYvs3p80aZIIDQ0VixcvFn/++ad48MEHRfXq1cWNGzekZbp37y6aNm0qNm3aJH777TdRq1YtMXDgQOn9rKwsUbFiRTFo0CCRkZEhvvvuOxEQECC++OILaZkNGzYIb29v8d5774m9e/eK119/XZQqVUrs3r1b8RgoLS4uTsycOVNkZGSInTt3igceeEBUq1ZNXL16VVrm6aefFpGRkWL16tVi69atom3btqJ9+/bS+3fu3BGNGjUSsbGxYseOHeLnn38W5cuXF+PGjZOWOXz4sAgMDBTPP/+82Lt3r5g6darw9vYWK1eulJYx8lhYunSpWL58uThw4IDYv3+/ePXVV0WpUqVERkaGEIIxltuWLVtEdHS0aNKkiRg9erT0OuNccklJSaJhw4bi9OnT0t/58+el9xnjkrt06ZKIiooSiYmJYvPmzeLw4cNi1apV4tChQ9Iy3P6V3Llz5+z6cWpqqgAg0tLShBDsy3J45513RLly5cSyZcvEkSNHxIIFC0RQUJD4+OOPpWXYl0uuX79+okGDBiI9PV0cPHhQJCUliZCQEPHPP/8IIRhjd+gpB3GmLMUxRdLdpk0bMXLkSOn/ubm5onLlyiI5OVnFUmlP/g5vtVpFRESEeP/996XXMjMzhZ+fn/juu++EEELs3btXABB//PGHtMyKFSuExWIRJ0+eFEII8dlnn4kyZcqInJwcaZlXXnlF1K1bV/p/v379RHx8vF15YmJixFNPPSVrHbXg3LlzAoBIT08XQtyNaalSpcSCBQukZfbt2ycAiI0bNwoh7k5MXl5e4syZM9Iy06dPFyEhIVJcX375ZdGwYUO77+rfv7+Ii4uT/m+2sVCmTBnx1VdfMcYyu3Lliqhdu7ZITU0VnTt3lpJuxlkeSUlJomnTpg7fY4zl8corr4h77rmn0Pe5/VPG6NGjRc2aNYXVamVflkl8fLwYPny43WsPPfSQGDRokBCCfVkO169fF97e3mLZsmV2r7do0UK89tprjLEMtJyDOFMWZxj+8vJbt25h27ZtiI2NlV7z8vJCbGwsNm7cqGLJtO/IkSM4c+aMXexCQ0MRExMjxW7jxo0ICwtDq1atpGViY2Ph5eWFzZs3S8t06tQJvr6+0jJxcXHYv38/Ll++LC2T93tsyxixjbKysgAAZcuWBQBs27YNt2/ftqt/vXr1UK1aNbs4N27cGBUrVpSWiYuLQ3Z2Nvbs2SMtU1QMzTQWcnNzMW/ePFy7dg3t2rVjjGU2cuRIxMfHF4gF4yyfgwcPonLlyqhRowYGDRqE48ePA2CM5bJ06VK0atUKffv2RYUKFdC8eXN8+eWX0vvc/snv1q1bmDNnDoYPHw6LxcK+LJP27dtj9erVOHDgAADgzz//xPr169GjRw8A7MtyuHPnDnJzc+Hv72/3ekBAANavX88YK0BLMXWmLM4wfNJ94cIF5Obm2k3YAFCxYkWcOXNGpVLpgy0+RcXuzJkzqFChgt37Pj4+KFu2rN0yjtaR9zsKW8ZobWS1WjFmzBh06NABjRo1AnC37r6+vggLC7NbNn+c3Y1hdnY2bty4YYqxsHv3bgQFBcHPzw9PP/00Fi1ahAYNGjDGMpo3bx62b9+O5OTkAu8xzvKIiYlBSkoKVq5cienTp+PIkSPo2LEjrly5whjL5PDhw5g+fTpq166NVatW4ZlnnsFzzz2HWbNmAeD2TwmLFy9GZmYmEhMTAXC+kMvYsWMxYMAA1KtXD6VKlULz5s0xZswYDBo0CAD7shyCg4PRrl07vPXWWzh16hRyc3MxZ84cbNy4EadPn2aMFaClmDpTFmf4OL0kEZXYyJEjkZGRgfXr16tdFEOqW7cudu7ciaysLPzwww8YOnQo0tPT1S6WYZw4cQKjR49GampqgSP+JB/bGSoAaNKkCWJiYhAVFYX58+cjICBAxZIZh9VqRatWrfDuu+8CAJo3b46MjAx8/vnnGDp0qMqlM6b//e9/6NGjBypXrqx2UQxl/vz5+PbbbzF37lw0bNgQO3fuxJgxY1C5cmX2ZRnNnj0bw4cPR5UqVeDt7Y0WLVpg4MCB2LZtm9pFI50w/Jnu8uXLw9vbu8DTMM+ePYuIiAiVSqUPtvgUFbuIiAicO3fO7v07d+7g0qVLdss4Wkfe7yhsGSO10ahRo7Bs2TKkpaWhatWq0usRERG4desWMjMz7ZbPH2d3YxgSEoKAgABTjAVfX1/UqlULLVu2RHJyMpo2bYqPP/6YMZbJtm3bcO7cObRo0QI+Pj7w8fFBeno6PvnkE/j4+KBixYqMswLCwsJQp04dHDp0iH1ZJpUqVUKDBg3sXqtfv750GT+3f/I6duwYfv31V4wYMUJ6jX1ZHi+99JJ0trtx48YYPHgw/vvf/0pXI7Evy6NmzZpIT0/H1atXceLECWzZsgW3b99GjRo1GGMFaCmmzpTFGYZPun19fdGyZUusXr1aes1qtWL16tVo166diiXTvurVqyMiIsIudtnZ2di8ebMUu3bt2iEzM9PuSN+aNWtgtVoRExMjLbNu3Trcvn1bWiY1NRV169ZFmTJlpGXyfo9tGSO0kRACo0aNwqJFi7BmzRpUr17d7v2WLVuiVKlSdvXfv38/jh8/bhfn3bt3200uqampCAkJkXYci4uhGceC1WpFTk4OYyyTrl27Yvfu3di5c6f016pVKwwaNEj6N+Msv6tXr+Lvv/9GpUqV2Jdl0qFDhwI/3XjgwAFERUUB4PZPbjNnzkSFChUQHx8vvca+LI/r16/Dy8t+d97b2xtWqxUA+7LcSpcujUqVKuHy5ctYtWoVevfuzRgrQEsxdaYsTnH6kWs6Nm/ePOHn5ydSUlLE3r17xZNPPinCwsLsnoZpVleuXBE7duwQO3bsEADElClTxI4dO8SxY8eEEHcfkR8WFiaWLFkidu3aJXr37u3wcf3NmzcXmzdvFuvXrxe1a9e2e1x/ZmamqFixohg8eLDIyMgQ8+bNE4GBgQUe1+/j4yM++OADsW/fPpGUlKTbn0DI75lnnhGhoaFi7dq1dj+dcv36dWmZp59+WlSrVk2sWbNGbN26VbRr1060a9dOet/2syndunUTO3fuFCtXrhTh4eEOfzblpZdeEvv27RPTpk1z+LMpRh0LY8eOFenp6eLIkSNi165dYuzYscJisYhffvlFCMEYKyXv08uFYJzl8MILL4i1a9eKI0eOiA0bNojY2FhRvnx5ce7cOSEEYyyHLVu2CB8fH/HOO++IgwcPim+//VYEBgaKOXPmSMtw+yeP3NxcUa1aNfHKK68UeI99ueSGDh0qqlSpIv1k2MKFC0X58uXFyy+/LC3DvlxyK1euFCtWrBCHDx8Wv/zyi2jatKmIiYkRt27dEkIwxu7QUw7iTFmKY4qkWwghpk6dKqpVqyZ8fX1FmzZtxKZNm9QukiakpaUJAAX+hg4dKoS4+5j8N954Q1SsWFH4+fmJrl27iv3799ut4+LFi2LgwIEiKChIhISEiGHDhokrV67YLfPnn3+Ke+65R/j5+YkqVaqISZMmFSjL/PnzRZ06dYSvr69o2LChWL58uWL19iRH8QUgZs6cKS1z48YN8eyzz4oyZcqIwMBA0adPH3H69Gm79Rw9elT06NFDBAQEiPLly4sXXnhB3L59226ZtLQ00axZM+Hr6ytq1Khh9x02Rh0Lw4cPF1FRUcLX11eEh4eLrl27Sgm3EIyxUvIn3YxzyfXv319UqlRJ+Pr6iipVqoj+/fvb/X40YyyPn376STRq1Ej4+fmJevXqiRkzZti9z+2fPFatWiUAFIidEOzLcsjOzhajR48W1apVE/7+/qJGjRritddes/uJJPblkvv+++9FjRo1hK+vr4iIiBAjR44UmZmZ0vuMsev0lIM4U5biWIQQwvnz4kRERERERETkLMPf001ERERERESkFibdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRESkiqNHj8JisSAlJUV6bfz48bBYLOoVykV6Ky8ApKSkwGKx4OjRo2oXRaLHONokJiYiOjpa7WIQEZGGMekmIiJF2JI7R39jx451ej3vvvsuFi9erFxBiYiIiBTko3YBiIjI2CZOnIjq1avbvdaoUSNERUXhxo0bKFWqVJGff/fdd/HII48gISFBwVKax+DBgzFgwAD4+fmpXRTJ66+/7tKBGC358ssvYbVa1S4GERFpGJNuIiJSVI8ePdCqVSuH7/n7+3u4NHfdvHkTvr6+8PIy3wVf3t7e8Pb2VrsYdnx8fODjI88uiRACN2/eREBAgCzrK05xB42IiIjMt7dBRESa4Oie7vwsFguuXbuGWbNmSZemJyYmSu+fPHkSw4cPR8WKFeHn54eGDRvi66+/tlvH2rVrYbFYMG/ePLz++uuoUqUKAgMDkZ2dDQDYvHkzunfvjtDQUAQGBqJz587YsGFDgbKsX78erVu3hr+/P2rWrIkvvvjC6boePHgQDz/8MCIiIuDv74+qVatiwIAByMrKsltuzpw5aNmyJQICAlC2bFkMGDAAJ06csFumS5cuaNSoEXbt2oXOnTsjMDAQtWrVwg8//AAASE9PR0xMDAICAlC3bl38+uuvdp935Z5ui8WCUaNGYcGCBWjQoAECAgLQrl077N69GwDwxRdfoFatWvD390eXLl0KrPO3335D3759Ua1aNfj5+SEyMhL//e9/cePGDbvlHN3TfefOHbz11luoWbMm/Pz8EB0djVdffRU5OTl2y0VHR6Nnz55YtWoVWrVqhYCAgCLbxpkynTt3DuHh4ejSpQuEENLrhw4dQunSpdG/f3/pNUf3dM+bNw8tW7ZEcHAwQkJC0LhxY3z88ceFB5qIiAyNZ7qJiEhRWVlZuHDhgt1r5cuXd+qzs2fPxogRI9CmTRs8+eSTAICaNWsCAM6ePYu2bdtKiWF4eDhWrFiBxx9/HNnZ2RgzZozdut566y34+vrixRdfRE5ODnx9fbFmzRr06NEDLVu2RFJSEry8vDBz5kzcd999+O2339CmTRsAwO7du9GtWzeEh4dj/PjxuHPnDpKSklCxYsVi63Dr1i3ExcUhJycH//nPfxAREYGTJ09i2bJlyMzMRGhoKADgnXfewRtvvIF+/fphxIgROH/+PKZOnYpOnTphx44dCAsLk9Z5+fJl9OzZEwMGDEDfvn0xffp0DBgwAN9++y3GjBmDp59+Go8++ijef/99PPLIIzhx4gSCg4Odinl+v/32G5YuXYqRI0cCAJKTk9GzZ0+8/PLL+Oyzz/Dss8/i8uXLeO+99zB8+HCsWbNG+uyCBQtw/fp1PPPMMyhXrhy2bNmCqVOn4p9//sGCBQuK/N4RI0Zg1qxZeOSRR/DCCy9g8+bNSE5Oxr59+7Bo0SK7Zffv34+BAwfiqaeewhNPPIG6desWul5nylShQgVMnz4dffv2xdSpU/Hcc8/BarUiMTERwcHB+Oyzzwpdf2pqKgYOHIiuXbti8uTJAIB9+/Zhw4YNGD16dNHBJiIiYxJEREQKmDlzpgDg8E8IIY4cOSIAiJkzZ0qfSUpKEvk3TaVLlxZDhw4tsP7HH39cVKpUSVy4cMHu9QEDBojQ0FBx/fp1IYQQaWlpAoCoUaOG9JoQQlitVlG7dm0RFxcnrFar9Pr169dF9erVxf333y+9lpCQIPz9/cWxY8ek1/bu3Su8vb0LlDe/HTt2CABiwYIFhS5z9OhR4e3tLd555x2713fv3i18fHzsXu/cubMAIObOnSu99tdffwkAwsvLS2zatEl6fdWqVQVibGuXI0eOFFluIYQAIPz8/OyW/eKLLwQAERERIbKzs6XXx40bV2C9eeNtk5ycLCwWi10s87f7zp07BQAxYsQIu8+++OKLAoBYs2aN9FpUVJQAIFauXFlsfVwpkxBCDBw4UAQGBooDBw6I999/XwAQixcvtltm6NChIioqSvr/6NGjRUhIiLhz545T5SEiIuPj5eVERKSoadOmITU11e6vpIQQ+PHHH9GrVy8IIXDhwgXpLy4uDllZWdi+fbvdZ4YOHWp3n+/OnTtx8OBBPProo7h48aL0+WvXrqFr165Yt24drFYrcnNzsWrVKiQkJKBatWrS5+vXr4+4uLhiy2o7k71q1Spcv37d4TILFy6E1WpFv3797OoSERGB2rVrIy0tzW75oKAgDBgwQPp/3bp1ERYWhvr16yMmJkZ63fbvw4cPF1vOwnTt2tXu8mnbOh9++GG7s+eOvitvvK9du4YLFy6gffv2EEJgx44dhX7nzz//DAB4/vnn7V5/4YUXAADLly+3e7169epOtYWrZfr0008RGhqKRx55BG+88QYGDx6M3r17F7n+sLAwXLt2TZZ+TkRExsDLy4mISFFt2rQp9EFq7jp//jwyMzMxY8YMzJgxw+Ey586ds/t//ieoHzx4EMDdZLwwWVlZyMnJwY0bN1C7du0C79etW1dKEAtTvXp1PP/885gyZQq+/fZbdOzYEQ8++CAee+wxKSE/ePAghBAOvwMo+LCuqlWrFrgHOjQ0FJGRkQVeA+5ejl5UHfPez+zr64uyZctK/897oCHvOp35ruPHj+PNN9/E0qVLC5Qh//3seR07dgxeXl6oVauW3esREREICwvDsWPH7F7P37ZFcaVMZcuWxSeffIK+ffuiYsWK+OSTT4pd/7PPPov58+ejR48eqFKlCrp164Z+/fqhe/fuTpeRiIiMhUk3ERHpju0nmh577LFCk+YmTZrY/T//06xt63j//ffRrFkzh+sICgoq8OAud3z44YdITEzEkiVL8Msvv+C5555DcnIyNm3ahKpVq8JqtcJisWDFihUOnyweFBRk9//Cnj5e2Osiz8PA8hs9ejRmzZol/b9z585Yu3Ztib8rNzcX999/Py5duoRXXnkF9erVQ+nSpXHy5EkkJiY69TNb+Q8sFMbZJ5W7U6ZVq1YBuHsw4Z9//rG7t96RChUqYOfOnVi1ahVWrFiBFStWYObMmRgyZIhdnImIyDyYdBMRkaY5SrzCw8MRHByM3NxcxMbGurVe2wPZQkJCilxHeHg4AgICpDPjee3fv9/p72vcuDEaN26M119/Hb///js6dOiAzz//HG+//TZq1qwJIQSqV6+OOnXquF6ZEnj55Zfx2GOPSf8vU6aMLOvdvXs3Dhw4gFmzZmHIkCHS685cdh0VFQWr1YqDBw+ifv360utnz55FZmYmoqKiPFKmlStX4quvvsLLL7+Mb7/9FkOHDsXmzZuL/XkzX19f9OrVC7169YLVasWzzz6LL774Am+88UaBs/dERGR8vKebiIg0rXTp0sjMzLR7zdvbGw8//DB+/PFHZGRkFPjM+fPni11vy5YtUbNmTXzwwQe4evVqoevw9vZGXFwcFi9ejOPHj0vv79u3TzoLWpTs7GzcuXPH7rXGjRvDy8tLOov+0EMPwdvbGxMmTChwVloIgYsXLxb7Pe5q0KABYmNjpb+WLVvKsl7bmfC89RFCOPXTWQ888AAA4KOPPrJ7fcqUKQCA+Ph4xcuUmZkpPTn/3XffxVdffYXt27fj3XffLfI78reVl5eXdNWFHFdNEBGR/vBMNxERaVrLli3x66+/YsqUKahcuTKqV6+OmJgYTJo0CWlpaYiJicETTzyBBg0a4NKlS9i+fTt+/fVXXLp0qcj1enl54auvvkKPHj3QsGFDDBs2DFWqVMHJkyeRlpaGkJAQ/PTTTwCACRMmYOXKlejYsSOeffZZ3LlzB1OnTkXDhg2xa9euIr9nzZo1GDVqFPr27Ys6dergzp07mD17tnTgALh71v3tt9/GuHHjcPToUSQkJCA4OBhHjhzBokWL8OSTT+LFF1+UJ6AeUq9ePdSsWRMvvvgiTp48iZCQEPz4449F3l9u07RpUwwdOhQzZsxAZmYmOnfujC1btmDWrFlISEjAvffeq3iZRo8ejYsXL+LXX3+Ft7c3unfvjhEjRuDtt99G79690bRpU4ffMWLECFy6dAn33XcfqlatimPHjmHq1Klo1qyZ3Vl7IiIyDybdRESkaVOmTMGTTz6J119/HTdu3MDQoUMRExODihUrYsuWLZg4cSIWLlyIzz77DOXKlUPDhg2l30cuTpcuXbBx40a89dZb+PTTT3H16lVEREQgJiYGTz31lLRckyZNsGrVKjz//PN48803UbVqVUyYMAGnT58uNulu2rQp4uLi8NNPP+HkyZMIDAxE06ZNsWLFCrRt21ZabuzYsahTpw7+7//+DxMmTABw92Fl3bp1w4MPPuhG5NRVqlQp/PTTT9L96/7+/ujTpw9GjRpVaMKa11dffYUaNWogJSUFixYtQkREBMaNG4ekpCTFy7R06VJ88803+PDDD1GvXj3p9SlTpiA1NRVDhw7FH3/8UeABd8Dd5wzMmDEDn332GTIzMxEREYH+/ftj/Pjx8PLiBYZERGZkEUU9XYWIiIhIYW+88QaSk5MLXIZPRERkBDzkSkRERKo6ffo0ypcvr3YxiIiIFMHLy4mIiEgVhw8fxqJFi7BgwQL07NlT7eIQEREpgme6iYiISBXr1q3DhAkT0LlzZ+nJ5EREREbDe7qJiIiIiIiIFMIz3UREREREREQKYdJNREREREREpBDTPEjNarXi1KlTCA4OhsViUbs4REREREREpAAhBK5cuYLKlSvDy0v988ymSbpPnTqFyMhItYtBREREREREHnDixAlUrVpV7WKYJ+kODg4GcDfwISEhKpeGiIiIiIiIlJCdnY3IyEgpB1SbaZJu2yXlISEhTLqJiIiIiIgMTiu3Fat/gTsRERERERGRQZnmTDe5Lnrs8gKvHZ0Ur0JJiIiIiIiI9IlJNzlkS7jzJtnRY5cjeuxyJt4yy3twg7ElIiIiIjIWly4vT05ORuvWrREcHIwKFSogISEB+/fvL/IzCxcuRKtWrRAWFobSpUujWbNmmD17tt0yZ8+eRWJiIipXrozAwEB0794dBw8etFvm77//Rp8+fRAeHo6QkBD069cPZ8+edaX45KL8CaDt/47OgJPrbAcxAPvYMr5ERERERMbhUtKdnp6OkSNHYtOmTUhNTcXt27fRrVs3XLt2rdDPlC1bFq+99ho2btyIXbt2YdiwYRg2bBhWrVoF4O5vqCUkJODw4cNYsmQJduzYgaioKMTGxkrrvXbtGrp16waLxYI1a9Zgw4YNuHXrFnr16gWr1VqC6pMjRZ3NZuItj7zJti2mef/N+CrHdmCDBziIiIiIyBMsQgjh7ofPnz+PChUqID09HZ06dXL6cy1atEB8fDzeeustHDhwAHXr1kVGRgYaNmwIALBarYiIiMC7776LESNG4JdffkGPHj1w+fJl6cnjWVlZKFOmDH755RfExsYW+53Z2dkIDQ1FVlYWn15eBEeXlRe2HC+Fdl9x8WN8leHoygIbxlt9fI4EERERyUFruV+J7unOysoCcPdstjOEEFizZg3279+PyZMnAwBycnIAAP7+/tJyXl5e8PPzw/r16zFixAjk5OTAYrHAz89PWsbf3x9eXl5Yv369U0k3Oc+Zndyjk+KZGLrJmbOrjK/8HB1Qyn9ZP+OtnqKeI5H/dVJHYXMX20YdbA/t4gFEIsrP7Z8Ms1qtGDNmDDp06IBGjRoVuWxWVhaCgoLg6+uL+Ph4TJ06Fffffz8AoF69eqhWrRrGjRuHy5cv49atW5g8eTL++ecfnD59GgDQtm1blC5dGq+88gquX7+Oa9eu4cUXX0Rubq60TH45OTnIzs62+6OiuXOpLS/PdY2rCQTjK4/i4s7L+tVVWPvwlgvtyH9LDNtGXWwP7SqsbXhLE5G5uZ10jxw5EhkZGZg3b16xywYHB2Pnzp34448/8M477+D555/H2rVrAQClSpXCwoULceDAAZQtWxaBgYFIS0tDjx494OV1t3jh4eFYsGABfvrpJwQFBSE0NBSZmZlo0aKFtEx+ycnJCA0Nlf4iIyPdraqpuHIklkdt3eNs3BhfeTh7oIM7rOpwpn3YNuoqqo3yJhTkGcW1R95lyLPYNkTKMMLzeNy6p3vUqFFYsmQJ1q1bh+rVq7v8pSNGjMCJEyekh6nZZGVl4datWwgPD0dMTAxatWqFadOm2S1z4cIF+Pj4ICwsDBEREXjhhRfw0ksvFfiOnJwc6dJ14O51/ZGRkZq5rl9r3L2Ek5d+Os+dWDG+JefqZeOMuee4c+UH28WzXGkjto/yXHnuijPLkXyc7f9sG23g7Rn64OjZO84+j0dr93S7dKZbCIFRo0Zh0aJFWLNmjVsJN3D30vS8CbFNaGgowsPDcfDgQWzduhW9e/cusEz58uURFhaGNWvW4Ny5c3jwwQcdfoefnx9CQkLs/qho7kw0nJxc42q8GN+ScScJYMw9o6QH+shz3DloRfJzZczwrKpnubKtYduoK/+zQngbgHY5+qWf/P/XU1u5lHSPHDkSc+bMwdy5cxEcHIwzZ87gzJkzuHHjhrTMkCFDMG7cOOn/ycnJSE1NxeHDh7Fv3z58+OGHmD17Nh577DFpmQULFmDt2rXSz4bdf//9SEhIQLdu3aRlZs6ciU2bNuHvv//GnDlz0LdvX/z3v/9F3bp1S1J/gjwdVk+dXg0liQ8v3XRPSWPGmCuPB0S0zdWDVnrcCdILdw5SsT08w534sm3UUVgSlxfbRhuMeOuZS0n39OnTkZWVhS5duqBSpUrS3/fffy8tc/z4cbuHm127dg3PPvssGjZsiA4dOuDHH3/EnDlzMGLECGmZ06dPY/DgwahXrx6ee+45DB48GN99953dd+/fvx8JCQmoX78+Jk6ciNdeew0ffPCBu/WmfEqyM8sdYecwTp7nbszZVsriQSjtczfGHDvK4dVo2lOSS8XZNurglSLaZ9Srekr0O916orXr+rVCrnuLeI9S4eSMMePrHMZc20oaV843yitJG7F95MXxol1ybCO4nfEMd+LMtvE8OZ8xpbXcz+2nl5NxyDGhcFIqGuPjeXLFXA9HT/VEjp0YjidllbSN2D7ykWP+YXsoQ86EjNsZZZXkyh22jeeV5MoRLbcXk24iBck5+Dn5O0fumJN85O6/HA/ykyumnK/kI9eBcbaHfLid0Q85rvTg2PGMksZZ64k3k24Tk7tTcqPuGDeonid3zNmv5SNX23BcKUfO2HLsuE+J2LE95MPtjH7wyh3tk+s2mLyJd6OkVcUs7VlMuk2Ok4m+8MBG0ZSIDceIPJTqtxwP8lHiQCy5R4n7sNke8lByO8P5TF68ckdf5Dwor8X5jkm3SSk5eXBiuosP4FCHUjFnvy45uduG40t+SsSUY8c9nMu0S4m24XwmLyUOXHHsKEOpuGZMiFNkve5i0m1i3GjoFyf+gpSMCft1ySjdXzkeSk6pGHLsuI5zmXZ54mA65zP58EoR7TPTrysw6SZFmH2jwZ0mdXBnSLuUahuOB/koGUuOHddwLtMeT8SM85k8eDWnvpil3zPpNiGlJwyzDJ7icKfJc7gzpF2e6qccD+7jNkE7OJdpm6dix/ms5JS8mpPtIw+zxZFJt0lxo6sc7jSpgztD2qV023A8lJwnYsix4xzOZdrjyVhxPisZpW8BYPvIy0zxZNJtMp7acJj9SY/cafIc7gxpl6fbhuPBdZ7cJlDROJdpmydjxvnMPZ6MGdunZMwYPybdJsSNrTGwHf/l6ViYcWPhLvZT7fNkG3HsFI2JnfaoGSO2j+s8MYa4XSsZMz08LS8m3aQos20w+DNhnqVG/2L7OkettjHbnFMSno4Vx07hmNhpmxp9l+PFNWr0Y44d95mxfzPpNhHuYBkPkwz1+pnZ4+4Mto32qdFGbB/HmNhpjxYOpHO8OM/TV4qQ68zcn5l0mwx3sJRjlnoSN7bFUXNHlW3jHLXmK7ZPQUzstEkLMVG7X+iFmvOZFvqJ3pi1XzPpNgnuYHmGWmcqzDjpc0eVisK2KZ6aB0bYPtqh9jyqZVqJDcdL8dRsK7aPc8weJybdJsIJiUg+WtkZ0xotHAxR+/u1jvOxdmhhvNiwX/xLS7Hgb0MXTe0xpJXxqxdmjheTblKcGQaY2pO+rQxmoYV425gp7sXRWiy0Vh4tUXv88Gy3tqjdH7RISzHRUlm0REtziJbKokVa2m9TC5NuE+BEYHxmn8jUwrgXpJWYaKUcWqO17YHWyuNJWtsJ5YGQu7QcAy2XTS1aGENaKIOWsd/eZbqku1HSKrWLoAq1JwQjb8y1VC8tlUUpWttRBcwR9+JoMQZGnndKQivjRyvlUIOW+6WWy+YpWuybWiyTmrTWT7m9KRr7rwmTbkB7A1VJZqqrmrQwmWihDGbEuP9Lq7HgPHiXVuOg1XIpTYvjRYtl8iQtHtTNi4mdPS22FdvHHuPxL9Ml3RkT4gCYqxNoaVIyU9zVYuQYa3mHyMhxL46W667V/qIWrcVDa+XxBC2PFxs9lFFueqqznsqqBK3uC2ixTGqy9VPG5S6Xku7k5GS0bt0awcHBqFChAhISErB///4iP7Nw4UK0atUKYWFhKF26NJo1a4bZs2fbLXP27FkkJiaicuXKCAwMRPfu3XHw4EG7Zc6cOYPBgwcjIiICpUuXRosWLfDjjz+6UnwJnwSpDiMOOq1N/Foqi5kw7tqPgdnne63XX+vlk5uWx4uWy6Y0PdRdD2VUkh7mCj2U0VPM3l/zcinpTk9Px8iRI7Fp0yakpqbi9u3b6NatG65du1boZ8qWLYvXXnsNGzduxK5duzBs2DAMGzYMq1bdvbdaCIGEhAQcPnwYS5YswY4dOxAVFYXY2Fi79Q4ZMgT79+/H0qVLsXv3bjz00EPo168fduzY4VbFzZB4ay0htDFyzLXCiDHWan/Oy4hxL44e2kXr5fMUrcZBq+VSgp7mCD2VtaT0WFc9llkuWp4zzJBfOMPs9XfEpaR75cqVSExMRMOGDdG0aVOkpKTg+PHj2LZtW6Gf6dKlC/r06YP69eujZs2aGD16NJo0aYL169cDAA4ePIhNmzZh+vTpaN26NerWrYvp06fjxo0b+O6776T1/P777/jPf/6DNm3aoEaNGnj99dcRFhZW5HcXR8uD1qiMFHOtTihGirGemDHuWh0Djpj5Xkg91NtM7aOHuUIPZZSbnups1sROL/XVU19SAi8rd6xE93RnZWUBuHs22xlCCKxevRr79+9Hp06dAAA5OTkAAH9//38L5eUFPz8/KTEHgPbt2+P777/HpUuXYLVaMW/ePNy8eRNdunRx+F05OTnIzs62+yuMXgaxK7R+9skoMWeMPUPr/TkvI8XdGXppFxuztY+NXtrJyO2jt7qZ5UCInrYveemxzCWhx0TODOOnMHpqJ09xO+m2Wq0YM2YMOnTogEaNGhW5bFZWFoKCguDr64v4+HhMnToV999/PwCgXr16qFatGsaNG4fLly/j1q1bmDx5Mv755x+cPn1aWsf8+fNx+/ZtlCtXDn5+fnjqqaewaNEi1KpVy+F3JicnIzQ0VPqLjIx0uBw7hecZIeZan0iNEGM9MlPctT4GHDFT+9joKaHQSzlLQo911ONYd5YR6maEOjhLT+NHT2WVk5n6o6vcTrpHjhyJjIwMzJs3r9hlg4ODsXPnTvzxxx9455138Pzzz2Pt2rUAgFKlSmHhwoU4cOAAypYti8DAQKSlpaFHjx7w8vq3eG+88QYyMzPx66+/YuvWrXj++efRr18/7N692+F3jhs3DllZWdLfiRMnCi2f0Y7m6qUueilnYfQwoeo9xoC+kgbAePNJUfTULjZmah+9MmL76G0es9FjmV2l5zqa5TJzvdbPbNsbPV6N4EluJd2jRo3CsmXLkJaWhqpVqxb/JV5eqFWrFpo1a4YXXngBjzzyCJKTk6X3W7ZsiZ07dyIzMxOnT5/GypUrcfHiRdSoUQMA8Pfff+PTTz/F119/ja5du6Jp06ZISkpCq1atMG3aNIff6efnh5CQELu/4hhpYGi9w2u9fEbAGJNS9JpA5GWk+b4wemwnvZXXLIw4XoxSJ7OMGT3X0yh9zRl6bieluZR0CyEwatQoLFq0CGvWrEH16tXd+lKr1Srdy51XaGgowsPDcfDgQWzduhW9e/cGAFy/fv1uYb3si+vt7Q2r1epWGfIzSicx08BWi952ZPXcJ/QWaxsjH902Qr302Kdcped2Mtr40es8ZqPnshfGiGfkjDRm8uL40Qej9j85uZR0jxw5EnPmzMHcuXMRHByMM2fO4MyZM7hx44a0zJAhQzBu3Djp/8nJyUhNTcXhw4exb9//Y+++w6Oo9j6Af3c3W9J7hRASQpEOQWJAypXQFbAhilLsFJUXG9gAGwqoKAK2K3gvKgICehHpBEWa9CoESOhJIKS3TXbP+8eyQzabhJTt+X6eZ59kZ86eOXPOmdn9zZlyAh999BH++9//4tFHH5XSLF++HElJSdJjw/r27Ythw4ahX79+AAzXfcfGxuKZZ57Bnj17cObMGXz00UfYuHEjhg0bVs8qMOUKncZZNnBX+2HliJylL7gqV+3frtCvGsL+x9nbyRXaxxXWAXDN7cXZt4/yXPU0c1dZH1fcfspzxYNY1lCroHvhwoXIyclB7969ER4eLr1++uknKc358+dNboBWUFCA8ePHo02bNujevTt+/vlnLFmyBE8++aSU5sqVK3jsscfQqlUrPP/883jsscdMHhemVCqxdu1aBAcH45577kH79u3xn//8B9999x0GDRpUn/U34eydxZU3aEfhrHXsjOXm0W3H4+xtUhln3DZuxRXWyZX6mSutiyv0LVdYh8q4Uj8rz5XWy1X7HuBa7WQttT69vLLXmDFjpDRJSUlYvHix9P7dd99FcnIyioqKcP36dezYsQMPPfSQSb7PP/88Lly4AK1Wi3PnzuGdd96BSqUySdO8eXP8/PPPSE9PR0FBAQ4dOoTHHnus9mtcA868UThbp3fGo3/OWMdkP87Wv6viKutRnitvG66ybs7c75y57JVxlT4FuNa6VOQq/c5V1sPIVfucq7WTNdXrOd2uyFU3Cqo/Z9+xOFP5XWVE1RXWoTxXWx/AOQ/8VcdVth3ANfqbK6xDRc68vbjS9lEZVzvN3BXbylXaBuBp5bXFoLsKzrZROPsXibPUt7PWsbOW21U4S/+uirOXvyZcYR1dYR0q44zr5Yxlrgln/i5x1TapyJnbyMjZf9NWxdUOigCu0d9shUF3JdiBbIv1bTvOsKN3tS9bZ1+XhnAk25XWzZXWBXDu9XHmst+KM3yXVMaV26QiZ20jZy13TblKH3S132q2wKC7Cs50yqGzlPNWHHk9XGHn4uzld3aO3L9vpSH0HWfa51fGmcteE860fq7wfVEdZ1w3V2+Tipx9XZ29/DXhTPu0ipy57PbEoNtFOPsOytnL70wceWfpqj+MnHWdHLmvWIszr7Oz9rNbcdX1cmbOdJDKWcppac7URkbOVt66coV9miusg60x6K6GM+ywHL18teWI6+OIZaor7iTtxxn2J+U1hNPKK3LWdXWmflVXzrL9uOqBw6o4Q5sAzrttW4KztJFRQ2krZ9mnVeSMZXYUDLprwNE7mKvsoBx5PRy5bHXhiH3aEctkDc60nq7W72vCWX8INZS2cuS2ceSyWYMz9LmG1iYVOUMbGTXUtnKm9W6IB+MtiUH3LbBj2Z4j7YAcqSyW4sh92pHLZgnOsn6u2O9ry1nqoCGNrDrDejpDGS3N0beVhtgmFTl6GzXUYM4Z19cZy+woGHTXkCPusFzxx5Yjro8jlskSHKlPO1JZbMEZ1tdV+31NOMu6O0M/sgZHXG9HLJMtOPK24oq/kerCWR5T1ZDbytHbBnCOMjo6Bt010JB3BPbCjdu6HLFPO2KZrMHR15M/VA2c5TTzhtZWjry+jlw2a3LEbcXRymNvjtw3G3pbOXLbVORMZXVEDLprwZF2DI5UFktzlI26IQQfjtCPHKEM9uCI6+2IZbI3R60TRy2XrTjS+jtSWezJ0erB1b+/68LR2sioobeVIx64Kq8h/B62BQbdNeSInc0Ry0TOw5H6jyOVxRYceX0duWy25uh14ejlsxZHXG9HLJMtOdL6O3LwYk+O1EZGbCtTjlgfjlgmZ8Wgu5YcofM5Qhmszd5H/RpCHTuChl7PjrT+jlQWR+NodeNo5bEXR6gHRyiDI3GU+nDEANNROEobGbGtDBy5Hhy5bM6EQXctOFKnc6SyuKqGUMf2PrhhLEND5Ijr7YhlsjdHrRNHLZetONL6O1JZ7MkR6oGnwVbPkerG3r89HJUj1YsjlcUVMOiuA3ZC23CEgJCsh21r4Aj14AhlcGSOtC9ylHI4Cp4R5XjsVS9sj5pxpP2ZIx0EcASOVB8N9TFu1sSgu5bs3fl4FNf6Glod2/MLuCHVc2Ucaf0dqSyOij9UHYsj1IMjlMGR2Ls+7L18Z8IDVo7LUeqH25NlMegmh+coOx8ia+GPH8fnCD8+2Fbm7HXQkG1RPVvXD9ujdhxhf+YIZXBEjlAv3J6sg0F3HfBL3nZsvfNpiHVsZMt1b2hnE1THEerBEcrgLOy9j2BbOQ62ReXsVS9sj9qz129ZtlX1HOESALaR5THodjINdSOw5c6nIdZxQ1xnR8MDeY7PntsJ26pqtv6Byra4NVu2CdujbuyxP2Nb1Q5/F7gWBt115AhHoRoKBoS2Y4s+ze3GnD37OLev2uM9EIht4VjYHnVn6/0Z26pm+LvA9dQq6J45cyZuv/12eHt7IyQkBMOGDcPJkyer/czKlSvRpUsX+Pn5wdPTEx07dsR///tfkzTp6ekYM2YMIiIi4OHhgQEDBiA5OVman5qaCplMVulr+fLltVkFp8XTcayvoQeDtuxf7MuV4yn+jo+jQ47JVgfC2RY1Z4s2YXvUjy33Z2yruuHvAtdRq6B727ZtmDBhAnbt2oWNGzeitLQU/fr1Q0FBQZWfCQgIwOuvv46dO3fi8OHDGDt2LMaOHYv169cDAIQQGDZsGM6ePYtffvkFBw4cQFRUFBITE6V8IyMjceXKFZPXjBkz4OXlhYEDB9Zj9euPOxHbsUVdc2dj3Xrm9lI19j3nYY8zndg/HAfbonasva2wPerHlvsztlXt8KCIa6lV0L1u3TqMGTMGbdq0QYcOHbB48WKcP38e+/btq/IzvXv3xr333ovbbrsNzZo1wwsvvID27dtj+/btAIDk5GTs2rULCxcuxO23346WLVti4cKFKCoqwo8//ggAUCgUCAsLM3mtWrUKw4cPh5eXVz1Wv35stTFwQ7B+XbOODWzRp/mlWz1bjdaxHeqPI6uOxdrBA9ui9qy5n+F+zLK47TguHhRxDfW6pjsnJweAYTS7JoQQ2Lx5M06ePImePXsCAEpKSgAAGo3mZqHkcqjVaikwr2jfvn04ePAgnnjiifoU32I4Ams71qxr1rF18Uv31tgHnQcvx3Bc/J5wPJZuE36fWBYPuDsuW9QbtyfbqHPQrdfrMWnSJHTv3h1t27atNm1OTg68vLygUqkwePBgzJs3D3379gUAtGrVCk2aNMHUqVORlZUFrVaLDz/8EBcvXsSVK1cqze/f//43brvtNnTr1q3KZZaUlCA3N9fkZQ3cidgO69o2rDlaxDasGWuPOLAdLIdt5VisVV/8UVp31moTbhuWZ41+zv1Y/dniEgC2kfXVOeieMGECjh49iqVLl94yrbe3Nw4ePIi///4b7733HiZPnoykpCQAgFKpxMqVK3Hq1CkEBATAw8MDW7duxcCBAyGXmxevqKgIP/zwwy1HuWfOnAlfX1/pFRkZWaf1tDfurKyPP6bIkVj7dEyyHO6bHZc1+jrbu34s1Sbcj1mHNfo328qyrHVQhGyjTkH3xIkTsWbNGmzduhWNGze+9ULkcsTGxqJjx4548cUX8cADD2DmzJnS/Li4OBw8eBDZ2dm4cuUK1q1bh8zMTMTExJjltWLFChQWFmLUqFHVLnPq1KnIycmRXhcuXKj9itYQHx9mO9aqa/6YMmXpeubBo9rj2QbOg6NDjsXS9cbv9/oztoml6pLbhvVYur+zrSzDmgdF2Ea2UaugWwiBiRMnYtWqVdiyZQuio6PrtFC9Xi9dy12er68vgoODkZycjL1792Lo0KFmaf79739jyJAhCA4OrnYZarUaPj4+Ji9nwy9662MdkyPiiIPz4I8Vx2XJPs92rj9L1CEPRlmXJQ+O8DvHOnhQxHnVKuieMGEClixZgh9++AHe3t5IS0tDWloaioqKpDSjRo3C1KlTpfczZ87Exo0bcfbsWZw4cQIfffQR/vvf/+LRRx+V0ixfvhxJSUnSY8P69u2LYcOGoV+/fibLP336NP744w88+eSTdV1fq+IIrO3wx5Rt8IvXfqxxVgf7uvXwzBDHYqn64/7L8upap2wL27Dkvof7McuyZH1ye7K9WgXdCxcuRE5ODnr37o3w8HDp9dNPP0lpzp8/b3IDtIKCAowfPx5t2rRB9+7d8fPPP2PJkiUmgfOVK1fw2GOPoVWrVnj++efx2GOPSY8LK+/bb79F48aNzYJxR8Adi+2wrm2DX7yug1+u1sUfQo7LEvXJ/Zfl1HcklW1hO/XZdnjg0Lp4mYZzkgkhhL0LYQu5ubnw9fVFTk6O1U41t+S1EdxhVc8Sdc06vrX61jOvF6o/S/RT9nXbYFs5nvrUJ9vCempbt2wL26vr9ze/963PEr/NGkL72CL2q416PaebTDWEDuwoWNe2YYl6ZlvVX31HHMh22FaOpa6XabAtrKs27cK2sI+6fHcz4LaN+g44kX0w6LaC+nZobhA1x2vDbIM/Wu3HEl+u/AFkGzxI5bjqsj9iW1jfrdqF+zD7qsvBEbaVbdTlgCLbyL4YdFuYpToyN4hbq28dsY5rpj71xDq2HF4D6Tx4kMqx1PY6YraFbaR+MFgKHCrWeflp3IfZHw+OOK7a7q/YRvbDoNvB8Mu+9up6pI9qrrZHVBvK9UK2UpebD7Gf20d92orbjPXUtG7ZFrZXfpupGGyzHeyvuoMjALcZe6rN9w1/l9kfb6RmJXXt3Nwoao83ZLGNmn6x8gvYetgGzqOm+xm2lW1V1y5sC6LqVRXccZuxr+r2XQ15v+ZoN1Jj0G0ldenkDXnDqI/a1BvruH5uVX+sX+tjGziH2hwgYVvZVsW2KR9IsC2IyBlV3I9xv8ag227sUfEcgbWd2owqsY7rp6pggsGe7bANnANHHxxXxRE7tgMRuQIG2zcx6LYTewXdAEdgbaEm9ceA23KqGili/doOT/NzHmwrIiIi22LQbSf2qniOwNoOR5Vsi0dTiWqH+yEiIiLbYNBtJ/YMuoFbj8DeKg3VTGV1yfolIiIiImo4GHTbiT0rniOwtlXZqZysXyIiIiKihoFBt53Yu+I5AktERERERGR99o79KmLQbUMcgSUiIiIiIrIuR4j9ynOzdwEaEgbYREREREREDYvc3gUgIiIiIiIiclUMuomIiIiIiIishEE3ERERERERkZU0mGu6jfeLy83NtXNJiIiIiIiIyFqMMZ+j3DO8wQTdmZmZAIDIyEg7l4SIiIiIiIisLTMzE76+vvYuRsMJugMCAgAA58+fr3fF33777fj777/rXSZXzCc3NxeRkZG4cOFCvW/P70jr5UhlcdU6drR8HK2eHaluLJWPo9Wxq+ZjqXp2pHVytHzYl62fB+vYNvm4aj07UllctY4dLZ+cnBw0adJEigHtrcEE3XK54fJ1X1/fendwhUJhkee9uWo+AODj4+NS9exIZTFytTp2xHwAx6lnR6sbV6xjV84HqH89O9o6OVo+APuytcsCsI5tkQ/gevXsSGUxcrU6dsR8gJsxoL05RimczIQJE5iPDTjSejlSWSzJ0dbL0fKxFFfsg65Yx66cjyU42jo5Wj6W4mjr5Uj7L0txpLpxxHwsxZHWy5HKYkmOtl6Olo8jkQlHubrcynJzc+Hr64ucnByLHTkhc6xn62Md2wbr2fpYx7bBerY+1rH1sY5tg/Vsfaxj23C0em4wI91qtRrTpk2DWq22d1FcGuvZ+ljHtsF6tj7WsW2wnq2PdWx9rGPbYD1bH+vYNhytnhvMSDcRERERERGRrTWYkW4iIiIiIiIiW2PQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVNJige/78+WjatCk0Gg3i4+OxZ88eexfJIfzxxx+45557EBERAZlMhtWrV5vMF0LgrbfeQnh4ONzd3ZGYmIjk5GSTNNevX8fIkSPh4+MDPz8/PPHEE8jPzzdJc/jwYfTo0QMajQaRkZGYNWuWWVmWL1+OVq1aQaPRoF27dli7dq3F19ceZs6cidtvvx3e3t4ICQnBsGHDcPLkSZM0xcXFmDBhAgIDA+Hl5YX7778f6enpJmnOnz+PwYMHw8PDAyEhIXj55ZdRVlZmkiYpKQmdO3eGWq1GbGwsFi9ebFYeV90WFi5ciPbt28PHxwc+Pj5ISEjA77//Ls1nHVveBx98AJlMhkmTJknTWM/1N336dMhkMpNXq1atpPmsY8u4dOkSHn30UQQGBsLd3R3t2rXD3r17pfn8/qu/pk2bmvVlmUwmPYOXfbn+dDod3nzzTURHR8Pd3R3NmjXDO++8g/L3SWZfrr+8vDxMmjQJUVFRcHd3R7du3fD3339L81nHtedMMUhNynJLogFYunSpUKlU4ttvvxXHjh0TTz31lPDz8xPp6en2LprdrV27Vrz++uti5cqVAoBYtWqVyfwPPvhA+Pr6itWrV4tDhw6JIUOGiOjoaFFUVCSlGTBggOjQoYPYtWuX+PPPP0VsbKx4+OGHpfk5OTkiNDRUjBw5Uhw9elT8+OOPwt3dXXz55ZdSmr/++ksoFAoxa9Yscfz4cfHGG28IpVIpjhw5YvU6sLb+/fuLRYsWiaNHj4qDBw+KQYMGiSZNmoj8/HwpzbPPPisiIyPF5s2bxd69e8Udd9whunXrJs0vKysTbdu2FYmJieLAgQNi7dq1IigoSEydOlVKc/bsWeHh4SEmT54sjh8/LubNmycUCoVYt26dlMaVt4Vff/1V/Pbbb+LUqVPi5MmT4rXXXhNKpVIcPXpUCME6trQ9e/aIpk2bivbt24sXXnhBms56rr9p06aJNm3aiCtXrkivq1evSvNZx/V3/fp1ERUVJcaMGSN2794tzp49K9avXy9Onz4tpeH3X/1lZGSY9OONGzcKAGLr1q1CCPZlS3jvvfdEYGCgWLNmjUhJSRHLly8XXl5e4tNPP5XSsC/X3/Dhw0Xr1q3Ftm3bRHJyspg2bZrw8fERFy9eFEKwjuvCmWKQmpTlVhpE0N21a1cxYcIE6b1OpxMRERFi5syZdiyV46nY4fV6vQgLCxOzZ8+WpmVnZwu1Wi1+/PFHIYQQx48fFwDE33//LaX5/fffhUwmE5cuXRJCCLFgwQLh7+8vSkpKpDSvvvqqaNmypfR++PDhYvDgwSbliY+PF88884xF19ERZGRkCABi27ZtQghDnSqVSrF8+XIpzYkTJwQAsXPnTiGEYcckl8tFWlqalGbhwoXCx8dHqtdXXnlFtGnTxmRZDz30kOjfv7/0vqFtC/7+/uKbb75hHVtYXl6eaN68udi4caPo1auXFHSzni1j2rRpokOHDpXOYx1bxquvviruvPPOKufz+886XnjhBdGsWTOh1+vZly1k8ODB4vHHHzeZdt9994mRI0cKIdiXLaGwsFAoFAqxZs0ak+mdO3cWr7/+OuvYAhw5BqlJWWrC5U8v12q12LdvHxITE6VpcrkciYmJ2Llzpx1L5vhSUlKQlpZmUne+vr6Ij4+X6m7nzp3w8/NDly5dpDSJiYmQy+XYvXu3lKZnz55QqVRSmv79++PkyZPIysqS0pRfjjGNK7ZRTk4OACAgIAAAsG/fPpSWlpqsf6tWrdCkSROTem7Xrh1CQ0OlNP3790dubi6OHTsmpamuDhvStqDT6bB06VIUFBQgISGBdWxhEyZMwODBg83qgvVsOcnJyYiIiEBMTAxGjhyJ8+fPA2AdW8qvv/6KLl264MEHH0RISAg6deqEr7/+WprP7z/L02q1WLJkCR5//HHIZDL2ZQvp1q0bNm/ejFOnTgEADh06hO3bt2PgwIEA2JctoaysDDqdDhqNxmS6u7s7tm/fzjq2Akeq05qUpSZcPui+du0adDqdyQ4bAEJDQ5GWlmanUjkHY/1UV3dpaWkICQkxme/m5oaAgACTNJXlUX4ZVaVxtTbS6/WYNGkSunfvjrZt2wIwrLtKpYKfn59J2or1XNc6zM3NRVFRUYPYFo4cOQIvLy+o1Wo8++yzWLVqFVq3bs06tqClS5di//79mDlzptk81rNlxMfHY/HixVi3bh0WLlyIlJQU9OjRA3l5eaxjCzl79iwWLlyI5s2bY/369Rg3bhyef/55fPfddwD4/WcNq1evRnZ2NsaMGQOA+wtLmTJlCkaMGIFWrVpBqVSiU6dOmDRpEkaOHAmAfdkSvL29kZCQgHfeeQeXL1+GTqfDkiVLsHPnTly5coV1bAWOVKc1KUtNuNU4JRHV24QJE3D06FFs377d3kVxSS1btsTBgweRk5ODFStWYPTo0di2bZu9i+UyLly4gBdeeAEbN240O+JPlmMcoQKA9u3bIz4+HlFRUVi2bBnc3d3tWDLXodfr0aVLF7z//vsAgE6dOuHo0aP44osvMHr0aDuXzjX9+9//xsCBAxEREWHvoriUZcuW4fvvv8cPP/yANm3a4ODBg5g0aRIiIiLYly3ov//9Lx5//HE0atQICoUCnTt3xsMPP4x9+/bZu2jkJFx+pDsoKAgKhcLsbpjp6ekICwuzU6mcg7F+qqu7sLAwZGRkmMwvKyvD9evXTdJUlkf5ZVSVxpXaaOLEiVizZg22bt2Kxo0bS9PDwsKg1WqRnZ1tkr5iPde1Dn18fODu7t4gtgWVSoXY2FjExcVh5syZ6NChAz799FPWsYXs27cPGRkZ6Ny5M9zc3ODm5oZt27bhs88+g5ubG0JDQ1nPVuDn54cWLVrg9OnT7MsWEh4ejtatW5tMu+2226TT+Pn9Z1nnzp3Dpk2b8OSTT0rT2Jct4+WXX5ZGu9u1a4fHHnsM//d//yedjcS+bBnNmjXDtm3bkJ+fjwsXLmDPnj0oLS1FTEwM69gKHKlOa1KWmnD5oFulUiEuLg6bN2+Wpun1emzevBkJCQl2LJnji46ORlhYmEnd5ebmYvfu3VLdJSQkIDs72+RI35YtW6DX6xEfHy+l+eOPP1BaWiql2bhxI1q2bAl/f38pTfnlGNO4QhsJITBx4kSsWrUKW7ZsQXR0tMn8uLg4KJVKk/U/efIkzp8/b1LPR44cMdm5bNy4ET4+PtIPx1vVYUPcFvR6PUpKSljHFtKnTx8cOXIEBw8elF5dunTByJEjpf9Zz5aXn5+PM2fOIDw8nH3ZQrp372726MZTp04hKioKAL//LG3RokUICQnB4MGDpWnsy5ZRWFgIudz057xCoYBerwfAvmxpnp6eCA8PR1ZWFtavX4+hQ4eyjq3Akeq0JmWpkRrfcs2JLV26VKjVarF48WJx/Phx8fTTTws/Pz+Tu2E2VHl5eeLAgQPiwIEDAoD4+OOPxYEDB8S5c+eEEIZb5Pv5+YlffvlFHD58WAwdOrTS2/V36tRJ7N69W2zfvl00b97c5Hb92dnZIjQ0VDz22GPi6NGjYunSpcLDw8Psdv1ubm5izpw54sSJE2LatGlO+wiEisaNGyd8fX1FUlKSyaNTCgsLpTTPPvusaNKkidiyZYvYu3evSEhIEAkJCdJ842NT+vXrJw4ePCjWrVsngoODK31syssvvyxOnDgh5s+fX+ljU1x1W5gyZYrYtm2bSElJEYcPHxZTpkwRMplMbNiwQQjBOraW8ncvF4L1bAkvvviiSEpKEikpKeKvv/4SiYmJIigoSGRkZAghWMeWsGfPHuHm5ibee+89kZycLL7//nvh4eEhlixZIqXh959l6HQ60aRJE/Hqq6+azWNfrr/Ro0eLRo0aSY8MW7lypQgKChKvvPKKlIZ9uf7WrVsnfv/9d3H27FmxYcMG0aFDBxEfHy+0Wq0QgnVcF84Ug9SkLLfSIIJuIYSYN2+eaNKkiVCpVKJr165i165d9i6SQ9i6dasAYPYaPXq0EMJwm/w333xThIaGCrVaLfr06SNOnjxpkkdmZqZ4+OGHhZeXl/Dx8RFjx44VeXl5JmkOHTok7rzzTqFWq0WjRo3EBx98YFaWZcuWiRYtWgiVSiXatGkjfvvtN6utty1VVr8AxKJFi6Q0RUVFYvz48cLf3194eHiIe++9V1y5csUkn9TUVDFw4EDh7u4ugoKCxIsvvihKS0tN0mzdulV07NhRqFQqERMTY7IMI1fdFh5//HERFRUlVCqVCA4OFn369JECbiFYx9ZSMehmPdffQw89JMLDw4VKpRKNGjUSDz30kMnzo1nHlvG///1PtG3bVqjVatGqVSvx1Vdfmczn959lrF+/XgAwqzsh2JctITc3V7zwwguiSZMmQqPRiJiYGPH666+bPCKJfbn+fvrpJxETEyNUKpUICwsTEyZMENnZ2dJ81nHtOVMMUpOy3IpMCCFqPi5ORERERERERDXl8td0ExEREREREdkLg24iIiIiIiIiK2HQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVMOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIisqjevXujd+/eFssvNTUVMpkMixcvtliezmjWrFlo1aoV9Hq9vYtSKUu3uyU0bdoUY8aMsXcx6kQmk2H69Om1+syIESMwfPhw6xSIiIjqjEE3EVEDsHjxYshkMuml0WjQokULTJw4Eenp6fYuHt1Cbm4uPvzwQ7z66quQy/nVTZV79dVX8fPPP+PQoUP2LgoREZXjZu8CEBGR7bz99tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YXsXpUqO2O4nT5502oMURUVFcHOr3c+0Tp06oUuXLvjoo4/wn//8x0olIyKi2nLObyIiIqqTgQMH4tFHH8WTTz6JxYsXY9KkSUhJScEvv/xS77wLCwsBACqVCiqVqt752Zter0dxcbG9iwEAWLRoEYYMGQKNRmPvolTJEdtdrVZDqVRaJK/i4mKbntqv0WhqHXQDwPDhw7Fy5Urk5+dboVRERFQXDLqJiBqwu+66CwCQkpIiTVuyZAni4uLg7u6OgIAAjBgxAhcuXDD5XO/evdG2bVvs27cPPXv2hIeHB1577TVpXsVrezMyMvDEE08gNDQUGo0GHTp0wHfffWdWnuzsbIwZMwa+vr7w8/PD6NGjkZ2dXWnZt2zZgh49esDT0xN+fn4YOnQoTpw4YZYuKSkJXbp0gUajQbNmzfDll19i+vTpkMlkJulkMhkmTpyI77//Hm3atIFarca6desAAHPmzEG3bt0QGBgId3d3xMXFYcWKFWbLMuaxfPlytG7dGu7u7khISMCRI0cAAF9++SViY2Oh0WjQu3dvpKamVrpu5aWkpODw4cNITEw0m7d06VLExcXB29sbPj4+aNeuHT799FOzOp00aRIiIyOhVqsRGxuLDz/80CSANF43P2fOHMyfPx8xMTHw8PBAv379cOHCBQgh8M4776Bx48Zwd3fH0KFDcf36dZPl1PSabuOlDtu3b8fzzz+P4OBg+Pn54ZlnnoFWq0V2djZGjRoFf39/+Pv745VXXoEQwiSPmrZHZdd0nz17Fg8++CACAgLg4eGBO+64A7/99ptJmqSkJMhkMixduhRvvPEGGjVqBA8PD+Tm5la5XjUp06JFiyCTyfDtt9+aTH///fchk8mwdu1aaVrFa7rz8vIwadIkNG3aFGq1GiEhIejbty/2799vklffvn1RUFCAjRs3VllWIiKyLZ5eTkTUgJ05cwYAEBgYCAB477338Oabb2L48OF48skncfXqVcybNw89e/bEgQMH4OfnJ302MzMTAwcOxIgRI/Doo48iNDS00mUUFRWhd+/eOH36NCZOnIjo6GgsX74cY8aMQXZ2Nl544QUAgBACQ4cOxfbt2/Hss8/itttuw6pVqzB69GizPDdt2oSBAwciJiYG06dPR1FREebNm4fu3btj//79aNq0KQDgwIEDGDBgAMLDwzFjxgzodDq8/fbbCA4OrrSsW7ZswbJlyzBx4kQEBQVJ+Xz66acYMmQIRo4cCa1Wi6VLl+LBBx/EmjVrMHjwYJM8/vzzT/z666+YMGECAGDmzJm4++678corr2DBggUYP348srKyMGvWLDz++OPYsmVLtW20Y8cOAEDnzp1Npm/cuBEPP/ww+vTpgw8//BAAcOLECfz1119SnRYWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckz++//x5arRbPPfccrl+/jlmzZmH48OG46667kJSUhFdffRWnT5/GvHnz8NJLL5kFj7Xx3HPPISwsDDNmzMCuXbvw1Vdfwc/PDzt27ECTJk3w/vvvY+3atZg9ezbatm2LUaNGSZ+tTXuUl56ejm7duqGwsBDPP/88AgMD8d1332HIkCFYsWIF7r33XpP077zzDlQqFV566SWUlJRUO5JfkzKNHTsWK1euxOTJk9G3b19ERkbiyJEjmDFjBp544gkMGjSoyvyfffZZrFixAhMnTkTr1q2RmZmJ7du348SJEyZ9w3iw56+//jJbHyIishNBREQub9GiRQKA2LRpk7h69aq4cOGCWLp0qQgMDBTu7u7i4sWLIjU1VSgUCvHee++ZfPbIkSPCzc3NZHqvXr0EAPHFF1+YLatXr16iV69e0vu5c+cKAGLJkiXSNK1WKxISEoSXl5fIzc0VQgixevVqAUDMmjVLSldWViZ69OghAIhFixZJ0zt27ChCQkJEZmamNO3QoUNCLpeLUaNGSdPuuece4eHhIS5duiRNS05OFm5ubqLiVyAAIZfLxbFjx8zWqbCw0OS9VqsVbdu2FXfddZdZHmq1WqSkpEjTvvzySwFAhIWFSesqhBBTp04VAEzSVuaNN94QAEReXp7J9BdeeEH4+PiIsrKyKj/7zjvvCE9PT3Hq1CmT6VOmTBEKhUKcP39eCCFESkqKACCCg4NFdna2WRk7dOggSktLpekPP/ywUKlUori4WJpWsd2rYuyL/fv3F3q9XpqekJAgZDKZePbZZ6VpZWVlonHjxmb51rQ9oqKixOjRo6X3kyZNEgDEn3/+KU3Ly8sT0dHRomnTpkKn0wkhhNi6dasAIGJiYsyWVZWalunKlSsiICBA9O3bV5SUlIhOnTqJJk2aiJycHJN0AMS0adOk976+vmLChAk1KkuLFi3EwIEDa5SWiIisj6eXExE1IImJiQgODkZkZCRGjBgBLy8vrFq1Co0aNcLKlSuh1+sxfPhwXLt2TXqFhYWhefPm2Lp1q0learUaY8eOveUy165di7CwMJObgCmVSjz//PPIz8/Htm3bpHRubm4YN26clE6hUOC5554zye/KlSs4ePAgxowZg4CAAGl6+/bt0bdvX+kUXZ1Oh02bNmHYsGGIiIiQ0sXGxmLgwIGVlrVXr15o3bq12XR3d3fp/6ysLOTk5KBHjx5mp/YCQJ8+faQRcgCIj48HANx///3w9vY2m3727NlKy2KUmZkJNzc3eHl5mUz38/O75WnEy5cvR48ePeDv72/SpomJidDpdPjjjz9M0j/44IPw9fU1K+Ojjz5qcn1xfHw8tFotLl26VG3Zq/PEE0+YnOIfHx8PIQSeeOIJaZpCoUCXLl3M6qg27VHe2rVr0bVrV9x5553SNC8vLzz99NNITU3F8ePHTdKPHj3aZFnVqWmZwsLCMH/+fGzcuBE9evTAwYMH8e2338LHx6fa/P38/LB7925cvnz5lmUxtjcRETkGnl5ORNSAzJ8/Hy1atICbmxtCQ0PRsmVL6e7OycnJEEKgefPmlX624g2pGjVqVKMbZ507dw7Nmzc3u4v0bbfdJs03/g0PDzcLLlu2bGmWX2XTjXmuX78eBQUFyM3NRVFREWJjY83SVTYNAKKjoyudvmbNGrz77rs4ePAgSkpKpOkVrwsHgCZNmpi8NwaxkZGRlU7PysqqdJm3Mn78eCxbtgwDBw5Eo0aN0K9fPwwfPhwDBgyQ0iQnJ+Pw4cNVnk6fkZFhtbKnpaWZfaZ8YFqbZVVcTm3ao7xz585JBxLKK98X27ZtK02vqj9UpjZlGjFiBJYsWYLffvsNTz/9NPr06XPL/GfNmoXRo0cjMjIScXFxGDRoEEaNGoWYmBiztEKIW9YFERHZDoNuIqIGpGvXrujSpUul8/R6PWQyGX7//XcoFAqz+RWD4ZqOADqTytbpzz//xJAhQ9CzZ08sWLAA4eHhUCqVWLRoEX744Qez9JXVXXXTRYWbhFUUGBiIsrIy5OXlmYyUh4SE4ODBg1i/fj1+//13/P7771i0aBFGjRol3aROr9ejb9++eOWVVyrNu0WLFlYre3h4uMn7RYsWmdzUrDbLKr+c2rZHfdS0j9e2TJmZmdi7dy8A4Pjx49Dr9bd8tNnw4cPRo0cPrFq1Chs2bMDs2bPx4YcfYuXKlWZnbmRlZVV58IyIiGyPQTcREQEAmjVrBiEEoqOjzYKx+oiKisLhw4fNAot//vlHmm/8u3nzZuTn55sE+CdPnjTLr7LpxjyDgoLg6ekJjUYDjUaD06dPm6WrbFpVfv75Z2g0Gqxfvx5qtVqavmjRohrnUR+tWrUCYLiLefv27U3mqVQq3HPPPbjnnnug1+sxfvx4fPnll3jzzTcRGxuLZs2aIT8/v9I7n1tbxdPe27RpY5F869MeUVFRVfYb43xblGnChAnIy8vDzJkzMXXqVMydOxeTJ0++5XLCw8Mxfvx4jB8/HhkZGejcuTPee+89k6C7rKwMFy5cwJAhQ+q0LkREZHm8ppuIiAAA9913HxQKBWbMmGE2gimEQGZmZp3yHTRoENLS0vDTTz9J08rKyjBv3jx4eXmhV69eUrqysjIsXLhQSqfT6TBv3jyT/MLDw9GxY0d89913Jo8TO3r0KDZs2CDdAVqhUCAxMRGrV682uQ729OnT+P3332tcfoVCAZlMBp1OJ01LTU3F6tWra5xHfSQkJACANDJqVLE95HK5FJQbT28ePnw4du7cifXr15vlm52djbKyMmsUGYDh/gHlXxVHvuuqPu0xaNAg7NmzBzt37pSmFRQU4KuvvkLTpk0rvZ7f0mVasWIFfvrpJ3zwwQeYMmUKRowYgTfeeAOnTp2qMn+dToecnByTaSEhIYiIiDA5lR0wjJwXFxejW7dudVoXIiKyPI50ExERAMNI97vvvoupU6ciNTUVw4YNg7e3N1JSUrBq1So8/fTTeOmll2qd79NPP40vv/wSY8aMwb59+9C0aVOsWLECf/31F+bOnSudMn3PPfege/fumDJlClJTU9G6dWusXLnSLNgAgNmzZ2PgwIFISEjAE088IT0yzNfX1+TZxtOnT8eGDRvQvXt3jBs3DjqdDp9//jnatm2LgwcP1qj8gwcPxscff4wBAwbgkUceQUZGBubPn4/Y2FgcPny41vVRWzExMWjbti02bdqExx9/XJr+5JNP4vr167jrrrvQuHFjnDt3DvPmzUPHjh2la5Rffvll/Prrr7j77rsxZswYxMXFoaCgAEeOHMGKFSuQmpqKoKAgq6+DJdWnPaZMmYIff/wRAwcOxPPPP4+AgAB89913SElJwc8//3zLU7zrW6aMjAyMGzcO//rXvzBx4kQAwOeff46tW7dizJgx2L59e6VlyMvLQ+PGjfHAAw+gQ4cO8PLywqZNm/D333/jo48+Mkm7ceNGeHh4oG/fvnVaFyIisjwG3UREJJkyZQpatGiBTz75BDNmzABguLFVv3796ny6qru7O5KSkjBlyhR89913yM3NRcuWLc2u8ZXL5fj1118xadIkLFmyBDKZDEOGDMFHH32ETp06meSZmJiIdevWYdq0aXjrrbegVCrRq1cvfPjhhyY3v4qLi8Pvv/+Ol156CW+++SYiIyPx9ttv48SJE9Ipxbdy11134d///jc++OADTJo0CdHR0fjwww+Rmppqk6AbAB5//HG89dZbKCoqkq4zfvTRR/HVV19hwYIFyM7ORlhYGB566CFMnz5dCtw8PDywbds2vP/++1i+fDn+85//wMfHBy1atMCMGTNM7lTuLOrTHqGhodixYwdeffVVzJs3D8XFxWjfvj3+97//Vft8b0uVady4cSgpKcGiRYukG50FBgbiq6++wtChQzFnzpxKr7/38PDA+PHjsWHDBukpA7GxsViwYIHJ3f4Bwx3r77vvPpPr/4mIyL5k4lZ3cCEiInIxw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLJNHalH1IiMj0b9/f3zzzTf2LopNHDx4EJ07d8b+/fvRsWNHexeHiIhu4DXdRETk0oqKikzeJycnY+3atejdu7d9ClQHvr6+eOWVVzB79mzo9Xp7F8cplJaWIjMz0+lOn6+PDz74AA888AADbiIiB8ORbiIicmnh4eEYM2YMYmJicO7cOSxcuBAlJSU4cOAAH6vkotavX4+lS5di8eLF2LBhA69vJiIiu2LQTURELm3s2LHYunUr0tLSoFarkZCQgPfffx+dO3e2d9HISv71r3/h9OnTGDduHF577TV7F4eIiBo4Bt1EREREREREVsJruomIiIiIiIishEE3ERERERERkZU0mOd06/V6XL58Gd7e3tKzMYmIiIiIiMi1CCGQl5eHiIgIyOX2H2duMEH35cuXERkZae9iEBERERERkQ1cuHABjRs3tncxGk7Q7e3tDcBQ8T4+PnYujXPTarX46KOPAAAvvvgiAJi8V6lUdisbuaaKfa7SPnbsQ+DY+0Cb14A2r956em3yJiIiIiKnkZubi8jISCkGtLcGE3QbTyn38fFh0F1PWq0WGo0GAKS6LP+eQQtZWsU+V2kfS3gP8NIAR94y/G33JnDkHSDlfSD+bcP7uuZNRERERE7HUS4rbjBBNxE1ADcC6x+T/sLfa1/COxHz4dmx6oCbiIiIiMjaGHQTkUs5FzEZb15qjzK4oak6Dc8z4CYiIiIiO7L/rdyIiCxo9rKVKLtxPPHrjHuQs/d9O5eIiIiIiBoyBt1E5DIOJ32ENecCIINAIz935Om98PUfJwzXdhMRERER2QGDbiJyCeLwO/hgewkA4N5OjfHm3a0BAIuuP4jMA3MYeBMRERGRXfCabqo1uVyO1q1bS/8DMHtPZEmV9bmK/rziiR35LaFSyPF/fVugsb872jbywdFLufhSfILXxPk6501EREREVFdW+4U5f/58NG3aFBqNBvHx8dizZ0+VaRcvXgyZTGbyMj7Cx0gIgbfeegvh4eFwd3dHYmIikpOTrVV8qoabmxsefPBBPPjgg3BzczN7T2Rpt+pjer3AB//cDgB4LCEKkQEekMlkmNy3BQDgP6fDkRE9pU55ExERERHVh1WC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGlZ/x8fHBlStXpNe5c+dM5s+aNQufffYZvvjiC+zevRuenp7o378/iouLrbEKRORE/nf4Mo5fyYW32g0T/hUrTf9XyxB0auKH4lI9Fmw9Y8cSEhEREVFDZZWg++OPP8ZTTz2FsWPHonXr1vjiiy/g4eGBb7/9tsrPyGQyhIWFSa/Q0FBpnhACc+fOxRtvvIGhQ4eiffv2+M9//oPLly9j9erV1lgFInISJWU6zF5/EgDwbO9mCPBUSfNkMhle7NsSAPDD7vO4nF1klzISERERUcNl8aBbq9Vi3759SExMvLkQuRyJiYnYuXNnlZ/Lz89HVFQUIiMjMXToUBw7dkyal5KSgrS0NJM8fX19ER8fX22eZB1arRYzZszAjBkzoNVqzd4TWVp1feyH3edxMasIId5qjO3e1Oyz3WMD0TU6AFqdHp9vPV2rvImIiIiI6sviQfe1a9eg0+lMRqoBIDQ0FGlpaZV+pmXLlvj222/xyy+/YMmSJdDr9ejWrRsuXrwIANLnapNnSUkJcnNzTV5E5Fryiksxb4shkJ6U2AIeKvNrsg2j3YZru5f9fQEXrhfatIxERERE1LA5xK16ExISMGrUKHTs2BG9evXCypUrERwcjC+//LLOec6cORO+vr7SKzIy0oIlJiJH8PO+i7heoEVMkCeGd2lcZbr4mED0aB6EMr3AZ5t5A0YiIiIish2LB91BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPm0YwTJ+rjZ5Tp06FTk5OdLrwoULtV0VInJw+85nAwDu69wIborqd2fGO5n/vP8iruWXWLtoREREREQArBB0q1QqxMXFYfPmzdI0vV6PzZs3IyEhoUZ56HQ6HDlyBOHh4QCA6OhohIWFmeSZm5uL3bt3V5mnWq2Gj4+PyYuIXMuhC9kAgI6R/rdM26mJP1qFeUMvgN1nr1u5ZEREREREBlY5vXzy5Mn4+uuv8d133+HEiRMYN24cCgoKMHbsWADAqFGjMHXqVCn922+/jQ0bNuDs2bPYv38/Hn30UZw7dw5PPvkkAMM1mZMmTcK7776LX3/9FUeOHMGoUaMQERGBYcOGWWMViMjBZeaX4PyN67PbNfat0WcSmgUCAHadzbRauYiIiIiIyjO/65AFPPTQQ7h69SreeustpKWloWPHjli3bp10I7Tz589DLr8Z72dlZeGpp55CWloa/P39ERcXhx07dqB169ZSmldeeQUFBQV4+umnkZ2djTvvvBPr1q2DRqOxxioQkYM7fDEHABAT7Alfd2WNPnNHTCAW/ZXKoJuIiIiIbMYqQTcATJw4ERMnTqx0XlJSksn7Tz75BJ988km1+clkMrz99tt4++23LVVEqiO5XI7mzZtL/wMwe09kSZX1uYPSqeV+Nc4nPjoAMhmQnJGPa/klCPJSV5o3EREREZGlWC3oJtfl5uaGRx55xGRaxfdEllRZnzt0MRtA7YJuPw8VWoX54MSVXOw+ex2D24dXmjcRERERkaVwWIeInI4QQrqJWofGfrX67B0xAQB4XTcRERER2QaDbiJyOuevFyKrsBQqhRytwr1r9dk7YngzNSIiIiKyHZ5eTrWm1WoxZ84cAMBLL70EACbvVSqV3cpGrqlinzNez906wgdqN0Wt8qp4XbePSsb+S0RERERWw5FuqpPS0lKUlpZW+Z7I0sr3sUMXDHcur8313EbG67qBm8/rZv8lIiIiImth0E1ETsd4E7UOkTV7PndFvK6biIiIiGyFQTcROZVSnR5HLxlHuv3rlAev6yYiIiIiW2HQTURO5VR6PkrK9PDRuKFpoEed8qh4XTcRERERkbUw6CYip3L4xih3h0g/yGSyOuVR/rruPalZFisbEREREVFFDLqJyKkcvpgLoG43USvPeF33nhQG3URERERkPXxkGNWaTCZDVFSU9D8As/dEllS+zy25WPc7l5d3R0wgFv2Vit2pWXiM/ZeIiIiIrEQmhBD2LoQt5ObmwtfXFzk5OfDx8bF3cYioDvKKS9F+xgYIAfz9eiKCvdV1ziu7UItO72y0SF5ERERE5DgcLfbj6eVE5DSOXMqBEEAjP/d6B8kmz+tO4V3MiYiIiMg6GHQTkdM4dMEyp5Yb8XndRERERGRtDLqp1rRaLWbPno3Zs2dDq9WavSeyNGMfW75lDwBLBt2G53X/9ncy+y8RERERWQVvpEZ1UlhYWO17IksrLCxEmlYDwPC4MEswPq87S6dGZgEDbiIiIiKyPI50E5FTKBBKFEIFuQxo28gyN8Tw81ChZagXACBN522RPImIiIiIymPQTURO4ZreEwDQPMQLHirLnaQT39RwXXeankE3EREREVkeg24icgrGoLtDY1+L5ts12h8AcIVBNxERERFZAYNuInIKV28E3e0bW/ZZi7dH+QMQyBHuuJZfYtG8iYiIiIgYdBORwxNCIFPvAQBoG2HZkW4/DyUCZEUAgF1nr1s0byIiIiIiBt1UazKZDBEREYiIiIBMJjN7T2Rpl3NKoIUbFBBoHuJl0bxlMhla+OoBAH+eYdBNRERERJbFR4ZRrSmVSjz11FMm0yq+J7KkkxkFAIDbGvnC011t0byVSiUm3t8Hu/69G3+dzoQQggePiIiIiMhiONJNRA7v2OVcAECbcMueWm7Upak/NEo5MvJKcDI9zyrLICIiIqKGiUE3ETk8Kei20PO5K9IoFbgjJhAA8Mepq1ZZBhERERE1TAy6qdZKS0sxd+5czJ07F6WlpWbviSzt6KUcw98/11m8jxn7r/7ycQDAn8nXLJo/ERERETVsvKabak0IgZycHOl/AGbviSzlal4JMvJKAAioCq9avI8Z+3OgvgRAMHanXEeRVgd3lcKiyyEiIiKihokj3UTk0I5dNhzQ8ZUVQynTW205vrJihPmooS3TY08q72JORERERJbBoJuIHJrxeu5AeaFVlyOTAXfG8rpuIiIiIrIsqwXd8+fPR9OmTaHRaBAfH489e/ZUmfbrr79Gjx494O/vD39/fyQmJpqlHzNmjPRMaONrwIAB1io+ETkI40h3gMy6QTdwM+j+M5lBNxERERFZhlWC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGpemTkpLw8MMPY+vWrdi5cyciIyPRr18/XLp0ySTdgAEDcOXKFen1448/WqP4RORAbDXSDQDdYgIhkwGn0vNxJafI6ssjIiIiItdnlaD7448/xlNPPYWxY8eidevW+OKLL+Dh4YFvv/220vTff/89xo8fj44dO6JVq1b45ptvoNfrsXnzZpN0arUaYWFh0svf398axSciB5FbXIpzmYZg2xZBt5+HEu0b+wEA/jzFu5gTERERUf1ZPOjWarXYt28fEhMTby5ELkdiYiJ27txZozwKCwtRWlqKgIAAk+lJSUkICQlBy5YtMW7cOGRmZlaZR0lJCXJzc01eZBkymQzBwcEIDg6WTvUv/57IUo7fGOVu5KdB45AAq/Sxiv23V/MgAMAfPMWciIiIiCzA4o8Mu3btGnQ6HUJDQ02mh4aG4p9//qlRHq+++ioiIiJMAvcBAwbgvvvuQ3R0NM6cOYPXXnsNAwcOxM6dO6FQmD/aZ+bMmZgxY0b9VoYqpVQqMX78eJNpFd8TWYLx1PI2Eb4YP8o6faxif+7ZIhifbTmN7aevQacXUMh5IImIiIiI6s7hntP9wQcfYOnSpUhKSoJGo5GmjxgxQvq/Xbt2aN++PZo1a4akpCT06dPHLJ+pU6di8uTJ0vvc3FxERkZat/BEZFHGm6i1ifC12TI7RPrBW+2G7MJSHL2Ugw6RfjZbNhERERG5HoufXh4UFASFQoH09HST6enp6QgLC6v2s3PmzMEHH3yADRs2oH379tWmjYmJQVBQEE6fPl3pfLVaDR8fH5MXETmXY5eMI922236VCjm68dFhRERERGQhFg+6VSoV4uLiTG6CZrwpWkJCQpWfmzVrFt555x2sW7cOXbp0ueVyLl68iMzMTISHh1uk3FRzpaWlWLBgARYsWIDS0lKz90SWUFyqw+mr+QCAlqEeVutjlfXfHs2DAQB/JvNmakRERERUP1Y5vXzy5MkYPXo0unTpgq5du2Lu3LkoKCjA2LFjAQCjRo1Co0aNMHPmTADAhx9+iLfeegs//PADmjZtirS0NACAl5cXvLy8kJ+fjxkzZuD+++9HWFgYzpw5g1deeQWxsbHo37+/NVaBqiGEwNWrV6X/AZi9J6qvk2l50OkFAj1VCPFSWa2PVdafe7UwBN37z2chr7gU3hqlRZdJRERERA2HVYLuhx56CFevXsVbb72FtLQ0dOzYEevWrZNurnb+/HnI5TcH2RcuXAitVosHHnjAJJ9p06Zh+vTpUCgUOHz4ML777jtkZ2cjIiIC/fr1wzvvvAO1Wm2NVSAiOzPeRK11hI/N74ofGeCBpoEeSM0sxI4zmejfpvpLY4iIiIiIqmK1G6lNnDgREydOrHReUlKSyfvU1NRq83J3d8f69estVDIicgZH7XATtfJ6tghG6s5z+DP5KoNuIiIiIqozi1/TTURkCcaR7raN7HMTxJ43ruv+4xSv6yYiIiKiumPQTUQOp0ynxz9Xbj6j2x7uaBYIN7kM568X4lxmgV3KQERERETOj0E3ETmcM1cLUFKmh5faDVEBHnYpg5faDXFR/gD46DAiIiIiqjsG3VRrMpkMvr6+8PX1hUwmM3tPVF/HblzP3TrcB3K5dftYdXn3vHEX89+Ppll0mURERETUcMhEA3nGU25uLnx9fZGTkwMfH/tcI0pENfPOmuP49/YUjOnWFNOHtLFbOS5cL0Sv2VuhF8Da53ugdQT3HURERESOztFiP450E5HDOSbdudy+O8nIAA8MbBcOAPhm+1m7loWIiIiInBODbiJyKGU6PY5dsu9N1Mp7qkcMAOB/hy4jPbfYzqUhIiIiImfDoJtqrbS0FPsW34O9i4eitLQUpaWl+Prrr/H111+jtLQUOPIOcHi6vYtJTurghWzklZTB30OJlmHeAGDexyzoVnl3jPTD7U39UaoTWLwj1aLLJiIiIiLXx6Cbak0Igdy8AnRR/QrZsfcghMDly5dx+fJlyI69Bxx5C5Ap7F1MclLbbtwp/M7mwVDIDTc2K9/HLH0biprk/eSN0e7vd51DQUmZRZdPRERERK7Nzd4FIOf0x/VeAIB/HZ8BrQAAGXoGbIPb8a1Au7eBdm/atXzkvIxBd68bdw53BIm3haJpoAdSMwuxfO8FjOkebe8iEREREZGT4Eg31dkf13thevE3aPVTZ2Src/GvwK0oaz2NATfV2bX8Ehy+aLiJWs/mQXYuzU0KuQxP3GkItL/9KxU6fYN46AMRERERWQCDbqoznZBh8akw6KHAquy7UFimhr71a/YuFjmx7cnXABiezx3io7FzaUw9EBcJPw8lzl8vxIZjfG43EREREdUMg26qs+vC3eT9udJwyI+/b6fSkCv448ap5T0d6NRyI3eVAo/GRwEAvv6Tjw8jIiIiopph0E115qMxHe1beW0Q3I7PMNy9nKiW9HqBP5Id73ru8kZ1i4JKIcf+89nYdy7L3sUhIiIiIifAoJvqpE/oDpTJTe/ivLeoq+Ga7iNvMfCmWjt+JRfX8rXwVCkQF+VvNt/DwwMeHh5WWXZN8w7x1mBoxwgAwDcc7SYiIiKiGmhwdy8v0BZAoTV/nJVCroDGTWOSripymRzuSvc6pS0sLazysUQymQweSo86pS0qLYJe6Kssh6fKs05pi8uKodPrzNJ0jY/DnE3tAQBxUf7Ydy4LYbGtUdL6AeihA8qKUFqhXjyUHpDJDI+AKikrQZm+6kcv1Satu9Idcpnh+JFWp0WprurnONcmrcZNA4VcUeu0pbpSaHXaKtOq3dRwk7vVOm2ZvgwlZSVVplUpVFAqlLVOq9PrUFxWXGVapUIJlUJV67R6oUdRaVGN0248fgkA0DXGD6X6IpSWqxY3uRtefvllAIZHfFW3zbnJ3aB2U0tpC0sLq0yrkCugUWmkvAu0BSjVVt7Oxn3Ekz1isHzfRaw/loZ/0q4hMsDdLC33EXVLy32EAfcRtU9bm+2+1vuIGv424O+IytNyH8F9BPcRtU/LfUTd0lbc7h2JTFj6obcOKjc3F76+vsAUAJXcn2lQ80H47ZHfpPee73tWuZH1iuqFpDFJ0vvg2cG4Vnit0rRdIrrg76f+lt43ndsU53LOVZq2dXBrHBt/THrfZkEbHL96vNK0Ub5RSJ2UKr2//evbsffy3krTBnkE4erLV6X3vRf3xrZz2ypN66H0QMFrNzfswT8MxtrkteYJBRBZ/BPk8MQLfZrj083J8PJMxzH9E5XmCwD5U/OlDWfM6jH47tB3VabNeCkDwZ6GU4wn/DYBC/YuqDJtygspaOrXFADw8oaXMWfnnCrTHh13FG1C2gAApidNx4xtM6pMu+fJPbi90e0AgNl/zcYrm16pMu3W0VvRu2lvAMD8PfMx8feJVaZd8/AaDG4xGACw+OBijP1lbJVplz2wDA+2eRAAsPzYcgxfMbzKtIuGLsKYjmMAAL+d+g13/3h3lWk/H/g5JnSdAABISk3Cv777V5VpZyXOwsvdDUHp35f+RtdvulaZdlqvaZjeezoA4FjGMbRd2LbKtC8lvITZ/WYDAFKzU3HHrKXQ6NshUzkf+W6/m6Qd32U85g+eDwC4WnAVIXNCqsx3dIfRWDxsMQDDl5TXTK8q0z7Q+gEsf3C59F42Q1Zl2vL7iFHf7sEfp64iV/ErslRfmaXlPuImMe3mV8yDyx/EiuMrqkzLfYQB9xEGFfcR0Z9W/ag+R9tHAPwdYcR9BPcR3EcYcB9hYKt9xCM/PIIfR/6InJwc+Pj4VPkZW+Hp5VQnCgRCDk8o5DLcERMIANCWWufUX3J9+cU6qPW3AQCK5fvtXJpbe6qH4YvdS9cXcuF5i9RERERE1JA1uJHuy1cvV3q0g6d8VJ62stM4SktLMXvR//D9xQDEBHng29Fx6P3Rn1DIBPa+3h0qlarSfHlamAFPCzNP+/vRyxi35ACaBrrjtxfizdIKncCKnwxHNh955BGUouq2qO1pYQqhwPfffw8AGPbgMCiVyirTGvcRQgj0n7sNp9IL0KtFAD5+qA00ypuXrTT0fURd03IfYcB9RO3T8tRRA+4j6paW+wgD7iNqn5b7iJscbR9x9fpVhASGOMxId4O7pttT5WnSeNWlq02eNVW+81oybfmNzZJpy+8cjLTQIjk9H0AAmgV7Icjzxo5UyFBSqoS/163rQ+2mhhrqGpWhNmlVCpW0A7ZXWqVCKX0RWTKtm9wNbqqabbK1SauQK2rch2uTVi6T1zjtH6cyAQC9W4ZW+hmtVotz526eKlXTfGUy2S3Tls/bQ+lR5UGjivnOGNIOYxbtwbZT1zHh+2P4ZvTt8FJXXucNbR9hibTcR9Q+rSvvI2qTtibbfV3SAtb7bcB9RO3Tch9R+7TcRxhwH1G3tM64j3AkPL2c6iRHb+j0scGeULnJobkx8piW61g3LSDHJ4SQns/tqI8Kq0xCs0D85/Gu8FK7YdfZ6xj59S5kFVQ92kBEREREDRODbqqTbGE4ghUbYjjy5iEzBBvpuVWfMkRUmTNXC3ApuwgqNzniYwLsXZxaiY8JxA9PxcPfQ4lDF3Pw0Fc7uQ0QERERkQkG3VRrQghk6w1Bd7NgQ9DtKTOMdKfncaS7ISrT6bHjzDUsSDqNQxeya/XZbTdGueOjA+BRw1PZHEn7xn5Y9kwCQn3UOJWejwe/2IkL16u+/ouIiIiIGhbn+4VbXwUFgML8Od1QKACNxjRdVeRywN29bmkLC4Gq7l0nkwEeHnVLW1QE6Ku+YQE8PeuWtrgY0JnesOB6Vj5K4AZAIDqwwkj3tbyq68PDw1BuACgpAcqqvqlJrdK6uxvqGQC0WqC06huV1CqtRnOzr9QmbWmpIX1V1GrAza32acvKDHVRFZUKMN4ErDZpdTpDO1dFqTSkr5BWLwR2pGThtxNXseGfa8gsNNbPSQzpEIGX+zVHpKbqR2dAqYTOTYnfj1wBAPSM8q2675Tvr0JUv825uRnqzZi2sJoAWKG42R8AQ75VtXM1+4jmXnKsGNURI78/hPPXC/HAwr+w5Mk70DzU2yytGRfcR9Q5LfcRBi6yj7hlWr3e0NcskbY2231t9xE1/W3A3xGVp+U+ovZpuY8w/M99RN3Sch9h+L+6/msPooHIyckRAESOoWuZvwYNMv2Ah0fl6QAhevUyTRsUVHXaLl1M00ZFVZ22dWvTtK1bV502Kso0bZcuVacNCjJN26tX1Wk9PEzTDhpkluaP6I4i6tU1ou2UFaKkpESUlJSIYa9/KaJeXSNeHPRC1Xnn59/Md/ToqtMBQmRk3Ew7fnz1aVNSbqZ96aXq0x49ejPttGnVp92z52baWbOqT7t16820n39efdo1a26mXbSo+rTLlt1Mu2xZ9WkXLbqZds2a6tN+/vnNtFu3Vp921qybaffsEQIQGR5+YsSI90TUq2ukV4fnfxAjp34vmk4xvG8+dY14v/dYka32rDTfspdeEpOWHhBRr64RzaauEal+YVWWoWT8eDF9+nQxffp0UXLpUvXlHT36Znnz86tP+8ADoqSk5GbeSmXVaWuwj0jzChB9H58vol5dIzrOWC++/uOMSE7PE/oGto8weZX3wAPVp+U+wvBygX1Ela9p026mPXq0+rQvvXQzbUpK9WnHj7+ZNiOj+rS13EeYqC4tf0cYXtxH3HxxH2F4cR9heHEfYXjZaB+R8/DDAoDIyckRjoCnl1OtJQc2AQD4i5tH/rzdDEez0r0C7VImqpnTgY0xYcgrGJIWjp6ztqLd9PXonlSIRXH3oLiGdz/9u1FrDB7zKXZGdYCHtggPH1yH//70Bv7+/DEsUZ3C/ybeiW7NAqHVA1/G348+T32B31t0M8lDJ5PjZVkrrDpwCQq5DPMSIxGVnVbtcpVKZZWP86ovS+Udmn8dP/0wBe3zryCrsBTv/nYCiR9vQ4/hs/FG33HYGNsVBcqa33mTiIiIiJxfg3tOd87lyp/TzVM+zNOuPXIFV67lYUyXCCjkN08TfvGXE/j5cDqeuzMKL97dFoDhutzR3+5BqxBPrHvm9srz5WlhBnY4LUynF/h290XM3noWWl3lfSrcR43nekThwQ5hUCrKHY+7cfqWEAL//uMMZq47CZ0AYoM88MUDbRAb7Flp2q0n0vHub8dxNtNwutfg24IxY2Bz+Lsr8cr//sHPh9OhkMvw+cOdMLBNqEudFlZQpsePh68i6eRV7Em5Dq3u5vamlMtwexNf3Bnjjy6RvmjfyBcaH6+bH3aifQQAnjrqIvuIatPy1NGb73nqaO3Tch9R+7TcRxj+5z6ibmm5jwAA5F69Ct8Qx3lOd8MLuh2k4h3db4evYMIP+wEAM+9rh4e7NpHmJX68Dacz8vHv0V3Q57ZQAMDJtDz0n/sH/DyUOPhWP7uUmSp34XohXlx2CHtSrwMAercMxqPxUfD3VMLXXYk9KVmYtyUZV3IMX4JBXmrc37kRHuzSGLEh3riYVYhfDl7G6gOXkJyRDwAY0iECM+9rB88qnkttVFKmw7zNp7Fw2xno9AL+Hkp0iPRD0smrhhHuhzthULtw61aAnRWUlGHnmUxsO3UVSacycOG66Y8CN7kMbSJ80DnKH3E3XuG+NX++JRERERGZcrTYz2pB9/z58zF79mykpaWhQ4cOmDdvHrp27Vpl+uXLl+PNN99Eamoqmjdvjg8//BCDBg2S5gshMG3aNHz99dfIzs5G9+7dsXDhQjRv3rxG5XG0iq+vvanXEe7njkZ+lv1xfvRSDhb9lYqf91+UprVr5Iv/PXcnACCrQIvO726EEMDfryci2NtwJLCgpAxtp6+HEMDeNxIR5OVYD6RvqDYdT8fkZQeRW1wGT5UCb97dGg/dHgmZzPQGZ8WlOvy45zwWJJ3B1XJ3oG8S4IHz5e7ErXaT4/XBt+GxO6LM8qjO0Us5eHnFYZy4kgsAUMhl+GxEJwxu79oBd0VCCJy9VoBtN0bA953PMqlvo3BfjSEIb2IIwltH+JiefWBDer1AZoEW2YVayGSATCaDXCaDQiaDTAbI5TLIZYD8xnS5DPBxV9qtvERERESOFvtZJej+6aefMGrUKHzxxReIj4/H3LlzsXz5cpw8eRIhISFm6Xfs2IGePXti5syZuPvuu/HDDz/gww8/xP79+9G2reH05Q8//BAzZ87Ed999h+joaLz55ps4cuQIjh8/Do3m1tdIOlrF18cPu8/jtVVH4O+hxNaXesPPQ2WRfAtKynDnh1uQVWh++tN/Hu+K5fsuIrtQiz+TryFco8NzLfIxfPhwAMCyZcvw8T9euKZVYOHIzvjtyBUUlJRhbPdo9GwRbJHyUc2V6fT4eOMpLEg6AwDo1MQPn43ohMgAj2o/V6rTY+s/GVi29yK2nsyATi8gkwF3RAfi3k6N0L9tGHzd63bts7ZMjy+2ncGvhy5jct8WtRrhLisrw7JlywAAw4cPh5ub5R68YM28b0UIgYtZRdh/Pgv7zmVh//ksnLiSB53edLesUcrRvpGfNBreuYkfAi1wYEuvF8gq1OJKTjEuZxchLbcYl7OLcSWnCFdyDH/Tc0pMTo+vCbkMCPXRIMLP/cZLg0Z+7gj3vfm/r7uyVgduiIiIiGrK0WI/qwTd8fHxuP322/H5558DAPR6PSIjI/Hcc89hypQpZukfeughFBQUYM2aNdK0O+64Ax07dsQXX3wBIQQiIiLw4osv4qWXXgIA5OTkIDQ0FIsXL8aIESNuWSZHq/i6EkKg7yd/4PSN03yfvDMaI7pGIjbEu855ZuaX4LcjV7Dt5FVs/icDAHBHTAAe7x6Nz7Yk4+ilXLPPdHK7hI7KK5g6dSoAYObMmdiqjUGqLsAknUwGDG4XjvjoAPyrVQga+1cf9NGtacv00AsBjdL80XfZhVr8eugyftxzQRpVHtOtKV4bdBtUbrUbeczIK8b+c1noEOln99OdtVotZs6cCQCYOnUqVCrLHGiydt51UVBShkMXs7H/nDEQz0ZOkfmBsAhfDQK91PDzUMLfQwV/DyX8bvz191RJB+Ou5ZXgWr7hlZmvxdX8ElzL1+JafgmuF2jNAvzKyGSQDrbo9QJCGB4ZpxMCesOtRaG/Ma2m3ygeKgUi/NwR5qNBiI8aId4ahHirzf53hGe3CyFQqhMo1elRphPQ6vQo0+tRWiZQqtebTC8t00MAUCpkcJPL4Vbur9L4vrJpchkPQhAREVmIo8V+Fv81o9VqsW/fPikYAwC5XI7ExETs3Lmz0s/s3LkTkydPNpnWv39/rF69GgCQkpKCtLQ0JCYmSvN9fX0RHx+PnTt31ijoro303GKzUz6r+iEpcOtfmMYfqABg/H0rkwGXs4twNa8EOr1A81BveKkVhtM25TJczCrC0Us52HcuC6mZBWjXyA/dYwOReq1ACrgB4JvtKfhmewru79wY7Rr5IMhbDV93JdzkchRqy5ByrQCRAR4I9FShUKuDRqnAucwC5BWXIT2vGLlFpdj6z1Wk5d68qcWs+9tj+O2RAIDz1wvNgu72jXxwW+YBs/UMlBUiFTeD7raNfHD0Ui7WHL6CNYevQLXmBB5LiEL7xr44dCEHV/NL0MjPHTHBnvBQKeChUkCjVEBbpkdecRlyi0uRV1wGvRDwVLlB7SaXattDpYCX2g0yGVCk1aOoVIeiUh2KtTrohIBSIYfKTQ6VQgalQl7uvfzGexkEYFhOUSlyikqRW1yKUp0eajcF1G5yaJSGv2qlHBo3BdRKOdRuhkC3oKQMBdoyFJTobvyvQ+GNaXo94OepRICHCv6eKvi6K1Gk1SHnxnKyC0tv/K9FbnEZ1G5y+Lgr4e+hRLivO8J9NVAq5NDpBQq0ZTiXWYizVwtwMasQGXmGQAkwnOrt56GEp8oNKjfDD/dTafnSqKSnSoEP7m+PezpE3LKPVibEW4MBbRvW6d+OwFPthm7NgtCtWRAAQ5B79lpBuSA8C8kZ+bicU4zLOdXcjKaGZDLDdfwRvhqE+7ojzFeDCD8NwnzdEeGrQZivBqE+mhqfLq7XC1wrKMHlbMPoueF14/8cw/tr+VoUanU4nZFvsj+rjLfaDcE+akMQ7q2Bl8YNbnLDflIhk0FxI2BVyOVQyAwBrTTvRjptmR7FN/YRRaU6FJfeeK/Vobjsxt8b041pSkp1NwPtGhyYsASF3LAuKuP+ys1032WcpqpkmlIhh7rcfIX85un+5S8LkMkgXQ4AoFyam39lsnLTITM5wKLXC+gr/K+7cbBFZ5ynv3kQpqp5hukCej1u5G0+T6e/eVBHVy5Pffn35cojkwEKk/WUQS43vfTBMO/m/wq56foaPlPztDKZDAq5eVq5dOlFhbQ3ppulNZZRbqhz4/EXmUwGGW7eD8w47+a0cmkrpJfdaD/jTLP5N+YZ8xO48cwdiBt/DXUvYJgpTa8wT9xIcHO6YZEV80HF/KtbRiVlQbnllV92lfmXe4/y5RI1W0ZF5evZbGKF6eWPn8nKzaksD5O0VRx4K9/+lS+j5ss2zbcm5a8kbRXLvlV93Ko8NVXXj9Z1mbK6LtEu61i3T7riId/C/Dx7F8GExYPua9euQafTITQ01GR6aGgo/vnnn0o/k5aWVmn6tLQ0ab5xWlVpKiopKUFJubsu5uaaj9ZWZcmuc5i35XSN09tCem46Np1Il94PaheGHWcykX3jVPCf91/Ez/vrnr9MZrih079ahuC+zo2k6Q/dHol1R9NQqtNjzoMd0MjfHQqhwwcfbDHLo5lbJi64N0NGXgn+L7EFXkhsjoMXsrHhWBr2pFzH3nNZ+Pf2lLoXkkyUlOmRnlsCwPQAUetwHzwQ1xhDO0ZY5BRksi+5XIbYEC/EhnhJB8NyCktx+mo+sgu1yCosvfG33P8FpcgqNBycCfZWI8hLjSAvFYK81Ags93+wtxoBniqLXn8tl8tujFRr0DHSr9I0xaW6m6e05xQjI68EGXk3/uYa/5agqFSHvJIy5F0tw9mr1dy51Q5Uihsj1TcO4hkP7rkpDD/PyvQCZTqBMr1hFNwYvJfpDKPjlf2o1+kNwWRJmb7iZk1ERES1oC+p5q7zdmD/8/asZObMmZgxY0adPuuldkOYj/l14hUPHlU8KlTd0SXjLOPogl4IBHqqEOCpQnGpHtfyDddN6oWATicgl8sQHeSJAE+VdFqoj0aJUr0ePZsH49lezfBPWi42nUhH+8Z++HHPeWQXlqJIq4NMZvjBp1TI0cjPHVdyipBfUgaNmwIlZToEeaml01DVSsOP7Qn/ikWQl9rsFEdvjRIrxpk+Y1mrrfz6Tk9ZKX6bmIAzmcWIjzaMeHeM9EPHSD8IIZB06iq+33Ue1/JL0K6RL5oEeODM1Xyk5RajUGsYbSrUlkHtpoC3xg0+7kp4a9wgl8lQpNWhpEwH4/H4Qq0O+SVlkAFQKxVwN75UCshkMIxQlRlO+9Tqbvwt00sjV8bRYG+N4Q7ePho3+N64+VNJmR4lZTqUlN74W6aX/i8uvTGKrFbAU+0GD5Xhr6fK7cZfw/KzCkuRVaDF9UItsgtL4alWwNf9xrLclfBzN4yAe2vcoC3TI7e4FNcLtLicXYz03GKU6fWGES6FHJEBHmgW7IkmgZ4IvXHqrZtChpwbI+aFWh20ZXpodTo08vNAy7C6X2pAzsHXQ4m4KH97F6PONEoFooM8ER3kWWUaIQTyS8qQkVcinX2UkVuCQq0OOr0eOiFQpjfsL3U3Rj7L9IbR0rIbwavxpbpx5opGKZf2FRqlAhqV8X/5zWk35quVpmfGuN3YHi11Krhebwi+y3Q3A3Gd3rB/KtUJwzZ9Y7suKTOfZvzfZF656WV6cXMUURohvjlKqL8xomccSTamkf7i5mUDxtFY4+i5rNz/5eeVH/WtyTyFvNyN+SqMSN/8zM0ReEWFkWtFhRFpIcwvd5Be+pvrJ42sG9PqK6Yvl1ZfIa0Q0Olv/i99ziQP09H58mnLj/DrzcpZrm2E6SgsgCpGg4U0r6rR2spGlm9uZzfnG0e/KxtlLz/PMMBefsS8khH0cqPx0ueqy7/Ce5RbVsU8bsytYvT+5ntUKLN5PlXMQ9W/50zqzmR6uf8hqphuPg1Vpa0kv8ryqm7Zlf1bs/KXny7MpqEm61qL8tdUZQcqa/Apqy+jbutSy3LVaRl1+EydliMc9tIobVE+frJ3IcqxeNAdFBQEhUKB9PR0k+np6ekICwur9DNhYWHVpjf+TU9PR3h4uEmajh07Vprn1KlTTU5Zz83NRWRkZI3W4ZlezfBMr2Y1SmtPnZr4o1MTww/v/m0qr1tb83VX4o4Y8x/SMplhFP1fLc1vpEd146NRomY9msj5yGQyeGuU8NYo0SzY69YfcDJyuQxquQK3eOoeERER1UFubi5+mmjvUtxk8We6qFQqxMXFYfPmzdI0vV6PzZs3IyEhodLPJCQkmKQHgI0bN0rpo6OjERYWZpImNzcXu3fvrjJPtVoNHx8fkxcRERERERGRLVnlGPvkyZMxevRodOnSBV27dsXcuXNRUFCAsWPHAgBGjRqFRo0aSXcMfuGFF9CrVy989NFHGDx4MJYuXYq9e/fiq6++AmAY8Zg0aRLeffddNG/eXHpkWEREBIYNG1ajMhlP5ajNtd1UOa1Wi+Jiww2cjPVZ/r297/5Mrqdin7P03cvZf4mIiIhchzFGscKDuupGWMm8efNEkyZNhEqlEl27dhW7du2S5vXq1UuMHj3aJP2yZctEixYthEqlEm3atBG//fabyXy9Xi/efPNNERoaKtRqtejTp484efJkjctz5swZgRuXM/HFF1988cUXX3zxxRdffPHl2q8zZ87UK6a1FKs8p9sRZWdnw9/fH+fPn4evr6+9i0O1ZLwm/8KFC7xUwAmx/Zwb28+5sf2cF9vOubH9nBvbz7nl5OSgSZMmyMrKgp+fn72L47p3L69ILjdcvu7r68sNx4nx+nznxvZzbmw/58b2c15sO+fG9nNubD/nZowB7c0xSkFERERERETkghh0ExEREREREVlJgwm61Wo1pk2bBrVabe+iUB2w/Zwb28+5sf2cG9vPebHtnBvbz7mx/Zybo7Vfg7mRGhEREREREZGtNZiRbiIiIiIiIiJbY9BNREREREREZCUMuomIiIiIiIishEE3ERERERERkZU0mKB7/vz5aNq0KTQaDeLj47Fnzx57F6nBmT59OmQymcmrVatW0vzi4mJMmDABgYGB8PLywv3334/09HSTPM6fP4/BgwfDw8MDISEhePnll1FWVmaSJikpCZ07d4ZarUZsbCwWL15si9VzOX/88QfuueceREREQCaTYfXq1SbzhRB46623EB4eDnd3dyQmJiI5OdkkzfXr1zFy5Ej4+PjAz88PTzzxBPLz803SHD58GD169IBGo0FkZCRmzZplVpbly5ejVatW0Gg0aNeuHdauXWvx9XUlt2q7MWPGmG2LAwYMMEnDtrOfmTNn4vbbb4e3tzdCQkIwbNgwnDx50iSNLfeX/P6suZq0Xe/evc22v2effdYkDdvOPhYuXIj27dvDx8cHPj4+SEhIwO+//y7N53bn2G7Vftz2nMsHH3wAmUyGSZMmSdOcehsUDcDSpUuFSqUS3377rTh27Jh46qmnhJ+fn0hPT7d30RqUadOmiTZt2ogrV65Ir6tXr0rzn332WREZGSk2b94s9u7dK+644w7RrVs3aX5ZWZlo27atSExMFAcOHBBr164VQUFBYurUqVKas2fPCg8PDzF58mRx/PhxMW/ePKFQKMS6detsuq6uYO3ateL1118XK1euFADEqlWrTOZ/8MEHwtfXV6xevVocOnRIDBkyRERHR4uioiIpzYABA0SHDh3Erl27xJ9//iliY2PFww8/LM3PyckRoaGhYuTIkeLo0aPixx9/FO7u7uLLL7+U0vz1119CoVCIWbNmiePHj4s33nhDKJVKceTIEavXgbO6VduNHj1aDBgwwGRbvH79ukkatp399O/fXyxatEgcPXpUHDx4UAwaNEg0adJE5OfnS2lstb/k92ft1KTtevXqJZ566imT7S8nJ0eaz7azn19//VX89ttv4tSpU+LkyZPitddeE0qlUhw9elQIwe3O0d2q/bjtOY89e/aIpk2bivbt24sXXnhBmu7M22CDCLq7du0qJkyYIL3X6XQiIiJCzJw5046lanimTZsmOnToUOm87OxsoVQqxfLly6VpJ06cEADEzp07hRCGQEIul4u0tDQpzcKFC4WPj48oKSkRQgjxyiuviDZt2pjk/dBDD4n+/ftbeG0aloqBm16vF2FhYWL27NnStOzs/sCY1gAAeXhJREFUbKFWq8WPP/4ohBDi+PHjAoD4+++/pTS///67kMlk4tKlS0IIIRYsWCD8/f2l9hNCiFdffVW0bNlSej98+HAxePBgk/LEx8eLZ555xqLr6KqqCrqHDh1a5WfYdo4lIyNDABDbtm0TQth2f8nvz/qp2HZCGH74l/8RWRHbzrH4+/uLb775htudkzK2nxDc9pxFXl6eaN68udi4caNJmzn7Nujyp5drtVrs27cPiYmJ0jS5XI7ExETs3LnTjiVrmJKTkxEREYGYmBiMHDkS58+fBwDs27cPpaWlJu3UqlUrNGnSRGqnnTt3ol27dggNDZXS9O/fH7m5uTh27JiUpnwexjRsa8tKSUlBWlqaSV37+voiPj7epL38/PzQpUsXKU1iYiLkcjl2794tpenZsydUKpWUpn///jh58iSysrKkNGxTy0tKSkJISAhatmyJcePGITMzU5rHtnMsOTk5AICAgAAAtttf8vuz/iq2ndH333+PoKAgtG3bFlOnTkVhYaE0j23nGHQ6HZYuXYqCggIkJCRwu3MyFdvPiNue45swYQIGDx5sVs/Ovg261fmTTuLatWvQ6XQmlQ8AoaGh+Oeff+xUqoYpPj4eixcvRsuWLXHlyhXMmDEDPXr0wNGjR5GWlgaVSgU/Pz+Tz4SGhiItLQ0AkJaWVmk7GudVlyY3NxdFRUVwd3e30to1LMb6rqyuy7dFSEiIyXw3NzcEBASYpImOjjbLwzjP39+/yjY15kG1N2DAANx3332Ijo7GmTNn8Nprr2HgwIHYuXMnFAoF286B6PV6TJo0Cd27d0fbtm0BwGb7y6ysLH5/1kNlbQcAjzzyCKKiohAREYHDhw/j1VdfxcmTJ7Fy5UoAbDt7O3LkCBISElBcXAwvLy+sWrUKrVu3xsGDB7ndOYGq2g/gtucMli5div379+Pvv/82m+fs330uH3ST4xg4cKD0f/v27REfH4+oqCgsW7aMwTCRDY0YMUL6v127dmjfvj2aNWuGpKQk9OnTx44lo4omTJiAo0ePYvv27fYuCtVSVW339NNPS/+3a9cO4eHh6NOnD86cOYNmzZrZuphUQcuWLXHw4EHk5ORgxYoVGD16NLZt22bvYlENVdV+rVu35rbn4C5cuIAXXngBGzduhEajsXdxLM7lTy8PCgqCQqEwu7Ndeno6wsLC7FQqAgA/Pz+0aNECp0+fRlhYGLRaLbKzs03SlG+nsLCwStvROK+6ND4+PgzsLchY39VtV2FhYcjIyDCZX1ZWhuvXr1ukTbn9Wk5MTAyCgoJw+vRpAGw7RzFx4kSsWbMGW7duRePGjaXpttpf8vuz7qpqu8rEx8cDgMn2x7azH5VKhdjYWMTFxWHmzJno0KEDPv30U253TqKq9qsMtz3Hsm/fPmRkZKBz585wc3ODm5sbtm3bhs8++wxubm4IDQ116m3Q5YNulUqFuLg4bN68WZqm1+uxefNmk2s8yPby8/Nx5swZhIeHIy4uDkql0qSdTp48ifPnz0vtlJCQgCNHjpgEAxs3boSPj4906lBCQoJJHsY0bGvLio6ORlhYmEld5+bmYvfu3SbtlZ2djX379klptmzZAr1eL33RJSQk4I8//kBpaamUZuPGjWjZsiX8/f2lNGxT67p48SIyMzMRHh4OgG1nb0IITJw4EatWrcKWLVvMTuO31f6S35+1d6u2q8zBgwcBwGT7Y9s5Dr1ej5KSEm53TsrYfpXhtudY+vTpgyNHjuDgwYPSq0uXLhg5cqT0v1Nvg3W+BZsTWbp0qVCr1WLx4sXi+PHj4umnnxZ+fn4md7Yj63vxxRdFUlKSSElJEX/99ZdITEwUQUFBIiMjQwhheAxAkyZNxJYtW8TevXtFQkKCSEhIkD5vfAxAv379xMGDB8W6detEcHBwpY8BePnll8WJEyfE/Pnz+ciwOsrLyxMHDhwQBw4cEADExx9/LA4cOCDOnTsnhDA8MszPz0/88ssv4vDhw2Lo0KGVPjKsU6dOYvfu3WL79u2iefPmJo+dys7OFqGhoeKxxx4TR48eFUuXLhUeHh5mj51yc3MTc+bMESdOnBDTpk3jY6duobq2y8vLEy+99JLYuXOnSElJEZs2bRKdO3cWzZs3F8XFxVIebDv7GTdunPD19RVJSUkmj7YpLCyU0thqf8nvz9q5VdudPn1avP3222Lv3r0iJSVF/PLLLyImJkb07NlTyoNtZz9TpkwR27ZtEykpKeLw4cNiypQpQiaTiQ0bNgghuN05uuraj9uec6p4x3ln3gYbRNAthBDz5s0TTZo0ESqVSnTt2lXs2rXL3kVqcB566CERHh4uVCqVaNSokXjooYfE6dOnpflFRUVi/Pjxwt/fX3h4eIh7771XXLlyxSSP1NRUMXDgQOHu7i6CgoLEiy++KEpLS03SbN26VXTs2FGoVCoRExMjFi1aZIvVczlbt24VAMxeo0ePFkIYHhv25ptvitDQUKFWq0WfPn3EyZMnTfLIzMwUDz/8sPDy8hI+Pj5i7NixIi8vzyTNoUOHxJ133inUarVo1KiR+OCDD8zKsmzZMtGiRQuhUqlEmzZtxG+//Wa19XYF1bVdYWGh6NevnwgODhZKpVJERUWJp556yuyLhG1nP5W1HQCTfZkt95f8/qy5W7Xd+fPnRc+ePUVAQIBQq9UiNjZWvPzyyybPChaCbWcvjz/+uIiKihIqlUoEBweLPn36SAG3ENzuHF117cdtzzlVDLqdeRuUCSFE3cfJiYiIiIiIiKgqLn9NNxEREREREZG9MOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIiIiIiIiIrYdBNREREREREZCUMuomIiIiIiIishEE3ERERERERkZUw6CYiomr17t0bvXv3tlh+qampkMlkWLx4scXydEazZs1Cq1atoNfrb5l2zJgx8PLyskGpyBk1bdoUY8aMqfXnMjMz4enpibVr11q+UEREJGHQTUTkhBYvXgyZTCa9NBoNWrRogYkTJyI9Pd3exaNbyM3NxYcffohXX30Vcrnhq7iwsBDTp09HUlKSfQtHAIAFCxa4/IGhwMBAPPnkk3jzzTftXRQiIpfmZu8CEBFR3b399tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YWlaYWEhZsyYAQAWPbOA6mbBggUICgqq0wiyM3n22Wfx2WefYcuWLbjrrrvsXRwiIpfEkW4iIic2cOBAPProo3jyySexePFiTJo0CSkpKfjll1/qnXdhYSEAQKVSQaVS1Ts/e9Pr9SguLrZ3MQAAixYtwpAhQ6DRaOxdlFsqKCiwdxHIim677Ta0bdvW5Uf1iYjsiUE3EZELMY5UpaSkSNOWLFmCuLg4uLu7IyAgACNGjMCFCxdMPte7d2+0bdsW+/btQ8+ePeHh4YHXXntNmldx5DUjIwNPPPEEQkNDodFo0KFDB3z33Xdm5cnOzsaYMWPg6+sLPz8/jB49GtnZ2ZWWfcuWLejRowc8PT3h5+eHoUOH4sSJE2bpkpKS0KVLF2g0GjRr1gxffvklpk+fDplMZpJOJpNh4sSJ+P7779GmTRuo1WqsW7cOADBnzhx069YNgYGBcHd3R1xcHFasWGG2LGMey5cvR+vWreHu7o6EhAQcOXIEAPDll18iNjYWGo0GvXv3RmpqaqXrVl5KSgoOHz6MxMREaVpqaiqCg4MBADNmzJAuG5g+fbrJZy9duoRhw4bBy8sLwcHBeOmll6DT6UzS6PV6zJ07F23atIFGo0FoaCieeeYZZGVl3bJsxmvHz5w5g0GDBsHb2xsjR46sVb579+5F//79ERQUBHd3d0RHR+Pxxx83SVNQUIAXX3wRkZGRUKvVaNmyJebMmQMhhEk6Y/2vXr0abdu2hVqtRps2baR2NDp37hzGjx+Pli1bwt3dHYGBgXjwwQfN2sN4WcZff/2FyZMnIzg4GJ6enrj33ntx9epVKV3Tpk1x7NgxbNu2TWqLW519UNs+dat1Amre1yuTnZ2NSZMmSXUcGxuLDz/8sNJ7CPTt2xf/+9//zOqfiIgsg6eXExG5kDNnzgAwXKsJAO+99x7efPNNDB8+HE8++SSuXr2KefPmoWfPnjhw4AD8/Pykz2ZmZmLgwIEYMWIEHn30UYSGhla6jKKiIvTu3RunT5/GxIkTER0djeXLl2PMmDHIzs7GCy+8AAAQQmDo0KHYvn07nn32Wdx2221YtWoVRo8ebZbnpk2bMHDgQMTExGD69OkoKirCvHnz0L17d+zfvx9NmzYFABw4cAADBgxAeHg4ZsyYAZ1Oh7ffflsKWCvasmULli1bhokTJyIoKEjK59NPP8WQIUMwcuRIaLVaLF26FA8++CDWrFmDwYMHm+Tx559/4tdff8WECRMAADNnzsTdd9+NV155BQsWLMD48eORlZWFWbNm4fHHH8eWLVuqbaMdO3YAADp37ixNCw4OxsKFCzFu3Djce++9uO+++wAA7du3l9LodDr0798f8fHxmDNnDjZt2oSPPvoIzZo1w7hx46R0zzzzDBYvXoyxY8fi+eefR0pKCj7//HMcOHAAf/31F5RKZbXlKysrQ//+/XHnnXdizpw50mUKNck3IyMD/fr1Q3BwMKZMmQI/Pz+kpqZi5cqVUv5CCAwZMgRbt27FE088gY4dO2L9+vV4+eWXcenSJXzyyScm5dm+fTtWrlyJ8ePHw9vbG5999hnuv/9+nD9/Xurnf//9N3bs2IERI0agcePGSE1NxcKFC9G7d28cP37c7FKL5557Dv7+/pg2bRpSU1Mxd+5cTJw4ET/99BMAYO7cuXjuuefg5eWF119/HQCq3B6MatOnarJOte3r5RUWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckfVxcHD755BMcO3YMbdu2vWX+RERUS4KIiJzOokWLBACxadMmcfXqVXHhwgWxdOlSERgYKNzd3cXFixdFamqqUCgU4r333jP57JEjR4Sbm5vJ9F69egkA4osvvjBbVq9evUSvXr2k93PnzhUAxJIlS6RpWq1WJCQkCC8vL5GbmyuEEGL16tUCgJg1a5aUrqysTPTo0UMAEIsWLZKmd+zYUYSEhIjMzExp2qFDh4RcLhejRo2Spt1zzz3Cw8NDXLp0SZqWnJws3NzcRMWvNABCLpeLY8eOma1TYWGhyXutVivatm0r7rrrLrM81Gq1SElJkaZ9+eWXAoAICwuT1lUIIaZOnSoAmKStzBtvvCEAiLy8PJPpV69eFQDEtGnTzD4zevRoAUC8/fbbJtM7deok4uLipPd//vmnACC+//57k3Tr1q2rdHpVy5kyZYrJ9Jrmu2rVKgFA/P3331Uuw9gv3n33XZPpDzzwgJDJZOL06dPSNABCpVKZTDt06JAAIObNmydNq9ieQgixc+dOAUD85z//kaYZt5vExESh1+ul6f/3f/8nFAqFyM7Olqa1adPGpN/fSm36VE3WqTZ9PSoqSowePVp6/8477whPT09x6tQpk3RTpkwRCoVCnD9/3mT6jh07BADx008/1Xh9iYio5nh6ORGRE0tMTERwcDAiIyMxYsQIeHl5YdWqVWjUqBFWrlwJvV6P4cOH49q1a9IrLCwMzZs3x9atW03yUqvVGDt27C2XuXbtWoSFhZncBEypVOL5559Hfn4+tm3bJqVzc3MzGYVVKBR47rnnTPK7cuUKDh48iDFjxiAgIECa3r59e/Tt21d6nJFOp8OmTZswbNgwRERESOliY2MxcODASsvaq1cvtG7d2my6u7u79H9WVhZycnLQo0cP7N+/3yxtnz59pBFyAIiPjwcA3H///fD29jabfvbs2UrLYpSZmQk3N7c6PQLs2WefNXnfo0cPk+UtX74cvr6+6Nu3r0mbx8XFwcvLy6zNq1K+zWqTr/HMiTVr1qC0tLTSvNeuXQuFQoHnn3/eZPqLL74IIQR+//13k+mJiYlo1qyZ9L59+/bw8fExWe/y7VlaWorMzEzExsbCz8+v0jZ9+umnTU7R7tGjB3Q6Hc6dO1ddtVSrNn3qVutUl75e3vLly9GjRw/4+/ubtFdiYiJ0Oh3++OMPk/T+/v4AgGvXrtVupYmIqEZ4ejkRkRObP38+WrRoATc3N4SGhqJly5bSI6iSk5MhhEDz5s0r/WzF04wbNWpUoxumnTt3Ds2bN5eWY3TbbbdJ841/w8PDzYLLli1bmuVX2XRjnuvXr0dBQQFyc3NRVFSE2NhYs3SVTQOA6OjoSqevWbMG7777Lg4ePIiSkhJpemXXyjZp0sTkva+vLwAgMjKy0uk1uXa6LjQajdmpxf7+/ibLS05ORk5ODkJCQirNIyMj45bLcXNzQ+PGjU2m1TTfXr164f7778eMGTPwySefoHfv3hg2bBgeeeQRqNVqAIb2joiIMDlgAZj3H6OK9Q+Yr3dRURFmzpyJRYsW4dKlSybXJufk5Jh9vmKexqCzPm1Xnz5lLINx+RkZGbXu6+UlJyfj8OHDVZ6KXrEfGOurJteKExFR7THoJiJyYl27dkWXLl0qnafX6yGTyfD7779DoVCYza8YDJcfqXMVla3Tn3/+iSFDhqBnz55YsGABwsPDoVQqsWjRIvzwww9m6Suru+qmi1vcjCowMBBlZWXIy8szCzyrU9XyytPr9QgJCcH3339f6fyaXA+sVqvNDqjUNF+ZTIYVK1Zg165d+N///of169fj8ccfx0cffYRdu3bVaXS/JvX83HPPYdGiRZg0aRISEhLg6+sLmUyGESNGVHrjsLq2XVUs1afquvyK9Ho9+vbti1deeaXS+S1atDB5bwz2g4KCLLJ8IiIyxaCbiMhFNWvWDEIIREdHm/3Iro+oqCgcPnwYer3eJDj7559/pPnGv5s3b0Z+fr5JsHXy5Emz/CqbbswzKCgInp6e0Gg00Gg0OH36tFm6yqZV5eeff4ZGo8H69eul0VfA8BgvW2jVqhUAw13My98ozRKjjM2aNcOmTZvQvXt3ix5EqW2+d9xxB+644w689957+OGHHzBy5EgsXboUTz75JKKiorBp0yazgw4V+09trFixAqNHj8ZHH30kTSsuLq7yTvk1UZv2sHSfCgkJqVdfb9asGfLz803ukF8d49MOjGcbEBGRZfGabiIiF3XfffdBoVBgxowZZiNoQghkZmbWKd9BgwYhLS1NutMzYLjj9bx58+Dl5YVevXpJ6crKyrBw4UIpnU6nw7x580zyCw8PR8eOHfHdd9+ZBElHjx7Fhg0bMGjQIACG0cHExESsXr0aly9fltKdPn3a7Drg6igUCshkMpNHbaWmpmL16tU1zqM+EhISABgerVWe8Q7b9QkUhw8fDp1Oh3feecdsXllZWZ3zrmm+WVlZZn2tY8eOACCdcj1o0CDodDp8/vnnJuk++eQTyGSyGl2zXJFCoTBb7rx588wep1Ybnp6eNa4vS/ep+vb14cOHY+fOnVi/fr3ZvOzsbJSVlZlM27dvH3x9fdGmTZs6lZeIiKrHkW4iIhfVrFkzvPvuu5g6dSpSU1MxbNgweHt7IyUlBatWrcLTTz+Nl156qdb5Pv300/jyyy8xZswY7Nu3D02bNsWKFSvw119/Ye7cudLo5T333IPu3btjypQpSE1NRevWrbFy5cpKr7GdPXs2Bg4ciISEBDzxxBPSI8N8fX1NnlU9ffp0bNiwAd27d8e4ceOk4K1t27Y4ePBgjco/ePBgfPzxxxgwYAAeeeQRZGRkYP78+YiNjcXhw4drXR+1FRMTg7Zt22LTpk0mz692d3dH69at8dNPP6FFixYICAhA27Zta/UIp169euGZZ57BzJkzcfDgQfTr1w9KpRLJyclYvnw5Pv30UzzwwAO1LnNN8/3uu++wYMEC3HvvvWjWrBny8vLw9ddfw8fHRzp4cs899+Bf//oXXn/9daSmpqJDhw7YsGEDfvnlF0yaNMnkBmM1dffdd+O///0vfH190bp1a+zcuRObNm2SHr9VF3FxcVi4cCHeffddxMbGIiQkBHfddVelaa3Rp+rT119++WX8+uuvuPvuuzFmzBjExcWhoKAAR44cwYoVK5CammpyKvnGjRtxzz338JpuIiJrscs904mIqF6Mjz6q7tFMRj///LO48847haenp/D09BStWrUSEyZMECdPnpTS9OrVS7Rp06bSz1d8ZJgQQqSnp4uxY8eKoKAgoVKpRLt27UweAWaUmZkpHnvsMeHj4yN8fX3FY489Jg4cOGD2yDAhhNi0aZPo3r27cHd3Fz4+PuKee+4Rx48fN8tz8+bNolOnTkKlUolmzZqJb775Rrz44otCo9GYpAMgJkyYUOk6/fvf/xbNmzcXarVatGrVSixatEhMmzat0seOVcwjJSVFABCzZ882mb5161YBQCxfvrzSZZb38ccfCy8vL7PHTO3YsUPExcUJlUpl8viw0aNHC09PT7N8KiuzEEJ89dVXIi4uTri7uwtvb2/Rrl078corr4jLly9XW66qllPTfPfv3y8efvhh0aRJE6FWq0VISIi4++67xd69e03yycvLE//3f/8nIiIihFKpFM2bNxezZ882eYyXEFW3YcVHZGVlZUn90cvLS/Tv31/8888/Zumq2m6Mbbd161ZpWlpamhg8eLDw9vYWAG75+LD69KnK1kmImvf1yj6bl5cnpk6dKmJjY4VKpRJBQUGiW7duYs6cOUKr1UrpTpw4IT1+kIiIrEMmhIXu2kFERGQnw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLDzxxBP2Lg45EUv39UmTJuGPP/7Avn37ONJNRGQlvKabiIicSlFRkcn75ORkrF27Fr1797ZPgerA19cXr7zyCmbPnl3p3bWJAOv39czMTHzzzTd49913GXATEVkRR7qJiMiphIeHY8yYMYiJicG5c+ewcOFClJSU4MCBA1U+k5zIGbGvExG5Bt5IjYiInMqAAQPw448/Ii0tDWq1GgkJCXj//fcZhJDLYV8nInINHOkmIiIiIiIishJe001ERERERERkJQy6iYiIiIiIiKykwVzTrdfrcfnyZXh7e/MOnURERERERC5KCIG8vDxERERALrf/OHODCbovX76MyMhIexeDiIiIiIiIbODChQto3LixvYvRcIJub29vAIaK9/HxsXNpiGxDCIHS0lIAgFKprPYsj9qktbUale3oTEAmB9q8aj7v2IeA0ANtp9YtbyIiIiJyGrm5uYiMjJRiQHtrMEG38Ye0j48Pg25qMLRaLebOnQsAmDp1KlQqlUXS2lqNyubtARx5C/DSAO3evDn9yDtAyvtAu7eBSrZ9R15vIiIiIqo7RxlMaTBBNxG5OGOgfeQt5GgVuNbkeTRL+8QQiLd72zQQJyIiIiKyEQbdROQ62r2J/FI57l0diHPaLVje7Ht0voMBNxERERHZj/1v5UZEZEFvJQ/GWW1j6KDA3IxHGXATERERkV0x6CYil7Fy/0WsPHAJcuiggA5/5HXCga0f2btYRERERNSAMegmIpeQcq0Ab6zcDwCY1D4d98VFAQA+3ZFvuJkaEREREZEdMOgmIqdXUqbDc9+uRWGZAvEheZgw4klMvCsWCrkMSXldcGj3fxl4ExEREZFd8EZqRC5MLpejdevW0v+WSmtrtyrb7HUncfS6B/xUZZj7xFAo5DJEBXpiaMcIrNx/CZ8VTce/xak65U1EREREVB8yIYSwdyFsITc3F76+vsjJyeFzuolcyNaTGRi76G8AwNejuqBv61Bp3tmr+Uj8eBv0Aljz3J1o28jXXsUkIiIiIhtxtNiPwzpE5LQy8orx0rJDAIDRCVEmATcAxAR7YUiHCADAp5uTbV4+IiIiIiIG3UTktJb9fQGZBVq0CvPG1EG3VZpm4l3NIZMBG4+n49jlHBuXkIiIiIgaOgbdRC5Mq9VixowZmDFjBrRarcXS2lpVZTtwPhsAMLxLJDRKRaWfjQ3xwj3tDaPd8zafrnHeRERERESWwKCbiJySEAKHLmYDADpE+lWb9rm7YiGTAeuOpeGftFzrF46IiIiI6AYG3UTklC5mFeFavhZuchnaRFR/g4zmod4Y1C4cQOWj3URERERE1sKgm4ic0sEL2QCA28J9qjy1vLzn72oOAFh79ArSc4utWTQiIiIiIgmDbiJySoduBN0db3FquVHLMG+0a+QLIYBdZzOtVzAiIiIionIYdBORUzKOdN/qeu7y7ogJAADsOnvdCiUiIiIiIjLHoJuInE6pTo+jNx7/VdORbgCIjw4EAOzmSDcRERER2YibvQtARNYjl8vRvHlz6X9LpbW1imX7Jy0PxaV6eGvcEBPkWeN8bo8OgEwGnL1WgIzcYoT4aBx6vYmIiIjI+THoJnJhbm5ueOSRRyye1tYqlk16VFhjP8jlshrn4+uuRJsIHxy9lItdKdcxpEOEQ683ERERETk/DusQkdM5eD4bQO1OLTcynmLOm6kRERERkS0w6CYipyONdNch6L4jhtd1ExEREZHt8PRyIhem1WoxZ84cAMBLL70ElUplkbS2Vr5sz06chOSMfABAh0jfWufVtanhuu4zVwuQkVcMP7XcYdebiIiIiJwfR7qJXFxpaSlKS0stntbWjGU7ejkXQgCN/NwR4q2pdT6+HkrcFuYDANh949FhjrzeREREROTcGHQTkVM5dLH2jwqrSDrFPIWnmBMRERGRdTHoJiKncvhSLoC6nVpudEdMAABg142RbiIiIiIia2HQTURO5eZIt3+d8+h643ndpzPycS2/xFJFIyIiIiIyw6CbiJxGgVAiI68ECrkMbRv51DkfPw8VWt24rntPapalikdEREREZIZBNxE5jat6TwBAi1BveKjq9/AF4ynmDLqJiIiIyJoYdBO5MJlMhqioKERFRUEmk1ksra0Zy6b1igAAdKzH9dxG8dGGm6ntScly2PUmIiIiIucnE0IIexfCFnJzc+Hr64ucnBz4+NT9tFQisp8RX+3ErrPX8eH97fDQ7U3qlVdWgRad3tkIANj7RiKCvNSWKCIRERER2ZmjxX4c6SYip6DTCxy5cRO1DvV4XJiRv6cKrcK8AQB7UngXcyIiIiKyDgbdROQUTmfko0Crg4dKgeYh3hbJ0/i87l1n+bxuIiIiIrIOuwbd8+fPR9OmTaHRaBAfH489e/ZUmXbx4sWQyWQmL41GY8PSEjkfrVaL2bNnY/bs2dBqtRZLa2tarRYffL0UANA2wgcKuWWuvTbeTG3NnpMOud5ERERE5PzsFnT/9NNPmDx5MqZNm4b9+/ejQ4cO6N+/PzIyMqr8jI+PD65cuSK9zp07Z8MSEzmnwsJCFBYWWjytrV0qVgIAOjSu/03UjLreuJnadZ0G1wsYcBMRERGR5dkt6P7444/x1FNPYezYsWjdujW++OILeHh44Ntvv63yMzKZDGFhYdIrNDTUhiUmInu6pvcAALSrx/O5KwrwVKFlqBcAIE3vZbF8iYiIiIiM7BJ0a7Va7Nu3D4mJiTcLIpcjMTERO3furPJz+fn5iIqKQmRkJIYOHYpjx47ZorhEZGdlOj1yhDsAoHW4Za7nNrq9qT8AIE1n2XyJiIiIiAA7Bd3Xrl2DTqczG6kODQ1FWlpapZ9p2bIlvv32W/zyyy9YsmQJ9Ho9unXrhosXL1aavqSkBLm5uSYvInJOqdcLoYMcbtChsZ+7RfOONwbdegbdRERERGR5TnP38oSEBIwaNQodO3ZEr169sHLlSgQHB+PLL7+sNP3MmTPh6+srvSIjI21cYiKylFPp+QAAP1kR5Ba6iZqRcaQ7S3jwum4iIiIisji7BN1BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPn260vlTp05FTk6O9Lpw4UK9y01E9mEMuv3lRRbPO8BTBT+ZId+/z2VZPH8iIiIiatjsEnSrVCrExcVh8+bN0jS9Xo/NmzcjISGhRnnodDocOXIE4eHhlc5Xq9Xw8fExeRE1NDKZDBEREYiIiIBMVv0IcW3S2pox6I72U1m8bDKZDM289QCAPanZFs2biIiIiMjNXguePHkyRo8ejS5duqBr166YO3cuCgoKMHbsWADAqFGj0KhRI8ycORMA8Pbbb+OOO+5AbGwssrOzMXv2bJw7dw5PPvmkvVaByOEplUo89dRTFk9rayczDEH3mPv6QalUWjRvpVKJJ+7pgX3f78ffqRzpJiIiIiLLslvQ/dBDD+Hq1at46623kJaWho4dO2LdunXSzdXOnz8PufzmQHxWVhaeeuoppKWlwd/fH3FxcdixYwdat25tr1UgIhvILynDheuG079bhVnnjJWu0QEAgH/S8pBVoIW/p8oqyyEiIiKihkcmhBD2LoQt5ObmwtfXFzk5OTzVnMiJ7D+fhfsW7ECwtxp/v5546w/UUd+PtyE5Ix9fPBqHAW1rdm8JIiIiInI8jhb7Oc3dy4mo9kpLSzF37lzMnTsXpaWlFktrSyfT8gAA7iXXrVI243q75xseP7g7JdOi+RMRERFRw2a308uJyPqEEMjJyZH+t1RaWzIG3d76POTk5Fi8bMb1DiiTA/DDrrPXLZo/ERERETVsHOkmIof2T1ouAMBfZvnHhZUXpsiTlpddyOd1ExEREZFlMOgmIoclhJBGuq3xjO7y3GVlaBbsCSGAPSkc7SYiIiIiy2DQTUQO62peCbIKSyGXAX5WHukGgK5N/QGAp5gTERERkcUw6CYih/XPjVHuqEAPuMmsf535zaCbN1MjIiIiIstg0E1EDst4PXfLUC+bLM8YdJ9Iy0VOoePcwZ2IiIiInBfvXk7kwmQyGYKDg6X/LZXWVowj3S1CvaHJs07Zyq93iI8GzYI9ceZqAfakXkff1qEWXRYRERERNTwMuolcmFKpxPjx4y2e1laMN1FrHeGHAf2sU7aK6x0fE4gzVwuw62wmg24iIiIiqjeeXk5EDqlMp0dyRj4AoFWYt82We0dMIABgdwqv6yYiIiKi+mPQTUQOKTWzENoyPdyVCjQJ8LDZcu+IDgAAHLuci5wiXtdNRERERPXDoJvIhZWWlmLBggVYsGABSkurDyBrk9YWjKeWtwjzhk5XZrWyVVzvEB8NYoIMz+v+m8/rJiIiIqJ64jXdRC5MCIGrV69K/1sqrS2cvHHn8lah3lYtW2V5x8cE4uw1w3Xdibyum4iIiIjqgSPdROSQjHcub2nD67mN7ogxnGK+myPdRERERFRPDLqJyCGdTDcE3ba8iZqR8WZqxy7n8LpuIiIiIqoXBt1E5HAKSspwLrMQgH1GukN9NIgO8oReAHtTOdpNRERERHXHoJuIHM6pG6PcQV5qBHqp7VIGnmJORERERJbAoJuIHI7xzuX2OLXcKD7acIr5rrN8XjcRERER1R3vXk7kwmQyGXx9faX/LZXW2ireRM2aZasq7/gbI91HL+Ugt7gUPhqlRZdLRERERA2DTDjCs4FsIDc3F76+vsjJyYGPj4+9i0NE1Xj4q13YeTYTsx9ojwe7RNqtHL1nb0VqZiEWjbkd/2oVYrdyEBEREVHNOVrsx9PLicih6PUCJ4zP6A6z707SeIr5Tp5iTkRERER1xKCbiBzK8Su5yC4shadKYZc7l5d3Z/MgAMD/Dl1GqU5v17IQERERkXNi0E3kwkpLS/H111/j66+/Rmlp9c+brk1aa9p26ioAIKFZIFRucquXrbq8+7UJRZCXCldyirH+WJpFl0tEREREDQODbiIXJoTA5cuXcfnyZdzq9g21SWtNfyYbgu6eLYKladYsW3V5q90UeCQ+CgCw6K9Uiy6XiIiIiBoGBt1E5DAKSsqw71wWAKBn8+BbpLaNR+9oAqVChn3nsnD4Yra9i0NEREREToZBNxE5jJ1nMlGqE4gMcEdUoIe9iwMACPHW4O72EQA42k1EREREtcegm4gchnRqefNguz8rvLyx3ZsCANYcvoyM3GL7FoaIiIiInAqDbiJyGH8kXwNgej23I2jf2A9xUf4o1Qks2X3e3sUhIiIiIifCoJuIHMKF64VIuVYAhVyGhGaB9i6OGeNo9w+7z6GkTGffwhARERGR02DQTeTiPDw84OFRs+uja5PW0v64cWp55yZ+8NEozeZbs2w1ybt/mzCE+2pw7f/bu/PwKMp0beB379nIgtlIyMImyC5bDIrokCNqnBFXZBiIy3FGBQVxAx0J6MwElPGgwMDozICfOiJ4BD0gMMjmFtkEWQKRHQTCEsge0kn38/3RdCWddIdO6E5Xd+7fdfWVdNVT1W+9VfV2P1VvVZWZ8X8/nfZKOYiIiIgo8GjEl88GakElJSWIiIhAcXExwsPDfV0cIqrnDx9sw5q9Z/Dcf12Lp4d18XVxnJq34SDeXJOPHgnhWPH0Taq67pyIiIiIbNSW+/FMNxH5XLXFiu8PFgIAhqjseu66fjsoGSa9FntPlWDb5UebERERERE1hkk3EfncTyeKUFpVg8gQA3olRvi6OC5FhRpxz/WJAICF3x3xcWmIiIiIyB8w6SYKYNXV1Vi0aBEWLVqE6upqj8V62tc/267nvqlzNHTahl22vVm2ps774cs3VFuz9wxOFlV6tCxEREREFHj0vi4AEXmPiODYsWPK/56K9bRNV3hUmDfL1tR5d4sPx+BO1+D7Q4X4f7lHMeWO6zxaHiIiIiIKLK0u6S43l0Nn1jUYrtPqEKQPcohzRavRItgQ3KzYiuoKlz/sNRoNQgwhzYqtrK6EVawuyxFqDG1W7KWaS7BYXT8eqSmxIYYQ5cZTVTVVqLHWeCQ22BAMrcbWacNsMaPa4vpsZVNig/RB0Gl1TY6ttlTDbDG7jDXpTdBr9U2OrbHWoKqmymWsUWeEQWdwiDWba+ddbi5HNaobxFqsFlyqueQy1qAzwKgzOsTWJyL4cvdZLN56GkO7xOKxIR0QYtSistr1mWD7fIsqzNj1SxEAoH9KiNP9yVpTu72KSKP7nF6rh0lvUmIrqitcxuq0OmjrdPipu9zOYu1txCM3dsD3hwrx8Zbj+O8hiQgxOrYpbCOaF8s2wqYl2wh3Yl3t93butBHOYq1idauNcCe2Kft9U9sId38b8HeE81i2EWwj2EY0PZZtRPNi6+/3atLqku6EvyYAQQ2H39nlTqz87UrlfeysWJc72dCUodj48EblferbqThfcd5p7ICEAdj6+Fblffd53XGs+JjT2O4x3bH3qb3K+4HvDUTeuTynsSkRKTg68ajy/uZFN2PbqW1OY6NDonHuhXPK+zs+ugObjm1yGhtiCEH5y7U79n1L7sOXB750GgsAkl27o45ZNgaf5n3qMrZsSpmy4/xhxR/w/k/vu4w9+/xZxITaznpOWjMJf9v2N5exRyYcQWpkKgDglXWvYFbuLJexe57cgx6xPQAAf/nmL5i+abrL2C3/vQUDEwcCAN7+4W28+NWLLmM3ZG3ALam3AADe3f4uxq8a7zJ2xagVyLw2EwDw0e6P8Mjnj7iMXXL/EjzQ4wEAwLJ9y/Dgpw+6jF1490I83PdhAMCag2tw18d3wQADXsErAIC4v8YpCeXcO+Zi3KBxAIBvjn+DW9+/1WXsGxlv4IUbXwAA/Hj6Rwz6xyCHz9VbE9G2+kkEW/vaYo4V4f3co7h3QCimbr4VonH+Y+D59Ofx5m1v4tuD5yECmDXH0PlvdzmNfer6pxCLWABAYUUhEt9JdFkPWX2ysGjEIgC2L5OwnDCXsfd3vx8f3f2R8r7uctdXt434VbdYWDQFKKmMR4+/vIFC49uwasqUWLYRtdhG2Ki1jXDFWRvhypXaiLqyh2Zj2i3TAAD7zu1Dz/k9Xcba2wgAOF58HB3e7uAy9qkBT2Fe5jwAwPmK84idFesytqltxNIHlirvG4vl7wgbthG12EbYsI2wYRth01JtxITVE1zG+QKv6SZqZbLbAgMurHI67ua2mzC07Qb3ZiQGRFT/DglVcxFs7QuBGdelnEHH6FBcKDfjH5suIuHSuwit+RXQSK/tTfm2RvqS7semLorP6LQalAV9BEENQqzpaHdpLkyWXr4uFhERERGpUKt7Tvepc6ecPquNXT6cx7JbmH93CzObzXjnr+8AAJ557hkYjUYY8mbAmPcnoNdrQK9Xla5e2t1/RnB+DjYU3oq+j/wvjEZbly1n3cIuVVvwxAe7sfVoEQBgSJe2eDmzCzrFhEMLPT778ST+56ufcbrY1oXs3n7x+GNmF5gMtd2wNdBh/sZjmLvhIESA98b2xuDObZ0um7XGirfefAsAMHnyZNRoXG8PTe5ebtUiJyfHoY5cxdZvI/aeKsWLS/NwtLASGg3wyI1JePpXHRBk0LONaEYs2wgbdh1teiy7jtqwjWheLNsIG7YRTY9lG1FLbW3EuQvnEHtNrGqe093qupeHGkMdVl5jcU2Zp7vqbryejK27s3kytm7j4MlYk94EE0wejzXqjEoD7KtYg86gfBF5Mlav1UNvdG+XtccaUDvvUGOoLaHs+zqgMwK7pwIAdL1eRWj+W8DlhPvrC0Nxoz22Hp1WB4M2GE8v3Y6tR4sQZtLjzft74/ae8UojBwAPDkzCb/om4L2vD+N/vvoZn/1YgINnKzH/d/2RGBmMMyWX8MzHO7D5yAUAwO9uSEbGde0d5lGXGbU/KDQajdv7nDuxda9lD3Wx3M6EGkMxKDUUX06Ixusr9uHjLcfxr29PYMuRYsweeT06xzrGuotthA3biKbHNqeNcIdOq3N7G25KrFaj9Uqsp9uIutQQyzbChm1E02PZRtiwjWherD+2EWrS6pJulJcDuoY3UoNOBwQFOca5otUCwcHNi62oAFx1LtBogJCQ5sVWVgJW10eUEBravNhLlwCL6yNKTYoNCbGVGwCqqoAa10edmxQbHGyrZwAwm4HGHvvUlNigoNptpSmx1dW2eFdMJkCvb3psTY2tLlwxGgGDwTHWbIbBPn15OcrKKvH/tp3E4Yt34dy5Tjj3v+cRsnwW/jt6FYb1n4LcI6Ew6G2xyvIaDLZ5A7BU1+DZj3/E+v3nEKTX4p8jeyItJdy2rdaLDdJp8PQNCegbG4RnPsvDrl+K8et3vsGTg5Ox4PvjKKyoRqhRh7/c2wt3925XOw9nrFYY7Msm0vg+p9fb6s0e29h8dTpAq62dd93ldhbrpI0IAZAzvCNuSWmDySvysedkCe565xv88a7uuL9/ewQZdGwj3I1lG2HTkm2EO7EWi23duVJnv29SrNVq29Y8EduU/b6pbYS7vw34O8J5LNuIpseyjbD9zzaiebFsI2z/N7b9+oK0EsXFxQJAim2bVsPXnXc6ThAS4jwOEBk61DE2Otp17IABjrEpKa5ju3d3jO3e3XVsSopj7IABrmOjox1jhw51HRsS4hh7552uY+tvPvff33hsWVltbFZW47Fnz9bGPvVU47FHjtTGPv9847F79tTGZmc3HrtlS23sG280HrthQ23s3LmNx65YURu7cGHjsUuW1MYuWdJ47MKFtbErVjQYvzO+iwx9/F1JeWmF01dm1mxZ33GAWOvP9403RETEYrHK83/7SlJeWiGdn18mGzv0a1iG7OzaMuzZoww/ER4jmVmzHT7v9hcXy6GzpbbYI0caX7annqqd79mzjcdmZdXGlpU1Hnv//Y7bcGOxbrQRBWFt5XcPvuawnIP+vFbuz/qrPHvns/I/N46S/+1xq2xNvE4Kg8Nt07GNqH2xjbC9fNRGOLzmzq2N3bCh8djLbYSI2OqksVgXbYTT1/PP18YGSBuhvPg7ovZVF9sIG7YRNmwjarGNsGlCG1E8apQAkOLiYlGD1nemm6iVsUKD9wbdgzdvHosanR6JxWcxKtmA2OuKEVOwEDsqeuCf5+/CnvjOeOSBaehRcBC/27kKv8nbhNDqS7gkGnz54y/48Idj+PH4JeisFsz54g0MPeL+jc/al5zDpx+9iKn/9QQ+7TkMo35ag1d7hyEoZqQXl7zlxZVdwPtLsvGvkc9iXvfhuFhRjTMlVTgT3xVb47s2jC8txHVVF3Dd6v3o3i4c17ULRweNBk764vhUtVaH86GRsGi0kJAQWAvLYRXAKgIxRcEanQwrNLBqtLBqNIiuKEZs2QVoG7uDHhEREVEr4dMbqc2bNw9vvvkmCgoK0KdPH8yZMweDBrl+jMDSpUvx6quv4ujRo+jSpQtmzpyJO++8063Pst9IrfiU8xupscuHi1h2C2t6rIq6hZ0trcJzX+zHN4cvAgAyr4vBXzKvRcTJ2cDe6babqXV/GYWb/4QF3x/H/7s4AlUWW/20MelwY4cofH+0CCWXbPVv0Gnwxl1dcU/veOdlcKOr16UaC4L0uoDvFiZBQSiqqMbxCxU4fvoijl+sxImiSzh+sRLHLlbiZLHzdRmk16JrbCj6JLRBemoU0lIi0Dbkcj15uY0QEZwuvoT84+exv6AM+WfLsP9sOQ6dr0C1tWlfFUF6LZKjgpAS0wYpbUOQck0IUtoYkBJhQmKkCXqtk4dnsI2wYdfRpsf6YRvB3xHNiGUbYcM2oumxbCNsWlEbUXLuHCJi1XMjNZ8l3Z988gnGjh2LBQsWIC0tDbNnz8bSpUuRn5+P2NiGz877/vvvcfPNNyMnJwd33XUX/v3vf2PmzJn48ccf0bOn62f42SlJt0oqnsjb1u8/g+eW/ISLFdUwaATT7u6J36alQLPnT7abqF2+e7md5afpKP7pLcy5+CzWm4fiWGHtl0xiZDBGDUrCAwOSEBfu/k0sPKWmpgZLliwBADz44IPQ6z3XSceb825MWVUN8gtKkHe6FPtOlyDvVAnyC0pRWd3wy6RbfBvc0PEapHe6Bjd0uAYRIe7dNMcVEUFhuRmHzpbhwNky5BeUIr+gFPsLSpQDLPXptRrodRpoNbaXBrbvNa3WPgzKjfAulJthaSRJ12s1SIwKRvLlZLx9VAiSokKQ1DYY7aNCEBVicHlTPSIiIqIrUVvu57OkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkBvEjR45EeXk5VqxYoQy74YYb0LdvXyxYsOCKn6e2ig8EIoLzZWYcv1ABnVaD69q1gUmvto6xLU9EGk0YqmosKKqoRlFFNYorqxFk0CI8yIC2YUaEBzVMps6VVmHvqWIcPFuGExcqcPxCBQS2RDgxypakJEYGo31UMC6Um7Ht6AV8f6gQq/YUAADaaiow1HgYM1951nZn7l3TAI3OIeEGbHfx/u7vt0MDK254fA22/1KK3EOFGJAahSFdYqDT+i4JMpvNymO9pkyZ4vYdxn0976ayWAXHCsuRd7oEW49cQO7hQvx8pswhRqMBrosPR7+USMSEBSEq1ICoECPahhoRGWJA21AjokKMCDLoUG2x4sSFChw6V45D58pw6GyZ7e+5chRXOj/jotNq0CkmFF3jw9Etvg26xrVB1/g2aB8V7HYiXG2x4uTFShy7UIFjheU4Vljn74UKmGsaOfoNINSoQ1LbELS/vH3b/0+KCkHbUCMMOg0Mei2MOttL24xt02oVVNVYcanagks1Flyqvvx/tQVVNVZU1VhhsVpRYxFYrIIaa92/1tr3FoFVxOE9ABj0Glv59FoYdPaXbZihznCjXlNnvBYmfW2sfRkNOq1P97/65PLy1lgEZosV1fZXjaDaWvu/fVyNRVBtsSrvrbaL9GwX4EFgtQIC2+UKsF+2cPm92GNhOxljH2a9/NNFiQGg02ig1Wqg12qgu/y37nud8r/W6Tidi1idRgOdrs44Z++1mlZ5oEhEYBVb22UV2z5gEYHVWvd/OBlm+2ux1hl/eV0Cteu0/voX2EbUfV8ba4tD3eH1xjmdf715QImztbeaywcV6x5c1ODye619/OVxqI3RKgclAaDuPDS2A5Z1/mrrfU7D8ZfnU++9ppFp6x4cbY3bJjknddrM+u2p0sbWGee0TXbYv+rtg1L3sxzHK58Px33R9p9jfP3pAdSJdbLfo+H+XVZagl/17qCa3M8n13SbzWZs374dU6ZMUYZptVpkZGQgNzfX6TS5ubmYNGmSw7Dhw4dj+fLlTuOrqqpQVadbTElJidvlW77jJFbsOuV2vL+zb5wWq+2HUY1VoNUAlWbbj0+TXqv8CNFe/nFxsaIaxwvLUW6uPSsXatShQ0yo8gPEHm//EgBqe3oBti8n5f/L/9ZYBDVWK6ottjLYf5hqNBqYayyotghqLFaY9DqYDLbuXZVmCyov/1g26LQINelh0mttP/Iu/3iuvjxNiFGHYKMtGamstqKq2jZtdY0VwUYdwkx6hJr0qLEKKsw1qDBbUFFlQbm5BlarICxIjzZBBrQJ0iPEqINOq0VVtQXFldW4WGFGUUU1zBYr2pj0CA82IDzIgDCTHmVVNSiqMKOoshoVZtfdYtqY9GgXGQS9VguzxYriymqcK23+3RezbkiGdecy6DV1WsHe01zGf31hKABgsFaDGztH48bO0c3+bGo6nVaDjjFh6BgThrt6JwAAzpdVYfPhC8g9fB65hwpx6JwtKc873XibFmzQKfuSMxoNkBQVgk4xobg2vs3lBDscnWJDr/rgmUGnRWp0KFKjQwHEOIyzWgVnSi8pifiJC5U4cbECv1ysxIkLFThbWoVyswX7C0qxv6DUrc/Tae3JrAZGvQ7GOgmrXqdFjcXqkFhXVdsSQH+i02psibiuNhG3J/YGh+TeFqPVaGC9nMhYraj9/3KCVD9ZEqlNfKxWUa7Zt1oF1Ze/G6prbNuTv9VdS6mbgOu1tsS87nvHAwJal0m/VqNx+aMW9X+Eon5SavunQUJZ70cv6o8H6iXC9v+hJNMO45W/LVvH1Dz1k3vloEHdRF1bO9zpgQZNw2kck33X45wdrKjP2SlAp8Oc3CukfpzTzbKZ83I2qbPzlXX3QWcHFR2G1T+YdLk9dthf6w2z1kkolSTYWnugqWFiXPuZ1jqf1ZpYqxq5LMAHfJJ0nz9/HhaLBXFxcQ7D4+LisH//fqfTFBQUOI0vKChwGp+Tk4Pp06c3q3yHzpXhq31nmzVta6PRAAkRwbhUbUFhuRl7Trp/cMMflZstOFNy5SS45FLN5W66zq8v0mqAiGADIoINqKqxJdcVZgtKq2pQ6uTMZsfoUHRrF47ktiFIbhsCrQY4ebESv1ysxC9FlTh5sRKniysRbNChX0oUBqS0xdCuMegeF4Kcn1pZKxtgosNMyOzdDpm92wEAzpZcQu7hQuQXlOJiRTUulptxscL2ulBejaIKM2qsonRTDzbo0Ck2FJ1iwmpfsaFIvSbU9jizFqbVatAuIhjtIoJxQ8drGoy/VG3BySJbAv7LxdqE/JcLFThxsRKll6obHEiwWAWVVgtsJ+8buW7TBYNOA5NehyCD1uGvQVc3QQL0Wq3D2VC9rvasad0zoCJATZ0zu+YaUc4Gmy8fBDRbpM4ZYlus+XJSaz/4WX8ZLVbBpWp1Jrz2ZL9u4l/3f/tBAXtSqdXaDrxqHH6M1/5Qh3LG8PLZw0bi7QdtRYCay8lhjdXq0EPB/r+1Xq+FurEWEVgsdaZx9r6RLNNiFVggQCOXG7ZG9n1Dq63tjVA7rG5Pgdr1bftbu65R733dONQf7mweLqavnW/d7av2pEBt0lSbKCkHpC5nMXXfS50z9nX/WsWx54bTaXA5iXI2DRzfN5X9oJrl8lIRXQ139ydnsfYYwPm+aZ8GDvuw8/kp7+3tQL393nIJOOHlumiKgL17+ZQpUxzOjJeUlCApKcmtaf+rexwSI91/qHsg9Nqxd48y6Gw/MC0iCDHoYNRrYa6xNugO1iZIj5RrQtE+KhgmvQ5WqyDvdAnOlVY5dB+ruXxE3BWHbiiQy2Ww/TCzCpQfpVaxnfU2Xh5ntlhRabbY7h1h0MFk0CFIbzuDXWG2oKrG0uAMkG2aGlRePiMepLed9Q4y2H5cV5gtKK+qQVlVDfRaLUJMOoQabWe0Q4w6aDUalFXVoORSNUoqa1BVY4HFKtDrtIgKsXXxjQg2wKTXXk66q1FSWY2yqhqEmvSIDLbFRIUY0SZI36BLbIW5BqeKLuF0caVteXVahBh16BwbhlDTlXfVGosVmss/XuzMjd1chfxSbHgQ7u6b6HK8iKC0qgYXy80w6LSIDw9qVvdrXwky6JSDA66I2LsuS20S65C41r6vtggMWo2tjTBoEWSw7fNBetv/Jr3tbLja2M4wOybi9mWzL7dD1+7Lyb29DgDUnmXSOnZt1Wqg9ETS1P9fia+dxlk3+PqJdWvpvirimIDXWG2Jed33tYm91c2k3xZrsQI1ViusIq4Tyno/RAEXCWWdH8G2KNfzweX3trPtUHq02f86/G9Pni//r3Ey3DG2dWwXLan+2Uv3kvuGBwLcnUbEsaeMuDMN6vawqTcNbO2bu02Gs7bF2aT1wzROopx9pjvzchbpal61Z/odz+4rBxA1UPY5x0sEbHNwGFbvQJC9t4Ht7+WltA+r8zlA/Z4LDQ9A1e2RUH+Ytk5CW3uZguO9W/xBSUkJIl69clxL8UnSHR0dDZ1OhzNnzjgMP3PmDOLjnd8VOT4+vknxJpMJJvudB5uod/tI9G4f2axpWyutVoOeiRG+LoZqxDbj0pEQox6dY8PQOdZ1stEYNSYO1PI0Gg3CgwxO7w8QKDQa25lpkx5A85p51dNqNTBpdbxPhspoNLYeDgF7xoJUT+nq7TRdJCK18smvdKPRiP79+2PdunXKMKvVinXr1iE9Pd3pNOnp6Q7xALB27VqX8URERERERES+5rODtZMmTUJWVhYGDBiAQYMGYfbs2SgvL8cjjzwCABg7diwSExOVuwpPmDABQ4cOxV//+ldkZmZi8eLF2LZtG9599123Ps9+04Om3FCNyN+ZzWZcuvw8zJKSkkbvzN2U2JbmzbKpebmJiIiIqOnsOZ+PHtTVkPjQnDlzJDk5WYxGowwaNEh++OEHZdzQoUMlKyvLIX7JkiVy7bXXitFolB49esjKlSvd/qxDhw4JLt/Mjy+++OKLL7744osvvvjii6/Afh06dMhTqetV8dlzultaUVERoqKicPz4cURERPi6ONRE9hvhnThxQhXP2qOm4frzb1x//o3rz39x3fk3rj//xvXn34qLi5GcnIyLFy8iMjLS18VpPfcC0V5+KGBERAR3HD8WHh7O9efHuP78G9eff+P6819cd/6N68+/cf35N62zB8P7gDpKQURERERERBSAmHQTEREREREReUmrSbpNJhOys7Ob/exu8i2uP//G9effuP78G9ef/+K6829cf/6N68+/qW39tZobqRERERERERG1tFZzppuIiIiIiIiopTHpJiIiIiIiIvISJt1EREREREREXsKkm4iIiIiIiMhLWk3SPW/ePKSmpiIoKAhpaWnYsmWLr4vU6kybNg0ajcbh1a1bN2X8pUuXMG7cOFxzzTUICwvDfffdhzNnzjjM4/jx48jMzERISAhiY2PxwgsvoKamxiFm48aN6NevH0wmEzp37oxFixa1xOIFnK+//hq//vWvkZCQAI1Gg+XLlzuMFxFMnToV7dq1Q3BwMDIyMnDgwAGHmAsXLmD06NEIDw9HZGQkHnvsMZSVlTnE7Nq1C0OGDEFQUBCSkpLwxhtvNCjL0qVL0a1bNwQFBaFXr1748ssvPb68geRK6+7hhx9usC/efvvtDjFcd76Tk5ODgQMHok2bNoiNjcWIESOQn5/vENOS7SW/P93nzrq75ZZbGux/TzzxhEMM151vzJ8/H71790Z4eDjCw8ORnp6OVatWKeO536nbldYf9z3/MmPGDGg0GkycOFEZ5tf7oLQCixcvFqPRKP/6179k79698vjjj0tkZKScOXPG10VrVbKzs6VHjx5y+vRp5XXu3Dll/BNPPCFJSUmybt062bZtm9xwww0yePBgZXxNTY307NlTMjIyZMeOHfLll19KdHS0TJkyRYk5fPiwhISEyKRJkyQvL0/mzJkjOp1OVq9e3aLLGgi+/PJLeeWVV+Szzz4TALJs2TKH8TNmzJCIiAhZvny5/PTTT/Kb3/xGOnToIJWVlUrM7bffLn369JEffvhBvvnmG+ncubOMGjVKGV9cXCxxcXEyevRo2bNnj3z88ccSHBwsf//735WY7777TnQ6nbzxxhuSl5cnf/zjH8VgMMju3bu9Xgf+6krrLisrS26//XaHffHChQsOMVx3vjN8+HBZuHCh7NmzR3bu3Cl33nmnJCcnS1lZmRLTUu0lvz+bxp11N3ToUHn88ccd9r/i4mJlPNed73zxxReycuVK+fnnnyU/P19efvllMRgMsmfPHhHhfqd2V1p/3Pf8x5YtWyQ1NVV69+4tEyZMUIb78z7YKpLuQYMGybhx45T3FotFEhISJCcnx4elan2ys7OlT58+TscVFRWJwWCQpUuXKsP27dsnACQ3N1dEbImEVquVgoICJWb+/PkSHh4uVVVVIiLy4osvSo8ePRzmPXLkSBk+fLiHl6Z1qZ+4Wa1WiY+PlzfffFMZVlRUJCaTST7++GMREcnLyxMAsnXrViVm1apVotFo5OTJkyIi8re//U2ioqKU9Sci8tJLL0nXrl2V9w8++KBkZmY6lCctLU3+8Ic/eHQZA5WrpPvuu+92OQ3XnbqcPXtWAMimTZtEpGXbS35/Xp36607E9sO/7o/I+rju1CUqKkr+8Y9/cL/zU/b1J8J9z1+UlpZKly5dZO3atQ7rzN/3wYDvXm42m7F9+3ZkZGQow7RaLTIyMpCbm+vDkrVOBw4cQEJCAjp27IjRo0fj+PHjAIDt27ejurraYT1169YNycnJynrKzc1Fr169EBcXp8QMHz4cJSUl2Lt3rxJTdx72GK5rzzpy5AgKCgoc6joiIgJpaWkO6ysyMhIDBgxQYjIyMqDVarF582Yl5uabb4bRaFRihg8fjvz8fFy8eFGJ4Tr1vI0bNyI2NhZdu3bFk08+icLCQmUc1526FBcXAwDatm0LoOXaS35/Xr36687uo48+QnR0NHr27IkpU6agoqJCGcd1pw4WiwWLFy9GeXk50tPTud/5mfrrz477nvqNGzcOmZmZDerZ3/dBfbOn9BPnz5+HxWJxqHwAiIuLw/79+31UqtYpLS0NixYtQteuXXH69GlMnz4dQ4YMwZ49e1BQUACj0YjIyEiHaeLi4lBQUAAAKCgocLoe7eMaiykpKUFlZSWCg4O9tHSti72+ndV13XURGxvrMF6v16Nt27YOMR06dGgwD/u4qKgol+vUPg9quttvvx333nsvOnTogEOHDuHll1/GHXfcgdzcXOh0Oq47FbFarZg4cSJuvPFG9OzZEwBarL28ePEivz+vgrN1BwC//e1vkZKSgoSEBOzatQsvvfQS8vPz8dlnnwHguvO13bt3Iz09HZcuXUJYWBiWLVuG7t27Y+fOndzv/ICr9Qdw3/MHixcvxo8//oitW7c2GOfv330Bn3STetxxxx3K/71790ZaWhpSUlKwZMkSJsNELeihhx5S/u/Vqxd69+6NTp06YePGjRg2bJgPS0b1jRs3Dnv27MG3337r66JQE7lad7///e+V/3v16oV27dph2LBhOHToEDp16tTSxaR6unbtip07d6K4uBiffvopsrKysGnTJl8Xi9zkav11796d+57KnThxAhMmTMDatWsRFBTk6+J4XMB3L4+OjoZOp2twZ7szZ84gPj7eR6UiAIiMjMS1116LgwcPIj4+HmazGUVFRQ4xdddTfHy80/VoH9dYTHh4OBN7D7LXd2P7VXx8PM6ePeswvqamBhcuXPDIOuX+6zkdO3ZEdHQ0Dh48CIDrTi3Gjx+PFStWYMOGDWjfvr0yvKXaS35/Np+rdedMWloaADjsf1x3vmM0GtG5c2f0798fOTk56NOnD95++23ud37C1fpzhvueumzfvh1nz55Fv379oNfrodfrsWnTJrzzzjvQ6/WIi4vz630w4JNuo9GI/v37Y926dcowq9WKdevWOVzjQS2vrKwMhw4dQrt27dC/f38YDAaH9ZSfn4/jx48r6yk9PR27d+92SAbWrl2L8PBwpetQenq6wzzsMVzXntWhQwfEx8c71HVJSQk2b97ssL6Kioqwfft2JWb9+vWwWq3KF116ejq+/vprVFdXKzFr165F165dERUVpcRwnXrXL7/8gsLCQrRr1w4A152viQjGjx+PZcuWYf369Q268bdUe8nvz6a70rpzZufOnQDgsP9x3amH1WpFVVUV9zs/ZV9/znDfU5dhw4Zh9+7d2Llzp/IaMGAARo8erfzv1/tgs2/B5kcWL14sJpNJFi1aJHl5efL73/9eIiMjHe5sR9733HPPycaNG+XIkSPy3XffSUZGhkRHR8vZs2dFxPYYgOTkZFm/fr1s27ZN0tPTJT09XZne/hiA2267TXbu3CmrV6+WmJgYp48BeOGFF2Tfvn0yb948PjKsmUpLS2XHjh2yY8cOASBvvfWW7NixQ44dOyYitkeGRUZGyueffy67du2Su+++2+kjw66//nrZvHmzfPvtt9KlSxeHx04VFRVJXFycjBkzRvbs2SOLFy+WkJCQBo+d0uv1MmvWLNm3b59kZ2fzsVNX0Ni6Ky0tleeff15yc3PlyJEj8tVXX0m/fv2kS5cucunSJWUeXHe+8+STT0pERIRs3LjR4dE2FRUVSkxLtZf8/myaK627gwcPymuvvSbbtm2TI0eOyOeffy4dO3aUm2++WZkH153vTJ48WTZt2iRHjhyRXbt2yeTJk0Wj0ch//vMfEeF+p3aNrT/ue/6p/h3n/XkfbBVJt4jInDlzJDk5WYxGowwaNEh++OEHXxep1Rk5cqS0a9dOjEajJCYmysiRI+XgwYPK+MrKSnnqqackKipKQkJC5J577pHTp087zOPo0aNyxx13SHBwsERHR8tzzz0n1dXVDjEbNmyQvn37itFolI4dO8rChQtbYvECzoYNGwRAg1dWVpaI2B4b9uqrr0pcXJyYTCYZNmyY5OfnO8yjsLBQRo0aJWFhYRIeHi6PPPKIlJaWOsT89NNPctNNN4nJZJLExESZMWNGg7IsWbJErr32WjEajdKjRw9ZuXKl15Y7EDS27ioqKuS2226TmJgYMRgMkpKSIo8//niDLxKuO99xtu4AOLRlLdle8vvTfVdad8ePH5ebb75Z2rZtKyaTSTp37iwvvPCCw7OCRbjufOXRRx+VlJQUMRqNEhMTI8OGDVMSbhHud2rX2Prjvuef6ifd/rwPakREmn+enIiIiIiIiIhcCfhruomIiIiIiIh8hUk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL2HSTUREREREROQlTLqJiIiIiIiIvIRJNxEREREREZGXMOkmIiIiIiIi8hIm3URERERERERewqSbiIiIiIiIyEuYdBMRERERERF5CZNuIiIiIiIiIi9h0k1ERERERETkJUy6iYiIiIiIiLyESTcRERE59fDDDyM1NbXJ06WmpuLhhx/2eHmIiIj8EZNuIiKiK1i0aBE0Go3L1w8//ODrIjaqoqIC06ZNw8aNG33y+Xl5eZg2bRqOHj3qk88nIiLyJb2vC0BEROQvXnvtNXTo0KHB8M6dO/ugNO6rqKjA9OnTAQC33HKL29O99957sFqtTf68/Px8aLW1x/Xz8vIwffp03HLLLc06c05EROTPmHQTERG56Y477sCAAQN8XQyvKy8vR2hoKAwGQ7OmN5lMHi4RERGR/2L3ciIiIg+xWq14++230atXLwQFBSEmJga33347tm3b5hD34YcfYtCgQQgJCUFUVBRuvvlm/Oc//3GIWbVqFYYMGYLQ0FC0adMGmZmZ2Lt3r0PMww8/jLCwMJw8eRIjRoxAWFgYYmJi8Pzzz8NisQAAjh49ipiYGADA9OnTlS7x06ZNc5jHoUOHcOedd6JNmzYYPXq0Mq7+mWl3lrHuNd2LFi3CAw88AAC49dZblc/fuHEjsrKyEB0djerq6gZ1edttt6Fr165NqH0iIiJ1YtJNRETkpuLiYpw/f97hVVhYqIx/7LHHMHHiRCQlJWHmzJmYPHkygoKCHK75nj59OsaMGQODwYDXXnsN06dPR1JSEtavX6/EfPDBB8jMzERYWBhmzpyJV199FXl5ebjpppsaXBdtsVgwfPhwXHPNNZg1axaGDh2Kv/71r3j33XcBADExMZg/fz4A4J577sEHH3yADz74APfee68yj5qaGgwfPhyxsbGYNWsW7rvvPpd14M4y1nXzzTfjmWeeAQC8/PLLyudfd911GDNmDAoLC7FmzRqHaQoKCrB+/Xr87ne/a2x1EBER+QchIiKiRi1cuFAAOH2ZTCYREVm/fr0AkGeeeabB9FarVUREDhw4IFqtVu655x6xWCxOY0pLSyUyMlIef/xxh/EFBQUSERHhMDwrK0sAyGuvveYQe/3110v//v2V9+fOnRMAkp2d3aBs9nlMnjzZ6biUlBTlvTvLKCKSkpIiWVlZyvulS5cKANmwYYPDNBaLRdq3by8jR450GP7WW2+JRqORw4cPN/gcIiIif8NruomIiNw0b948XHvttQ7DdDodAOB///d/odFokJ2d3WA6jUYDAFi+fDmsViumTp3qcKOxujFr165FUVERRo0ahfPnzzt8TlpaGjZs2NBg/k888YTD+yFDhuCDDz5o0rI9+eSTV4xxZxmbQqvVYvTo0XjnnXdQWlqKNm3aAAA++ugjDB482OlN64iIiPwNk24iIiI3DRo0yOWN1A4dOoSEhAS0bdvW5fSHDh2CVqtF9+7dXcYcOHAAAPCrX/3K6fjw8HCH9/brquuKiorCxYsXXX5GfXq9Hu3bt79inDvL2FRjx47FzJkzsWzZMowdOxb5+fnYvn07FixY4LHPICIi8iUm3URERCpif0TXBx98gPj4+Abj9XrHr277mfarYTKZGpx5byndu3dH//798eGHH2Ls2LH48MMPYTQa8eCDD/qkPERERJ7GpJuIiMgDOnXqhDVr1uDChQsuzwR36tQJVqsVeXl56Nu3r8sYAIiNjUVGRoZHytacrt/OuLOMzfn8sWPHYtKkSTh9+jT+/e9/IzMzE1FRUVdbXCIiIlXg3cuJiIg84L777oOIYPr06Q3GiQgAYMSIEdBqtXjttdeUM9r1Y4YPH47w8HD85S9/cfoorXPnzjW5bCEhIQCAoqKiJk9blzvL6ExoaGijnz9q1ChoNBpMmDABhw8f5l3LiYgooPBMNxERkZtWrVqF/fv3Nxg+ePBg3HrrrRgzZgzeeecdHDhwALfffjusViu++eYb3HrrrRg/fjw6d+6MV155Ba+//jqGDBmCe++9FyaTCVu3bkVCQgJycnIQHh6O+fPnY8yYMejXrx8eeughxMTE4Pjx41i5ciVuvPFGzJ07t0nlDg4ORvfu3fHJJ5/g2muvRdu2bdGzZ0/07NmzSfNxZxmd6du3L3Q6HWbOnIni4mKYTCb86le/QmxsLAAoz/peunQpIiMjkZmZ2aRyERERqRmTbiIiIjdNnTrV6fCFCxeiY8eOWLhwIXr37o1//vOfeOGFFxAREYEBAwZg8ODBSuxrr72GDh06YM6cOXjllVcQEhKC3r17Y8yYMUrMb3/7WyQkJGDGjBl48803UVVVhcTERAwZMgSPPPJIs8r+j3/8A08//TSeffZZmM1mZGdnNznpti/rlZaxvvj4eCxYsAA5OTl47LHHYLFYsGHDBiXpBmxdzFesWIEHH3wQJpOpWctIRESkRhpprD8YERERUQv4/PPPMWLECHz99dcYMmSIr4tDRETkMUy6iYiIyOfuuusu7Nu3DwcPHvTYjd+IiIjUgN3LiYiIyGcWL16MXbt2YeXKlXj77beZcBMRUcDhmW4iIiLyGY1Gg7CwMIwcORILFixo8BxyIiIif8dvNiIiIvIZHvsnIqJAx+d0ExEREREREXkJk24iIiIiIiIiL2k13cutVitOnTqFNm3a8CYtREREREREAUpEUFpaioSEBGi1vj/P3GqS7lOnTiEpKcnXxSAiIiIiIqIWcOLECbRv397XxWg9SXebNm0A2Co+PDzcx6UhIiIiIiIibygpKUFSUpKSA/paq0m67V3Kw8PDmXQTEREREREFOLVcVuz7Du7UqNTJK5W/9hcRERERERH5B420kgdklpSUICIiAsXFxao90506eSWOzshscmJtn+bojEwvlYyIiIiIiMg/qC33Y9LtQ81Nsq+EyTcREREREbVWasv9mHT7wJWS7KYmza7mx+SbiIiIiIhaGzXlfgCT7hbnzQSZyTcREREREbV2asn97Jh0txBnCbE3k+GW/jwiIiIiIiI18HXuVx+Tbi9Sw5nn+mVg4k1ERERERIGMSbePtHTFq+1MM5NvIiIiIiJqDZh0+0hLVbzaku26mHgTEREREVGgY9LtI96seDUn2s7ULa+ay0lERERERNRUTLp9xF7xSROXQGsK8drdwv0lieVZbyIiIiIiCkRMun2kftJd19EZmUidvNJl4nml52rb5+GPeNabiIiIiIgCCZNuH6lb8b3/8o1H5hkoSSoTbyIiIiIiChRMun3EVcW7cxa7rkBNStndnIiIiIiIAgGTbh9RW8WrFZNvIiIiIiLyZ2rL/bS+LgCpS/0ku6k9AYiIiIiIiKgWk25qgIk3ERERERGRZzDpJqeYeBMREREREV09Jt3k0tEZmQ7Jtz8k3vYy+kNZiYiIiIgo8PFGauQ2td1kzf5sdd6BnoiIiIiI7NSW+3ntTPe8efOQmpqKoKAgpKWlYcuWLS5j33vvPQwZMgRRUVGIiopCRkZGg3gRwdSpU9GuXTsEBwcjIyMDBw4c8FbxyQlnXc5b+oyy/TOv5oz21U5PRERERETkLq+c6f7kk08wduxYLFiwAGlpaZg9ezaWLl2K/Px8xMbGNogfPXo0brzxRgwePBhBQUGYOXMmli1bhr179yIxMREAMHPmTOTk5OD9999Hhw4d8Oqrr2L37t3Iy8tDUFDQFcuktqMd/s5VsurJs8jNOYNd9+x3U8+C8ww4EREREZH/U1vu55WkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkK05vsVgQFRWFuXPnYuzYsRARJCQk4LnnnsPzzz8PACguLkZcXBwWLVqEhx566IrzVFvFBwpPJ98t0VW8sc9g4k1ERERE5N/UlvvpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmujWPiooKVFdXo23btgCAI0eOoKCgABkZGUpMREQE0tLSkJub61bSTd7h6myyt7pteyIpbuzmcPb3TL6JiIiIiMgTPJ50nz9/HhaLBXFxcQ7D4+LisH//frfm8dJLLyEhIUFJsgsKCpR51J+nfVx9VVVVqKqqUt6XlJS4vQzUNPYEtbk3NnNn3t7iKgG3LwsREREREdHV8HjSfbVmzJiBxYsXY+PGjW5dq+1KTk4Opk+f7sGS0ZXYk9TmPmbM10lu/QMGPOtNRERERERXy+NJd3R0NHQ6Hc6cOeMw/MyZM4iPj2902lmzZmHGjBn46quv0Lt3b2W4fbozZ86gXbt2DvPs27ev03lNmTIFkyZNUt6XlJQgKSmpqYtDV8nfEta6Z+3teNabiIiIiIiay+OPDDMajejfvz/WrVunDLNarVi3bh3S09NdTvfGG2/g9ddfx+rVqzFgwACHcR06dEB8fLzDPEtKSrB582aX8zSZTAgPD3d4Ebmr/ll7PlqMiIiIiIiawyvP6Z40aRLee+89vP/++9i3bx+efPJJlJeX45FHHgEAjB071uFGazNnzsSrr76Kf/3rX0hNTUVBQQEKCgpQVlYGANBoNJg4cSL+9Kc/4YsvvsDu3bsxduxYJCQkYMSIEd5YBCKX3c2JiIiIiIjc5ZVrukeOHIlz585h6tSpKCgoQN++fbF69WrlRmjHjx+HVlub78+fPx9msxn333+/w3yys7Mxbdo0AMCLL76I8vJy/P73v0dRURFuuukmrF69+qqu+ya6kvpnunmdNxERERERNYVXntOtRmp7Vhv5n/pnupl4ExERERGpj9pyP690LycKRPWTbHY3JyIiIiKiK2HSTdQETLyJiIiIiKgp2L2cqJnY3ZyIiIiISH3Ulvt55UZqRK1B/bubExF5Q90bODo72Fd3GA/+ERERqQ/PdBNdJZ7xJiJPSZ280uMH9NgmERFRa6O23I9JN5EHMPEmoqvRnCS7qck52yUiImot1Jb7Mekm8hB28SSipmgsYfZEG+Jq/myfiIgo0Kkt92PSTeRhTL6JyJkrnZX2ZnvBBJyIiFoTteV+TLqJvKDudZn8UUvUuOZev+wv+5a3z2g3lbPy+EtdEhERuUNtuR+TbiIv4Rlvooa8fcd/Ne1raj+7zOSbiIgCldpyPybdRF7EG6wReT/RbkxL73NqT7SdYTtFRESBRm25H5NuIi/jD1pqrdy5htkTl2C4m9R765IPtXUfby62VUREFCjUlvsx6SZqAfYfs3Uf8cMftBSIrvSc6Zba7puSiDd1vu48qsuf928m30RE5O/Ulvsx6SZqQWr8MdvUrr9qKDOpT2NJtq9vKNgS3dsDcb9QY3tFREQ2PKHTOLXlfky6iVqYr25e5I3Eg407AYFxHXNTqXnZPI03hSQi8q2r+c5qre222nI/Jt1EPtASSYq73WA9pbU26q1ZIN/9mo/9cxTI65qISI14suTqqC33Y9JN5CPeuCbUm0dC3UnimaS0DkzAWi+ueyIi7/LUzTkD+d4j7lBb7sekm8jHmpMoX+0ZbE81tIFy12ZyDxMusnO1LajloFvdcrDXAhGpWUv9lvLHS8GuhtpyPybdRCrhrW7gvrxePFAb8taICTc546szKZ5qL5mME5Gv+PK3U2v4Tldb7sekm0iF1HAWuzlae/LdnOvo1V43reGLmTzDk49pa6l7UdTHbZuIvE1Nv5UC+Ttebbkfk24ilavfNbL+IyLU2DgGciNenz/3UGhMa1qH5Fm+SpjtGttOm3JgjNs7EXmSmh/DGIjf+WrL/Zh0E5HXBGIjbteSiUVL1pmajsBT4PDE/uLNbZD3pyAib1Jzwl2fP5W1MWrL/byWdM+bNw9vvvkmCgoK0KdPH8yZMweDBg1yGrt3715MnToV27dvx7Fjx/A///M/mDhxokPMtGnTMH36dIdhXbt2xf79+90qj9oqnqi1CKTEuyndZ93thdDcG+l5Smu/uylRXUy+ichT/P33j7+XX225n1eS7k8++QRjx47FggULkJaWhtmzZ2Pp0qXIz89HbGxsg/itW7diyZIl6N+/P5599lm89NJLTpPuTz/9FF999ZUyTK/XIzo62q0yqa3iiVobfz5y2tKJaVMT8aZ+PrvWEl2Zv//gJCLfCLS2w1+XR225n1eS7rS0NAwcOBBz584FAFitViQlJeHpp5/G5MmTG502NTUVEydOdJp0L1++HDt37mxWmdRW8UStkb813Go56xWoXdmJ1M7f2iwi8p1Aby/8Zfns5bRWVeDE7AdVk/vpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmXtW8Dxw4gISEBAQFBSE9PR05OTlITk6+2iITUQtxdgOjujeGUwu1dbmu/3meTsLVVPdEalJ337Dvd2pss4j8lTcu22pp/pKMXi37MtVdXl+3h76+cWdTePxM96lTp5CYmIjvv/8e6enpyvAXX3wRmzZtwubNmxud3tWZ7lWrVqGsrAxdu3bF6dOnMX36dJw8eRJ79uxBmzZtGsynqqoKVVVVyvuSkhIkJSWp5mgHUWun1i8ptZarMd7ujk5Etfz5UhkiX/NGkqSWR20Brac98MXJiaZuO2o70+03SXd9RUVFSElJwVtvvYXHHnuswXhnN14DoJqKJyIbNSS5aulGTkT+gYk3kft8cTaypZO+1twGuJOAN7WXgiduMqu2S4s9nnSbzWaEhITg008/xYgRI5ThWVlZKCoqwueff97o9O4m3QAwcOBAZGRkICcnp8E4nukm8h++PGKshqSfiPwP2w6ixl0pSW1ud/HmJvGevuko9/eGWuoAizt1r7ak2+PXdBuNRvTv3x/r1q1Tkm6r1Yp169Zh/PjxHvucsrIyHDp0CGPGjHE63mQywWQyeezziMh7nF0nVPf675Z6RBa/QInIXc7uUUHU2jUlUW3ud25j0zX2+Z7YX/k7oXHO6udq6z1Q6txrjwzLysrC3//+dwwaNAizZ8/GkiVLsH//fsTFxWHs2LFITExUzlCbzWbk5eUBAO68806MHj0ao0ePRlhYGDp37gwAeP755/HrX/8aKSkpOHXqFLKzs7Fz507k5eUhJibmimVS29EOInLNW2e+mXATkTewuzm1dmr9fmXCp072Xg7evDme2nI/ryTdADB37ly8+eabKCgoQN++ffHOO+8gLS0NAHDLLbcgNTUVixYtAgAcPXoUHTp0aDCPoUOHYuPGjQCAhx56CF9//TUKCwsRExODm266CX/+85/RqVMnt8qjtoonosZdbbeuptwRlYjoajHxptZIrcm2u1oi+SPfUFvu57WkW23UVvFE5B5vdd/klysReRqv86bWhAeaSM3Ulvsx6SYiv8BrsYjIXzAZoUDGg0vkD9SW+zHpJiK/0pTkmz8CiMhXmHhTIOJ2Tf5Cbbkfk24iIiIiL2GSQoGA2zH5G7Xlfky6iYiIiLyI3XHJXzHZJn+lttxP6+sCEBEREQUybzy7lsibUievZMJN5EE8001ERETUAlwl2kxmSE2YbFMgUFvup/d1AYiIiIhag7rJiz2xsT8juP54opbGyyCIvIdnuomIiIh8gGe+SU3qbo/cBsnfqS33Y9JNRERE5EM8w0i+wm2PApXacj8m3UREREQq0NjN1ZgIkafx2m0KZGrL/Zh0ExEREanIle5s3pzkKHXySofrx5uLiZn/amwb4HqlQKO23I9JNxEREZHKOLvRmhoxWVO/xu4dYE/EiQKN2nI/Jt1EREREKqXmhNsZJnDq4I3eEkT+RG25H5NuIiIiIj9yNYn41SRbTf1cJna16nbt9vRj4ppy6QDXCbUWasv9mHQTERERUbMw0fOP3giBvg6I6lNb7sekm4iIiIiuiruJZyAkf/6SZPN6bWrN1Jb7MekmIiIiIo9xp7uzPyWDak+y/akuiVqK2nI/Jt1ERERE5BV1E1ZnibhaE8bmJNpqXRai1khtuR+TbiIiIiLyOn+4ozavUScKDGrL/Zh0ExEREVGLUVPyzSSbKDCpLfdj0k1ERERELc6XCS+TbaLAprbcj0k3EREREfmUN5PgplyfzUSbKDCoLffTemvG8+bNQ2pqKoKCgpCWloYtW7a4jN27dy/uu+8+pKamQqPRYPbs2Vc9TyIiIiLyD0dnZF4x4U2dvNLhZR9W/6+zOE98PhFRc+m9MdNPPvkEkyZNwoIFC5CWlobZs2dj+PDhyM/PR2xsbIP4iooKdOzYEQ888ACeffZZj8yTiIiIiPxL3cT3Sgmzq8S7qZ9DRORtXulenpaWhoEDB2Lu3LkAAKvViqSkJDz99NOYPHlyo9OmpqZi4sSJmDhxosfmCaiviwERERERuedKz/zmNdpEVJfacj+Pn+k2m83Yvn07pkyZogzTarXIyMhAbm6uauZJRERERP6hfsJcN8n2l2d/E1Hr5fGk+/z587BYLIiLi3MYHhcXh/3797fYPKuqqlBVVaW8LykpadZnExEREZG6MLEmIn/itRup+VpOTg4iIiKUV1JSkq+LRERERERERK2Mx5Pu6Oho6HQ6nDlzxmH4mTNnEB8f32LznDJlCoqLi5XXiRMnmvXZRERERERERM3l8e7lRqMR/fv3x7p16zBixAgAtpuerVu3DuPHj2+xeZpMJphMJuW9/X5x7GZOREREREQUuOw5nxfuGd4sXnlk2KRJk5CVlYUBAwZg0KBBmD17NsrLy/HII48AAMaOHYvExETk5OQAsN0oLS8vT/n/5MmT2LlzJ8LCwtC5c2e35nklhYWFAMBu5kRERERERK1AYWEhIiIifF0M7yTdI0eOxLlz5zB16lQUFBSgb9++WL16tXIjtOPHj0Orre3ZfurUKVx//fXK+1mzZmHWrFkYOnQoNm7c6NY8r6Rt27bKZ19txQ8cOBBbt269qnkE6nxKSkqQlJSEEydOXPXt+dW0XGoqS6DWsdrmo7Z6VlPdeGo+aqvjQJ2Pp+pZTcuktvlwW/b+PFjHLTOfQK1nNZUlUOtYbfMpLi5GcnKykgP6mleSbgAYP368y67f9kTaLjU11a1T/43N80rsSX5ERMRVb+A6nc4jz3sL1PkAQHh4eEDVs5rKYhdodazG+QDqqWe11U0g1nEgzwe4+npW2zKpbT4At2VvlwVgHbfEfIDAq2c1lcUu0OpYjfMB4HCi15fUUQo/M27cOM6nBahpudRUFk9S23KpbT6eEojbYCDWcSDPxxPUtkxqm4+nqG251NR+eYqa6kaN8/EUNS2XmsriSWpbLrXNR000opary72spKQEERERKC4u9tiRE2qI9ex9rOOWwXr2PtZxy2A9ex/r2PtYxy2D9ex9rOOWobZ6bjVnuk0mE7Kzsx3uaE6ex3r2PtZxy2A9ex/ruGWwnr2Pdex9rOOWwXr2PtZxy1BbPbeaM91ERERERERELa3VnOkmIiIiIiIiamlMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyklaTdM+bNw+pqakICgpCWloatmzZ4usiqcLXX3+NX//610hISIBGo8Hy5csdxosIpk6dinbt2iE4OBgZGRk4cOCAQ8yFCxcwevRohIeHIzIyEo899hjKysocYnbt2oUhQ4YgKCgISUlJeOONNxqUZenSpejWrRuCgoLQq1cvfPnllx5fXl/IycnBwIED0aZNG8TGxmLEiBHIz893iLl06RLGjRuHa665BmFhYbjvvvtw5swZh5jjx48jMzMTISEhiI2NxQsvvICamhqHmI0bN6Jfv34wmUzo3LkzFi1a1KA8gbovzJ8/H71790Z4eDjCw8ORnp6OVatWKeNZx543Y8YMaDQaTJw4URnGer5606ZNg0ajcXh169ZNGc869oyTJ0/id7/7Ha655hoEBwejV69e2LZtmzKe339XLzU1tcG2rNFolGfwclu+ehaLBa+++io6dOiA4OBgdOrUCa+//jrq3ieZ2/LVKy0txcSJE5GSkoLg4GAMHjwYW7duVcazjpvOn3IQd8pyRdIKLF68WIxGo/zrX/+SvXv3yuOPPy6RkZFy5swZXxfN57788kt55ZVX5LPPPhMAsmzZMofxM2bMkIiICFm+fLn89NNP8pvf/EY6dOgglZWVSsztt98uffr0kR9++EG++eYb6dy5s4waNUoZX1xcLHFxcTJ69GjZs2ePfPzxxxIcHCx///vflZjvvvtOdDqdvPHGG5KXlyd//OMfxWAwyO7du71eB942fPhwWbhwoezZs0d27twpd955pyQnJ0tZWZkS88QTT0hSUpKsW7dOtm3bJjfccIMMHjxYGV9TUyM9e/aUjIwM2bFjh3z55ZcSHR0tU6ZMUWIOHz4sISEhMmnSJMnLy5M5c+aITqeT1atXKzGBvC988cUXsnLlSvn5558lPz9fXn75ZTEYDLJnzx4RYR172pYtWyQ1NVV69+4tEyZMUIaznq9edna29OjRQ06fPq28zp07p4xnHV+9CxcuSEpKijz88MOyefNmOXz4sKxZs0YOHjyoxPD77+qdPXvWYTteu3atAJANGzaICLdlT/jzn/8s11xzjaxYsUKOHDkiS5culbCwMHn77beVGG7LV+/BBx+U7t27y6ZNm+TAgQOSnZ0t4eHh8ssvv4gI67g5/CkHcacsV9Iqku5BgwbJuHHjlPcWi0USEhIkJyfHh6VSn/obvNVqlfj4eHnzzTeVYUVFRWIymeTjjz8WEZG8vDwBIFu3blViVq1aJRqNRk6ePCkiIn/7298kKipKqqqqlJiXXnpJunbtqrx/8MEHJTMz06E8aWlp8oc//MGjy6gGZ8+eFQCyadMmEbHVqcFgkKVLlyox+/btEwCSm5srIraGSavVSkFBgRIzf/58CQ8PV+r1xRdflB49ejh81siRI2X48OHK+9a2L0RFRck//vEP1rGHlZaWSpcuXWTt2rUydOhQJelmPXtGdna29OnTx+k41rFnvPTSS3LTTTe5HM/vP++YMGGCdOrUSaxWK7dlD8nMzJRHH33UYdi9994ro0ePFhFuy55QUVEhOp1OVqxY4TC8X79+8sorr7COPUDNOYg7ZXFHwHcvN5vN2L59OzIyMpRhWq0WGRkZyM3N9WHJ1O/IkSMoKChwqLuIiAikpaUpdZebm4vIyEgMGDBAicnIyIBWq8XmzZuVmJtvvhlGo1GJGT58OPLz83Hx4kUlpu7n2GMCcR0VFxcDANq2bQsA2L59O6qrqx2Wv1u3bkhOTnao5169eiEuLk6JGT58OEpKSrB3714lprE6bE37gsViweLFi1FeXo709HTWsYeNGzcOmZmZDeqC9ew5Bw4cQEJCAjp27IjRo0fj+PHjAFjHnvLFF19gwIABeOCBBxAbG4vrr78e7733njKe33+eZzab8eGHH+LRRx+FRqPhtuwhgwcPxrp16/Dzzz8DAH766Sd8++23uOOOOwBwW/aEmpoaWCwWBAUFOQwPDg7Gt99+yzr2AjXVqTtlcUfAJ93nz5+HxWJxaLABIC4uDgUFBT4qlX+w109jdVdQUIDY2FiH8Xq9Hm3btnWIcTaPup/hKibQ1pHVasXEiRNx4403omfPngBsy240GhEZGekQW7+em1uHJSUlqKysbBX7wu7duxEWFgaTyYQnnngCy5YtQ/fu3VnHHrR48WL8+OOPyMnJaTCO9ewZaWlpWLRoEVavXo358+fjyJEjGDJkCEpLS1nHHnL48GHMnz8fXbp0wZo1a/Dkk0/imWeewfvvvw+A33/esHz5chQVFeHhhx8GwPbCUyZPnoyHHnoI3bp1g8FgwPXXX4+JEydi9OjRALgte0KbNm2Qnp6O119/HadOnYLFYsGHH36I3NxcnD59mnXsBWqqU3fK4g6925FEdNXGjRuHPXv24Ntvv/V1UQJS165dsXPnThQXF+PTTz9FVlYWNm3a5OtiBYwTJ05gwoQJWLt2bYMj/uQ59jNUANC7d2+kpaUhJSUFS5YsQXBwsA9LFjisVisGDBiAv/zlLwCA66+/Hnv27MGCBQuQlZXl49IFpn/+85+44447kJCQ4OuiBJQlS5bgo48+wr///W/06NEDO3fuxMSJE5GQkMBt2YM++OADPProo0hMTIROp0O/fv0watQobN++3ddFIz8R8Ge6o6OjodPpGtwN88yZM4iPj/dRqfyDvX4aq7v4+HicPXvWYXxNTQ0uXLjgEONsHnU/w1VMIK2j8ePHY8WKFdiwYQPat2+vDI+Pj4fZbEZRUZFDfP16bm4dhoeHIzg4uFXsC0ajEZ07d0b//v2Rk5ODPn364O2332Yde8j27dtx9uxZ9OvXD3q9Hnq9Hps2bcI777wDvV6PuLg41rMXREZG4tprr8XBgwe5LXtIu3bt0L17d4dh1113ndKNn99/nnXs2DF89dVX+O///m9lGLdlz3jhhReUs929evXCmDFj8Oyzzyq9kbgte0anTp2wadMmlJWV4cSJE9iyZQuqq6vRsWNH1rEXqKlO3SmLOwI+6TYajejfvz/WrVunDLNarVi3bh3S09N9WDL169ChA+Lj4x3qrqSkBJs3b1bqLj09HUVFRQ5H+tavXw+r1Yq0tDQl5uuvv0Z1dbUSs3btWnTt2hVRUVFKTN3PsccEwjoSEYwfPx7Lli3D+vXr0aFDB4fx/fv3h8FgcFj+/Px8HD9+3KGed+/e7dC4rF27FuHh4coPxyvVYWvcF6xWK6qqqljHHjJs2DDs3r0bO3fuVF4DBgzA6NGjlf9Zz55XVlaGQ4cOoV27dtyWPeTGG29s8OjGn3/+GSkpKQD4/edpCxcuRGxsLDIzM5Vh3JY9o6KiAlqt4895nU4Hq9UKgNuyp4WGhqJdu3a4ePEi1qxZg7vvvpt17AVqqlN3yuIWt2+55scWL14sJpNJFi1aJHl5efL73/9eIiMjHe6G2VqVlpbKjh07ZMeOHQJA3nrrLdmxY4ccO3ZMRGy3yI+MjJTPP/9cdu3aJXfffbfT2/Vff/31snnzZvn222+lS5cuDrfrLyoqkri4OBkzZozs2bNHFi9eLCEhIQ1u16/X62XWrFmyb98+yc7O9ttHINT35JNPSkREhGzcuNHh0SkVFRVKzBNPPCHJycmyfv162bZtm6Snp0t6eroy3v7YlNtuu0127twpq1evlpiYGKePTXnhhRdk3759Mm/ePKePTQnUfWHy5MmyadMmOXLkiOzatUsmT54sGo1G/vOf/4gI69hb6t69XIT17AnPPfecbNy4UY4cOSLfffedZGRkSHR0tJw9e1ZEWMeesGXLFtHr9fLnP/9ZDhw4IB999JGEhITIhx9+qMTw+88zLBaLJCcny0svvdRgHLflq5eVlSWJiYnKI8M+++wziY6OlhdffFGJ4bZ89VavXi2rVq2Sw4cPy3/+8x/p06ePpKWlidlsFhHWcXP4Uw7iTlmupFUk3SIic+bMkeTkZDEajTJo0CD54YcffF0kVdiwYYMAaPDKysoSEdtt8l999VWJi4sTk8kkw4YNk/z8fId5FBYWyqhRoyQsLEzCw8PlkUcekdLSUoeYn376SW666SYxmUySmJgoM2bMaFCWJUuWyLXXXitGo1F69OghK1eu9NpytyRn9QtAFi5cqMRUVlbKU089JVFRURISEiL33HOPnD592mE+R48elTvuuEOCg4MlOjpannvuOamurnaI2bBhg/Tt21eMRqN07NjR4TPsAnVfePTRRyUlJUWMRqPExMTIsGHDlIRbhHXsLfWTbtbz1Rs5cqS0a9dOjEajJCYmysiRIx2eH8069oz/+7//k549e4rJZJJu3brJu+++6zCe33+esWbNGgHQoO5EuC17QklJiUyYMEGSk5MlKChIOnbsKK+88orDI5K4LV+9Tz75RDp27ChGo1Hi4+Nl3LhxUlRUpIxnHTedP+Ug7pTlSjQiIu6fFyciIiIiIiIidwX8Nd1EREREREREvsKkm4iIiIiIiMhLmHQTEREREREReQmTbiIiIiIiIiIvYdJNRERERERE5CVMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL/n/wlIC+f4bCIAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import resonances\n", - "\n", - "sim = resonances.find(463, ['Jupiter', 'Saturn'])\n", - "sim.run()" - ] - }, - { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "From the plots, it is clear that only `4J-2S-1` is the only resonance, in which Lola is trapped in. Let's double-check this with the actual values." + "## AstDyS Catalog\n", + "\n", + "By default, the application uses NASA Horizon database for the initial data. However, there is another option for numbered asteroids — AstDyS catalog. The app will download the latest version, convert it, and start using it in simulation.\n", + "\n", + "This is especially useful if you need to run some statistical experiments, such as finding all asteroids trapped in a specific resonance." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
namemmrstatuspurenum_libration_periodsmax_libration_lengthmonotonyoverlappingaeincOmegaomegaM
04632J+3S-1+0+0-40False1061193.8881890.0062082.3976250.2200080.2363520.6368635.7510231.707801
14634J-2S-1+0+0-12True1100000.0746890.505571(10774, 11801)2.3976250.2200080.2363520.6368635.7510231.707801
24636J-7S-1+0+0+20False1051782.8730290.9941102.3976250.2200080.2363520.6368635.7510231.707801
34636J+1S-2+0+0-50False1051751.0360100.0167142.3976250.2200080.2363520.6368635.7510231.707801
446310J-3+0-70False278463.6740371.0000002.3976250.2200080.2363520.6368635.7510231.707801
54638S-1+0-70False211811.8439680.003661(8398, 9009), (11264, 13045)2.3976250.2200080.2363520.6368635.7510231.707801
64638S+1+0-90False247279.5925461.0000002.3976250.2200080.2363520.6368635.7510231.707801
\n", - "
" - ], - "text/plain": [ - " name mmr status pure num_libration_periods \\\n", - "0 463 2J+3S-1+0+0-4 0 False 106 \n", - "1 463 4J-2S-1+0+0-1 2 True 1 \n", - "2 463 6J-7S-1+0+0+2 0 False 105 \n", - "3 463 6J+1S-2+0+0-5 0 False 105 \n", - "4 463 10J-3+0-7 0 False 2784 \n", - "5 463 8S-1+0-7 0 False 211 \n", - "6 463 8S+1+0-9 0 False 2472 \n", - "\n", - " max_libration_length monotony overlapping a \\\n", - "0 1193.888189 0.006208 2.397625 \n", - "1 100000.074689 0.505571 (10774, 11801) 2.397625 \n", - "2 1782.873029 0.994110 2.397625 \n", - "3 1751.036010 0.016714 2.397625 \n", - "4 63.674037 1.000000 2.397625 \n", - "5 811.843968 0.003661 (8398, 9009), (11264, 13045) 2.397625 \n", - "6 79.592546 1.000000 2.397625 \n", - "\n", - " e inc Omega omega M \n", - "0 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "1 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "2 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "3 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "4 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "5 0.220008 0.236352 0.636863 5.751023 1.707801 \n", - "6 0.220008 0.236352 0.636863 5.751023 1.707801 " - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "df_summary = sim.get_simulation_summary()\n", - "df_summary.head(10)" + "import resonances\n", + "\n", + "sim = resonances.Simulation(name='test_astdys', source='astdys')\n", + "sim.create_solar_system()\n", + "\n", + "sim.add_body(463, '4J-2S-1', '463 Lola')" ] }, { - "attachments": {}, - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 3, "metadata": {}, + "outputs": [], "source": [ - "Based on the dataframe, the only non-zero status is for the resonance `4J-2S-1`. The maximum libration length is greater than `60,000` years, which is good.\n", - "\n", - "Therefore, we can claim that the asteroid 463 Lola is trapped in the transient resonance `4J-2S-1`." + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The function `find` accepts different types of inputs:\n", - "\n", - "The first parameter (`asteroids`) can be an asteroid's number, a string (for unnumbered asteroids), or a list of numbers. For example, you might want to examine simultaneously several objects:" + "Now, let's run the simulation with AstDyS data. Note that we did not specify the date of the simulation — when using AstDyS, the app will take the date of the AstDyS catalog. It is possible to change this but it is not recommended." ] }, { @@ -289,27 +59,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVfs38O8mIY00SiCUkNB7L6FIUSIBAxJUmggExAqP8FjBFsASsPBTEVH0kSCICEoTBIwQgiBFmhBAilTpLQk1QPa8f/DumE02ye5mZqd9P9eV64Ld2dlz7lNm7mlrEUIIEBEREREREZHsvNQuABEREREREZFRMekmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIyrcmTJ8NiscBisWDTpk2FLnfkyBE88cQTiIqKgp+fHypWrIh7770XCxYssFtu//79eOKJJ9C8eXOEh4fDz88P0dHR6NmzJ1avXq10dcjELl++jCpVqsBisaB79+4F3j969Gih7zly8uRJfPTRR+jWrRuqVasGX19fRERE4OGHH8bmzZsL/dzy5csRHx+PChUqoFSpUihfvjwaNWqE4cOHY8mSJS7VaerUqRg2bBiaNGkCHx8fWCwWrF271qV1yGH8+PGyfrfFYkGXLl1kWZeWXbt2DXPmzEG/fv1Qp04dBAQEICwsDJ07d8Z3332ndvGIiDzKR+0CEBGpISMjA0lJSShdujSuXbtW6HKpqalISEgAAPTq1Qs1atTA5cuXsWvXLvz666/o27evtOzu3buxcOFCtGvXDu3bt0dISAhOnjyJJUuWYPny5Xj77bfx2muvKV01MqFRo0YhKytLtvVNnToVkydPRs2aNdGtWzeEh4fj4MGDWLx4MRYvXoy5c+eif//+dp+ZMGECxo8fj8DAQPTs2RPR0dG4c+cO9uzZg++//x4HDhxA7969nS7Dc889BwCoVKkSwsPDcebMGdnqR8r77bffMHjwYJQrVw5du3bFww8/jHPnzmHhwoV49NFHsWHDBnz66adqF5OIyCOYdBOR6dy+fRtDhw5Fs2bNULt2bcyZM8fhcsePH8cjjzyCKlWq4Ndff0W1atXs3r9z547d/3v16oWHH34YFovF7vVTp06hefPmmDBhAkaOHImwsDBZ60Pm9uOPP2Lu3Ln49NNPMWrUKFnW2aZNG6xduxadO3e2e/23335D165d8cwzzyAhIQF+fn4A7p5JnzhxIiIjI7Fp0yZUrlzZ7nM3btwo8gy5I8uWLUPLli0RERGBp59+Gl988UXJKkUeFRERgdmzZ6Nfv37w9fWVXn/33XcRExODadOmYciQIWjTpo2KpSQi8gxeXk5EpvPOO+9gz549+Prrr+Ht7V3ocu+++y6ys7Px+eefF0i4AcDHx/64pZ+fX4GEGwAqV66MDh064Pbt2zh27FiJyt6lSxdYLBbcvHkTr7/+OmrWrIlSpUph/Pjx0jJHjhzBiBEjUK1aNfj5+aFSpUpITEx0+N3bt2/HI488Ii0bHh6O1q1b45133imwbEZGBvr164cKFSrAz88P1atXx5gxY3Dx4sUCy0ZHRyM6OhpXr17F6NGjUblyZfj5+aFJkyb44YcfCix/4MABvPzyy2jRogXKlSsHf39/1KlTB2PHjsXVq1cLjcPt27cxfvx4REdHw8/PD3Xq1MFnn33mMHZCCMycORMdO3ZEWFgYAgMDUbt2bTz11FM4fvy43bJXrlxBUlISGjZsKF0WGxcXh/Xr1ztct1rOnz+PZ555BoMHD0Z8fLxs633ooYcKJNwA0LFjR9x77724fPkydu/eLb2+ZcsWWK1WPPTQQwUSbgAICAhw+ZLq+Ph4REREuFx2Z2VlZeHNN99EgwYNEBQUhJCQENSqVQtDhw6VxkqXLl0wYcIEAMC9994r3Y4SHR0trSctLQ3Dhw9H3bp1ERQUhKCgILRq1QozZsyw+761a9dK80N6erq0LovFgpSUFABFX8qekpJit2ze7+/Ro4c0xipWrIiOHTsW+H5Pa9asGR577DG7hBsAKlasiKeeegoAsG7dOjWKRkTkcTzTTUSmsn37drzzzjuYOHEiGjRoUOhyQggsWLAA5cqVw3333Ydt27YhPT0dVqsVzZo1w3333QcvL+eOW168eBGbN29GYGAgatSoIUs9Hn74Yfz555/o3r07wsLCUL16dQDA5s2bERcXh2vXrqFnz56oXbs2jh49im+//RYrVqzAxo0bpTLs3LkT7du3h7e3N3r37o2oqChkZmZi7969mDFjht2l8OvXr0dcXBxu3bqFRx55BNHR0di4cSM+/vhjLFu2DJs2bUL58uXtynj79m1069YNly9fxsMPP4zr169j3rx56NevH1auXIlu3bpJyy5cuBD/+9//cO+996JLly6wWq3YtGkTJk+ejPT0dKxbtw6lSpUqEIeBAwdiy5Yt6NGjB7y9vTF//nyMHDkSpUqVwhNPPCEtZ7Va0b9/f/zwww+oUqUKBg4ciJCQEBw9ehTz589Hjx49pAMrly5dQqdOnbBnzx506NABTz/9NLKzs7FkyRLpXn7bLQdqe/rpp+Ht7Y2PP/5Y1svLi2Jrh7wHncqVKwcAOHjwoEfKUFJCCMTFxWHz5s3o0KEDunfvDi8vLxw7dgxLly7F4MGDERUVhcTERAB3k+ShQ4dKyXbeq1UmT56MQ4cOoW3btujTpw8yMzOxcuVKPPXUU9i/fz8+/PBDAHcPRCUlJWHChAl26wbuJqjuWL58OXr16oWwsDD07t0blSpVwvnz5/Hnn39i9uzZePLJJ91ar9Ic9SEiIiPjbEdEppGTk4MhQ4agWbNmePnll4tc9siRI7h06RJatWqFp556qsBZo+bNm2Pp0qWoWrVqgc8eOHAAc+fORW5uLk6dOoWlS5ciMzMTn3/+OYKDg2Wpy6lTp7Br1y6ULVtWeu327dsYMGAArFYrtmzZgubNm0vvrV+/Hl26dMHo0aPx008/AQBmz56NnJwcLF68uMC9tnnPXlutViQmJuL69etYuXIl4uLipPdefvllvP/++3jllVfwv//9r0AZW7dujbVr10pnux599FHExsZiypQpdkn34MGD8fzzzxc4KzZx4kQkJSVh/vz5GDRoUIE4/PPPP8jIyEBISAgAYPTo0WjUqBE+/PBDu6T7s88+ww8//ICuXbvip59+QkBAgPTejRs3cOPGDen///nPf7Bnzx58+eWXGDFihPR6cnIyWrVqhSeffBLdu3eHv79/gfLklZmZiY8++qjIZfIbM2aM07cfzJkzBwsXLsTixYtRpkwZjyTdx48fx6+//opKlSqhcePG0usxMTGoVq0afv75Z/Ts2RMDBgxAmzZtULt2bYdXf6gtIyMDmzdvRkJCAhYtWmT3Xk5ODm7fvg0ASExMxNGjR5Geno7ExESHZ+unT58uHfSyuXPnDh544AF8/PHHGD16NKpVq4bo6GiMHz8eEyZMkP5dUl9//TWEEEhLS0PTpk3t3nN0BYojO3fuxOLFi53+zrCwMIwZM8aFUtrLzc3FN998A4vFgtjYWLfXQ0SkK4KIyCRefvll4evrK3bv3i29NnToUAFAbNy40W7ZjRs3CgDC29tbBAUFiZkzZ4pLly6JI0eOiCeeeEIAEDExMQ6/56effhIApL+goCAxe/ZsWerQuXNnAUAsWbKkwHsLFy4UAMTEiRMdfvahhx4SXl5eIisrSwghxPPPPy8AiFWrVhX5nevWrRMARI8ePQq8d+XKFVG2bFnh7+8vcnJypNejoqIEAHH48OECn4mKihJly5Yt8jttLl68KACIxMREu9dtcVizZk2Bz9jey87Oll6rX7++8Pb2FgcOHCjy+86fPy+8vb3Ffffd5/D9Tz75RAAQP/30U7FlP3LkiF0/cObvyJEjxa5XCCFOnjwpypQpIwYOHFjg++Li4goti6P3nHXr1i3RqVMnAUB88803Bd7fvn27aNiwoV19QkNDRc+ePcXChQvd/l4hhHjqqacEAJGWllai9djs2rVLALCLX2GSkpLc+u4ff/xRABApKSl2rwMQnTt3dvm7Zs6cKQCImTNnSq899NBDAoDYv3+/S2VztF5n/6Kiotz+LiGEGDdunAAghg8fXqL1EBHpCc90E5EpbNy4ER988AHGjx+PRo0aFbu81WoFcPeszFtvvSVdClqmTBnMmDEDu3btwubNm7F+/Xrcc889dp/t2bMnhBC4desWjh49ii+//BJDhgzBli1b8Mknn8hSH0cPH7L97Nn+/fsdnkU7c+YMrFYrDhw4gFatWqFfv3746KOP0KdPH/Tv3x/3338/OnXqhCpVqth9bseOHQDg8Cyf7f7VX375Bfv377c7+5n3sve8qlatio0bN9q9Jv7//dYpKSnIyMhAVlaW1AbA3bPmjrRs2dLh+oG7Z5qDg4Nx9epV7Nu3D7Vq1ULt2rUdrsfmjz/+QG5uLnJychzG0Hb59F9//YWePXsWua7o6GgIIYpcxl0jRoxAqVKl3O5PhZ2FL+zsq+1qh3Xr1uGJJ57A4MGDCyzTvHlz7N69Gxs3bkRaWhq2bduG9evXY9myZVi2bBkGDRqE2bNnw2Kx4OjRowXuTS7pGVRX1K9fH02aNMF3332Hf/75BwkJCejSpQuaNWvm9G0jNleuXMEHH3yAxYsX4++//y7wawiF9V05DBgwAAsXLkTbtm3x6KOPomvXrujYsWOBWz2KkpiYaHepu5I+//xzJCcno3nz5vj444898p1ERFrApJuIDO/OnTsYOnQomjRpgrFjxzr1mdDQUOnfDz74YIH3e/Xqhc2bN2Pr1q0Fkm4bX19f1KlTB++//z6uX7+OqVOnokePHujRo4d7FcmjYsWKBV67dOkSAODbb78t8rO2pCAmJgZr167Fu+++i7lz52LmzJkAgNatW2Py5Mm49957AQDZ2dmFfidw9yed8i5nkzeGefn4+Ngl1MDdn4f69NNPERkZiQcffBCVKlWSnow9YcIE5OTkOFyX7bLy/OsH7h4wASBddp3/YIIjthhu2LABGzZsKHS5on5mTmmzZs3CihUrsGDBApeSq7wyMzOlB4Tl5SjptlqtGD58OObOnYvHHnsMn3/+eaHrtVgsaN++Pdq3bw/g7sGUJUuWYMiQIfj222/x8MMPo0+fPjh69GiB74+KivJY0u3j44M1a9Zg/Pjx+PHHH/HCCy8AAMLDwzFq1Ci89tprRT5k0ebWrVvo0qULtm/fjubNm0s/keXj44OjR49i1qxZhfZdOfTt2xeLFy/GlClT8Pnnn2PatGmwWCy499578eGHH7p9r7gSvvrqKzz77LNo3LgxUlNTERQUpHaRiIg8hkk3ERne1atXpTOU+e8ZtmnXrh0AYNGiRUhISEDNmjXh7e2N3Nxch/fY2l7Ley9wUbp164bPPvsMa9eulSXpdnSfrC0B/emnn4o9C2vTsWNHrFixQvpJp59++gmfffYZ4uPjkZGRgRo1akjrPXv2rMN12H4/2VEC7Ixz585h2rRpaNKkCTZu3IjAwEC7dTtKDl1hS/5PnjxZ7LK2Orzwwgv44IMPSvS9St3TbbvyIO9vxOe1atUqWCwWNG3aFDt37nS4jLNn4a1WK4YNG4ZvvvkGAwcOREpKiktngi0WCxISEvDf//4XEydOxJo1a9CnTx906dJFsasAnFWuXDlMnToVn3zyCf766y+sWbMGU6dORVJSEkqVKoVx48YVu44lS5Zg+/btePzxx/HVV1/ZvTdv3jzMmjXLpTLZYpv/5wgBFHrPfu/evdG7d29cuXIFGzZskB5K2L17d/z111/F9idP3NP95Zdf4qmnnkKDBg2wevVq6cF7RERmwaSbiAzPz88Pjz/+uMP31q1bh4MHD+LBBx9EeHi49HRif39/tG/fHr/99hv27t1b4Gz23r17AcDup4OKYrvE1NETuOUSExMD4O6l9M4m3Ta2n3Tq0qULwsLC8OabbyI1NRVPPfWU9EC2tWvXFngA3bVr17B161YEBASgbt26bpX78OHDEEIgNjbWLuEG7v4udEkFBQWhQYMG2L9/Pw4ePFjkJeatW7eGxWIpcPm7Owo7m1yUxMTEYpOkdu3aOfwZtatXr+L7779H1apVERcX5/Bn7lyRN+Hu378/Zs+e7dTZX0e0fFbTYrGgfv36qF+/Ph588EFUq1YNS5culZJuW51tV07k9ffffwNAgQcRAoX3XS8vL4frAu7evgI4PkBkO9hSmODgYHTv3h3du3dHbm4uvv76a+nXDIqyc+dOl/qpq1ck2BLu+vXrY82aNQgPD3f6s0REhqHi/eRERKor7EFqQggxd+5cAUB07dpV3Lx5U3p93759IjAwUAQHB4tLly5Jr2/dulVYrdYC6zl69KiIjIwUAMT69esdfn/ehyMVxfaQMEdu3rwpqlWrJvz9/UV6enqB92/duiV+++036f+///67uHHjRoHlRo4cafcAqNzcXFGzZk0BQKSmptotO3bsWIcPRYqKiir0gUv563Dq1CkBQLRt21bk5uZKr584cUL63vwPnioqDraY5n0o2bRp0wQAERsbK65fv263/I0bN8TFixel//fv318AEO+9957D9ty0aZO4du2aw+9Wk5wPUsvNzZXi2LdvX3H79u0il9+8ebOYNWuWw/507tw5UadOHQFAzJs3z7nK5OPMg9RsDyFLSkoqdn1Hjhxx+NC6P/74QwAQXbp0kV779NNPCx2jtjni5Zdftnt97dq1olSpUg7LU758eREdHe2wXLYHON533312Y+H3338XPj4+BcqRnp4u7ty5U2A9PXv2FADE2rVrHX6Pp3z55ZfCYrGI+vXrizNnzqhaFiIiNfFMNxFRIWwPKfrhhx/QtGlTxMXFISsrCz/++CNu3ryJb775RjozBdy9JPnQoUPSzyd5eXnh77//xooVK3Dr1i28+OKL6NChg9132O5tluP3av38/PDDDz+gR48e6Ny5M+677z40btwYFosFx44dw2+//YZy5crhr7/+AnD394XT0tLQqVMnVK9eHf7+/ti+fTtWr16NGjVqoE+fPgDunplLSUlBXFwcHnjgAfTt2xdRUVHYuHEj1q5di5o1a2LSpElul7tSpUp4+OGH8eOPP6JVq1bo2rUrzp49i2XLlqFr167S2cSSeOaZZ5Ceno758+ejdu3aePDBBxESEoLjx49j1apV+N///if99vZnn32G/fv34+WXX8bs2bPRrl07hIWF4cSJE9i6dSsOHjyI06dPFzgrbyQTJ07ErFmzEBQUhDp16uDtt98usExCQoJ0z/CpU6cwdOhQjBo1Cp06dUK9evXg4+ODY8eOYdmyZbh69Sri4+MLvSTekUmTJkl91XblwaRJk6QHsCUkJNj9XrorY2nnzp146KGH0KZNGzRo0AARERE4efIkFi9eDC8vL/z3v/+Vlr333nthsVjw6quvYs+ePQgNDUVYWBhGjRqFXr16ITo6Gu+99x4yMjLQqFEj7N+/H8uWLUOfPn3www8/FPju++67D/Pnz0dCQgKaN28Ob29vPPjgg2jSpAnatm2LDh06YM2aNWjXrh06deqEY8eOYcmSJejVq1eBnzd77rnncOrUKdxzzz2Ijo6GxWLB+vXrsWXLFrRt27bQ5014wpo1a/Dkk09CCIFOnTph+vTpBZZp1qyZZn7znohIUWpn/UREairqTLcQQty+fVtMmTJFNGzYUPj5+YmQkBDRrVs3h2eQFixYIPr27Stq1KghSpcuLUqVKiWqVKkiHnroIbFy5UqH62/evHmBM+ZFKeoMr80///wjRo8eLWrXri2VuX79+mLEiBFi9erV0nIrV64UQ4YMEXXr1hXBwcEiKChINGjQQLz66qvi/PnzBda7a9cu8cgjj4jy5cuLUqVKiaioKDF69GiHy7pypluIuz899sILL4jo6Gjh5+cnateuLd566y1x69YtWc50CyGE1WoVX331lWjbtq0oXbq0CAwMFLVr1xZPP/20OH78uN2y169fF++9955o2bKlKF26tAgICBDVq1cXCQkJ4ptvvin2zK8aijqbfejQIQFA9OrVy6l12WJY1F/eM67Z2dlizpw5YvDgwaJhw4YiLCxM+Pj4iPDwcNG1a1fxv//9z+EZ2aLY2riwv/xnkPv06SO8vLyc+vmsEydOiLFjx4q2bduKChUqCF9fX1GtWjXx0EMPOZwLUlJSROPGjYWfn1+Bn806fPiwePjhh0V4eLgIDAwUrVu3FvPmzRNpaWkOy3n69GnRr18/Ub58eeHl5VUglhcuXBBDhgwRZcuWFQEBAaJt27Zi1apVDn8ybN68eaJfv36iZs2aIjAwUISGhoqmTZuKyZMniytXrjgTZsU481NkQ4cOVbWMRESeYhFC5SeZEBGZVHZ2NsqUKYMXXngB7733ntrFIQPbtGkT2rVrh2HDhuHrr79WuziKqFChArp06YL58+erXRQiIiI7rv0YJRERyWbDhg0oVaoUnn/+ebWLQga3ZMkSAP8+bM9o9u3bh/Pnzzv1xHEiIiJP45luIiIiA7p58ybefvtt7N69G0uXLkWlSpWwb9++Qn8/nYiIiJTBpJuIiMiAMjMzUbZsWYSFhaFLly6YPHlykT+XRkRERMpg0k1ERERERESkEN7TTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERESkCykpKbBYLDh69KjaRSEiInIak24iIjI8W7Jm+/Px8UGVKlWQmJiIkydPql08Ve3duxfjx49nIktERKQQH7ULQERE5CkTJ05E9erVcfPmTWzatAkpKSlYv349MjIy4O/vr3bxVLF3715MmDABXbp0QXR0tNrFISIiMhwm3UREZBo9evRAq1atAAAjRoxA+fLlMXnyZCxduhT9+vVTuXRERERkRLy8nIiITKtjx44AgL///tvu9b/++guPPPIIypYtC39/f7Rq1QpLly61W+b27duYMGECateuDX9/f5QrVw733HMPUlNT7ZZbs2YNOnbsiNKlSyMsLAy9e/fGvn377JYZP348LBYLDh06hMTERISFhSE0NBTDhg3D9evX7ZadOXMm7rvvPlSoUAF+fn5o0KABpk+fXqBu0dHR6NmzJ9avX482bdrA398fNWrUwDfffCMtk5KSgr59+wIA7r33Xuny+7Vr1xYas127diExMRE1atSAv78/IiIiMHz4cFy8eNHtOt24cQPPPfccypcvj+DgYDz44IM4efIkLBYLxo8fX2hZbFasWCHFODg4GPHx8dizZ0+xnyMiIvIEJt1ERGRatvuYy5QpI722Z88etG3bFvv27cPYsWPx4YcfonTp0khISMCiRYuk5caPH48JEybg3nvvxaefforXXnsN1apVw/bt26Vlfv31V8TFxeHcuXMYP348nn/+efz+++/o0KGDw3uo+/XrhytXriA5ORn9+vVDSkoKJkyYYLfM9OnTERUVhVdffRUffvghIiMj8eyzz2LatGkF1nfo0CE88sgjuP/++/Hhhx+iTJkySExMlBLSTp064bnnngMAvPrqq5g9ezZmz56N+vXrFxqz1NRUHD58GMOGDcPUqVMxYMAAzJs3Dw888ACEEG7VKTExEVOnTsUDDzyAyZMnIyAgAPHx8YWWIa/Zs2cjPj4eQUFBmDx5Mt544w3s3bsX99xzD+9TJyIibRBEREQGN3PmTAFA/Prrr+L8+fPixIkT4ocffhDh4eHCz89PnDhxQlq2a9euonHjxuLmzZvSa1arVbRv317Url1beq1p06YiPj6+yO9t1qyZqFChgrh48aL02p9//im8vLzEkCFDpNeSkpIEADF8+HC7z/fp00eUK1fO7rXr168X+J64uDhRo0YNu9eioqIEALFu3TrptXPnzgk/Pz/xwgsvSK8tWLBAABBpaWlF1qWo7//uu+8KfJezddq2bZsAIMaMGWO3XGJiogAgkpKSpNds7XjkyBEhhBBXrlwRYWFh4oknnrD77JkzZ0RoaGiB14mIiNTAM91ERGQasbGxCA8PR2RkJB555BGULl0aS5cuRdWqVQEAly5dwpo1a6SzsxcuXMCFCxdw8eJFxMXF4eDBg9LTzsPCwrBnzx4cPHjQ4XedPn0aO3fuRGJiIsqWLSu93qRJE9x///34+eefC3zm6aeftvt/x44dcfHiRWRnZ0uvBQQESP/OysrChQsX0LlzZxw+fBhZWVl2n2/QoIF0CT0AhIeHo27dujh8+LCzISsg7/ffvHkTFy5cQNu2bQHA7iy/s3VauXIlAODZZ5+1W+4///lPsWVJTU1FZmYmBg4cKLXVhQsX4O3tjZiYGKSlpblWOSIiIgXwQWpERGQa06ZNQ506dZCVlYWvv/4a69atg5+fn/T+oUOHIITAG2+8gTfeeMPhOs6dO4cqVapg4sSJ6N27N+rUqYNGjRqhe/fuGDx4MJo0aQIAOHbsGACgbt26BdZRv359rFq1CteuXUPp0qWl16tVq2a3nO2y98uXLyMkJAQAsGHDBiQlJWHjxo0F7o3OyspCaGhooeuzrfPy5cuFB6kYly5dwoQJEzBv3jycO3euwPfnV1ydjh07Bi8vL1SvXt1uuVq1ahVbFtsBj/vuu8/h+7aYERERqYlJNxERmUabNm2kp5cnJCTgnnvuwaOPPor9+/cjKCgIVqsVAPDiiy8iLi7O4TpsyWCnTp3w999/Y8mSJfjll1/w1Vdf4f/+7//w+eefY8SIEW6Vz9vb2+Hr4v/fK/3333+ja9euqFevHqZMmYLIyEj4+vri559/xv/93/9J5Xd2fe7o168ffv/9d7z00kto1qyZFLfu3bsX+H6lymBj+77Zs2cjIiKiwPs+PtzNISIi9XFrREREpuTt7Y3k5GTpQWhjx45FjRo1AAClSpVCbGxssesoW7Yshg0bhmHDhuHq1avo1KkTxo8fjxEjRiAqKgoAsH///gKf++uvv1C+fHm7s9zO+Omnn5CTk4OlS5fanUEuyWXUFovF6WUvX76M1atXY8KECXjzzTel1wu7xN4ZUVFRsFqtOHLkCGrXri29fujQoWI/W7NmTQBAhQoVnGovIiIiNfCebiIiMq0uXbqgTZs2+Oijj3Dz5k1UqFABXbp0wRdffIHTp08XWP78+fPSv/P/RFZQUBBq1aqFnJwcAEClSpXQrFkzzJo1C5mZmdJyGRkZ+OWXX/DAAw+4XF7bWeO8Z4mzsrIwc+ZMl9dlY0v885bRle8HgI8++sjt77ddUfDZZ5/ZvT516lSnPhsSEoJ3330Xt2/fLvB+3vYiIiJSC890ExGRqb300kvo27cvUlJS8PTTT2PatGm455570LhxYzzxxBOoUaMGzp49i40bN+Kff/7Bn3/+CeDuQ8q6dOmCli1bomzZsti6dSt++OEHjBo1Slr3+++/jx49eqBdu3Z4/PHHcePGDUydOhWhoaFO/f50ft26dYOvry969eqFp556ClevXsWXX36JChUqODxI4IxmzZrB29sbkydPRlZWFvz8/KTfAc8vJCQEnTp1wnvvvYfbt2+jSpUq+OWXX3DkyBG3vhsAWrZsiYcffhgfffQRLl68iLZt2yI9PR0HDhwAUPSZ+JCQEEyfPh2DBw9GixYtMGDAAISHh+P48eNYvnw5OnTogE8//dTtshEREcmBSTcREZnaQw89hJo1a+KDDz7AE088gQYNGmDr1q2YMGECUlJScPHiRVSoUAHNmze3u6T6ueeew9KlS/HLL78gJycHUVFRePvtt/HSSy9Jy8TGxmLlypVISkrCm2++iVKlSqFz586YPHlygQeHOaNu3br44Ycf8Prrr+PFF19EREQEnnnmGYSHh2P48OFu1T8iIgKff/45kpOT8fjjjyM3NxdpaWkOk24AmDt3Lv7zn/9g2rRpEEKgW7duWLFiBSpXruzW9wPAN998g4iICHz33XdYtGgRYmNj8f3336Nu3brw9/cv8rOPPvooKleujEmTJuH9999HTk4OqlSpgo4dO2LYsGFul4mIiEguFiHHk0yIiIiIZLRz5040b94cc+bMwaBBg9QuDhERkdt4TzcRERGp6saNGwVe++ijj+Dl5YVOnTqpUCIiIiL58PJyIiIiUtV7772Hbdu24d5774WPjw9WrFiBFStW4Mknn0RkZKTaxSMiIioRXl5OREREqkpNTcWECROwd+9eXL16FdWqVcPgwYPx2muv8be2iYhI95h0ExERERERESmE93QTERERERERKYRJNxEREREREZFCTHOjlNVqxalTpxAcHAyLxaJ2cYiIiIiIiEgBQghcuXIFlStXhpeX+ueZTZN0nzp1ik9AJSIiIiIiMokTJ06gatWqahfDPEl3cHAwgLuBDwkJUbk0REREREREpITs7GxERkZKOaDaTJN02y4pDwkJYdJNRERERERkcFq5rVj9C9yJiIiIiIiIDIpJtwqixy5XuwguY5mVpaey5qXXctvovfyAMergCOulXUaoQ156r4/ey5+fkeoTPXa5oeoDGKt9bFgnfdD7eGLSrRI9dZrosctxdFK82sVwix7irIcyFubopHjdll+v5XbESHUB9D3nGJ3R+presT20z2hzmZ63+44YqS75GbFueh5PTLpVoOcOoyd6irOeyuqI3iZ2W3n1HnfAGHUwEyPssBqxz+m5Tdge2mSEOhTFSPUz4hgyWp2McDCeSTcVyQidXMuMsNHSa//Qa7mNzghjgvRFr3OBUceKXtvDESPVJS+j1ou0ySi5CJNuFRl1g6k1Wo+zESYSQPtxttFLOV1lhHoZ6QqE4uixvfRYZqMz8ljRc3/Tc9ldofd6GiWZK4oR2sgomHSrRA+D3AgdXQ9xNgK9xVlv5S2OkepjpLoURs911HPZi6K3y/71VFZ3GKGfGaEORbHVT699Ua/ldoVR+qBR6sGkW2VaH/RG6ehaZMQjrFrvz1ovX0npuX56LjuRGoy2/TAKM81leu+Dei+/0RltLDHpVpGWB7uROrrezmDolZb7c156Kaer9FwvM11Wnpee5iUjHiTMTy/bCj2UUQ56aQ9HjD5W8tNbO+mtvCWh53EEGGssMenWAK0OBiN1dK3RapsbmVlirtd6mm2+MVt9SR5mPECl1znNLPTWF804hkgbmHSrTIuD3qhnNLS24TZijLV+RNWIMc/L6PUjdRh1m+CI1ucwwFzjXG91NdNYyUsP4wYwd8Kth/bJy4hjiUm3RuhtMOiN0QYuUWH0svNjY8QNq7P00FZaL59StFhvLZbJU8xcd5KXGbc3en/onVEw6dYALU0ARh+QWqifGZIMLcQ5L62VxxPMWGe90mpbmfWskBbra9a20BMzbNuLo9W5DNB22TxBT33TqG3FpFtDtNLJ9DQwXWHUemmNVuOs1XIpQS9HtbVePk/Qer/UevmUpLX+ada20MN8puWyeYoe+qceyqgkPVxdZWPEtmLSrRFa6Fx6GYglpWY9zXQkXCv9SSvl8DS99DO9lFNJWtwR0lp5PE1LiZ4WyqA2PcwTeiijJ2ixv5pp36s4tu2NFtsJ0Gb/kYsqSff48eNhsVjs/urVq1fkZxYsWIB69erB398fjRs3xs8//+yh0nqW2p3N6JOSmjtSaretJ2mtH2mtPGSu8eAsrcSElzLfpaXE2+xtAWjz4BSgjf6hFeyn+qD1dtJ6+dyl2pnuhg0b4vTp09Lf+vXrC132999/x8CBA/H4449jx44dSEhIQEJCAjIyMjxYYuWp2cnMtNFQM85GnUgKo3a/Uvv71abVnVQbs42HomgpwQPYNjZqx0Er/UFLtBQTHqByTIttRAVpLTZaK4/cVEu6fXx8EBERIf2VL1++0GU//vhjdO/eHS+99BLq16+Pt956Cy1atMCnn37qwRJ7jlqdzmwbDU/G2YyXNqmdRHBniPRG7TGj9ndrmZpx4Rz2L8ZC+7TYRlosk9q0FhMz7LOplnQfPHgQlStXRo0aNTBo0CAcP3680GU3btyI2NhYu9fi4uKwceNGpYvpcWp0NjPuZHkyzmaMr43ak6fa368FWjzbrbXyaIkW+qwWyqAlasXDjAdrnaGVOc0MSUJJaKmNqHBaiJFZxpIqSXdMTAxSUlKwcuVKTJ8+HUeOHEHHjh1x5coVh8ufOXMGFStWtHutYsWKOHPmTKHfkZOTg+zsbLs/KpzRO7ojnthwm2UiKY6nryrgzqr2sX2KxudOaIunEz22RfG0ECPOY45p4aodG7ZR4bQQG9v+mhbKojRVku4ePXqgb9++aNKkCeLi4vDzzz8jMzMT8+fPl+07kpOTERoaKv1FRkbKtm6leXLjroUJUW1Kx8AME0lR1Nj4mj3mjmhlrGulHFrG505olyf6Lw/WFk/t2PDAbvHUTry5rXGemm1kpnGkiZ8MCwsLQ506dXDo0CGH70dERODs2bN2r509exYRERGFrnPcuHHIysqS/k6cOCFrmT3BU4PATB0+PyXrzgn/X57a+DLmjmlljDOZ0C6OneJ5ot9yjLiGV4RomxqJd96fw+I4Kp6at8+YjSaS7qtXr+Lvv/9GpUqVHL7frl07rF692u611NRUtGvXrtB1+vn5ISQkxO5PTzy5cSflYsEJ/19Kx4Ib2eJp4QFdbB/nqHHfKtvGOUq1C8eIa3hFiD54MvHOO4bYRq5RY//AbG2kStL94osvIj09HUePHsXvv/+OPn36wNvbGwMHDgQADBkyBOPGjZOWHz16NFauXIkPP/wQf/31F8aPH4+tW7di1KhRahTfo7hxV54SGwSzXTLjLKUTCca8cFr4SUK2j+s8uaNKxcu7vZB7m5F3/eQ8/hKJ9nki8eYYcp+nr0gw6zZHlaT7n3/+wcCBA1G3bl3069cP5cqVw6ZNmxAeHg4AOH78OE6fPi0t3759e8ydOxczZsxA06ZN8cMPP2Dx4sVo1KiRGsX3GKUGASemguSMhVknE1co1aepeJ6OFecb93ni6hC2j+vynkWTI/k204OE5KbGWVRyjydu5+MYcl/+OY3PO5KfRQgh1C6EJ2RnZyM0NBRZWVm6u9RczsmEE1Ph8k4w7saH8XWO3HHi2QfnydHPXf0utk3JKDFebNg2JVeS9uHcJQ+l5xrOZfJQKo4cR/JTsq2UWK8jWsv9mHTrhBydlBuN4uU/sudsrLgT6zq5NpLc2LrHE/MB20Y+7s5Nha2L7SIvV8cTt8fyUzpJUGLdZsSD7vohZ+6Rl6faS2u5H5NuHSnp0XR3P2tGzm5k5dwRNpuS7shwR6jklJwXOOcoQ45xwzZRRv62Ke7yTLaDMpS4OlCu9dFdcrURtzPKkyP3yMuTbaW13I9Jtw65utPESalkHMWPG2L5uHLgggc55MfL/fTJnfhyW6A8tXcy6a6S9nWOFeW5OlYKO6jFNlKeo+1NcfHXwj6A1nI/Jt065ErCx0lJHtyR8pyiDnIw5sqQe+PI9vKMonaEbPI/aIptQmbhbp/nWFFHYXEv6ooRtpHnuHLljhYSbkB7uR+Tbp1y5amCWuj4RK7gQQ7P4sMa9amw7UBhlzazTchseK+9vvBstrY5e2BEK+2ltdyPSbfOcUIio2Lf9qySXK6cH9vMszhWiArn6k8fcRypj7fw6ZNWznDbaC33Y9JNREQAXE+itbaBJSJyBZM7IuPSWu7HpJuIiCTO3FPPM6tERESkZVrL/Zh0ExFRsbR6zxYRERFRflrL/bzULgAREWlf3iSbCTcRERGR83zULgAREekDk20iIiIi1/FMNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKUSVpDs5ORmtW7dGcHAwKlSogISEBOzfv7/Iz6SkpMBisdj9+fv7e6jERERERERERK5TJelOT0/HyJEjsWnTJqSmpuL27dvo1q0brl27VuTnQkJCcPr0aenv2LFjHioxERERERERket81PjSlStX2v0/JSUFFSpUwLZt29CpU6dCP2exWBAREaF08YiIiIiIiIhkoYl7urOysgAAZcuWLXK5q1evIioqCpGRkejduzf27NlT6LI5OTnIzs62+yMiIiIiIiLyJNWTbqvVijFjxqBDhw5o1KhRocvVrVsXX3/9NZYsWYI5c+bAarWiffv2+Oeffxwun5ycjNDQUOkvMjJSqSoQEREREREROWQRQgg1C/DMM89gxYoVWL9+PapWrer0527fvo369etj4MCBeOuttwq8n5OTg5ycHOn/2dnZiIyMRFZWFkJCQuyWjR67XPr30UnxbtSCiIiIiIiItCA7OxuhoaEOcz81qHJPt82oUaOwbNkyrFu3zqWEGwBKlSqF5s2b49ChQw7f9/Pzg5+fX7HryZtw5/2/LfmOHruciTgRkYHxwCsREREpSZWkWwiB//znP1i0aBHWrl2L6tWru7yO3Nxc7N69Gw888IDb5cifYOd9Pe9OGHfIiIj0Lf8B1qOT4h3O7YVtF4iIiIjcpUrSPXLkSMydOxdLlixBcHAwzpw5AwAIDQ1FQEAAAGDIkCGoUqUKkpOTAQATJ05E27ZtUatWLWRmZuL999/HsWPHMGLECJe/v7gkurCdrfw7bUREpH15E2nbvwtLrvMn46QeHgDRFl75R0TkPlXu6bZYLA5fnzlzJhITEwEAXbp0QXR0NFJSUgAA//3vf7Fw4UKcOXMGZcqUQcuWLfH222+jefPmTn2n7br+yDHz4eUX6PaGgxsdeXBniozKUcLGfq4ed+Yazk/q4hjSlsIOQrFN1McrMfWF7eVZWrunW/UHqXmKXIHnzljJFHcGiXGVHyd5z3E0PxTV59keyirJfM1EwzMcXYVg+3/+ZfK/Tspw5qAH20Rd+ePPfSvt48FEz2PSrRI5A8/E2z1FxY2TkfyYNHiWq/MC5xFlKRFftpm8XJ33uZ1QljuJtKNnJZCyipuH8l+RyXnLs5x9VgjbRXlMulUid+A5WFzDhER5PDuhjpLElP1cGUrGlbcYyUOONuL4kQ/bQ/u4rdE+R7+AZOPsCafCliXXMelWiRKB5yRWPDku72R8i+fqxphnJ0pGzjNuTOLk44mDSpyXSk7OPs/2KDk5Y8j2kJec22q2jbLkvp2J7VRyTLpVolTgOYk5JtfOL+NbvJLGiDF2HZMG7fHkwQseKHEfL/vXFraHdrFt9EPuuLKd5KG1pNtL7QLonaNLSMxOzrNNjG/R5JiYj06K588kuUDuhIt9vOTUiB3by3VK7Uhyx9Q9SrcHx0jJKdk2bB95cb+AisOkWwYcHAXZEjm51gUwvvkpeRScHFMqPtwRcp8aZwQ4J7lPyXZiezhP6XHDAyElo2RfdvbXNcg5Su8XkHEw6ZYJB8ddSl12yZ1ce0rsMDHGzvHETirbwDVqzL+c812jdJ/m/OU6pfswr6ByjycOJOY9McI2ck/eg+Q8mKhNjZJWqV0EO0y6ZcbBoRzu5NpT8uAGFeSJ+3i5I6Q/bKeieWrHNO/62SaFs7WHJ+d6tofrPNU+HDPu8dQvwXCfzFiYdMvI7IPDU0mJ2TcOnoiz2WOsNrPPJc5S+4Fm3GF1jpy3GznzXQDbxBHeiqF9asSJbeS8vAetPDWvcb/XPVqMGZNuBWixoZXm6TqbMcaAZ+rNhK8gNZI7bmj1gQ8iLJxaB0WYRBSO7aFdaj6xmtt956kVKz7zxXUZE+LULoIdJt0yM/PExTMZyvLkBplJxL8YB23SWrtwzNhTOxZm3hY7opX2ULscWqWVn4hi+xROzdjw1jPXaDVGTLoVotUGV4Kal0OZhVobZDP146Ko1d+YyBVNi/MA2+tfarcPx489LbQHFaSVhFvt79cDtWPExNt5areVI0y6FaDFhlaampfbmIUalzcD5opxXmo8cIico9U+yb5yl9bGjVb7i6dorf5aK48WcLxom5ZiYvZ9s+JobfuTF5NuBZlhQKh9uY0ZqDmBmCXGWmeGucRZWjkrVBS2l3ZouZ94klbioJVyaIXW5gq2T+G0FBstlUVLtJxwA0y6FaPlRpeb2nXV2kZLTlqomxkv0cz7dFK1aaEMWqPlmGi5bJ6g1Z0es81hNlqstxm3KY5o+QAi20cf2E7/0kMsmHQrTA+dwF1a2LlS+/s9QSt1NHJfzsss9dQjtg25QytzqFrMXn8t02Lb8PJle1rY13VEi2VSi5YPYOXFpFtBWm/8ktDaZKy18hiNkfuyI1qrL88M6WejamPG9jJjnbVMy+1h9jlN63Vn4k16oad9AybdHmDUSUsrHVwr5ZCbFo+uGrUv22i9flovn9K0Nh4Ko5dyKkGrdTdrkqfV9iDtt43Wy+cJWp8zzDqv5aeXvsqkW2F66Qiu4AA3JyP2ZUe0Wk+tlssTtHgAiuxxu6AtehkzZuw3eqqzmZM6PZ1BJX1g0u0hRpu0tDYJGW3DYKS6kLzYN/TBaHOSM7S2XXDEDG2ilzrqob8oRW9110ufkoveEm6ztY+NXg4u2jDp9gA9dYjimHVgq0GL/cbIiYQeJm8z3mdnprrqlV7aSOvjWw56SxYA/fQfOeixrnrqS3LQ2xjSSzmJSbdH6XGydUSrA9woCaER6kDKMWPirdU5xxlGbyc97qAavU300haAvsoqF73W2ejjJi89tpGZ2gfQZ32ZdHuIHgcwqUfr/UWPk11R9FYfrfcPusssB0j02B+N2CZ6rpOey24Gehzj7tDDFW+O6LHMctBbvZl0e5ieNyx6mIz0fhZDD2XXeh9wlx7rpYf+UhJ6mHOKo/fyF0Wv/c/IbaLHuumxzO7Q63gh/WAf0zZVk+5p06YhOjoa/v7+iImJwZYtW4pcfsGCBahXrx78/f3RuHFj/Pzzzx4qqTzMsmGhktFLP+Hkri699BO6y2jjRW+XlTtipDbRe130fsDcWXoeL0ZvI73XzSxXVgH6PSCvWtL9/fff4/nnn0dSUhK2b9+Opk2bIi4uDufOnXO4/O+//46BAwfi8ccfx44dO5CQkICEhARkZGR4uOSkdXrdMOipzHqc7Aqj18mb9MOoO0N6Hjd6LnthjFgno+B2Rh/03kZG3dYYhWpJ95QpU/DEE09g2LBhaNCgAT7//HMEBgbi66+/drj8xx9/jO7du+Oll15C/fr18dZbb6FFixb49NNPPVzyktPjYOAGwzMYY3KVHucTZxhtzjFSXYxCrwdo8zNCHQDjtEd+RquT0eoDGKtORt/W6LmtVEm6b926hW3btiE2Nvbfgnh5ITY2Fhs3bnT4mY0bN9otDwBxcXGFLp+Tk4Ps7Gy7Py0w+mDQEj0NTD2V1cYIO0h6Lz/nE/3Re58DjHdAxAjYHtpmlPYxSj0cMVrdjLCtKYxe28oihBCe/tJTp06hSpUq+P3339GuXTvp9Zdffhnp6enYvHlzgc/4+vpi1qxZGDhwoPTaZ599hgkTJuDs2bMFlh8/fjwmTJhQ4PWsrCyEhITIVBMiIiIiIiLSkuzsbISGhmom9zPs08vHjRuHrKws6e/EiRNqF4mIiIiIiIhMxkeNLy1fvjy8vb0LnKE+e/YsIiIiHH4mIiLCpeX9/Pzg5+cnT4GJiIiIiIiI3KDKmW5fX1+0bNkSq1evll6zWq1YvXq13eXmebVr185ueQBITU0tdHkiIiIiIiIitalyphsAnn/+eQwdOhStWrVCmzZt8NFHH+HatWsYNmwYAGDIkCGoUqUKkpOTAQCjR49G586d8eGHHyI+Ph7z5s3D1q1bMWPGDKe+z3brulYeqEZERERERETys+V8Kjy+zCHVku7+/fvj/PnzePPNN3HmzBk0a9YMK1euRMWKFQEAx48fh5fXvyfi27dvj7lz5+L111/Hq6++itq1a2Px4sVo1KiRU9938eJFAEBkZKT8lSEiIiIiIiJNuXjxIkJDQ9UuhjpPL1dDZmYmypQpg+PHj5c48K1bt8Yff/xR4jIZcT3Z2dmIjIzEiRMnSvykQC3VS0tlMWqMtbYercVZS7GRaz1ai7FR1yNXnLVUJ62th31Z+XUwxp5Zj1HjrKWyGDXGWltPVlYWqlWrhsuXLyMsLKzEZSop1c50e5rtrHloaGiJO7i3t7csj5436noAICQkxFBx1lJZbIwWYy2uB9BOnLUWGyPG2MjrAUoeZ63VSWvrAdiXlS4LwBh7Yj2A8eKspbLYGC3GWlwPALsrp9WkjVLozMiRI7keD9BSvbRUFjlprV5aW49cjNgHjRhjI69HDlqrk9bWIxet1UtL85dctBQbLa5HLlqql5bKIiet1Utr69ES01xerrUfSDcqxll5jLFnMM7KY4w9g3FWHmOsPMbYMxhn5THGnqG1OJvmTLefnx+SkpL4290KY5yVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznQTEREREREReZppznQTEREREREReRqTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFmCbpnjZtGqKjo+Hv74+YmBhs2bJF7SJpwrp169CrVy9UrlwZFosFixcvtntfCIE333wTlSpVQkBAAGJjY3Hw4EG7ZS5duoRBgwYhJCQEYWFhePzxx3H16lW7ZXbt2oWOHTvC398fkZGReO+99wqUZcGCBahXrx78/f3RuHFj/Pzzz7LXVw3Jyclo3bo1goODUaFCBSQkJGD//v12y9y8eRMjR45EuXLlEBQUhIcffhhnz561W+b48eOIj49HYGAgKlSogJdeegl37tyxW2bt2rVo0aIF/Pz8UKtWLaSkpBQoj1HHwvTp09GkSROEhIQgJCQE7dq1w4oVK6T3GWP5TZo0CRaLBWPGjJFeY5xLbvz48bBYLHZ/9erVk95njOVx8uRJPPbYYyhXrhwCAgLQuHFjbN26VXqf27+Si46OLtCXLRaL9Bu87Msll5ubizfeeAPVq1dHQEAAatasibfeegt5n5PMvlxyV65cwZgxYxAVFYWAgAC0b98ef/zxh/Q+Y+w6PeUgzpSlWMIE5s2bJ3x9fcXXX38t9uzZI5544gkRFhYmzp49q3bRVPfzzz+L1157TSxcuFAAEIsWLbJ7f9KkSSI0NFQsXrxY/Pnnn+LBBx8U1atXFzdu3JCW6d69u2jatKnYtGmT+O2330StWrXEwIEDpfezsrJExYoVxaBBg0RGRob47rvvREBAgPjiiy+kZTZs2CC8vb3Fe++9J/bu3Stef/11UapUKbF7927FY6C0uLg4MXPmTJGRkSF27twpHnjgAVGtWjVx9epVaZmnn35aREZGitWrV4utW7eKtm3bivbt20vv37lzRzRq1EjExsaKHTt2iJ9//lmUL19ejBs3Tlrm8OHDIjAwUDz//PNi7969YurUqcLb21usXLlSWsbIY2Hp0qVi+fLl4sCBA2L//v3i1VdfFaVKlRIZGRlCCMZYblu2bBHR0dGiSZMmYvTo0dLrjHPJJSUliYYNG4rTp09Lf+fPn5feZ4xL7tKlSyIqKkokJiaKzZs3i8OHD4tVq1aJQ4cOSctw+1dy586ds+vHqampAoBIS0sTQrAvy+Gdd94R5cqVE8uWLRNHjhwRCxYsEEFBQeLjjz+WlmFfLrl+/fqJBg0aiPT0dHHw4EGRlJQkQkJCxD///COEYIzdoaccxJmyFMcUSXebNm3EyJEjpf/n5uaKypUri+TkZBVLpT35O7zVahURERHi/fffl17LzMwUfn5+4rvvvhNCCLF3714BQPzxxx/SMitWrBAWi0WcPHlSCCHEZ599JsqUKSNycnKkZV555RVRt25d6f/9+vUT8fHxduWJiYkRTz31lKx11IJz584JACI9PV0IcTempUqVEgsWLJCW2bdvnwAgNm7cKIS4OzF5eXmJM2fOSMtMnz5dhISESHF9+eWXRcOGDe2+q3///iIuLk76v9nGQpkyZcRXX33FGMvsypUronbt2iI1NVV07txZSroZZ3kkJSWJpk2bOnyPMZbHK6+8Iu65555C3+f2TxmjR48WNWvWFFarlX1ZJvHx8WL48OF2rz300ENi0KBBQgj2ZTlcv35deHt7i2XLltm93qJFC/Haa68xxjLQcg7iTFmcYfjLy2/duoVt27YhNjZWes3LywuxsbHYuHGjiiXTviNHjuDMmTN2sQsNDUVMTIwUu40bNyIsLAytWrWSlomNjYWXlxc2b94sLdOpUyf4+vpKy8TFxWH//v24fPmytEze77EtY8Q2ysrKAgCULVsWALBt2zbcvn3brv716tVDtWrV7OLcuHFjVKxYUVomLi4O2dnZ2LNnj7RMUTE001jIzc3FvHnzcO3aNbRr144xltnIkSMRHx9fIBaMs3wOHjyIypUro0aNGhg0aBCOHz8OgDGWy9KlS9GqVSv07dsXFSpUQPPmzfHll19K73P7J79bt25hzpw5GD58OCwWC/uyTNq3b4/Vq1fjwIEDAIA///wT69evR48ePQCwL8vhzp07yM3Nhb+/v93rAQEBWL9+PWOsAC3F1JmyOMPwSfeFCxeQm5trN2EDQMWKFXHmzBmVSqUPtvgUFbszZ86gQoUKdu/7+PigbNmydss4Wkfe7yhsGaO1kdVqxZgxY9ChQwc0atQIwN26+/r6IiwszG7Z/HF2N4bZ2dm4ceOGKcbC7t27ERQUBD8/Pzz99NNYtGgRGjRowBjLaN68edi+fTuSk5MLvMc4yyMmJgYpKSlYuXIlpk+fjiNHjqBjx464cuUKYyyTw4cPY/r06ahduzZWrVqFZ555Bs899xxmzZoFgNs/JSxevBiZmZlITEwEwPlCLmPHjsWAAQNQr149lCpVCs2bN8eYMWMwaNAgAOzLcggODka7du3w1ltv4dSpU8jNzcWcOXOwceNGnD59mjFWgJZi6kxZnOHj9JJEVGIjR45ERkYG1q9fr3ZRDKlu3brYuXMnsrKy8MMPP2Do0KFIT09Xu1iGceLECYwePRqpqakFjviTfGxnqACgSZMmiImJQVRUFObPn4+AgAAVS2YcVqsVrVq1wrvvvgsAaN68OTIyMvD5559j6NChKpfOmP73v/+hR48eqFy5stpFMZT58+fj22+/xdy5c9GwYUPs3LkTY8aMQeXKldmXZTR79mwMHz4cVapUgbe3N1q0aIGBAwdi27ZtaheNdMLwZ7rLly8Pb2/vAk/DPHv2LCIiIlQqlT7Y4lNU7CIiInDu3Dm79+/cuYNLly7ZLeNoHXm/o7BljNRGo0aNwrJly5CWloaqVatKr0dERODWrVvIzMy0Wz5/nN2NYUhICAICAkwxFnx9fVGrVi20bNkSycnJaNq0KT7++GPGWCbbtm3DuXPn0KJFC/j4+MDHxwfp6en45JNP4OPjg4oVKzLOCggLC0OdOnVw6NAh9mWZVKpUCQ0aNLB7rX79+tJl/Nz+yevYsWP49ddfMWLECOk19mV5vPTSS9LZ7saNG2Pw4MH473//K12NxL4sj5o1ayI9PR1Xr17FiRMnsGXLFty+fRs1atRgjBWgpZg6UxZnGD7p9vX1RcuWLbF69WrpNavVitWrV6Ndu3Yqlkz7qlevjoiICLvYZWdnY/PmzVLs2rVrh8zMTLsjfWvWrIHVakVMTIy0zLp163D79m1pmdTUVNStWxdlypSRlsn7PbZljNBGQgiMGjUKixYtwpo1a1C9enW791u2bIlSpUrZ1X///v04fvy4XZx3795tN7mkpqYiJCRE2nEsLoZmHAtWqxU5OTmMsUy6du2K3bt3Y+fOndJfq1atMGjQIOnfjLP8rl69ir///huVKlViX5ZJhw4dCvx044EDBxAVFQWA2z+5zZw5ExUqVEB8fLz0GvuyPK5fvw4vL/vdeW9vb1itVgDsy3IrXbo0KlWqhMuXL2PVqlXo3bs3Y6wALcXUmbI4xelHrunYvHnzhJ+fn0hJSRF79+4VTz75pAgLC7N7GqZZXblyRezYsUPs2LFDABBTpkwRO3bsEMeOHRNC3H1EflhYmFiyZInYtWuX6N27t8PH9Tdv3lxs3rxZrF+/XtSuXdvucf2ZmZmiYsWKYvDgwSIjI0PMmzdPBAYGFnhcv4+Pj/jggw/Evn37RFJSkm5/AiG/Z555RoSGhoq1a9fa/XTK9evXpWWefvppUa1aNbFmzRqxdetW0a5dO9GuXTvpfdvPpnTr1k3s3LlTrFy5UoSHhzv82ZSXXnpJ7Nu3T0ybNs3hz6YYdSyMHTtWpKeniyNHjohdu3aJsWPHCovFIn755RchBGOslLxPLxeCcZbDCy+8INauXSuOHDkiNmzYIGJjY0X58uXFuXPnhBCMsRy2bNkifHx8xDvvvCMOHjwovv32WxEYGCjmzJkjLcPtnzxyc3NFtWrVxCuvvFLgPfblkhs6dKioUqWK9JNhCxcuFOXLlxcvv/yytAz7csmtXLlSrFixQhw+fFj88ssvomnTpiImJkbcunVLCMEYu0NPOYgzZSmOKZJuIYSYOnWqqFatmvD19RVt2rQRmzZtUrtImpCWliYAFPgbOnSoEOLuY/LfeOMNUbFiReHn5ye6du0q9u/fb7eOixcvioEDB4qgoCAREhIihg0bJq5cuWK3zJ9//inuuece4efnJ6pUqSImTZpUoCzz588XderUEb6+vqJhw4Zi+fLlitXbkxzFF4CYOXOmtMyNGzfEs88+K8qUKSMCAwNFnz59xOnTp+3Wc/ToUdGjRw8REBAgypcvL1544QVx+/Ztu2XS0tJEs2bNhK+vr6hRo4bdd9gYdSwMHz5cREVFCV9fXxEeHi66du0qJdxCMMZKyZ90M84l179/f1GpUiXh6+srqlSpIvr372/3+9GMsTx++ukn0ahRI+Hn5yfq1asnZsyYYfc+t3/yWLVqlQBQIHZCsC/LITs7W4wePVpUq1ZN+Pv7ixo1aojXXnvN7ieS2JdL7vvvvxc1atQQvr6+IiIiQowcOVJkZmZK7zPGrtNTDuJMWYpjEUII58+LExEREREREZGzDH9PNxEREREREZFamHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTEZEmHD16FBaLBSkpKdJr48ePh8ViUa9QLtJbeck1FosF48ePV7sYRESkM0y6iYjII1JSUmCxWBz+jR071un1vPvuu1i8eLFyBSWPYnsSEZHR+ahdACIiMpeJEyeievXqdq81atQIUVFRuHHjBkqVKlXk599991088sgjSEhIULCU5ClsTyIiMjom3URE5FE9evRAq1atHL7n7+/v4dLcdfPmTfj6+sLLS70LwK5fv47AwEDVvp+IiIiUwcvLiYhIExzd052fxWLBtWvXMGvWLOnS9MTEROn9kydPYvjw4ahYsSL8/PzQsGFDfP3113brWLt2LSwWC+bNm4fXX38dVapUQWBgILKzswEAmzdvRvfu3REaGorAwEB07twZGzZsKFCW9evXo3Xr1vD390fNmjXxxRdfOF3XLl26oFGjRti2bRs6deqEwMBAvPrqqwCAnJwcJCUloVatWvDz80NkZCRefvll5OTk2K0jNTUV99xzD8LCwhAUFIS6detK67A5d+4cHn/8cVSsWBH+/v5o2rQpZs2aZbeMLe4ffPABZsyYgZo1a8LPzw+tW7fGH3/8Ybfsrl27kJiYiBo1asDf3x8REREYPnw4Ll68aLec7d72Q4cOITExEWFhYQgNDcWwYcNw/fp1abni2jO/W7du4c0330TLli0RGhqK0qVLo2PHjkhLS3O7TgCwYMECNGjQAP7+/mjUqBEWLVqExMREREdHF1oWG2f6HBERmRvPdBMRkUdlZWXhwoULdq+VL1/eqc/Onj0bI0aMQJs2bfDkk08CAGrWrAkAOHv2LNq2bQuLxYJRo0YhPDwcK1aswOOPP47s7GyMGTPGbl1vvfUWfH198eKLLyInJwe+vr5Ys2YNevTogZYtWyIpKQleXl6YOXMm7rvvPvz2229o06YNAGD37t3o1q0bwsPDMX78eNy5cwdJSUmoWLGi03G4ePEievTogQEDBuCxxx5DxYoVYbVa8eCDD2L9+vV48sknUb9+fezevRv/93//hwMHDkj3Pu/Zswc9e/ZEkyZNMHHiRPj5+eHQoUN2Bwdu3LiBLl264NChQxg1ahSqV6+OBQsWIDExEZmZmRg9erRdeebOnYsrV67gqaeegsViwXvvvYeHHnoIhw8fli75T01NxeHDhzFs2DBERERgz549mDFjBvbs2YNNmzYVeIhcv379UL16dSQnJ2P79u346quvUKFCBUyePLnY9nQkOzsbX331FQYOHIgnnngCV65cwf/+9z/ExcVhy5YtaNasmct1Wr58Ofr374/GjRsjOTkZly9fxuOPP44qVaoU24au9jkiIjIpQURE5AEzZ84UABz+CSHEkSNHBAAxc+ZM6TNJSUki/6aqdOnSYujQoQXW//jjj4tKlSqJCxcu2L0+YMAAERoaKq5fvy6EECItLU0AEDVq1JBeE0IIq9UqateuLeLi4oTVapVev379uqhevbq4//77pdcSEhKEv7+/OHbsmPTa3r17hbe3d4HyOtK5c2cBQHz++ed2r8+ePVt4eXmJ3377ze71zz//XAAQGzZsEEII8X//938CgDh//nyh3/HRRx8JAGLOnDnSa7du3RLt2rUTQUFBIjs7Wwjxb9zLlSsnLl26JC27ZMkSAUD89NNPdrHI77vvvhMAxLp166TXbO02fPhwu2X79OkjypUrZ/daYe3pyJ07d0ROTo7da5cvXxYVK1a0+y5X6tS4cWNRtWpVceXKFem1tWvXCgAiKirK7rsAiKSkJOn/zvY5IiIyN15eTkREHjVt2jSkpqba/ZWUEAI//vgjevXqBSEELly4IP3FxcUhKysL27dvt/vM0KFDERAQIP1/586dOHjwIB599FFcvHhR+vy1a9fQtWtXrFu3DlarFbm5uVi1ahUSEhJQrVo16fP169dHXFyc02X28/PDsGHD7F5bsGAB6tevj3r16tnV4b777gMA6TLqsLAwAMCSJUtgtVodrv/nn39GREQEBg4cKL1WqlQpPPfcc7h69SrS09Ptlu/fvz/KlCkj/b9jx44AgMOHD0uv5Y3XzZs3ceHCBbRt2xYACsQXAJ5++mm7/3fs2BEXL16ULuV3lbe3N3x9fQEAVqsVly5dwp07d9CqVSuH319cnU6dOoXdu3djyJAhCAoKkpbr3LkzGjduXGRZ3OlzRERkTry8nIiIPKpNmzaFPkjNXefPn0dmZiZmzJiBGTNmOFzm3Llzdv/P/wT1gwcPAribjBcmKysLOTk5uHHjBmrXrl3g/bp16+Lnn392qsxVqlSREsi8Zdi3bx/Cw8OLrEP//v3x1VdfYcSIERg7diy6du2Khx56CI888oj0MLhjx46hdu3aBR4OV79+fen9vPIeQAAgJauXL1+WXrt06RImTJiAefPmFYhnVlZWgfIWtc6QkBCHdSzOrFmz8OGHH+Kvv/7C7du3pdfzt2dx3w/8G4NatWoV+GytWrWKTJrd6XNERGROTLqJiEj3bGd7H3vssUKT5iZNmtj9P+9Z27zreP/99wvcG2wTFBRU4IFm7sr//bYyNG7cGFOmTHH4mcjISOmz69atQ1paGpYvX46VK1fi+++/x3333YdffvkF3t7eLpensM8IIaR/9+vXD7///jteeuklNGvWDEFBQbBarejevbvDM+7OrNMVc+bMQWJiIhISEvDSSy+hQoUK8Pb2RnJyMv7++2/Fvz8vd/ocERGZE5NuIiLSlfwP6wKA8PBwBAcHIzc3F7GxsW6t1/YAr5CQkCLXER4ejoCAAOnMeF779+9367vzluHPP/9E165dHdYzLy8vL3Tt2hVdu3bFlClT8O677+K1115DWloaYmNjERUVhV27dsFqtdqd7f7rr78AAFFRUS6V7fLly1i9ejUmTJiAN998U3rdURxcUVw98/rhhx9Qo0YNLFy40O5zSUlJbn23LQaHDh0q8J6j1/KSo88REZE58J5uIiLSldKlSyMzM9PuNW9vbzz88MP48ccfkZGRUeAz58+fL3a9LVu2RM2aNfHBBx/g6tWrha7D29sbcXFxWLx4MY4fPy69v2/fPqxatcrF2tjr168fTp48iS+//LLAezdu3MC1a9cA3L3MOz/b2XnbmfgHHngAZ86cwffffy8tc+fOHUydOhVBQUHo3LmzS2WznTXOf5b4o48+cmk9+TlqT1fKsHnzZmzcuNGt765cuTIaNWqEb775xq7N09PTsXv37mLLUtI+R0RE5sAz3UREpCstW7bEr7/+iilTpqBy5cqoXr06YmJiMGnSJKSlpSEmJgZPPPEEGjRogEuXLmH79u349ddfHSaqeXl5eeGrr75Cjx490LBhQwwbNgxVqlTByZMnkZaWhpCQEPz0008AgAkTJmDlypXo2LEjnn32WSmZbdiwIXbt2uV23QYPHoz58+fj6aefRlpaGjp06IDc3Fz89ddfmD9/PlatWoVWrVph4sSJWLduHeLj4xEVFYVz587hs88+Q9WqVXHPPfcAAJ588kl88cUXSExMxLZt2xAdHY0ffvgBGzZswEcffYTg4GCXyhYSEoJOnTrhvffew+3bt1GlShX88ssvOHLkiNv1BQpvT0d69uyJhQsXok+fPoiPj8eRI0fw+eefo0GDBg4PlDjj3XffRe/evdGhQwcMGzYMly9fxqeffopGjRoVu86S9jkiIjIHJt1ERKQrU6ZMwZNPPonXX38dN27cwNChQxETE4OKFStiy5YtmDhxIhYuXIjPPvsM5cqVQ8OGDaXfhS5Oly5dsHHjRrz11lv49NNPcfXqVURERCAmJgZPPfWUtFyTJk2watUqPP/883jzzTdRtWpVTJgwAadPny5R0u3l5YXFixfj//7v//DNN99g0aJFCAwMRI0aNTB69GjUqVMHAPDggw/i6NGj+Prrr3HhwgWUL18enTt3xoQJExAaGgrg7n3fa9euxdixYzFr1ixkZ2ejbt26mDlzJhITE90q39y5c/Gf//wH06ZNgxAC3bp1w4oVK1C5cmW361xYezqSmJiIM2fO4IsvvsCqVavQoEEDzJkzBwsWLMDatWvd+v5evXrhu+++w/jx4zF27FjUrl0bKSkpmDVrFvbs2VPkZ+Xoc0REZHwWIcfTRIiIiIgMpFmzZggPD5flJ+2IiMjceE83ERERmdbt27dx584du9fWrl2LP//8E126dFGnUEREZCg8001ERESmdfToUcTGxuKxxx5D5cqV8ddff+Hzzz9HaGgoMjIyUK5cObWLSEREOsd7uomIiMi0ypQpg5YtW+Krr77C+fPnUbp0acTHx2PSpElMuImISBY8001ERERERESkEN7TTURERERERKQQJt1ERERERERECjHNPd1WqxWnTp1CcHAwLBaL2sUhIiIiIiIiBQghcOXKFVSuXBleXuqfZzZN0n3q1ClERkaqXQwiIiIiIiLygBMnTqBq1apqF8M8SXdwcDCAu4EPCQlRuTRERERERESkhOzsbERGRko5oNpMk3TbLikPCQlh0k1ERERERGRwWrmtWP0L3ImIiIiISNeixy5XuwiF0nLZ6F/RY5cbtq2YdBMRERFplG0n1Kg7omQMtv6pxX6q5bLRv/K2jxHbikk3EclOKzuI3FnVNrYNaVXeuUPNPmr77qOT4lUrg1ao3RaF0UI/UVv+fqqlWGi5bGrQen89OinesPMdk26SaHkQGoEZ46ulnVUzxl7LdY4eu9ywG1Z3aKm9tL5T5ila2fmzleHopHjTtolWz4DxoMi/8vZTrdFy2dSgxf2i/PsERpzvmHRriJo7OUbr2EVRY4dSqzsMSrBNnFqY1Lmh1WZ/y1smI25YXaWl+cHsB6scUauP8sCUPa0cBMmPB0UK0kostFAGLck7p2hxLBkdk26NUHOny0w7WWoclc77nWab5NSqr5H7sDO0dOCjMGYbC8XRUnuZfaeMya625B8PTOi0RetxyD+WtdJ/tEILsTDLnMukW0PU3Oky005W3jp6Ks5miGth1NrAcUN7l9b6nlk2ru5SMzZmHB/O8vT8UdQ4MWM7aXXO0Gq5PM1RHNTe5ppxnLhKD/3XSO3IpFuD1DgLawaOjpZ7+jtt32vUuDOh0i4t9zkjj4niFFZvteLBg1Xaxvn1LrX7ZVHfzfGiHRwv/9LqgbyiymW09mPSrQGFdTi1zsKqvTFTkhp1Ndqk4Q5P9imzJ/6O6q+VeBh1XikpLbQX26Z4nprH2Bb6UNjZXbKn1vMQyDnss57DpFuj1DoLS/JhfElrtNAnuYF3nlq3GZmZVg7aaaEMWlBce2hhTqPCqdmPOYZcw4MjymPSbXKclO5SauAzvvaUnmCdWb/ZJnkb9kV9YXtpk9Jnu806P7lDzQd1cnze5Wx/VevXYgpj5Cs63cGDI57BpFvDlJwUONn8S4kBz/gW5KmJtajvMdPkrjXcUXWPpy5nZttoB9vCNdzeqqu4/qpGf+YYco/WDo4YDZNulam5s2OmScmZOMs9ARSX/BltwnG2L/NAknq03O+0XDalFDdmtDJHm7FtiqNEPJxdJ9vjX54eI4w76ZEz+2daPThipPmOSbcOqPVzS0bp5M7Qys6t0SkdZ7O3o1bPWJppLtEbrfYZLVMyXmwL7XMmeeGcZ8+TDyHkGCoZPixSOUy6NU6pS585KTkmx0TA+BZP7gnXrBO4u7Twu+nkHO7Aa5Pc7eLqujie/sWnyhPJw5PzihnnMCbdOsHJXnlmnADUoFSc2X7O4eWYZMO2sefOAVO5DtQCro1NM7SdFg9ga608anMlHp54CCHbRx58WKQymHTrgJyTiJk7u7NKEiNO+s6Tqy+yT7vHk3HjmCgZJXdW2TbukzN2bIeS4VPl1aGVuGilHEbgibnI1e8wyvzIpFtH5JpUjNJ5lVCS2HDSd57cfVBLR9v1gHOAPql5OTMVrqQHakkfOG+WnJYOIHJfoGhqPixSrs9pDZNunZBjsjdKp3WVJy8Z5EbZNSXtk2ynkvHE76a7ekDELLQQGzPFWym2GLozlty5rNxMtJJEmXXfqTglubJPKwcQOfYcK8m85uy6zYhJt4rUuH/MzJ3dWe5MNu60i5GOsrrTl+Xqi+6sxyhxLwktzgVmahc1d1bdHa9Gbx9326Qk24ySfKfR20NLZ8W0OF/qlRK3TGoh+dcqdw+OyN3nefslk25dKemlz2a9h8Id7jzQxszxcldJdhzNsLF0hbsbNCV/N52JXeHcPVDn7mdL8r1mIccZs+LWET12ObcZClIiUXC3HEYfayWJtZzx4ThSjlztJMcJQyOMJybdOuRqxzP7DlpJzyQUFQPuPN1V0vq726fNHveSYvz0R47nTrDdlZE38c677cj//6OT4mVpA7Zj4dR6qnxeRm8ftZMxnjl1jpq3p8p5kNEIbc2kW2dcPdPBnSxlzl7INZEYpV08cYYo/3cZJXZaIPfBNe4MKcudo/6crzzDllDb/vIn2vw1EuXJeT8qH66qHHfbybb/xfnIOXKcZXbmJFRh3yvXvGeE8cSkW0VK3z/G5EQehZ29kGMiMcIkIof8MXaER0yLppWzMXzuhGe4shMk17gx+nyl1MPq2KfdI8cBopKcoWO7Kc+VhE6JWzPYxs5zZj8t//uMrz0ftQtgZiWZ1PNOUo7WwQ4vL8ZRec5M6HK1gxF3qOSYT+RKyjz9/Ak9kuvy4sJ2cPKPITPEtCTM0u/0Qo72KG4/qbDvtX2WiiZnjBwl3o6u6OHDvdTlbOLNmDqm26R70qRJGDduHEaPHo2PPvpI7eKoorijg7xnjDxF7o0vqUOuHV0qnlw7e0XtBLEtjI3tW7yiDkzlx7OorpE7Yc1/0JAHQOSh1BU8nmaEfmARQgi1C+GqP/74A/369UNISAjuvfdep5Lu7OxshIaGIisrCyEhIcoX0gl6OMKmhzKS+thPjMHdnRzuHLmOY0Zb9Ngeeiyzs5SomzOXmst9z71R2wcwfv2Mwijt5E49tJb76e6e7qtXr2LQoEH48ssvUaZMGbWLUyJGGARap/V7ELVePiMzWuzlfGiQuw9LkYPR2sURve4EGblt9NgeRqbk/fVF/ZHzjBIvI89rpC26S7pHjhyJ+Ph4xMbGFrlcTk4OsrOz7f60RC+D3CiTqla58xRiLWI/MY7CHhyYHy//c59e42WU+coRPdZLr/3IGXpsj/zYPqQFRumHRqiHrpLuefPmYfv27UhOTi522eTkZISGhkp/kZGRHiih8eh9YjXCINU6vfYRI/UNJe6ty3vmJ28CLvcT/B19t9HpdcwA5mgfPdFzXzI6to0+GHlOM1IfNEJddJN0nzhxAqNHj8a3334Lf3//YpcfN24csrKypL8TJ054oJTO08sg1/uZDT2UXS99wWj00DecpWQfUuNSTCO1jdEYtW04D2uLEdpD7/tPRTFC+9gYtY2MxgjjSTdJ97Zt23Du3Dm0aNECPj4+8PHxQXp6Oj755BP4+PggNzfXbnk/Pz+EhITY/WmJnjqOkSZXLdJTX3CE/UN9eu9DZsMxoz16HUNG7Ut6bY/82D6kJqP1P73XRzdJd9euXbF7927s3LlT+mvVqhUGDRqEnTt3wtvbW+0iGpaeJ1e9D1A90Gv/YN/QLqO3jV7HDGD8ttEbPfclM2D7aJ+R5zSj9T+910c3SXdwcDAaNWpk91e6dGmUK1cOjRo1Urt4LjPyINcSPQxQ9gV16KFvOMtofchIbWM0Rm0bvY4hvZa7OEatl1EYqX2MOqcZkd77nW6SbqPR0yDXeyfXOj31BUfYP9Sn9z5kNhwz2qLn8aPnshfGSHUy6lhnG+mD0eqm936n66R77dq1+Oijj9QuhuHpuZPrYcLRQxmLotf+ofe452WkugDGq09+eh0zgDHbxoh1Im3Q81gvipHGjFHbCDB23fRI10m3nhlpwtIyPUw4eiijERkp7kaqC2C8+hiJEdtGz3Uy4r6EkepkpLrkpecxQ/ql9/HEpFslepqw9NrJ5f7tYnJMrzHWa7lJ//Tc9/RcdiPS076Es4xUJyPVxaiMPKcZrW56H09MulWgt2RQr51cLzHWSzkLo9f+Aei77HnpvQ/lZ7T65KX3Pqf38jti5P6mR2wP7TNaGxlxXgOMVy+99zsm3SrQe6fRCz1NNnoqa37sz+rTc/9xxGj1yUvv4+XopHjDtY+e66P3/uSIntsjP7aPPhixnQDj1UvvfY9Jtwr01mn0Omj1Wm490Vtfzs8IfURvV844w2j1yUvvYwYwXvvovT5G6FNGZcS20ft4ccSI7WTEOukdk25yih4Hr57KbMSNmB7oqY8Uxqh9xwhtY1RGaxu918doc4CR6mOkutjofbyQful9PDHpVoEeO40ey6wnet2I6b1f6L38gH77jlkZoc8ZoQ5GYrQ5gPUhTzPinGbEOgH6Hk9MulWgxw6jxzLracLRU1nz0mO/yEvv5Qf023eKY9R6GaHPGaEOeRm1r+kV20PbjNg+RpvTAGPWCdB3/2PSrQI9dxg90dOEo6ey5sW+rD699p3iGLVeHDPao/e+ZrQ+pff2yI/to31GayPAmHUC9N3/mHSrQI8dxqiDl0pGj305L/Zr7TJq2+h9zADGaxu918cIfcrGiA+GNFL7APofL44YrY0AY9ZJ75h0k1P0OHj1tGHQU1mNRI/9Oj+j9h0jtI1RGaltjFAXI80BRqqLjdHqZIQxYwZG63c2eq4Xk24V6LHD6LHMetow6KmseemxX+Sl9/ID+u07ZmWEPmeEOhiJkeYAI9XFxoh1MhojzmlG7Xd6rheTbhXoscPoscx6mkT1VNa89Ngv8tJ7+QH99p3iGLVeRuhzRqiDjRH6mRHqYGOkuhiVEdvISHOa0em5/zHpVoGeO4xe6G0C1Vt5bfTel49Oitdt7G30Xv7CGLVeeh8zRmOEfmaEOtgYqS42RhvzbCN9MGKdAH33PybdHqbXzmLUwasVek3+9Fjm/Ni3yVOMMF4AY40ZI9WFtMko497GqGPGaO1ktPoYAZNucoreBq8eNwp6K7NRnjKrt76dnxHawBGj1sso9D5ubIxQDyONFSPVxcZIdTLCeDELI/W7vPRcLybdHqbXzqK3M7F6KquN3sqs176cn57robc+4yqj1U/PfS0/I9XFCIwyVoxSj7yMWCcjMtKcZuQ+p+e6Men2MD13Fj1NSHoqq43eyqznvpyXUephRHobE8UxUl8zSl2M0sdYD+3S20mLohixfWyM0kZGp+c+yKSbnKanCUlPZbXRY5lJXXre+DjDaGPC6O2lR0bpY6yHthll7Bu1fQDjtBFgrLo4otd+yKTbw4w+EMg8jNKX9VwPvW54zMpI7aXncUPkaUYZ+0Ye90ZpI8BYdTESixBCqF0IT8jOzkZoaCiysrIQEhKiWjmM8vApIqP0ZaPUg7TPSH3NSHUhIucYedwbuW5mpZXcz4Znuslpejpypqey2uixzKQuo/cZo9WPO3TaYqT+ZZS6GKUe+Rm1XkZipPnZ6P1Nr/Vj0u1hRhrUZG5G6ctGqQdpn153FBwxwrgxQh2MhGcatc/I7WOk+Zm0iUm3h+l5UOtpstVTWW30VmY99+W89FwPvfUZVxm9fnqm53FjY4Q62BhhrBihDoUxSt2MNGaMzCj9rTB6rR+TbtydRAr7k/t79NpRAP1MtnopZ356Lbfe6fnnXPRabmcZrX56nv9J24wwVoxQh8IYuW5GYaT52ej9Ta/181G7AGrJ32CFDTbbckYajKRNtuRPL31NL+V0hpHqQkVzZmOtRH/Q09h2hhHqYoQ6EHmS0ceM0eZp0hbdPL08OTkZCxcuxF9//YWAgAC0b98ekydPRt26dZ36vO0JdpFj5sPLLxCA85MHE28ie0bbMBmtPkYiV9vkTbaLWp+zy7nz/UbrY3qvk97LT+RJZhgvZqijmfDp5W5KT0/HyJEjsWnTJqSmpuL27dvo1q0brl275tJ6MibE4eikeJcGlW35kl7OoNfLIWz0Un69lNMRPZedPMssfUXOhNuZuT/vMnLGmDtypDS9zwl6L39RjFw3IzHCPG2GvqbXOurm8vKVK1fa/T8lJQUVKlTAtm3b0KlTJ4+Vw8xHweS+/FmpM0qkPLZX0QrbIDBurivpnOPulUq2+U7OM+1Ga3+561PcjpTR4qd1at2KYURK3j7m7O2SVDwjztNGpLfbMW10k3Tnl5WVBQAoW7asw/dzcnKQk5Mj/T87O7vE3yn3TphZ5U+28z60jnHVB6ONAbkPJDlaH/u555U03pzzi6bEQdiinq8i9/gxWpvKfTtEceuUe2wYrT2UVFiinf8hwHLGlO3jPk8eiGc7aZdu7unOy2q14sEHH0RmZibWr1/vcJnx48djwoQJBV6X47p+M++AlaTuzmwImJTIR8lJ3mhjQI76ONt32cdd427byBlnOdZltDEDeHbcuLt8cesyUpuo0R7ufqaw9RipPZTi6rbGmWWd/V62j2uKagM+P6RknKkn7+mWwciRI5GRkYF58+YVusy4ceOQlZUl/Z04cULWMrhzP4Fe70HIq6QJd3H3VMpxL6We4yxH2fOfEcr7l/99kocrO518RoTnyH0GriQxN8NOkKvcSdbkut/eLDumrijJrRh5P0+OybV9B1zb1sj13WYgV5zyXgVS2H4v98tKRo/zt+6S7lGjRmHZsmVIS0tD1apVC13Oz88PISEhdn9y0WNDy8UTO53cSLivuIMb3AjLr6T3DFPRSnKWW+1y5GXEtlbjXvu8n+FBEPnIcStGSb+fbVK0vEmcK7jN9yxXxxL3y9yjx1jpJukWQmDUqFFYtGgR1qxZg+rVq6taHld3mM28QXFnYJg1ViXh6hHwvJ9xldHax90EWK7LjqlwWuqjPFBir6SxKEkblXQOM2I7lrTPy/F5LY1XIynpPiQPVHmG2gcT3f1u8gzdJN0jR47EnDlzMHfuXAQHB+PMmTM4c+YMbty4oXbRqAglTUpcnXz0fnDDk8kfE0V7apzh4dFt+XliDjDbvCQ3ufo7x489rRyAMOvtd0rRyngxQxuV5MCRHAfhzX6LpdHpJumePn06srKy0KVLF1SqVEn6+/7771UrE896OEety9X0ytV6l/TIKhOIu9SKg7uXTxuxDRxxpY96Yj42S9yd4e78YfusXGUg97E9PEftB0KWZD1m2+a4Ss52MkuczUg3SbcQwuFfYmKi2kUzFU/vAJvxwIYal+ObLcYlpUS8XFknN8qF81Rs2F7uUyIenMPc317K3R5m3G47Q0uX3rN9CqeFdirJVY9m2d7ocZ7RTdKtZXprdE8yy+BXi1wHNsh1cm9gXcE5R11sL/coFQfOYe5hv/Qsd54FpFQ5SD5KjiOOUWNh0l1CnLwck3Oi0OPRLE+Sqw8yxs7hBlabzHSEX8+UbCOOH9cp1R7cbsuD7aNtcl/+n1dJHsZG2sSkWyacvAri4FeW3Ac2yHla2cCSerjT6hqlY+XK+OEBGu6zaJ2n2of9oOS09OBOtqe2MemWQXEDzmwbeKV+I5eTSUFy9yvGuGieiA/bwHVmm2P1yhNtxPHjPKXbw9ntNsevY55oH3IfH9xJrmLSTYpQY6Iw04ZbqQMbanyvVji7g6hkHzNL/3WVlg+6abVcZsTx4xz2WW3zdPuwP7hPiw/uJO1i0i0jswyKonaAlY6BGWKsdvJX3Hdzx1Z5RbWBmQ4uOUPNOcHZA1VGbi9n5iujx0CPPNkeZthuy81T7cM5rCBn5zRPMVPs3aGn+YVJt0w4KP6l5IM/SNkJhjEunKd2PNgGrlM7Znra6Budlq+K8ASt1V/tsak1xbWPltqOiubpvs2+UZDe5hcm3TLLPyjMNEj44A/P0dKDO4jUooV+qreNvqeZ7SyZ1qnVHloYq3rh6fbR2oEaKohXJBgDk24ZFdbZzTQI+OAP/TN7jB3tfHh6h4Q7QY45ionZ+ys5VtQtUOwznsV4k5FwDiF3MelWgBl2lvMnBWo/+MOIk2BhyZ9aD+4wYozzK6p+Rq+71uWPv5bmWR4kcUytmHCsOqbFOVyLZVKLmrEobA7jvKYd3M7oH5NumdkmzOixy003OLT04A+9U7uOan+/lqg5js144MMVWo+FmdqrsHGiZv3Ntg3WMiYM+mWWOSyvog5CmDEeWqanuYVJtwLyDkijD041Dy7Yvlcvg62k1JjszRLb/PLXW41xbPS5wx22jatW+6VWy6U0R31V7ViYefw42glVuz3oX4W1jxb6LPuJtukpwdSCRkmr1C6CHSbdCjk6KV4TE6iSbHVUo655ryjI+3+jUfPAQv6rNowa4/y0VO+8G1huaO9Sa84pjtbKowVaiEn+26C0UCa1qF13tW9L0yqtxCH/fpVWyqUVWp4/2Fb6eJA1k27SLa3ufMtFCwcWjBrb4tjqrZX6G/3gkpGYeYdVa3XPP4eajdbawyZvecw8p2kxDlrY79ASPYwhGzO3Vf6TJbYDJBkT4lQumT2LEEKoXQhPyM7ORmhoKLKyshASEqJ2cYiIyIC0uCPtKVqtu1bLpTSt1psJ3V1ajoOWz+p6kpbHUN7ysL0c01rux6SbiIiIiIhIJ2yJtpYP3qhNa7kfLy8nIiIiIiLSESbc+uKjdgGIiIiIiIjIOUy09YdnuomIiIiIiIgUwqSbiIiIiIiISCGmubzc9ry47OxslUtCRERERERESrHlfFp5Zrhpku6LFy8CACIjI1UuCRERERERESnt4sWLCA0NVbsY5km6y5YtCwA4fvx4iQPfunVr/PHHHyUukxHXk52djcjISJw4caLEj+fXUr20VBajxlhr69FanLUUG7nWo7UYG3U9csVZS3XS2nrYl5VfB2PsmfUYNc5aKotRY6y19WRlZaFatWpSDqg20yTdXl53b18PDQ0tcQf39vaW5ffejLoeAAgJCTFUnLVUFhujxViL6wG0E2etxcaIMTbyeoCSx1lrddLaegD2ZaXLAjDGnlgPYLw4a6ksNkaLsRbXA/ybA6pNG6XQmZEjR3I9HqClemmpLHLSWr20th65GLEPGjHGRl6PHLRWJ62tRy5aq5eW5i+5aCk2WlyPXLRULy2VRU5aq5fW1qMlFqGVu8sVlp2djdDQUGRlZcl25IQKYpyVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznT7+fkhKSkJfn5+ahfF0Bhn5THGnsE4K48x9gzGWXmMsfIYY89gnJXHGHuG1uJsmjPdRERERERERJ5mmjPdRERERERERJ7GpJuIiIiIiIhIIUy6iYiIiIiIiBTCpJuIiIiIiIhIIaZJuqdNm4bo6Gj4+/sjJiYGW7ZsUbtImrBu3Tr06tULlStXhsViweLFi+3eF0LgzTffRKVKlRAQEIDY2FgcPHjQbplLly5h0KBBCAkJQVhYGB5//HFcvXrVbpldu3ahY8eO8Pf3R2RkJN57770CZVmwYAHq1asHf39/NG7cGD///LPs9VVDcnIyWrdujeDgYFSoUAEJCQnYv3+/3TI3b97EyJEjUa5cOQQFBeHhhx/G2bNn7ZY5fvw44uPjERgYiAoVKuCll17CnTt37JZZu3YtWrRoAT8/P9SqVQspKSkFymPUsTB9+nQ0adIEISEhCAkJQbt27bBixQrpfcZYfpMmTYLFYsGYMWOk1xjnkhs/fjwsFovdX7169aT3GWN5nDx5Eo899hjKlSuHgIAANG7cGFu3bpXe5/av5KKjowv0ZYvFIv0GL/tyyeXm5uKNN95A9erVERAQgJo1a+Ktt95C3ucksy+X3JUrVzBmzBhERUUhICAA7du3xx9//CG9zxi7Tk85iDNlKZYwgXnz5glfX1/x9ddfiz179ognnnhChIWFibNnz6pdNNX9/PPP4rXXXhMLFy4UAMSiRYvs3p80aZIIDQ0VixcvFn/++ad48MEHRfXq1cWNGzekZbp37y6aNm0qNm3aJH777TdRq1YtMXDgQOn9rKwsUbFiRTFo0CCRkZEhvvvuOxEQECC++OILaZkNGzYIb29v8d5774m9e/eK119/XZQqVUrs3r1b8RgoLS4uTsycOVNkZGSInTt3igceeEBUq1ZNXL16VVrm6aefFpGRkWL16tVi69atom3btqJ9+/bS+3fu3BGNGjUSsbGxYseOHeLnn38W5cuXF+PGjZOWOXz4sAgMDBTPP/+82Lt3r5g6darw9vYWK1eulJYx8lhYunSpWL58uThw4IDYv3+/ePXVV0WpUqVERkaGEIIxltuWLVtEdHS0aNKkiRg9erT0OuNccklJSaJhw4bi9OnT0t/58+el9xnjkrt06ZKIiooSiYmJYvPmzeLw4cNi1apV4tChQ9Iy3P6V3Llz5+z6cWpqqgAg0tLShBDsy3J45513RLly5cSyZcvEkSNHxIIFC0RQUJD4+OOPpWXYl0uuX79+okGDBiI9PV0cPHhQJCUliZCQEPHPP/8IIRhjd+gpB3GmLMUxRdLdpk0bMXLkSOn/ubm5onLlyiI5OVnFUmlP/g5vtVpFRESEeP/996XXMjMzhZ+fn/juu++EEELs3btXABB//PGHtMyKFSuExWIRJ0+eFEII8dlnn4kyZcqInJwcaZlXXnlF1K1bV/p/v379RHx8vF15YmJixFNPPSVrHbXg3LlzAoBIT08XQtyNaalSpcSCBQukZfbt2ycAiI0bNwoh7k5MXl5e4syZM9Iy06dPFyEhIVJcX375ZdGwYUO77+rfv7+Ii4uT/m+2sVCmTBnx1VdfMcYyu3Lliqhdu7ZITU0VnTt3lpJuxlkeSUlJomnTpg7fY4zl8corr4h77rmn0Pe5/VPG6NGjRc2aNYXVamVflkl8fLwYPny43WsPPfSQGDRokBCCfVkO169fF97e3mLZsmV2r7do0UK89tprjLEMtJyDOFMWZxj+8vJbt25h27ZtiI2NlV7z8vJCbGwsNm7cqGLJtO/IkSM4c+aMXexCQ0MRExMjxW7jxo0ICwtDq1atpGViY2Ph5eWFzZs3S8t06tQJvr6+0jJxcXHYv38/Ll++LC2T93tsyxixjbKysgAAZcuWBQBs27YNt2/ftqt/vXr1UK1aNbs4N27cGBUrVpSWiYuLQ3Z2Nvbs2SMtU1QMzTQWcnNzMW/ePFy7dg3t2rVjjGU2cuRIxMfHF4gF4yyfgwcPonLlyqhRowYGDRqE48ePA2CM5bJ06VK0atUKffv2RYUKFdC8eXN8+eWX0vvc/snv1q1bmDNnDoYPHw6LxcK+LJP27dtj9erVOHDgAADgzz//xPr169GjRw8A7MtyuHPnDnJzc+Hv72/3ekBAANavX88YK0BLMXWmLM4wfNJ94cIF5Obm2k3YAFCxYkWcOXNGpVLpgy0+RcXuzJkzqFChgt37Pj4+KFu2rN0yjtaR9zsKW8ZobWS1WjFmzBh06NABjRo1AnC37r6+vggLC7NbNn+c3Y1hdnY2bty4YYqxsHv3bgQFBcHPzw9PP/00Fi1ahAYNGjDGMpo3bx62b9+O5OTkAu8xzvKIiYlBSkoKVq5cienTp+PIkSPo2LEjrly5whjL5PDhw5g+fTpq166NVatW4ZlnnsFzzz2HWbNmAeD2TwmLFy9GZmYmEhMTAXC+kMvYsWMxYMAA1KtXD6VKlULz5s0xZswYDBo0CAD7shyCg4PRrl07vPXWWzh16hRyc3MxZ84cbNy4EadPn2aMFaClmDpTFmf4OL0kEZXYyJEjkZGRgfXr16tdFEOqW7cudu7ciaysLPzwww8YOnQo0tPT1S6WYZw4cQKjR49GampqgSP+JB/bGSoAaNKkCWJiYhAVFYX58+cjICBAxZIZh9VqRatWrfDuu+8CAJo3b46MjAx8/vnnGDp0qMqlM6b//e9/6NGjBypXrqx2UQxl/vz5+PbbbzF37lw0bNgQO3fuxJgxY1C5cmX2ZRnNnj0bw4cPR5UqVeDt7Y0WLVpg4MCB2LZtm9pFI50w/Jnu8uXLw9vbu8DTMM+ePYuIiAiVSqUPtvgUFbuIiAicO3fO7v07d+7g0qVLdss4Wkfe7yhsGSO10ahRo7Bs2TKkpaWhatWq0usRERG4desWMjMz7ZbPH2d3YxgSEoKAgABTjAVfX1/UqlULLVu2RHJyMpo2bYqPP/6YMZbJtm3bcO7cObRo0QI+Pj7w8fFBeno6PvnkE/j4+KBixYqMswLCwsJQp04dHDp0iH1ZJpUqVUKDBg3sXqtfv750GT+3f/I6duwYfv31V4wYMUJ6jX1ZHi+99JJ0trtx48YYPHgw/vvf/0pXI7Evy6NmzZpIT0/H1atXceLECWzZsgW3b99GjRo1GGMFaCmmzpTFGYZPun19fdGyZUusXr1aes1qtWL16tVo166diiXTvurVqyMiIsIudtnZ2di8ebMUu3bt2iEzM9PuSN+aNWtgtVoRExMjLbNu3Trcvn1bWiY1NRV169ZFmTJlpGXyfo9tGSO0kRACo0aNwqJFi7BmzRpUr17d7v2WLVuiVKlSdvXfv38/jh8/bhfn3bt3200uqampCAkJkXYci4uhGceC1WpFTk4OYyyTrl27Yvfu3di5c6f016pVKwwaNEj6N+Msv6tXr+Lvv/9GpUqV2Jdl0qFDhwI/3XjgwAFERUUB4PZPbjNnzkSFChUQHx8vvca+LI/r16/Dy8t+d97b2xtWqxUA+7LcSpcujUqVKuHy5ctYtWoVevfuzRgrQEsxdaYsTnH6kWs6Nm/ePOHn5ydSUlLE3r17xZNPPinCwsLsnoZpVleuXBE7duwQO3bsEADElClTxI4dO8SxY8eEEHcfkR8WFiaWLFkidu3aJXr37u3wcf3NmzcXmzdvFuvXrxe1a9e2e1x/ZmamqFixohg8eLDIyMgQ8+bNE4GBgQUe1+/j4yM++OADsW/fPpGUlKTbn0DI75lnnhGhoaFi7dq1dj+dcv36dWmZp59+WlSrVk2sWbNGbN26VbRr1060a9dOet/2syndunUTO3fuFCtXrhTh4eEOfzblpZdeEvv27RPTpk1z+LMpRh0LY8eOFenp6eLIkSNi165dYuzYscJisYhffvlFCMEYKyXv08uFYJzl8MILL4i1a9eKI0eOiA0bNojY2FhRvnx5ce7cOSEEYyyHLVu2CB8fH/HOO++IgwcPim+//VYEBgaKOXPmSMtw+yeP3NxcUa1aNfHKK68UeI99ueSGDh0qqlSpIv1k2MKFC0X58uXFyy+/LC3DvlxyK1euFCtWrBCHDx8Wv/zyi2jatKmIiYkRt27dEkIwxu7QUw7iTFmKY4qkWwghpk6dKqpVqyZ8fX1FmzZtxKZNm9QukiakpaUJAAX+hg4dKoS4+5j8N954Q1SsWFH4+fmJrl27iv3799ut4+LFi2LgwIEiKChIhISEiGHDhokrV67YLfPnn3+Ke+65R/j5+YkqVaqISZMmFSjL/PnzRZ06dYSvr69o2LChWL58uWL19iRH8QUgZs6cKS1z48YN8eyzz4oyZcqIwMBA0adPH3H69Gm79Rw9elT06NFDBAQEiPLly4sXXnhB3L59226ZtLQ00axZM+Hr6ytq1Khh9x02Rh0Lw4cPF1FRUcLX11eEh4eLrl27Sgm3EIyxUvIn3YxzyfXv319UqlRJ+Pr6iipVqoj+/fvb/X40YyyPn376STRq1Ej4+fmJevXqiRkzZti9z+2fPFatWiUAFIidEOzLcsjOzhajR48W1apVE/7+/qJGjRritddes/uJJPblkvv+++9FjRo1hK+vr4iIiBAjR44UmZmZ0vuMsev0lIM4U5biWIQQwvnz4kRERERERETkLMPf001ERERERESkFibdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRESkiqNHj8JisSAlJUV6bfz48bBYLOoVykV6Ky8ApKSkwGKx4OjRo2oXRaLHONokJiYiOjpa7WIQEZGGMekmIiJF2JI7R39jx451ej3vvvsuFi9erFxBiYiIiBTko3YBiIjI2CZOnIjq1avbvdaoUSNERUXhxo0bKFWqVJGff/fdd/HII48gISFBwVKax+DBgzFgwAD4+fmpXRTJ66+/7tKBGC358ssvYbVa1S4GERFpGJNuIiJSVI8ePdCqVSuH7/n7+3u4NHfdvHkTvr6+8PIy3wVf3t7e8Pb2VrsYdnx8fODjI88uiRACN2/eREBAgCzrK05xB42IiIjMt7dBRESa4Oie7vwsFguuXbuGWbNmSZemJyYmSu+fPHkSw4cPR8WKFeHn54eGDRvi66+/tlvH2rVrYbFYMG/ePLz++uuoUqUKAgMDkZ2dDQDYvHkzunfvjtDQUAQGBqJz587YsGFDgbKsX78erVu3hr+/P2rWrIkvvvjC6boePHgQDz/8MCIiIuDv74+qVatiwIAByMrKsltuzpw5aNmyJQICAlC2bFkMGDAAJ06csFumS5cuaNSoEXbt2oXOnTsjMDAQtWrVwg8//AAASE9PR0xMDAICAlC3bl38+uuvdp935Z5ui8WCUaNGYcGCBWjQoAECAgLQrl077N69GwDwxRdfoFatWvD390eXLl0KrPO3335D3759Ua1aNfj5+SEyMhL//e9/cePGDbvlHN3TfefOHbz11luoWbMm/Pz8EB0djVdffRU5OTl2y0VHR6Nnz55YtWoVWrVqhYCAgCLbxpkynTt3DuHh4ejSpQuEENLrhw4dQunSpdG/f3/pNUf3dM+bNw8tW7ZEcHAwQkJC0LhxY3z88ceFB5qIiAyNZ7qJiEhRWVlZuHDhgt1r5cuXd+qzs2fPxogRI9CmTRs8+eSTAICaNWsCAM6ePYu2bdtKiWF4eDhWrFiBxx9/HNnZ2RgzZozdut566y34+vrixRdfRE5ODnx9fbFmzRr06NEDLVu2RFJSEry8vDBz5kzcd999+O2339CmTRsAwO7du9GtWzeEh4dj/PjxuHPnDpKSklCxYsVi63Dr1i3ExcUhJycH//nPfxAREYGTJ09i2bJlyMzMRGhoKADgnXfewRtvvIF+/fphxIgROH/+PKZOnYpOnTphx44dCAsLk9Z5+fJl9OzZEwMGDEDfvn0xffp0DBgwAN9++y3GjBmDp59+Go8++ijef/99PPLIIzhx4gSCg4Odinl+v/32G5YuXYqRI0cCAJKTk9GzZ0+8/PLL+Oyzz/Dss8/i8uXLeO+99zB8+HCsWbNG+uyCBQtw/fp1PPPMMyhXrhy2bNmCqVOn4p9//sGCBQuK/N4RI0Zg1qxZeOSRR/DCCy9g8+bNSE5Oxr59+7Bo0SK7Zffv34+BAwfiqaeewhNPPIG6desWul5nylShQgVMnz4dffv2xdSpU/Hcc8/BarUiMTERwcHB+Oyzzwpdf2pqKgYOHIiuXbti8uTJAIB9+/Zhw4YNGD16dNHBJiIiYxJEREQKmDlzpgDg8E8IIY4cOSIAiJkzZ0qfSUpKEvk3TaVLlxZDhw4tsP7HH39cVKpUSVy4cMHu9QEDBojQ0FBx/fp1IYQQaWlpAoCoUaOG9JoQQlitVlG7dm0RFxcnrFar9Pr169dF9erVxf333y+9lpCQIPz9/cWxY8ek1/bu3Su8vb0LlDe/HTt2CABiwYIFhS5z9OhR4e3tLd555x2713fv3i18fHzsXu/cubMAIObOnSu99tdffwkAwsvLS2zatEl6fdWqVQVibGuXI0eOFFluIYQAIPz8/OyW/eKLLwQAERERIbKzs6XXx40bV2C9eeNtk5ycLCwWi10s87f7zp07BQAxYsQIu8+++OKLAoBYs2aN9FpUVJQAIFauXFlsfVwpkxBCDBw4UAQGBooDBw6I999/XwAQixcvtltm6NChIioqSvr/6NGjRUhIiLhz545T5SEiIuPj5eVERKSoadOmITU11e6vpIQQ+PHHH9GrVy8IIXDhwgXpLy4uDllZWdi+fbvdZ4YOHWp3n+/OnTtx8OBBPProo7h48aL0+WvXrqFr165Yt24drFYrcnNzsWrVKiQkJKBatWrS5+vXr4+4uLhiy2o7k71q1Spcv37d4TILFy6E1WpFv3797OoSERGB2rVrIy0tzW75oKAgDBgwQPp/3bp1ERYWhvr16yMmJkZ63fbvw4cPF1vOwnTt2tXu8mnbOh9++GG7s+eOvitvvK9du4YLFy6gffv2EEJgx44dhX7nzz//DAB4/vnn7V5/4YUXAADLly+3e7169epOtYWrZfr0008RGhqKRx55BG+88QYGDx6M3r17F7n+sLAwXLt2TZZ+TkRExsDLy4mISFFt2rQp9EFq7jp//jwyMzMxY8YMzJgxw+Ey586ds/t//ieoHzx4EMDdZLwwWVlZyMnJwY0bN1C7du0C79etW1dKEAtTvXp1PP/885gyZQq+/fZbdOzYEQ8++CAee+wxKSE/ePAghBAOvwMo+LCuqlWrFrgHOjQ0FJGRkQVeA+5ejl5UHfPez+zr64uyZctK/897oCHvOp35ruPHj+PNN9/E0qVLC5Qh//3seR07dgxeXl6oVauW3esREREICwvDsWPH7F7P37ZFcaVMZcuWxSeffIK+ffuiYsWK+OSTT4pd/7PPPov58+ejR48eqFKlCrp164Z+/fqhe/fuTpeRiIiMhUk3ERHpju0nmh577LFCk+YmTZrY/T//06xt63j//ffRrFkzh+sICgoq8OAud3z44YdITEzEkiVL8Msvv+C5555DcnIyNm3ahKpVq8JqtcJisWDFihUOnyweFBRk9//Cnj5e2Osiz8PA8hs9ejRmzZol/b9z585Yu3Ztib8rNzcX999/Py5duoRXXnkF9erVQ+nSpXHy5EkkJiY69TNb+Q8sFMbZJ5W7U6ZVq1YBuHsw4Z9//rG7t96RChUqYOfOnVi1ahVWrFiBFStWYObMmRgyZIhdnImIyDyYdBMRkaY5SrzCw8MRHByM3NxcxMbGurVe2wPZQkJCilxHeHg4AgICpDPjee3fv9/p72vcuDEaN26M119/Hb///js6dOiAzz//HG+//TZq1qwJIQSqV6+OOnXquF6ZEnj55Zfx2GOPSf8vU6aMLOvdvXs3Dhw4gFmzZmHIkCHS685cdh0VFQWr1YqDBw+ifv360utnz55FZmYmoqKiPFKmlStX4quvvsLLL7+Mb7/9FkOHDsXmzZuL/XkzX19f9OrVC7169YLVasWzzz6LL774Am+88UaBs/dERGR8vKebiIg0rXTp0sjMzLR7zdvbGw8//DB+/PFHZGRkFPjM+fPni11vy5YtUbNmTXzwwQe4evVqoevw9vZGXFwcFi9ejOPHj0vv79u3TzoLWpTs7GzcuXPH7rXGjRvDy8tLOov+0EMPwdvbGxMmTChwVloIgYsXLxb7Pe5q0KABYmNjpb+WLVvKsl7bmfC89RFCOPXTWQ888AAA4KOPPrJ7fcqUKQCA+Ph4xcuUmZkpPTn/3XffxVdffYXt27fj3XffLfI78reVl5eXdNWFHFdNEBGR/vBMNxERaVrLli3x66+/YsqUKahcuTKqV6+OmJgYTJo0CWlpaYiJicETTzyBBg0a4NKlS9i+fTt+/fVXXLp0qcj1enl54auvvkKPHj3QsGFDDBs2DFWqVMHJkyeRlpaGkJAQ/PTTTwCACRMmYOXKlejYsSOeffZZ3LlzB1OnTkXDhg2xa9euIr9nzZo1GDVqFPr27Ys6dergzp07mD17tnTgALh71v3tt9/GuHHjcPToUSQkJCA4OBhHjhzBokWL8OSTT+LFF1+UJ6AeUq9ePdSsWRMvvvgiTp48iZCQEPz4449F3l9u07RpUwwdOhQzZsxAZmYmOnfujC1btmDWrFlISEjAvffeq3iZRo8ejYsXL+LXX3+Ft7c3unfvjhEjRuDtt99G79690bRpU4ffMWLECFy6dAn33XcfqlatimPHjmHq1Klo1qyZ3Vl7IiIyDybdRESkaVOmTMGTTz6J119/HTdu3MDQoUMRExODihUrYsuWLZg4cSIWLlyIzz77DOXKlUPDhg2l30cuTpcuXbBx40a89dZb+PTTT3H16lVEREQgJiYGTz31lLRckyZNsGrVKjz//PN48803UbVqVUyYMAGnT58uNulu2rQp4uLi8NNPP+HkyZMIDAxE06ZNsWLFCrRt21ZabuzYsahTpw7+7//+DxMmTABw92Fl3bp1w4MPPuhG5NRVqlQp/PTTT9L96/7+/ujTpw9GjRpVaMKa11dffYUaNWogJSUFixYtQkREBMaNG4ekpCTFy7R06VJ88803+PDDD1GvXj3p9SlTpiA1NRVDhw7FH3/8UeABd8Dd5wzMmDEDn332GTIzMxEREYH+/ftj/Pjx8PLiBYZERGZkEUU9XYWIiIhIYW+88QaSk5MLXIZPRERkBDzkSkRERKo6ffo0ypcvr3YxiIiIFMHLy4mIiEgVhw8fxqJFi7BgwQL07NlT7eIQEREpgme6iYiISBXr1q3DhAkT0LlzZ+nJ5EREREbDe7qJiIiIiIiIFMIz3UREREREREQKYdJNREREREREpBDTPEjNarXi1KlTCA4OhsViUbs4REREREREpAAhBK5cuYLKlSvDy0v988ymSbpPnTqFyMhItYtBREREREREHnDixAlUrVpV7WKYJ+kODg4GcDfwISEhKpeGiIiIiIiIlJCdnY3IyEgpB1SbaZJu2yXlISEhTLqJiIiIiIgMTiu3Fat/gTsRERERERGRQZnmTDe5Lnrs8gKvHZ0Ur0JJiIiIiIiI9IlJNzlkS7jzJtnRY5cjeuxyJt4yy3twg7ElIiIiIjIWly4vT05ORuvWrREcHIwKFSogISEB+/fvL/IzCxcuRKtWrRAWFobSpUujWbNmmD17tt0yZ8+eRWJiIipXrozAwEB0794dBw8etFvm77//Rp8+fRAeHo6QkBD069cPZ8+edaX45KL8CaDt/47OgJPrbAcxAPvYMr5ERERERMbhUtKdnp6OkSNHYtOmTUhNTcXt27fRrVs3XLt2rdDPlC1bFq+99ho2btyIXbt2YdiwYRg2bBhWrVoF4O5vqCUkJODw4cNYsmQJduzYgaioKMTGxkrrvXbtGrp16waLxYI1a9Zgw4YNuHXrFnr16gWr1VqC6pMjRZ3NZuItj7zJti2mef/N+CrHdmCDBziIiIiIyBMsQgjh7ofPnz+PChUqID09HZ06dXL6cy1atEB8fDzeeustHDhwAHXr1kVGRgYaNmwIALBarYiIiMC7776LESNG4JdffkGPHj1w+fJl6cnjWVlZKFOmDH755RfExsYW+53Z2dkIDQ1FVlYWn15eBEeXlRe2HC+Fdl9x8WN8leHoygIbxlt9fI4EERERyUFruV+J7unOysoCcPdstjOEEFizZg3279+PyZMnAwBycnIAAP7+/tJyXl5e8PPzw/r16zFixAjk5OTAYrHAz89PWsbf3x9eXl5Yv369U0k3Oc+Zndyjk+KZGLrJmbOrjK/8HB1Qyn9ZP+OtnqKeI5H/dVJHYXMX20YdbA/t4gFEIsrP7Z8Ms1qtGDNmDDp06IBGjRoVuWxWVhaCgoLg6+uL+Ph4TJ06Fffffz8AoF69eqhWrRrGjRuHy5cv49atW5g8eTL++ecfnD59GgDQtm1blC5dGq+88gquX7+Oa9eu4cUXX0Rubq60TH45OTnIzs62+6OiuXOpLS/PdY2rCQTjK4/i4s7L+tVVWPvwlgvtyH9LDNtGXWwP7SqsbXhLE5G5uZ10jxw5EhkZGZg3b16xywYHB2Pnzp34448/8M477+D555/H2rVrAQClSpXCwoULceDAAZQtWxaBgYFIS0tDjx494OV1t3jh4eFYsGABfvrpJwQFBSE0NBSZmZlo0aKFtEx+ycnJCA0Nlf4iIyPdraqpuHIklkdt3eNs3BhfeTh7oIM7rOpwpn3YNuoqqo3yJhTkGcW1R95lyLPYNkTKMMLzeNy6p3vUqFFYsmQJ1q1bh+rVq7v8pSNGjMCJEyekh6nZZGVl4datWwgPD0dMTAxatWqFadOm2S1z4cIF+Pj4ICwsDBEREXjhhRfw0ksvFfiOnJwc6dJ14O51/ZGRkZq5rl9r3L2Ek5d+Os+dWDG+JefqZeOMuee4c+UH28WzXGkjto/yXHnuijPLkXyc7f9sG23g7Rn64OjZO84+j0dr93S7dKZbCIFRo0Zh0aJFWLNmjVsJN3D30vS8CbFNaGgowsPDcfDgQWzduhW9e/cusEz58uURFhaGNWvW4Ny5c3jwwQcdfoefnx9CQkLs/qho7kw0nJxc42q8GN+ScScJYMw9o6QH+shz3DloRfJzZczwrKpnubKtYduoK/+zQngbgHY5+qWf/P/XU1u5lHSPHDkSc+bMwdy5cxEcHIwzZ87gzJkzuHHjhrTMkCFDMG7cOOn/ycnJSE1NxeHDh7Fv3z58+OGHmD17Nh577DFpmQULFmDt2rXSz4bdf//9SEhIQLdu3aRlZs6ciU2bNuHvv//GnDlz0LdvX/z3v/9F3bp1S1J/gjwdVk+dXg0liQ8v3XRPSWPGmCuPB0S0zdWDVnrcCdILdw5SsT08w534sm3UUVgSlxfbRhuMeOuZS0n39OnTkZWVhS5duqBSpUrS3/fffy8tc/z4cbuHm127dg3PPvssGjZsiA4dOuDHH3/EnDlzMGLECGmZ06dPY/DgwahXrx6ee+45DB48GN99953dd+/fvx8JCQmoX78+Jk6ciNdeew0ffPCBu/WmfEqyM8sdYecwTp7nbszZVsriQSjtczfGHDvK4dVo2lOSS8XZNurglSLaZ9Srekr0O916orXr+rVCrnuLeI9S4eSMMePrHMZc20oaV843yitJG7F95MXxol1ybCO4nfEMd+LMtvE8OZ8xpbXcz+2nl5NxyDGhcFIqGuPjeXLFXA9HT/VEjp0YjidllbSN2D7ykWP+YXsoQ86EjNsZZZXkyh22jeeV5MoRLbcXk24iBck5+Dn5O0fumJN85O6/HA/ykyumnK/kI9eBcbaHfLid0Q85rvTg2PGMksZZ64k3k24Tk7tTcqPuGDeonid3zNmv5SNX23BcKUfO2HLsuE+J2LE95MPtjH7wyh3tk+s2mLyJd6OkVcUs7VlMuk2Ok4m+8MBG0ZSIDceIPJTqtxwP8lHiQCy5R4n7sNke8lByO8P5TF68ckdf5Dwor8X5jkm3SSk5eXBiuosP4FCHUjFnvy45uduG40t+SsSUY8c9nMu0S4m24XwmLyUOXHHsKEOpuGZMiFNkve5i0m1i3GjoFyf+gpSMCft1ySjdXzkeSk6pGHLsuI5zmXZ54mA65zP58EoR7TPTrysw6SZFmH2jwZ0mdXBnSLuUahuOB/koGUuOHddwLtMeT8SM85k8eDWnvpil3zPpNiGlJwyzDJ7icKfJc7gzpF2e6qccD+7jNkE7OJdpm6dix/ms5JS8mpPtIw+zxZFJt0lxo6sc7jSpgztD2qV023A8lJwnYsix4xzOZdrjyVhxPisZpW8BYPvIy0zxZNJtMp7acJj9SY/cafIc7gxpl6fbhuPBdZ7cJlDROJdpmydjxvnMPZ6MGdunZMwYPybdJsSNrTGwHf/l6ViYcWPhLvZT7fNkG3HsFI2JnfaoGSO2j+s8MYa4XSsZMz08LS8m3aQos20w+DNhnqVG/2L7OkettjHbnFMSno4Vx07hmNhpmxp9l+PFNWr0Y44d95mxfzPpNhHuYBkPkwz1+pnZ4+4Mto32qdFGbB/HmNhpjxYOpHO8OM/TV4qQ68zcn5l0mwx3sJRjlnoSN7bFUXNHlW3jHLXmK7ZPQUzstEkLMVG7X+iFmvOZFvqJ3pi1XzPpNgnuYHmGWmcqzDjpc0eVisK2KZ6aB0bYPtqh9jyqZVqJDcdL8dRsK7aPc8weJybdJsIJiUg+WtkZ0xotHAxR+/u1jvOxdmhhvNiwX/xLS7Hgb0MXTe0xpJXxqxdmjheTblKcGQaY2pO+rQxmoYV425gp7sXRWiy0Vh4tUXv88Gy3tqjdH7RISzHRUlm0REtziJbKokVa2m9TC5NuE+BEYHxmn8jUwrgXpJWYaKUcWqO17YHWyuNJWtsJ5YGQu7QcAy2XTS1aGENaKIOWsd/eZbqku1HSKrWLoAq1JwQjb8y1VC8tlUUpWttRBcwR9+JoMQZGnndKQivjRyvlUIOW+6WWy+YpWuybWiyTmrTWT7m9KRr7rwmTbkB7A1VJZqqrmrQwmWihDGbEuP9Lq7HgPHiXVuOg1XIpTYvjRYtl8iQtHtTNi4mdPS22FdvHHuPxL9Ml3RkT4gCYqxNoaVIyU9zVYuQYa3mHyMhxL46W667V/qIWrcVDa+XxBC2PFxs9lFFueqqznsqqBK3uC2ixTGqy9VPG5S6Xku7k5GS0bt0awcHBqFChAhISErB///4iP7Nw4UK0atUKYWFhKF26NJo1a4bZs2fbLXP27FkkJiaicuXKCAwMRPfu3XHw4EG7Zc6cOYPBgwcjIiICpUuXRosWLfDjjz+6UnwJnwSpDiMOOq1N/Foqi5kw7tqPgdnne63XX+vlk5uWx4uWy6Y0PdRdD2VUkh7mCj2U0VPM3l/zcinpTk9Px8iRI7Fp0yakpqbi9u3b6NatG65du1boZ8qWLYvXXnsNGzduxK5duzBs2DAMGzYMq1bdvbdaCIGEhAQcPnwYS5YswY4dOxAVFYXY2Fi79Q4ZMgT79+/H0qVLsXv3bjz00EPo168fduzY4VbFzZB4ay0htDFyzLXCiDHWan/Oy4hxL44e2kXr5fMUrcZBq+VSgp7mCD2VtaT0WFc9llkuWp4zzJBfOMPs9XfEpaR75cqVSExMRMOGDdG0aVOkpKTg+PHj2LZtW6Gf6dKlC/r06YP69eujZs2aGD16NJo0aYL169cDAA4ePIhNmzZh+vTpaN26NerWrYvp06fjxo0b+O6776T1/P777/jPf/6DNm3aoEaNGnj99dcRFhZW5HcXR8uD1qiMFHOtTihGirGemDHuWh0Djpj5Xkg91NtM7aOHuUIPZZSbnups1sROL/XVU19SAi8rd6xE93RnZWUBuHs22xlCCKxevRr79+9Hp06dAAA5OTkAAH9//38L5eUFPz8/KTEHgPbt2+P777/HpUuXYLVaMW/ePNy8eRNdunRx+F05OTnIzs62+yuMXgaxK7R+9skoMWeMPUPr/TkvI8XdGXppFxuztY+NXtrJyO2jt7qZ5UCInrYveemxzCWhx0TODOOnMHpqJ09xO+m2Wq0YM2YMOnTogEaNGhW5bFZWFoKCguDr64v4+HhMnToV999/PwCgXr16qFatGsaNG4fLly/j1q1bmDx5Mv755x+cPn1aWsf8+fNx+/ZtlCtXDn5+fnjqqaewaNEi1KpVy+F3JicnIzQ0VPqLjIx0uBw7hecZIeZan0iNEGM9MlPctT4GHDFT+9joKaHQSzlLQo911ONYd5YR6maEOjhLT+NHT2WVk5n6o6vcTrpHjhyJjIwMzJs3r9hlg4ODsXPnTvzxxx9455138Pzzz2Pt2rUAgFKlSmHhwoU4cOAAypYti8DAQKSlpaFHjx7w8vq3eG+88QYyMzPx66+/YuvWrXj++efRr18/7N692+F3jhs3DllZWdLfiRMnCi2f0Y7m6qUueilnYfQwoeo9xoC+kgbAePNJUfTULjZmah+9MmL76G0es9FjmV2l5zqa5TJzvdbPbNsbPV6N4EluJd2jRo3CsmXLkJaWhqpVqxb/JV5eqFWrFpo1a4YXXngBjzzyCJKTk6X3W7ZsiZ07dyIzMxOnT5/GypUrcfHiRdSoUQMA8Pfff+PTTz/F119/ja5du6Jp06ZISkpCq1atMG3aNIff6efnh5CQELu/4hhpYGi9w2u9fEbAGJNS9JpA5GWk+b4wemwnvZXXLIw4XoxSJ7OMGT3X0yh9zRl6bieluZR0CyEwatQoLFq0CGvWrEH16tXd+lKr1Srdy51XaGgowsPDcfDgQWzduhW9e/cGAFy/fv1uYb3si+vt7Q2r1epWGfIzSicx08BWi952ZPXcJ/QWaxsjH902Qr302Kdcped2Mtr40es8ZqPnshfGiGfkjDRm8uL40Qej9j85uZR0jxw5EnPmzMHcuXMRHByMM2fO4MyZM7hx44a0zJAhQzBu3Djp/8nJyUhNTcXhw4exb9//Y+++w6Oo9j6Af3c3W9J7hRASQpEOQWJAypXQFbAhilLsFJUXG9gAGwqoKAK2K3gvKgICehHpBEWa9CoESOhJIKS3TXbP+8eyQzabhJTt+X6eZ59kZ86eOXPOmdn9zZlyAh999BH++9//4tFHH5XSLF++HElJSdJjw/r27Ythw4ahX79+AAzXfcfGxuKZZ57Bnj17cObMGXz00UfYuHEjhg0bVs8qMOUKncZZNnBX+2HliJylL7gqV+3frtCvGsL+x9nbyRXaxxXWAXDN7cXZt4/yXPU0c1dZH1fcfspzxYNY1lCroHvhwoXIyclB7969ER4eLr1++uknKc358+dNboBWUFCA8ePHo02bNujevTt+/vlnLFmyBE8++aSU5sqVK3jsscfQqlUrPP/883jsscdMHhemVCqxdu1aBAcH45577kH79u3xn//8B9999x0GDRpUn/U34eydxZU3aEfhrHXsjOXm0W3H4+xtUhln3DZuxRXWyZX6mSutiyv0LVdYh8q4Uj8rz5XWy1X7HuBa7WQttT69vLLXmDFjpDRJSUlYvHix9P7dd99FcnIyioqKcP36dezYsQMPPfSQSb7PP/88Lly4AK1Wi3PnzuGdd96BSqUySdO8eXP8/PPPSE9PR0FBAQ4dOoTHHnus9mtcA868UThbp3fGo3/OWMdkP87Wv6viKutRnitvG66ybs7c75y57JVxlT4FuNa6VOQq/c5V1sPIVfucq7WTNdXrOd2uyFU3Cqo/Z9+xOFP5XWVE1RXWoTxXWx/AOQ/8VcdVth3ANfqbK6xDRc68vbjS9lEZVzvN3BXbylXaBuBp5bXFoLsKzrZROPsXibPUt7PWsbOW21U4S/+uirOXvyZcYR1dYR0q44zr5Yxlrgln/i5x1TapyJnbyMjZf9NWxdUOigCu0d9shUF3JdiBbIv1bTvOsKN3tS9bZ1+XhnAk25XWzZXWBXDu9XHmst+KM3yXVMaV26QiZ20jZy13TblKH3S132q2wKC7Cs50yqGzlPNWHHk9XGHn4uzld3aO3L9vpSH0HWfa51fGmcteE860fq7wfVEdZ1w3V2+Tipx9XZ29/DXhTPu0ipy57PbEoNtFOPsOytnL70wceWfpqj+MnHWdHLmvWIszr7Oz9rNbcdX1cmbOdJDKWcppac7URkbOVt66coV9miusg60x6K6GM+ywHL18teWI6+OIZaor7iTtxxn2J+U1hNPKK3LWdXWmflVXzrL9uOqBw6o4Q5sAzrttW4KztJFRQ2krZ9mnVeSMZXYUDLprwNE7mKvsoBx5PRy5bHXhiH3aEctkDc60nq7W72vCWX8INZS2cuS2ceSyWYMz9LmG1iYVOUMbGTXUtnKm9W6IB+MtiUH3LbBj2Z4j7YAcqSyW4sh92pHLZgnOsn6u2O9ry1nqoCGNrDrDejpDGS3N0beVhtgmFTl6GzXUYM4Z19cZy+woGHTXkCPusFzxx5Yjro8jlskSHKlPO1JZbMEZ1tdV+31NOMu6O0M/sgZHXG9HLJMtOPK24oq/kerCWR5T1ZDbytHbBnCOMjo6Bt010JB3BPbCjdu6HLFPO2KZrMHR15M/VA2c5TTzhtZWjry+jlw2a3LEbcXRymNvjtw3G3pbOXLbVORMZXVEDLprwZF2DI5UFktzlI26IQQfjtCPHKEM9uCI6+2IZbI3R60TRy2XrTjS+jtSWezJ0erB1b+/68LR2sioobeVIx64Kq8h/B62BQbdNeSInc0Ry0TOw5H6jyOVxRYceX0duWy25uh14ejlsxZHXG9HLJMtOdL6O3LwYk+O1EZGbCtTjlgfjlgmZ8Wgu5YcofM5Qhmszd5H/RpCHTuChl7PjrT+jlQWR+NodeNo5bEXR6gHRyiDI3GU+nDEANNROEobGbGtDBy5Hhy5bM6EQXctOFKnc6SyuKqGUMf2PrhhLEND5Ijr7YhlsjdHrRNHLZetONL6O1JZ7MkR6oGnwVbPkerG3r89HJUj1YsjlcUVMOiuA3ZC23CEgJCsh21r4Aj14AhlcGSOtC9ylHI4Cp4R5XjsVS9sj5pxpP2ZIx0EcASOVB8N9TFu1sSgu5bs3fl4FNf6Glod2/MLuCHVc2Ucaf0dqSyOij9UHYsj1IMjlMGR2Ls+7L18Z8IDVo7LUeqH25NlMegmh+coOx8ia+GPH8fnCD8+2Fbm7HXQkG1RPVvXD9ujdhxhf+YIZXBEjlAv3J6sg0F3HfBL3nZsvfNpiHVsZMt1b2hnE1THEerBEcrgLOy9j2BbOQ62ReXsVS9sj9qz129ZtlX1HOESALaR5THodjINdSOw5c6nIdZxQ1xnR8MDeY7PntsJ26pqtv6Byra4NVu2CdujbuyxP2Nb1Q5/F7gWBt115AhHoRoKBoS2Y4s+ze3GnD37OLev2uM9EIht4VjYHnVn6/0Z26pm+LvA9dQq6J45cyZuv/12eHt7IyQkBMOGDcPJkyer/czKlSvRpUsX+Pn5wdPTEx07dsR///tfkzTp6ekYM2YMIiIi4OHhgQEDBiA5OVman5qaCplMVulr+fLltVkFp8XTcayvoQeDtuxf7MuV4yn+jo+jQ47JVgfC2RY1Z4s2YXvUjy33Z2yruuHvAtdRq6B727ZtmDBhAnbt2oWNGzeitLQU/fr1Q0FBQZWfCQgIwOuvv46dO3fi8OHDGDt2LMaOHYv169cDAIQQGDZsGM6ePYtffvkFBw4cQFRUFBITE6V8IyMjceXKFZPXjBkz4OXlhYEDB9Zj9euPOxHbsUVdc2dj3Xrm9lI19j3nYY8zndg/HAfbonasva2wPerHlvsztlXt8KCIa6lV0L1u3TqMGTMGbdq0QYcOHbB48WKcP38e+/btq/IzvXv3xr333ovbbrsNzZo1wwsvvID27dtj+/btAIDk5GTs2rULCxcuxO23346WLVti4cKFKCoqwo8//ggAUCgUCAsLM3mtWrUKw4cPh5eXVz1Wv35stTFwQ7B+XbOODWzRp/mlWz1bjdaxHeqPI6uOxdrBA9ui9qy5n+F+zLK47TguHhRxDfW6pjsnJweAYTS7JoQQ2Lx5M06ePImePXsCAEpKSgAAGo3mZqHkcqjVaikwr2jfvn04ePAgnnjiifoU32I4Ams71qxr1rF18Uv31tgHnQcvx3Bc/J5wPJZuE36fWBYPuDsuW9QbtyfbqHPQrdfrMWnSJHTv3h1t27atNm1OTg68vLygUqkwePBgzJs3D3379gUAtGrVCk2aNMHUqVORlZUFrVaLDz/8EBcvXsSVK1cqze/f//43brvtNnTr1q3KZZaUlCA3N9fkZQ3cidgO69o2rDlaxDasGWuPOLAdLIdt5VisVV/8UVp31moTbhuWZ41+zv1Y/dniEgC2kfXVOeieMGECjh49iqVLl94yrbe3Nw4ePIi///4b7733HiZPnoykpCQAgFKpxMqVK3Hq1CkEBATAw8MDW7duxcCBAyGXmxevqKgIP/zwwy1HuWfOnAlfX1/pFRkZWaf1tDfurKyPP6bIkVj7dEyyHO6bHZc1+jrbu34s1Sbcj1mHNfo328qyrHVQhGyjTkH3xIkTsWbNGmzduhWNGze+9ULkcsTGxqJjx4548cUX8cADD2DmzJnS/Li4OBw8eBDZ2dm4cuUK1q1bh8zMTMTExJjltWLFChQWFmLUqFHVLnPq1KnIycmRXhcuXKj9itYQHx9mO9aqa/6YMmXpeubBo9rj2QbOg6NDjsXS9cbv9/oztoml6pLbhvVYur+zrSzDmgdF2Ea2UaugWwiBiRMnYtWqVdiyZQuio6PrtFC9Xi9dy12er68vgoODkZycjL1792Lo0KFmaf79739jyJAhCA4OrnYZarUaPj4+Ji9nwy9662MdkyPiiIPz4I8Vx2XJPs92rj9L1CEPRlmXJQ+O8DvHOnhQxHnVKuieMGEClixZgh9++AHe3t5IS0tDWloaioqKpDSjRo3C1KlTpfczZ87Exo0bcfbsWZw4cQIfffQR/vvf/+LRRx+V0ixfvhxJSUnSY8P69u2LYcOGoV+/fibLP336NP744w88+eSTdV1fq+IIrO3wx5Rt8IvXfqxxVgf7uvXwzBDHYqn64/7L8upap2wL27Dkvof7McuyZH1ye7K9WgXdCxcuRE5ODnr37o3w8HDp9dNPP0lpzp8/b3IDtIKCAowfPx5t2rRB9+7d8fPPP2PJkiUmgfOVK1fw2GOPoVWrVnj++efx2GOPSY8LK+/bb79F48aNzYJxR8Adi+2wrm2DX7yug1+u1sUfQo7LEvXJ/Zfl1HcklW1hO/XZdnjg0Lp4mYZzkgkhhL0LYQu5ubnw9fVFTk6O1U41t+S1EdxhVc8Sdc06vrX61jOvF6o/S/RT9nXbYFs5nvrUJ9vCempbt2wL26vr9ze/963PEr/NGkL72CL2q416PaebTDWEDuwoWNe2YYl6ZlvVX31HHMh22FaOpa6XabAtrKs27cK2sI+6fHcz4LaN+g44kX0w6LaC+nZobhA1x2vDbIM/Wu3HEl+u/AFkGzxI5bjqsj9iW1jfrdqF+zD7qsvBEbaVbdTlgCLbyL4YdFuYpToyN4hbq28dsY5rpj71xDq2HF4D6Tx4kMqx1PY6YraFbaR+MFgKHCrWeflp3IfZHw+OOK7a7q/YRvbDoNvB8Mu+9up6pI9qrrZHVBvK9UK2UpebD7Gf20d92orbjPXUtG7ZFrZXfpupGGyzHeyvuoMjALcZe6rN9w1/l9kfb6RmJXXt3Nwoao83ZLGNmn6x8gvYetgGzqOm+xm2lW1V1y5sC6LqVRXccZuxr+r2XQ15v+ZoN1Jj0G0ldenkDXnDqI/a1BvruH5uVX+sX+tjGziH2hwgYVvZVsW2KR9IsC2IyBlV3I9xv8ag227sUfEcgbWd2owqsY7rp6pggsGe7bANnANHHxxXxRE7tgMRuQIG2zcx6LYTewXdAEdgbaEm9ceA23KqGili/doOT/NzHmwrIiIi22LQbSf2qniOwNoOR5Vsi0dTiWqH+yEiIiLbYNBtJ/YMuoFbj8DeKg3VTGV1yfolIiIiImo4GHTbiT0rniOwtlXZqZysXyIiIiKihoFBt53Yu+I5AktERERERGR99o79KmLQbUMcgSUiIiIiIrIuR4j9ynOzdwEaEgbYREREREREDYvc3gUgIiIiIiIiclUMuomIiIiIiIishEE3ERERERERkZU0mGu6jfeLy83NtXNJiIiIiIiIyFqMMZ+j3DO8wQTdmZmZAIDIyEg7l4SIiIiIiIisLTMzE76+vvYuRsMJugMCAgAA58+fr3fF33777fj777/rXSZXzCc3NxeRkZG4cOFCvW/P70jr5UhlcdU6drR8HK2eHaluLJWPo9Wxq+ZjqXp2pHVytHzYl62fB+vYNvm4aj07UllctY4dLZ+cnBw0adJEigHtrcEE3XK54fJ1X1/fendwhUJhkee9uWo+AODj4+NS9exIZTFytTp2xHwAx6lnR6sbV6xjV84HqH89O9o6OVo+APuytcsCsI5tkQ/gevXsSGUxcrU6dsR8gJsxoL05RimczIQJE5iPDTjSejlSWSzJ0dbL0fKxFFfsg65Yx66cjyU42jo5Wj6W4mjr5Uj7L0txpLpxxHwsxZHWy5HKYkmOtl6Olo8jkQlHubrcynJzc+Hr64ucnByLHTkhc6xn62Md2wbr2fpYx7bBerY+1rH1sY5tg/Vsfaxj23C0em4wI91qtRrTpk2DWq22d1FcGuvZ+ljHtsF6tj7WsW2wnq2PdWx9rGPbYD1bH+vYNhytnhvMSDcRERERERGRrTWYkW4iIiIiIiIiW2PQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVNJige/78+WjatCk0Gg3i4+OxZ88eexfJIfzxxx+45557EBERAZlMhtWrV5vMF0LgrbfeQnh4ONzd3ZGYmIjk5GSTNNevX8fIkSPh4+MDPz8/PPHEE8jPzzdJc/jwYfTo0QMajQaRkZGYNWuWWVmWL1+OVq1aQaPRoF27dli7dq3F19ceZs6cidtvvx3e3t4ICQnBsGHDcPLkSZM0xcXFmDBhAgIDA+Hl5YX7778f6enpJmnOnz+PwYMHw8PDAyEhIXj55ZdRVlZmkiYpKQmdO3eGWq1GbGwsFi9ebFYeV90WFi5ciPbt28PHxwc+Pj5ISEjA77//Ls1nHVveBx98AJlMhkmTJknTWM/1N336dMhkMpNXq1atpPmsY8u4dOkSHn30UQQGBsLd3R3t2rXD3r17pfn8/qu/pk2bmvVlmUwmPYOXfbn+dDod3nzzTURHR8Pd3R3NmjXDO++8g/L3SWZfrr+8vDxMmjQJUVFRcHd3R7du3fD3339L81nHtedMMUhNynJLogFYunSpUKlU4ttvvxXHjh0TTz31lPDz8xPp6en2LprdrV27Vrz++uti5cqVAoBYtWqVyfwPPvhA+Pr6itWrV4tDhw6JIUOGiOjoaFFUVCSlGTBggOjQoYPYtWuX+PPPP0VsbKx4+OGHpfk5OTkiNDRUjBw5Uhw9elT8+OOPwt3dXXz55ZdSmr/++ksoFAoxa9Yscfz4cfHGG28IpVIpjhw5YvU6sLb+/fuLRYsWiaNHj4qDBw+KQYMGiSZNmoj8/HwpzbPPPisiIyPF5s2bxd69e8Udd9whunXrJs0vKysTbdu2FYmJieLAgQNi7dq1IigoSEydOlVKc/bsWeHh4SEmT54sjh8/LubNmycUCoVYt26dlMaVt4Vff/1V/Pbbb+LUqVPi5MmT4rXXXhNKpVIcPXpUCME6trQ9e/aIpk2bivbt24sXXnhBms56rr9p06aJNm3aiCtXrkivq1evSvNZx/V3/fp1ERUVJcaMGSN2794tzp49K9avXy9Onz4tpeH3X/1lZGSY9OONGzcKAGLr1q1CCPZlS3jvvfdEYGCgWLNmjUhJSRHLly8XXl5e4tNPP5XSsC/X3/Dhw0Xr1q3Ftm3bRHJyspg2bZrw8fERFy9eFEKwjuvCmWKQmpTlVhpE0N21a1cxYcIE6b1OpxMRERFi5syZdiyV46nY4fV6vQgLCxOzZ8+WpmVnZwu1Wi1+/PFHIYQQx48fFwDE33//LaX5/fffhUwmE5cuXRJCCLFgwQLh7+8vSkpKpDSvvvqqaNmypfR++PDhYvDgwSbliY+PF88884xF19ERZGRkCABi27ZtQghDnSqVSrF8+XIpzYkTJwQAsXPnTiGEYcckl8tFWlqalGbhwoXCx8dHqtdXXnlFtGnTxmRZDz30kOjfv7/0vqFtC/7+/uKbb75hHVtYXl6eaN68udi4caPo1auXFHSzni1j2rRpokOHDpXOYx1bxquvviruvPPOKufz+886XnjhBdGsWTOh1+vZly1k8ODB4vHHHzeZdt9994mRI0cKIdiXLaGwsFAoFAqxZs0ak+mdO3cWr7/+OuvYAhw5BqlJWWrC5U8v12q12LdvHxITE6VpcrkciYmJ2Llzpx1L5vhSUlKQlpZmUne+vr6Ij4+X6m7nzp3w8/NDly5dpDSJiYmQy+XYvXu3lKZnz55QqVRSmv79++PkyZPIysqS0pRfjjGNK7ZRTk4OACAgIAAAsG/fPpSWlpqsf6tWrdCkSROTem7Xrh1CQ0OlNP3790dubi6OHTsmpamuDhvStqDT6bB06VIUFBQgISGBdWxhEyZMwODBg83qgvVsOcnJyYiIiEBMTAxGjhyJ8+fPA2AdW8qvv/6KLl264MEHH0RISAg6deqEr7/+WprP7z/L02q1WLJkCR5//HHIZDL2ZQvp1q0bNm/ejFOnTgEADh06hO3bt2PgwIEA2JctoaysDDqdDhqNxmS6u7s7tm/fzjq2Akeq05qUpSZcPui+du0adDqdyQ4bAEJDQ5GWlmanUjkHY/1UV3dpaWkICQkxme/m5oaAgACTNJXlUX4ZVaVxtTbS6/WYNGkSunfvjrZt2wIwrLtKpYKfn59J2or1XNc6zM3NRVFRUYPYFo4cOQIvLy+o1Wo8++yzWLVqFVq3bs06tqClS5di//79mDlzptk81rNlxMfHY/HixVi3bh0WLlyIlJQU9OjRA3l5eaxjCzl79iwWLlyI5s2bY/369Rg3bhyef/55fPfddwD4/WcNq1evRnZ2NsaMGQOA+wtLmTJlCkaMGIFWrVpBqVSiU6dOmDRpEkaOHAmAfdkSvL29kZCQgHfeeQeXL1+GTqfDkiVLsHPnTly5coV1bAWOVKc1KUtNuNU4JRHV24QJE3D06FFs377d3kVxSS1btsTBgweRk5ODFStWYPTo0di2bZu9i+UyLly4gBdeeAEbN240O+JPlmMcoQKA9u3bIz4+HlFRUVi2bBnc3d3tWDLXodfr0aVLF7z//vsAgE6dOuHo0aP44osvMHr0aDuXzjX9+9//xsCBAxEREWHvoriUZcuW4fvvv8cPP/yANm3a4ODBg5g0aRIiIiLYly3ov//9Lx5//HE0atQICoUCnTt3xsMPP4x9+/bZu2jkJFx+pDsoKAgKhcLsbpjp6ekICwuzU6mcg7F+qqu7sLAwZGRkmMwvKyvD9evXTdJUlkf5ZVSVxpXaaOLEiVizZg22bt2Kxo0bS9PDwsKg1WqRnZ1tkr5iPde1Dn18fODu7t4gtgWVSoXY2FjExcVh5syZ6NChAz799FPWsYXs27cPGRkZ6Ny5M9zc3ODm5oZt27bhs88+g5ubG0JDQ1nPVuDn54cWLVrg9OnT7MsWEh4ejtatW5tMu+2226TT+Pn9Z1nnzp3Dpk2b8OSTT0rT2Jct4+WXX5ZGu9u1a4fHHnsM//d//yedjcS+bBnNmjXDtm3bkJ+fjwsXLmDPnj0oLS1FTEwM69gKHKlOa1KWmnD5oFulUiEuLg6bN2+Wpun1emzevBkJCQl2LJnji46ORlhYmEnd5ebmYvfu3VLdJSQkIDs72+RI35YtW6DX6xEfHy+l+eOPP1BaWiql2bhxI1q2bAl/f38pTfnlGNO4QhsJITBx4kSsWrUKW7ZsQXR0tMn8uLg4KJVKk/U/efIkzp8/b1LPR44cMdm5bNy4ET4+PtIPx1vVYUPcFvR6PUpKSljHFtKnTx8cOXIEBw8elF5dunTByJEjpf9Zz5aXn5+PM2fOIDw8nH3ZQrp372726MZTp04hKioKAL//LG3RokUICQnB4MGDpWnsy5ZRWFgIudz057xCoYBerwfAvmxpnp6eCA8PR1ZWFtavX4+hQ4eyjq3Akeq0JmWpkRrfcs2JLV26VKjVarF48WJx/Phx8fTTTws/Pz+Tu2E2VHl5eeLAgQPiwIEDAoD4+OOPxYEDB8S5c+eEEIZb5Pv5+YlffvlFHD58WAwdOrTS2/V36tRJ7N69W2zfvl00b97c5Hb92dnZIjQ0VDz22GPi6NGjYunSpcLDw8Psdv1ubm5izpw54sSJE2LatGlO+wiEisaNGyd8fX1FUlKSyaNTCgsLpTTPPvusaNKkidiyZYvYu3evSEhIEAkJCdJ842NT+vXrJw4ePCjWrVsngoODK31syssvvyxOnDgh5s+fX+ljU1x1W5gyZYrYtm2bSElJEYcPHxZTpkwRMplMbNiwQQjBOraW8ncvF4L1bAkvvviiSEpKEikpKeKvv/4SiYmJIigoSGRkZAghWMeWsGfPHuHm5ibee+89kZycLL7//nvh4eEhlixZIqXh959l6HQ60aRJE/Hqq6+azWNfrr/Ro0eLRo0aSY8MW7lypQgKChKvvPKKlIZ9uf7WrVsnfv/9d3H27FmxYcMG0aFDBxEfHy+0Wq0QgnVcF84Ug9SkLLfSIIJuIYSYN2+eaNKkiVCpVKJr165i165d9i6SQ9i6dasAYPYaPXq0EMJwm/w333xThIaGCrVaLfr06SNOnjxpkkdmZqZ4+OGHhZeXl/Dx8RFjx44VeXl5JmkOHTok7rzzTqFWq0WjRo3EBx98YFaWZcuWiRYtWgiVSiXatGkjfvvtN6utty1VVr8AxKJFi6Q0RUVFYvz48cLf3194eHiIe++9V1y5csUkn9TUVDFw4EDh7u4ugoKCxIsvvihKS0tN0mzdulV07NhRqFQqERMTY7IMI1fdFh5//HERFRUlVCqVCA4OFn369JECbiFYx9ZSMehmPdffQw89JMLDw4VKpRKNGjUSDz30kMnzo1nHlvG///1PtG3bVqjVatGqVSvx1Vdfmczn959lrF+/XgAwqzsh2JctITc3V7zwwguiSZMmQqPRiJiYGPH666+bPCKJfbn+fvrpJxETEyNUKpUICwsTEyZMENnZ2dJ81nHtOVMMUpOy3IpMCCFqPi5ORERERERERDXl8td0ExEREREREdkLg24iIiIiIiIiK2HQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVMOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIisqjevXujd+/eFssvNTUVMpkMixcvtliezmjWrFlo1aoV9Hq9vYtSKUu3uyU0bdoUY8aMsXcx6kQmk2H69Om1+syIESMwfPhw6xSIiIjqjEE3EVEDsHjxYshkMuml0WjQokULTJw4Eenp6fYuHt1Cbm4uPvzwQ7z66quQy/nVTZV79dVX8fPPP+PQoUP2LgoREZXjZu8CEBGR7bz99tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YXsXpUqO2O4nT5502oMURUVFcHOr3c+0Tp06oUuXLvjoo4/wn//8x0olIyKi2nLObyIiIqqTgQMH4tFHH8WTTz6JxYsXY9KkSUhJScEvv/xS77wLCwsBACqVCiqVqt752Zter0dxcbG9iwEAWLRoEYYMGQKNRmPvolTJEdtdrVZDqVRaJK/i4mKbntqv0WhqHXQDwPDhw7Fy5Urk5+dboVRERFQXDLqJiBqwu+66CwCQkpIiTVuyZAni4uLg7u6OgIAAjBgxAhcuXDD5XO/evdG2bVvs27cPPXv2hIeHB1577TVpXsVrezMyMvDEE08gNDQUGo0GHTp0wHfffWdWnuzsbIwZMwa+vr7w8/PD6NGjkZ2dXWnZt2zZgh49esDT0xN+fn4YOnQoTpw4YZYuKSkJXbp0gUajQbNmzfDll19i+vTpkMlkJulkMhkmTpyI77//Hm3atIFarca6desAAHPmzEG3bt0QGBgId3d3xMXFYcWKFWbLMuaxfPlytG7dGu7u7khISMCRI0cAAF9++SViY2Oh0WjQu3dvpKamVrpu5aWkpODw4cNITEw0m7d06VLExcXB29sbPj4+aNeuHT799FOzOp00aRIiIyOhVqsRGxuLDz/80CSANF43P2fOHMyfPx8xMTHw8PBAv379cOHCBQgh8M4776Bx48Zwd3fH0KFDcf36dZPl1PSabuOlDtu3b8fzzz+P4OBg+Pn54ZlnnoFWq0V2djZGjRoFf39/+Pv745VXXoEQwiSPmrZHZdd0nz17Fg8++CACAgLg4eGBO+64A7/99ptJmqSkJMhkMixduhRvvPEGGjVqBA8PD+Tm5la5XjUp06JFiyCTyfDtt9+aTH///fchk8mwdu1aaVrFa7rz8vIwadIkNG3aFGq1GiEhIejbty/2799vklffvn1RUFCAjRs3VllWIiKyLZ5eTkTUgJ05cwYAEBgYCAB477338Oabb2L48OF48skncfXqVcybNw89e/bEgQMH4OfnJ302MzMTAwcOxIgRI/Doo48iNDS00mUUFRWhd+/eOH36NCZOnIjo6GgsX74cY8aMQXZ2Nl544QUAgBACQ4cOxfbt2/Hss8/itttuw6pVqzB69GizPDdt2oSBAwciJiYG06dPR1FREebNm4fu3btj//79aNq0KQDgwIEDGDBgAMLDwzFjxgzodDq8/fbbCA4OrrSsW7ZswbJlyzBx4kQEBQVJ+Xz66acYMmQIRo4cCa1Wi6VLl+LBBx/EmjVrMHjwYJM8/vzzT/z666+YMGECAGDmzJm4++678corr2DBggUYP348srKyMGvWLDz++OPYsmVLtW20Y8cOAEDnzp1Npm/cuBEPP/ww+vTpgw8//BAAcOLECfz1119SnRYWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckz++//x5arRbPPfccrl+/jlmzZmH48OG46667kJSUhFdffRWnT5/GvHnz8NJLL5kFj7Xx3HPPISwsDDNmzMCuXbvw1Vdfwc/PDzt27ECTJk3w/vvvY+3atZg9ezbatm2LUaNGSZ+tTXuUl56ejm7duqGwsBDPP/88AgMD8d1332HIkCFYsWIF7r33XpP077zzDlQqFV566SWUlJRUO5JfkzKNHTsWK1euxOTJk9G3b19ERkbiyJEjmDFjBp544gkMGjSoyvyfffZZrFixAhMnTkTr1q2RmZmJ7du348SJEyZ9w3iw56+//jJbHyIishNBREQub9GiRQKA2LRpk7h69aq4cOGCWLp0qQgMDBTu7u7i4sWLIjU1VSgUCvHee++ZfPbIkSPCzc3NZHqvXr0EAPHFF1+YLatXr16iV69e0vu5c+cKAGLJkiXSNK1WKxISEoSXl5fIzc0VQgixevVqAUDMmjVLSldWViZ69OghAIhFixZJ0zt27ChCQkJEZmamNO3QoUNCLpeLUaNGSdPuuece4eHhIS5duiRNS05OFm5ubqLiVyAAIZfLxbFjx8zWqbCw0OS9VqsVbdu2FXfddZdZHmq1WqSkpEjTvvzySwFAhIWFSesqhBBTp04VAEzSVuaNN94QAEReXp7J9BdeeEH4+PiIsrKyKj/7zjvvCE9PT3Hq1CmT6VOmTBEKhUKcP39eCCFESkqKACCCg4NFdna2WRk7dOggSktLpekPP/ywUKlUori4WJpWsd2rYuyL/fv3F3q9XpqekJAgZDKZePbZZ6VpZWVlonHjxmb51rQ9oqKixOjRo6X3kyZNEgDEn3/+KU3Ly8sT0dHRomnTpkKn0wkhhNi6dasAIGJiYsyWVZWalunKlSsiICBA9O3bV5SUlIhOnTqJJk2aiJycHJN0AMS0adOk976+vmLChAk1KkuLFi3EwIEDa5SWiIisj6eXExE1IImJiQgODkZkZCRGjBgBLy8vrFq1Co0aNcLKlSuh1+sxfPhwXLt2TXqFhYWhefPm2Lp1q0learUaY8eOveUy165di7CwMJObgCmVSjz//PPIz8/Htm3bpHRubm4YN26clE6hUOC5554zye/KlSs4ePAgxowZg4CAAGl6+/bt0bdvX+kUXZ1Oh02bNmHYsGGIiIiQ0sXGxmLgwIGVlrVXr15o3bq12XR3d3fp/6ysLOTk5KBHjx5mp/YCQJ8+faQRcgCIj48HANx///3w9vY2m3727NlKy2KUmZkJNzc3eHl5mUz38/O75WnEy5cvR48ePeDv72/SpomJidDpdPjjjz9M0j/44IPw9fU1K+Ojjz5qcn1xfHw8tFotLl26VG3Zq/PEE0+YnOIfHx8PIQSeeOIJaZpCoUCXLl3M6qg27VHe2rVr0bVrV9x5553SNC8vLzz99NNITU3F8ePHTdKPHj3aZFnVqWmZwsLCMH/+fGzcuBE9evTAwYMH8e2338LHx6fa/P38/LB7925cvnz5lmUxtjcRETkGnl5ORNSAzJ8/Hy1atICbmxtCQ0PRsmVL6e7OycnJEEKgefPmlX624g2pGjVqVKMbZ507dw7Nmzc3u4v0bbfdJs03/g0PDzcLLlu2bGmWX2XTjXmuX78eBQUFyM3NRVFREWJjY83SVTYNAKKjoyudvmbNGrz77rs4ePAgSkpKpOkVrwsHgCZNmpi8NwaxkZGRlU7PysqqdJm3Mn78eCxbtgwDBw5Eo0aN0K9fPwwfPhwDBgyQ0iQnJ+Pw4cNVnk6fkZFhtbKnpaWZfaZ8YFqbZVVcTm3ao7xz585JBxLKK98X27ZtK02vqj9UpjZlGjFiBJYsWYLffvsNTz/9NPr06XPL/GfNmoXRo0cjMjIScXFxGDRoEEaNGoWYmBiztEKIW9YFERHZDoNuIqIGpGvXrujSpUul8/R6PWQyGX7//XcoFAqz+RWD4ZqOADqTytbpzz//xJAhQ9CzZ08sWLAA4eHhUCqVWLRoEX744Qez9JXVXXXTRYWbhFUUGBiIsrIy5OXlmYyUh4SE4ODBg1i/fj1+//13/P7771i0aBFGjRol3aROr9ejb9++eOWVVyrNu0WLFlYre3h4uMn7RYsWmdzUrDbLKr+c2rZHfdS0j9e2TJmZmdi7dy8A4Pjx49Dr9bd8tNnw4cPRo0cPrFq1Chs2bMDs2bPx4YcfYuXKlWZnbmRlZVV58IyIiGyPQTcREQEAmjVrBiEEoqOjzYKx+oiKisLhw4fNAot//vlHmm/8u3nzZuTn55sE+CdPnjTLr7LpxjyDgoLg6ekJjUYDjUaD06dPm6WrbFpVfv75Z2g0Gqxfvx5qtVqavmjRohrnUR+tWrUCYLiLefv27U3mqVQq3HPPPbjnnnug1+sxfvx4fPnll3jzzTcRGxuLZs2aIT8/v9I7n1tbxdPe27RpY5F869MeUVFRVfYb43xblGnChAnIy8vDzJkzMXXqVMydOxeTJ0++5XLCw8Mxfvx4jB8/HhkZGejcuTPee+89k6C7rKwMFy5cwJAhQ+q0LkREZHm8ppuIiAAA9913HxQKBWbMmGE2gimEQGZmZp3yHTRoENLS0vDTTz9J08rKyjBv3jx4eXmhV69eUrqysjIsXLhQSqfT6TBv3jyT/MLDw9GxY0d89913Jo8TO3r0KDZs2CDdAVqhUCAxMRGrV682uQ729OnT+P3332tcfoVCAZlMBp1OJ01LTU3F6tWra5xHfSQkJACANDJqVLE95HK5FJQbT28ePnw4du7cifXr15vlm52djbKyMmsUGYDh/gHlXxVHvuuqPu0xaNAg7NmzBzt37pSmFRQU4KuvvkLTpk0rvZ7f0mVasWIFfvrpJ3zwwQeYMmUKRowYgTfeeAOnTp2qMn+dToecnByTaSEhIYiIiDA5lR0wjJwXFxejW7dudVoXIiKyPI50ExERAMNI97vvvoupU6ciNTUVw4YNg7e3N1JSUrBq1So8/fTTeOmll2qd79NPP40vv/wSY8aMwb59+9C0aVOsWLECf/31F+bOnSudMn3PPfege/fumDJlClJTU9G6dWusXLnSLNgAgNmzZ2PgwIFISEjAE088IT0yzNfX1+TZxtOnT8eGDRvQvXt3jBs3DjqdDp9//jnatm2LgwcP1qj8gwcPxscff4wBAwbgkUceQUZGBubPn4/Y2FgcPny41vVRWzExMWjbti02bdqExx9/XJr+5JNP4vr167jrrrvQuHFjnDt3DvPmzUPHjh2la5Rffvll/Prrr7j77rsxZswYxMXFoaCgAEeOHMGKFSuQmpqKoKAgq6+DJdWnPaZMmYIff/wRAwcOxPPPP4+AgAB89913SElJwc8//3zLU7zrW6aMjAyMGzcO//rXvzBx4kQAwOeff46tW7dizJgx2L59e6VlyMvLQ+PGjfHAAw+gQ4cO8PLywqZNm/D333/jo48+Mkm7ceNGeHh4oG/fvnVaFyIisjwG3UREJJkyZQpatGiBTz75BDNmzABguLFVv3796ny6qru7O5KSkjBlyhR89913yM3NRcuWLc2u8ZXL5fj1118xadIkLFmyBDKZDEOGDMFHH32ETp06meSZmJiIdevWYdq0aXjrrbegVCrRq1cvfPjhhyY3v4qLi8Pvv/+Ol156CW+++SYiIyPx9ttv48SJE9Ipxbdy11134d///jc++OADTJo0CdHR0fjwww+Rmppqk6AbAB5//HG89dZbKCoqkq4zfvTRR/HVV19hwYIFyM7ORlhYGB566CFMnz5dCtw8PDywbds2vP/++1i+fDn+85//wMfHBy1atMCMGTNM7lTuLOrTHqGhodixYwdeffVVzJs3D8XFxWjfvj3+97//Vft8b0uVady4cSgpKcGiRYukG50FBgbiq6++wtChQzFnzpxKr7/38PDA+PHjsWHDBukpA7GxsViwYIHJ3f4Bwx3r77vvPpPr/4mIyL5k4lZ3cCEiInIxw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLJNHalH1IiMj0b9/f3zzzTf2LopNHDx4EJ07d8b+/fvRsWNHexeHiIhu4DXdRETk0oqKikzeJycnY+3atejdu7d9ClQHvr6+eOWVVzB79mzo9Xp7F8cplJaWIjMz0+lOn6+PDz74AA888AADbiIiB8ORbiIicmnh4eEYM2YMYmJicO7cOSxcuBAlJSU4cOAAH6vkotavX4+lS5di8eLF2LBhA69vJiIiu2LQTURELm3s2LHYunUr0tLSoFarkZCQgPfffx+dO3e2d9HISv71r3/h9OnTGDduHF577TV7F4eIiBo4Bt1EREREREREVsJruomIiIiIiIishEE3ERERERERkZU0mOd06/V6XL58Gd7e3tKzMYmIiIiIiMi1CCGQl5eHiIgIyOX2H2duMEH35cuXERkZae9iEBERERERkQ1cuHABjRs3tncxGk7Q7e3tDcBQ8T4+PnYujXPTarX46KOPAAAvvvgiAJi8V6lUdisbuaaKfa7SPnbsQ+DY+0Cb14A2r956em3yJiIiIiKnkZubi8jISCkGtLcGE3QbTyn38fFh0F1PWq0WGo0GAKS6LP+eQQtZWsU+V2kfS3gP8NIAR94y/G33JnDkHSDlfSD+bcP7uuZNRERERE7HUS4rbjBBNxE1ADcC6x+T/sLfa1/COxHz4dmx6oCbiIiIiMjaGHQTkUs5FzEZb15qjzK4oak6Dc8z4CYiIiIiO7L/rdyIiCxo9rKVKLtxPPHrjHuQs/d9O5eIiIiIiBoyBt1E5DIOJ32ENecCIINAIz935Om98PUfJwzXdhMRERER2QGDbiJyCeLwO/hgewkA4N5OjfHm3a0BAIuuP4jMA3MYeBMRERGRXfCabqo1uVyO1q1bS/8DMHtPZEmV9bmK/rziiR35LaFSyPF/fVugsb872jbywdFLufhSfILXxPk6501EREREVFdW+4U5f/58NG3aFBqNBvHx8dizZ0+VaRcvXgyZTGbyMj7Cx0gIgbfeegvh4eFwd3dHYmIikpOTrVV8qoabmxsefPBBPPjgg3BzczN7T2Rpt+pjer3AB//cDgB4LCEKkQEekMlkmNy3BQDgP6fDkRE9pU55ExERERHVh1WC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGlZ/x8fHBlStXpNe5c+dM5s+aNQufffYZvvjiC+zevRuenp7o378/iouLrbEKRORE/nf4Mo5fyYW32g0T/hUrTf9XyxB0auKH4lI9Fmw9Y8cSEhEREVFDZZWg++OPP8ZTTz2FsWPHonXr1vjiiy/g4eGBb7/9tsrPyGQyhIWFSa/Q0FBpnhACc+fOxRtvvIGhQ4eiffv2+M9//oPLly9j9erV1lgFInISJWU6zF5/EgDwbO9mCPBUSfNkMhle7NsSAPDD7vO4nF1klzISERERUcNl8aBbq9Vi3759SExMvLkQuRyJiYnYuXNnlZ/Lz89HVFQUIiMjMXToUBw7dkyal5KSgrS0NJM8fX19ER8fX22eZB1arRYzZszAjBkzoNVqzd4TWVp1feyH3edxMasIId5qjO3e1Oyz3WMD0TU6AFqdHp9vPV2rvImIiIiI6sviQfe1a9eg0+lMRqoBIDQ0FGlpaZV+pmXLlvj222/xyy+/YMmSJdDr9ejWrRsuXrwIANLnapNnSUkJcnNzTV5E5Fryiksxb4shkJ6U2AIeKvNrsg2j3YZru5f9fQEXrhfatIxERERE1LA5xK16ExISMGrUKHTs2BG9evXCypUrERwcjC+//LLOec6cORO+vr7SKzIy0oIlJiJH8PO+i7heoEVMkCeGd2lcZbr4mED0aB6EMr3AZ5t5A0YiIiIish2LB91BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPm0YwTJ+rjZ5Tp06FTk5OdLrwoULtV0VInJw+85nAwDu69wIborqd2fGO5n/vP8iruWXWLtoREREREQArBB0q1QqxMXFYfPmzdI0vV6PzZs3IyEhoUZ56HQ6HDlyBOHh4QCA6OhohIWFmeSZm5uL3bt3V5mnWq2Gj4+PyYuIXMuhC9kAgI6R/rdM26mJP1qFeUMvgN1nr1u5ZEREREREBlY5vXzy5Mn4+uuv8d133+HEiRMYN24cCgoKMHbsWADAqFGjMHXqVCn922+/jQ0bNuDs2bPYv38/Hn30UZw7dw5PPvkkAMM1mZMmTcK7776LX3/9FUeOHMGoUaMQERGBYcOGWWMViMjBZeaX4PyN67PbNfat0WcSmgUCAHadzbRauYiIiIiIyjO/65AFPPTQQ7h69SreeustpKWloWPHjli3bp10I7Tz589DLr8Z72dlZeGpp55CWloa/P39ERcXhx07dqB169ZSmldeeQUFBQV4+umnkZ2djTvvvBPr1q2DRqOxxioQkYM7fDEHABAT7Alfd2WNPnNHTCAW/ZXKoJuIiIiIbMYqQTcATJw4ERMnTqx0XlJSksn7Tz75BJ988km1+clkMrz99tt4++23LVVEqiO5XI7mzZtL/wMwe09kSZX1uYPSqeV+Nc4nPjoAMhmQnJGPa/klCPJSV5o3EREREZGlWC3oJtfl5uaGRx55xGRaxfdEllRZnzt0MRtA7YJuPw8VWoX54MSVXOw+ex2D24dXmjcRERERkaVwWIeInI4QQrqJWofGfrX67B0xAQB4XTcRERER2QaDbiJyOuevFyKrsBQqhRytwr1r9dk7YngzNSIiIiKyHZ5eTrWm1WoxZ84cAMBLL70EACbvVSqV3cpGrqlinzNez906wgdqN0Wt8qp4XbePSsb+S0RERERWw5FuqpPS0lKUlpZW+Z7I0sr3sUMXDHcur8313EbG67qBm8/rZv8lIiIiImth0E1ETsd4E7UOkTV7PndFvK6biIiIiGyFQTcROZVSnR5HLxlHuv3rlAev6yYiIiIiW2HQTURO5VR6PkrK9PDRuKFpoEed8qh4XTcRERERkbUw6CYip3L4xih3h0g/yGSyOuVR/rruPalZFisbEREREVFFDLqJyKkcvpgLoG43USvPeF33nhQG3URERERkPXxkGNWaTCZDVFSU9D8As/dEllS+zy25WPc7l5d3R0wgFv2Vit2pWXiM/ZeIiIiIrEQmhBD2LoQt5ObmwtfXFzk5OfDx8bF3cYioDvKKS9F+xgYIAfz9eiKCvdV1ziu7UItO72y0SF5ERERE5DgcLfbj6eVE5DSOXMqBEEAjP/d6B8kmz+tO4V3MiYiIiMg6GHQTkdM4dMEyp5Yb8XndRERERGRtDLqp1rRaLWbPno3Zs2dDq9WavSeyNGMfW75lDwBLBt2G53X/9ncy+y8RERERWQVvpEZ1UlhYWO17IksrLCxEmlYDwPC4MEswPq87S6dGZgEDbiIiIiKyPI50E5FTKBBKFEIFuQxo28gyN8Tw81ChZagXACBN522RPImIiIiIymPQTURO4ZreEwDQPMQLHirLnaQT39RwXXeankE3EREREVkeg24icgrGoLtDY1+L5ts12h8AcIVBNxERERFZAYNuInIKV28E3e0bW/ZZi7dH+QMQyBHuuJZfYtG8iYiIiIgYdBORwxNCIFPvAQBoG2HZkW4/DyUCZEUAgF1nr1s0byIiIiIiBt1UazKZDBEREYiIiIBMJjN7T2Rpl3NKoIUbFBBoHuJl0bxlMhla+OoBAH+eYdBNRERERJbFR4ZRrSmVSjz11FMm0yq+J7KkkxkFAIDbGvnC011t0byVSiUm3t8Hu/69G3+dzoQQggePiIiIiMhiONJNRA7v2OVcAECbcMueWm7Upak/NEo5MvJKcDI9zyrLICIiIqKGiUE3ETk8Kei20PO5K9IoFbgjJhAA8Mepq1ZZBhERERE1TAy6qdZKS0sxd+5czJ07F6WlpWbviSzt6KUcw98/11m8jxn7r/7ycQDAn8nXLJo/ERERETVsvKabak0IgZycHOl/AGbviSzlal4JMvJKAAioCq9avI8Z+3OgvgRAMHanXEeRVgd3lcKiyyEiIiKihokj3UTk0I5dNhzQ8ZUVQynTW205vrJihPmooS3TY08q72JORERERJbBoJuIHJrxeu5AeaFVlyOTAXfG8rpuIiIiIrIsqwXd8+fPR9OmTaHRaBAfH489e/ZUmfbrr79Gjx494O/vD39/fyQmJpqlHzNmjPRMaONrwIAB1io+ETkI40h3gMy6QTdwM+j+M5lBNxERERFZhlWC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGpemTkpLw8MMPY+vWrdi5cyciIyPRr18/XLp0ySTdgAEDcOXKFen1448/WqP4RORAbDXSDQDdYgIhkwGn0vNxJafI6ssjIiIiItdnlaD7448/xlNPPYWxY8eidevW+OKLL+Dh4YFvv/220vTff/89xo8fj44dO6JVq1b45ptvoNfrsXnzZpN0arUaYWFh0svf398axSciB5FbXIpzmYZg2xZBt5+HEu0b+wEA/jzFu5gTERERUf1ZPOjWarXYt28fEhMTby5ELkdiYiJ27txZozwKCwtRWlqKgIAAk+lJSUkICQlBy5YtMW7cOGRmZlaZR0lJCXJzc01eZBkymQzBwcEIDg6WTvUv/57IUo7fGOVu5KdB45AAq/Sxiv23V/MgAMAfPMWciIiIiCzA4o8Mu3btGnQ6HUJDQ02mh4aG4p9//qlRHq+++ioiIiJMAvcBAwbgvvvuQ3R0NM6cOYPXXnsNAwcOxM6dO6FQmD/aZ+bMmZgxY0b9VoYqpVQqMX78eJNpFd8TWYLx1PI2Eb4YP8o6faxif+7ZIhifbTmN7aevQacXUMh5IImIiIiI6s7hntP9wQcfYOnSpUhKSoJGo5GmjxgxQvq/Xbt2aN++PZo1a4akpCT06dPHLJ+pU6di8uTJ0vvc3FxERkZat/BEZFHGm6i1ifC12TI7RPrBW+2G7MJSHL2Ugw6RfjZbNhERERG5HoufXh4UFASFQoH09HST6enp6QgLC6v2s3PmzMEHH3yADRs2oH379tWmjYmJQVBQEE6fPl3pfLVaDR8fH5MXETmXY5eMI922236VCjm68dFhRERERGQhFg+6VSoV4uLiTG6CZrwpWkJCQpWfmzVrFt555x2sW7cOXbp0ueVyLl68iMzMTISHh1uk3FRzpaWlWLBgARYsWIDS0lKz90SWUFyqw+mr+QCAlqEeVutjlfXfHs2DAQB/JvNmakRERERUP1Y5vXzy5MkYPXo0unTpgq5du2Lu3LkoKCjA2LFjAQCjRo1Co0aNMHPmTADAhx9+iLfeegs//PADmjZtirS0NACAl5cXvLy8kJ+fjxkzZuD+++9HWFgYzpw5g1deeQWxsbHo37+/NVaBqiGEwNWrV6X/AZi9J6qvk2l50OkFAj1VCPFSWa2PVdafe7UwBN37z2chr7gU3hqlRZdJRERERA2HVYLuhx56CFevXsVbb72FtLQ0dOzYEevWrZNurnb+/HnI5TcH2RcuXAitVosHHnjAJJ9p06Zh+vTpUCgUOHz4ML777jtkZ2cjIiIC/fr1wzvvvAO1Wm2NVSAiOzPeRK11hI/N74ofGeCBpoEeSM0sxI4zmejfpvpLY4iIiIiIqmK1G6lNnDgREydOrHReUlKSyfvU1NRq83J3d8f69estVDIicgZH7XATtfJ6tghG6s5z+DP5KoNuIiIiIqozi1/TTURkCcaR7raN7HMTxJ43ruv+4xSv6yYiIiKiumPQTUQOp0ynxz9Xbj6j2x7uaBYIN7kM568X4lxmgV3KQERERETOj0E3ETmcM1cLUFKmh5faDVEBHnYpg5faDXFR/gD46DAiIiIiqjsG3VRrMpkMvr6+8PX1hUwmM3tPVF/HblzP3TrcB3K5dftYdXn3vHEX89+Ppll0mURERETUcMhEA3nGU25uLnx9fZGTkwMfH/tcI0pENfPOmuP49/YUjOnWFNOHtLFbOS5cL0Sv2VuhF8Da53ugdQT3HURERESOztFiP450E5HDOSbdudy+O8nIAA8MbBcOAPhm+1m7loWIiIiInBODbiJyKGU6PY5dsu9N1Mp7qkcMAOB/hy4jPbfYzqUhIiIiImfDoJtqrbS0FPsW34O9i4eitLQUpaWl+Prrr/H111+jtLQUOPIOcHi6vYtJTurghWzklZTB30OJlmHeAGDexyzoVnl3jPTD7U39UaoTWLwj1aLLJiIiIiLXx6Cbak0Igdy8AnRR/QrZsfcghMDly5dx+fJlyI69Bxx5C5Ap7F1MclLbbtwp/M7mwVDIDTc2K9/HLH0biprk/eSN0e7vd51DQUmZRZdPRERERK7Nzd4FIOf0x/VeAIB/HZ8BrQAAGXoGbIPb8a1Au7eBdm/atXzkvIxBd68bdw53BIm3haJpoAdSMwuxfO8FjOkebe8iEREREZGT4Eg31dkf13thevE3aPVTZ2Src/GvwK0oaz2NATfV2bX8Ehy+aLiJWs/mQXYuzU0KuQxP3GkItL/9KxU6fYN46AMRERERWQCDbqoznZBh8akw6KHAquy7UFimhr71a/YuFjmx7cnXABiezx3io7FzaUw9EBcJPw8lzl8vxIZjfG43EREREdUMg26qs+vC3eT9udJwyI+/b6fSkCv448ap5T0d6NRyI3eVAo/GRwEAvv6Tjw8jIiIiopph0E115qMxHe1beW0Q3I7PMNy9nKiW9HqBP5Id73ru8kZ1i4JKIcf+89nYdy7L3sUhIiIiIifAoJvqpE/oDpTJTe/ivLeoq+Ga7iNvMfCmWjt+JRfX8rXwVCkQF+VvNt/DwwMeHh5WWXZN8w7x1mBoxwgAwDcc7SYiIiKiGmhwdy8v0BZAoTV/nJVCroDGTWOSripymRzuSvc6pS0sLazysUQymQweSo86pS0qLYJe6Kssh6fKs05pi8uKodPrzNJ0jY/DnE3tAQBxUf7Ydy4LYbGtUdL6AeihA8qKUFqhXjyUHpDJDI+AKikrQZm+6kcv1Satu9Idcpnh+JFWp0WprurnONcmrcZNA4VcUeu0pbpSaHXaKtOq3dRwk7vVOm2ZvgwlZSVVplUpVFAqlLVOq9PrUFxWXGVapUIJlUJV67R6oUdRaVGN0248fgkA0DXGD6X6IpSWqxY3uRtefvllAIZHfFW3zbnJ3aB2U0tpC0sLq0yrkCugUWmkvAu0BSjVVt7Oxn3Ekz1isHzfRaw/loZ/0q4hMsDdLC33EXVLy32EAfcRtU9bm+2+1vuIGv424O+IytNyH8F9BPcRtU/LfUTd0lbc7h2JTFj6obcOKjc3F76+vsAUAJXcn2lQ80H47ZHfpPee73tWuZH1iuqFpDFJ0vvg2cG4Vnit0rRdIrrg76f+lt43ndsU53LOVZq2dXBrHBt/THrfZkEbHL96vNK0Ub5RSJ2UKr2//evbsffy3krTBnkE4erLV6X3vRf3xrZz2ypN66H0QMFrNzfswT8MxtrkteYJBRBZ/BPk8MQLfZrj083J8PJMxzH9E5XmCwD5U/OlDWfM6jH47tB3VabNeCkDwZ6GU4wn/DYBC/YuqDJtygspaOrXFADw8oaXMWfnnCrTHh13FG1C2gAApidNx4xtM6pMu+fJPbi90e0AgNl/zcYrm16pMu3W0VvRu2lvAMD8PfMx8feJVaZd8/AaDG4xGACw+OBijP1lbJVplz2wDA+2eRAAsPzYcgxfMbzKtIuGLsKYjmMAAL+d+g13/3h3lWk/H/g5JnSdAABISk3Cv777V5VpZyXOwsvdDUHp35f+RtdvulaZdlqvaZjeezoA4FjGMbRd2LbKtC8lvITZ/WYDAFKzU3HHrKXQ6NshUzkf+W6/m6Qd32U85g+eDwC4WnAVIXNCqsx3dIfRWDxsMQDDl5TXTK8q0z7Q+gEsf3C59F42Q1Zl2vL7iFHf7sEfp64iV/ErslRfmaXlPuImMe3mV8yDyx/EiuMrqkzLfYQB9xEGFfcR0Z9W/ag+R9tHAPwdYcR9BPcR3EcYcB9hYKt9xCM/PIIfR/6InJwc+Pj4VPkZW+Hp5VQnCgRCDk8o5DLcERMIANCWWufUX3J9+cU6qPW3AQCK5fvtXJpbe6qH4YvdS9cXcuF5i9RERERE1JA1uJHuy1cvV3q0g6d8VJ62stM4SktLMXvR//D9xQDEBHng29Fx6P3Rn1DIBPa+3h0qlarSfHlamAFPCzNP+/vRyxi35ACaBrrjtxfizdIKncCKnwxHNh955BGUouq2qO1pYQqhwPfffw8AGPbgMCiVyirTGvcRQgj0n7sNp9IL0KtFAD5+qA00ypuXrTT0fURd03IfYcB9RO3T8tRRA+4j6paW+wgD7iNqn5b7iJscbR9x9fpVhASGOMxId4O7pttT5WnSeNWlq02eNVW+81oybfmNzZJpy+8cjLTQIjk9H0AAmgV7Icjzxo5UyFBSqoS/163rQ+2mhhrqGpWhNmlVCpW0A7ZXWqVCKX0RWTKtm9wNbqqabbK1SauQK2rch2uTVi6T1zjtH6cyAQC9W4ZW+hmtVotz526eKlXTfGUy2S3Tls/bQ+lR5UGjivnOGNIOYxbtwbZT1zHh+2P4ZvTt8FJXXucNbR9hibTcR9Q+rSvvI2qTtibbfV3SAtb7bcB9RO3Tch9R+7TcRxhwH1G3tM64j3AkPL2c6iRHb+j0scGeULnJobkx8piW61g3LSDHJ4SQns/tqI8Kq0xCs0D85/Gu8FK7YdfZ6xj59S5kFVQ92kBEREREDRODbqqTbGE4ghUbYjjy5iEzBBvpuVWfMkRUmTNXC3ApuwgqNzniYwLsXZxaiY8JxA9PxcPfQ4lDF3Pw0Fc7uQ0QERERkQkG3VRrQghk6w1Bd7NgQ9DtKTOMdKfncaS7ISrT6bHjzDUsSDqNQxeya/XZbTdGueOjA+BRw1PZHEn7xn5Y9kwCQn3UOJWejwe/2IkL16u+/ouIiIiIGhbn+4VbXwUFgML8Od1QKACNxjRdVeRywN29bmkLC4Gq7l0nkwEeHnVLW1QE6Ku+YQE8PeuWtrgY0JnesOB6Vj5K4AZAIDqwwkj3tbyq68PDw1BuACgpAcqqvqlJrdK6uxvqGQC0WqC06huV1CqtRnOzr9QmbWmpIX1V1GrAza32acvKDHVRFZUKMN4ErDZpdTpDO1dFqTSkr5BWLwR2pGThtxNXseGfa8gsNNbPSQzpEIGX+zVHpKbqR2dAqYTOTYnfj1wBAPSM8q2675Tvr0JUv825uRnqzZi2sJoAWKG42R8AQ75VtXM1+4jmXnKsGNURI78/hPPXC/HAwr+w5Mk70DzU2yytGRfcR9Q5LfcRBi6yj7hlWr3e0NcskbY2231t9xE1/W3A3xGVp+U+ovZpuY8w/M99RN3Sch9h+L+6/msPooHIyckRAESOoWuZvwYNMv2Ah0fl6QAhevUyTRsUVHXaLl1M00ZFVZ22dWvTtK1bV502Kso0bZcuVacNCjJN26tX1Wk9PEzTDhpkluaP6I4i6tU1ou2UFaKkpESUlJSIYa9/KaJeXSNeHPRC1Xnn59/Md/ToqtMBQmRk3Ew7fnz1aVNSbqZ96aXq0x49ejPttGnVp92z52baWbOqT7t16820n39efdo1a26mXbSo+rTLlt1Mu2xZ9WkXLbqZds2a6tN+/vnNtFu3Vp921qybaffsEQIQGR5+YsSI90TUq2ukV4fnfxAjp34vmk4xvG8+dY14v/dYka32rDTfspdeEpOWHhBRr64RzaauEal+YVWWoWT8eDF9+nQxffp0UXLpUvXlHT36Znnz86tP+8ADoqSk5GbeSmXVaWuwj0jzChB9H58vol5dIzrOWC++/uOMSE7PE/oGto8weZX3wAPVp+U+wvBygX1Ela9p026mPXq0+rQvvXQzbUpK9WnHj7+ZNiOj+rS13EeYqC4tf0cYXtxH3HxxH2F4cR9heHEfYXjZaB+R8/DDAoDIyckRjoCnl1OtJQc2AQD4i5tH/rzdDEez0r0C7VImqpnTgY0xYcgrGJIWjp6ztqLd9PXonlSIRXH3oLiGdz/9u1FrDB7zKXZGdYCHtggPH1yH//70Bv7+/DEsUZ3C/ybeiW7NAqHVA1/G348+T32B31t0M8lDJ5PjZVkrrDpwCQq5DPMSIxGVnVbtcpVKZZWP86ovS+Udmn8dP/0wBe3zryCrsBTv/nYCiR9vQ4/hs/FG33HYGNsVBcqa33mTiIiIiJxfg3tOd87lyp/TzVM+zNOuPXIFV67lYUyXCCjkN08TfvGXE/j5cDqeuzMKL97dFoDhutzR3+5BqxBPrHvm9srz5WlhBnY4LUynF/h290XM3noWWl3lfSrcR43nekThwQ5hUCrKHY+7cfqWEAL//uMMZq47CZ0AYoM88MUDbRAb7Flp2q0n0vHub8dxNtNwutfg24IxY2Bz+Lsr8cr//sHPh9OhkMvw+cOdMLBNqEudFlZQpsePh68i6eRV7Em5Dq3u5vamlMtwexNf3Bnjjy6RvmjfyBcaH6+bH3aifQQAnjrqIvuIatPy1NGb73nqaO3Tch9R+7TcRxj+5z6ibmm5jwAA5F69Ct8Qx3lOd8MLuh2k4h3db4evYMIP+wEAM+9rh4e7NpHmJX68Dacz8vHv0V3Q57ZQAMDJtDz0n/sH/DyUOPhWP7uUmSp34XohXlx2CHtSrwMAercMxqPxUfD3VMLXXYk9KVmYtyUZV3IMX4JBXmrc37kRHuzSGLEh3riYVYhfDl7G6gOXkJyRDwAY0iECM+9rB88qnkttVFKmw7zNp7Fw2xno9AL+Hkp0iPRD0smrhhHuhzthULtw61aAnRWUlGHnmUxsO3UVSacycOG66Y8CN7kMbSJ80DnKH3E3XuG+NX++JRERERGZcrTYz2pB9/z58zF79mykpaWhQ4cOmDdvHrp27Vpl+uXLl+PNN99Eamoqmjdvjg8//BCDBg2S5gshMG3aNHz99dfIzs5G9+7dsXDhQjRv3rxG5XG0iq+vvanXEe7njkZ+lv1xfvRSDhb9lYqf91+UprVr5Iv/PXcnACCrQIvO726EEMDfryci2NtwJLCgpAxtp6+HEMDeNxIR5OVYD6RvqDYdT8fkZQeRW1wGT5UCb97dGg/dHgmZzPQGZ8WlOvy45zwWJJ3B1XJ3oG8S4IHz5e7ErXaT4/XBt+GxO6LM8qjO0Us5eHnFYZy4kgsAUMhl+GxEJwxu79oBd0VCCJy9VoBtN0bA953PMqlvo3BfjSEIb2IIwltH+JiefWBDer1AZoEW2YVayGSATCaDXCaDQiaDTAbI5TLIZYD8xnS5DPBxV9qtvERERESOFvtZJej+6aefMGrUKHzxxReIj4/H3LlzsXz5cpw8eRIhISFm6Xfs2IGePXti5syZuPvuu/HDDz/gww8/xP79+9G2reH05Q8//BAzZ87Ed999h+joaLz55ps4cuQIjh8/Do3m1tdIOlrF18cPu8/jtVVH4O+hxNaXesPPQ2WRfAtKynDnh1uQVWh++tN/Hu+K5fsuIrtQiz+TryFco8NzLfIxfPhwAMCyZcvw8T9euKZVYOHIzvjtyBUUlJRhbPdo9GwRbJHyUc2V6fT4eOMpLEg6AwDo1MQPn43ohMgAj2o/V6rTY+s/GVi29yK2nsyATi8gkwF3RAfi3k6N0L9tGHzd63bts7ZMjy+2ncGvhy5jct8WtRrhLisrw7JlywAAw4cPh5ub5R68YM28b0UIgYtZRdh/Pgv7zmVh//ksnLiSB53edLesUcrRvpGfNBreuYkfAi1wYEuvF8gq1OJKTjEuZxchLbcYl7OLcSWnCFdyDH/Tc0pMTo+vCbkMCPXRIMLP/cZLg0Z+7gj3vfm/r7uyVgduiIiIiGrK0WI/qwTd8fHxuP322/H5558DAPR6PSIjI/Hcc89hypQpZukfeughFBQUYM2aNdK0O+64Ax07dsQXX3wBIQQiIiLw4osv4qWXXgIA5OTkIDQ0FIsXL8aIESNuWSZHq/i6EkKg7yd/4PSN03yfvDMaI7pGIjbEu855ZuaX4LcjV7Dt5FVs/icDAHBHTAAe7x6Nz7Yk4+ilXLPPdHK7hI7KK5g6dSoAYObMmdiqjUGqLsAknUwGDG4XjvjoAPyrVQga+1cf9NGtacv00AsBjdL80XfZhVr8eugyftxzQRpVHtOtKV4bdBtUbrUbeczIK8b+c1noEOln99OdtVotZs6cCQCYOnUqVCrLHGiydt51UVBShkMXs7H/nDEQz0ZOkfmBsAhfDQK91PDzUMLfQwV/DyX8bvz191RJB+Ou5ZXgWr7hlZmvxdX8ElzL1+JafgmuF2jNAvzKyGSQDrbo9QJCGB4ZpxMCesOtRaG/Ma2m3ygeKgUi/NwR5qNBiI8aId4ahHirzf53hGe3CyFQqhMo1elRphPQ6vQo0+tRWiZQqtebTC8t00MAUCpkcJPL4Vbur9L4vrJpchkPQhAREVmIo8V+Fv81o9VqsW/fPikYAwC5XI7ExETs3Lmz0s/s3LkTkydPNpnWv39/rF69GgCQkpKCtLQ0JCYmSvN9fX0RHx+PnTt31ijoro303GKzUz6r+iEpcOtfmMYfqABg/H0rkwGXs4twNa8EOr1A81BveKkVhtM25TJczCrC0Us52HcuC6mZBWjXyA/dYwOReq1ACrgB4JvtKfhmewru79wY7Rr5IMhbDV93JdzkchRqy5ByrQCRAR4I9FShUKuDRqnAucwC5BWXIT2vGLlFpdj6z1Wk5d68qcWs+9tj+O2RAIDz1wvNgu72jXxwW+YBs/UMlBUiFTeD7raNfHD0Ui7WHL6CNYevQLXmBB5LiEL7xr44dCEHV/NL0MjPHTHBnvBQKeChUkCjVEBbpkdecRlyi0uRV1wGvRDwVLlB7SaXattDpYCX2g0yGVCk1aOoVIeiUh2KtTrohIBSIYfKTQ6VQgalQl7uvfzGexkEYFhOUSlyikqRW1yKUp0eajcF1G5yaJSGv2qlHBo3BdRKOdRuhkC3oKQMBdoyFJTobvyvQ+GNaXo94OepRICHCv6eKvi6K1Gk1SHnxnKyC0tv/K9FbnEZ1G5y+Lgr4e+hRLivO8J9NVAq5NDpBQq0ZTiXWYizVwtwMasQGXmGQAkwnOrt56GEp8oNKjfDD/dTafnSqKSnSoEP7m+PezpE3LKPVibEW4MBbRvW6d+OwFPthm7NgtCtWRAAQ5B79lpBuSA8C8kZ+bicU4zLOdXcjKaGZDLDdfwRvhqE+7ojzFeDCD8NwnzdEeGrQZivBqE+mhqfLq7XC1wrKMHlbMPoueF14/8cw/tr+VoUanU4nZFvsj+rjLfaDcE+akMQ7q2Bl8YNbnLDflIhk0FxI2BVyOVQyAwBrTTvRjptmR7FN/YRRaU6FJfeeK/Vobjsxt8b041pSkp1NwPtGhyYsASF3LAuKuP+ys1032WcpqpkmlIhh7rcfIX85un+5S8LkMkgXQ4AoFyam39lsnLTITM5wKLXC+gr/K+7cbBFZ5ynv3kQpqp5hukCej1u5G0+T6e/eVBHVy5Pffn35cojkwEKk/WUQS43vfTBMO/m/wq56foaPlPztDKZDAq5eVq5dOlFhbQ3ppulNZZRbqhz4/EXmUwGGW7eD8w47+a0cmkrpJfdaD/jTLP5N+YZ8xO48cwdiBt/DXUvYJgpTa8wT9xIcHO6YZEV80HF/KtbRiVlQbnllV92lfmXe4/y5RI1W0ZF5evZbGKF6eWPn8nKzaksD5O0VRx4K9/+lS+j5ss2zbcm5a8kbRXLvlV93Ko8NVXXj9Z1mbK6LtEu61i3T7riId/C/Dx7F8GExYPua9euQafTITQ01GR6aGgo/vnnn0o/k5aWVmn6tLQ0ab5xWlVpKiopKUFJubsu5uaaj9ZWZcmuc5i35XSN09tCem46Np1Il94PaheGHWcykX3jVPCf91/Ez/vrnr9MZrih079ahuC+zo2k6Q/dHol1R9NQqtNjzoMd0MjfHQqhwwcfbDHLo5lbJi64N0NGXgn+L7EFXkhsjoMXsrHhWBr2pFzH3nNZ+Pf2lLoXkkyUlOmRnlsCwPQAUetwHzwQ1xhDO0ZY5BRksi+5XIbYEC/EhnhJB8NyCktx+mo+sgu1yCosvfG33P8FpcgqNBycCfZWI8hLjSAvFYK81Ags93+wtxoBniqLXn8tl8tujFRr0DHSr9I0xaW6m6e05xQjI68EGXk3/uYa/5agqFSHvJIy5F0tw9mr1dy51Q5Uihsj1TcO4hkP7rkpDD/PyvQCZTqBMr1hFNwYvJfpDKPjlf2o1+kNwWRJmb7iZk1ERES1oC+p5q7zdmD/8/asZObMmZgxY0adPuuldkOYj/l14hUPHlU8KlTd0SXjLOPogl4IBHqqEOCpQnGpHtfyDddN6oWATicgl8sQHeSJAE+VdFqoj0aJUr0ePZsH49lezfBPWi42nUhH+8Z++HHPeWQXlqJIq4NMZvjBp1TI0cjPHVdyipBfUgaNmwIlZToEeaml01DVSsOP7Qn/ikWQl9rsFEdvjRIrxpk+Y1mrrfz6Tk9ZKX6bmIAzmcWIjzaMeHeM9EPHSD8IIZB06iq+33Ue1/JL0K6RL5oEeODM1Xyk5RajUGsYbSrUlkHtpoC3xg0+7kp4a9wgl8lQpNWhpEwH4/H4Qq0O+SVlkAFQKxVwN75UCshkMIxQlRlO+9Tqbvwt00sjV8bRYG+N4Q7ePho3+N64+VNJmR4lZTqUlN74W6aX/i8uvTGKrFbAU+0GD5Xhr6fK7cZfw/KzCkuRVaDF9UItsgtL4alWwNf9xrLclfBzN4yAe2vcoC3TI7e4FNcLtLicXYz03GKU6fWGES6FHJEBHmgW7IkmgZ4IvXHqrZtChpwbI+aFWh20ZXpodTo08vNAy7C6X2pAzsHXQ4m4KH97F6PONEoFooM8ER3kWWUaIQTyS8qQkVcinX2UkVuCQq0OOr0eOiFQpjfsL3U3Rj7L9IbR0rIbwavxpbpx5opGKZf2FRqlAhqV8X/5zWk35quVpmfGuN3YHi11Krhebwi+y3Q3A3Gd3rB/KtUJwzZ9Y7suKTOfZvzfZF656WV6cXMUURohvjlKqL8xomccSTamkf7i5mUDxtFY4+i5rNz/5eeVH/WtyTyFvNyN+SqMSN/8zM0ReEWFkWtFhRFpIcwvd5Be+pvrJ42sG9PqK6Yvl1ZfIa0Q0Olv/i99ziQP09H58mnLj/DrzcpZrm2E6SgsgCpGg4U0r6rR2spGlm9uZzfnG0e/KxtlLz/PMMBefsS8khH0cqPx0ueqy7/Ce5RbVsU8bsytYvT+5ntUKLN5PlXMQ9W/50zqzmR6uf8hqphuPg1Vpa0kv8ryqm7Zlf1bs/KXny7MpqEm61qL8tdUZQcqa/Apqy+jbutSy3LVaRl1+EydliMc9tIobVE+frJ3IcqxeNAdFBQEhUKB9PR0k+np6ekICwur9DNhYWHVpjf+TU9PR3h4uEmajh07Vprn1KlTTU5Zz83NRWRkZI3W4ZlezfBMr2Y1SmtPnZr4o1MTww/v/m0qr1tb83VX4o4Y8x/SMplhFP1fLc1vpEd146NRomY9msj5yGQyeGuU8NYo0SzY69YfcDJyuQxquQK3eOoeERER1UFubi5+mmjvUtxk8We6qFQqxMXFYfPmzdI0vV6PzZs3IyEhodLPJCQkmKQHgI0bN0rpo6OjERYWZpImNzcXu3fvrjJPtVoNHx8fkxcRERERERGRLVnlGPvkyZMxevRodOnSBV27dsXcuXNRUFCAsWPHAgBGjRqFRo0aSXcMfuGFF9CrVy989NFHGDx4MJYuXYq9e/fiq6++AmAY8Zg0aRLeffddNG/eXHpkWEREBIYNG1ajMhlP5ajNtd1UOa1Wi+Jiww2cjPVZ/r297/5Mrqdin7P03cvZf4mIiIhchzFGscKDuupGWMm8efNEkyZNhEqlEl27dhW7du2S5vXq1UuMHj3aJP2yZctEixYthEqlEm3atBG//fabyXy9Xi/efPNNERoaKtRqtejTp484efJkjctz5swZgRuXM/HFF1988cUXX3zxxRdffPHl2q8zZ87UK6a1FKs8p9sRZWdnw9/fH+fPn4evr6+9i0O1ZLwm/8KFC7xUwAmx/Zwb28+5sf2cF9vOubH9nBvbz7nl5OSgSZMmyMrKgp+fn72L47p3L69ILjdcvu7r68sNx4nx+nznxvZzbmw/58b2c15sO+fG9nNubD/nZowB7c0xSkFERERERETkghh0ExEREREREVlJgwm61Wo1pk2bBrVabe+iUB2w/Zwb28+5sf2cG9vPebHtnBvbz7mx/Zybo7Vfg7mRGhEREREREZGtNZiRbiIiIiIiIiJbY9BNREREREREZCUMuomIiIiIiIishEE3ERERERERkZU0mKB7/vz5aNq0KTQaDeLj47Fnzx57F6nBmT59OmQymcmrVatW0vzi4mJMmDABgYGB8PLywv3334/09HSTPM6fP4/BgwfDw8MDISEhePnll1FWVmaSJikpCZ07d4ZarUZsbCwWL15si9VzOX/88QfuueceREREQCaTYfXq1SbzhRB46623EB4eDnd3dyQmJiI5OdkkzfXr1zFy5Ej4+PjAz88PTzzxBPLz803SHD58GD169IBGo0FkZCRmzZplVpbly5ejVatW0Gg0aNeuHdauXWvx9XUlt2q7MWPGmG2LAwYMMEnDtrOfmTNn4vbbb4e3tzdCQkIwbNgwnDx50iSNLfeX/P6suZq0Xe/evc22v2effdYkDdvOPhYuXIj27dvDx8cHPj4+SEhIwO+//y7N53bn2G7Vftz2nMsHH3wAmUyGSZMmSdOcehsUDcDSpUuFSqUS3377rTh27Jh46qmnhJ+fn0hPT7d30RqUadOmiTZt2ogrV65Ir6tXr0rzn332WREZGSk2b94s9u7dK+644w7RrVs3aX5ZWZlo27atSExMFAcOHBBr164VQUFBYurUqVKas2fPCg8PDzF58mRx/PhxMW/ePKFQKMS6detsuq6uYO3ateL1118XK1euFADEqlWrTOZ/8MEHwtfXV6xevVocOnRIDBkyRERHR4uioiIpzYABA0SHDh3Erl27xJ9//iliY2PFww8/LM3PyckRoaGhYuTIkeLo0aPixx9/FO7u7uLLL7+U0vz1119CoVCIWbNmiePHj4s33nhDKJVKceTIEavXgbO6VduNHj1aDBgwwGRbvH79ukkatp399O/fXyxatEgcPXpUHDx4UAwaNEg0adJE5OfnS2lstb/k92ft1KTtevXqJZ566imT7S8nJ0eaz7azn19//VX89ttv4tSpU+LkyZPitddeE0qlUhw9elQIwe3O0d2q/bjtOY89e/aIpk2bivbt24sXXnhBmu7M22CDCLq7du0qJkyYIL3X6XQiIiJCzJw5046lanimTZsmOnToUOm87OxsoVQqxfLly6VpJ06cEADEzp07hRCGQEIul4u0tDQpzcKFC4WPj48oKSkRQgjxyiuviDZt2pjk/dBDD4n+/ftbeG0aloqBm16vF2FhYWL27NnStOzs/sCY1gAAeXhJREFUbKFWq8WPP/4ohBDi+PHjAoD4+++/pTS///67kMlk4tKlS0IIIRYsWCD8/f2l9hNCiFdffVW0bNlSej98+HAxePBgk/LEx8eLZ555xqLr6KqqCrqHDh1a5WfYdo4lIyNDABDbtm0TQth2f8nvz/qp2HZCGH74l/8RWRHbzrH4+/uLb775htudkzK2nxDc9pxFXl6eaN68udi4caNJmzn7Nujyp5drtVrs27cPiYmJ0jS5XI7ExETs3LnTjiVrmJKTkxEREYGYmBiMHDkS58+fBwDs27cPpaWlJu3UqlUrNGnSRGqnnTt3ol27dggNDZXS9O/fH7m5uTh27JiUpnwexjRsa8tKSUlBWlqaSV37+voiPj7epL38/PzQpUsXKU1iYiLkcjl2794tpenZsydUKpWUpn///jh58iSysrKkNGxTy0tKSkJISAhatmyJcePGITMzU5rHtnMsOTk5AICAgAAAtttf8vuz/iq2ndH333+PoKAgtG3bFlOnTkVhYaE0j23nGHQ6HZYuXYqCggIkJCRwu3MyFdvPiNue45swYQIGDx5sVs/Ovg261fmTTuLatWvQ6XQmlQ8AoaGh+Oeff+xUqoYpPj4eixcvRsuWLXHlyhXMmDEDPXr0wNGjR5GWlgaVSgU/Pz+Tz4SGhiItLQ0AkJaWVmk7GudVlyY3NxdFRUVwd3e30to1LMb6rqyuy7dFSEiIyXw3NzcEBASYpImOjjbLwzjP39+/yjY15kG1N2DAANx3332Ijo7GmTNn8Nprr2HgwIHYuXMnFAoF286B6PV6TJo0Cd27d0fbtm0BwGb7y6ysLH5/1kNlbQcAjzzyCKKiohAREYHDhw/j1VdfxcmTJ7Fy5UoAbDt7O3LkCBISElBcXAwvLy+sWrUKrVu3xsGDB7ndOYGq2g/gtucMli5div379+Pvv/82m+fs330uH3ST4xg4cKD0f/v27REfH4+oqCgsW7aMwTCRDY0YMUL6v127dmjfvj2aNWuGpKQk9OnTx44lo4omTJiAo0ePYvv27fYuCtVSVW339NNPS/+3a9cO4eHh6NOnD86cOYNmzZrZuphUQcuWLXHw4EHk5ORgxYoVGD16NLZt22bvYlENVdV+rVu35rbn4C5cuIAXXngBGzduhEajsXdxLM7lTy8PCgqCQqEwu7Ndeno6wsLC7FQqAgA/Pz+0aNECp0+fRlhYGLRaLbKzs03SlG+nsLCwStvROK+6ND4+PgzsLchY39VtV2FhYcjIyDCZX1ZWhuvXr1ukTbn9Wk5MTAyCgoJw+vRpAGw7RzFx4kSsWbMGW7duRePGjaXpttpf8vuz7qpqu8rEx8cDgMn2x7azH5VKhdjYWMTFxWHmzJno0KEDPv30U253TqKq9qsMtz3Hsm/fPmRkZKBz585wc3ODm5sbtm3bhs8++wxubm4IDQ116m3Q5YNulUqFuLg4bN68WZqm1+uxefNmk2s8yPby8/Nx5swZhIeHIy4uDkql0qSdTp48ifPnz0vtlJCQgCNHjpgEAxs3boSPj4906lBCQoJJHsY0bGvLio6ORlhYmEld5+bmYvfu3SbtlZ2djX379klptmzZAr1eL33RJSQk4I8//kBpaamUZuPGjWjZsiX8/f2lNGxT67p48SIyMzMRHh4OgG1nb0IITJw4EatWrcKWLVvMTuO31f6S35+1d6u2q8zBgwcBwGT7Y9s5Dr1ej5KSEm53TsrYfpXhtudY+vTpgyNHjuDgwYPSq0uXLhg5cqT0v1Nvg3W+BZsTWbp0qVCr1WLx4sXi+PHj4umnnxZ+fn4md7Yj63vxxRdFUlKSSElJEX/99ZdITEwUQUFBIiMjQwhheAxAkyZNxJYtW8TevXtFQkKCSEhIkD5vfAxAv379xMGDB8W6detEcHBwpY8BePnll8WJEyfE/Pnz+ciwOsrLyxMHDhwQBw4cEADExx9/LA4cOCDOnTsnhDA8MszPz0/88ssv4vDhw2Lo0KGVPjKsU6dOYvfu3WL79u2iefPmJo+dys7OFqGhoeKxxx4TR48eFUuXLhUeHh5mj51yc3MTc+bMESdOnBDTpk3jY6duobq2y8vLEy+99JLYuXOnSElJEZs2bRKdO3cWzZs3F8XFxVIebDv7GTdunPD19RVJSUkmj7YpLCyU0thqf8nvz9q5VdudPn1avP3222Lv3r0iJSVF/PLLLyImJkb07NlTyoNtZz9TpkwR27ZtEykpKeLw4cNiypQpQiaTiQ0bNgghuN05uuraj9uec6p4x3ln3gYbRNAthBDz5s0TTZo0ESqVSnTt2lXs2rXL3kVqcB566CERHh4uVCqVaNSokXjooYfE6dOnpflFRUVi/Pjxwt/fX3h4eIh7771XXLlyxSSP1NRUMXDgQOHu7i6CgoLEiy++KEpLS03SbN26VXTs2FGoVCoRExMjFi1aZIvVczlbt24VAMxeo0ePFkIYHhv25ptvitDQUKFWq0WfPn3EyZMnTfLIzMwUDz/8sPDy8hI+Pj5i7NixIi8vzyTNoUOHxJ133inUarVo1KiR+OCDD8zKsmzZMtGiRQuhUqlEmzZtxG+//Wa19XYF1bVdYWGh6NevnwgODhZKpVJERUWJp556yuyLhG1nP5W1HQCTfZkt95f8/qy5W7Xd+fPnRc+ePUVAQIBQq9UiNjZWvPzyyybPChaCbWcvjz/+uIiKihIqlUoEBweLPn36SAG3ENzuHF117cdtzzlVDLqdeRuUCSFE3cfJiYiIiIiIiKgqLn9NNxEREREREZG9MOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIiIiIiIiIrYdBNREREREREZCUMuomIiIiIiIishEE3ERERERERkZUw6CYiomr17t0bvXv3tlh+qampkMlkWLx4scXydEazZs1Cq1atoNfrb5l2zJgx8PLyskGpyBk1bdoUY8aMqfXnMjMz4enpibVr11q+UEREJGHQTUTkhBYvXgyZTCa9NBoNWrRogYkTJyI9Pd3exaNbyM3NxYcffohXX30Vcrnhq7iwsBDTp09HUlKSfQtHAIAFCxa4/IGhwMBAPPnkk3jzzTftXRQiIpfmZu8CEBFR3b399tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YWlaYWEhZsyYAQAWPbOA6mbBggUICgqq0wiyM3n22Wfx2WefYcuWLbjrrrvsXRwiIpfEkW4iIic2cOBAPProo3jyySexePFiTJo0CSkpKfjll1/qnXdhYSEAQKVSQaVS1Ts/e9Pr9SguLrZ3MQAAixYtwpAhQ6DRaOxdlFsqKCiwdxHIim677Ta0bdvW5Uf1iYjsiUE3EZELMY5UpaSkSNOWLFmCuLg4uLu7IyAgACNGjMCFCxdMPte7d2+0bdsW+/btQ8+ePeHh4YHXXntNmldx5DUjIwNPPPEEQkNDodFo0KFDB3z33Xdm5cnOzsaYMWPg6+sLPz8/jB49GtnZ2ZWWfcuWLejRowc8PT3h5+eHoUOH4sSJE2bpkpKS0KVLF2g0GjRr1gxffvklpk+fDplMZpJOJpNh4sSJ+P7779GmTRuo1WqsW7cOADBnzhx069YNgYGBcHd3R1xcHFasWGG2LGMey5cvR+vWreHu7o6EhAQcOXIEAPDll18iNjYWGo0GvXv3RmpqaqXrVl5KSgoOHz6MxMREaVpqaiqCg4MBADNmzJAuG5g+fbrJZy9duoRhw4bBy8sLwcHBeOmll6DT6UzS6PV6zJ07F23atIFGo0FoaCieeeYZZGVl3bJsxmvHz5w5g0GDBsHb2xsjR46sVb579+5F//79ERQUBHd3d0RHR+Pxxx83SVNQUIAXX3wRkZGRUKvVaNmyJebMmQMhhEk6Y/2vXr0abdu2hVqtRps2baR2NDp37hzGjx+Pli1bwt3dHYGBgXjwwQfN2sN4WcZff/2FyZMnIzg4GJ6enrj33ntx9epVKV3Tpk1x7NgxbNu2TWqLW519UNs+dat1Amre1yuTnZ2NSZMmSXUcGxuLDz/8sNJ7CPTt2xf/+9//zOqfiIgsg6eXExG5kDNnzgAwXKsJAO+99x7efPNNDB8+HE8++SSuXr2KefPmoWfPnjhw4AD8/Pykz2ZmZmLgwIEYMWIEHn30UYSGhla6jKKiIvTu3RunT5/GxIkTER0djeXLl2PMmDHIzs7GCy+8AAAQQmDo0KHYvn07nn32Wdx2221YtWoVRo8ebZbnpk2bMHDgQMTExGD69OkoKirCvHnz0L17d+zfvx9NmzYFABw4cAADBgxAeHg4ZsyYAZ1Oh7ffflsKWCvasmULli1bhokTJyIoKEjK59NPP8WQIUMwcuRIaLVaLF26FA8++CDWrFmDwYMHm+Tx559/4tdff8WECRMAADNnzsTdd9+NV155BQsWLMD48eORlZWFWbNm4fHHH8eWLVuqbaMdO3YAADp37ixNCw4OxsKFCzFu3Djce++9uO+++wAA7du3l9LodDr0798f8fHxmDNnDjZt2oSPPvoIzZo1w7hx46R0zzzzDBYvXoyxY8fi+eefR0pKCj7//HMcOHAAf/31F5RKZbXlKysrQ//+/XHnnXdizpw50mUKNck3IyMD/fr1Q3BwMKZMmQI/Pz+kpqZi5cqVUv5CCAwZMgRbt27FE088gY4dO2L9+vV4+eWXcenSJXzyyScm5dm+fTtWrlyJ8ePHw9vbG5999hnuv/9+nD9/Xurnf//9N3bs2IERI0agcePGSE1NxcKFC9G7d28cP37c7FKL5557Dv7+/pg2bRpSU1Mxd+5cTJw4ET/99BMAYO7cuXjuuefg5eWF119/HQCq3B6MatOnarJOte3r5RUWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckfVxcHD755BMcO3YMbdu2vWX+RERUS4KIiJzOokWLBACxadMmcfXqVXHhwgWxdOlSERgYKNzd3cXFixdFamqqUCgU4r333jP57JEjR4Sbm5vJ9F69egkA4osvvjBbVq9evUSvXr2k93PnzhUAxJIlS6RpWq1WJCQkCC8vL5GbmyuEEGL16tUCgJg1a5aUrqysTPTo0UMAEIsWLZKmd+zYUYSEhIjMzExp2qFDh4RcLhejRo2Spt1zzz3Cw8NDXLp0SZqWnJws3NzcRMWvNABCLpeLY8eOma1TYWGhyXutVivatm0r7rrrLrM81Gq1SElJkaZ9+eWXAoAICwuT1lUIIaZOnSoAmKStzBtvvCEAiLy8PJPpV69eFQDEtGnTzD4zevRoAUC8/fbbJtM7deok4uLipPd//vmnACC+//57k3Tr1q2rdHpVy5kyZYrJ9Jrmu2rVKgFA/P3331Uuw9gv3n33XZPpDzzwgJDJZOL06dPSNABCpVKZTDt06JAAIObNmydNq9ieQgixc+dOAUD85z//kaYZt5vExESh1+ul6f/3f/8nFAqFyM7Olqa1adPGpN/fSm36VE3WqTZ9PSoqSowePVp6/8477whPT09x6tQpk3RTpkwRCoVCnD9/3mT6jh07BADx008/1Xh9iYio5nh6ORGRE0tMTERwcDAiIyMxYsQIeHl5YdWqVWjUqBFWrlwJvV6P4cOH49q1a9IrLCwMzZs3x9atW03yUqvVGDt27C2XuXbtWoSFhZncBEypVOL5559Hfn4+tm3bJqVzc3MzGYVVKBR47rnnTPK7cuUKDh48iDFjxiAgIECa3r59e/Tt21d6nJFOp8OmTZswbNgwRERESOliY2MxcODASsvaq1cvtG7d2my6u7u79H9WVhZycnLQo0cP7N+/3yxtnz59pBFyAIiPjwcA3H///fD29jabfvbs2UrLYpSZmQk3N7c6PQLs2WefNXnfo0cPk+UtX74cvr6+6Nu3r0mbx8XFwcvLy6zNq1K+zWqTr/HMiTVr1qC0tLTSvNeuXQuFQoHnn3/eZPqLL74IIQR+//13k+mJiYlo1qyZ9L59+/bw8fExWe/y7VlaWorMzEzExsbCz8+v0jZ9+umnTU7R7tGjB3Q6Hc6dO1ddtVSrNn3qVutUl75e3vLly9GjRw/4+/ubtFdiYiJ0Oh3++OMPk/T+/v4AgGvXrtVupYmIqEZ4ejkRkRObP38+WrRoATc3N4SGhqJly5bSI6iSk5MhhEDz5s0r/WzF04wbNWpUoxumnTt3Ds2bN5eWY3TbbbdJ841/w8PDzYLLli1bmuVX2XRjnuvXr0dBQQFyc3NRVFSE2NhYs3SVTQOA6OjoSqevWbMG7777Lg4ePIiSkhJpemXXyjZp0sTkva+vLwAgMjKy0uk1uXa6LjQajdmpxf7+/ibLS05ORk5ODkJCQirNIyMj45bLcXNzQ+PGjU2m1TTfXr164f7778eMGTPwySefoHfv3hg2bBgeeeQRqNVqAIb2joiIMDlgAZj3H6OK9Q+Yr3dRURFmzpyJRYsW4dKlSybXJufk5Jh9vmKexqCzPm1Xnz5lLINx+RkZGbXu6+UlJyfj8OHDVZ6KXrEfGOurJteKExFR7THoJiJyYl27dkWXLl0qnafX6yGTyfD7779DoVCYza8YDJcfqXMVla3Tn3/+iSFDhqBnz55YsGABwsPDoVQqsWjRIvzwww9m6Suru+qmi1vcjCowMBBlZWXIy8szCzyrU9XyytPr9QgJCcH3339f6fyaXA+sVqvNDqjUNF+ZTIYVK1Zg165d+N///of169fj8ccfx0cffYRdu3bVaXS/JvX83HPPYdGiRZg0aRISEhLg6+sLmUyGESNGVHrjsLq2XVUs1afquvyK9Ho9+vbti1deeaXS+S1atDB5bwz2g4KCLLJ8IiIyxaCbiMhFNWvWDEIIREdHm/3Iro+oqCgcPnwYer3eJDj7559/pPnGv5s3b0Z+fr5JsHXy5Emz/CqbbswzKCgInp6e0Gg00Gg0OH36tFm6yqZV5eeff4ZGo8H69eul0VfA8BgvW2jVqhUAw13My98ozRKjjM2aNcOmTZvQvXt3ix5EqW2+d9xxB+644w689957+OGHHzBy5EgsXboUTz75JKKiorBp0yazgw4V+09trFixAqNHj8ZHH30kTSsuLq7yTvk1UZv2sHSfCgkJqVdfb9asGfLz803ukF8d49MOjGcbEBGRZfGabiIiF3XfffdBoVBgxowZZiNoQghkZmbWKd9BgwYhLS1NutMzYLjj9bx58+Dl5YVevXpJ6crKyrBw4UIpnU6nw7x580zyCw8PR8eOHfHdd9+ZBElHjx7Fhg0bMGjQIACG0cHExESsXr0aly9fltKdPn3a7Drg6igUCshkMpNHbaWmpmL16tU1zqM+EhISABgerVWe8Q7b9QkUhw8fDp1Oh3feecdsXllZWZ3zrmm+WVlZZn2tY8eOACCdcj1o0CDodDp8/vnnJuk++eQTyGSyGl2zXJFCoTBb7rx588wep1Ybnp6eNa4vS/ep+vb14cOHY+fOnVi/fr3ZvOzsbJSVlZlM27dvH3x9fdGmTZs6lZeIiKrHkW4iIhfVrFkzvPvuu5g6dSpSU1MxbNgweHt7IyUlBatWrcLTTz+Nl156qdb5Pv300/jyyy8xZswY7Nu3D02bNsWKFSvw119/Ye7cudLo5T333IPu3btjypQpSE1NRevWrbFy5cpKr7GdPXs2Bg4ciISEBDzxxBPSI8N8fX1NnlU9ffp0bNiwAd27d8e4ceOk4K1t27Y4ePBgjco/ePBgfPzxxxgwYAAeeeQRZGRkYP78+YiNjcXhw4drXR+1FRMTg7Zt22LTpk0mz692d3dH69at8dNPP6FFixYICAhA27Zta/UIp169euGZZ57BzJkzcfDgQfTr1w9KpRLJyclYvnw5Pv30UzzwwAO1LnNN8/3uu++wYMEC3HvvvWjWrBny8vLw9ddfw8fHRzp4cs899+Bf//oXXn/9daSmpqJDhw7YsGEDfvnlF0yaNMnkBmM1dffdd+O///0vfH190bp1a+zcuRObNm2SHr9VF3FxcVi4cCHeffddxMbGIiQkBHfddVelaa3Rp+rT119++WX8+uuvuPvuuzFmzBjExcWhoKAAR44cwYoVK5CammpyKvnGjRtxzz338JpuIiJrscs904mIqF6Mjz6q7tFMRj///LO48847haenp/D09BStWrUSEyZMECdPnpTS9OrVS7Rp06bSz1d8ZJgQQqSnp4uxY8eKoKAgoVKpRLt27UweAWaUmZkpHnvsMeHj4yN8fX3FY489Jg4cOGD2yDAhhNi0aZPo3r27cHd3Fz4+PuKee+4Rx48fN8tz8+bNolOnTkKlUolmzZqJb775Rrz44otCo9GYpAMgJkyYUOk6/fvf/xbNmzcXarVatGrVSixatEhMmzat0seOVcwjJSVFABCzZ882mb5161YBQCxfvrzSZZb38ccfCy8vL7PHTO3YsUPExcUJlUpl8viw0aNHC09PT7N8KiuzEEJ89dVXIi4uTri7uwtvb2/Rrl078corr4jLly9XW66qllPTfPfv3y8efvhh0aRJE6FWq0VISIi4++67xd69e03yycvLE//3f/8nIiIihFKpFM2bNxezZ882eYyXEFW3YcVHZGVlZUn90cvLS/Tv31/8888/Zumq2m6Mbbd161ZpWlpamhg8eLDw9vYWAG75+LD69KnK1kmImvf1yj6bl5cnpk6dKmJjY4VKpRJBQUGiW7duYs6cOUKr1UrpTpw4IT1+kIiIrEMmhIXu2kFERGQnw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLDzxxBP2Lg45EUv39UmTJuGPP/7Avn37ONJNRGQlvKabiIicSlFRkcn75ORkrF27Fr1797ZPgerA19cXr7zyCmbPnl3p3bWJAOv39czMTHzzzTd49913GXATEVkRR7qJiMiphIeHY8yYMYiJicG5c+ewcOFClJSU4MCBA1U+k5zIGbGvExG5Bt5IjYiInMqAAQPw448/Ii0tDWq1GgkJCXj//fcZhJDLYV8nInINHOkmIiIiIiIishJe001ERERERERkJQy6iYiIiIiIiKykwVzTrdfrcfnyZXh7e/MOnURERERERC5KCIG8vDxERERALrf/OHODCbovX76MyMhIexeDiIiIiIiIbODChQto3LixvYvRcIJub29vAIaK9/HxsXNpiGxDCIHS0lIAgFKprPYsj9qktbUale3oTEAmB9q8aj7v2IeA0ANtp9YtbyIiIiJyGrm5uYiMjJRiQHtrMEG38Ye0j48Pg25qMLRaLebOnQsAmDp1KlQqlUXS2lqNyubtARx5C/DSAO3evDn9yDtAyvtAu7eBSrZ9R15vIiIiIqo7RxlMaTBBNxG5OGOgfeQt5GgVuNbkeTRL+8QQiLd72zQQJyIiIiKyEQbdROQ62r2J/FI57l0diHPaLVje7Ht0voMBNxERERHZj/1v5UZEZEFvJQ/GWW1j6KDA3IxHGXATERERkV0x6CYil7Fy/0WsPHAJcuiggA5/5HXCga0f2btYRERERNSAMegmIpeQcq0Ab6zcDwCY1D4d98VFAQA+3ZFvuJkaEREREZEdMOgmIqdXUqbDc9+uRWGZAvEheZgw4klMvCsWCrkMSXldcGj3fxl4ExEREZFd8EZqRC5MLpejdevW0v+WSmtrtyrb7HUncfS6B/xUZZj7xFAo5DJEBXpiaMcIrNx/CZ8VTce/xak65U1EREREVB8yIYSwdyFsITc3F76+vsjJyeFzuolcyNaTGRi76G8AwNejuqBv61Bp3tmr+Uj8eBv0Aljz3J1o28jXXsUkIiIiIhtxtNiPwzpE5LQy8orx0rJDAIDRCVEmATcAxAR7YUiHCADAp5uTbV4+IiIiIiIG3UTktJb9fQGZBVq0CvPG1EG3VZpm4l3NIZMBG4+n49jlHBuXkIiIiIgaOgbdRC5Mq9VixowZmDFjBrRarcXS2lpVZTtwPhsAMLxLJDRKRaWfjQ3xwj3tDaPd8zafrnHeRERERESWwKCbiJySEAKHLmYDADpE+lWb9rm7YiGTAeuOpeGftFzrF46IiIiI6AYG3UTklC5mFeFavhZuchnaRFR/g4zmod4Y1C4cQOWj3URERERE1sKgm4ic0sEL2QCA28J9qjy1vLzn72oOAFh79ArSc4utWTQiIiIiIgmDbiJySoduBN0db3FquVHLMG+0a+QLIYBdZzOtVzAiIiIionIYdBORUzKOdN/qeu7y7ogJAADsOnvdCiUiIiIiIjLHoJuInE6pTo+jNx7/VdORbgCIjw4EAOzmSDcRERER2YibvQtARNYjl8vRvHlz6X9LpbW1imX7Jy0PxaV6eGvcEBPkWeN8bo8OgEwGnL1WgIzcYoT4aBx6vYmIiIjI+THoJnJhbm5ueOSRRyye1tYqlk16VFhjP8jlshrn4+uuRJsIHxy9lItdKdcxpEOEQ683ERERETk/DusQkdM5eD4bQO1OLTcynmLOm6kRERERkS0w6CYipyONdNch6L4jhtd1ExEREZHt8PRyIhem1WoxZ84cAMBLL70ElUplkbS2Vr5sz06chOSMfABAh0jfWufVtanhuu4zVwuQkVcMP7XcYdebiIiIiJwfR7qJXFxpaSlKS0stntbWjGU7ejkXQgCN/NwR4q2pdT6+HkrcFuYDANh949FhjrzeREREROTcGHQTkVM5dLH2jwqrSDrFPIWnmBMRERGRdTHoJiKncvhSLoC6nVpudEdMAABg142RbiIiIiIia2HQTURO5eZIt3+d8+h643ndpzPycS2/xFJFIyIiIiIyw6CbiJxGgVAiI68ECrkMbRv51DkfPw8VWt24rntPapalikdEREREZIZBNxE5jat6TwBAi1BveKjq9/AF4ynmDLqJiIiIyJoYdBO5MJlMhqioKERFRUEmk1ksra0Zy6b1igAAdKzH9dxG8dGGm6ntScly2PUmIiIiIucnE0IIexfCFnJzc+Hr64ucnBz4+NT9tFQisp8RX+3ErrPX8eH97fDQ7U3qlVdWgRad3tkIANj7RiKCvNSWKCIRERER2ZmjxX4c6SYip6DTCxy5cRO1DvV4XJiRv6cKrcK8AQB7UngXcyIiIiKyDgbdROQUTmfko0Crg4dKgeYh3hbJ0/i87l1n+bxuIiIiIrIOuwbd8+fPR9OmTaHRaBAfH489e/ZUmXbx4sWQyWQmL41GY8PSEjkfrVaL2bNnY/bs2dBqtRZLa2tarRYffL0UANA2wgcKuWWuvTbeTG3NnpMOud5ERERE5PzsFnT/9NNPmDx5MqZNm4b9+/ejQ4cO6N+/PzIyMqr8jI+PD65cuSK9zp07Z8MSEzmnwsJCFBYWWjytrV0qVgIAOjSu/03UjLreuJnadZ0G1wsYcBMRERGR5dkt6P7444/x1FNPYezYsWjdujW++OILeHh44Ntvv63yMzKZDGFhYdIrNDTUhiUmInu6pvcAALSrx/O5KwrwVKFlqBcAIE3vZbF8iYiIiIiM7BJ0a7Va7Nu3D4mJiTcLIpcjMTERO3furPJz+fn5iIqKQmRkJIYOHYpjx47ZorhEZGdlOj1yhDsAoHW4Za7nNrq9qT8AIE1n2XyJiIiIiAA7Bd3Xrl2DTqczG6kODQ1FWlpapZ9p2bIlvv32W/zyyy9YsmQJ9Ho9unXrhosXL1aavqSkBLm5uSYvInJOqdcLoYMcbtChsZ+7RfOONwbdegbdRERERGR5TnP38oSEBIwaNQodO3ZEr169sHLlSgQHB+PLL7+sNP3MmTPh6+srvSIjI21cYiKylFPp+QAAP1kR5Ba6iZqRcaQ7S3jwum4iIiIisji7BN1BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPn260vlTp05FTk6O9Lpw4UK9y01E9mEMuv3lRRbPO8BTBT+ZId+/z2VZPH8iIiIiatjsEnSrVCrExcVh8+bN0jS9Xo/NmzcjISGhRnnodDocOXIE4eHhlc5Xq9Xw8fExeRE1NDKZDBEREYiIiIBMVv0IcW3S2pox6I72U1m8bDKZDM289QCAPanZFs2biIiIiMjNXguePHkyRo8ejS5duqBr166YO3cuCgoKMHbsWADAqFGj0KhRI8ycORMA8Pbbb+OOO+5AbGwssrOzMXv2bJw7dw5PPvmkvVaByOEplUo89dRTFk9rayczDEH3mPv6QalUWjRvpVKJJ+7pgX3f78ffqRzpJiIiIiLLslvQ/dBDD+Hq1at46623kJaWho4dO2LdunXSzdXOnz8PufzmQHxWVhaeeuoppKWlwd/fH3FxcdixYwdat25tr1UgIhvILynDheuG079bhVnnjJWu0QEAgH/S8pBVoIW/p8oqyyEiIiKihkcmhBD2LoQt5ObmwtfXFzk5OTzVnMiJ7D+fhfsW7ECwtxp/v5546w/UUd+PtyE5Ix9fPBqHAW1rdm8JIiIiInI8jhb7Oc3dy4mo9kpLSzF37lzMnTsXpaWlFktrSyfT8gAA7iXXrVI243q75xseP7g7JdOi+RMRERFRw2a308uJyPqEEMjJyZH+t1RaWzIG3d76POTk5Fi8bMb1DiiTA/DDrrPXLZo/ERERETVsHOkmIof2T1ouAMBfZvnHhZUXpsiTlpddyOd1ExEREZFlMOgmIoclhJBGuq3xjO7y3GVlaBbsCSGAPSkc7SYiIiIiy2DQTUQO62peCbIKSyGXAX5WHukGgK5N/QGAp5gTERERkcUw6CYih/XPjVHuqEAPuMmsf535zaCbN1MjIiIiIstg0E1EDst4PXfLUC+bLM8YdJ9Iy0VOoePcwZ2IiIiInBfvXk7kwmQyGYKDg6X/LZXWVowj3S1CvaHJs07Zyq93iI8GzYI9ceZqAfakXkff1qEWXRYRERERNTwMuolcmFKpxPjx4y2e1laMN1FrHeGHAf2sU7aK6x0fE4gzVwuw62wmg24iIiIiqjeeXk5EDqlMp0dyRj4AoFWYt82We0dMIABgdwqv6yYiIiKi+mPQTUQOKTWzENoyPdyVCjQJ8LDZcu+IDgAAHLuci5wiXtdNRERERPXDoJvIhZWWlmLBggVYsGABSkurDyBrk9YWjKeWtwjzhk5XZrWyVVzvEB8NYoIMz+v+m8/rJiIiIqJ64jXdRC5MCIGrV69K/1sqrS2cvHHn8lah3lYtW2V5x8cE4uw1w3Xdibyum4iIiIjqgSPdROSQjHcub2nD67mN7ogxnGK+myPdRERERFRPDLqJyCGdTDcE3ba8iZqR8WZqxy7n8LpuIiIiIqoXBt1E5HAKSspwLrMQgH1GukN9NIgO8oReAHtTOdpNRERERHXHoJuIHM6pG6PcQV5qBHqp7VIGnmJORERERJbAoJuIHI7xzuX2OLXcKD7acIr5rrN8XjcRERER1R3vXk7kwmQyGXx9faX/LZXW2ireRM2aZasq7/gbI91HL+Ugt7gUPhqlRZdLRERERA2DTDjCs4FsIDc3F76+vsjJyYGPj4+9i0NE1Xj4q13YeTYTsx9ojwe7RNqtHL1nb0VqZiEWjbkd/2oVYrdyEBEREVHNOVrsx9PLicih6PUCJ4zP6A6z707SeIr5Tp5iTkRERER1xKCbiBzK8Su5yC4shadKYZc7l5d3Z/MgAMD/Dl1GqU5v17IQERERkXNi0E3kwkpLS/H111/j66+/Rmlp9c+brk1aa9p26ioAIKFZIFRucquXrbq8+7UJRZCXCldyirH+WJpFl0tEREREDQODbiIXJoTA5cuXcfnyZdzq9g21SWtNfyYbgu6eLYKladYsW3V5q90UeCQ+CgCw6K9Uiy6XiIiIiBoGBt1E5DAKSsqw71wWAKBn8+BbpLaNR+9oAqVChn3nsnD4Yra9i0NEREREToZBNxE5jJ1nMlGqE4gMcEdUoIe9iwMACPHW4O72EQA42k1EREREtcegm4gchnRqefNguz8rvLyx3ZsCANYcvoyM3GL7FoaIiIiInAqDbiJyGH8kXwNgej23I2jf2A9xUf4o1Qks2X3e3sUhIiIiIifCoJuIHMKF64VIuVYAhVyGhGaB9i6OGeNo9w+7z6GkTGffwhARERGR02DQTeTiPDw84OFRs+uja5PW0v64cWp55yZ+8NEozeZbs2w1ybt/mzCE+2pw7f/bu/PwKMp0beB379nIgtlIyMImyC5bDIrokCNqnBFXZBiIy3FGBQVxAx0J6MwElPGgwMDozICfOiJ4BD0gMMjmFtkEWQKRHQTCEsge0kn38/3RdCWddIdO6E5Xd+7fdfWVdNVT1W+9VfV2P1VvVZWZ8X8/nfZKOYiIiIgo8GjEl88GakElJSWIiIhAcXExwsPDfV0cIqrnDx9sw5q9Z/Dcf12Lp4d18XVxnJq34SDeXJOPHgnhWPH0Taq67pyIiIiIbNSW+/FMNxH5XLXFiu8PFgIAhqjseu66fjsoGSa9FntPlWDb5UebERERERE1hkk3EfncTyeKUFpVg8gQA3olRvi6OC5FhRpxz/WJAICF3x3xcWmIiIiIyB8w6SYKYNXV1Vi0aBEWLVqE6upqj8V62tc/267nvqlzNHTahl22vVm2ps774cs3VFuz9wxOFlV6tCxEREREFHj0vi4AEXmPiODYsWPK/56K9bRNV3hUmDfL1tR5d4sPx+BO1+D7Q4X4f7lHMeWO6zxaHiIiIiIKLK0u6S43l0Nn1jUYrtPqEKQPcohzRavRItgQ3KzYiuoKlz/sNRoNQgwhzYqtrK6EVawuyxFqDG1W7KWaS7BYXT8eqSmxIYYQ5cZTVTVVqLHWeCQ22BAMrcbWacNsMaPa4vpsZVNig/RB0Gl1TY6ttlTDbDG7jDXpTdBr9U2OrbHWoKqmymWsUWeEQWdwiDWba+ddbi5HNaobxFqsFlyqueQy1qAzwKgzOsTWJyL4cvdZLN56GkO7xOKxIR0QYtSistr1mWD7fIsqzNj1SxEAoH9KiNP9yVpTu72KSKP7nF6rh0lvUmIrqitcxuq0OmjrdPipu9zOYu1txCM3dsD3hwrx8Zbj+O8hiQgxOrYpbCOaF8s2wqYl2wh3Yl3t93butBHOYq1idauNcCe2Kft9U9sId38b8HeE81i2EWwj2EY0PZZtRPNi6+/3atLqku6EvyYAQQ2H39nlTqz87UrlfeysWJc72dCUodj48EblferbqThfcd5p7ICEAdj6+Fblffd53XGs+JjT2O4x3bH3qb3K+4HvDUTeuTynsSkRKTg68ajy/uZFN2PbqW1OY6NDonHuhXPK+zs+ugObjm1yGhtiCEH5y7U79n1L7sOXB750GgsAkl27o45ZNgaf5n3qMrZsSpmy4/xhxR/w/k/vu4w9+/xZxITaznpOWjMJf9v2N5exRyYcQWpkKgDglXWvYFbuLJexe57cgx6xPQAAf/nmL5i+abrL2C3/vQUDEwcCAN7+4W28+NWLLmM3ZG3ALam3AADe3f4uxq8a7zJ2xagVyLw2EwDw0e6P8Mjnj7iMXXL/EjzQ4wEAwLJ9y/Dgpw+6jF1490I83PdhAMCag2tw18d3wQADXsErAIC4v8YpCeXcO+Zi3KBxAIBvjn+DW9+/1WXsGxlv4IUbXwAA/Hj6Rwz6xyCHz9VbE9G2+kkEW/vaYo4V4f3co7h3QCimbr4VonH+Y+D59Ofx5m1v4tuD5yECmDXH0PlvdzmNfer6pxCLWABAYUUhEt9JdFkPWX2ysGjEIgC2L5OwnDCXsfd3vx8f3f2R8r7uctdXt434VbdYWDQFKKmMR4+/vIFC49uwasqUWLYRtdhG2Ki1jXDFWRvhypXaiLqyh2Zj2i3TAAD7zu1Dz/k9Xcba2wgAOF58HB3e7uAy9qkBT2Fe5jwAwPmK84idFesytqltxNIHlirvG4vl7wgbthG12EbYsI2wYRth01JtxITVE1zG+QKv6SZqZbLbAgMurHI67ua2mzC07Qb3ZiQGRFT/DglVcxFs7QuBGdelnEHH6FBcKDfjH5suIuHSuwit+RXQSK/tTfm2RvqS7semLorP6LQalAV9BEENQqzpaHdpLkyWXr4uFhERERGpUKt7Tvepc6ecPquNXT6cx7JbmH93CzObzXjnr+8AAJ557hkYjUYY8mbAmPcnoNdrQK9Xla5e2t1/RnB+DjYU3oq+j/wvjEZbly1n3cIuVVvwxAe7sfVoEQBgSJe2eDmzCzrFhEMLPT778ST+56ufcbrY1oXs3n7x+GNmF5gMtd2wNdBh/sZjmLvhIESA98b2xuDObZ0um7XGirfefAsAMHnyZNRoXG8PTe5ebtUiJyfHoY5cxdZvI/aeKsWLS/NwtLASGg3wyI1JePpXHRBk0LONaEYs2wgbdh1teiy7jtqwjWheLNsIG7YRTY9lG1FLbW3EuQvnEHtNrGqe093qupeHGkMdVl5jcU2Zp7vqbryejK27s3kytm7j4MlYk94EE0wejzXqjEoD7KtYg86gfBF5Mlav1UNvdG+XtccaUDvvUGOoLaHs+zqgMwK7pwIAdL1eRWj+W8DlhPvrC0Nxoz22Hp1WB4M2GE8v3Y6tR4sQZtLjzft74/ae8UojBwAPDkzCb/om4L2vD+N/vvoZn/1YgINnKzH/d/2RGBmMMyWX8MzHO7D5yAUAwO9uSEbGde0d5lGXGbU/KDQajdv7nDuxda9lD3Wx3M6EGkMxKDUUX06Ixusr9uHjLcfxr29PYMuRYsweeT06xzrGuotthA3biKbHNqeNcIdOq3N7G25KrFaj9Uqsp9uIutQQyzbChm1E02PZRtiwjWherD+2EWrS6pJulJcDuoY3UoNOBwQFOca5otUCwcHNi62oAFx1LtBogJCQ5sVWVgJW10eUEBravNhLlwCL6yNKTYoNCbGVGwCqqoAa10edmxQbHGyrZwAwm4HGHvvUlNigoNptpSmx1dW2eFdMJkCvb3psTY2tLlwxGgGDwTHWbIbBPn15OcrKKvH/tp3E4Yt34dy5Tjj3v+cRsnwW/jt6FYb1n4LcI6Ew6G2xyvIaDLZ5A7BU1+DZj3/E+v3nEKTX4p8jeyItJdy2rdaLDdJp8PQNCegbG4RnPsvDrl+K8et3vsGTg5Ox4PvjKKyoRqhRh7/c2wt3925XOw9nrFYY7Msm0vg+p9fb6s0e29h8dTpAq62dd93ldhbrpI0IAZAzvCNuSWmDySvysedkCe565xv88a7uuL9/ewQZdGwj3I1lG2HTkm2EO7EWi23duVJnv29SrNVq29Y8EduU/b6pbYS7vw34O8J5LNuIpseyjbD9zzaiebFsI2z/N7b9+oK0EsXFxQJAim2bVsPXnXc6ThAS4jwOEBk61DE2Otp17IABjrEpKa5ju3d3jO3e3XVsSopj7IABrmOjox1jhw51HRsS4hh7552uY+tvPvff33hsWVltbFZW47Fnz9bGPvVU47FHjtTGPv9847F79tTGZmc3HrtlS23sG280HrthQ23s3LmNx65YURu7cGHjsUuW1MYuWdJ47MKFtbErVjQYvzO+iwx9/F1JeWmF01dm1mxZ33GAWOvP9403RETEYrHK83/7SlJeWiGdn18mGzv0a1iG7OzaMuzZoww/ER4jmVmzHT7v9hcXy6GzpbbYI0caX7annqqd79mzjcdmZdXGlpU1Hnv//Y7bcGOxbrQRBWFt5XcPvuawnIP+vFbuz/qrPHvns/I/N46S/+1xq2xNvE4Kg8Nt07GNqH2xjbC9fNRGOLzmzq2N3bCh8djLbYSI2OqksVgXbYTT1/PP18YGSBuhvPg7ovZVF9sIG7YRNmwjarGNsGlCG1E8apQAkOLiYlGD1nemm6iVsUKD9wbdgzdvHosanR6JxWcxKtmA2OuKEVOwEDsqeuCf5+/CnvjOeOSBaehRcBC/27kKv8nbhNDqS7gkGnz54y/48Idj+PH4JeisFsz54g0MPeL+jc/al5zDpx+9iKn/9QQ+7TkMo35ag1d7hyEoZqQXl7zlxZVdwPtLsvGvkc9iXvfhuFhRjTMlVTgT3xVb47s2jC8txHVVF3Dd6v3o3i4c17ULRweNBk764vhUtVaH86GRsGi0kJAQWAvLYRXAKgIxRcEanQwrNLBqtLBqNIiuKEZs2QVoG7uDHhEREVEr4dMbqc2bNw9vvvkmCgoK0KdPH8yZMweDBrl+jMDSpUvx6quv4ujRo+jSpQtmzpyJO++8063Pst9IrfiU8xupscuHi1h2C2t6rIq6hZ0trcJzX+zHN4cvAgAyr4vBXzKvRcTJ2cDe6babqXV/GYWb/4QF3x/H/7s4AlUWW/20MelwY4cofH+0CCWXbPVv0Gnwxl1dcU/veOdlcKOr16UaC4L0uoDvFiZBQSiqqMbxCxU4fvoijl+sxImiSzh+sRLHLlbiZLHzdRmk16JrbCj6JLRBemoU0lIi0Dbkcj15uY0QEZwuvoT84+exv6AM+WfLsP9sOQ6dr0C1tWlfFUF6LZKjgpAS0wYpbUOQck0IUtoYkBJhQmKkCXqtk4dnsI2wYdfRpsf6YRvB3xHNiGUbYcM2oumxbCNsWlEbUXLuHCJi1XMjNZ8l3Z988gnGjh2LBQsWIC0tDbNnz8bSpUuRn5+P2NiGz877/vvvcfPNNyMnJwd33XUX/v3vf2PmzJn48ccf0bOn62f42SlJt0oqnsjb1u8/g+eW/ISLFdUwaATT7u6J36alQLPnT7abqF2+e7md5afpKP7pLcy5+CzWm4fiWGHtl0xiZDBGDUrCAwOSEBfu/k0sPKWmpgZLliwBADz44IPQ6z3XSceb825MWVUN8gtKkHe6FPtOlyDvVAnyC0pRWd3wy6RbfBvc0PEapHe6Bjd0uAYRIe7dNMcVEUFhuRmHzpbhwNky5BeUIr+gFPsLSpQDLPXptRrodRpoNbaXBrbvNa3WPgzKjfAulJthaSRJ12s1SIwKRvLlZLx9VAiSokKQ1DYY7aNCEBVicHlTPSIiIqIrUVvu57OkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkBvEjR45EeXk5VqxYoQy74YYb0LdvXyxYsOCKn6e2ig8EIoLzZWYcv1ABnVaD69q1gUmvto6xLU9EGk0YqmosKKqoRlFFNYorqxFk0CI8yIC2YUaEBzVMps6VVmHvqWIcPFuGExcqcPxCBQS2RDgxypakJEYGo31UMC6Um7Ht6AV8f6gQq/YUAADaaiow1HgYM1951nZn7l3TAI3OIeEGbHfx/u7vt0MDK254fA22/1KK3EOFGJAahSFdYqDT+i4JMpvNymO9pkyZ4vYdxn0976ayWAXHCsuRd7oEW49cQO7hQvx8pswhRqMBrosPR7+USMSEBSEq1ICoECPahhoRGWJA21AjokKMCDLoUG2x4sSFChw6V45D58pw6GyZ7e+5chRXOj/jotNq0CkmFF3jw9Etvg26xrVB1/g2aB8V7HYiXG2x4uTFShy7UIFjheU4Vljn74UKmGsaOfoNINSoQ1LbELS/vH3b/0+KCkHbUCMMOg0Mei2MOttL24xt02oVVNVYcanagks1Flyqvvx/tQVVNVZU1VhhsVpRYxFYrIIaa92/1tr3FoFVxOE9ABj0Glv59FoYdPaXbZihznCjXlNnvBYmfW2sfRkNOq1P97/65PLy1lgEZosV1fZXjaDaWvu/fVyNRVBtsSrvrbaL9GwX4EFgtQIC2+UKsF+2cPm92GNhOxljH2a9/NNFiQGg02ig1Wqg12qgu/y37nud8r/W6Tidi1idRgOdrs44Z++1mlZ5oEhEYBVb22UV2z5gEYHVWvd/OBlm+2ux1hl/eV0Cteu0/voX2EbUfV8ba4tD3eH1xjmdf715QImztbeaywcV6x5c1ODye619/OVxqI3RKgclAaDuPDS2A5Z1/mrrfU7D8ZfnU++9ppFp6x4cbY3bJjknddrM+u2p0sbWGee0TXbYv+rtg1L3sxzHK58Px33R9p9jfP3pAdSJdbLfo+H+XVZagl/17qCa3M8n13SbzWZs374dU6ZMUYZptVpkZGQgNzfX6TS5ubmYNGmSw7Dhw4dj+fLlTuOrqqpQVadbTElJidvlW77jJFbsOuV2vL+zb5wWq+2HUY1VoNUAlWbbj0+TXqv8CNFe/nFxsaIaxwvLUW6uPSsXatShQ0yo8gPEHm//EgBqe3oBti8n5f/L/9ZYBDVWK6ottjLYf5hqNBqYayyotghqLFaY9DqYDLbuXZVmCyov/1g26LQINelh0mttP/Iu/3iuvjxNiFGHYKMtGamstqKq2jZtdY0VwUYdwkx6hJr0qLEKKsw1qDBbUFFlQbm5BlarICxIjzZBBrQJ0iPEqINOq0VVtQXFldW4WGFGUUU1zBYr2pj0CA82IDzIgDCTHmVVNSiqMKOoshoVZtfdYtqY9GgXGQS9VguzxYriymqcK23+3RezbkiGdecy6DV1WsHe01zGf31hKABgsFaDGztH48bO0c3+bGo6nVaDjjFh6BgThrt6JwAAzpdVYfPhC8g9fB65hwpx6JwtKc873XibFmzQKfuSMxoNkBQVgk4xobg2vs3lBDscnWJDr/rgmUGnRWp0KFKjQwHEOIyzWgVnSi8pifiJC5U4cbECv1ysxIkLFThbWoVyswX7C0qxv6DUrc/Tae3JrAZGvQ7GOgmrXqdFjcXqkFhXVdsSQH+i02psibiuNhG3J/YGh+TeFqPVaGC9nMhYraj9/3KCVD9ZEqlNfKxWUa7Zt1oF1Ze/G6prbNuTv9VdS6mbgOu1tsS87nvHAwJal0m/VqNx+aMW9X+Eon5SavunQUJZ70cv6o8H6iXC9v+hJNMO45W/LVvH1Dz1k3vloEHdRF1bO9zpgQZNw2kck33X45wdrKjP2SlAp8Oc3CukfpzTzbKZ83I2qbPzlXX3QWcHFR2G1T+YdLk9dthf6w2z1kkolSTYWnugqWFiXPuZ1jqf1ZpYqxq5LMAHfJJ0nz9/HhaLBXFxcQ7D4+LisH//fqfTFBQUOI0vKChwGp+Tk4Pp06c3q3yHzpXhq31nmzVta6PRAAkRwbhUbUFhuRl7Trp/cMMflZstOFNy5SS45FLN5W66zq8v0mqAiGADIoINqKqxJdcVZgtKq2pQ6uTMZsfoUHRrF47ktiFIbhsCrQY4ebESv1ysxC9FlTh5sRKniysRbNChX0oUBqS0xdCuMegeF4Kcn1pZKxtgosNMyOzdDpm92wEAzpZcQu7hQuQXlOJiRTUulptxscL2ulBejaIKM2qsonRTDzbo0Ck2FJ1iwmpfsaFIvSbU9jizFqbVatAuIhjtIoJxQ8drGoy/VG3BySJbAv7LxdqE/JcLFThxsRKll6obHEiwWAWVVgtsJ+8buW7TBYNOA5NehyCD1uGvQVc3QQL0Wq3D2VC9rvasad0zoCJATZ0zu+YaUc4Gmy8fBDRbpM4ZYlus+XJSaz/4WX8ZLVbBpWp1Jrz2ZL9u4l/3f/tBAXtSqdXaDrxqHH6M1/5Qh3LG8PLZw0bi7QdtRYCay8lhjdXq0EPB/r+1Xq+FurEWEVgsdaZx9r6RLNNiFVggQCOXG7ZG9n1Dq63tjVA7rG5Pgdr1bftbu65R733dONQf7mweLqavnW/d7av2pEBt0lSbKCkHpC5nMXXfS50z9nX/WsWx54bTaXA5iXI2DRzfN5X9oJrl8lIRXQ139ydnsfYYwPm+aZ8GDvuw8/kp7+3tQL393nIJOOHlumiKgL17+ZQpUxzOjJeUlCApKcmtaf+rexwSI91/qHsg9Nqxd48y6Gw/MC0iCDHoYNRrYa6xNugO1iZIj5RrQtE+KhgmvQ5WqyDvdAnOlVY5dB+ruXxE3BWHbiiQy2Ww/TCzCpQfpVaxnfU2Xh5ntlhRabbY7h1h0MFk0CFIbzuDXWG2oKrG0uAMkG2aGlRePiMepLed9Q4y2H5cV5gtKK+qQVlVDfRaLUJMOoQabWe0Q4w6aDUalFXVoORSNUoqa1BVY4HFKtDrtIgKsXXxjQg2wKTXXk66q1FSWY2yqhqEmvSIDLbFRIUY0SZI36BLbIW5BqeKLuF0caVteXVahBh16BwbhlDTlXfVGosVmss/XuzMjd1chfxSbHgQ7u6b6HK8iKC0qgYXy80w6LSIDw9qVvdrXwky6JSDA66I2LsuS20S65C41r6vtggMWo2tjTBoEWSw7fNBetv/Jr3tbLja2M4wOybi9mWzL7dD1+7Lyb29DgDUnmXSOnZt1Wqg9ETS1P9fia+dxlk3+PqJdWvpvirimIDXWG2Jed33tYm91c2k3xZrsQI1ViusIq4Tyno/RAEXCWWdH8G2KNfzweX3trPtUHq02f86/G9Pni//r3Ey3DG2dWwXLan+2Uv3kvuGBwLcnUbEsaeMuDMN6vawqTcNbO2bu02Gs7bF2aT1wzROopx9pjvzchbpal61Z/odz+4rBxA1UPY5x0sEbHNwGFbvQJC9t4Ht7+WltA+r8zlA/Z4LDQ9A1e2RUH+Ytk5CW3uZguO9W/xBSUkJIl69clxL8UnSHR0dDZ1OhzNnzjgMP3PmDOLjnd8VOT4+vknxJpMJJvudB5uod/tI9G4f2axpWyutVoOeiRG+LoZqxDbj0pEQox6dY8PQOdZ1stEYNSYO1PI0Gg3CgwxO7w8QKDQa25lpkx5A85p51dNqNTBpdbxPhspoNLYeDgF7xoJUT+nq7TRdJCK18smvdKPRiP79+2PdunXKMKvVinXr1iE9Pd3pNOnp6Q7xALB27VqX8URERERERES+5rODtZMmTUJWVhYGDBiAQYMGYfbs2SgvL8cjjzwCABg7diwSExOVuwpPmDABQ4cOxV//+ldkZmZi8eLF2LZtG9599123Ps9+04Om3FCNyN+ZzWZcuvw8zJKSkkbvzN2U2JbmzbKpebmJiIiIqOnsOZ+PHtTVkPjQnDlzJDk5WYxGowwaNEh++OEHZdzQoUMlKyvLIX7JkiVy7bXXitFolB49esjKlSvd/qxDhw4JLt/Mjy+++OKLL7744osvvvjii6/Afh06dMhTqetV8dlzultaUVERoqKicPz4cURERPi6ONRE9hvhnThxQhXP2qOm4frzb1x//o3rz39x3fk3rj//xvXn34qLi5GcnIyLFy8iMjLS18VpPfcC0V5+KGBERAR3HD8WHh7O9efHuP78G9eff+P6819cd/6N68+/cf35N62zB8P7gDpKQURERERERBSAmHQTEREREREReUmrSbpNJhOys7Ob/exu8i2uP//G9effuP78G9ef/+K6829cf/6N68+/qW39tZobqRERERERERG1tFZzppuIiIiIiIiopTHpJiIiIiIiIvISJt1EREREREREXsKkm4iIiIiIiMhLWk3SPW/ePKSmpiIoKAhpaWnYsmWLr4vU6kybNg0ajcbh1a1bN2X8pUuXMG7cOFxzzTUICwvDfffdhzNnzjjM4/jx48jMzERISAhiY2PxwgsvoKamxiFm48aN6NevH0wmEzp37oxFixa1xOIFnK+//hq//vWvkZCQAI1Gg+XLlzuMFxFMnToV7dq1Q3BwMDIyMnDgwAGHmAsXLmD06NEIDw9HZGQkHnvsMZSVlTnE7Nq1C0OGDEFQUBCSkpLwxhtvNCjL0qVL0a1bNwQFBaFXr1748ssvPb68geRK6+7hhx9usC/efvvtDjFcd76Tk5ODgQMHok2bNoiNjcWIESOQn5/vENOS7SW/P93nzrq75ZZbGux/TzzxhEMM151vzJ8/H71790Z4eDjCw8ORnp6OVatWKeO536nbldYf9z3/MmPGDGg0GkycOFEZ5tf7oLQCixcvFqPRKP/6179k79698vjjj0tkZKScOXPG10VrVbKzs6VHjx5y+vRp5XXu3Dll/BNPPCFJSUmybt062bZtm9xwww0yePBgZXxNTY307NlTMjIyZMeOHfLll19KdHS0TJkyRYk5fPiwhISEyKRJkyQvL0/mzJkjOp1OVq9e3aLLGgi+/PJLeeWVV+Szzz4TALJs2TKH8TNmzJCIiAhZvny5/PTTT/Kb3/xGOnToIJWVlUrM7bffLn369JEffvhBvvnmG+ncubOMGjVKGV9cXCxxcXEyevRo2bNnj3z88ccSHBwsf//735WY7777TnQ6nbzxxhuSl5cnf/zjH8VgMMju3bu9Xgf+6krrLisrS26//XaHffHChQsOMVx3vjN8+HBZuHCh7NmzR3bu3Cl33nmnJCcnS1lZmRLTUu0lvz+bxp11N3ToUHn88ccd9r/i4mJlPNed73zxxReycuVK+fnnnyU/P19efvllMRgMsmfPHhHhfqd2V1p/3Pf8x5YtWyQ1NVV69+4tEyZMUIb78z7YKpLuQYMGybhx45T3FotFEhISJCcnx4elan2ys7OlT58+TscVFRWJwWCQpUuXKsP27dsnACQ3N1dEbImEVquVgoICJWb+/PkSHh4uVVVVIiLy4osvSo8ePRzmPXLkSBk+fLiHl6Z1qZ+4Wa1WiY+PlzfffFMZVlRUJCaTST7++GMREcnLyxMAsnXrViVm1apVotFo5OTJkyIi8re//U2ioqKU9Sci8tJLL0nXrl2V9w8++KBkZmY6lCctLU3+8Ic/eHQZA5WrpPvuu+92OQ3XnbqcPXtWAMimTZtEpGXbS35/Xp36607E9sO/7o/I+rju1CUqKkr+8Y9/cL/zU/b1J8J9z1+UlpZKly5dZO3atQ7rzN/3wYDvXm42m7F9+3ZkZGQow7RaLTIyMpCbm+vDkrVOBw4cQEJCAjp27IjRo0fj+PHjAIDt27ejurraYT1169YNycnJynrKzc1Fr169EBcXp8QMHz4cJSUl2Lt3rxJTdx72GK5rzzpy5AgKCgoc6joiIgJpaWkO6ysyMhIDBgxQYjIyMqDVarF582Yl5uabb4bRaFRihg8fjvz8fFy8eFGJ4Tr1vI0bNyI2NhZdu3bFk08+icLCQmUc1526FBcXAwDatm0LoOXaS35/Xr36687uo48+QnR0NHr27IkpU6agoqJCGcd1pw4WiwWLFy9GeXk50tPTud/5mfrrz477nvqNGzcOmZmZDerZ3/dBfbOn9BPnz5+HxWJxqHwAiIuLw/79+31UqtYpLS0NixYtQteuXXH69GlMnz4dQ4YMwZ49e1BQUACj0YjIyEiHaeLi4lBQUAAAKCgocLoe7eMaiykpKUFlZSWCg4O9tHSti72+ndV13XURGxvrMF6v16Nt27YOMR06dGgwD/u4qKgol+vUPg9quttvvx333nsvOnTogEOHDuHll1/GHXfcgdzcXOh0Oq47FbFarZg4cSJuvPFG9OzZEwBarL28ePEivz+vgrN1BwC//e1vkZKSgoSEBOzatQsvvfQS8vPz8dlnnwHguvO13bt3Iz09HZcuXUJYWBiWLVuG7t27Y+fOndzv/ICr9Qdw3/MHixcvxo8//oitW7c2GOfv330Bn3STetxxxx3K/71790ZaWhpSUlKwZMkSJsNELeihhx5S/u/Vqxd69+6NTp06YePGjRg2bJgPS0b1jRs3Dnv27MG3337r66JQE7lad7///e+V/3v16oV27dph2LBhOHToEDp16tTSxaR6unbtip07d6K4uBiffvopsrKysGnTJl8Xi9zkav11796d+57KnThxAhMmTMDatWsRFBTk6+J4XMB3L4+OjoZOp2twZ7szZ84gPj7eR6UiAIiMjMS1116LgwcPIj4+HmazGUVFRQ4xdddTfHy80/VoH9dYTHh4OBN7D7LXd2P7VXx8PM6ePeswvqamBhcuXPDIOuX+6zkdO3ZEdHQ0Dh48CIDrTi3Gjx+PFStWYMOGDWjfvr0yvKXaS35/Np+rdedMWloaADjsf1x3vmM0GtG5c2f0798fOTk56NOnD95++23ud37C1fpzhvueumzfvh1nz55Fv379oNfrodfrsWnTJrzzzjvQ6/WIi4vz630w4JNuo9GI/v37Y926dcowq9WKdevWOVzjQS2vrKwMhw4dQrt27dC/f38YDAaH9ZSfn4/jx48r6yk9PR27d+92SAbWrl2L8PBwpetQenq6wzzsMVzXntWhQwfEx8c71HVJSQk2b97ssL6Kioqwfft2JWb9+vWwWq3KF116ejq+/vprVFdXKzFr165F165dERUVpcRwnXrXL7/8gsLCQrRr1w4A152viQjGjx+PZcuWYf369Q268bdUe8nvz6a70rpzZufOnQDgsP9x3amH1WpFVVUV9zs/ZV9/znDfU5dhw4Zh9+7d2Llzp/IaMGAARo8erfzv1/tgs2/B5kcWL14sJpNJFi1aJHl5efL73/9eIiMjHe5sR9733HPPycaNG+XIkSPy3XffSUZGhkRHR8vZs2dFxPYYgOTkZFm/fr1s27ZN0tPTJT09XZne/hiA2267TXbu3CmrV6+WmJgYp48BeOGFF2Tfvn0yb948PjKsmUpLS2XHjh2yY8cOASBvvfWW7NixQ44dOyYitkeGRUZGyueffy67du2Su+++2+kjw66//nrZvHmzfPvtt9KlSxeHx04VFRVJXFycjBkzRvbs2SOLFy+WkJCQBo+d0uv1MmvWLNm3b59kZ2fzsVNX0Ni6Ky0tleeff15yc3PlyJEj8tVXX0m/fv2kS5cucunSJWUeXHe+8+STT0pERIRs3LjR4dE2FRUVSkxLtZf8/myaK627gwcPymuvvSbbtm2TI0eOyOeffy4dO3aUm2++WZkH153vTJ48WTZt2iRHjhyRXbt2yeTJk0Wj0ch//vMfEeF+p3aNrT/ue/6p/h3n/XkfbBVJt4jInDlzJDk5WYxGowwaNEh++OEHXxep1Rk5cqS0a9dOjEajJCYmysiRI+XgwYPK+MrKSnnqqackKipKQkJC5J577pHTp087zOPo0aNyxx13SHBwsERHR8tzzz0n1dXVDjEbNmyQvn37itFolI4dO8rChQtbYvECzoYNGwRAg1dWVpaI2B4b9uqrr0pcXJyYTCYZNmyY5OfnO8yjsLBQRo0aJWFhYRIeHi6PPPKIlJaWOsT89NNPctNNN4nJZJLExESZMWNGg7IsWbJErr32WjEajdKjRw9ZuXKl15Y7EDS27ioqKuS2226TmJgYMRgMkpKSIo8//niDLxKuO99xtu4AOLRlLdle8vvTfVdad8ePH5ebb75Z2rZtKyaTSTp37iwvvPCCw7OCRbjufOXRRx+VlJQUMRqNEhMTI8OGDVMSbhHud2rX2Prjvuef6ifd/rwPakREmn+enIiIiIiIiIhcCfhruomIiIiIiIh8hUk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL2HSTUREREREROQlTLqJiIiIiIiIvIRJNxEREREREZGXMOkmIiIiIiIi8hIm3URERERERERewqSbiIiIiIiIyEuYdBMRERERERF5CZNuIiIiIiIiIi9h0k1ERERERETkJUy6iYiIiIiIiLyESTcRERE59fDDDyM1NbXJ06WmpuLhhx/2eHmIiIj8EZNuIiKiK1i0aBE0Go3L1w8//ODrIjaqoqIC06ZNw8aNG33y+Xl5eZg2bRqOHj3qk88nIiLyJb2vC0BEROQvXnvtNXTo0KHB8M6dO/ugNO6rqKjA9OnTAQC33HKL29O99957sFqtTf68/Px8aLW1x/Xz8vIwffp03HLLLc06c05EROTPmHQTERG56Y477sCAAQN8XQyvKy8vR2hoKAwGQ7OmN5lMHi4RERGR/2L3ciIiIg+xWq14++230atXLwQFBSEmJga33347tm3b5hD34YcfYtCgQQgJCUFUVBRuvvlm/Oc//3GIWbVqFYYMGYLQ0FC0adMGmZmZ2Lt3r0PMww8/jLCwMJw8eRIjRoxAWFgYYmJi8Pzzz8NisQAAjh49ipiYGADA9OnTlS7x06ZNc5jHoUOHcOedd6JNmzYYPXq0Mq7+mWl3lrHuNd2LFi3CAw88AAC49dZblc/fuHEjsrKyEB0djerq6gZ1edttt6Fr165NqH0iIiJ1YtJNRETkpuLiYpw/f97hVVhYqIx/7LHHMHHiRCQlJWHmzJmYPHkygoKCHK75nj59OsaMGQODwYDXXnsN06dPR1JSEtavX6/EfPDBB8jMzERYWBhmzpyJV199FXl5ebjpppsaXBdtsVgwfPhwXHPNNZg1axaGDh2Kv/71r3j33XcBADExMZg/fz4A4J577sEHH3yADz74APfee68yj5qaGgwfPhyxsbGYNWsW7rvvPpd14M4y1nXzzTfjmWeeAQC8/PLLyudfd911GDNmDAoLC7FmzRqHaQoKCrB+/Xr87ne/a2x1EBER+QchIiKiRi1cuFAAOH2ZTCYREVm/fr0AkGeeeabB9FarVUREDhw4IFqtVu655x6xWCxOY0pLSyUyMlIef/xxh/EFBQUSERHhMDwrK0sAyGuvveYQe/3110v//v2V9+fOnRMAkp2d3aBs9nlMnjzZ6biUlBTlvTvLKCKSkpIiWVlZyvulS5cKANmwYYPDNBaLRdq3by8jR450GP7WW2+JRqORw4cPN/gcIiIif8NruomIiNw0b948XHvttQ7DdDodAOB///d/odFokJ2d3WA6jUYDAFi+fDmsViumTp3qcKOxujFr165FUVERRo0ahfPnzzt8TlpaGjZs2NBg/k888YTD+yFDhuCDDz5o0rI9+eSTV4xxZxmbQqvVYvTo0XjnnXdQWlqKNm3aAAA++ugjDB482OlN64iIiPwNk24iIiI3DRo0yOWN1A4dOoSEhAS0bdvW5fSHDh2CVqtF9+7dXcYcOHAAAPCrX/3K6fjw8HCH9/brquuKiorCxYsXXX5GfXq9Hu3bt79inDvL2FRjx47FzJkzsWzZMowdOxb5+fnYvn07FixY4LHPICIi8iUm3URERCpif0TXBx98gPj4+Abj9XrHr277mfarYTKZGpx5byndu3dH//798eGHH2Ls2LH48MMPYTQa8eCDD/qkPERERJ7GpJuIiMgDOnXqhDVr1uDChQsuzwR36tQJVqsVeXl56Nu3r8sYAIiNjUVGRoZHytacrt/OuLOMzfn8sWPHYtKkSTh9+jT+/e9/IzMzE1FRUVdbXCIiIlXg3cuJiIg84L777oOIYPr06Q3GiQgAYMSIEdBqtXjttdeUM9r1Y4YPH47w8HD85S9/cfoorXPnzjW5bCEhIQCAoqKiJk9blzvL6ExoaGijnz9q1ChoNBpMmDABhw8f5l3LiYgooPBMNxERkZtWrVqF/fv3Nxg+ePBg3HrrrRgzZgzeeecdHDhwALfffjusViu++eYb3HrrrRg/fjw6d+6MV155Ba+//jqGDBmCe++9FyaTCVu3bkVCQgJycnIQHh6O+fPnY8yYMejXrx8eeughxMTE4Pjx41i5ciVuvPFGzJ07t0nlDg4ORvfu3fHJJ5/g2muvRdu2bdGzZ0/07NmzSfNxZxmd6du3L3Q6HWbOnIni4mKYTCb86le/QmxsLAAoz/peunQpIiMjkZmZ2aRyERERqRmTbiIiIjdNnTrV6fCFCxeiY8eOWLhwIXr37o1//vOfeOGFFxAREYEBAwZg8ODBSuxrr72GDh06YM6cOXjllVcQEhKC3r17Y8yYMUrMb3/7WyQkJGDGjBl48803UVVVhcTERAwZMgSPPPJIs8r+j3/8A08//TSeffZZmM1mZGdnNznpti/rlZaxvvj4eCxYsAA5OTl47LHHYLFYsGHDBiXpBmxdzFesWIEHH3wQJpOpWctIRESkRhpprD8YERERUQv4/PPPMWLECHz99dcYMmSIr4tDRETkMUy6iYiIyOfuuusu7Nu3DwcPHvTYjd+IiIjUgN3LiYiIyGcWL16MXbt2YeXKlXj77beZcBMRUcDhmW4iIiLyGY1Gg7CwMIwcORILFixo8BxyIiIif8dvNiIiIvIZHvsnIqJAx+d0ExEREREREXkJk24iIiIiIiIiL2k13cutVitOnTqFNm3a8CYtREREREREAUpEUFpaioSEBGi1vj/P3GqS7lOnTiEpKcnXxSAiIiIiIqIWcOLECbRv397XxWg9SXebNm0A2Co+PDzcx6UhIiIiIiIibygpKUFSUpKSA/paq0m67V3Kw8PDmXQTEREREREFOLVcVuz7Du7UqNTJK5W/9hcRERERERH5B420kgdklpSUICIiAsXFxao90506eSWOzshscmJtn+bojEwvlYyIiIiIiMg/qC33Y9LtQ81Nsq+EyTcREREREbVWasv9mHT7wJWS7KYmza7mx+SbiIiIiIhaGzXlfgCT7hbnzQSZyTcREREREbV2asn97Jh0txBnCbE3k+GW/jwiIiIiIiI18HXuVx+Tbi9Sw5nn+mVg4k1ERERERIGMSbePtHTFq+1MM5NvIiIiIiJqDZh0+0hLVbzaku26mHgTEREREVGgY9LtI96seDUn2s7ULa+ay0lERERERNRUTLp9xF7xSROXQGsK8drdwv0lieVZbyIiIiIiCkRMun2kftJd19EZmUidvNJl4nml52rb5+GPeNabiIiIiIgCCZNuH6lb8b3/8o1H5hkoSSoTbyIiIiIiChRMun3EVcW7cxa7rkBNStndnIiIiIiIAgGTbh9RW8WrFZNvIiIiIiLyZ2rL/bS+LgCpS/0ku6k9AYiIiIiIiKgWk25qgIk3ERERERGRZzDpJqeYeBMREREREV09Jt3k0tEZmQ7Jtz8k3vYy+kNZiYiIiIgo8PFGauQ2td1kzf5sdd6BnoiIiIiI7NSW+3ntTPe8efOQmpqKoKAgpKWlYcuWLS5j33vvPQwZMgRRUVGIiopCRkZGg3gRwdSpU9GuXTsEBwcjIyMDBw4c8FbxyQlnXc5b+oyy/TOv5oz21U5PRERERETkLq+c6f7kk08wduxYLFiwAGlpaZg9ezaWLl2K/Px8xMbGNogfPXo0brzxRgwePBhBQUGYOXMmli1bhr179yIxMREAMHPmTOTk5OD9999Hhw4d8Oqrr2L37t3Iy8tDUFDQFcuktqMd/s5VsurJs8jNOYNd9+x3U8+C8ww4EREREZH/U1vu55WkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkK05vsVgQFRWFuXPnYuzYsRARJCQk4LnnnsPzzz8PACguLkZcXBwWLVqEhx566IrzVFvFBwpPJ98t0VW8sc9g4k1ERERE5N/UlvvpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmujWPiooKVFdXo23btgCAI0eOoKCgABkZGUpMREQE0tLSkJub61bSTd7h6myyt7pteyIpbuzmcPb3TL6JiIiIiMgTPJ50nz9/HhaLBXFxcQ7D4+LisH//frfm8dJLLyEhIUFJsgsKCpR51J+nfVx9VVVVqKqqUt6XlJS4vQzUNPYEtbk3NnNn3t7iKgG3LwsREREREdHV8HjSfbVmzJiBxYsXY+PGjW5dq+1KTk4Opk+f7sGS0ZXYk9TmPmbM10lu/QMGPOtNRERERERXy+NJd3R0NHQ6Hc6cOeMw/MyZM4iPj2902lmzZmHGjBn46quv0Lt3b2W4fbozZ86gXbt2DvPs27ev03lNmTIFkyZNUt6XlJQgKSmpqYtDV8nfEta6Z+3teNabiIiIiIiay+OPDDMajejfvz/WrVunDLNarVi3bh3S09NdTvfGG2/g9ddfx+rVqzFgwACHcR06dEB8fLzDPEtKSrB582aX8zSZTAgPD3d4Ebmr/ll7PlqMiIiIiIiawyvP6Z40aRLee+89vP/++9i3bx+efPJJlJeX45FHHgEAjB071uFGazNnzsSrr76Kf/3rX0hNTUVBQQEKCgpQVlYGANBoNJg4cSL+9Kc/4YsvvsDu3bsxduxYJCQkYMSIEd5YBCKX3c2JiIiIiIjc5ZVrukeOHIlz585h6tSpKCgoQN++fbF69WrlRmjHjx+HVlub78+fPx9msxn333+/w3yys7Mxbdo0AMCLL76I8vJy/P73v0dRURFuuukmrF69+qqu+ya6kvpnunmdNxERERERNYVXntOtRmp7Vhv5n/pnupl4ExERERGpj9pyP690LycKRPWTbHY3JyIiIiKiK2HSTdQETLyJiIiIiKgp2L2cqJnY3ZyIiIiISH3Ulvt55UZqRK1B/bubExF5Q90bODo72Fd3GA/+ERERqQ/PdBNdJZ7xJiJPSZ280uMH9NgmERFRa6O23I9JN5EHMPEmoqvRnCS7qck52yUiImot1Jb7Mekm8hB28SSipmgsYfZEG+Jq/myfiIgo0Kkt92PSTeRhTL6JyJkrnZX2ZnvBBJyIiFoTteV+TLqJvKDudZn8UUvUuOZev+wv+5a3z2g3lbPy+EtdEhERuUNtuR+TbiIv4Rlvooa8fcd/Ne1raj+7zOSbiIgCldpyPybdRF7EG6wReT/RbkxL73NqT7SdYTtFRESBRm25H5NuIi/jD1pqrdy5htkTl2C4m9R765IPtXUfby62VUREFCjUlvsx6SZqAfYfs3Uf8cMftBSIrvSc6Zba7puSiDd1vu48qsuf928m30RE5O/Ulvsx6SZqQWr8MdvUrr9qKDOpT2NJtq9vKNgS3dsDcb9QY3tFREQ2PKHTOLXlfky6iVqYr25e5I3Eg407AYFxHXNTqXnZPI03hSQi8q2r+c5qre222nI/Jt1EPtASSYq73WA9pbU26q1ZIN/9mo/9cxTI65qISI14suTqqC33Y9JN5CPeuCbUm0dC3UnimaS0DkzAWi+ueyIi7/LUzTkD+d4j7lBb7sekm8jHmpMoX+0ZbE81tIFy12ZyDxMusnO1LajloFvdcrDXAhGpWUv9lvLHS8GuhtpyPybdRCrhrW7gvrxePFAb8taICTc546szKZ5qL5mME5Gv+PK3U2v4Tldb7sekm0iF1HAWuzlae/LdnOvo1V43reGLmTzDk49pa6l7UdTHbZuIvE1Nv5UC+Ttebbkfk24ilavfNbL+IyLU2DgGciNenz/3UGhMa1qH5Fm+SpjtGttOm3JgjNs7EXmSmh/DGIjf+WrL/Zh0E5HXBGIjbteSiUVL1pmajsBT4PDE/uLNbZD3pyAib1Jzwl2fP5W1MWrL/byWdM+bNw9vvvkmCgoK0KdPH8yZMweDBg1yGrt3715MnToV27dvx7Fjx/A///M/mDhxokPMtGnTMH36dIdhXbt2xf79+90qj9oqnqi1CKTEuyndZ93thdDcG+l5Smu/uylRXUy+ichT/P33j7+XX225n1eS7k8++QRjx47FggULkJaWhtmzZ2Pp0qXIz89HbGxsg/itW7diyZIl6N+/P5599lm89NJLTpPuTz/9FF999ZUyTK/XIzo62q0yqa3iiVobfz5y2tKJaVMT8aZ+PrvWEl2Zv//gJCLfCLS2w1+XR225n1eS7rS0NAwcOBBz584FAFitViQlJeHpp5/G5MmTG502NTUVEydOdJp0L1++HDt37mxWmdRW8UStkb813Go56xWoXdmJ1M7f2iwi8p1Aby/8Zfns5bRWVeDE7AdVk/vpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmXtW8Dxw4gISEBAQFBSE9PR05OTlITk6+2iITUQtxdgOjujeGUwu1dbmu/3meTsLVVPdEalJ337Dvd2pss4j8lTcu22pp/pKMXi37MtVdXl+3h76+cWdTePxM96lTp5CYmIjvv/8e6enpyvAXX3wRmzZtwubNmxud3tWZ7lWrVqGsrAxdu3bF6dOnMX36dJw8eRJ79uxBmzZtGsynqqoKVVVVyvuSkhIkJSWp5mgHUWun1i8ptZarMd7ujk5Etfz5UhkiX/NGkqSWR20Brac98MXJiaZuO2o70+03SXd9RUVFSElJwVtvvYXHHnuswXhnN14DoJqKJyIbNSS5aulGTkT+gYk3kft8cTaypZO+1twGuJOAN7WXgiduMqu2S4s9nnSbzWaEhITg008/xYgRI5ThWVlZKCoqwueff97o9O4m3QAwcOBAZGRkICcnp8E4nukm8h++PGKshqSfiPwP2w6ixl0pSW1ud/HmJvGevuko9/eGWuoAizt1r7ak2+PXdBuNRvTv3x/r1q1Tkm6r1Yp169Zh/PjxHvucsrIyHDp0CGPGjHE63mQywWQyeezziMh7nF0nVPf675Z6RBa/QInIXc7uUUHU2jUlUW3ud25j0zX2+Z7YX/k7oXHO6udq6z1Q6txrjwzLysrC3//+dwwaNAizZ8/GkiVLsH//fsTFxWHs2LFITExUzlCbzWbk5eUBAO68806MHj0ao0ePRlhYGDp37gwAeP755/HrX/8aKSkpOHXqFLKzs7Fz507k5eUhJibmimVS29EOInLNW2e+mXATkTewuzm1dmr9fmXCp072Xg7evDme2nI/ryTdADB37ly8+eabKCgoQN++ffHOO+8gLS0NAHDLLbcgNTUVixYtAgAcPXoUHTp0aDCPoUOHYuPGjQCAhx56CF9//TUKCwsRExODm266CX/+85/RqVMnt8qjtoonosZdbbeuptwRlYjoajHxptZIrcm2u1oi+SPfUFvu57WkW23UVvFE5B5vdd/klysReRqv86bWhAeaSM3Ulvsx6SYiv8BrsYjIXzAZoUDGg0vkD9SW+zHpJiK/0pTkmz8CiMhXmHhTIOJ2Tf5Cbbkfk24iIiIiL2GSQoGA2zH5G7Xlfky6iYiIiLyI3XHJXzHZJn+lttxP6+sCEBEREQUybzy7lsibUievZMJN5EE8001ERETUAlwl2kxmSE2YbFMgUFvup/d1AYiIiIhag7rJiz2xsT8juP54opbGyyCIvIdnuomIiIh8gGe+SU3qbo/cBsnfqS33Y9JNRERE5EM8w0i+wm2PApXacj8m3UREREQq0NjN1ZgIkafx2m0KZGrL/Zh0ExEREanIle5s3pzkKHXySofrx5uLiZn/amwb4HqlQKO23I9JNxEREZHKOLvRmhoxWVO/xu4dYE/EiQKN2nI/Jt1EREREKqXmhNsZJnDq4I3eEkT+RG25H5NuIiIiIj9yNYn41SRbTf1cJna16nbt9vRj4ppy6QDXCbUWasv9mHQTERERUbMw0fOP3giBvg6I6lNb7sekm4iIiIiuiruJZyAkf/6SZPN6bWrN1Jb7MekmIiIiIo9xp7uzPyWDak+y/akuiVqK2nI/Jt1ERERE5BV1E1ZnibhaE8bmJNpqXRai1khtuR+TbiIiIiLyOn+4ozavUScKDGrL/Zh0ExEREVGLUVPyzSSbKDCpLfdj0k1ERERELc6XCS+TbaLAprbcj0k3EREREfmUN5PgplyfzUSbKDCoLffTemvG8+bNQ2pqKoKCgpCWloYtW7a4jN27dy/uu+8+pKamQqPRYPbs2Vc9TyIiIiLyD0dnZF4x4U2dvNLhZR9W/6+zOE98PhFRc+m9MdNPPvkEkyZNwoIFC5CWlobZs2dj+PDhyM/PR2xsbIP4iooKdOzYEQ888ACeffZZj8yTiIiIiPxL3cT3Sgmzq8S7qZ9DRORtXulenpaWhoEDB2Lu3LkAAKvViqSkJDz99NOYPHlyo9OmpqZi4sSJmDhxosfmCaiviwERERERuedKz/zmNdpEVJfacj+Pn+k2m83Yvn07pkyZogzTarXIyMhAbm6uauZJRERERP6hfsJcN8n2l2d/E1Hr5fGk+/z587BYLIiLi3MYHhcXh/3797fYPKuqqlBVVaW8LykpadZnExEREZG6MLEmIn/itRup+VpOTg4iIiKUV1JSkq+LRERERERERK2Mx5Pu6Oho6HQ6nDlzxmH4mTNnEB8f32LznDJlCoqLi5XXiRMnmvXZRERERERERM3l8e7lRqMR/fv3x7p16zBixAgAtpuerVu3DuPHj2+xeZpMJphMJuW9/X5x7GZOREREREQUuOw5nxfuGd4sXnlk2KRJk5CVlYUBAwZg0KBBmD17NsrLy/HII48AAMaOHYvExETk5OQAsN0oLS8vT/n/5MmT2LlzJ8LCwtC5c2e35nklhYWFAMBu5kRERERERK1AYWEhIiIifF0M7yTdI0eOxLlz5zB16lQUFBSgb9++WL16tXIjtOPHj0Orre3ZfurUKVx//fXK+1mzZmHWrFkYOnQoNm7c6NY8r6Rt27bKZ19txQ8cOBBbt269qnkE6nxKSkqQlJSEEydOXPXt+dW0XGoqS6DWsdrmo7Z6VlPdeGo+aqvjQJ2Pp+pZTcuktvlwW/b+PFjHLTOfQK1nNZUlUOtYbfMpLi5GcnKykgP6mleSbgAYP368y67f9kTaLjU11a1T/43N80rsSX5ERMRVb+A6nc4jz3sL1PkAQHh4eEDVs5rKYhdodazG+QDqqWe11U0g1nEgzwe4+npW2zKpbT4At2VvlwVgHbfEfIDAq2c1lcUu0OpYjfMB4HCi15fUUQo/M27cOM6nBahpudRUFk9S23KpbT6eEojbYCDWcSDPxxPUtkxqm4+nqG251NR+eYqa6kaN8/EUNS2XmsriSWpbLrXNR000opary72spKQEERERKC4u9tiRE2qI9ex9rOOWwXr2PtZxy2A9ex/r2PtYxy2D9ex9rOOWobZ6bjVnuk0mE7Kzsx3uaE6ex3r2PtZxy2A9ex/ruGWwnr2Pdex9rOOWwXr2PtZxy1BbPbeaM91ERERERERELa3VnOkmIiIiIiIiamlMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyklaTdM+bNw+pqakICgpCWloatmzZ4usiqcLXX3+NX//610hISIBGo8Hy5csdxosIpk6dinbt2iE4OBgZGRk4cOCAQ8yFCxcwevRohIeHIzIyEo899hjKysocYnbt2oUhQ4YgKCgISUlJeOONNxqUZenSpejWrRuCgoLQq1cvfPnllx5fXl/IycnBwIED0aZNG8TGxmLEiBHIz893iLl06RLGjRuHa665BmFhYbjvvvtw5swZh5jjx48jMzMTISEhiI2NxQsvvICamhqHmI0bN6Jfv34wmUzo3LkzFi1a1KA8gbovzJ8/H71790Z4eDjCw8ORnp6OVatWKeNZx543Y8YMaDQaTJw4URnGer5606ZNg0ajcXh169ZNGc869oyTJ0/id7/7Ha655hoEBwejV69e2LZtmzKe339XLzU1tcG2rNFolGfwclu+ehaLBa+++io6dOiA4OBgdOrUCa+//jrq3ieZ2/LVKy0txcSJE5GSkoLg4GAMHjwYW7duVcazjpvOn3IQd8pyRdIKLF68WIxGo/zrX/+SvXv3yuOPPy6RkZFy5swZXxfN57788kt55ZVX5LPPPhMAsmzZMofxM2bMkIiICFm+fLn89NNP8pvf/EY6dOgglZWVSsztt98uffr0kR9++EG++eYb6dy5s4waNUoZX1xcLHFxcTJ69GjZs2ePfPzxxxIcHCx///vflZjvvvtOdDqdvPHGG5KXlyd//OMfxWAwyO7du71eB942fPhwWbhwoezZs0d27twpd955pyQnJ0tZWZkS88QTT0hSUpKsW7dOtm3bJjfccIMMHjxYGV9TUyM9e/aUjIwM2bFjh3z55ZcSHR0tU6ZMUWIOHz4sISEhMmnSJMnLy5M5c+aITqeT1atXKzGBvC988cUXsnLlSvn5558lPz9fXn75ZTEYDLJnzx4RYR172pYtWyQ1NVV69+4tEyZMUIaznq9edna29OjRQ06fPq28zp07p4xnHV+9CxcuSEpKijz88MOyefNmOXz4sKxZs0YOHjyoxPD77+qdPXvWYTteu3atAJANGzaICLdlT/jzn/8s11xzjaxYsUKOHDkiS5culbCwMHn77beVGG7LV+/BBx+U7t27y6ZNm+TAgQOSnZ0t4eHh8ssvv4gI67g5/CkHcacsV9Iqku5BgwbJuHHjlPcWi0USEhIkJyfHh6VSn/obvNVqlfj4eHnzzTeVYUVFRWIymeTjjz8WEZG8vDwBIFu3blViVq1aJRqNRk6ePCkiIn/7298kKipKqqqqlJiXXnpJunbtqrx/8MEHJTMz06E8aWlp8oc//MGjy6gGZ8+eFQCyadMmEbHVqcFgkKVLlyox+/btEwCSm5srIraGSavVSkFBgRIzf/58CQ8PV+r1xRdflB49ejh81siRI2X48OHK+9a2L0RFRck//vEP1rGHlZaWSpcuXWTt2rUydOhQJelmPXtGdna29OnTx+k41rFnvPTSS3LTTTe5HM/vP++YMGGCdOrUSaxWK7dlD8nMzJRHH33UYdi9994ro0ePFhFuy55QUVEhOp1OVqxY4TC8X79+8sorr7COPUDNOYg7ZXFHwHcvN5vN2L59OzIyMpRhWq0WGRkZyM3N9WHJ1O/IkSMoKChwqLuIiAikpaUpdZebm4vIyEgMGDBAicnIyIBWq8XmzZuVmJtvvhlGo1GJGT58OPLz83Hx4kUlpu7n2GMCcR0VFxcDANq2bQsA2L59O6qrqx2Wv1u3bkhOTnao5169eiEuLk6JGT58OEpKSrB3714lprE6bE37gsViweLFi1FeXo709HTWsYeNGzcOmZmZDeqC9ew5Bw4cQEJCAjp27IjRo0fj+PHjAFjHnvLFF19gwIABeOCBBxAbG4vrr78e7733njKe33+eZzab8eGHH+LRRx+FRqPhtuwhgwcPxrp16/Dzzz8DAH766Sd8++23uOOOOwBwW/aEmpoaWCwWBAUFOQwPDg7Gt99+yzr2AjXVqTtlcUfAJ93nz5+HxWJxaLABIC4uDgUFBT4qlX+w109jdVdQUIDY2FiH8Xq9Hm3btnWIcTaPup/hKibQ1pHVasXEiRNx4403omfPngBsy240GhEZGekQW7+em1uHJSUlqKysbBX7wu7duxEWFgaTyYQnnngCy5YtQ/fu3VnHHrR48WL8+OOPyMnJaTCO9ewZaWlpWLRoEVavXo358+fjyJEjGDJkCEpLS1nHHnL48GHMnz8fXbp0wZo1a/Dkk0/imWeewfvvvw+A33/esHz5chQVFeHhhx8GwPbCUyZPnoyHHnoI3bp1g8FgwPXXX4+JEydi9OjRALgte0KbNm2Qnp6O119/HadOnYLFYsGHH36I3NxcnD59mnXsBWqqU3fK4g6925FEdNXGjRuHPXv24Ntvv/V1UQJS165dsXPnThQXF+PTTz9FVlYWNm3a5OtiBYwTJ05gwoQJWLt2bYMj/uQ59jNUANC7d2+kpaUhJSUFS5YsQXBwsA9LFjisVisGDBiAv/zlLwCA66+/Hnv27MGCBQuQlZXl49IFpn/+85+44447kJCQ4OuiBJQlS5bgo48+wr///W/06NEDO3fuxMSJE5GQkMBt2YM++OADPProo0hMTIROp0O/fv0watQobN++3ddFIz8R8Ge6o6OjodPpGtwN88yZM4iPj/dRqfyDvX4aq7v4+HicPXvWYXxNTQ0uXLjgEONsHnU/w1VMIK2j8ePHY8WKFdiwYQPat2+vDI+Pj4fZbEZRUZFDfP16bm4dhoeHIzg4uFXsC0ajEZ07d0b//v2Rk5ODPn364O2332Yde8j27dtx9uxZ9OvXD3q9Hnq9Hps2bcI777wDvV6PuLg41rMXREZG4tprr8XBgwe5LXtIu3bt0L17d4dh1113ndKNn99/nnXs2DF89dVX+O///m9lGLdlz3jhhReUs929evXCmDFj8Oyzzyq9kbgte0anTp2wadMmlJWV4cSJE9iyZQuqq6vRsWNH1rEXqKlO3SmLOwI+6TYajejfvz/WrVunDLNarVi3bh3S09N9WDL169ChA+Lj4x3qrqSkBJs3b1bqLj09HUVFRQ5H+tavXw+r1Yq0tDQl5uuvv0Z1dbUSs3btWnTt2hVRUVFKTN3PsccEwjoSEYwfPx7Lli3D+vXr0aFDB4fx/fv3h8FgcFj+/Px8HD9+3KGed+/e7dC4rF27FuHh4coPxyvVYWvcF6xWK6qqqljHHjJs2DDs3r0bO3fuVF4DBgzA6NGjlf9Zz55XVlaGQ4cOoV27dtyWPeTGG29s8OjGn3/+GSkpKQD4/edpCxcuRGxsLDIzM5Vh3JY9o6KiAlqt4895nU4Hq9UKgNuyp4WGhqJdu3a4ePEi1qxZg7vvvpt17AVqqlN3yuIWt2+55scWL14sJpNJFi1aJHl5efL73/9eIiMjHe6G2VqVlpbKjh07ZMeOHQJA3nrrLdmxY4ccO3ZMRGy3yI+MjJTPP/9cdu3aJXfffbfT2/Vff/31snnzZvn222+lS5cuDrfrLyoqkri4OBkzZozs2bNHFi9eLCEhIQ1u16/X62XWrFmyb98+yc7O9ttHINT35JNPSkREhGzcuNHh0SkVFRVKzBNPPCHJycmyfv162bZtm6Snp0t6eroy3v7YlNtuu0127twpq1evlpiYGKePTXnhhRdk3759Mm/ePKePTQnUfWHy5MmyadMmOXLkiOzatUsmT54sGo1G/vOf/4gI69hb6t69XIT17AnPPfecbNy4UY4cOSLfffedZGRkSHR0tJw9e1ZEWMeesGXLFtHr9fLnP/9ZDhw4IB999JGEhITIhx9+qMTw+88zLBaLJCcny0svvdRgHLflq5eVlSWJiYnKI8M+++wziY6OlhdffFGJ4bZ89VavXi2rVq2Sw4cPy3/+8x/p06ePpKWlidlsFhHWcXP4Uw7iTlmupFUk3SIic+bMkeTkZDEajTJo0CD54YcffF0kVdiwYYMAaPDKysoSEdtt8l999VWJi4sTk8kkw4YNk/z8fId5FBYWyqhRoyQsLEzCw8PlkUcekdLSUoeYn376SW666SYxmUySmJgoM2bMaFCWJUuWyLXXXitGo1F69OghK1eu9NpytyRn9QtAFi5cqMRUVlbKU089JVFRURISEiL33HOPnD592mE+R48elTvuuEOCg4MlOjpannvuOamurnaI2bBhg/Tt21eMRqN07NjR4TPsAnVfePTRRyUlJUWMRqPExMTIsGHDlIRbhHXsLfWTbtbz1Rs5cqS0a9dOjEajJCYmysiRIx2eH8069oz/+7//k549e4rJZJJu3brJu+++6zCe33+esWbNGgHQoO5EuC17QklJiUyYMEGSk5MlKChIOnbsKK+88orDI5K4LV+9Tz75RDp27ChGo1Hi4+Nl3LhxUlRUpIxnHTedP+Ug7pTlSjQiIu6fFyciIiIiIiIidwX8Nd1EREREREREvsKkm4iIiIiIiMhLmHQTEREREREReQmTbiIiIiIiIiIvYdJNRERERERE5CVMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL/n/wlIC+f4bCIAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8HuTkAIhCZBGCaH3KiUEpShIKCpRpIlAaDZQsKCgYABfDTbEFxE7QVGjKE1pRgggGEApSuhIld6SUEPJ+f7g2313N7vJbjKzc2b2/l3XXpDZ2Zkzz5wpz5wzMyYhhAARERERERERKc5H6wIQERERERERGRWTbiIiIiIiIiKVMOkmIiIiIiIiUgmTbiIiIiIiIiKVMOkmIiIiIiIiUgmTbiIiIiIiIiKVMOkmIiIiIiIiUgmTbiIiIiIiIiKVMOkmIiIiIiIiUgmTbiIiIiIiIiKVMOkmIq/15ptvwmQywWQyYcOGDQ7H2bhxI3r27Inw8HAEBASgdu3aePXVV3H16lWn0/3666/RunVrlClTBuXKlcN9992HLVu2qLUY5IUmTZpkqbuOPocOHbIZ/9ChQzCZTOjatatL0z927BimT5+OLl26oGrVqvD390d0dDR69eqFjRs3Ov3dkiVL0KNHD0RGRqJUqVIIDw9Ho0aNMHToUCxatMjl5du3bx/eeOMNtG/fHpUqVYK/vz9iYmIwaNAg7N692+XpKMEc69WrVysyPZPJhI4dOyoyLdmtXbsWL7zwAu6++26EhobCZDIhKSlJ62IREXmcn9YFICLSQlZWFpKTk1GmTBlcvnzZ4Tjz589H37594evri169eiE6Ohrr16/Ha6+9hlWrVmHlypUICAiw+c3rr7+OCRMmIDY2Fk888QQuXryItLQ0tG3bFitXrsSdd97picUjLzF48GBUq1atwPCwsLASTXfGjBl48803UbNmTXTp0gURERHYt28fFi5ciIULF+Kbb75B3759bX4zefJkTJo0CaVLl8Z9992HatWq4ebNm9ixYwe+++477N27Fz179nRp/hMnTsR3332HRo0aoWfPnggJCcH27dvx1Vdf4YcffsDy5cvRvn37Ei0jqe+LL77AnDlzULp0aVStWhW5ublaF4mISBNMuonI69y4cQODBw9Gs2bNULt2bcydO7fAOFevXsUTTzwBk8mE9evXo0WLFgAAIQSefvppzJw5E++99x7GjRtn+c2+ffswadIk1KlTB5s2bUJoaCgA4KmnnkKbNm0wYsQIZGVlwceHnYxIGUlJSaq0mrZu3RqrV69Ghw4dbIb/9ttv6NSpE5588kkkJiZaLjodOnQIU6ZMQUxMDDZs2IBKlSrZ/O7q1auFtpDb69q1K1566SU0b97cZnhaWhr69++PJ598Ejt27Cjm0pGnjBo1CmPHjkW9evXwxx9/ID4+XusiERFpgmd+ROR1Xn/9dezYsQNffPEFfH19HY7z+++/48yZM0hMTLQk3MDtrqH/+c9/AAAfffQRhBCW72bPno2bN2/ilVdesSTcANCsWTP0798fu3btwrp160pU9mrVqqFatWrIzs7GqFGjEBMTAz8/P6SmplrG+fvvv9GvXz9UrFgR/v7+iI2NxdNPP41z584VmF5GRga6deuGSpUqISAgAFFRUWjXrh0++eSTAuOuX78ePXr0QPny5REYGIh69eohOTkZV65cKTCuuQvtqVOnMHjwYISHhyMoKAht2rRx2E138+bNGDVqFBo1aoTQ0FAEBQWhcePGmDp1Km7cuOE0DpcuXcLo0aMt5W/SpAl++OEHh7G7fv063nvvPbRq1Qply5ZFcHAwGjRogOeeew4XLlywGff06dN49tlnUatWLQQEBCA8PBy9evVCVlaWw2kbzUMPPVQg4QaAdu3a4e6778aFCxewfft2y/BNmzYhPz8fDz30UIGEGwCCgoLcujiQlJRUIOEGgH79+qFOnTrYuXMnzp496/L0HMnJycGrr76KBg0aIDg4GCEhIahVqxYGDx6Mw4cPAwA6duyIyZMnAwDuvvtuS/d9694FGRkZGDp0KOrWrYvg4GAEBwejZcuWBbah1atXw2QyAQDWrFljczuAefstrCt7amqqzbjW83d1G/a0li1bomHDhk73s0RE3oIt3UTkVbZs2YLXX38dU6ZMQYMGDZyOd/LkSQBA9erVC3wXFhaGcuXK4fDhwzhw4ABq1qwJAJYT5S5duhT4TUJCAlJTU7FmzZoSd4vNy8vDPffcg0uXLuGBBx6An58foqKiAACLFy9Gnz594OPjg549eyImJgY7d+7EBx98gBUrVmDjxo0oV64cgNv3395///0ICwtDz549UbFiRZw5cwZ//fUXvvrqKzz22GOWec6bNw/9+/dHQEAA+vbti8jISPzyyy+YMmUKVqxYgdWrVyMwMNCmnNnZ2bjrrrsQGhqKgQMH4vTp0/juu++QkJCAzZs3o1GjRpZxP/30U/z0009o3749unfvjitXrmD16tUYP348/vjjD/z4448F4nDjxg106dIFFy5cQK9evXDlyhWkpaWhT58+WL58uc16uHr1Ku69916sX78etWvXxpAhQxAQEIB9+/bh448/xqBBgyxx+eeff9CxY0f8+++/6NKlCxITE3H69Gn8+OOPWLFiBVauXIm4uLgSrUOlrF27Fhs3boSPjw9q166Nzp07Izg4WNV5lipVCgDg5/e/U4gKFSoAuN3bQ22O5u8uIQQSEhKwceNG3HnnnejatSt8fHxw+PBhLF68GAMHDkRsbKzl/uM1a9bYdOW37r7/5ptvYv/+/WjTpg0efPBBZGdnY/ny5Xj88cexZ88evPvuuwBuXyhKTk7G5MmTbaYN3L4wVxzubMNERKQdJt1E5DXy8vIwaNAgNGvWDC+++GKh44aHhwMADh48WOC7nJwcS8vo3r17LUn3vn37EBwcjOjo6AK/qV27tmWckjp58iSaNm2K9evXIygoyDL83LlzGDhwIMLDw7F+/XrExsZavjN3y3311VcxY8YMALfvtxRCICMjA02bNrWZh3WreG5uLkaMGAE/Pz9kZmaiSZMmAIA33ngDjzzyCL777ju8/fbbmDhxos00/vrrLzz11FOYMWOGpUv9Pffcg+HDh+ODDz7ARx99ZBn35ZdfxsyZM21axIQQGD58OL744gusX7++wP3wx48fR6tWrbB69Wr4+/sDAB555BF07twZ06ZNs0m6J06ciPXr12PgwIGYPXu2zXxycnJs/h40aBBOnDiB5cuXIyEhwTJ8woQJaNmyJUaMGIG///7b8cqxcujQoQKtkkWZNGmSW+MnJyfb/B0WFob3338fgwYNcms6rjpy5Ah+/fVXVKxYEY0bN7YMj4uLQ9WqVbF06VLcd9996NevH1q3bo3atWtbWneVsGnTJuzYsQOtWrUq0X3rWVlZ2LhxIxITE7FgwQKb7/Ly8iy9K5KSknDo0CGsWbPGaVf+WbNmFbg4d/PmTXTv3h3vv/8+Ro8ejapVq6JatWqYNGkSJk+ebPl/Sbm6DRdm27ZtWLhwocvzDAsLw5gxY9woJRERQRAReYkXX3xR+Pv7i+3bt1uGDR48WAAQmZmZNuNevHhRhISEiFKlSoktW7bYfPfMM88IAAKA+OabbyzDS5UqJSpXruxw3nv37hUAxAMPPFCiZYiNjRUAxF9//VXgu2nTpgkA4ssvv3T42zvuuEOEh4db/n7ooYcEALFnz55C5/nll18KAOLJJ58s8N3hw4eFn5+fqFGjhs1wAKJMmTLi4sWLNsNv3Lgh/Pz8xB133FHoPM02b94sAIhJkybZDDfH4cCBAwV+ExsbK8qXL28zz7Jly4rQ0FBx/vz5Que3ZcsWAUAMHTrU4ffPPfecAGBTh5zJyMiw1BNXP66aP3+++OKLL8SBAwfE1atXxcGDB8WMGTNEuXLlhMlkEosWLbIZ/+DBgwKASEhIcHke9q5fvy7at2/vtI5t2bJFNGzY0GZ5QkNDxX333Sfmz59f7PmaZWdni3r16gkfHx+RkZFRomn9/fffAoDo379/keMmJycLAG7P88cffxQARGpqqs1wAKJDhw5uz2v27NkCgJg9e7ZlmKvbcGHM03X1ExsbW6z5ZGZmCgBi8ODBxS4rEZFesaWbiLxCZmYm3nnnHUyaNMmmW7MzwcHBmDZtGoYPH474+Hg8/PDDiI6Oxu+//47NmzejXr162L17tyYPRQsMDLRpZTQzv/Zs48aN+Oeffwp8f+3aNZw9exZnz55FeHg4+vXrh/nz56NNmzZ45JFH0KlTJ7Rr187Sym+2detWAHDYyle1alXUqFEDe/fuxcWLF1G2bFnLd3Xq1CnQ1dncFT47O9tm+PXr1/HBBx8gLS0Nu3fvxqVLl2zulz9+/HiBeYeFhTns/l+lShVkZmZa/t69ezcuXryIzp07W7qQO2OO4alTpxy2RJpfV7V79+4i61HHjh1tlkFJDz74oM3f1apVw6hRo1C/fn3ce++9mDBhAh544AGnv8/Ozsb06dMLDHfW+pqfn4+kpCSsXbsWI0aMwMCBAwuM07x5c2zfvh2ZmZnIyMjA5s2bsW7dOvz888/4+eefMWDAAHz11VeWV5rZ9wIorAX16tWrePDBB7F79268/vrrJX54XP369dGkSRN8++23+Pfff5GYmIiOHTuiWbNmbm/TFy9exDvvvIOFCxfin3/+KfA2BEd1VymubsOFSUpK4mu8iIhUxqSbiAzv5s2bGDx4MJo0aWLztPGiDBs2DJUqVcJbb72FRYsW4datW2jVqhVWrlyJN998E7t370ZkZKRl/NDQUOTk5DiclvlVOdYPWCuuyMhIh112z58/DwCYOXNmob+/fPkywsPD0bt3byxcuBDTpk3DRx99hJkzZ8JkMuHuu+/Gu+++a7nP1Fx2833j9ipWrIi9e/ciNzfXJukOCQlxOL6fnx9u3bplM+zhhx/GTz/9hDp16ljuGS9VqhSys7Px/vvvIy8vr8B0nMXSz88P+fn5lr/N66Ry5cpOIvI/5hguWbIES5YscTqes9fMaa1Tp06oWbMmtm/fjtzcXKfrIDs72/KAMGuOku78/HwMHToU33zzDR599FGb2wLsmUwmtG3bFm3btgVw+xaBRYsWYdCgQfj666/Rq1cvPPjggzh06FCB+cfGxjpMuq9du4aePXsiIyMD48ePx8svv1xIBFzj5+eHVatWYdKkSfjxxx/x/PPPAwAiIiIwatQovPLKKy49/Ov69evo2LEjtmzZgubNm2PgwIGoUKEC/Pz8cOjQIcyZM8dh3VWKq9swERFpi0k3ERnepUuXLPdSm+/9tWd+lc2CBQuQmJhoGd6tWzd069atwPgDBw6Ej48P7rjjDsuw2rVrIzMzEydPnixwX7d5/uZ7u0vC2T2y5gRr+/btLrXmA0DPnj3Rs2dPXLx4EevXr8f8+fPx+eefo2vXrti9ezfCwsIs0z116pTDaZgfOucswSvKH3/8gZ9++gkJCQlYsmSJTbKzYcMGvP/++8Warpn53t9jx44VOa55GWbMmIFRo0aVaL6euKfbkfDwcOzfvx9Xrlxxuk6qVavmUit8fn4+hgwZgi+//BL9+/dHamqqWy3BJpMJiYmJePbZZzFlyhSsWrUKDz74oMu9AK5evYqePXsiPT0dL774It544w2X512UChUqYMaMGfjvf/+L3bt3Y9WqVZgxYwaSk5NRqlQpjB8/vshpLFq0CFu2bMGwYcPw2Wef2XyXlpaGOXPmuFUmc2xv3rxZ4DtnF/Rc2YYLw3u6iYjUx6SbiAwvICAAw4YNc/jd2rVrsW/fPjzwwAOIiIiweRWQM+vXr8ehQ4fQvXt3m9bWDh06IDMzE7/88kuBB1mtWLHCMo5a4uLiMH/+fGRmZrqcdJuVLVsWXbt2RdeuXXHr1i188cUX2LhxIxISEiyvblq9ejX69Olj87ujR4/in3/+QY0aNWxaud1h7grfo0ePAq2Lv/32W7Gmaa1u3boICQnBH3/8gQsXLhTaxdz8VPLMzExFkm5HrcmFKWnSffnyZezYsQNlypRxq4uxI9YJd9++ffHVV18V+9VPxXmiunXC/cILL+DNN98s1ryLYjKZUL9+fdSvXx8PPPAAqlatisWLF1uSbvMy2/fOAP5Xd3v27FngO2d118fHx+G0AFjqpqMLRObbPJwpbBsuzLZt29yqp856JBARkXN8TzcRGV5QUBA+++wzhx9zN9jx48fjs88+s+mOae5Wbe348eMYPnw4/Pz88Nprr9l8N2TIEPj5+eH111+3aZXatm0bvv32W9SvXx933XWXzW86duzo9L287hoyZAjKli2LV155BTt27Cjw/ZUrVyz3LAO3Lzg4Ovk/ffo0AFheAdazZ0+EhoZi9uzZNtMVQuCll17CzZs3S3RPqPkp6/bvMN+xYwdSUlKKPV0zPz8/PP7448jJycHo0aMLLHNOTg4uXboEAGjdujXi4uLw7bff4rvvviswrfz8fKxZs8al+Zpbc935uOLixYvYu3dvgeFXr17FiBEjcPHiRfTp06dEr9Qydyn/8ssv0bt3b8ydO7fQhHvTpk348ssvce3atQLfnTlzxtIKbF//nTF3KU9PT8dzzz2Ht99+u8jfmN9x7cqFi0OHDuHQoUMFhpt7c1i//q58+fIAbl9gsues7q5Zswaffvqpw3mXL18e//77r8PvWrVqBQD48ssvbW6RyMzMxNdff11gfFe34cIkJSW5VUcdxY2IiArHlm4iIif++9//Yu7cubjrrrsQGRmJo0ePYtGiRbhy5Qo+//xzm67lwO0Hh02aNAkTJkxA06ZN0atXL1y8eBFpaWkAbr+L2r5rrvnEuiQJkllERAS+/fZb9O7dG02bNkXXrl1Rr1495OXlWV571LZtWyxfvhwA8Mwzz+D48eO46667UK1aNZhMJqxbtw6bNm1CmzZtLAlSSEgIPv30U/Tv3x9xcXHo27cvIiIi8Ouvv2Lz5s1o3bo1xo4dW+xyt27dGq1bt8b333+PEydOoE2bNjhy5AgWL16MHj164IcffihxbKZMmYINGzbgq6++woYNG9CtWzcEBATgwIEDWL58OdatW2e54PLtt9/i7rvvRr9+/TB9+nTccccdCAoKwpEjR5CZmYkzZ844TC495dy5c6hXrx5atWqF+vXrIzo6GqdOncKvv/6Kf//9F40bN3YpSS3MlClTMGfOHAQHB6NOnTr4z3/+U2CcxMRES8yOHz+OwYMHY9SoUWjfvj3q1asHPz8/HD58GD///DMuXbqEHj16oHfv3i7N/4knnkB6ejqio6NRtmxZh4l0UlKSTc8Ud7albdu24aGHHkLr1q3RoEEDREdH49ixY1i4cCF8fHzw7LPPWsa9++67YTKZ8PLLL2PHjh0IDQ1FWFgYRo0ahfvvvx/VqlXDW2+9haysLDRq1Ah79uzBzz//jAcffNBh3b3nnnvw/fffIzExEc2bN4evry8eeOABNGnSBG3atMGdd96JVatWIT4+Hu3bt8fhw4exaNEi3H///QVeb+bqNqyVdevWWS64nDlzxjLMfJEuPDwc77zzjlbFIyLyHI88I52ISFLOXhkmhBArV64UnTt3FpGRkaJUqVIiOjpa9O3bt8ArxOzNnTtXtGzZUgQFBYnQ0FDRvXt3sXnz5gLj5efni/Lly4tq1aqJGzduuFTe2NjYIl/Zs3v3bjFs2DARGxsr/P39Rbly5UTjxo3FM888IzZt2mQZLy0tTfTp00fUrFlTlC5dWoSGhoqmTZuKN998s8CrvoQQYu3ataJbt24iLCxM+Pv7izp16oiJEyeKS5cuFRgXhbwWydEynD59WgwdOlRUqlRJBAYGisaNG4uZM2eKAwcOOHzNUGFx6NChg8PXb127dk288847olmzZiIoKEgEBweLBg0aiOeff15cuHDBZtzz58+LCRMmiEaNGlnGrV27tnjkkUcUef1VSeTk5IiRI0eKVq1aiYiICOHn5yfKli0rWrduLd566y1x5cqVAr/Zv3+/ACDuv/9+l+Zh3i4K+1i/uio3N1fMnTtXDBw4UDRs2FCEhYUJPz8/ERERITp16iQ+//xzcfPmTZeX0bwOC/vYv1brwQcfFD4+Pi69Puvo0aNi3Lhxok2bNiIyMlL4+/uLqlWrioceesjhviA1NVU0btxYBAQEFHht1oEDB0SvXr1ERESEKF26tGjVqpVIS0uzvDIuOTnZZlonTpwQffr0EeHh4cLHx6dALM+ePSsGDRokypcvL4KCgkSbNm3EihUrHL4yzN1t2NOKeh1ZcV8/RkSkNyYhVHqfCRERFSorKwuNGzfGzJkz8dRTT2ldHDKwDRs2ID4+HkOGDMEXX3yhdXFUERkZiY4dO+L777/XuihEREQ2eE83EZFGfvvtN0RFRWHo0KFaF4UMbtGiRQD+96A4o9m1axfOnDnj0hPHiYiIPI0t3URERAZ07do1/Oc//8H27duxePFiVKxYEbt27VLkXfFERETkOibdREREBpSdnY3y5csjLCwMHTt2xJtvvqnIe+KJiIjIPUy6iYiIiIiIiFTCe7qJiIiIiIiIVMKkm4iIiIiIiEglTLqJiIiIiIiIVMKkm4iIiIiIiEglTLqJiIiIiIiIVMKkm4iIiIiIiEglTLqJiIiIiIiIVMKkm4iIiIiIiEglTLqJiIiIiIiIVMKkm4iIiHQhNTUVJpMJhw4d0rooRERELmPSTUREhmdO1swfPz8/VK5cGUlJSTh27JjWxdPUzp07MWnSJCayREREKvHTugBERESeMmXKFFSvXh3Xrl3Dhg0bkJqainXr1iErKwuBgYFaF08TO3fuxOTJk9GxY0dUq1ZN6+IQEREZDpNuIiLyGt26dUPLli0BAMOHD0d4eDjefPNNLF68GH369NG4dERERGRE7F5OREReq127dgCAf/75x2b47t278fDDD6N8+fIIDAxEy5YtsXjxYptxbty4gcmTJ6N27doIDAxEhQoVcNdddyE9Pd1mvFWrVqFdu3YoU6YMwsLC0LNnT+zatctmnEmTJsFkMmH//v1ISkpCWFgYQkNDMWTIEFy5csVm3NmzZ+Oee+5BZGQkAgIC0KBBA8yaNavAslWrVg333Xcf1q1bh9atWyMwMBA1atTAl19+aRknNTUVvXv3BgDcfffdlu73q1evdhqzv//+G0lJSahRowYCAwMRHR2NoUOH4ty5c8VepqtXr+KZZ55BeHg4ypYtiwceeADHjh2DyWTCpEmTnJbFbNmyZZYYly1bFj169MCOHTuK/B0REZEnMOkmIiKvZb6PuVy5cpZhO3bsQJs2bbBr1y6MGzcO7777LsqUKYPExEQsWLDAMt6kSZMwefJk3H333fjggw/wyiuvoGrVqtiyZYtlnF9//RUJCQk4ffo0Jk2ahOeeew6///477rzzTof3UPfp0wcXL15ESkoK+vTpg9TUVEyePNlmnFmzZiE2NhYvv/wy3n33XcTExOCpp57CzJkzC0xv//79ePjhh3Hvvffi3XffRbly5ZCUlGRJSNu3b49nnnkGAPDyyy/jq6++wldffYX69es7jVl6ejoOHDiAIUOGYMaMGejXrx/S0tLQvXt3CCGKtUxJSUmYMWMGunfvjjfffBNBQUHo0aOH0zJY++qrr9CjRw8EBwfjzTffxMSJE7Fz507cddddvE+diIjkIIiIiAxu9uzZAoD49ddfxZkzZ8TRo0fFDz/8ICIiIkRAQIA4evSoZdxOnTqJxo0bi2vXrlmG5efni7Zt24ratWtbhjVt2lT06NGj0Pk2a9ZMREZGinPnzlmG/fXXX8LHx0cMGjTIMiw5OVkAEEOHDrX5/YMPPigqVKhgM+zKlSsF5pOQkCBq1KhhMyw2NlYAEGvXrrUMO336tAgICBDPP/+8Zdi8efMEAJGRkVHoshQ2/2+//bbAvFxdps2bNwsAYsyYMTbjJSUlCQAiOTnZMsy8Hg8ePCiEEOLixYsiLCxMjBgxwua3J0+eFKGhoQWGExERaYEt3URE5DU6d+6MiIgIxMTE4OGHH0aZMmWwePFiVKlSBQBw/vx5rFq1ytI6e/bsWZw9exbnzp1DQkIC9u3bZ3naeVhYGHbs2IF9+/Y5nNeJEyewbds2JCUloXz58pbhTZo0wb333oulS5cW+M0TTzxh83e7du1w7tw55ObmWoYFBQVZ/p+Tk4OzZ8+iQ4cOOHDgAHJycmx+36BBA0sXegCIiIhA3bp1ceDAAVdDVoD1/K9du4azZ8+iTZs2AGDTyu/qMi1fvhwA8NRTT9mM9/TTTxdZlvT0dGRnZ6N///6WdXX27Fn4+voiLi4OGRkZ7i0cERGRCvggNSIi8hozZ85EnTp1kJOTgy+++AJr165FQECA5fv9+/dDCIGJEydi4sSJDqdx+vRpVK5cGVOmTEHPnj1Rp04dNGrUCF27dsXAgQPRpEkTAMDhw4cBAHXr1i0wjfr162PFihW4fPkyypQpYxletWpVm/HM3d4vXLiAkJAQAMD69euRnJyMzMzMAvdG5+TkIDQ01On0zNO8cOGC8yAV4fz585g8eTLS0tJw+vTpAvO3V9QyHT58GD4+PqhevbrNeLVq1SqyLOYLHvfcc4/D780xIyIi0hKTbiIi8hqtW7e2PL08MTERd911Fx555BHs2bMHwcHByM/PBwC88MILSEhIcDgNczLYvn17/PPPP1i0aBF++eUXfPbZZ3jvvffw0UcfYfjw4cUqn6+vr8Ph4v/vlf7nn3/QqVMn1KtXD9OmTUNMTAz8/f2xdOlSvPfee5byuzq94ujTpw9+//13jB07Fs2aNbPErWvXrgXmr1YZzMzz++qrrxAdHV3gez8/nuYQEZH2eDQiIiKv5Ovri5SUFMuD0MaNG4caNWoAAEqVKoXOnTsXOY3y5ctjyJAhGDJkCC5duoT27dtj0qRJGD58OGJjYwEAe/bsKfC73bt3Izw83KaV2xU//fQT8vLysHjxYpsW5JJ0ozaZTC6Pe+HCBaxcuRKTJ0/Gq6++ahnurIu9K2JjY5Gfn4+DBw+idu3aluH79+8v8rc1a9YEAERGRrq0voiIiLTAe7qJiMhrdezYEa1bt8b06dNx7do1REZGomPHjvj4449x4sSJAuOfOXPG8n/7V2QFBwejVq1ayMvLAwBUrFgRzZo1w5w5c5CdnW0ZLysrC7/88gu6d+/udnnNrcbWrcQ5OTmYPXu229MyMyf+1mV0Z/4AMH369GLP39yj4MMPP7QZPmPGDJd+GxISgjfeeAM3btwo8L31+iIiItIKW7qJiMirjR07Fr1790ZqaiqeeOIJzJw5E3fddRcaN26MESNGoEaNGjh16hQyMzPx77//4q+//gJw+yFlHTt2RIsWLVC+fHn8+eef+OGHHzBq1CjLtN9++21069YN8fHxGDZsGK5evYoZM2YgNDTUpfdP2+vSpQv8/f1x//334/HHH8elS5fw6aefIjIy0uFFAlc0a9YMvr6+ePPNN5GTk4OAgADLe8DthYSEoH379njrrbdw48YNVK5cGb/88gsOHjxYrHkDQIsWLdCrVy9Mnz4d586dQ5s2bbBmzRrs3bsXQOEt8SEhIZg1axYGDhyIO+64A/369UNERASOHDmCJUuW4M4778QHH3xQ7LIREREpgUk3ERF5tYceegg1a9bEO++8gxEjRqBBgwb4888/MXnyZKSmpuLcuXOIjIxE8+bNbbpUP/PMM1i8eDF++eUX5OXlITY2Fv/5z38wduxYyzidO3fG8uXLkZycjFdffRWlSpVChw4d8OabbxZ4cJgr6tatix9++AETJkzACy+8gOjoaDz55JOIiIjA0KFDi7X80dHR+Oijj5CSkoJhw4bh1q1byMjIcJh0A8A333yDp59+GjNnzoQQAl26dMGyZctQqVKlYs0fAL788ktER0fj22+/xYIFC9C5c2d89913qFu3LgIDAwv97SOPPIJKlSph6tSpePvtt5GXl4fKlSujXbt2GDJkSLHLREREpBSTUOJJJkREREQK2rZtG5o3b465c+diwIABWheHiIio2HhPNxEREWnq6tWrBYZNnz4dPj4+aN++vQYlIiIiUg67lxMREZGm3nrrLWzevBl33303/Pz8sGzZMixbtgyPPfYYYmJitC4eERFRibB7OREREWkqPT0dkydPxs6dO3Hp0iVUrVoVAwcOxCuvvMJ3bRMRke4x6SYiIiIiIiJSCe/pJiIiIiIiIlIJk24iIiIiIiIilXjNjVL5+fk4fvw4ypYtC5PJpHVxiIiIiIiISAVCCFy8eBGVKlWCj4/27cxek3QfP36cT0AlIiIiIiLyEkePHkWVKlW0Lob3JN1ly5YFcDvwISEhGpeGiIiIiIiI1JCbm4uYmBhLDqg1r0m6zV3KQ0JCmHQTEREREREZnCy3FWvfwZ2IiIiIiIjIoJh0u6HauCWGnp+sZSiJauOWWD7F+a31NJz9X+8xkol9fD05Pz3RY7n1Vl6j0GNd0QJjRI7IWi+MsF178lhfFGdlkKFsJSVrXZG1XGpi0u2iauOW4NDUHh6dp3l+WlVKvW8M1uV3d905OhiY68ChqT0KTFvvsXKVJ3aS5nh6Ynvz9DatFL2W22j0ctLA+lI0Pe7H9VZePZKxXpjLo/ft2jq2Wsa4sHnrPcZmMtZjwDjxdRWTbslpvZEYZYNwt1Xaermt/289DfuLIlqvK6PQ4gKX3tad3spLZKaXCxWy02I/6c20rrP25zBGWvdaNjAZMZ6OaF1/7clWHk8xCSGE1oXwhNzcXISGhiInJ8ftB6l548HNSDsiZ0my9TBH41uz/q39b8zDvKWeqLWcJemZoMS8vWHdac1ocZZ9eWQvn4z0FDM9lZWKx/58xIjr29PnUIWd4xmVTPXIk/lFSXI/NbCluwhaX43RshXVCDsh++7h1l3EzTt5+/uI7Vu5rcdzFBNZukjpnTm2WtQ7WbteGY0R9ilmstcXWcsna7n0hgm352jVO8P+QrRR17d9b0I1eWPCbebJODvj7ft/tnQXQesDmxatf0Zq5TYrakfr6Cqgu7HXsqXW09TYLrTe1mQpgzv0WF7AGNuH7Muit7ohEz3ETg9lNBJPx1v2/YvSPHH+5E3naI5odcFBywsdbOkmt1i3ynp6vkZhffCyjqWz1m3rYe7E3kgxK4waVyqtu5dpTYYyuEIv5bRmtG1E1uWRvW7wvm7SI9ZZ9XjqPNfIPQZcpcXFI63mLxsm3YWQaQfrqbLItMxKcdSV3P4ebeth1t+5Gw+tnzjvCWpehdZ6Z6z1/N2hp7Ja02u5SVky1wNZLgAWxhuONbJhb0PPUPPCvjdz9GwiNfcfjm6P8PZ1wKS7CDJUEE+3AsqwzGqx3+itE237+7KLu4PwhpMhpeujTHVODyfcZjLFzVVGaOXUwwmc7OXTQx2QvYyyl89IrC/cq8mbE2497Ff1zroRypPzpNuYdDvBg5kxOWvtBmyTbKV2EkatR0ouV2EPqSPj4XpWlx72OXpo8ZC9fIA+ymg0erooqzdG7kUnG7Xj4c0XjwrDpLsQslQWT3ZpkmWZ1eDovm3r1m0lr2Lr4aSyJJRuzZftREa28jijhzI6opf4OqLXcstGD3GUvZ4a/ZgtIzVjzkRF+Z6dMm+/WlO7V6Y312NnmHTbkbnrIytwyVm3ZNu3aqt1z4ms9amklNhhF/YwOyqa7ElBYfRedpnJXj4zPax/PddTUofS54nW09PLtqsWbm+epUZ94/mcc0y6rcj8OgG1LwZ400bi6N4ste7X8paYFkdJ7533BB781eWp+yS9BeOoHsaWHD0PRq3pe7OSPMzWGi9kuK64cbbuJcpjedGYdP8/mRNuM14BVI6jB6hZD1eakddbceql9fiy7qhl3Q8YkV5iLWM91SuZL7bZk7Wc3vDQTlkpddxiYlg0V2PN5K94ilv3nMWYddk5TZLuSZMmwWQy2Xzq1atX6G/mzZuHevXqITAwEI0bN8bSpUsVK48eWtzULJe37pzsn1iuVoxlrVNKsE+43alL1t35ZY6R7NuHzLFzhd5au2WPt+zl0zO91FFSj5Kt3Uy4nXMUk+IcJxhb1zlqtXYWb/vGKj2cy8lAs5buhg0b4sSJE5bPunXrnI77+++/o3///hg2bBi2bt2KxMREJCYmIisrq8Tl0NNOT82HHehh+dXgyR2FkU/YzImTK3G0flCK7DHx1u3C0/QQZ9lvwZF9W3JED/sAM5lblWWul0ZkHe+SdMu1nxYVn6P1wNi6rrBY2cdWDz2DZaVZ0u3n54fo6GjLJzw83Om477//Prp27YqxY8eifv36eO2113DHHXfggw8+UKQseqk0aj3wQMaTCKPRSx0rLne6fpn/r8X7IotL9jLKXj5Xybwceqmr5F1YJz2vpD3kmHC7xll8CksCi/otFY91nTdjjN2nWdK9b98+VKpUCTVq1MCAAQNw5MgRp+NmZmaic+fONsMSEhKQmZlZojLI3nLhiNInft7cyq0FI54gWdehwi7i2HdB0ssFH5lbuIxG5n2RHta/zPFzRG/HH+4LCFCmpZuKz/r8wT7+etunyMT+1gn7WLKul5wmSXdcXBxSU1OxfPlyzJo1CwcPHkS7du1w8eJFh+OfPHkSUVFRNsOioqJw8uRJp/PIy8tDbm6uzcfMvKHqbcNUo8JzI/IcvdU3dxR15dnRfUL2r2zTA24v6pG5JZktU+qRdZ07I1viLVt5vEVxkxHuS9zj6j30jKcyHF20cPQ34108miTd3bp1Q+/evdGkSRMkJCRg6dKlyM7Oxvfff6/YPFJSUhAaGmr5xMTEAAAaJa8AoM8NVOky8yCtDSPG3dEVUsB5y7fetj/Zr/bqLZ6FkTW+MsdYxpi5Sua4FkXPcaeSc/YWFGdYX4rH/lY0R41memxI0xM+KE0ZUrwyLCwsDHXq1MH+/fsdfh8dHY1Tp07ZDDt16hSio6OdTnP8+PHIycmxfI4ePQoAyJqcwEpjhbHwLCPH29FB0P57+67leoqH/cUEUp6s9UEPt0LIGrui6CG29uwvwumt/KQMR/e5OhrHvo7odVvVmv0x2PqiB2NKeiBF0n3p0iX8888/qFixosPv4+PjsXLlSpth6enpiI+PdzrNgIAAhISE2HyMQKmDO08StGXk+FufYDg7OdXzAVLWshupTsm0LLLXWZli5U1kut9RbxcwjcK+h5err1siZTC+pDeaJN0vvPAC1qxZg0OHDuH333/Hgw8+CF9fX/Tv3x8AMGjQIIwfP94y/ujRo7F8+XK8++672L17NyZNmoQ///wTo0aN0qL4mlLyic88SGvDyK2ljk5CnD1ATc/1T+b7j42CJ62u0/O2BOi7/DIk3twfacdRy6sr41Px2Z9TEOmFJkn3v//+i/79+6Nu3bro06cPKlSogA0bNiAiIgIAcOTIEZw4ccIyftu2bfHNN9/gk08+QdOmTfHDDz9g4cKFaNSokRbF1z0enOVh5HVh/z5uo7R0k7qKuk3B02Suq1rHRglGSBhlqCNGiKPeFRV/GeoJEWnHJIQQWhfCE3JzcxEaGoqcnBzddzUvaeLCxEcORr/Hy7qeGbXOydZiL1t5SkKGB/DJvo0aaX0bgVb1xfoCJ+uDNpwd77hOiLQjW+4nxT3d5J6SdDE3avKjR0ZeB96QcJuxdUkdMtQXmV9rZ6R6Z8RbCTx5X6+M9dPb2N82JvO+g4i0waRbp4x2guKtjHp/t7MTEKMx6nLJQsuu5jI/e8Do25VeOVof1rfYaDF/8hzeZ0xEhWH3ch1z94SQJ2ry4rrRN0evR9OyHEasR55cNlnWpzOyXgyg/3FUh9Rcb6wTRES2ZMv92NKtc0ZrISXSI1ke/mXUnhOAZ5ZND+/TZXKlD45eKeaJh50ZcdsnIjICJt0G4MpB1sgtYEZg5GTJW8iUeBt1O3e2nSjRfdfR75ngeo5R932eqj+sp0REcmPSrWPuvh+UB2W5MfHWP0etW57myQc4acnRa+iUWGaZL1p4wzo1IvuHnxp1OYmIyDkm3Tpnf4LvrLXG+l+Sl3Xi7Q2Jk1HJkLTJUAY1OetZ4GwfWNj2ZD1c9u3OyOvVyMtmxourRETeiUm3zjnq/mh/AmnmDSc0RuCotZQnaPqj1cm1/YUboyksrvbfOYqB/bDCHprGfabneOJ+Z63ZP0xN6eXl7RBERPLi08sNgF3LjY/35OuTVuvNWy62OXsfvP3/7f+1Zz9cxphxH2AMhV0sUnLarCdE5O1ky/2YdBtAUVfOefA1Bp506xPXm+e4klA7o/YrnUpK5rIpxVu2FftjttLL6w11hYioKLLlfuxebgDmk0XzgZYHW2NydL837/3WD0+vI298loOjfV9hFyIdvdJJRt6+Do3Ier/tTeuXiMhbsaXbYAq7P5GMw9lJGte3nLTaLmVOJNXkKN7Ohsnewg14TwuwmezrQwnObocgIiJlyJb7MekmMgieuMlLq9s+vLlOOFt2Pd6C4w1JqJk31VlHzx5QerpERN5KttyP3cuJDIKvopGXlie/3vBUaEec3WpjP0z2xMQb1523UXIde9MFGiIiPWHSTWQgfM+3vFxpcVVjnqwDBTm6p5vkYL5Y4g311r4eKrHMrNNERHJi0k1kMI6SO284gdUDc0Lh6RNjnogXpIeYeGs3YW/aX3nbuiUi8lZMuokMSKvkjlyjxVOLvSmRMQJvX1/etO9S6+KKt9chIiKZMOkmMjje6y0fTyYU3pS8GJE3rj/r12B6A+su9UosM+/rJiKSD5NuIi/AxFs+njwp5nrXF3PSJFviZN1Dg3VKWUq2dlvfE8/1REQkBybdRF5CthN4us1TJ8Xe8nAqvZNtHVk/lNGT7zT3pgeqAcpfGOX+nohILky6ibyMt5zE6oGnToyt58P1Lz9ZEibrBNu+9dSbEmJPkWW9ExGR8ph0E3kRntR5L+sEit2D5STTOrHvnmzd/dlT+xFvvDdZyYsZvK2IiEgeTLqJvAxbqOTiyfVhPx/WA/nImGTat3bbdzdXc77edoHIm5aViMibMOkmIvIC1okTUWGsEz/r+7jtu5uT8tS6l53JPBGRtph0E3khb2xBkpmn1oejB2GxDshBtq7U9l2Tnf3rqXJ4EyVjy22diEgOmiTdKSkpaNWqFcqWLYvIyEgkJiZiz549hf4mNTUVJpPJ5hMYGOihEhMZD+/3k48nuprz9gIqinUdcZT0Wu87WGfV4Y0XG4iIjMxPi5muWbMGI0eORKtWrXDz5k28/PLL6NKlC3bu3IkyZco4/V1ISIhNcm4ymTxRXCJD48mdPDz5OibrecrWyuptZIq/o2TbvmxKvlPanTJ5EyXrhDdetCAiko0mLd3Lly9HUlISGjZsiKZNmyI1NRVHjhzB5s2bC/2dyWRCdHS05RMVFeWhEhMZE7uZy0OrpIs9Hshd9vcde+KBaoD31FE1l9dbYkhEJBsp7unOyckBAJQvX77Q8S5duoTY2FjExMSgZ8+e2LFjh9Nx8/LykJuba/PRkvUTX4mInOF+wrvIuK7duQDEe7vVofQD1XhvNxGRtjRPuvPz8zFmzBjceeedaNSokdPx6tatiy+++AKLFi3C3LlzkZ+fj7Zt2+Lff/91OH5KSgpCQ0Mtn5iYGLUWoUjmbmJqPZWUqCS87WRWZlo9GdrbWhJlI8s2WJz178mye9PxU43bPph4ExFpR/Oke+TIkcjKykJaWlqh48XHx2PQoEFo1qwZOnTogPnz5yMiIgIff/yxw/HHjx+PnJwcy+fo0aNqFN8l1icKPNCRrFg35aLV+rDulcM6oR5Z4+tOkmd/e4pW75s3IrUvZshyoYeIyFtomnSPGjUKP//8MzIyMlClShW3fluqVCk0b94c+/fvd/h9QEAAQkJCbD5asD45sL//zRtOHNzFk31tmHthkPa0as1ztv65LarLKNudp5bDm3plqHGuYB0/HmuJiDxHk6eXCyHw9NNPY8GCBVi9ejWqV6/u9jRu3bqF7du3o3v37iqUUFn2BzXrLmMyPbXW04o62HtzbLTAeJOjhJ91QlmyJjnF3f61qB/WyaiR66fRl4+IyJuYhBDC0zN96qmn8M0332DRokWoW7euZXhoaCiCgoIAAIMGDULlypWRkpICAJgyZQratGmDWrVqITs7G2+//TYWLlyIzZs3o0GDBkXOMzc3F6GhocjJyfFYq7cr7zD1xgOqK/GwHscbY6QFT78GiOTlaBtlvVCGjPu2km77Wl1I5j6r+LiNE5HRaZH7FUaT7uWzZs1CTk4OOnbsiIoVK1o+3333nWWcI0eO4MSJE5a/L1y4gBEjRqB+/fro3r07cnNz8fvvv7uUcGvJ/gTL0btPZW35UIOjeFh/rL8jz2LM5aPVvsHRNkklJ2PCDShXFk+3zMoUQ7WotQ9w9NBGdjcnIlKPJi3dWvD01Y6iTq7sv/eWbmTutkywJcOzvKUe6oFMdV+msuiZjHFUqkxaXVCQMaZKsu4xp8YyOkuyjRpPIvIebOn2Eu6++scbDnDFOTnyxt4AWmOs5SBbS7NMZdEz2eKoxiupPLkP8ZZjhFr1xlmvFqPHk4jI05h0q8CVLlredoArSWuEbCepRN6Gb1woOVljp1S5tHrHvFbz9BRPvs3A285LiIg8iUm3ioo6EbB/8IzRD3AlOTHyhvjIQLbWVW8nY52XsUx6Idu2pXTXbK3rhtbzV5MnE2/r44D1q8WMHF8iIrUx6VZYcU9ijHovrdIHah701ccYy0WW9cELMsUnyzq0p+b69PQyG71uytKDQNa6TEQkOybdGjPyiYLSD9bxlnv3ZMAYy0OmfYR1rxzWEffItB7NlF6HMiwj66ayHN3zbYT4svWeiDyNSbeClOiqZ5QDgFpPsmXirT62aMpDttsqZCsPFZ9aT/3WsteW0RJDe1ovk323cz0yJ9p8LaKyeAGDqGhMuhVSkp2NkXf6aiyb3g/6esDYykO2/YPRExulGfXWIWe0rh9az18Nsr1W1P5+b72wjqG53HpbBhlZx4/xJC3opd4x6VZYSVu5ZTmoloT1VWQ1GSFWMtPDDsxbyLYujNDiRerR+ljGY4P69HZxwzrJth/GHjzFx7iR1hxt0+YkvFHyCq2K5RCTboWU9CBvlJMET55s6eXKFlFJyFzHjbLfUous606truVmMtQLo10UkiGm9uwTb1ljXdh5iWy9CIxC5vpAxuGojnmq4a84mHQrwPoeIaWmRYWTcWMyEsZXHrKvC7YSOSbzgV/GMqnBSIm3rMugl4esOSsXHw5ZfNYX7xzt66zjytiSJ8la55h0S0bPJ0NaXC3Wc7xIWbLuZJWgh3pu1NgXh6OurDLxRLlkaT2UoQxKkP0Cgoy3nDg7JhSVJFLRnPWWcXYBxijbIcnDvn7JepHbGpNuiei5m5NWD8wxcqIlAz3E1r4O6KHMRqOHg50WZI6Jp565Icv2KEs5jE629W7P2bvH9Xz+5WlFrVtnMZa1TpC+ObrwY/5kTU7QqFSOMekuIaXvjdPzDl+G18SQcmSNq3V3tcK6DBqJHk5YZC+fp8geB0+WT5ZYyLovc5dekkIZEm9nLdxFDZOlzsrI/jhUWF10lggRKUHt55KohUm3ZPS4w9e6zFrPnzynsHVt372I9cLzGPP/0dvJgBpkiwHrp+douR+2n6erCR+PHc45imlReDwmNeg14QaYdJeYWitdLzsorSs/d+jqkyW2hdU1Z/eVyVL2ktJDK4Hs5fMErfeH5BzXiefJsB92NTnktuucfQ+L4sZIDz22ZFFYnLz14XRGWGYm3SWkdHcvPe7wZSmz3jdGco2jh2c4IsMJn5L0shx6Kae30uICjkx1QqayFIfeym+9H/bUA/zM83Wnnls/I4YPVCuoJG9jMP9GlnNF2Vk/iJPPrLmtOD0tZMSkuwTUqvx6uG9LydeklRR36OqRJab2rRDuHvyNcKDSw4mgLPVFK3pYfk/XIZliIlNZisO835N9P2DPvpux2uUvyXrmA9VsKdUDwDquequ/nlTYc2ocfecNsXS1oUUPmHST22TshsUduXpkiK31CZu7rRdmWi8DGZtMFyKd4TZwG+OgDbXv8VVymqwjpBdGrqvF7bkiKybdJaB2JTDyhqQ06+44pCytY2p9hbckXdvM09Ir2RM6a3qOs9HppQ6pRe/Lr6f9gDNKJ94lPUbYl0vv8VWKGm/n4bHBOXdvnfMWRlpeJt0loNbOQ+Ydk4yt3IDtk6tljZ1eGeEKoxGeoqqXuq33OJeE3rcTtcgWF71sS87ouexmSu0nXH2FlbvT03sdUYoa2y5ja3uhqLBXsTl7SKyjt7UY4UFj1oy0LGZ+WhdArzxxT5KsFU62EygzWS8IUPEpfUIl83blCr3db6inspaUtyynkeixfuqtvIWxfniZ+W9XeWOjhyepGV9vV9iD0Vx5O4s709d7vPVefnts6S4Bb+taLmOZrHn6KaneRMuYqtHSzvqhLqMdKIuih32O1uXTev729FpHZYtjSdnf/lPUtuTse6XfIqPX+qEEtRswjFaH3VHYshc33kasq0atI0y6i8FTlUHGDUnGMpExOet6VVJ6PqHSU8ucN3czl5Ve6o6n6LFV04jr0NE+2dF+31myrdZFWT3Wj5Lw5MVDb4stUPChYPafknDWQu5tMZYdu5cXk6cOfLKcZOtlw7Vv7ZYhdkag5c5bjXWo11sR9Fhevew7Skpv64b0zYjHN1cSb2fjqlEOb9l3udLFWUn2vRuMVo8dnV944pzD/nir1/qr1/MzV2ja0j1z5kxUq1YNgYGBiIuLw6ZNmwodf968eahXrx4CAwPRuHFjLF261EMl/R+2cstPrzsa2Xly/avd0qCXuuyM3uq43sprRFrXea3n74w3XRjSG0cPkdJzTyXZ2N9P78nY6jWxcuX2B/txPbl/sV+Hetm/2cdKb/XCVZol3d999x2ee+45JCcnY8uWLWjatCkSEhJw+vRph+P//vvv6N+/P4YNG4atW7ciMTERiYmJyMrK8nDJvY8eNlhn1Cq7Hu7hVIMnltn+oOVtz04oit7KbNSDp5ke1ocs+ysZyuCMzGWzZ8TWQWe0SrSNFOOiuuprtZwyJoTOEmX7YYXF1Fl99WSc9dRbw9M9LbRkEkIILWYcFxeHVq1a4YMPPgAA5OfnIyYmBk8//TTGjRtXYPy+ffvi8uXL+Pnnny3D2rRpg2bNmuGjjz4qcn65ubkIDQ1FTk4OQkJCilVmT1+BkWWnL0s53KXUQcWVnZYe4+MuT9V/T+6A9Vi39XglWI9xdpUelk2WMspSDkdkLps9PZVVz2RITIvirIyuJltaLpds8XXnXE+L2x6KQ/bzBbXrgBK5n5I0aem+fv06Nm/ejM6dO/+vID4+6Ny5MzIzMx3+JjMz02Z8AEhISHA6fl5eHnJzc20+SvC2K1V6uErmiPVJidIJt/V0Zd2RqcFTy+vJ+Opx/em13ul1X+IK2ZdNpvoie6yIzGTabhxx1hprn8jI0PLqjAznudbzL+z4at9tu7C/ZWEul9bxLYyssVODJi3dx48fR+XKlfH7778jPj7eMvzFF1/EmjVrsHHjxgK/8ff3x5w5c9C/f3/LsA8//BCTJ0/GqVOnCow/adIkTJ48ucBwWa52EBERERERkfLY0u0h48ePR05OjuVz9OhRrYtEREREREREXkaTV4aFh4fD19e3QAv1qVOnEB0d7fA30dHRbo0fEBCAgIAAZQpMREREREREVAyatHT7+/ujRYsWWLlypWVYfn4+Vq5cadPd3Fp8fLzN+ACQnp7udHwiIiIiIiIirWnS0g0Azz33HAYPHoyWLVuidevWmD59Oi5fvowhQ4YAAAYNGoTKlSsjJSUFADB69Gh06NAB7777Lnr06IG0tDT8+eef+OSTT1yan/nWdaUeqEZERERERETyMed8Gr2oqwDNku6+ffvizJkzePXVV3Hy5Ek0a9YMy5cvR1RUFADgyJEj8PH5X0N827Zt8c0332DChAl4+eWXUbt2bSxcuBCNGjVyaX7nzp0DAMTExCi/MERERERERCSVc+fOITQ0VOtiaPeebk/Lzs5GuXLlcOTIkRIHvlWrVvjjjz9KXCYjTic3NxcxMTE4evRoiZ8UKNNyyVQWo8ZYtunIFmeZYqPUdGSLsVGno1ScZVom2abDuqz+NBhjz0zHqHGWqSxGjbFs08nJyUHVqlVx4cIFhIWFlbhMJaVZS7enmVvNQ0NDS1zBfX19FXn0vFGnAwAhISGGirNMZTEzWoxlnA4gT5xli40RY2zk6QAlj7NsyyTbdADWZbXLAjDGnpgOYLw4y1QWM6PFWMbpALDpOa0lOUqhMyNHjuR0PECm5ZKpLEqSbblkm45SjFgHjRhjI09HCbItk2zTUYpsyyXT/kspMsVGxukoRablkqksSpJtuWSbjky8pnu5bC9INyrGWX2MsWcwzupjjD2DcVYfY6w+xtgzGGf1McaeIVucvaalOyAgAMnJyXx3t8oYZ/Uxxp7BOKuPMfYMxll9jLH6GGPPYJzVxxh7hmxx9pqWbiIiIiIiIiJP85qWbiIiIiIiIiJPY9JNREREREREpBIm3UREREREREQqYdJNREREREREpBKvSbpnzpyJatWqITAwEHFxcdi0aZPWRZLC2rVrcf/996NSpUowmUxYuHChzfdCCLz66quoWLEigoKC0LlzZ+zbt89mnPPnz2PAgAEICQlBWFgYhg0bhkuXLtmM8/fff6Ndu3YIDAxETEwM3nrrrQJlmTdvHurVq4fAwEA0btwYS5cuVXx5tZCSkoJWrVqhbNmyiIyMRGJiIvbs2WMzzrVr1zBy5EhUqFABwcHB6NWrF06dOmUzzpEjR9CjRw+ULl0akZGRGDt2LG7evGkzzurVq3HHHXcgICAAtWrVQmpqaoHyGHVbmDVrFpo0aYKQkBCEhIQgPj4ey5Yts3zPGCtv6tSpMJlMGDNmjGUY41xykyZNgslksvnUq1fP8j1jrIxjx47h0UcfRYUKFRAUFITGjRvjzz//tHzP41/JVatWrUBdNplMlnfwsi6X3K1btzBx4kRUr14dQUFBqFmzJl577TVYPyeZdbnkLl68iDFjxiA2NhZBQUFo27Yt/vjjD8v3jLH79JSDuFKWIgkvkJaWJvz9/cUXX3whduzYIUaMGCHCwsLEqVOntC6a5pYuXSpeeeUVMX/+fAFALFiwwOb7qVOnitDQULFw4ULx119/iQceeEBUr15dXL161TJO165dRdOmTcWGDRvEb7/9JmrVqiX69+9v+T4nJ0dERUWJAQMGiKysLPHtt9+KoKAg8fHHH1vGWb9+vfD19RVvvfWW2Llzp5gwYYIoVaqU2L59u+oxUFtCQoKYPXu2yMrKEtu2bRPdu3cXVatWFZcuXbKM88QTT4iYmBixcuVK8eeff4o2bdqItm3bWr6/efOmaNSokejcubPYunWrWLp0qQgPDxfjx4+3jHPgwAFRunRp8dxzz4mdO3eKGTNmCF9fX7F8+XLLOEbeFhYvXiyWLFki9u7dK/bs2SNefvllUapUKZGVlSWEYIyVtmnTJlGtWjXRpEkTMXr0aMtwxrnkkpOTRcOGDcWJEycsnzNnzli+Z4xL7vz58yI2NlYkJSWJjRs3igMHDogVK1aI/fv3W8bh8a/kTp8+bVOP09PTBQCRkZEhhGBdVsLrr78uKlSoIH7++Wdx8OBBMW/ePBEcHCzef/99yzisyyXXp08f0aBBA7FmzRqxb98+kZycLEJCQsS///4rhGCMi0NPOYgrZSmKVyTdrVu3FiNHjrT8fevWLVGpUiWRkpKiYankY1/h8/PzRXR0tHj77bctw7Kzs0VAQID49ttvhRBC7Ny5UwAQf/zxh2WcZcuWCZPJJI4dOyaEEOLDDz8U5cqVE3l5eZZxXnrpJVG3bl3L33369BE9evSwKU9cXJx4/PHHFV1GGZw+fVoAEGvWrBFC3I5pqVKlxLx58yzj7Nq1SwAQmZmZQojbOyYfHx9x8uRJyzizZs0SISEhlri++OKLomHDhjbz6tu3r0hISLD87W3bQrly5cRnn33GGCvs4sWLonbt2iI9PV106NDBknQzzspITk4WTZs2dfgdY6yMl156Sdx1111Ov+fxTx2jR48WNWvWFPn5+azLCunRo4cYOnSozbCHHnpIDBgwQAjBuqyEK1euCF9fX/Hzzz/bDL/jjjvEK6+8whgrQOYcxJWyuMLw3cuvX7+OzZs3o3PnzpZhPj4+6Ny5MzIzMzUsmfwOHjyIkydP2sQuNDQUcXFxlthlZmYiLCwMLVu2tIzTuXNn+Pj4YOPGjZZx2rdvD39/f8s4CQkJ2LNnDy5cuGAZx3o+5nGMuI5ycnIAAOXLlwcAbN68GTdu3LBZ/nr16qFq1ao2cW7cuDGioqIs4yQkJCA3Nxc7duywjFNYDL1pW7h16xbS0tJw+fJlxMfHM8YKGzlyJHr06FEgFoyzcvbt24dKlSqhRo0aGDBgAI4cOQKAMVbK4sWL0bJlS/Tu3RuRkZFo3rw5Pv30U8v3PP4p7/r165g7dy6GDh0Kk8nEuqyQtm3bYuXKldi7dy8A4K+//sK6devQrVs3AKzLSrh58yZu3bqFwMBAm+FBQUFYt24dY6wCmWLqSllcYfik++zZs7h165bNDhsAoqKicPLkSY1KpQ/m+BQWu5MnTyIyMtLmez8/P5QvX95mHEfTsJ6Hs3GMto7y8/MxZswY3HnnnWjUqBGA28vu7++PsLAwm3Ht41zcGObm5uLq1atesS1s374dwcHBCAgIwBNPPIEFCxagQYMGjLGC0tLSsGXLFqSkpBT4jnFWRlxcHFJTU7F8+XLMmjULBw8eRLt27XDx4kXGWCEHDhzArFmzULt2baxYsQJPPvkknnnmGcyZMwcAj39qWLhwIbKzs5GUlASA+wuljBs3Dv369UO9evVQqlQpNG/eHGPGjMGAAQMAsC4roWzZsoiPj8drr72G48eP49atW5g7dy4yMzNx4sQJxlgFMsXUlbK4ws/lMYmoxEaOHImsrCysW7dO66IYUt26dbFt2zbk5OTghx9+wODBg7FmzRqti2UYR48exejRo5Genl7gij8px9xCBQBNmjRBXFwcYmNj8f333yMoKEjDkhlHfn4+WrZsiTfeeAMA0Lx5c2RlZeGjjz7C4MGDNS6dMX3++efo1q0bKlWqpHVRDOX777/H119/jW+++QYNGzbEtm3bMGbMGFSqVIl1WUFfffUVhg4disqVK8PX1xd33HEH+vfvj82bN2tdNNIJw7d0h4eHw9fXt8DTME+dOoXo6GiNSqUP5vgUFrvo6GicPn3a5vubN2/i/PnzNuM4mob1PJyNY6R1NGrUKPz888/IyMhAlSpVLMOjo6Nx/fp1ZGdn24xvH+fixjAkJARBQUFesS34+/ujVq1aaNGiBVJSUtC0aVO8//77jLFCNm/ejNOnT+OOO+6An58f/Pz8sGbNGvz3v/+Fn58foqKiGGcVhIWFoU6dOti/fz/rskIqVqyIBg0a2AyrX7++pRs/j3/KOnz4MH799VcMHz7cMox1WRljx461tHY3btwYAwcOxLPPPmvpjcS6rIyaNWtizZo1uHTpEo4ePYpNmzbhxo0bqFGjBmOsApli6kpZXGH4pNvf3x8tWrTAypUrLcPy8/OxcuVKxMfHa1gy+VWvXh3R0dE2scvNzcXGjRstsYuPj0d2drbNlb5Vq1YhPz8fcXFxlnHWrl2LGzduWMZJT09H3bp1Ua5cOcs41vMxj2OEdSSEwKhRo7BgwQKsWrUK1atXt/m+RYsWKFWqlM3y79mzB0eOHLGJ8/bt2212Lunp6QgJCbGcOBYVQ2/cFvLz85GXl8cYK6RTp07Yvn07tm3bZvm0bNkSAwYMsPyfcVbepUuX8M8//6BixYqsywq58847C7y6ce/evYiNjQXA45/SZs+ejcjISPTo0cMyjHVZGVeuXIGPj+3pvK+vL/Lz8wGwLiutTJkyqFixIi5cuIAVK1agZ8+ejLEKZIqpK2VxicuPXNOxtLQ0ERAQIFJTU8XOnTvFY489JsLCwmyehumtLl68KLZu3Sq2bt0qAIhp06aJrVu3isOHDwshbj8iPywsTCxatEj8/fffomfPng4f19+8eXOxceNGsW7dOlG7dm2bx/VnZ2eLqKgoMXDgQJGVlSXS0tJE6dKlCzyu38/PT7zzzjti165dIjk5WbevQLD35JNPitDQULF69WqbV6dcuXLFMs4TTzwhqlatKlatWiX+/PNPER8fL+Lj4y3fm1+b0qVLF7Ft2zaxfPlyERER4fC1KWPHjhW7du0SM2fOdPjaFKNuC+PGjRNr1qwRBw8eFH///bcYN26cMJlM4pdffhFCMMZqsX56uRCMsxKef/55sXr1anHw4EGxfv160blzZxEeHi5Onz4thGCMlbBp0ybh5+cnXn/9dbFv3z7x9ddfi9KlS4u5c+daxuHxTxm3bt0SVatWFS+99FKB71iXS27w4MGicuXKlleGzZ8/X4SHh4sXX3zRMg7rcsktX75cLFu2TBw4cED88ssvomnTpiIuLk5cv35dCMEYF4eechBXylIUr0i6hRBixowZomrVqsLf31+0bt1abNiwQesiSSEjI0MAKPAZPHiwEOL2Y/InTpwooqKiREBAgOjUqZPYs2ePzTTOnTsn+vfvL4KDg0VISIgYMmSIuHjxos04f/31l7jrrrtEQECAqFy5spg6dWqBsnz//feiTp06wt/fXzRs2FAsWbJEteX2JEfxBSBmz55tGefq1aviqaeeEuXKlROlS5cWDz74oDhx4oTNdA4dOiS6desmgoKCRHh4uHj++efFjRs3bMbJyMgQzZo1E/7+/qJGjRo28zAz6rYwdOhQERsbK/z9/UVERITo1KmTJeEWgjFWi33SzTiXXN++fUXFihWFv7+/qFy5sujbt6/N+6MZY2X89NNPolGjRiIgIEDUq1dPfPLJJzbf8/injBUrVggABWInBOuyEnJzc8Xo0aNF1apVRWBgoKhRo4Z45ZVXbF6RxLpcct99952oUaOG8Pf3F9HR0WLkyJEiOzvb8j1j7D495SCulKUoJiGEcL1dnIiIiIiIiIhcZfh7uomIiIiIiIi0wqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIiIiIiISCVMuomIiIiIiIhUwqSbiIikcOjQIZhMJqSmplqGTZo0CSaTSbtCuUlv5SX3mEwmTJo0SetiEBGRzjDpJiIij0hNTYXJZHL4GTdunMvTeeONN7Bw4UL1CkoexfVJRERG56d1AYiIyLtMmTIF1atXtxnWqFEjxMbG4urVqyhVqlShv3/jjTfw8MMPIzExUcVSkqdwfRIRkdEx6SYiIo/q1q0bWrZs6fC7wMBAD5fmtmvXrsHf3x8+Ptp1ALty5QpKly6t2fyJiIhIHexeTkREUnB0T7c9k8mEy5cvY86cOZau6UlJSZbvjx07hqFDhyIqKgoBAQFo2LAhvvjiC5tprF69GiaTCWlpaZgwYQIqV66M0qVLIzc3FwCwceNGdO3aFaGhoShdujQ6dOiA9evXFyjLunXr0KpVKwQGBqJmzZr4+OOPXV7Wjh07olGjRti8eTPat2+P0qVL4+WXXwYA5OXlITk5GbVq1UJAQABiYmLw4osvIi8vz2Ya6enpuOuuuxAWFobg4GDUrVvXMg2z06dPY9iwYYiKikJgYCCaNm2KOXPm2Ixjjvs777yDTz75BDVr1kRAQABatWqFP/74w2bcv//+G0lJSahRowYCAwMRHR2NoUOH4ty5czbjme9t379/P5KSkhAWFobQ0FAMGTIEV65csYxX1Pq0d/36dbz66qto0aIFQkNDUaZMGbRr1w4ZGRnFXiYAmDdvHho0aIDAwEA0atQICxYsQFJSEqpVq+a0LGau1DkiIvJubOkmIiKPysnJwdmzZ22GhYeHu/Tbr776CsOHD0fr1q3x2GOPAQBq1qwJADh16hTatGkDk8mEUaNGISIiAsuWLcOwYcOQm5uLMWPG2Ezrtddeg7+/P1544QXk5eXB398fq1atQrdu3dCiRQskJyfDx8cHs2fPxj333IPffvsNrVu3BgBs374dXbp0QUREBCZNmoSbN28iOTkZUVFRLsfh3Llz6NatG/r164dHH30UUVFRyM/PxwMPPIB169bhscceQ/369bF9+3a899572Lt3r+Xe5x07duC+++5DkyZNMGXKFAQEBGD//v02FweuXr2Kjh07Yv/+/Rg1ahSqV6+OefPmISkpCdnZ2Rg9erRNeb755htcvHgRjz/+OEwmE9566y089NBDOHDggKXLf3p6Og4cOIAhQ4YgOjoaO3bswCeffIIdO3Zgw4YNBR4i16dPH1SvXh0pKSnYsmULPvvsM0RGRuLNN98scn06kpubi88++wz9+/fHiBEjcPHiRXz++edISEjApk2b0KxZM7eXacmSJejbty8aN26MlJQUXLhwAcOGDUPlypWLXIfu1jkiIvJSgoiIyANmz54tADj8CCHEwYMHBQAxe/Zsy2+Sk5OF/aGqTJkyYvDgwQWmP2zYMFGxYkVx9uxZm+H9+vUToaGh4sqVK0IIITIyMgQAUaNGDcswIYTIz88XtWvXFgkJCSI/P98y/MqVK6J69eri3nvvtQxLTEwUgYGB4vDhw5ZhO3fuFL6+vgXK60iHDh0EAPHRRx/ZDP/qq6+Ej4+P+O2332yGf/TRRwKAWL9+vRBCiPfee08AEGfOnHE6j+nTpwsAYu7cuZZh169fF/Hx8SI4OFjk5uYKIf4X9woVKojz589bxl20aJEAIH766SebWNj79ttvBQCxdu1ayzDzehs6dKjNuA8++KCoUKGCzTBn69ORmzdviry8PJthFy5cEFFRUTbzcmeZGjduLKpUqSIuXrxoGbZ69WoBQMTGxtrMC4BITk62/O1qnSMiIu/G7uVERORRM2fORHp6us2npIQQ+PHHH3H//fdDCIGzZ89aPgkJCcjJycGWLVtsfjN48GAEBQVZ/t62bRv27duHRx55BOfOnbP8/vLly+jUqRPWrl2L/Px83Lp1CytWrEBiYiKqVq1q+X39+vWRkJDgcpkDAgIwZMgQm2Hz5s1D/fr1Ua9ePZtluOeeewDA0o06LCwMALBo0SLk5+c7nP7SpUsRHR2N/v37W4aVKlUKzzzzDC5duoQ1a9bYjN+3b1+UK1fO8ne7du0AAAcOHLAMs47XtWvXcPbsWbRp0wYACsQXAJ544gmbv9u1a4dz585ZuvK7y9fXF/7+/gCA/Px8nD9/Hjdv3kTLli0dzr+oZTp+/Di2b9+OQYMGITg42DJehw4d0Lhx40LLUpw6R0RE3ondy4mIyKNat27t9EFqxXXmzBlkZ2fjk08+wSeffOJwnNOnT9v8bf8E9X379gG4nYw7k5OTg7y8PFy9ehW1a9cu8H3dunWxdOlSl8pcuXJlSwJpXYZdu3YhIiKi0GXo27cvPvvsMwwfPhzjxo1Dp06d8NBDD+Hhhx+2PAzu8OHDqF27doGHw9WvX9/yvTXrCwgALMnqhQsXLMPOnz+PyZMnIy0trUA8c3JyCpS3sGmGhIQ4XMaizJkzB++++y52796NGzduWIbbr8+i5g/8Lwa1atUq8NtatWoVmjQXp84REZF3YtJNRES6Z27tffTRR50mzU2aNLH527rV1noab7/9doF7g82Cg4MLPNCsuOznby5D48aNMW3aNIe/iYmJsfx27dq1yMjIwJIlS7B8+XJ89913uOeee/DLL7/A19fX7fI4+40QwvL/Pn364Pfff8fYsWPRrFkzBAcHIz8/H127dnXY4u7KNN0xd+5cJCUlITExEWPHjkVkZCR8fX2RkpKCf/75R/X5WytOnSMiIu/EpJuIiHTF/mFdABAREYGyZcvi1q1b6Ny5c7Gma36AV0hISKHTiIiIQFBQkKVl3NqePXuKNW/rMvz111/o1KmTw+W05uPjg06dOqFTp06YNm0a3njjDbzyyivIyMhA586dERsbi7///hv5+fk2rd27d+8GAMTGxrpVtgsXLmDlypWYPHkyXn31VctwR3FwR1HLae2HH35AjRo1MH/+fJvfJScnF2ve5hjs37+/wHeOhllTos4REZF34D3dRESkK2XKlEF2drbNMF9fX/Tq1Qs//vgjsrKyCvzmzJkzRU63RYsWqFmzJt555x1cunTJ6TR8fX2RkJCAhQsX4siRI5bvd+3ahRUrVri5NLb69OmDY8eO4dNPPy3w3dWrV3H58mUAt7t52zO3zptb4rt3746TJ0/iu+++s4xz8+ZNzJgxA8HBwejQoYNbZTO3Gtu3Ek+fPt2t6dhztD7dKcPGjRuRmZlZrHlXqlQJjRo1wpdffmmzztesWYPt27cXWZaS1jkiIvIObOkmIiJdadGiBX799VdMmzYNlSpVQvXq1REXF4epU6ciIyMDcXFxGDFiBBo0aIDz589jy5Yt+PXXXx0mqtZ8fHzw2WefoVu3bmjYsCGGDBmCypUr49ixY8jIyEBISAh++uknAMDkyZOxfPlytGvXDk899ZQlmW3YsCH+/vvvYi/bwIED8f333+OJJ55ARkYG7rzzTty6dQu7d+/G999/jxUrVqBly5aYMmUK1q5dix49eiA2NhanT5/Ghx9+iCpVquCuu+4CADz22GP4+OOPkZSUhM2bN6NatWr44YcfsH79ekyfPh1ly5Z1q2whISFo37493nrrLdy4cQOVK1fGL7/8goMHDxZ7eQHn69OR++67D/Pnz8eDDz6IHj164ODBg/joo4/QoEEDhxdKXPHGG2+gZ8+euPPOOzFkyBBcuHABH3zwARo1alTkNEta54iIyDsw6SYiIl2ZNm0aHnvsMUyYMAFXr17F4MGDERcXh6ioKGzatAlTpkzB/Pnz8eGHH6JChQpo2LCh5b3QRenYsSMyMzPx2muv4YMPPsClS5cQHR2NuLg4PP7445bxmjRpghUrVuC5557Dq6++iipVqmDy5Mk4ceJEiZJuHx8fLFy4EO+99x6+/PJLLFiwAKVLl0aNGjUwevRo1KlTBwDwwAMP4NChQ/jiiy9w9uxZhIeHo0OHDpg8eTJCQ0MB3L7ve/Xq1Rg3bhzmzJmD3Nxc1K1bF7Nnz0ZSUlKxyvfNN9/g6aefxsyZMyGEQJcuXbBs2TJUqlSp2MvsbH06kpSUhJMnT+Ljjz/GihUr0KBBA8ydOxfz5s3D6tWrizX/+++/H99++y0mTZqEcePGoXbt2khNTcWcOXOwY8eOQn+rRJ0jIiLjMwklniZCREREZCDNmjVDRESEIq+0IyIi78Z7uomIiMhr3bhxAzdv3rQZtnr1avz111/o2LGjNoUiIiJDYUs3ERERea1Dhw6hc+fOePTRR1GpUiXs3r0bH330EUJDQ5GVlYUKFSpoXUQiItI53tNNREREXqtcuXJo0aIFPvvsM5w5cwZlypRBjx49MHXqVCbcRESkCLZ0ExEREREREamE93QTERERERERqYRJNxEREREREZFKvOae7vz8fBw/fhxly5aFyWTSujhERERERESkAiEELl68iEqVKsHHR/t2Zq9Juo8fP46YmBiti0FEREREREQecPToUVSpUkXrYnhP0l22bFkAtwMfEhKicWmIiIiIiIhIDbm5uYiJibHkgFrzmqTb3KU8JCSESTcREREREZHByXJbsfYd3ImIiIiIyKLauCWoNm6J1sUgIoUw6SYiIiIikoA52T40tYflbyLSP6/pXk5kz/5AZj7AEREREWnFfD5yaGoPJt1EBsGWbvJqh6b24NVkIiIi0pyz8xCen5SMufcA4+g5jHlBTLrJK1l33QLYyk1ERETaMScn9ucjPD8pGfP5HuPoOfYxZ+J9G5Nuov/HblxERESkFSaGynJ0GyHP89TFRi3neE83eR3ucImIiEgWPC9RnrOeA3SbGs81claPzRc7vH1dsKWbvJKzDZ9XQcmM9YCIiDylsISE5ybF4yymjOVtSnYB50WOojHp/n+84Z+UxvqkX+b1xnVIRERq4jFGeYXFlEmh8y7gxa2LTLhdw6QbBSsLd4DG5al1y3ds6pf1/oAHECLvZn1BnvtyUguPNcphAlg8xT1ndSfe3r4P9fqk276ycCM1vqLWcUm7cVn/1py4efuORm/s6wjXn3qYzJDs+BReUgvvc3WuJBe8GNPicXc/507CzXXi5Ul3Ya9n8KYDK6/iK8/RzoXx1SeebKvHOqaML8lG6S6YRNZYj5yzfuWUO9sdY1q0oi70uBpv9ihwnyZJ96RJk2AymWw+9erVK/Q38+bNQ7169RAYGIjGjRtj6dKlJSoDK8ttjIOyCntyI8nP2cGI6089bEUkPeG+gJTkTn3ytgYha64cI9xtdfXWWLqiqHgzdygezVq6GzZsiBMnTlg+69atczru77//jv79+2PYsGHYunUrEhMTkZiYiKysLLfn2yh5BSuLHeuu9dwJ/U9xY1FYvWJ89X2PpN7KKzNnrythjItHj9uTnjHWVBKsP84VdfHbUex4Xq8863g7ergsY+0+zd7T7efnh+joaJfGff/999G1a1eMHTsWAPDaa68hPT0dH3zwAT766CO35+3OVTAjVypv2+m7sz7VuABh5Isarrzv0dGO2rwD18N2ZuT1pxVvv7VHKfbd9PWwPcmusDiynlJJ3nHMpKX4zNueo+2P8VSeo8SbcS4+zVq69+3bh0qVKqFGjRoYMGAAjhw54nTczMxMdO7c2WZYQkICMjMznf4mLy8Pubm5Nh8AyJqcoMwCGAQ3HuW4chJmxJM1R0/7tj8oFvb8BL0x2vqTEWPsOj5tXxtG3JeTe0pyawy31eKzvtfb/r5vKlxxL8oqFWdv329qknTHxcUhNTUVy5cvx6xZs3Dw4EG0a9cOFy9edDj+yZMnERUVZTMsKioKJ0+edDqPlJQUhIaGWj4xMTGKLoPeFXbvsTdvECXlrTt++4cN2SffejgounIwkn0ZjIAxdh+ftq8dxtr7lOTWGPZEKRzjQ0amSdLdrVs39O7dG02aNEFCQgKWLl2K7OxsfP/994rNY/z48cjJybF8jh49qti0jYI7tqKpcULlLRc2XL0yqsd46K28snHlxEqmGMv6DAJ2sdQWn0PgvZz12nLlQV9E5J2keGVYWFgY6tSpg/379zv8Pjo6GqdOnbIZdurUqULvCQ8ICEBISIjNx116TAZIOTx5LZo3XpX2tuXVgkwxlv0+NlnLpWfuHPcZfzJzlnjzflg58RyfPE2KpPvSpUv4559/ULFiRYffx8fHY+XKlTbD0tPTER8f74niGY43Jkqy4c5e37j+1CdTjGV8w4Ms5TAqd4+RXB/eoaj1bH9rldLPXJBpH0RE7tEk6X7hhRewZs0aHDp0CL///jsefPBB+Pr6on///gCAQYMGYfz48ZbxR48ejeXLl+Pdd9/F7t27MWnSJPz5558YNWqUFsUnHVL7QkNxp8+Dp75x/alPyxjLfoGST9eWA7uZexdXbplS8yFfMu+TSoLbDxmdJkn3v//+i/79+6Nu3bro06cPKlSogA0bNiAiIgIAcOTIEZw4ccIyftu2bfHNN9/gk08+QdOmTfHDDz9g4cKFaNSokRbF1zVvfcK2jPR+4FSyjuixzul9/emBljHWW30kbTHxJk8xch3jcVU9sl9E9gaaJN1paWk4fvw48vLy8O+//yItLQ01a9a0fL969Wqkpqba/KZ3797Ys2cP8vLykJWVhe7du3u41PIo6UN9uNG5zhPJoJ4PoEapSyV5jYae158WihNrrWLsqJwyrHOt50+OMfEmIiqcDMdQrUhxTze5zv71S+5UXG+t5DIzStLq7bTetqwvxGldFqVpkcjoIYZG2XcYrc4y8TYurlPjMcp+lPSBSXcRZL4iU5yDO3cwyitp/ZC5jlHRZDnJ1sO70ItLi+UyaixlYr3NaL39KMn+YVpkHNwvGAu3T21463bEpFtHHHXL9NaKKxsl1gN3/vqlZeLtaJ5GrEueujgle+xc7Z6vl4t5sl0sUuq+x+L2SCMqikzbC+mHTPXGW/eJTLoNoqgK7O0PUCjpsqu9g+DJmf5puQ6t67fRt3NPxNeVGHJbVZZeLhK4i/t2UhrrknKMut9xxFuWU2ZMug2gqIM6N7SSxcBTSYyeTs7UuIhjhIOfTOtQhjIoTe34ujpdrS5sGGmdGmlZiiLTfoFIRt7eMETegUm3ThR1sHblvZHuMEICZKannTlPzrShZP2QYR3qpb4Xh9r3y8oeO9nL5w5Hy2LUfZ+a+wUjP0iRCjLS+ZkMjLRPJbkx6dYRVxJr+4Mud8zqUqvF1zxt8gylY+2pdainC0qAevfLKhFnvcXSiIwefzX3C7LdG280su0fZCqL3nnDuRbrrxyYdLtAT5XD0YmonsovM0/umM0nUN7WcqFFXVXrYKT1xRNvaA1RKvnWQ5xkO2mi4vHEOtRDfaaS4TomPfPW+suk2wV6qxzmE1Fe+VaOVnH0tlfPGG0Zuf15hqPk29W6xIuTnlfYuvGWi0VKLaP9xRjWYyKyJ9t+wRv28474aV0APTBXDtkqLWnLUzsMZ4k366M+cP/hOdYxdpZ4OzrYy75uiruvkbnuyVgmwLPlknXdEHkTb9gGua+RA1u6dUDL7qlGoORyaHmybt97QavWb6PtvD21LFq9SswbryYDBXv82Hf3L2lvIE/H1kjbnKyMsj69ebv3FtwfKIfbija8sQ4z6dYJre51NQKllkOmHYR1wmCkp9ZqcbLoyfc+Kzkvo1388ATedqMfRtifuaIky+ktMaKCjLTueSzzTkaqw65i0k3kJnOCK8tBQobWbyqalvVFljohyzajJzLtazzFW5ZXqSf5OyPLdk8kM2/Y33jDMuoBk25yyghd1JQ+YZW5pcxRF1qSixbblEx1lfWSqCBvfN+8nsh44Uu28uid0Y9NRl8+vWDS7SLu4PTJG9ebt75uTE+8cb3IeOIqOyXqiWwxd6ceeMMFKtnWD+mDkY4h3Aa8kzeudybdLjLSDs4det8ovHW9Adq/J1ovPF3HtTqxZz3Qp5LWF72udz7HRBlGXCYy1j7dKMshK1kveHvjemfSLTmtK6XW86eSYeJdOC3jwnVChWH98C7sYk7u4vpVjpFjaeRl0xsm3S7S8qoiNxgqCaUTb7XrozfUd62WUctEzojrVe3jglIP2tJzAq/nsruqOOtZ1tYrI5I1zt6wbXiKkWMp67Lp/dhUHEy6ibyAUicNnthBetNOuLjLWpwTbq1PHL1pvZYUY3WbJ+uskZNY1qeSYfyI1GHUfa4zTLrd4G2VA9D/Muu9/ErSy1VFT5ZTy/rhja3dRqTWeuS+y7O0jrda+z2tl4vUY4R1K8vFLhnK4I287XyESbcbvK1yAPpfZr2XXw2Myf/IEAtPloEnFspTev3JUCdlwx42RAWxzirHyLHkcV8eTLqJvAh3vnLxptZu1j3XGTVWerwtwiiMnFSoSZaWWEdkLZc7jLAMspN52/e29c+kmwqlly7Jjsh8sNSaXtcplZw3Jfp6I2OMqo1bUuBD6nD1eOvusY3HQWMywrYoyzJwG9GGLOvfU5h0S4xJI6mBdep/ZIiFFhe2PD1P7stcp0acijtNcx05NLWH5WM93JPUnifrJ5F387YEkDyPSbcbvPWgrNfl1mu5PUXmA4yn1p3MMXBGyQRWj8tvVGqui5JM276uaZF4e2J/YPRtQc+91sgxnuOQK2SuJzKXTQ2aJN0pKSlo1aoVypYti8jISCQmJmLPnj2F/iY1NRUmk8nmExgY6KES3+atByy9Lrdey+0Jsr8X1lMPTpJph69Fa7cW8zUaJZMZNZ+E7m4ZCxuftyioh8kxuYr1RFkynQ8oRfY6Inv5lKZJ0r1mzRqMHDkSGzZsQHp6Om7cuIEuXbrg8uXLhf4uJCQEJ06csHwOHz7soRLfxoMhEalBq4O9pxJvI57MKEnW40pR681ord3eQNa6Ru7jOamyGEtSmyZJ9/Lly5GUlISGDRuiadOmSE1NxZEjR7B58+ZCf2cymRAdHW35REVFeajERMYj8wFb5rIZjScSb67LosmUVLqyvozU2i1br5fClKSsellGch3XKemZt53rSXFPd05ODgCgfPnyhY536dIlxMbGIiYmBj179sSOHTucjpuXl4fc3FybDxUPd+pkRDLWa60OPjLGwlvIesLhap1wtfxKJLZqdr+XidonorLWOdno4WKM3telTPGVqSxK0cMy6aGMStE86c7Pz8eYMWNw5513olGjRk7Hq1u3Lr744gssWrQIc+fORX5+Ptq2bYt///3X4fgpKSkIDQ21fGJiYtRaBFXItLPX605dlvjJTq/rt6RkW26t66v5RF+2uHgDrde9NXfWv1Fau72pzstU18i7ybbdyVYeJehhmfRQRqVonnSPHDkSWVlZSEtLK3S8+Ph4DBo0CM2aNUOHDh0wf/58RERE4OOPP3Y4/vjx45GTk2P5HD16VI3ik8S8aUMuLp6A6YvaF+P4cDXPkuniqjV3y8R7u9XB1m4qijdtD0R6p2nSPWrUKPz888/IyMhAlSpV3PptqVKl0Lx5c+zfv9/h9wEBAQgJCbH5KMEbd3B6vOdC1pNZosLIsK0pnXhzW5SDWnXLKK3dsnEUV6W2JV5cMw6uQyL90CTpFkJg1KhRWLBgAVatWoXq1au7PY1bt25h+/btqFixogoldI47OGWZu7Paf8hzXDkZZ+LkXXhS7p7ivpJLtm1KxjI5oocyKkWtbZDbOJEtb9qvyMSb4q5J0j1y5EjMnTsX33zzDcqWLYuTJ0/i5MmTuHr1qmWcQYMGYfz48Za/p0yZgl9++QUHDhzAli1b8Oijj+Lw4cMYPny4FougKm84CFon14em9rD52H9PpDTZkwsZ6j5PyskdhdUTNbY3GXqFqM06Zmr2UjB6HIlcZbRtQebzHDOjxbwwmiTds2bNQk5ODjp27IiKFStaPt99951lnCNHjuDEiROWvy9cuIARI0agfv366N69O3Jzc/H777+jQYMGHi17cQ/07rbi6mFDKS77ZNueffJN3skbTqodkWnbV7IrK/2PjPW6JGXSch3LGEulWR8zlcZjrb5x/0rOcJuWj2bdyx19kpKSLOOsXr0aqamplr/fe+89HD58GHl5eTh58iSWLFmC5s2be77wxWC+ys+Dm3snDzyYeI63Jrh6omXrfEnqBuuVYzLu30paJk+vayViKHuvF/teYGrNA+C2ak32emHGdUakH5o/vdzo7Hfc5oOn3naUSp3cFGdaeosVkRJkqfc8IVeW1nFU+x5hT9Pj8VRG1ucmjKd+6LX+y3pRQ8YyGZ1e63BxMOlWkSsPp3I0TMaNvqQbRHETbp7we5ae6qSR2cdb6/rP9a8sLRNUR4zwaiqttxGj4HNVyJuxzmvDW84xmHSrzFlF8qZksqT3oxWnZdxbNmAlMWZysb/6q/X68aar0cXh6lsAZKXU/fuOllHtuqv1tmE0fKipvrD+k955yz6GSbdKXEn87BNvmStdSU+4leyeTuRNZKv37pSHF8AKki0eatQvLY5pvCikPCbf+sD1QqQPTLqLQcmDu33iLdsJWUkpHSdSl33dNuLBXE+JoCceouQOWcqhR7JsS46OX0quV62PabLE2Ui87UGw3rCMROR5TLpV4O5JvWwn1kpR46SLB0PPkKVbM1uv5MR1Ujyy7ePVfKiaFsc02eJrNN7U6s26pB6Z645Rzjn01LjgTZh0k6rUaEEhdXlTiwa5j9th4Zw9jFAm1ieWRlyfrsabJ6bu87ZWbz3QYx3WY5mJSopJt8J4ELrNCE/D9WZG7X1ByuF2WFBh24ts25JRt28jLpOMvKnVW3aMv7K4DyG1MOkuAWc7Om6wt6kRh6KmyYMPkfpc2bbZingb90naYNzVZ8RWb6MsBxUf64DnKdmt33whsNq4JWiUvEKRaSqFSXcxOTqZ9IYN1ZVl9MTJdmHl4Im+8XjDtqVHXC+OqfmgMioa4+1ZRku89VZ/tLwP2TrBMcr6J/2xr4PmC4JZkxM0LpktJt0K09vO2h2yLJss5SDPUPpBfKw/ymAcHbPvdss4acMoD0TSCz0k3kUlhzKXXTaOEhzz8KJ+x30iKcm+Hspcv/y0LoCemQ/q1v96O0/GgTEn0h63w4IYD3k4q5+st8rT+nVxzti/jcM+YbQmS5llVlTsZFv/3sabLh7pra6xpVsBPHjf5skN3Vu79xPJxNl+j9siyYDHZW3I1OrtqDXWvmWWXaNd50qS42z9M8ae4w37Pr0l3ACT7hKTvSuDGmS6n5r3TnoHJbqK8oCvHkex5bZIsuC273laJ97Wt3c42xdZd0f1xnM5d7mT5Dhb/3qIMW9NkZ8eE26ASTe5SaaWLb6yhNyltx20HtifXHFbJJmwV5R2tE68ub9Xnjsx5TkaucPVix16TbgBJt2kIC02AOt56nEDJPc42iHz6ana4718JDNHJ3Oso56hReLNW/6UV9yYsicBqUGvdYkPUqNisd4Ba32A0+vGR+6xfwCO9XAzZw/IYTKuPm6HJDteFNJGUQ8vU5K37uvVfKCvt8ZUj7Q+H1eb3usik25ym7Pkh0htRR1MCuvOZuQDEREVjtu/tjzxKj1eVFEeY6oNnr8UZIS6yKSbikXPlZ6Mj/WTiEg+1hftldxPG+GEXDbeHFMtXgVcVC8+R8ONqLC4633ZeU83EREREXmE0vd5e3NyqDbGVH32t144uv/d/jV3zqaj9/Ul08Oa1cCWbiIiIiLyGKUevsiEWx1GSOD0wN366y0PLbV/bhRgjGVlSzcREREReVxJXitlpJNxpSjRImiUVkWZufIe+cLYbzdGWmeOutUbZRs3CSGE1oXwhNzcXISGhiInJwchISFaF4eIiIiI/p+r960a7URcSSVtoWZs/0eNWHjTvdkloVScZMv92L2ciIiIiDTlTqs3ExZlMRksyPwwNSUwvu4xaow0TbpnzpyJt99+GydPnkTTpk0xY8YMtG7d2un48+bNw8SJE3Ho0CHUrl0bb775Jrp37+7BEhMRERGRWox6wi0rtm6rh8k2WdPsnu7vvvsOzz33HJKTk7FlyxY0bdoUCQkJOH36tMPxf//9d/Tv3x/Dhg3D1q1bkZiYiMTERGRlZXm45ERERERE8nGndZYJd+GK09ptf591ce/bJuPR7J7uuLg4tGrVCh988AEAID8/HzExMXj66acxbty4AuP37dsXly9fxs8//2wZ1qZNGzRr1gwfffRRkfOTrV8/EREREZGSXL2vmwm3a1yJU2Hv2CbtyJb7adK9/Pr169i8eTPGjx9vGebj44POnTsjMzPT4W8yMzPx3HPP2QxLSEjAwoUL1SwqEREREZEhMNl2T2Gt3ew+Tu7QJOk+e/Ysbt26haioKJvhUVFR2L17t8PfnDx50uH4J0+edDh+Xl4e8vLyLH/n5uaWsNRERERERPIyJ4mOkkAm3MXnLPFmLMlVhn16eUpKCiZPnqx1MYiIiIiIPMo68WayXTKMGylBkwephYeHw9fXF6dOnbIZfurUKURHRzv8TXR0tFvjjx8/Hjk5OZbP0aNHlSk8EREREZGkHL1+jYkjkbY0aen29/dHixYtsHLlSiQmJgK4/SC1lStXYtSoUQ5/Ex8fj5UrV2LMmDGWYenp6YiPj3c4fkBAAAICApQuOhERERGR1JhkE8lFs+7lzz33HAYPHoyWLVuidevWmD59Oi5fvowhQ4YAAAYNGoTKlSsjJSUFADB69Gh06NAB7777Lnr06IG0tDT8+eef+OSTT7RaBCIiIiIiIqJCaZZ09+3bF2fOnMGrr76KkydPolmzZli+fLnlYWlHjhyBj8//er+3bdsW33zzDSZMmICXX34ZtWvXxsKFC9GoUSOtFoGIiIiIiIioUJq9p9vTcnJyEBYWhqNHj0rxrjYiIiIiIiJSXm5uLmJiYpCdnY3Q0FCti2Pcp5fbO3fuHAAgJiZG45IQERERERGR2s6dO8ek25PKly8P4Ha39ZIGvlWrVvjjjz9KXCYjTsd8VUmJHgUyLZdMZTFqjGWbjmxxlik2Sk1HthgbdTpKxVmmZZJtOqzL6k+DMfbMdIwaZ5nKYtQYyzadnJwcVK1a1ZIDas1rkm7z/eGhoaElruC+vr6KdFE36nQAICQkxFBxlqksZkaLsYzTAeSJs2yxMWKMjTwdoORxlm2ZZJsOwLqsdlkAxtgT0wGMF2eZymJmtBjLOB0ANs8I05IcpdCZkSNHcjoeINNyyVQWJcm2XLJNRylGrINGjLGRp6ME2ZZJtukoRbblkmn/pRSZYiPjdJQi03LJVBYlybZcsk1HJl7zILXc3FyEhoYiJyeHD1JTEeOsPsbYMxhn9THGnsE4q48xVh9j7BmMs/oYY8+QLc5e09IdEBCA5ORkBAQEaF0UQ2Oc1ccYewbjrD7G2DMYZ/UxxupjjD2DcVYfY+wZssXZa1q6iYiIiIiIiDzNa1q6iYiIiIiIiDyNSTcRERERERGRSph0ExEREREREamESTcRERERERGRSrwm6Z45cyaqVauGwMBAxMXFYdOmTVoXSQpr167F/fffj0qVKsFkMmHhwoU23wsh8Oqrr6JixYoICgpC586dsW/fPptxzp8/jwEDBiAkJARhYWEYNmwYLl26ZDPO33//jXbt2iEwMBAxMTF46623CpRl3rx5qFevHgIDA9G4cWMsXbpU8eXVQkpKClq1aoWyZcsiMjISiYmJ2LNnj804165dw8iRI1GhQgUEBwejV69eOHXqlM04R44cQY8ePVC6dGlERkZi7NixuHnzps04q1evxh133IGAgADUqlULqampBcpj1G1h1qxZaNKkCUJCQhASEoL4+HgsW7bM8j1jrLypU6fCZDJhzJgxlmGMc8lNmjQJJpPJ5lOvXj3L94yxMo4dO4ZHH30UFSpUQFBQEBo3bow///zT8j2PfyVXrVq1AnXZZDJZ3sHLulxyt27dwsSJE1G9enUEBQWhZs2aeO2112D9nGTW5ZK7ePEixowZg9jYWAQFBaFt27b4448/LN8zxu7TUw7iSlmKJLxAWlqa8Pf3F1988YXYsWOHGDFihAgLCxOnTp3SumiaW7p0qXjllVfE/PnzBQCxYMECm++nTp0qQkNDxcKFC8Vff/0lHnjgAVG9enVx9epVyzhdu3YVTZs2FRs2bBC//fabqFWrlujfv7/l+5ycHBEVFSUGDBggsrKyxLfffiuCgoLExx9/bBln/fr1wtfXV7z11lti586dYsKECaJUqVJi+/btqsdAbQkJCWL27NkiKytLbNu2TXTv3l1UrVpVXLp0yTLOE088IWJiYsTKlSvFn3/+Kdq0aSPatm1r+f7mzZuiUaNGonPnzmLr1q1i6dKlIjw8XIwfP94yzoEDB0Tp0qXFc889J3bu3ClmzJghfH19xfLlyy3jGHlbWLx4sViyZInYu3ev2LNnj3j55ZdFqVKlRFZWlhCCMVbapk2bRLVq1USTJk3E6NGjLcMZ55JLTk4WDRs2FCdOnLB8zpw5Y/meMS658+fPi9jYWJGUlCQ2btwoDhw4IFasWCH2799vGYfHv5I7ffq0TT1OT08XAERGRoYQgnVZCa+//rqoUKGC+Pnnn8XBgwfFvHnzRHBwsHj//fct47Aul1yfPn1EgwYNxJo1a8S+fftEcnKyCAkJEf/++68QgjEuDj3lIK6UpShekXS3bt1ajBw50vL3rVu3RKVKlURKSoqGpZKPfYXPz88X0dHR4u2337YMy87OFgEBAeLbb78VQgixc+dOAUD88ccflnGWLVsmTCaTOHbsmBBCiA8//FCUK1dO5OXlWcZ56aWXRN26dS1/9+nTR/To0cOmPHFxceLxxx9XdBllcPr0aQFArFmzRghxO6alSpUS8+bNs4yza9cuAUBkZmYKIW7vmHx8fMTJkyct48yaNUuEhIRY4vriiy+Khg0b2syrb9++IiEhwfK3t20L5cqVE5999hljrLCLFy+K2rVri/T0dNGhQwdL0s04KyM5OVk0bdrU4XeMsTJeeuklcddddzn9nsc/dYwePVrUrFlT5Ofnsy4rpEePHmLo0KE2wx566CExYMAAIQTrshKuXLkifH19xc8//2wz/I477hCvvPIKY6wAmXMQV8riCsN3L79+/To2b96Mzp07W4b5+Pigc+fOyMzM1LBk8jt48CBOnjxpE7vQ0FDExcVZYpeZmYmwsDC0bNnSMk7nzp3h4+ODjRs3WsZp3749/P39LeMkJCRgz549uHDhgmUc6/mYxzHiOsrJyQEAlC9fHgCwefNm3Lhxw2b569Wrh6pVq9rEuXHjxoiKirKMk5CQgNzcXOzYscMyTmEx9KZt4datW0hLS8Ply5cRHx/PGCts5MiR6NGjR4FYMM7K2bdvHypVqoQaNWpgwIABOHLkCADGWCmLFy9Gy5Yt0bt3b0RGRqJ58+b49NNPLd/z+Ke869evY+7cuRg6dChMJhPrskLatm2LlStXYu/evQCAv/76C+vWrUO3bt0AsC4r4ebNm7h16xYCAwNthgcFBWHdunWMsQpkiqkrZXGF4ZPus2fP4tatWzY7bACIiorCyZMnNSqVPpjjU1jsTp48icjISJvv/fz8UL58eZtxHE3Deh7OxjHaOsrPz8eYMWNw5513olGjRgBuL7u/vz/CwsJsxrWPc3FjmJubi6tXr3rFtrB9+3YEBwcjICAATzzxBBYsWIAGDRowxgpKS0vDli1bkJKSUuA7xlkZcXFxSE1NxfLlyzFr1iwcPHgQ7dq1w8WLFxljhRw4cACzZs1C7dq1sWLFCjz55JN45plnMGfOHAA8/qlh4cKFyM7ORlJSEgDuL5Qybtw49OvXD/Xq1UOpUqXQvHlzjBkzBgMGDADAuqyEsmXLIj4+Hq+99hqOHz+OW7duYe7cucjMzMSJEycYYxXIFFNXyuIKP5fHJKISGzlyJLKysrBu3Tqti2JIdevWxbZt25CTk4MffvgBgwcPxpo1a7QulmEcPXoUo0ePRnp6eoEr/qQccwsVADRp0gRxcXGIjY3F999/j6CgIA1LZhz5+flo2bIl3njjDQBA8+bNkZWVhY8++giDBw/WuHTG9Pnnn6Nbt26oVKmS1kUxlO+//x5ff/01vvnmGzRs2BDbtm3DmDFjUKlSJdZlBX311VcYOnQoKleuDF9fX9xxxx3o378/Nm/erHXRSCcM39IdHh4OX1/fAk/DPHXqFKKjozUqlT6Y41NY7KKjo3H69Gmb72/evInz58/bjONoGtbzcDaOkdbRqFGj8PPPPyMjIwNVqlSxDI+Ojsb169eRnZ1tM759nIsbw5CQEAQFBXnFtuDv749atWqhRYsWSElJQdOmTfH+++8zxgrZvHkzTp8+jTvuuAN+fn7w8/PDmjVr8N///hd+fn6IiopinFUQFhaGOnXqYP/+/azLCqlYsSIaNGhgM6x+/fqWbvw8/inr8OHD+PXXXzF8+HDLMNZlZYwdO9bS2t24cWMMHDgQzz77rKU3EuuyMmrWrIk1a9bg0qVLOHr0KDZt2oQbN26gRo0ajLEKZIqpK2VxheGTbn9/f7Ro0QIrV660DMvPz8fKlSsRHx+vYcnkV716dURHR9vELjc3Fxs3brTELj4+HtnZ2TZX+latWoX8/HzExcVZxlm7di1u3LhhGSc9PR1169ZFuXLlLONYz8c8jhHWkRACo0aNwoIFC7Bq1SpUr17d5vsWLVqgVKlSNsu/Z88eHDlyxCbO27dvt9m5pKenIyQkxHLiWFQMvXFbyM/PR15eHmOskE6dOmH79u3Ytm2b5dOyZUsMGDDA8n/GWXmXLl3CP//8g4oVK7IuK+TOO+8s8OrGvXv3IjY2FgCPf0qbPXs2IiMj0aNHD8sw1mVlXLlyBT4+tqfzvr6+yM/PB8C6rLQyZcqgYsWKuHDhAlasWIGePXsyxiqQKaaulMUlLj9yTcfS0tJEQECASE1NFTt37hSPPfaYCAsLs3kapre6ePGi2Lp1q9i6dasAIKZNmya2bt0qDh8+LIS4/Yj8sLAwsWjRIvH333+Lnj17Onxcf/PmzcXGjRvFunXrRO3atW0e15+dnS2ioqLEwIEDRVZWlkhLSxOlS5cu8Lh+Pz8/8c4774hdu3aJ5ORk3b4Cwd6TTz4pQkNDxerVq21enXLlyhXLOE888YSoWrWqWLVqlfjzzz9FfHy8iI+Pt3xvfm1Kly5dxLZt28Ty5ctFRESEw9emjB07VuzatUvMnDnT4WtTjLotjBs3TqxZs0YcPHhQ/P3332LcuHHCZDKJX375RQjBGKvF+unlQjDOSnj++efF6tWrxcGDB8X69etF586dRXh4uDh9+rQQgjFWwqZNm4Sfn594/fXXxb59+8TXX38tSpcuLebOnWsZh8c/Zdy6dUtUrVpVvPTSSwW+Y10uucGDB4vKlStbXhk2f/58ER4eLl588UXLOKzLJbd8+XKxbNkyceDAAfHLL7+Ipk2biri4OHH9+nUhBGNcHHrKQVwpS1G8IukWQogZM2aIqlWrCn9/f9G6dWuxYcMGrYskhYyMDAGgwGfw4MFCiNuPyZ84caKIiooSAQEBolOnTmLPnj020zh37pzo37+/CA4OFiEhIWLIkCHi4sWLNuP89ddf4q677hIBAQGicuXKYurUqQXK8v3334s6deoIf39/0bBhQ7FkyRLVltuTHMUXgJg9e7ZlnKtXr4qnnnpKlCtXTpQuXVo8+OCD4sSJEzbTOXTokOjWrZsICgoS4eHh4vnnnxc3btywGScjI0M0a9ZM+Pv7ixo1atjMw8yo28LQoUNFbGys8Pf3FxEREaJTp06WhFsIxlgt9kk341xyffv2FRUrVhT+/v6icuXKom/fvjbvj2aMlfHTTz+JRo0aiYCAAFGvXj3xySef2HzP458yVqxYIQAUiJ0QrMtKyM3NFaNHjxZVq1YVgYGBokaNGuKVV16xeUUS63LJfffdd6JGjRrC399fREdHi5EjR4rs7GzL94yx+/SUg7hSlqKYhBDC9XZxIiIiIiIiInKV4e/pJiIiIiIiItIKk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iIiIiIiIilTDpJiIiIiIiIlIJk24iItLEoUOHYDKZkJqaahk2adIkmEwm7QrlJr2VFwBSU1NhMplw6NAhrYtiocc4miUlJaFatWpaF4OIiCTGpJuIiFRhTu4cfcaNG+fydN544w0sXLhQvYISERERqchP6wIQEZGxTZkyBdWrV7cZ1qhRI8TGxuLq1asoVapUob9/44038PDDDyMxMVHFUnqPgQMHol+/fggICNC6KBYTJkxw60KMTD799FPk5+drXQwiIpIYk24iIlJVt27d0LJlS4ffBQYGerg0t127dg3+/v7w8fG+Dl++vr7w9fXVuhg2/Pz84OenzCmJEALXrl1DUFCQItMrSlEXjYiIiLzvbIOIiKTg6J5ueyaTCZcvX8acOXMsXdOTkpIs3x87dgxDhw5FVFQUAgIC0LBhQ3zxxRc201i9ejVMJhPS0tIwYcIEVK5cGaVLl0Zubi4AYOPGjejatStCQ0NRunRpdOjQAevXry9QlnXr1qFVq1YIDAxEzZo18fHHH7u8rPv27UOvXr0QHR2NwMBAVKlSBf369UNOTo7NeHPnzkWLFi0QFBSE8uXLo1+/fjh69KjNOB07dkSjRo3w999/o0OHDihdujRq1aqFH374AQCwZs0axMXFISgoCHXr1sWvv/5q83t37uk2mUwYNWoU5s2bhwYNGiAoKAjx8fHYvn07AODjjz9GrVq1EBgYiI4dOxaY5m+//YbevXujatWqCAgIQExMDJ599llcvXrVZjxH93TfvHkTr732GmrWrImAgABUq1YNL7/8MvLy8mzGq1atGu677z6sWLECLVu2RFBQUKHrxpUynT59GhEREejYsSOEEJbh+/fvR5kyZdC3b1/LMEf3dKelpaFFixYoW7YsQkJC0LhxY7z//vvOA01ERIbGlm4iIlJVTk4Ozp49azMsPDzcpd9+9dVXGD58OFq3bo3HHnsMAFCzZk0AwKlTp9CmTRtLYhgREYFly5Zh2LBhyM3NxZgxY2ym9dprr8Hf3x8vvPAC8vLy4O/vj1WrVqFbt25o0aIFkpOT4ePjg9mzZ+Oee+7Bb7/9htatWwMAtm/fji5duiAiIgKTJk3CzZs3kZycjKioqCKX4fr160hISEBeXh6efvppREdH49ixY/j555+RnZ2N0NBQAMDrr7+OiRMnok+fPhg+fDjOnDmDGTNmoH379ti6dSvCwsIs07xw4QLuu+8+9OvXD71798asWbPQr18/fP311xgzZgyeeOIJPPLII3j77bfx8MMP4+jRoyhbtqxLMbf322+/YfHixRg5ciQAICUlBffddx9efPFFfPjhh3jqqadw4cIFvPXWWxg6dChWrVpl+e28efNw5coVPPnkk6hQoQI2bdqEGTNm4N9//8W8efMKne/w4cMxZ84cPPzww3j++eexceNGpKSkYNeuXViwYIHNuHv27EH//v3x+OOPY8SIEahbt67T6bpSpsjISMyaNQu9e/fGjBkz8MwzzyA/Px9JSUkoW7YsPvzwQ6fTT09PR//+/dGpUye8+eabAIBdu3Zh/fr1GD16dOHBJiIiYxJEREQqmD17tgDg8COEEAcPHhQAxOzZsy2/SU5OFvaHpjJlyojBgwcXmP6wYcNExYoVxdmzZ22G9+vXT4SGhoorV64IIYTIyMgQAESNGjUsw4QQIj8/X9SuXVskJCSI/Px8y/ArV66I6tWri3vvvdcyLDExUQQGBorDhw9bhu3cuVP4+voWKK+9rVu3CgBi3rx5Tsc5dOiQ8PX1Fa+//rrN8O3btws/Pz+b4R06dBAAxDfffGMZtnv3bgFA+Pj4iA0bNliGr1ixokCMzevl4MGDhZZbCCEAiICAAJtxP/74YwFAREdHi9zcXMvw8ePHF5iudbzNUlJShMlksoml/Xrftm2bACCGDx9u89sXXnhBABCrVq2yDIuNjRUAxPLly4tcHnfKJIQQ/fv3F6VLlxZ79+4Vb7/9tgAgFi5caDPO4MGDRWxsrOXv0aNHi5CQEHHz5k2XykNERMbH7uVERKSqmTNnIj093eZTUkII/Pjjj7j//vshhMDZs2ctn4SEBOTk5GDLli02vxk8eLDNfb7btm3Dvn378Mgjj+DcuXOW31++fBmdOnXC2rVrkZ+fj1u3bmHFihVITExE1apVLb+vX78+EhISiiyruSV7xYoVuHLlisNx5s+fj/z8fPTp08dmWaKjo1G7dm1kZGTYjB8cHIx+/fpZ/q5bty7CwsJQv359xMXFWYab/3/gwIEiy+lMp06dbLpPm6fZq1cvm9ZzR/Oyjvfly5dx9uxZtG3bFkIIbN261ek8ly5dCgB47rnnbIY///zzAIAlS5bYDK9evbpL68LdMn3wwQcIDQ3Fww8/jIkTJ2LgwIHo2bNnodMPCwvD5cuXFannRERkDOxeTkREqmrdurXTB6kV15kzZ5CdnY1PPvkEn3zyicNxTp8+bfO3/RPU9+3bB+B2Mu5MTk4O8vLycPXqVdSuXbvA93Xr1rUkiM5Ur14dzz33HKZNm4avv/4a7dq1wwMPPIBHH33UkpDv27cPQgiH8wAKPqyrSpUqBe6BDg0NRUxMTIFhwO3u6IUto/X9zP7+/ihfvrzlb+sLDdbTdGVeR44cwauvvorFixcXKIP9/ezWDh8+DB8fH9SqVctmeHR0NMLCwnD48GGb4fbrtjDulKl8+fL473//i969eyMqKgr//e9/i5z+U089he+//x7dunVD5cqV0aVLF/Tp0wddu3Z1uYxERGQsTLqJiEh3zK9oevTRR50mzU2aNLH52/5p1uZpvP3222jWrJnDaQQHBxd4cFdxvPvuu0hKSsKiRYvwyy+/4JlnnkFKSgo2bNiAKlWqID8/HyaTCcuWLXP4ZPHg4GCbv509fdzZcGH1MDB7o0ePxpw5cyx/d+jQAatXry7xvG7duoV7770X58+fx0svvYR69eqhTJkyOHbsGJKSklx6zZb9hQVnXH1SeXHKtGLFCgC3Lyb8+++/NvfWOxIZGYlt27ZhxYoVWLZsGZYtW4bZs2dj0KBBNnEmIiLvwaSbiIik5ijxioiIQNmyZXHr1i107ty5WNM1P5AtJCSk0GlEREQgKCjI0jJubc+ePS7Pr3HjxmjcuDEmTJiA33//HXfeeSc++ugj/Oc//0HNmjUhhED16tVRp04d9xemBF588UU8+uijlr/LlSunyHS3b9+OvXv3Ys6cORg0aJBluCvdrmNjY5Gfn499+/ahfv36luGnTp1CdnY2YmNjPVKm5cuX47PPPsOLL76Ir7/+GoMHD8bGjRuLfL2Zv78/7r//ftx///3Iz8/HU089hY8//hgTJ04s0HpPRETGx3u6iYhIamXKlEF2drbNMF9fX/Tq1Qs//vgjsrKyCvzmzJkzRU63RYsWqFmzJt555x1cunTJ6TR8fX2RkJCAhQsX4siRI5bvd+3aZWkFLUxubi5u3rxpM6xx48bw8fGxtKI/9NBD8PX1xeTJkwu0SgshcO7cuSLnU1wNGjRA586dLZ8WLVooMl1zS7j18gghXHp1Vvfu3QEA06dPtxk+bdo0AECPHj1UL1N2drblyflvvPEGPvvsM2zZsgVvvPFGofOwX1c+Pj6WXhdK9JogIiL9YUs3ERFJrUWLFvj1118xbdo0VKpUCdWrV0dcXBymTp2KjIwMxMXFYcSIEWjQoAHOnz+PLVu24Ndff8X58+cLna6Pjw8+++wzdOvWDQ0bNsSQIUNQuXJlHDt2DBkZGQgJCcFPP/0EAJg8eTKWL1+Odu3a4amnnsLNmzcxY8YMNGzYEH///Xeh81m1ahVGjRqF3r17o06dOrh58ya++uory4UD4Har+3/+8x+MHz8ehw4dQmJiIsqWLYuDBw9iwYIFeOyxx/DCCy8oE1APqVevHmrWrIkXXngBx44dQ0hICH788cdC7y83a9q0KQYPHoxPPvkE2dnZ6NChAzZt2oQ5c+YgMTERd999t+plGj16NM6dO4dff/0Vvr6+6Nq1K4YPH47//Oc/6NmzJ5o2bepwHsOHD8f58+dxzz33oEqVKjh8+DBmzJiBZs2a2bTaExGR92DSTUREUps2bRoee+wxTJgwAVevXsXgwYMRFxeHqKgobNq0CVOmTMH8+fPx4YcfokKFCmjYsKHl/chF6dixIzIzM/Haa6/hgw8+wKVLlxAdHY24uDg8/vjjlvGaNGmCFStW4LnnnsOrr76KKlWqYPLkyThx4kSRSXfTpk2RkJCAn376CceOHUPp0qXRtGlTLFu2DG3atLGMN27cONSpUwfvvfceJk+eDOD2w8q6dOmCBx54oBiR01apUqXw008/We5fDwwMxIMPPohRo0Y5TVitffbZZ6hRowZSU1OxYMECREdHY/z48UhOTla9TIsXL8aXX36Jd999F/Xq1bMMnzZtGtLT0zF48GD88ccfBR5wB9x+zsAnn3yCDz/8ENnZ2YiOjkbfvn0xadIk+PiwgyERkTcyicKerkJERESksokTJyIlJaVAN3wiIiIj4CVXIiIi0tSJEycQHh6udTGIiIhUwe7lREREpIkDBw5gwYIFmDdvHu677z6ti0NERKQKtnQTERGRJtauXYvJkyejQ4cOlieTExERGQ3v6SYiIiIiIiJSCVu6iYiIiIiIiFTCpJuIiIiIiIhIJV7zILX8/HwcP34cZcuWhclk0ro4REREREREpAIhBC5evIhKlSrBx0f7dmavSbqPHz+OmJgYrYtBREREREREHnD06FFUqVJF62J4T9JdtmxZALcDHxISonFpiIiIiIiISA25ubmIiYmx5IBa85qk29ylPCQkhEk3ERERERGRwclyW7H2HdyJiIiIiIiIDMprWrqJiIhKotq4JTZ/H5raQ6OSEBERkZ4w6SYizVknM0xkSEbmOmqun9XGLUG1cUt0VV/tLxoA3N6IiIg8gd3LiUhTjpIZIpnY11Hr/+ulvlovg/lDREREnuFW0j1r1iw0adLE8jCy+Ph4LFu2zOn4O3bsQK9evVCtWjWYTCZMnz69wDjm7+w/I0eOtBkvMzMT99xzD8qUKYOQkBC0b98eV69edaf4RCQpcwLARIBk5ahu6iXxdnTRwPy37GUnIiIyAreS7ipVqmDq1KnYvHkz/vzzT9xzzz3o2bMnduzY4XD8K1euoEaNGpg6dSqio6MdjvPHH3/gxIkTlk96ejoAoHfv3pZxMjMz0bVrV3Tp0gWbNm3CH3/8gVGjRknxonMiKj5H3XOZCJBMiqqLsl8ocpZwOxqHiIiI1OHWPd3333+/zd+vv/46Zs2ahQ0bNqBhw4YFxm/VqhVatWoFABg3bpzDaUZERNj8PXXqVNSsWRMdOnSwDHv22WfxzDPP2Eyjbt267hSdiIioWFxJrGW8v9uVhJsXuYiIiNRX7KbiW7duIS0tDZcvX0Z8fLwihbl+/Trmzp2LoUOHWt6pdvr0aWzcuBGRkZFo27YtoqKi0KFDB6xbt67QaeXl5SE3N9fmQ0TyKOpEn4kA6YVsybY1V8vG7Y2IiEg9bifd27dvR3BwMAICAvDEE09gwYIFaNCggSKFWbhwIbKzs5GUlGQZduDAAQDApEmTMGLECCxfvhx33HEHOnXqhH379jmdVkpKCkJDQy2fmJgYRcpIRMpxlhDInMSQ93C39VqmxNWdsnN7IyIiUpfbSXfdunWxbds2bNy4EU8++SQGDx6MnTt3KlKYzz//HN26dUOlSpUsw/Lz8wEAjz/+OIYMGYLmzZvjvffeQ926dfHFF184ndb48eORk5Nj+Rw9elSRMpqZXxdj/hARkfeSKXHlMYmIiEgubifd/v7+qFWrFlq0aIGUlBQ0bdoU77//fokLcvjwYfz6668YPny4zfCKFSsCQIHW9Pr16+PIkSNOpxcQEGB5yrr5oxT7V69YDyOiornSCsd7TUlLxal7MtRZV+7jdkSGshMRERlViR//nZ+fj7y8vBIXZPbs2YiMjESPHrYnCtWqVUOlSpWwZ88em+F79+5FbGxsiedbXHp+XysRERWtuK3XWh8LZGp1JyIiIjeT7vHjx2Pt2rU4dOgQtm/fjvHjx2P16tUYMGAAAGDQoEEYP368Zfzr169j27Zt2LZtG65fv45jx45h27Zt2L9/v8108/PzMXv2bAwePBh+frYPVDeZTBg7diz++9//4ocffsD+/fsxceJE7N69G8OGDSvuchebs5MpJt5ERKRlwivjE9SJiIjIzVeGnT59GoMGDcKJEycQGhqKJk2aYMWKFbj33nsBAEeOHLF5d/bx48fRvHlzy9/vvPMO3nnnHXTo0AGrV6+2DP/1119x5MgRDB061OF8x4wZg2vXruHZZ5/F+fPn0bRpU6Snp6NmzZruFL/Eiuq2x+55REVz9wFPTCTI05TYj3uy3ha3S7k9bm9ERETqcCvp/vzzzwv93jqRBm53DRdCFDndLl26FDneuHHjnL7r25P0+r5WR4pqtSci8lYl2Q968gKsUgk3ERERqafE93R7C1dPoPRy4mP/MDg+FI6ISFlq7kut35yhl+MOERGRt2LS7Qa9vq/VXmEnaubkm69CIzXo9YnQ5D2UqmtqXcS0T7aVTri5vRERESmPSbcL3D0BkbnVwdWWEbZ6k1pk3j6IAOXqqJL7UbWTbSIiIlIPk24XGekEx52HWAFMvImIiquk+1Em20RERPrHpFslMnbRK84D3niCR7KQbXsi41GrjhUn8dYy2Zbx+EVERKRnbj293Bvp5UnkauJrZEgJJalDTALIU9TazzlKvO3nZV/Huc8lIiIyBibdKpMlWS1pObwh8eYJLxGpzTr5dnQhifsdIiIi42HSXQilElUjMWribf+AOfMJsRGXlYgK8vT2rod9C/eBREREyuA93U4YKVmW/RU4WnP0RHejLqueGfEiFpGsmGwTEREphy3dhVDqpEOG1gK1XoGj9XIpxdk7y9nirQzGkIiI1FbYMxNkwltLiLwPk24HlGxNM2rrnHVCaj/cSIy6/ojof3hRyDnGhvTC0W1i1n/LwlG57N9WQCVj9HNT0icm3U4YZQNVM2F09ORdvVxlNnP1hJInnnLwhgf6EcmCFx1JL5zdJiZTb7XCkmpZnyejt+TV0TmobDEl78Wk244RN0xPLY9Rr9ryxLNkGDuSGesnkb4VlczKkHS5ej4k0/mGsxZ5+2GycFY22Xs+0P8UVff1vu74IDUrau3oZNqJesqhqT2KfDWO1twtk4zLoBd631GSsbF+Fo77PpKVK4mULNu3q+WQ4ZzRfJGiqARWNq7UA1nL7o3M+YF9Q52jj/X4esWk+/8Z8QqYDBXTfmORjTsHQZKDDCckZAysR0Xjvo9k52od1Wp7L+58tSyv3pJXV3syyFh2b2GfYDtLsp2RPZ9whdcn3UbqBu2ILMuk9w3FTO/lJyJbsuwjicg97hyPtToHKe75pZbl1Vvy6m4ZZCq7kbnaiu0uPa8/r026HVUCT8zTm8m0oRSnDDw5d5+a99HJUI9Iv1h/3MN4kYzcOb5odQwv7nw9fc7k7vFapnM6vVzUMDL7JFuJBNsZ8/T0tv68LululLzC48m2eV4k14bCdaJfXHdUEkbu3aQGxolkU5ILup5MYkvKU8lhceOp9b6hJPVApsTbWddrPXDWku3J+euF1yXdWZMTPF4htKD1kzqLIkvi7S69lpuIbMm8fyQi50pyDPb0dq/E/NRODpU4X9TivEhPFzXsFdUqbD2OrLToMWxPpgsnrvC6pJvkotcdNWmPF0CoOFhnio+xI1l420UzNZILpV6lpuW60MNFDWuutgrL/tAwrZNtazLHyR6Tbg9ikmBLyw1Fj1d19Ub23hbkfditvPgYM5KBUq2bsnbXLoyS50xq7As9eV6k9Lw80ZugOImqjAmljMdRmcpSGCbdpCm9bCjW9FhmI5PpYETykvFEgYhcx21YmSRMjThq2bVY6emp0ZvAPH29P61b9m1QhhgVhkm3AemxhVH2DYXkpLd6TtqQ/URBL9hbi7Smh21Y7W2kJEmY2vtCT3XRVosS91M7e02WUuXSiuzHUVnLZY1JN2nO0/fTKLVh8uTTOcaGZCH7iQIRFU2N7sSeSN7Unr6ryaF9EqhmmTxBzXkV92Fmaj/FW8vEWy/HUdkvDDPp9jDZK4RWZN+Q7emtvFrw5Ov4uE2RI3o5UdAbbm/kSdyOHXMlOdTiCdNq7h88ue8pKr6OXvGldoy1SLy5/SnHraR71qxZaNKkCUJCQhASEoL4+HgsW7bM6fg7duxAr169UK1aNZhMJkyfPr3AOObv7D8jR44sMK4QAt26dYPJZMLChQvdKTrpBE/miKik7F/DQsphPEkLeukOrdWDYe2TQ61e5+SJ+Wjx2jfzx1lstYixpy9A6IXMDTF+7oxcpUoVTJ06FbVr14YQAnPmzEHPnj2xdetWNGzYsMD4V65cQY0aNdC7d288++yzDqf5xx9/4NatW5a/s7KycO+996J3794Fxp0+fTpMJpM7RfY6eryf20ztDUWNaes53kZirjtcF97NehtnXSDSP7W7gKsxfa32PdznqU+WGHsqsdTzeVW1cUvw98vttC6GDbdauu+//350794dtWvXRp06dfD6668jODgYGzZscDh+q1at8Pbbb6Nfv34ICAhwOE5ERASio6P/j737jo+iWvsA/tuehGTTO+mBIB0CxIAQkNAVsCGKlwA2msrFAtgAvQoiKoqI2IL3RUVAQC/Sq/QeCC0kkJCQXnfTt533j81Ossmm72Z3k+f7YT9kZ86cPXPOzOw+M2fOcK9du3YhJCQEUVFReuni4uLw2Wef4aeffmpOkYkVspb7rKz1QGRqlnqGkbRf5rqq05HRfk5Mjbq1WidTBYTWHACagjVeqGorlrqdtPiebrVajc2bN6O0tBSRkZFGKYxCocCmTZswa9YsvSvaZWVlePbZZ7Fu3Tp4eXkZ5bPMyZK7Ppibpe4opHnM9fgQ2q86Hgq22x7VMzG1tgy4jfW9QUEhMQdTneAArP9Y33PpPnMXQU+zg+74+HjY29tDIpFg9uzZ2LFjB7p3726UwuzcuRNFRUWYMWOG3vR///vfGDx4MCZNmtTkvCorKyGXy/VexHpYy31W5gj0at+zVfseI0I6ivbyw4AQUq0t92s6dpiOsZ93TW1Vlynv77b2+rbE8jc76A4LC0NcXBzOnj2LOXPmICYmBjdu3DBKYX788UeMGzcOPj4+3LS//voLhw8fNjgIW0NWrFgBR0dH7uXn52eUMlqy9nJQag+PszCFhgbvsIRnOFoCutrdMbTF429Iw2hfI6Zgrfs17Qv6rK39rJmxf/+1l1gCAK4tH2PuIuhpdtAtFosRGhqK8PBwrFixAn369MGXX37Z6oLcu3cPBw8exAsvvKA3/fDhw7hz5w6cnJwgFAohFGrHfnviiScwfPjwevNbsmQJZDIZ90pLS2t1GUnboi8xraber1p7dE1zsJQ2s5RyEOOj7uSEmJa5e1CZY782xnrS8aguY9QrfZ83zliBN9W1abX6Od0ajQaVlZWtLkhsbCw8PDwwYYL+QWvx4sW4evUq4uLiuBcAfPHFF4iNja03P4lEwj3aTPeyNLRx18+YX16mrmdTXvFpSYBh7qve5v7hYe7PJ6ZjrVfBCLF0DT1mqi1uZ6r5mL+2RscT06CBa9tWa3/70fer6TXrkWFLlizBuHHj4O/vj+LiYvz66684evQo9u3T3qg+ffp0+Pr6YsWKFQC0A6Ppup4rFAqkp6cjLi4O9vb2CA0N5fLVaDSIjY1FTEwMdyVbRzeqeW3+/v4ICgpq3tpaEOqa1zTG+hK2xoNIaw6ANa94W+O6G0NHXvf2iH4QWB56VJ9hDX23W1pdNfaYvfrKayjwbum6Wfu+Tb/lGtaaYwTVbfO09Lefte+D1qJZQXdOTg6mT5+OzMxMODo6onfv3ti3bx9GjRoFAEhNTQWfX33xPCMjA/369ePer169GqtXr0ZUVBSOHj3KTT948CBSU1Mxa9asVq5Ox9Uef/hY24kJY7aBMQ6A1lZ/xtSR1725rCFAoB8ExBo05TnxlrQtt/bEbn35NZSmvvSWUh8tLYcllN8SGeO7mOq2eZobeFvSMam94zHGmLkL0RbkcjkcHR0hk8kspqu5sYO09rjDtPZg0NaPHTHG5xi7zG21bVjaNmjOLxJDPzIsqW6Axn/wWsoPYvpBYNksbb83h+buK5awTZu6DE0NtCxp22nJtmwJbWnpWlpHVLetYy3f8aZkabFfs650E+OjHywNs7azpK1tT1N9yXTE7aytu9g3dJXH0kbbbkpZat/Pac5yW0KdEcM6ehfzluzXlnL7jyk/uyNtDx1pXVuiNb/jqG5brvZ3eENpSNto9UBqpOVoY29fWtuepgrKOvJ21lbrbuhRbrXLYe4B7nSau52Zs9zmDkoIaYixu2e3FdqvDKPbkkyrOXVL7WA8NX+X1H6RtkVBdzvQ3r9AW/pFaI2PzTJVO3b0HxOmHF1et/81pe0sJfBu7nZmjnKbu44IaYi1jrtB+5XxtPffXsZEg3oRQkE3aefa+qDdmnvPzdEF2pj5WuoXpKkCxpb+MDD3leOW0p1YaIty048u69LRTuqZYtyNtkT7VcM60rbc1qzxXn9CjIWCbgtAB/jGWduPOkvsRtWRv8SMue7GuD/bnIO7tfazTb0vUsBNmkK3Hxp6mfpzjdk1s63HHCENa2p7UF02X1NOOFO9kvaMgm4zox+WpmHOK6+W3o2qo36pGSNYrH3vdmtZ6xUuUwXeFHCTxtQ+6WXoHkVTBN+mHviMTr5alqa0B9Vl8zUUeNPxn7R3FHRbOUvu1mts7e1qtzm+YEzxWdbUJkDLy2vs9moPJ1pMkW9HOZ61N215fG7opJcpBi009bHamm8tao8aaw+qy9apfXLM0p7uQYipUNBNrE5Tg1lzauxHn7m/YIxdR9byRdnSH+OmbC9rvcJlisDGWrYjYh7N2UZqjkHQmm3U3MdqY2oP69CW6Gqs6dQ+cUajaZOOgIJuC2EJgaI1aO5jjszJUFdHSzijawl1Y07NCRZN3V7WfoXLWIE3Hf9IY1r7nN/WPAGjLfZTa+vJ1d4Z2m7M/d3dHlGwTToSCrotAB1wmq+xK8iWwlBXR0v5krG0umpLTbn3s63aqy1+bJu6/IDldNsn5mPqbbk1Axc296p3e9ouqRdJyxj6nqB6JIS0lNDcBSAt11G/SGv+eKq5/pb8pWhpZTLWj2Nr3gabEnhb67rptGXX9ZYMNGXJ+yyxHMbajmsH3oa2u5qfZa6nDND+YDmoLQghxkJBN7FK9V21oC9I0lyWss2Y6sd2W61fcwNvCrhJcxh7AENLPNlmip4CHblHEyGEWBIKui0IneFuHqqr1tH9wKN6NL/2cj9nUwNvCrjbN2MeV6z9ZJQl6EjrSgghloru6bYQzf1SbA8/0Il1o23Q+IxZp+Y6odLYlUQKuNs3atfWo2MrIYS0PxR0WzH6cUOMoTU/8GgbNJ72VJe1BxCkZ7GSluiIwSftG4QQ0j5R93JCOrD20q2Z6LOUNqUAgrQWbUMtR7cPEUKI5aAr3RakqQGQpfygJu1Hc7cp2gZNw5gnQejHNjEXOplHCCGE6KOg20rRD2piLK159i0hhJhCR75KSyctCCGk/aGg2wLRly0xB9ruLEdr2oLakRDSkU9aEEKIJaKg28I09iVJP6iJKTTnxxn9mDMtY9QttQ+xBC39vqLvOUIIIe0NBd1WiH5QE1OhH7uEEGNo7fcUfc/R8ZgQQtoTCrotVEPPtyXEFJryI5e2wbbTkrqmXgiEtA+t2Y/pOE0IIZaHgm4LVPP5tvXNI8RUGvvBRtug6VEdk/aCnoxgHnQMIYQQy0JBt4Wq/YVJP0RIW2johxptg4SQ5qAnIxBCCCFaFHRbMN1jQ3TBDv0QIW2ldoBN22Dba+5jg6hrOSHtCz06jBBC2g8Kui1cysoJ3IuQtlD79gYKuAkhrdHUwJFOHLUe1SEhhFimZgXd69evR+/evSGVSiGVShEZGYk9e/bUm/769et44oknEBgYCB6PhzVr1tRJo5tX+zVv3jwAQEFBAV555RWEhYXB1tYW/v7+ePXVVyGTyZq3poSQJqsdeNOPOPNpSsBCV8OIpaJjByGEENLMoLtz585YuXIlLl68iAsXLuDhhx/GpEmTcP36dYPpy8rKEBwcjJUrV8LLy8tgmvPnzyMzM5N7HThwAADw1FNPAQAyMjKQkZGB1atX49q1a9i4cSP27t2L559/vjlFJ4Q0E/WyML/m1D21E7FmdOKoflQ3hBBi/ZoVdD/66KMYP348unTpgq5du+Kjjz6Cvb09zpw5YzD9wIED8emnn2Lq1KmQSCQG07i7u8PLy4t77dq1CyEhIYiKigIA9OzZE3/88QceffRRhISE4OGHH8ZHH32E//3vf1CpVM1cXUIIsT4N/eimH+TEGjRlO6UTR3U1p07oWEAIIZarxfd0q9VqbN68GaWlpYiMjDRKYRQKBTZt2oRZs2aBx+PVm04mk0EqlUIoFBrlcwkhxFI15Uc3BSvEkjW2fVKwaDx0LCCEEMvU7KA7Pj4e9vb2kEgkmD17Nnbs2IHu3bsbpTA7d+5EUVERZsyYUW+avLw8fPjhh3jppZcazKuyshJyuVzvRQgh1spQYELBCrEmDW2vFCwSQghpz5oddIeFhSEuLg5nz57FnDlzEBMTgxs3bhilMD/++CPGjRsHHx8fg/PlcjkmTJiA7t27Y9myZQ3mtWLFCjg6OnIvPz8/o5SREELaWu2B7Wr+TcEKsQb1bad04qhxTXl0GNUjIYRYtmYH3WKxGKGhoQgPD8eKFSvQp08ffPnll60uyL1793Dw4EG88MILBucXFxdj7NixcHBwwI4dOyASiRrMb8mSJZDJZNwrLS2t1WUkhBBzqRl4U8BNrJWh4JC2Y+OgeiSEEMvV6puiNRoNKisrW12Q2NhYeHh4YMKEul8acrkcY8aMgUQiwV9//QUbG5tG85NIJPUO3kYIIdaIflQTa6a7Ylsz8KZtuunoGdyEEGK9mhV0L1myBOPGjYO/vz+Ki4vx66+/4ujRo9i3bx8AYPr06fD19cWKFSsAaAdG03U9VygUSE9PR1xcHOzt7REaGsrlq9FoEBsbi5iYmDqDo8nlcowePRplZWXYtGmT3v3Z7u7uEAgELV97QgghhLQZChpbpqEu5tS1nBBCLF+zgu6cnBxMnz4dmZmZcHR0RO/evbFv3z6MGjUKAJCamgo+v7rHekZGBvr168e9X716NVavXo2oqCgcPXqUm37w4EGkpqZi1qxZdT7z0qVLOHv2LADoBeoAkJycjMDAwOasAiGEEEJIu0InMwghxLLxGGPM3IVoC3K5HI6OjtzjxgghhBBCrIWhsRxofAdCCDHM0mK/Fj+nmxBCCCGEtA1DTzGoOZ0QQojloivdhBBCCCFWggaiI4SQxlla7Nfq0csJIYQQQkjboECbEEKsD3UvJ4QQQgghhBBCTISCbkIIIYQQQgghxEQo6CaEEEIIIYQQQkykw9zTrRsvTi6Xm7kkhBBCCCGEEEJMRRfzWcqY4R0m6M7PzwcA+Pn5mbkkhBBCCCGEEEJMLT8/H46OjuYuRscJul1cXAAAqampra74gQMH4vz5860uU3vMRy6Xw8/PD2lpaa0ent+S1suSytJe69jS8rG0erakujFWPpZWx+01H2PVsyWtk6XlQ9uy6fOgOm6bfNprPVtSWdprHVtaPjKZDP7+/lwMaG4dJujm87W3rzs6OrZ6AxcIBEZ53lt7zQcApFJpu6pnSyqLTnurY0vMB7Ccera0ummPddye8wFaX8+Wtk6Wlg9A27KpywJQHbdFPkD7q2dLKotOe6tjS8wHqI4Bzc0ySmFl5s2bR/m0AUtaL0sqizFZ2npZWj7G0h63wfZYx+05H2OwtHWytHyMxdLWy5KOX8ZiSXVjifkYiyWtlyWVxZgsbb0sLR9LwmOWcne5icnlcjg6OkImkxntzAmpi+rZ9KiO2wbVs+lRHbcNqmfTozo2ParjtkH1bHpUx23D0uq5w1zplkgkWLp0KSQSibmL0q5RPZse1XHboHo2ParjtkH1bHpUx6ZHddw2qJ5Nj+q4bVhaPXeYK92EEEIIIYQQQkhb6zBXugkhhBBCCCGEkLZGQTchhBBCCCGEEGIiFHQTQgghhBBCCCEmQkE3IYQQQgghhBBiIh0m6F63bh0CAwNhY2ODiIgInDt3ztxFsgj//PMPHn30Ufj4+IDH42Hnzp168xljeP/99+Ht7Q1bW1tER0cjMTFRL01BQQGmTZsGqVQKJycnPP/88ygpKdFLc/XqVQwdOhQ2Njbw8/PDqlWr6pRl69at6NatG2xsbNCrVy/s3r3b6OtrDitWrMDAgQPh4OAADw8PTJ48GQkJCXppKioqMG/ePLi6usLe3h5PPPEEsrOz9dKkpqZiwoQJsLOzg4eHB958802oVCq9NEePHkX//v0hkUgQGhqKjRs31ilPe90X1q9fj969e0MqlUIqlSIyMhJ79uzh5lMdG9/KlSvB4/GwYMECbhrVc+stW7YMPB5P79WtWzduPtWxcaSnp+O5556Dq6srbG1t0atXL1y4cIGbT99/rRcYGFhnW+bxeNwzeGlbbj21Wo333nsPQUFBsLW1RUhICD788EPUHCeZtuXWKy4uxoIFCxAQEABbW1sMHjwY58+f5+ZTHTefNcUgTSlLo1gHsHnzZiYWi9lPP/3Erl+/zl588UXm5OTEsrOzzV00s9u9ezd755132Pbt2xkAtmPHDr35K1euZI6Ojmznzp3sypUrbOLEiSwoKIiVl5dzacaOHcv69OnDzpw5w44fP85CQ0PZM888w82XyWTM09OTTZs2jV27do399ttvzNbWlm3YsIFLc/LkSSYQCNiqVavYjRs32LvvvstEIhGLj483eR2Y2pgxY1hsbCy7du0ai4uLY+PHj2f+/v6spKSESzN79mzm5+fHDh06xC5cuMAefPBBNnjwYG6+SqViPXv2ZNHR0ezy5cts9+7dzM3NjS1ZsoRLc/fuXWZnZ8cWLlzIbty4wdauXcsEAgHbu3cvl6Y97wt//fUX+/vvv9nt27dZQkICe/vtt5lIJGLXrl1jjFEdG9u5c+dYYGAg6927N3vttde46VTPrbd06VLWo0cPlpmZyb1yc3O5+VTHrVdQUMACAgLYjBkz2NmzZ9ndu3fZvn37WFJSEpeGvv9aLycnR287PnDgAAPAjhw5whijbdkYPvroI+bq6sp27drFkpOT2datW5m9vT378ssvuTS0LbfelClTWPfu3dmxY8dYYmIiW7p0KZNKpez+/fuMMarjlrCmGKQpZWlMhwi6Bw0axObNm8e9V6vVzMfHh61YscKMpbI8tTd4jUbDvLy82KeffspNKyoqYhKJhP3222+MMcZu3LjBALDz589zafbs2cN4PB5LT09njDH2zTffMGdnZ1ZZWcmlWbRoEQsLC+PeT5kyhU2YMEGvPBEREezll1826jpagpycHAaAHTt2jDGmrVORSMS2bt3Kpbl58yYDwE6fPs0Y0x6Y+Hw+y8rK4tKsX7+eSaVSrl7feust1qNHD73Pevrpp9mYMWO49x1tX3B2dmY//PAD1bGRFRcXsy5durADBw6wqKgoLuimejaOpUuXsj59+hicR3VsHIsWLWIPPfRQvfPp+880XnvtNRYSEsI0Gg1ty0YyYcIENmvWLL1pjz/+OJs2bRpjjLZlYygrK2MCgYDt2rVLb3r//v3ZO++8Q3VsBJYcgzSlLE3R7ruXKxQKXLx4EdHR0dw0Pp+P6OhonD592owls3zJycnIysrSqztHR0dERERwdXf69Gk4OTlhwIABXJro6Gjw+XycPXuWSzNs2DCIxWIuzZgxY5CQkIDCwkIuTc3P0aVpj20kk8kAAC4uLgCAixcvQqlU6q1/t27d4O/vr1fPvXr1gqenJ5dmzJgxkMvluH79OpemoTrsSPuCWq3G5s2bUVpaisjISKpjI5s3bx4mTJhQpy6ono0nMTERPj4+CA4OxrRp05CamgqA6thY/vrrLwwYMABPPfUUPDw80K9fP3z//ffcfPr+Mz6FQoFNmzZh1qxZ4PF4tC0byeDBg3Ho0CHcvn0bAHDlyhWcOHEC48aNA0DbsjGoVCqo1WrY2NjoTbe1tcWJEyeojk3Akuq0KWVpinYfdOfl5UGtVusdsAHA09MTWVlZZiqVddDVT0N1l5WVBQ8PD735QqEQLi4uemkM5VHzM+pL097aSKPRYMGCBRgyZAh69uwJQLvuYrEYTk5Oemlr13NL61Aul6O8vLxD7Avx8fGwt7eHRCLB7NmzsWPHDnTv3p3q2Ig2b96MS5cuYcWKFXXmUT0bR0REBDZu3Ii9e/di/fr1SE5OxtChQ1FcXEx1bCR3797F+vXr0aVLF+zbtw9z5szBq6++ip9//hkAff+Zws6dO1FUVIQZM2YAoOOFsSxevBhTp05Ft27dIBKJ0K9fPyxYsADTpk0DQNuyMTg4OCAyMhIffvghMjIyoFarsWnTJpw+fRqZmZlUxyZgSXXalLI0hbDJKQkhrTZv3jxcu3YNJ06cMHdR2qWwsDDExcVBJpNh27ZtiImJwbFjx8xdrHYjLS0Nr732Gg4cOFDnjD8xHt0VKgDo3bs3IiIiEBAQgC1btsDW1taMJWs/NBoNBgwYgI8//hgA0K9fP1y7dg3ffvstYmJizFy69unHH3/EuHHj4OPjY+6itCtbtmzBL7/8gl9//RU9evRAXFwcFixYAB8fH9qWjej//u//MGvWLPj6+kIgEKB///545plncPHiRXMXjViJdn+l283NDQKBoM5omNnZ2fDy8jJTqayDrn4aqjsvLy/k5OTozVepVCgoKNBLYyiPmp9RX5r21Ebz58/Hrl27cOTIEXTu3Jmb7uXlBYVCgaKiIr30teu5pXUolUpha2vbIfYFsViM0NBQhIeHY8WKFejTpw++/PJLqmMjuXjxInJyctC/f38IhUIIhUIcO3YMX331FYRCITw9PameTcDJyQldu3ZFUlISbctG4u3tje7du+tNe+CBB7hu/PT9Z1z37t3DwYMH8cILL3DTaFs2jjfffJO72t2rVy/861//wr///W+uNxJty8YREhKCY8eOoaSkBGlpaTh37hyUSiWCg4Opjk3Akuq0KWVpinYfdIvFYoSHh+PQoUPcNI1Gg0OHDiEyMtKMJbN8QUFB8PLy0qs7uVyOs2fPcnUXGRmJoqIivTN9hw8fhkajQUREBJfmn3/+gVKp5NIcOHAAYWFhcHZ25tLU/BxdmvbQRowxzJ8/Hzt27MDhw4cRFBSkNz88PBwikUhv/RMSEpCamqpXz/Hx8XoHlwMHDkAqlXI/HBurw464L2g0GlRWVlIdG8nIkSMRHx+PuLg47jVgwABMmzaN+5vq2fhKSkpw584deHt707ZsJEOGDKnz6Mbbt28jICAAAH3/GVtsbCw8PDwwYcIEbhpty8ZRVlYGPl//57xAIIBGowFA27KxderUCd7e3igsLMS+ffswadIkqmMTsKQ6bUpZmqTJQ65Zsc2bNzOJRMI2btzIbty4wV566SXm5OSkNxpmR1VcXMwuX77MLl++zACwzz//nF2+fJndu3ePMaYdIt/JyYn9+eef7OrVq2zSpEkGh+vv168fO3v2LDtx4gTr0qWL3nD9RUVFzNPTk/3rX/9i165dY5s3b2Z2dnZ1husXCoVs9erV7ObNm2zp0qVW+wiE2ubMmcMcHR3Z0aNH9R6dUlZWxqWZPXs28/f3Z4cPH2YXLlxgkZGRLDIykpuve2zK6NGjWVxcHNu7dy9zd3c3+NiUN998k928eZOtW7fO4GNT2uu+sHjxYnbs2DGWnJzMrl69yhYvXsx4PB7bv38/Y4zq2FRqjl7OGNWzMbz++uvs6NGjLDk5mZ08eZJFR0czNzc3lpOTwxijOjaGc+fOMaFQyD766COWmJjIfvnlF2ZnZ8c2bdrEpaHvP+NQq9XM39+fLVq0qM482pZbLyYmhvn6+nKPDNu+fTtzc3Njb731FpeGtuXW27t3L9uzZw+7e/cu279/P+vTpw+LiIhgCoWCMUZ13BLWFIM0pSyN6RBBN2OMrV27lvn7+zOxWMwGDRrEzpw5Y+4iWYQjR44wAHVeMTExjDHtMPnvvfce8/T0ZBKJhI0cOZIlJCTo5ZGfn8+eeeYZZm9vz6RSKZs5cyYrLi7WS3PlyhX20EMPMYlEwnx9fdnKlSvrlGXLli2sa9euTCwWsx49erC///7bZOvdlgzVLwAWGxvLpSkvL2dz585lzs7OzM7Ojj322GMsMzNTL5+UlBQ2btw4Zmtry9zc3Njrr7/OlEqlXpojR46wvn37MrFYzIKDg/U+Q6e97guzZs1iAQEBTCwWM3d3dzZy5Egu4GaM6thUagfdVM+t9/TTTzNvb28mFouZr68ve/rpp/WeH011bBz/+9//WM+ePZlEImHdunVj3333nd58+v4zjn379jEAdeqOMdqWjUEul7PXXnuN+fv7MxsbGxYcHMzeeecdvUck0bbcer///jsLDg5mYrGYeXl5sXnz5rGioiJuPtVx81lTDNKUsjSGxxhjTb8uTgghhBBCCCGEkKZq9/d0E0IIIYQQQggh5kJBNyGEEEIIIYQQYiIUdBNCCCGEEEIIISZCQTchhBBCCCGEEGIiFHQTQgghhBBCCCEmQkE3IYQQQgghhBBiIhR0E0IIIYQQQgghJkJBNyGEEEIIIYQQYiIUdBNCCCGEEEIIISZCQTchhBBCCCGEEGIiFHQTQgghhBBCCCEmQkE3IYQQQgghhBBiIhR0E0IIIYQQQgghJkJBNyGEEEIIIYQQYiIUdBNCCCGEEEIIISZCQTchhBBCCCGEEGIiFHQTQgghhBBCCCEmQkE3IYQQoxo+fDiGDx9utPxSUlLA4/GwceNGo+VpjVatWoVu3bpBo9GYuygGGbvdjSEwMBAzZswwdzFahMfjYdmyZc1aZurUqZgyZYppCkQIIaTFKOgmhJAOYOPGjeDxeNzLxsYGXbt2xfz585GdnW3u4pFGyOVyfPLJJ1i0aBH4fPrqJoYtWrQIf/zxB65cuWLuohBCCKlBaO4CEEIIaTsffPABgoKCUFFRgRMnTmD9+vXYvXs3rl27Bjs7O6N8xv79+42SD6n2008/QaVS4ZlnnjF3Ueplie2ekJBgtScpysvLIRQ272dav379MGDAAHz22Wf473//a6KSEUIIaS7r/CYihBDSIuPGjcNzzz2HF154ARs3bsSCBQuQnJyMP//8s9V5l5WVAQDEYjHEYnGr8zM3jUaDiooKcxcDABAbG4uJEyfCxsbG3EWplyW2u0QigUgkMkpeFRUVbdq138bGptlBNwBMmTIF27dvR0lJiQlKRQghpCUo6CaEkA7s4YcfBgAkJydz0zZt2oTw8HDY2trCxcUFU6dORVpamt5yw4cPR8+ePXHx4kUMGzYMdnZ2ePvtt7l5te/tzcnJwfPPPw9PT0/Y2NigT58++Pnnn+uUp6ioCDNmzICjoyOcnJwQExODoqIig2U/fPgwhg4dik6dOsHJyQmTJk3CzZs366Q7evQoBgwYABsbG4SEhGDDhg1YtmwZeDyeXjoej4f58+fjl19+QY8ePSCRSLB3714AwOrVqzF48GC4urrC1tYW4eHh2LZtW53P0uWxdetWdO/eHba2toiMjER8fDwAYMOGDQgNDYWNjQ2GDx+OlJQUg+tWU3JyMq5evYro6Og68zZv3ozw8HA4ODhAKpWiV69e+PLLL+vU6YIFC+Dn5weJRILQ0FB88sknegGk7r751atXY926dQgODoadnR1Gjx6NtLQ0MMbw4YcfonPnzrC1tcWkSZNQUFCg9zlNvadbd6vDiRMn8Oqrr8Ld3R1OTk54+eWXoVAoUFRUhOnTp8PZ2RnOzs546623wBjTy6Op7WHonu67d+/iqaeegouLC+zs7PDggw/i77//1ktz9OhR8Hg8bN68Ge+++y58fX1hZ2cHuVxe73o1pUyxsbHg8Xj46aef9KZ//PHH4PF42L17Nzet9j3dxcXFWLBgAQIDAyGRSODh4YFRo0bh0qVLenmNGjUKpaWlOHDgQL1lJYQQ0raoezkhhHRgd+7cAQC4uroCAD766CO89957mDJlCl544QXk5uZi7dq1GDZsGC5fvgwnJydu2fz8fIwbNw5Tp07Fc889B09PT4OfUV5ejuHDhyMpKQnz589HUFAQtm7dihkzZqCoqAivvfYaAIAxhkmTJuHEiROYPXs2HnjgAezYsQMxMTF18jx48CDGjRuH4OBgLFu2DOXl5Vi7di2GDBmCS5cuITAwEABw+fJljB07Ft7e3li+fDnUajU++OADuLu7Gyzr4cOHsWXLFsyfPx9ubm5cPl9++SUmTpyIadOmQaFQYPPmzXjqqaewa9cuTJgwQS+P48eP46+//sK8efMAACtWrMAjjzyCt956C9988w3mzp2LwsJCrFq1CrNmzcLhw4cbbKNTp04BAPr37683/cCBA3jmmWcwcuRIfPLJJwCAmzdv4uTJk1ydlpWVISoqCunp6Xj55Zfh7++PU6dOYcmSJcjMzMSaNWv08vzll1+gUCjwyiuvoKCgAKtWrcKUKVPw8MMP4+jRo1i0aBGSkpKwdu1avPHGG3WCx+Z45ZVX4OXlheXLl+PMmTP47rvv4OTkhFOnTsHf3x8ff/wxdu/ejU8//RQ9e/bE9OnTuWWb0x41ZWdnY/DgwSgrK8Orr74KV1dX/Pzzz5g4cSK2bduGxx57TC/9hx9+CLFYjDfeeAOVlZUNXslvSplmzpyJ7du3Y+HChRg1ahT8/PwQHx+P5cuX4/nnn8f48ePrzX/27NnYtm0b5s+fj+7duyM/Px8nTpzAzZs39bYN3cmekydP1lkfQgghZsIIIYS0e7GxsQwAO3jwIMvNzWVpaWls8+bNzNXVldna2rL79++zlJQUJhAI2EcffaS3bHx8PBMKhXrTo6KiGAD27bff1vmsqKgoFhUVxb1fs2YNA8A2bdrETVMoFCwyMpLZ29szuVzOGGNs586dDABbtWoVl06lUrGhQ4cyACw2Npab3rdvX+bh4cHy8/O5aVeuXGF8Pp9Nnz6dm/boo48yOzs7lp6ezk1LTExkQqGQ1f4KBMD4fD67fv16nXUqKyvTe69QKFjPnj3Zww8/XCcPiUTCkpOTuWkbNmxgAJiXlxe3rowxtmTJEgZAL60h7777LgPAiouL9aa/9tprTCqVMpVKVe+yH374IevUqRO7ffu23vTFixczgUDAUlNTGWOMJScnMwDM3d2dFRUV1Sljnz59mFKp5KY/88wzTCwWs4qKCm5a7Xavj25bHDNmDNNoNNz0yMhIxuPx2OzZs7lpKpWKde7cuU6+TW2PgIAAFhMTw71fsGABA8COHz/OTSsuLmZBQUEsMDCQqdVqxhhjR44cYQBYcHBwnc+qT1PLlJmZyVxcXNioUaNYZWUl69evH/P392cymUwvHQC2dOlS7r2joyObN29ek8rStWtXNm7cuCalJYQQYnrUvZwQQjqQ6OhouLu7w8/PD1OnToW9vT127NgBX19fbN++HRqNBlOmTEFeXh738vLyQpcuXXDkyBG9vCQSCWbOnNnoZ+7evRteXl56g4CJRCK8+uqrKCkpwbFjx7h0QqEQc+bM4dIJBAK88sorevllZmYiLi4OM2bMgIuLCze9d+/eGDVqFNdFV61W4+DBg5g8eTJ8fHy4dKGhoRg3bpzBskZFRaF79+51ptva2nJ/FxYWQiaTYejQoXW69gLAyJEjuSvkABAREQEAeOKJJ+Dg4FBn+t27dw2WRSc/Px9CoRD29vZ6052cnBrtRrx161YMHToUzs7Oem0aHR0NtVqNf/75Ry/9U089BUdHxzplfO655/TuL46IiIBCoUB6enqDZW/I888/r9fFPyIiAowxPP/889w0gUCAAQMG1Kmj5rRHTbt378agQYPw0EMPcdPs7e3x0ksvISUlBTdu3NBLHxMTo/dZDWlqmby8vLBu3TocOHAAQ4cORVxcHH766SdIpdIG83dycsLZs2eRkZHRaFl07U0IIcQyUPdyQgjpQNatW4euXbtCKBTC09MTYWFh3OjOiYmJYIyhS5cuBpetPSCVr69vkwbOunfvHrp06VJnFOkHHniAm6/739vbu05wGRYWVic/Q9N1ee7btw+lpaWQy+UoLy9HaGhonXSGpgFAUFCQwem7du3Cf/7zH8TFxaGyspKbXvu+cADw9/fXe68LYv38/AxOLywsNPiZjZk7dy62bNmCcePGwdfXF6NHj8aUKVMwduxYLk1iYiKuXr1ab3f6nJwck5U9KyurzjI1A9PmfFbtz2lOe9R079497kRCTTW3xZ49e3LT69seDGlOmaZOnYpNmzbh77//xksvvYSRI0c2mv+qVasQExMDPz8/hIeHY/z48Zg+fTqCg4PrpGWMNVoXhBBC2g4F3YQQ0oEMGjQIAwYMMDhPo9GAx+Nhz549EAgEdebXDoabegXQmhhap+PHj2PixIkYNmwYvvnmG3h7e0MkEiE2Nha//vprnfSG6q6h6azWIGG1ubq6QqVSobi4WO9KuYeHB+Li4rBv3z7s2bMHe/bsQWxsLKZPn84NUqfRaDBq1Ci89dZbBvPu2rWrycru7e2t9z42NlZvULPmfFbNz2lue7RGU7fx5pYpPz8fFy5cAADcuHEDGo2m0UebTZkyBUOHDsWOHTuwf/9+fPrpp/jkk0+wffv2Oj03CgsL6z15RgghpO1R0E0IIQQAEBISAsYYgoKC6gRjrREQEICrV6/WCSxu3brFzdf9f+jQIZSUlOgF+AkJCXXyMzRdl6ebmxs6deoEGxsb2NjYICkpqU46Q9Pq88cff8DGxgb79u2DRCLhpsfGxjY5j9bo1q0bAO0o5r1799abJxaL8eijj+LRRx+FRqPB3LlzsWHDBrz33nsIDQ1FSEgISkpKDI58bmq1u7336NHDKPm2pj0CAgLq3W5089uiTPPmzUNxcTFWrFiBJUuWYM2aNVi4cGGjn+Pt7Y25c+di7ty5yMnJQf/+/fHRRx/pBd0qlQppaWmYOHFii9aFEEKI8dE93YQQQgAAjz/+OAQCAZYvX17nCiZjDPn5+S3Kd/z48cjKysLvv//OTVOpVFi7di3s7e0RFRXFpVOpVFi/fj2XTq1WY+3atXr5eXt7o2/fvvj555/1Hid27do17N+/nxsBWiAQIDo6Gjt37tS7DzYpKQl79uxpcvkFAgF4PB7UajU3LSUlBTt37mxyHq0RGRkJANyVUZ3a7cHn87mgXNe9ecqUKTh9+jT27dtXJ9+ioiKoVCpTFBmAdvyAmq/aV75bqjXtMX78eJw7dw6nT5/mppWWluK7775DYGCgwfv5jV2mbdu24ffff8fKlSuxePFiTJ06Fe+++y5u375db/5qtRoymUxvmoeHB3x8fPS6sgPaK+cVFRUYPHhwi9aFEEKI8dGVbkIIIQC0V7r/85//YMmSJUhJScHkyZPh4OCA5ORk7NixAy+99BLeeOONZuf70ksvYcOGDZgxYwYuXryIwMBAbNu2DSdPnsSaNWu4LtOPPvoohgwZgsWLFyMlJQXdu3fH9u3b6wQbAPDpp59i3LhxiIyMxPPPP889MszR0VHv2cbLli3D/v37MWTIEMyZMwdqtRpff/01evbsibi4uCaVf8KECfj8888xduxYPPvss8jJycG6desQGhqKq1evNrs+mis4OBg9e/bEwYMHMWvWLG76Cy+8gIKCAjz88MPo3Lkz7t27h7Vr16Jv377cPcpvvvkm/vrrLzzyyCOYMWMGwsPDUVpaivj4eGzbtg0pKSlwc3Mz+ToYU2vaY/Hixfjtt98wbtw4vPrqq3BxccHPP/+M5ORk/PHHH4128W5tmXJycjBnzhyMGDEC8+fPBwB8/fXXOHLkCGbMmIETJ04YLENxcTE6d+6MJ598En369IG9vT0OHjyI8+fP47PPPtNLe+DAAdjZ2WHUqFEtWhdCCCHGR0E3IYQQzuLFi9G1a1d88cUXWL58OQDtwFajR49ucXdVW1tbHD16FIsXL8bPP/8MuVyOsLCwOvf48vl8/PXXX1iwYAE2bdoEHo+HiRMn4rPPPkO/fv308oyOjsbevXuxdOlSvP/++xCJRIiKisInn3yiN/hVeHg49uzZgzfeeAPvvfce/Pz88MEHH+DmzZtcl+LGPPzww/jxxx+xcuVKLFiwAEFBQfjkk0+QkpLSJkE3AMyaNQvvv/8+ysvLufuMn3vuOXz33Xf45ptvUFRUBC8vLzz99NNYtmwZF7jZ2dnh2LFj+Pjjj7F161b897//hVQqRdeuXbF8+XK9kcqtRWvaw9PTE6dOncKiRYuwdu1aVFRUoHfv3vjf//7X4PO9jVWmOXPmoLKyErGxsdxAZ66urvjuu+8wadIkrF692uD993Z2dpg7dy7279/PPWUgNDQU33zzjd5o/4B2xPrHH39c7/5/Qggh5sVjjY3gQgghhLQzkydPxvXr15GYmGjuojSJTCZDcHAwVq1apfdILdIwPz8/jBkzBj/88IO5i9Im4uLi0L9/f1y6dAl9+/Y1d3EIIYRUoXu6CSGEtGvl5eV67xMTE7F7924MHz7cPAVqAUdHR7z11lv49NNPodFozF0cq6BUKpGfn2913edbY+XKlXjyyScp4CaEEAtDV7oJIYS0a97e3pgxYwaCg4Nx7949rF+/HpWVlbh8+TI9Vqmd2rdvHzZv3oyNGzdi//79dH8zIYQQs6KgmxBCSLs2c+ZMHDlyBFlZWZBIJIiMjMTHH3+M/v37m7toxERGjBiBpKQkzJkzB2+//ba5i0MIIaSDo6CbEEIIIYQQQggxEbqnmxBCCCGEEEIIMREKugkhhBBCCCGEEBPpMM/p1mg0yMjIgIODA/dsTEIIIYQQQggh7QtjDMXFxfDx8QGfb/7rzB0m6M7IyICfn5+5i0EIIYQQQgghpA2kpaWhc+fO5i5Gxwm6HRwcAGgrXiqVmrk0pDEKhQKfffYZAOD111+HWCxucHpb52fJDK7T9U+A6x8DPd4GeiyqTlxjuqLLvy2iLkzVJu2xrQkhhBBCSF1yuRx+fn5cDGhuHSbo1nUpl0qlFHRbAYVCARsbGwDaNqsZJBua3tb5WTKD6xT5EWBvA8S/r/2/13tA/IdA8sdAxAdAr/cspi5MVQ5LWT9CCCGEENI2LOW24g4TdBPS4fV6D7JKAZb9nY9HTw3Gww6ngV7agJsQQgghhBBiGma9q3zdunUIDAyEjY0NIiIicO7cuXrTfv/99xg6dCicnZ3h7OyM6OjoBtMTQuraWPQUdhQ9jNWZUwG+mAJuQgghhBBCTMxsQffvv/+OhQsXYunSpbh06RL69OmDMWPGICcnx2D6o0eP4plnnsGRI0dw+vRp+Pn5YfTo0UhPT2/jkhNinRhj2H7mKgAgqdIPKrVK28WcEEIIIYQQYjJmC7o///xzvPjii5g5cya6d++Ob7/9FnZ2dvjpp58Mpv/ll18wd+5c9O3bF926dcMPP/wAjUaDQ4cOtXHJCbFOl458gXsl2nuaFUyMlICV2nu8KfAmhBBCCCHEZMwSdCsUCly8eBHR0dHVBeHzER0djdOnTzcpj7KyMiiVSri4uJiqmIS0H/EfYvuFO3qTbjpM097TTYE3IYQQQgghJmOWgdTy8vKgVqvh6empN93T0xO3bt1qUh6LFi2Cj4+PXuBeU2VlJSorK7n3crm85QUmbY7P56N79+7c341Nb+v8LJmhdapUafC/ktEAgGC3TribV4qErGI8Oqbqnm6mtpi6MFU5LGX9CCGEEEJIx8JjjLG2/tCMjAz4+vri1KlTiIyM5Ka/9dZbOHbsGM6ePdvg8itXrsSqVatw9OhR9O7d22CaZcuWYfny5XWmy2QyemQY6XD2xGdizi+X4O1ogxeHBuODXTcQ/YAHfogZaO6iEUIIIYQQYlRyuRyOjo4WE/uZ5XKPm5sbBAIBsrOz9aZnZ2fDy8urwWVXr16NlStXYv/+/fUG3ACwZMkSyGQy7pWWlmaUshNijf64pB1wcHI/XzzgrT3w3MoqNmeRCCGEEEII6RDMEnSLxWKEh4frDYKmGxSt5pXv2latWoUPP/wQe/fuxYABAxr8DIlEAqlUqvcipCPKL6nE0QTtUwEe7+eLbl4OAID7heUorlCas2iEEEIIIYS0e2a5pxsAFi5ciJiYGAwYMACDBg3CmjVrUFpaipkzZwIApk+fDl9fX6xYsQIA8Mknn+D999/Hr7/+isDAQGRlZQEA7O3tYW9vb67VICaiUCi4tl+yZAnEYnGD09s6P0tWe53+dyUDKg1DL19HdPHUBtyeUgmy5ZW4nV2M8AAXg8uZqy6aVI6rywCewPBzxuM/BJga6L2s+fkSQgghhBBiZGYbTejpp5/G6tWr8f7776Nv376Ii4vD3r17ucHVUlNTkZmZyaVfv349FAoFnnzySXh7e3Ov1atXm2sVCLEKxxPzAAAT+/hw07p5WXkXc57A8Kjr8R9qp/ME5ikXIYQQQgghtZjtSjcAzJ8/H/Pnzzc47+jRo3rvU1JSTF8gQtqhLHkFACDEoxM3rZuXA47dzkWCtQbduivc8e9Xv9cF3L0+MHwFnBBCCCGEEDMwa9BNCDG9nGLto/M8HGy4aWFV93XfyrTSoBsAer2HM9n2mP+7O146MgUvuW2lgJsQQgghhFgcCroJacfUGob8El3QLeGmV3cvl4MxBh6PZ5bytYZGw7DsWjjyVMX4OCMG7sJCPEYBNyGEEEIIsTBmu6ebEGJ6+aUKaBjA5wGu9tVBd4hHJwj4PMgrVFz3c2vz15UM3MoqBg8aAMCitHk4e/ALM5eKEEIIIYQQfRR0E9KO6bqWu9pLIOBXX82WCAUIcdfe422NXcwVKg0++/ssAGBh7yyM7+UFBRPhpSPeuHNylZlLRwghhBBCSDXqXk4sEp/PR5cuXbi/G5ve1vlZsprrlFeiAKDftVwnzEuK29kluJVVjBHdPCymLppSjs07NyCtxB/uNko8/+RM8Hk8ZBSdQVwaMHOfC3aIV8B14JJm50sIIYQQQoix8RhjzNyFaAtyuRyOjo6QyWSQSqXmLg4hbeK3c6lYsj0eI8LcETtzkN68dUeS8Om+BEzq64Mvp/YzUwmbr7RShagVu5BXIcKHk3viXw8GAADySirx2DcnkVZQjv5uJfj1tSdhI6JHhxFCCCGEdDSWFvvR5R5C2rEcubZ7uafUps68blUjmFvbY8NiTyYjr0KEAFc7TB3ox013s5cgdsZASG2EuJRnj9e3XEEHOadICCGEEEIsGAXdhLRjOcXaQdIMdy/XBt13ckugUGnatFwtVViqwIZjdwEAC0d1hUigfwgL9XDAhn8NgEjAw9/xmTh9N98cxSSEEEIIIYRD93QTi6RQKLB69WoAwBtvvAGxWNzg9LbOz5LVXKcsn2gAgLuBK92+TrZwkAhRXKlCcl4pglwkFlEXDbXJ+mN3UFypwgPeUjza28fg8pEhrni0tw+2X07H8cQ8DA5xazRfQgghhBBCTIWudBOLpVQqoVQqmzy9rfOzZLp1yi2u+4xuHR6Ph0A37Qjm9wvL9JYzN0PlyJSVY+OpFADAW2PDwOfX/2zxh7poA+0TiXmN5ksIIYQQQogpUdBNSDuW00DQDQBejtor4Jkyy39W91eHkqBQaTAoyAXDu7o3mHZIqDbovpYhQ2Gpoi2KRwghhBBCiEEUdBPSTjFW45FhBrqXA4B3VdCdZeFBt1Ktwa4rGQCABdFdwOPVf5Ub0A4c19XTHowBp+7Qfd2EEEIIIcR8KOgmpJ2qhBAqjXb0bnd7677SfTm1CMWVKjjbiRAR5NqkZXRXu08k5TWSkhBCCCGEENOhoJuQdqqMiQAALp3EEAsN7+reXNBd3mblaoljt3MAAEO7uEPQwL3cNQ3V3dedlGuychFCCCGEENIYCroJaafKq4Lu+u7nBgAvqS0Ay+9efuy2NnCOauRe7poGBblCyOchraAcqfllpioaIYQQQgghDaJHhhGLxOPxEBAQwP3d2PS2zs+S6dapoEgCZAHuDQTd3rW6l1tCXdRuk5ziClxLlwMAhjUj6LaXCNHf3xnnUgpwPCkXU/r7WMT6EUIIIYSQjoXHGGPmLkRbkMvlcHR0hEwmg1QqNXdxCDG5dUeS8Om+BDzRvzM+m9LHYJoKpRrd3tsLALjy/mg42onasohN8sfF+3h96xX09JVi1ytDm7XslwcT8cXB2xjfywvfTAs3UQkJIYQQQoglsbTYj7qXE9JO5ci1V689pPVf6bYRCeDSSQwAyJRb5n3dLelarqN7XvfJpHyoNR3i/CIhhBBCCLEwFHQT0k419oxuHS+p5Y5grtYwHE/UBd0ezV6+T2dHOEiEkJUrcT1DZuziEUIIIYQQ0ii6p5tYJIVCgS+//BIA8Nprr0EsFjc4va3zs2S6dbosCwRgB896ntGt4+1ogxuZctzPL8Gnn/4MwLx1UbNNhj8+A4VlSjjYCNHf36nZeQkFfDwY4ooDN7Jx9FY29v32PYD209aEEEIIIcTyUdBNLFZZmeERp+ub3tb5WbKysjKUqAUAmnClu2owtSx5pcXUha4c/1Q9Y/uhUDcIBS3rmPNQqBsO3MjGqTsFeMBC1o8QQgghhHQc1L2ckHaIsZqPDGv8SjdgmY8NO56YD6Bl93Pr6O7rvphaCBWjQx4hhBBCCGlb9AuUkHZIAQHUVbt3QwOpAYCXY9WzuuWWFXRXMAGupGvvw44Ka3nQHezWCd6ONlCqGbI19sYqHiGEEEIIIU1CQTch7ZDuKreDjRA2IkGDaX1qdC+3JBlqKRgDwjwd4F11YqAleDweHgrVXu3O0Jj/kRGEEEIIIaRjoaCbkHaorCrodrdv+Co3UPOebuNe6c6SVeDnUyk4mpDTouXTNY4AWneVW0fXxTxDTUE3IYQQQghpWzSQGiHtUPX93E0Puksr1VDY8CHmaVr8ubJyJfZey8TOyxk4k5wPxgABn4fDr0chwLVTk/NhDEhXa4Pu4a24n1tncIg26C5gdihndNgjhBBCCCFth359EovE4/Hg4+PD/d3Y9LbOz5LxeDwIHVyBgqYF3XZiIRxtRZCVK9HJvTPcxaoW1cX5lAL868ezqFBWB+26fL88lIjPp/RtcvkFbv4ovy+CnViA8EDnZpelNncHCbp52uNWdgkqpP7tpq0JIYQQQojlo6CbWCSRSIQXX3yxydPbOj9LJhKJENS9L3AiGV5OTbsX2tvRBrJyJR4a9QiGtfDK8vZL91Gh1MDfxQ5PD/TDpL4+yC9RYNK6k9h5OR1zh4ci1KPxgcxEIhFcegwF7idgcIgrJMKG70lvqqFd3XEruwRi/94QiURGyZMQQgghhJDG0D3dhLRDOcXaQdGacqUbqO5inikrb/Fnnqh6pvbyST0wb0QoOjvboY+fE6If8ISGAV8eSmxyXscScgEAUWEeLS5PbUOqBlM7kZgHxpjR8iWEEEIIIaQhFHQT0g7lVA2K5t7EoNubC7pbNphaan4Z0grKIeTzMCjQRW/ewlFdAQC7rmYgIau40bwSs4tx/l4BAOPcz60TEeQKsYCPDFkF7uWXGS1fQgghhBBCGkJBN7FISqUSa9aswZo1a6BUKhud3tb5WTKlUomE1CwAgKtd0+4g0T2S6+DJCy2qi5N3tFe5+/s7o5NE/zO7+0gxvpcXGAO+OHC70by+PpwIxoAQSQm8HIzXDVzI08CNXwoAOJWUa7R8CSGEEEIIaYjZgu5169YhMDAQNjY2iIiIwLlz5+pNe/36dTzxxBMIDAwEj8fDmjVr2q6gxCwYY5DJZJDJZHpdgeub3tb5WTLGGErU2vug3ezFTVpG1728sBItqgtd1/LBoa4G5y+I7goeD9h7PQvX0mX15nMvvxT/u5oJAOiOVKO2CWMMbqwIgHbQN0IIIYQQQtqCWYLu33//HQsXLsTSpUtx6dIl9OnTB2PGjEFOjuHn+ZaVlSE4OBgrV66El5dXG5eWEOtSWqmCCtqgu6n3dOu6l5ey5l9Z1mgYTt/JBwA8VHXfdG1dPR0wsY92lPiGrnavP3oHGgb48mVw4xu/C7gXX9u9/fy9IqPnTQghhBBCiCFmCbo///xzvPjii5g5cya6d++Ob7/9FnZ2dvjpp58Mph84cCA+/fRTTJ06FRJJ04IIQjqq3BLtIGpCqGEvaWr3cm3QXcaadmW8pptZchSUKtBJLEAfP6d60702sgv4PODQrRxcvFf3SnN6UTn+uHQfANBHmNHscjSFB78EPDDcLyxHRlHLB40jhBBCCCGkqdr8kWEKhQIXL17EkiVLuGl8Ph/R0dE4ffq0yT+/VFEKgaLuI4gEfAFshDZ66erD5/FhK7JtUdoyZVm9XWZ5PB7sRHYtSluuLIeGaQymBYBO4k4tSluhqoBaozZKWjuRHfd85EpVJVQaVb1phax606xUVUIJ7T3GCoWCm16qKIUSStiKbMHnac8fKdQKKNV170euuRw3Ta3Qaztdfjo2QhsI+IIG8zWUVqlWQqGu+3k6EqEEQr6w2WlVGhUqVZX1phULxBAJRMgt1uZny1PWWafaaQFArVFDaqvdHhQQQsn4esuJBCKIBWIubYVKf7C1owna7uADAh3BoAKgTathGpQrqwNbT0ceJvX1wo7LWXj5/y5i80sDEerhxKVddyQBSjXDwAApPHO07aIrh5AvhESoPeHGGEOZsv6r4PWlVSgUEPE0cOWVIY91wvGkTEzq69Pk/Z6OEYbTmusY0Zy0TTlGtCSttR4jmpvW0H5fU2PHiPrS1j5GtCatMY4RhjRnv6djhOG0dIygYwQdI5qflo4RLUtbe7+3JG0edOfl5UGtVsPT01NvuqenJ27dumW0z6msrERlZXVly+VyAIDPZz6ATd3047uMx9/P/s2991jtUe9OFhUQhaMzjnLvA78MRF5ZnsG0A3wG4PyL57n33dd1xz3ZPYNpu7t3x/W517n3A78fiBu5NwymDXAMQMqCFO79sI3DcCHjgsG0bnZuyH2zeuCocb+Mw7F7xwymtRPZofTt6h37iS1PYHfiboNpAYAtrd5R/7XjX9h2Y1u9aUuWlHA7zsu7XsbPV36uN236q+nc34sPLsY3l78BAIggwjt4BwDg+ZknlFAi+bVkBDoFAgDeOfQOVp9eXSe/msvpfHz8Y3x87OM6+emce+EcBvoOBAB8eeZLvHXwrXrLeyTmCIYHDgcAfHfxO8zfM7/etLue2YUJXScAAH6J/wUz/5xZb9otT27BUz2eAgDsuLkDU7ZNqTdt7KRYzOg7g3tcmB1PWWeddL4e9zXmDZoHADieehwjfh4BP/wOPjqhlIn1llsVvQpvDnkTAHAp8xIG/TBILy+PymWwxQDsSP4EQcf7YtnwZQCAm7k30XN9T720PNYJXryVyCsJwqRvDuLIwkfgIbXB5fQ7+OVsMngQY0/mAvQUTARQ3SZzB8zFugnrAAB5ZXnwWF3/o8Ri+sRg4+SNALRfJvYrtM8G120DnoJi5Kk6Ye6Oz7EtORtbn9rKLatLawgdI7Qs5RiR80YO3DtpR7dfuG8hvrnwTb1pm3KM0Lk25xp6ePQAoD1GLD+2vN601nqMAIB9SfvwyG+P1JvW0DGiPo0dI2paGrW0wWNETW9EvoFPR38KAEiVpSLoy6B60xrjGGHIk92fpGME6BhREx0jtOgYoUXHCC1LPEa8tve1etOZQ7sdvXzFihVwdHTkXn5+fuYuEiFtQhd02/KaNwK5mqe9L7usOfd1MyEkGu0XYgU/rvHkvFJkS96DkpeB0gpbTP/pHGRlSmw5lw8exKjg34SCH9+scjeXJ78EACDR9DDp5xBCCCGEEAIAPNbGQzYrFArY2dlh27ZtmDx5Mjc9JiYGRUVF+PPPPxtcPjAwEAsWLMCCBQsaTGfoSrefnx8ycjMglUrrpKcuH4bTmqtbmAgi/PDDDwCA6TOngyfQLqdUKrFp4yYAwHMznoNIJGpSVy/dcjweDy+9+BJEIhEUagXKKsrq5Kdjrd3C/rPrOn44kYL+9jL89O/xeutUOy1Q3dXrxZ/jcOpOEca65GLlvMnccg11C7uQUoSYn+Lg2kmEY28NhlgoblJXr7SCckz/8TJyihXo6+eE29nFKFOo8e1zvfBgkLROmxijW5huGyhX87EuIwAAcHLxUPg6VR8PqFtY89NS11HrO0Y0Ny11HaWuowAdI1qSlo4RWnSMaH5aOka0LG3N/T63IBcerh6QyWQGY7+21uZBNwBERERg0KBBWLt2LQBAo9HA398f8+fPx+LFixtctqlBd21yuRyOjo4WU/GEmMq/f4/DjsvpWDS2G+YMD2nycou2XcXvF9Lw+qiueGVklyYt8/mB2/jqUCIm9vHBV8/0a1Y5b2XJMeXb05BXaH8I9fSV4n/zH+IOlqY05ot/kJBdjG+f64+xPb1N/nmEEEIIIaTtWFrsZ5bu5QsXLsT333+Pn3/+GTdv3sScOXNQWlqKmTO196RMnz5db6A1hUKBuLg4xMXFQaFQID09HXFxcUhKSjJH8QmxaDnF2jPIntLmjfSve1Z3prz+M9C1nax6PveQep7P3ZBuXlLEzhwIG5H2MDR/RJc2CbgBYFCQCwDgbDI9r5sQQgghhJhWmw+kBgBPP/00cnNz8f777yMrKwt9+/bF3r17ucHVUlNTwedXnw/IyMhAv37VV9FWr16N1atXIyoqCkePHm3r4pO2cnUZwBMAvd6rOy/+Q4Cpgd7L2rhQli9Hru0O5uFgYMTABugeG5Yla1rQXVyhRFxaEQBgSD3P525MeIALts0ejDu5JRjTw7PxBYxkUJAL/u/MPZyjoJsQQgghhJiYWYJuAJg/fz7mzzc8MmPtQDowMLDe+w1I+6RUKnHp/EVE2O6CWqOGoM+y6un/fVw7vcdS1H34W/35ff/99wCAF198kbtfub7p1kx3pfvw3zsQMW9Gk9fJ3V6b7uqd+1Aq+za63LnkAqg1DAGudujsbNdg2ob09HVET19H7r2p2qRmvhOf/hcA4EamHPIKJaQ21t/uhBBCCCHEMpkt6CakIYwx7L0/AGUupRhxfTmuFdnjht3TeEz4IyJsd+FI/ggMeeDtJgfdjDHk5uZyfzc23VpVKNWQlWvvka4oym7WOgW6agPnQqUQSpW60WD3ZJJ2tPOWXuWuj6napGa+Hg4SBLraISW/DBdTCjGiW/2PDiGEEEIIIaQ1KOgmFu2fgiiEho/EI389AOAqAkO2obRiBP4piMIQcxfOAuVWPS5MAA3EqH90R0N8HW0ggBpqCHC/qBxdbRvunn45rRAAEFF1f7S1GRTkgpT8MpxNLqCgmxBCCCGEmEy7fU43aT+WJkRzf1+r6IJ/CqJalE+UyxEMczlmcN4wl2MQXP+wRflaEl3XclueEs0dk4zP58GJp10+Kaf+R1MAgEKlwfUMOQCgT2enZpfTEgwK0g7+di4538wlIYQQQggh7RkF3cSiaRhw7HYu9/5uhXe9gXNjGPgY4XoE/Bsf600f5nIMI1yPgPGa2lndcukGUbPl1f8s0IY48auC7tyGg+7b2cVQqDRwtBUhwLXl93Obk+4K/dX7MpQrmtcrgBBCCCGEkKaioJtYtJ6Ol6Fm1Zdsb/OHYoRr/VesG/JPQRSO5I+A8MZyaK5+CIVKA/6NjzHC9QiO5I+Apvvbxiy6WeRUdS+3QwuDbl45gMaDbt2o5b07O7bZY76MrbOzLbwdbaDSMFxOLTR3cQghhBBCSDtFQTexWMNcjqFzp7t60+6UueFI/giDV6yb4p+CKKi6L8Urf5dg4NItSL+8AUfyR7S4y7qlqdm9vCWc+FVBd05Jg+mu3i8CYL1dywGAx+PR87oJIYQQQojJ0UBqxCLxeDzY2ohxRK69nzs8wBkX7xUiv1SBM50mQ1Jig4hmDBTG4/Hg6Kh9LFVewAvYLTsCBj425k+GozAMjo6w2iu2Nem6l7vY8uFo37yr0DweD35SEZAH3MkthVrDIOAbXv7qfRkA7ZVuY6vZVsZsE0P5RgS54s+4DHpeNyGEEEIIMRkKuolFEolEePDFvThz8DZwMBFdPe2RJatAelE5Rj72HAYFvdrs/BYsWAAA2LLzGzAEAAC2FQzH2aeSYNfvHWOvgllkV3UvnzzmYUwZ6NesZUUiEd5bOBe/vr8XlSoN0gvL4W/gfu0yhQq3s4sBAH38nFpdZkPl0LWVqfPVXem+lFoIhUoDsZA6/xBCCCGEEOOiX5jEot0v1HZ37uxsh1APewDA3dyGuz43KP5D7L+Ryb0t1tjjrxP/APHWP3I5AOTItd3L3aWSFi0v4PMQ4q6t58ScYoNprqXLoWGAl9QGntKGHytm6ULcO8G1kxiVKg3i04vMXRxCCCGEENIOUdBNLNr9wjIAgK+TLXycbAEAmbKKlmUW/yHKr3yEE6WDAACP9/cFAGypnAXEv98uAm/dc7o9HFoWdANAFw9d0G345MaVGoOoWTu6r5sQQgghhJgaBd3EIimVSnz//fe4mZoDoHqkaQA4ei4O33//PZTKpg8WplQqcfHiOfxc+CIq1Hx0drbFvBGhAID4fDucq5wItVph/BVpQ0q1Bvml2nU48Oe2FtXR999/D1naLQBAYnY9QbduEDUTdC2vWY7mlr+l+eqCbrqvmxBCCCGEmALd000sEmMM99MzIFd5AdB2L/eSah9jlVeqQkZGBhhjzcpv170BuKz0BgBEBrsiwMUOIgEPSjUfW1MeRN9pr8Oan9SdV6K9yi3k81CUfR8yHppdRxkZGeCrnQBI6+1erhtEzVQjl+vKofvb1Pnqgu4LKYUNDh5HCCGEEEJIS9CVbmKxypgYDHyIBDx4OEjgVXWlu4yJWpynnGnzCPGwh1DAR4CLdqCwImbd9yYD1SOXu9qL0ZpBv5142u77STkl0Gj0g96CUgVSC7Rd/nu1g+7lANDNSwoHGyFKKlWIS6PndRNCCCGEEOPqeFe6S0sBgYHrmQIBYGOjn64+fD5ga9uytGVlQH1X73g8wM6uZWnLywGNpv5ydOrUsrQVFYC6gUdzNSetnR24aLCyElCp6k8rFKKEiQEA3lIJ+OVl8BJp66K0ajpKSwGlUlu//KrzRwqFdlptCm23a5lG28bBbp0AhQIhzhIk5ZaiSGNbnZ+OjU31tlJfvobSKpXc5xkkkQBCYfPTqlTaeqtHTqF2O3S3lwC62LH2OumIxYCo6uSFWq1tu6pySHkVEPF5KFOokZFZgM7uDtr0AK6martgB7vYwlGjAEprlV0k4tJCo9Fua/WpL23N+tCVXyjU1gWg3SfKyurPt760hvIVCCCwsUH0A57YcTkdm07cRbhbPffD0zHCcFpzHSOak7Ypx4iWpLWyY4Teft+ctLpjRH1q7svNSdvSY4QhxjhGGNKc/Z6OEYbT0jGi+WnpGKH9m44RLUtLxwjt3w1tv+bAOgiZTMYAMJl206r7Gj9efwE7O8PpAMaiovTTurnVn3bAAP20AQH1p+3eXT9t9+71pw0I0E87YED9ad3c9NNGRdWf1s5OP+348fWnrb35PPlkw2lLSqrTxsQ0mLYyPZ099+5XLGDRLjb19Y2MAaxI0okFLNrFAhbtYu8u/YBVikTa9MnJ1fm+8Ybh/EQitnTpMhay6E8WsGgXS8wuZmzpUrYqajoLWLSLjXo7tjo/3evcuep8V61qeN2OHKlO+/XXDafdtas6bWxsw2m3bKlOu2VLg2n/7/PfWMCiXWzmT2fYsmXL2LJly+quk+719dfV+R45wtWRbrlRz69jAYt2scPB4dp1r/Llz0dYwKJd7LVHXjec79Kl1fleu9bwur3xRnXa5GS9tqpT/rlzq9Pm5DScb0xMddqSkobzffJJxhhjcamFLGDRLhb6xg6W3cnZcL5GPEZoAFZg48AS3PzZiVFPsZ2X77Pv/7nDPt59g/17yrts+lPL2NKRL7FkJ286RtT3ysmpTjt3bsNpm3CM4F7XrlWnXbq04bRGPEaoeHx2wbcb+3zIs+ztL3axRduusDe2xLF/f7SNvfLoG2zupEXs5clL2POPv8tmPLmUPTflA/bs0/9hUz78kz3xzUk26esT7NHlf7JxM75ko2d9zZ6b8gH7+sGn2GXvrkzF42s/Jza2ugy7djVcXgPHiHpfNY4R7Ny5htMa4Rhh8GWEY4TBV9UxgtNQWvodoX3RMaL6ZWW/I+gYUfWiY4T2ZeXHCNkzzzAATCaTMUvQ8a50E6tRwrRnGX012jOX0spS2CnKUSa2RWkLupiXQQQVBBDwefCv6lYekp8GoJ10L1dpz7y7t2Lkcp2Q/DTcdgtAkqs/RtSYfqVAe5a+d2Ziqz/DkvTxc0J/fydcSi3Cpn7jsPDEryb7rLvOPpg7eQlueQRVT9wcV/130IMAgGPBwH/7T8DY26fx0rnt6Jt522RlIuaRa+eEf4L640jIABwP7AeZrYN2RhaArLSqVDZA9+H1Z1ICoKSw6o0A8AwBACS4B+J4UH98CsChogQPpsZjSIENhmQXI9TDHjRyASGEENJ2eIwxZu5CtAW5XA5HR0fIMjIglUrrJqAuH4bTmqlbmEIoxIQPfkOi2h2vDQvAv6O0AcqIdWeQXFCBseIEfPXvmRCLxU3q6qVQKPDKF7HYpwhDoKsdjr45AlAoEHc3B5M3XoEYKsS/NRQSSY2A1cq6hS3Zk4jfLqRj/vBglJ7dop326qvaOqrNQLcwhUKBFV99BQCw7/8Y1p5Mw5S+Xlj1eC9ALAZjDAM/Ooi8EgX+mNkP4Ybu6TZCt7Ca5eDKb4RuYQbzrbHf/+9KBl757TLcOolw8tVISIS1hrwwwjHiZHIh5my7DnmFdtt3shXCrZMY7lJbuDlI4G4vgZuEBydbIfYn5OFoUvWI6oP8HfHyYH+M6O0Hvm6wtw58jLDGrqNqHh9xaUU4eiMLR2/nID5T/wkBUhshhgU7I8RTCpFIAAGfDwHTQMDUEPJ5EPB5EPC0/3PvxWIIq9IKmQZ8tQoCHpCUV4aTyYU4c68IxZX6de7hIMHgYBcM9pdiSJAzfB0NnHSkrqNa1HW0Gh0jmp/Wyn5HUPfyFqSlY0Q1CztGyHNz4ejhAZlMZjj2a2Md70p3p076jddQuubk2VQ1N15jpq25sxkzrU0zrgA3J61EUn1AA6BSa/DR7puwFQnw/ENBcODxUMbTrr+vmz1Xx56OdkguqIBKXNWOtQNKsbjuNAAQiVAhkgIKIMjVjksb7OcKgEEBIfIhgk99bVlfvoaIRNVfRMZMKxRWf3EakFOi/TL3kEqQrdt2DNVRbQKBNp1IBLuq5UJ9nQGkIbGggls+Q1aBvBIFhHweegR7AqJGxnrn85u+b9RMW6McBsvP4zU935ppG8l3bE8veEltkCWvwP+SZHgyvHPDeTfzGLHpzD0s/es61BqGfv5O2PBcODyk9e8zzw7tgoSsYnz3z138GZeOc6kynEuNR5fDyXhxWDAm9fWBpAMdI4yWtjn7shHS5pVU4p/buTiSkIvjibkoKtP/0d3TV4rhXT0wPMwdff2cIBQYZ3zThwDMGKE9tl7LkONkUh5O3cnD+ZRC5BRXYueVTOy8kgkACHS1w+BQNwwJcUNkiCtcOtVaD90xoimak7alx4jGtPQY0RSWkJZ+R2i1k2OEQWb6HdHitHSMqGYJaekYodXUfb6NdLygm1ikIwm5iD2ZAgA4n1KArbMHQ+joDuSXIcDNgUvn46TdicMfijZ8BbceYrEYwX0jcexkCkI9q/OTdrKFv0snpBaU4V6hAj4uxlkfc8gp1p6R9nHqhOlvvtns5cViMd6sWu52tvZxYUnZJWCMgcfj4WpaEQAgzMsBNo0F3K1Qsxxtma9IwMe/IgPw6b4ExJ5MxhP9fcFrzTDwVVRqDf7z901sPJUCAJjc1wcrn+jdpDoM83LAZ1P64I0xXRF7MgW/nk1FYk4J3tp2FZ/tT8ALDwXjmQh/2EvoUG4p1BqGK/eLcDQhF0cTchCfLtO7iOBgI8Swru4Y3tUdUWHu8HAw7a0tQgEfff2c0NfPCfNGhKJCqcale4U4eScPJ5PycfV+EVLyy5CSn4pfz6aCxwMe8JJiSKgrBoe6YVCgCzrR9kUIIYS0Cn2TEotw9m4+9/f5lEKkF5Ujo0jbTaizS/VZON1jwzJlDXQhqsfdXG3XnGB3e73poR72SC0oQ1JOMSJDXJudr6kwxpBaUAZ/F7smBX85xdruWh7S1p/ZC3TtBAGfh+JKFbLkFbCXCPFnnPYZ171N9HxuS/DsIH98dSgR1zPkOJ9SyD3Du6Vk5UrM//USjifmAQDeHBOGucNDmh3Mezva4u3xD2D+w6H49WwqYk8mI1teiY9238TXR5IQMzgQMwcHwrn2FUrSZnKLK7H5XCp+PZeKTJl+18nu3lKM6OaO4WEe6GfEq9ktYSMSYHCoGwaHuuHNMYC8Qomzdwu4K+G3s0twI1OOG5lyfH88GSIBDyPCPPBEeGeMCPOAuPZtF4QQQghpFAXdxCKcTS7Qe7/5XCqUagYBnwfPGgODBVR1Db+X38D9NfW4m6e9fzLYTb+LThdPexy+lYOEqqu7luLDXTfx08lkjOvphc+m9IGduP7dVa1hyCvR3tNljCtnYiEfga52uJNbis/238bhWzkoqHo8WPQDHq3O31I5dxLjsX6+2Hw+DbEnk1sVdKfkleL5n8/jTm4pbEUCfPF0H4zt6d2q8kltRJgdFYKZQwKx83I6vj12F8l5pfjqUCK+/+cuno3wxwtDg+Dt2IxuXaTFGGO4nFaE/55Kwd/xmVCqtZe0HWyEGNrFDcPDPDC8q3uDtxGYm9RGhFHdPTGquycA7cm703fycTJJeyU8vagc+29kY/+NbLh0EmNiHx88Gd4ZPXykRukJQgghhHQEFHQTs5NXKHE9QwYAeGaQH347l4a1h5MAAN5iBZhGDVRdGfJ11Abg8cmZUCqVEDXxPqbCknKkFWivjge6VP8AViqVyL0dB0CKW5lyI61R693JLcHPp1MAAHuuZeFefhm+jxkAXyfDwdT9wjKoNQxiAR+OEh42btwIAJg2bVqT60ipVOKXX37hluvq6YA7uaXYdvE+ACDYvRMWje2GkQ94tm7lmlmOppbfWPnOHBKEzefTsO96Fu4XlqGzczPud6pyPqUAL/73AorKlPCS2uCHmAHo6Wtg4LkWkggFeHqgP54M98Pea1n45mgSrmfI8eOJZPz3dAoe79cZL0cF1+nVQYyjQqnG/65k4L+n7yE+XcZN7+vnhJjBARjfyxsSoeluwTAlDwcbTOrri0l9fcEYQ0J2MbZfSseOy+nILa7ExlMp2HgqBWGeDngyvDMm9fMxeRd5QgghxNpR0E3M7lq6DBoG+LnY4umB/vjtXBo3z12Vg5oD7Ps7a4POQiUfSpW6yQHZrUztVWw7KOBsV70MYwzqgjQAPZBQ4/5lc/tsfwLUGoY+fk5ILyzDjUw5Jq87iX0LhtUd5AhAXNX91g/4SCHg83Dv3j0AQHMeTsAY01uuj58T9lzLgpu9BP8e1QVPD/Brk26xtcvR1vmGeTlgSKgrTibl4/9O38OS8Q8063OO3MrBnF8uokKpQZ/Ojvh++gCTXekU8HmY0Nsb43t54Z/EPKw7koRzyQX4/UIatlxMw0Ohbujm5YAQd3uEemhfTnYt64Ku0TDweLCI/cNc0grK8MvZVPx+PhWFVQOiiYV8PNrbB9MjA9DHz8m8BTQyHo+Hbl5SvD1eirfGhOF4Yh62XbqPAzeykZBdjI9238TKvbcwrIsbngz3w8gHPEw63gMhhBBirSjobgc0GgYNY60OiDQahj8u3cdDXdzg7WiL+PsyhHh0arBbszHcztIGxN28pOjT2RF9Ojviyn3t1aPOApleWg8HCQTQQA0+MmQVCLVtWjBzq6rruAu/brd0R14FeNCguEKFDFlFvVeT28rl1ELsjs8CjweseqI3OkkEmPbDWdzLL8OuqxmYHhloYJkiAEA/I/7onzUkCL18HdHXz6nDDaQ0c3AQTibl47dzqXgtukuT94E/49Lx+pYrUGkYRoS545tp4bAVmz4I4fF4iOrqjqiu7rh4rwDfHLmDQ7dycDwxj7ufXMfNXswF4SHu9ujsbIuSShUKy5QoKlOgsExR/XepbpoS5Ur9R3TwqwJwHgA+jwdo/4HP4yHA1Q4DA10wMMgFAwOdrbq7O2MMJ5Py8fPpFBy6mQ1N1fkaXydbPPdgAJ4e6GfwRFh7IxTwMaKbB0Z084CsTIld8RnYdvE+LqcW4UiCdnR2qY0Qj/bxwRPhndHPz6lDn6AhhBBCaupYv6TboeIKJaI/P4ZQD3tsej6iVT9ytl28j7f+uAqpjRA/zhiIp749DX8XO+xbMMykgcPtHO291l097cHj8fDW2G6Y9sNZ2PEUcOXpB8l8Pg8OvEoUMVukFpQj1MupSZ9xK0sXdNcdgE3AY3DkVaCI2eFWptysQTdjDJ/svQUAeLxfZ4R5aUdafy4iAB/tvond8ZkGg27dle6+Rgy6xUI+hoS6GS0/a/JwNw8EuNrhXn4Ztl9Kx3MPBjS6zP+duYf3/7wGxoBJfX2w+qk+EJlhwKzwABf8OMMFidnFOJtcgKScEtzJLUFSTgkyqx77lldSUGcchebSMNR4tqd+z4FbWcW4lVWM/zuj7Vng62SLQUEuGBDojIGBLgh1t69+1riFKq5Q4o+L9/HfM/e4QRgB4KFQN0yPDMDIBzwhsPB1MBVHOxGmRQRgWkQA7uSWYPul+9h+KR2Zsgr8cjYVv5xNRbB7JzzRvzMe7+9r1SddCCGEEGOgoNvKXUmTIVteiWx5Je7mlSKkFfdwnq4aQVxeocI/t3MBAKkFZTiRlMcNsmMKiVVXobtWPcprSKgb/jsjHDt++xmGziFIeRUoYra4V9D0wdRuZWkDe2ee4WVc+OUoUtvhVlaxye9ZbsipO/k4c7cAYiEfC0d35aaP6+WFj3bfxLnkAuQWV8K9xuBylSo1bmRo70c3ZtDdkfH5PMREBuKDXTew8VQKpkX413tCizGGdUeSsHr/bQDA9MgALHu0h9mDyi6eDuhS4/F4AFBSqcLdqgBc98qWV0BqK4KTnRjOdiI46f7upJumna57LJmGAQwMYNV/a5i2HhgDlGoNbmUV41xyAS7cK8CNDDnSi8qx47L2vmAAcLQVYUCAMwYGueDBYFf08nW0iAC2tFJ77Nt/Ixv7r2ehVKG9um8vEeLJ8M547sEAhHrQffI1hbjb480x3bBwVBhO38nHH5fuY8+1TNzNLcWn+xKwen8CHgp1wxP9O2NMD6826flBCCGEWBoKuq1celF1EJlRVN7soFup1mDV3lvo4ukAlab6atWRhJzqzyhs/kjhTcUYw+1sbUDcxaM6QHgw2AVH+BUGl3HgVwKapo9grtYw7rnThq50A4AzTztdd0XcXDb8cxcA8MxAP70r7p2d7bhu9/uuZ+ldeb2ZWQyFWgNnOxECXO2gVCrbvNzt0VMDOuPzA7eRlFOCLRfSMLanNxxt9ccQYIzho79v4ocTyQCAVx8Oxb9HdbXYbrX2EiF6d3Yy+WPfgt3tMb6XdqT2kkoVLqcW4nxyAc6nFOJyWiFk5UocupWDQ7e0xxlnOxGiumofqTWsq3ubdtfOLa7EoZva0blPJOVBodJw80I97BETGYDH+nemZ6E3QsDn4aEubnioixs+mNQDe+KzsO3SfZxLLuBuc7CXCDGhlzdG9/BERLAr1SkhhJAOg77xrFyOvJL7O7/qkVHNsflcKr4/rg0YHvCWctOvpVeP5J1R45mzKrUGL/z3AnLklfhsSh+9ZVoip7gSsnIlBHwegt07Nb4AAClPu84pTQy67+WXolypgQBqSHmGA3nnqmA8Ict8I5jfzJTjn9u54POAF4YG15k/rpc3rtyXYc+1Se5wCgAAybpJREFUTL2gOy61EADQh+6hNCoHGxGeDO+MjadSsOiPeCz6Ix6+Trbo5uWAbt4O6OYlxbHbudzo7u890h3PPxRk5lJbHnuJEEO7uGNoF3cA2hN91zPkuJCi7eJ+5k4+CsuU2BmXgZ1xGeDxtM+CHxGmDcJ7+zoavddAcl4p9l/Pwv4b2biUWoia4+oFuNphTA8vjO7uifAAZ9qnWsDBRoQpA/0wZaAfUvPL8Mel+9h++T7SCsrx+4U0/H4hDUI+D/39nTEkVBuo9+nsaNbnlxNCCCGmREG3lYq/L4ObgxgFZdWBdl5JZQNLGHbqTj739816HpmVXlR9dfjM3QIcTdB2Pf9w1w38+uKDzf7MmnT3Ioe629cZ9ba+kck9RQpACVy4VwSFSgOxsOEfalfuaz/DhV8BibhuniKRCB4CJaAA7uSWolKlNsvjfr6vuso9rpc3/FzqPqZqXE8vrNxzC2fuFiC/pBKu9tou5rpB52p2LW/pY7aM9Xiu1jJVOZqb79wRIciSVSA+XYb0onLupbtCC2iv8K16ojeeCO9s7OK2SyIBH339nNDXzwkvDA2GUq3BxXuFOJqQi6MJObiVVYwraUW4klaENQcT4dJJjGFd3DCimweGdmnZVXCNhuFquowLtJOqxpHQ6d3ZEaO7e2J0Dy908bCnQNuI/F3t8O9RXfHayC44n1KAP69k4ERiHlILynAupQDnUgrwxcHbcJAI8WCIK4Z2ccOQUDcEu3WidiCEENJu8Jgxn8ljweRyORwdHSGTySCVtu7qrLndypJj7Jrj8HWyxYBAZ/wZlwEAmDM8BIvGdmtWXqO/OMZ1765PP38n7Jg7BADw9o54/Ho2FQAgEvBw+f3RreoiuGLPTWw4dhfPDPLDisd7N2kZjYZh0McHkVeiwKbnI/BQl/oH+9JoGCasPYGbmXK88nAoXh8dZjAdYwwDPzqEvJJKrHm6Lyb389XLw9T352bKyjH0kyNQaRj+nDek3kcPTfjqOK5nyLHy8V6YOsgfADBi9VEk55Vi48yBGB7mYdJydmSyciUSsopxK0uuHSgsU44yhRqvjw4z6ZgHHU2WrALHbufgyK1cnEzKQ3GlipvH4wGeDjYQCXkQCfgQC/gQC/kQCfgQCQxN40PDGE7dyUN2jV5BQj4PkSGuGN3dE9HdPWmgLzNIzdeOF3IiKRcnk/IhK9e/LcbH0QYPVQXgQ0Ld4GYvqScnQgghpC5Li/3oSrcVOnRTe5Utvagc4vvVV3nzm3mlW6XWIDmvtNF0GVVXuhljOFZ1lRsAlGqGU0l5GN3Dq1mfW9Ole9qu0f39nZu8DJ/Pw8hunvj9QhoO3syuE3QfuZWD7ZfTYSviQ8Dn4WamHPYSIWYNqb/rL4/Hw8whgfh0XwK+PpKEsT298GdcOn45m4rb2cVY+XhvvUBcp7hC2y12y3nts8XXPtMPgW5N6yZf03f/3IVKwxAR5NLgs37H9/LG9Qw5dl/LwtRB/igqU3BtSIOomZajrQiDglwwKMjF3EVp17wcbfD0QH88PdDf4FXwLLnhW0Qa00kswPAwD4zu4YnhYR517s8nbcvf1Q7Puvrj2Qh/qDUM1zNkOJ6Yh5NJebiQUogMWQW2XLiPLRe0t2884C3lroIPCnShAdkIIYRYFbMG3evWrcOnn36KrKws9OnTB2vXrsWgQYPqTb9161a89957SElJQZcuXfDJJ59g/PjxbVhiy1Dz3u2aQXNePfd0772WiS0X7mPu8BAMCKwOGFILyqBUN97RIae4EtfSZdgdn4n0onKIBDxM7uuLrRfv40hCLhd0M8bw27k0HLiRhYFBLnjhoeAGu35XKNW4WtU1un9A04NuAIjurg26d13NwMwhgQhw7YTSShX+8/cN/HYurU765x8KgnMj3VKnRwZgw7E7SMopwUOfHNHrrv/vLXFQqDWYMsCPm3a/sAxTvj2td8/74+tP4YeYAU0+iaDWMKzaewuxJ1MAAC9H1b2Xu6ZxPb3w6b4EnEzKw+XUQu7qUJBbJzjZtf9nBZOORSTg48FgVzwY7IrF47ohR16BnOJKVKo0UKqrXwoVq/q/xjS1dppKrUEPX0cMDnE1y20jpHECPo8b4G/eiFCUK9Q4l1KAk0naAdhuZsq513f/3IVYwMeAQO394EO7uKGHj2WMfk+0GGNQqhkqVWpUKDV6/1eqNKhQav+v5P7XoEKlhrrGYK41W1N3m0HNuw141TPrWUY3jWdgWt10emlr/Cfg8yDg88Dn8bi/BVV/8/k8CPXmAXweD0I+H3w+9NLWyaNqHr/q75r58HmgWysIaYfMFnT//vvvWLhwIb799ltERERgzZo1GDNmDBISEuDhUbeL7KlTp/DMM89gxYoVeOSRR/Drr79i8uTJuHTpEnr27GmGNWh7KrUGc365hAM3sg3Oz5JVIP6+DKUKFR4MdgWg7Ro9/9fLUGkY8koq8df8h7j0te9rrM3DQYKiciUUKg0eWXuCmz4k1A3je3tj68X7OHwrGyp1DwgFfPx6LhXv7LgGADiSkIv917Oxblr/ep97venMPVSqNPB2tEFwravDKpUKW7ZsAQBMmTIFQqFQb7pSAwS6eiMlvwxj1xxHVy8HZBSVI7e4EjweMC3CH54ONriZJQefx8PMwf749ddf681PN33GkCB8dSgReSWVcLMX44WhwbiXX4bfzqXirW1XoVRrMC0iAPkllZj+4zlkyCrg62SLGYMD8deVDMSny/Ds92fw88xBiKhqg5oyqu4HTswuBp/HQ0JWMfeotldHdsGIRrqHa0eF9sLu+CzM2XSJ69Zc8yp3fXXXmJYuZ2ymKoelrB9pOQ+pDTykNuYuBjExW7EAUV3dEdVVO/heXkklTibl4URiHk4k5SFTVoFTd/Jx6k4+Pt2XACc7ESKDXRHk1gkeDhJ4SG3g7iCBh4ME7g4S2IlpXwe0wXC5Uo2SChWKK1UoqVChtFL7d2mlqk6A3FCgXFErYK75f6VKDU2HuHHRdKqDcnDBubCe4J0HbbDPqwrW+Tzte1RN5/O1JxT4NebX/J9XKx2PV50fvyodUJ1vzfk1P4+HWu/1PkeXV3W5DJ1E4U6MGDqZYuAESUMnUmqn0c+rbv5NOVGjl5eBEyNN+WxDJ3oMnWPhTjYZXK5uGerURQvX0WC6Bj6bV5Wex6vefnTzuXlV06vTVm8vtZcHl05/eT4PVfNq5qWfL2rNKysx3+DIhpjtm+jzzz/Hiy++iJkzZwIAvv32W/z999/46aefsHjx4jrpv/zyS4wdOxZvvvkmAODDDz/EgQMH8PXXX+Pbb79t07KbglrDGj27efBmdr0BNwDcyJRj4roTYAz4MWYAHu7mgctpRdyjwK7el2HFnpvo6eOIR/v4IKHq8VgBrnbc47fCPB2QUPV4LQ+pBJ0kQr2r6V5SG7z/SHf4OtvCtZMY2fJK/B2fiYdC3fDJnlsAgEGBLriVJUdcWhEmfHUcn0/pg4e7eYIxht3xWdjwzx0kZpegXKl9Bu78h0PrrLdGo0FiYiL3t6Hpv8x/FHM3X+UGXQIAXydbrH6qDyJD9ANehULRaH4ajQYvDA3CndwS+DjaYP7DXeBoKwJjDDYiPmJPpuCdHddw6k4+4lKLkF5UDl8nW/wxZzC8HG3wbIQ/5v5yCcdu5+KFny9g88sPooePIwDgQkoBPtp9E5dTi+q0m0TIx+qn+uDRPj71tm1NnzzRGwlZxbiTW4r/O3MPgH7QXV/dNaalyxmbqcphKetHCGkeN3sJJvX1xaS+vmCM4W5eKXcV/MydfBSVKbHnWla9y9tLhHCvCsBrBuMeDtXBuYeDBM52YpOP39ESSrUGJRUqlFTWeBkInLVplFVp1CipUOqlLa1UmSUYlgj52pdIABsRHxJh9f8SIR82Iu3/ut4KekVkNf+sfqMbjYg1Mr92ftXTG0+rYQxqDav+XwOoNBqomfaChm6eSsO076vSqTX6y3Evps1Dl64hag2DGgxQN5iMENIATaXpHnncEmYJuhUKBS5evIglS5Zw0/h8PqKjo3H69GmDy5w+fRoLFy7UmzZmzBjs3LnT6OXLllcgt9jw/dGMVR/YdWdb6jvoA4BKw6BSM/B42vt/z9wtgErNEOphj/SiMtzIkCM5rxQp+WUQCXhYEN0Vt7OLUVKhQrB7J/xxKR1qDcOkvj44XWOk8Zp4PO2XWoVSw5Xl+Z8vGEy74Zh2hOyknBL8GZcOAJgeGYgPd90AAHT3kXJBdyexEM52Yi7oXjKuG14cGsz9KJkW4Y+vDifh3Z3X4GYvgbxChQe8pfj1xQhkyiow/9dLuHJfhlkbL+DJ8M4oKFXgcI1RnwFgRJi7Xpft5nB3kGDHnMG4nVOM5NxSONiI0D/AqVVXNaQ2Iqx7tr/eNB6Ph/cf6Q6xkI8Nx+7i76uZALQ/BH+eNQhejtorb50kQmz4Vzim/3QO55IL8K8fzyGqqzsqlGruByGPp71/fWCgCwRVZ5Un9PZu1qPXHGxE+G76AEz6+iRKqgaZaug+cEIIaS94PB5C3O0R4m6P6ZGBUKk1uHJfhnPJBciSlSO3pBI58krkFFcip7gCFUoNF6g2NoaJkM+Dm33twLw6WOfxeFBrdLctaAMnpUb7t1KtgVqjDcB087Xf/xpumnZZBpVGN79qWQ2DWqPRzlNrUKnSlrm0UoXiChUqVcY9Scjnab+vHCRC2NsIYS8RopNEyAW/uv9rBsfa/xsPnGsuKxFpBza0xBMZ5sYYg4ZBLzivGbxrqt7rBf2sxjQueNdU/S7VngjQMG3eDNqTBtx7pn2v+7+p6bj/a6RD1f8NpWOseh0NvdcY+t2s/x9XT9r/Dc2rtTz0f4/XXL7msoZ+szeUP2qlaeyzG/oc/ZNI+mU0vG71r4ehE1INnYxqyjo29bNr5q+p0UYMurau8XfVgjXf67YFVrUgM7i8fvsz6G+3qJHG0PIAoCxXo+4Np+ZjlqA7Ly8ParUanp76I/56enri1q1bBpfJysoymD4ry/DZ7crKSlRWVgfOcnnTuxhsOnMPaw8nNTm9sSjVDJ/uS+DeH6pRFf89fa/e5QYFuuCxfr54d+c17qp2bV5SG70BiL48pL3iJxLwML6XF84l5+PgzRy8MDQIh25mQ16hwr8iA1BYqsDxxDwAwKS+vnpfnnNHhOLMXe0jX4orVBDwefjPZG1Xcz8XO2yZHYkVu29h46kU7lnGQj4Pc0eEYmIfbzjaiuHu0LoRafl8Hrp5SdHNy7SjEvJ4PCwe2w2+TrZIyinB4BBXDAl1g4ON/mBMNiIBfogZgKkbzuBGphw7LqdXLQ88PcAPC0d1NUr32BB3e3w+pQ9e+r+LcJAI8YC3Q6vzJIQQayMU8BEe4IxwA+OCMMZQUqlCbrE2CNf/X3tyXffKL1VApWHIkle0eLA+U7MR8WEv0QbJumDZXiKCg40QnSQC7u+6abR/64JsW5GA7hk2Mx6PBwEPNBYBISYkl8vh+IG5S1Gt3d7otGLFCixfvrxFy9pLhPB2rBsY6c6c6O4XqBneNnTYFAr44PO0ZyWzZBVQqhl6+kpRWKrUewY2AIR62KOkQoUKlRoeDhK42UtwK6sYTrYiBLt3wpLxD+DAjWx0drbF4Vs5yJFXYvmkHghxt8cjfXxQWqnC31cz8b+rGXCxE8NWLEDvzo54MtwPK3bfxKAgF9wvLMeuqxnwcbLF8w8FwdvRFp9P6YuCUgX8XOzw64sPIq2gDON6eaNCqcaFe4UIdbfnrujq2IgE+L8XBuH/Tt/D7exiPNG/M8IDqgdqkwgFWDaxB0Y+4IE/4zJgJxbg2Qh/kwfIpsLj8TA9MrDRdFIbEbbNicTBmznIKCqHrFyJMT28jD66+OgeXtj80oPoJBbSAFGEEFILj8eDg40IDjYiBLvbN5hWqdYgv0TBBeOGgnMGQMTXdoMWVj2iTlj1t5DPr/qfB6GAD1HV/3rzdfOq0gnqSScR8vUCZm1QLYRIUP/ApIQQQiybWYJuNzc3CAQCZGfr35+cnZ0NLy/Dj5/y8vJqVvolS5bodUeXy+Xw82taN+aXo0LwclRIk9KaQ0iU9sfDI7317wHWfUHPeigIsx4KqrPcp0/14f7+96iuevM6VXUvA4Cevo7o6au9F9lGJMCXU/vVWxaJUIAXhjY84vbQLu4Y2sW9wTTtjZ1YiIlNvEe7NR40MFgbIYSQ5hEJ+PBytKlzcpkQQggxBrOcNhWLxQgPD8ehQ4e4aRqNBocOHUJkZKTBZSIjI/XSA8CBAwfqTS+RSCCVSvVehBBCCCGEEEJIWzJb9/KFCxciJiYGAwYMwKBBg7BmzRqUlpZyo5lPnz4dvr6+WLFiBQDgtddeQ1RUFD777DNMmDABmzdvxoULF/Ddd9816fN0N+M3595uYj4KhQIVFdr76uRyOcRicYPT2zo/S2bsOmprpiqHpawfIYQQQggxLV3MV3MwOLNiZrR27Vrm7+/PxGIxGzRoEDtz5gw3LyoqisXExOil37JlC+vatSsTi8WsR48e7O+//27yZ925c4ehaqA7etGLXvSiF73oRS960Yte9KJX+37duXPHWKFrq/AYs5Tw37SKiorg7OyM1NRUODo6mrs4pJl09+SnpaXRrQJWiNrPulH7WTdqP+tFbWfdqP2sG7WfdZPJZPD390dhYSGcnJzMXZz2O3p5bXy+9vZ1R0dH2nGsGN2fb92o/awbtZ91o/azXtR21o3az7pR+1k3XQxobpZRCkIIIYQQQgghpB2ioJsQQgghhBBCCDGRDhN0SyQSLF26FBKJxNxFIS1A7WfdqP2sG7WfdaP2s17UdtaN2s+6UftZN0trvw4zkBohhBBCCCGEENLWOsyVbkIIIYQQQgghpK1R0E0IIYQQQgghhJgIBd2EEEIIIYQQQoiJUNBNCCGEEEIIIYSYSIcJutetW4fAwEDY2NggIiIC586dM3eROpxly5aBx+Ppvbp168bNr6iowLx58+Dq6gp7e3s88cQTyM7O1ssjNTUVEyZMgJ2dHTw8PPDmm29CpVLppTl69Cj69+8PiUSC0NBQbNy4sS1Wr935559/8Oijj8LHxwc8Hg87d+7Um88Yw/vvvw9vb2/Y2toiOjoaiYmJemkKCgowbdo0SKVSODk54fnnn0dJSYlemqtXr2Lo0KGwsbGBn58fVq1aVacsW7duRbdu3WBjY4NevXph9+7dRl/f9qSxtpsxY0adfXHs2LF6aajtzGfFihUYOHAgHBwc4OHhgcmTJyMhIUEvTVseL+n7s+ma0nbDhw+vs//Nnj1bLw21nXmsX78evXv3hlQqhVQqRWRkJPbs2cPNp/3OsjXWfrTvWZeVK1eCx+NhwYIF3DSr3gdZB7B582YmFovZTz/9xK5fv85efPFF5uTkxLKzs81dtA5l6dKlrEePHiwzM5N75ebmcvNnz57N/Pz82KFDh9iFCxfYgw8+yAYPHszNV6lUrGfPniw6OppdvnyZ7d69m7m5ubElS5Zwae7evcvs7OzYwoUL2Y0bN9jatWuZQCBge/fubdN1bQ92797N3nnnHbZ9+3YGgO3YsUNv/sqVK5mjoyPbuXMnu3LlCps4cSILCgpi5eXlXJqxY8eyPn36sDNnzrDjx4+z0NBQ9swzz3DzZTIZ8/T0ZNOmTWPXrl1jv/32G7O1tWUbNmzg0pw8eZIJBAK2atUqduPGDfbuu+8ykUjE4uPjTV4H1qqxtouJiWFjx47V2xcLCgr00lDbmc+YMWNYbGwsu3btGouLi2Pjx49n/v7+rKSkhEvTVsdL+v5snqa0XVRUFHvxxRf19j+ZTMbNp7Yzn7/++ov9/fff7Pbt2ywhIYG9/fbbTCQSsWvXrjHGaL+zdI21H+171uPcuXMsMDCQ9e7dm7322mvcdGveBztE0D1o0CA2b9487r1arWY+Pj5sxYoVZixVx7N06VLWp08fg/OKioqYSCRiW7du5abdvHmTAWCnT59mjGkDCT6fz7Kysrg069evZ1KplFVWVjLGGHvrrbdYjx499PJ++umn2ZgxY4y8Nh1L7cBNo9EwLy8v9umnn3LTioqKmEQiYb/99htjjLEbN24wAOz8+fNcmj179jAej8fS09MZY4x98803zNnZmWs/xhhbtGgRCwsL495PmTKFTZgwQa88ERER7OWXXzbqOrZX9QXdkyZNqncZajvLkpOTwwCwY8eOMcba9nhJ35+tU7vtGNP+8K/5I7I2ajvL4uzszH744Qfa76yUrv0Yo33PWhQXF7MuXbqwAwcO6LWZte+D7b57uUKhwMWLFxEdHc1N4/P5iI6OxunTp81Yso4pMTERPj4+CA4OxrRp05CamgoAuHjxIpRKpV47devWDf7+/lw7nT59Gr169YKnpyeXZsyYMZDL5bh+/TqXpmYeujTU1saVnJyMrKwsvbp2dHRERESEXns5OTlhwIABXJro6Gjw+XycPXuWSzNs2DCIxWIuzZgxY5CQkIDCwkIuDbWp8R09ehQeHh4ICwvDnDlzkJ+fz82jtrMsMpkMAODi4gKg7Y6X9P3ZerXbTueXX36Bm5sbevbsiSVLlqCsrIybR21nGdRqNTZv3ozS0lJERkbSfmdlarefDu17lm/evHmYMGFCnXq29n1Q2OIlrUReXh7UarVe5QOAp6cnbt26ZaZSdUwRERHYuHEjwsLCkJmZieXLl2Po0KG4du0asrKyIBaL4eTkpLeMp6cnsrKyAABZWVkG21E3r6E0crkc5eXlsLW1NdHadSy6+jZU1zXbwsPDQ2++UCiEi4uLXpqgoKA6eejmOTs719umujxI840dOxaPP/44goKCcOfOHbz99tsYN24cTp8+DYFAQG1nQTQaDRYsWIAhQ4agZ8+eANBmx8vCwkL6/mwFQ20HAM8++ywCAgLg4+ODq1evYtGiRUhISMD27dsBUNuZW3x8PCIjI1FRUQF7e3vs2LED3bt3R1xcHO13VqC+9gNo37MGmzdvxqVLl3D+/Pk686z9u6/dB93EcowbN477u3fv3oiIiEBAQAC2bNlCwTAhbWjq1Knc37169ULv3r0REhKCo0ePYuTIkWYsGalt3rx5uHbtGk6cOGHuopBmqq/tXnrpJe7vXr16wdvbGyNHjsSdO3cQEhLS1sUktYSFhSEuLg4ymQzbtm1DTEwMjh07Zu5ikSaqr/26d+9O+56FS0tLw2uvvYYDBw7AxsbG3MUxunbfvdzNzQ0CgaDOyHbZ2dnw8vIyU6kIADg5OaFr165ISkqCl5cXFAoFioqK9NLUbCcvLy+D7aib11AaqVRKgb0R6eq7of3Ky8sLOTk5evNVKhUKCgqM0qa0/xpPcHAw3NzckJSUBIDazlLMnz8fu3btwpEjR9C5c2duelsdL+n7s+XqaztDIiIiAEBv/6O2Mx+xWIzQ0FCEh4djxYoV6NOnD7788kva76xEfe1nCO17luXixYvIyclB//79IRQKIRQKcezYMXz11VcQCoXw9PS06n2w3QfdYrEY4eHhOHToEDdNo9Hg0KFDevd4kLZXUlKCO3fuwNvbG+Hh4RCJRHrtlJCQgNTUVK6dIiMjER8frxcMHDhwAFKplOs6FBkZqZeHLg21tXEFBQXBy8tLr67lcjnOnj2r115FRUW4ePEil+bw4cPQaDTcF11kZCT++ecfKJVKLs2BAwcQFhYGZ2dnLg21qWndv38f+fn58Pb2BkBtZ26MMcyfPx87duzA4cOH63Tjb6vjJX1/Nl9jbWdIXFwcAOjtf9R2lkOj0aCyspL2Oyulaz9DaN+zLCNHjkR8fDzi4uK414ABAzBt2jTub6veB1s8BJsV2bx5M5NIJGzjxo3sxo0b7KWXXmJOTk56I9sR03v99dfZ0aNHWXJyMjt58iSLjo5mbm5uLCcnhzGmfQyAv78/O3z4MLtw4QKLjIxkkZGR3PK6xwCMHj2axcXFsb179zJ3d3eDjwF488032c2bN9m6devokWEtVFxczC5fvswuX77MALDPP/+cXb58md27d48xpn1kmJOTE/vzzz/Z1atX2aRJkww+Mqxfv37s7Nmz7MSJE6xLly56j50qKipinp6e7F//+he7du0a27x5M7Ozs6vz2CmhUMhWr17Nbt68yZYuXUqPnWpEQ21XXFzM3njjDXb69GmWnJzMDh48yPr378+6dOnCKioquDyo7cxnzpw5zNHRkR09elTv0TZlZWVcmrY6XtL3Z/M01nZJSUnsgw8+YBcuXGDJycnszz//ZMHBwWzYsGFcHtR25rN48WJ27NgxlpyczK5evcoWL17MeDwe279/P2OM9jtL11D70b5nnWqPOG/N+2CHCLoZY2zt2rXM39+ficViNmjQIHbmzBlzF6nDefrpp5m3tzcTi8XM19eXPf300ywpKYmbX15ezubOncucnZ2ZnZ0de+yxx1hmZqZeHikpKWzcuHHM1taWubm5sddff50plUq9NEeOHGF9+/ZlYrGYBQcHs9jY2LZYvXbnyJEjDECdV0xMDGNM+9iw9957j3l6ejKJRMJGjhzJEhIS9PLIz89nzzzzDLO3t2dSqZTNnDmTFRcX66W5cuUKe+ihh5hEImG+vr5s5cqVdcqyZcsW1rVrVyYWi1mPHj3Y33//bbL1bg8aaruysjI2evRo5u7uzkQiEQsICGAvvvhinS8SajvzMdR2APSOZW15vKTvz6ZrrO1SU1PZsGHDmIuLC5NIJCw0NJS9+eabes8KZozazlxmzZrFAgICmFgsZu7u7mzkyJFcwM0Y7XeWrqH2o33POtUOuq15H+QxxljLr5MTQgghhBBCCCGkPu3+nm5CCCGEEEIIIcRcKOgmhBBCCCGEEEJMhIJuQgghhBBCCCHERCjoJoQQQgghhBBCTISCbkIIIYQQQgghxEQo6CaEEEIIIYQQQkyEgm5CCCGEEEIIIcREKOgmhBBCCCGEEEJMhIJuQgghhBBCCCHERCjoJoQQQgghhBBCTISCbkIIIYQQQgghxEQo6CaEEEIIIYQQQkyEgm5CCCGEEEIIIcREKOgmhBBCCCGEEEJMhIJuQgghhBBCCCHERCjoJoQQQgghhBBCTISCbkIIIYQQQgghxEQo6CaEENKg4cOHY/jw4UbLLyUlBTweDxs3bjRantZo1apV6NatGzQaTaNpZ8yYAXt7+zYoFbFGgYGBmDFjRrOXy8/PR6dOnbB7927jF4oQQgiHgm5CCLFCGzduBI/H4142Njbo2rUr5s+fj+zsbHMXjzRCLpfjk08+waJFi8Dna7+Ky8rKsGzZMhw9etS8hSMAgG+++abdnxhydXXFCy+8gPfee8/cRSGEkHZNaO4CEEIIabkPPvgAQUFBqKiowIkTJ7B+/Xrs3r0b165dg52dnVE+Y//+/UbJh1T76aefoFKp8Mwzz3DTysrKsHz5cgAwas8C0jLffPMN3NzcWnQF2ZrMnj0bX331FQ4fPoyHH37Y3MUhhJB2ia50E0KIFRs3bhyee+45vPDCC9i4cSMWLFiA5ORk/Pnnn63Ou6ysDAAgFoshFotbnZ+5aTQaVFRUmLsYAIDY2FhMnDgRNjY25i5Ko0pLS81dBGJCDzzwAHr27Nnur+oTQog5UdBNCCHtiO5KVXJyMjdt06ZNCA8Ph62tLVxcXDB16lSkpaXpLTd8+HD07NkTFy9exLBhw2BnZ4e3336bm1f7ymtOTg6ef/55eHp6wsbGBn369MHPP/9cpzxFRUWYMWMGHB0d4eTkhJiYGBQVFRks++HDhzF06FB06tQJTk5OmDRpEm7evFkn3dGjRzFgwADY2NggJCQEGzZswLJly8Dj8fTS8Xg8zJ8/H7/88gt69OgBiUSCvXv3AgBWr16NwYMHw9XVFba2tggPD8e2bdvqfJYuj61bt6J79+6wtbVFZGQk4uPjAQAbNmxAaGgobGxsMHz4cKSkpBhct5qSk5Nx9epVREdHc9NSUlLg7u4OAFi+fDl328CyZcv0lk1PT8fkyZNhb28Pd3d3vPHGG1Cr1XppNBoN1qxZgx49esDGxgaenp54+eWXUVhY2GjZdPeO37lzB+PHj4eDgwOmTZvWrHwvXLiAMWPGwM3NDba2tggKCsKsWbP00pSWluL111+Hn58fJBIJwsLCsHr1ajDG9NLp6n/nzp3o2bMnJBIJevTowbWjzr179zB37lyEhYXB1tYWrq6ueOqpp+q0h+62jJMnT2LhwoVwd3dHp06d8NhjjyE3N5dLFxgYiOvXr+PYsWNcWzTW+6C521Rj6wQ0fVs3pKioCAsWLODqODQ0FJ988onBMQRGjRqF//3vf3XqnxBCiHFQ93JCCGlH7ty5A0B7ryYAfPTRR3jvvfcwZcoUvPDCC8jNzcXatWsxbNgwXL58GU5OTtyy+fn5GDduHKZOnYrnnnsOnp6eBj+jvLwcw4cPR1JSEubPn4+goCBs3boVM2bMQFFREV577TUAAGMMkyZNwokTJzB79mw88MAD2LFjB2JiYurkefDgQYwbNw7BwcFYtmwZysvLsXbtWgwZMgSXLl1CYGAgAODy5csYO3YsvL29sXz5cqjVanzwwQdcwFrb4cOHsWXLFsyfPx9ubm5cPl9++SUmTpyIadOmQaFQYPPmzXjqqaewa9cuTJgwQS+P48eP46+//sK8efMAACtWrMAjjzyCt956C9988w3mzp2LwsJCrFq1CrNmzcLhw4cbbKNTp04BAPr3789Nc3d3x/r16zFnzhw89thjePzxxwEAvXv35tKo1WqMGTMGERERWL16NQ4ePIjPPvsMISEhmDNnDpfu5ZdfxsaNGzFz5ky8+uqrSE5Oxtdff43Lly/j5MmTEIlEDZZPpVJhzJgxeOihh7B69WruNoWm5JuTk4PRo0fD3d0dixcvhpOTE1JSUrB9+3Yuf8YYJk6ciCNHjuD5559H3759sW/fPrz55ptIT0/HF198oVeeEydOYPv27Zg7dy4cHBzw1Vdf4YknnkBqaiq3nZ8/fx6nTp3C1KlT0blzZ6SkpGD9+vUYPnw4bty4UedWi1deeQXOzs5YunQpUlJSsGbNGsyfPx+///47AGDNmjV45ZVXYG9vj3feeQcA6t0fdJqzTTVlnZq7rddUVlaGqKgopKen4+WXX4a/vz9OnTqFJUuWIDMzE2vWrNFLHx4eji+++ALXr19Hz549G82fEEJIMzFCCCFWJzY2lgFgBw8eZLm5uSwtLY1t3ryZubq6MltbW3b//n2WkpLCBAIB++ijj/SWjY+PZ0KhUG96VFQUA8C+/fbbOp8VFRXFoqKiuPdr1qxhANimTZu4aQqFgkVGRjJ7e3sml8sZY4zt3LmTAWCrVq3i0qlUKjZ06FAGgMXGxnLT+/btyzw8PFh+fj437cqVK4zP57Pp06dz0x599FFmZ2fH0tPTuWmJiYlMKBSy2l9pABifz2fXr1+vs05lZWV67xUKBevZsyd7+OGH6+QhkUhYcnIyN23Dhg0MAPPy8uLWlTHGlixZwgDopTXk3XffZQBYcXGx3vTc3FwGgC1durTOMjExMQwA++CDD/Sm9+vXj4WHh3Pvjx8/zgCwX375RS/d3r17DU6v73MWL16sN72p+e7YsYMBYOfPn6/3M3TbxX/+8x+96U8++STj8XgsKSmJmwaAicVivWlXrlxhANjatWu5abXbkzHGTp8+zQCw//73v9w03X4THR3NNBoNN/3f//43EwgErKioiJvWo0cPve2+Mc3ZppqyTs3Z1gMCAlhMTAz3/sMPP2SdOnVit2/f1ku3ePFiJhAIWGpqqt70U6dOMQDs999/b/L6EkIIaTrqXk4IIVYsOjoa7u7u8PPzw9SpU2Fvb48dO3bA19cX27dvh0ajwZQpU5CXl8e9vLy80KVLFxw5ckQvL4lEgpkzZzb6mbt374aXl5feIGAikQivvvoqSkpKcOzYMS6dUCjUuworEAjwyiuv6OWXmZmJuLg4zJgxAy4uLtz03r17Y9SoUdzjjNRqNQ4ePIjJkyfDx8eHSxcaGopx48YZLGtUVBS6d+9eZ7qtrS33d2FhIWQyGYYOHYpLly7VSTty5EjuCjkAREREAACeeOIJODg41Jl+9+5dg2XRyc/Ph1AobNEjwGbPnq33fujQoXqft3XrVjg6OmLUqFF6bR4eHg57e/s6bV6fmm3WnHx1PSd27doFpVJpMO/du3dDIBDg1Vdf1Zv++uuvgzGGPXv26E2Pjo5GSEgI9753796QSqV6612zPZVKJfLz8xEaGgonJyeDbfrSSy/pddEeOnQo1Go17t2711C1NKg521Rj69SSbb2mrVu3YujQoXB2dtZrr+joaKjVavzzzz966Z2dnQEAeXl5zVtpQgghTULdywkhxIqtW7cOXbt2hVAohKenJ8LCwrhHUCUmJoIxhi5duhhctnY3Y19f3yYNmHbv3j106dKF+xydBx54gJuv+9/b27tOcBkWFlYnP0PTdXnu27cPpaWlkMvlKC8vR2hoaJ10hqYBQFBQkMHpu3btwn/+8x/ExcWhsrKSm27oXll/f3+9946OjgAAPz8/g9Obcu90S9jY2NTpWuzs7Kz3eYmJiZDJZPDw8DCYR05OTqOfIxQK0blzZ71pTc03KioKTzzxBJYvX44vvvgCw4cPx+TJk/Hss89CIpEA0La3j4+P3gkLoO72o1O7/oG6611eXo4VK1YgNjYW6enpevcmy2SyOsvXzlMXdLam7VqzTenKoPv8nJycZm/rNSUmJuLq1av1dkWvvR3o6qsp94oTQghpPgq6CSHEig0aNAgDBgwwOE+j0YDH42HPnj0QCAR15tcOhmteqWsvDK3T8ePHMXHiRAwbNgzffPMNvL29IRKJ/p+9O49vosz/AP5J0iS90/ukLbSchXJfBRUPVkA8UFfQZRGP9cRd8UBBV/Fa8b4QdXVX8OeF4IoHiAjIodw3LYVyFVp6Qo/0btLk+f2RJiTpJJnJOUm+79crrzYzzzx55pmZZ57vnFi6dCm++uqrbum56s7ecObgYVTx8fHo7OxEU1NTt8DTHlu/Z06v1yMpKQlffvkl53g+9wMrlcpuB1T45iuRSPDtt99i586d+Omnn7Bu3TrcddddePPNN7Fz506nzu7zqee///3vWLp0KebOnYv8/HyoVCpIJBLceuutnA8Oc3bZ2eKudcrZ37em1+vxpz/9CU888QTn+L59+1p8Nwb7CQkJbvl9QgghlijoJoSQAJWTkwPGGHr16tWtk+2KrKwsHD58GHq93iI4O3bsmGm88e/GjRvR3NxsEWwVFxd3y49ruDHPhIQEREREIDQ0FKGhoTh58mS3dFzDbPnf//6H0NBQrFu3znT2FTC8xssb+vfvD8DwFHPzB6W54yxjTk4ONmzYgPHjx7v1IIrQfMeOHYuxY8fiX//6F7766ivMnDkTy5cvx9/+9jdkZWVhw4YN3Q46WK8/Qnz77beYPXs23nzzTdOw9vZ2m0/K50PI8nD3OpWUlOTSup6Tk4Pm5maLJ+TbY3zbgfFqA0IIIe5F93QTQkiAuummmyCTyfD88893O4PGGENtba1T+V5zzTWoqqoyPekZMDzxevHixYiMjMSECRNM6To7O/Hhhx+a0ul0OixevNgiv9TUVAwdOhSfffaZRZBUWFiIX3/9Fddccw0Aw9nBiRMn4vvvv0dFRYUp3cmTJ7vdB2yPTCaDRCKxeNXWmTNn8P333/POwxX5+fkADK/WMmd8wrYrgeL06dOh0+nw4osvdhvX2dnpdN58862vr++2rg0dOhQATJdcX3PNNdDpdHj//fct0r399tuQSCS87lm2JpPJuv3u4sWLu71OTYiIiAje9eXudcrVdX369OnYsWMH1q1b121cQ0MDOjs7LYbt27cPKpUKAwcOdKq8hBBC7KMz3YQQEqBycnLw0ksvYcGCBThz5gymTZuGqKgolJSUYNWqVbj33nvx+OOPC8733nvvxb///W/ccccd2LdvH3r27Ilvv/0W27ZtwzvvvGM6e3nddddh/PjxmD9/Ps6cOYPc3Fx89913nPfYvv7665gyZQry8/Nx9913m14ZplKpLN5V/dxzz+HXX3/F+PHj8cADD5iCt0GDBuHgwYO8yj916lS89dZbmDx5Mv7yl7+gpqYGS5YsQe/evXH48GHB9SFUdnY2Bg0ahA0bNli8vzosLAy5ubn45ptv0LdvX8TFxWHQoEGCXuE0YcIE3HfffVi0aBEOHjyIq6++GnK5HCdOnMDKlSvx7rvv4s9//rPgMvPN97PPPsMHH3yAG2+8ETk5OWhqasInn3yC6Oho08GT6667DldccQWefvppnDlzBkOGDMGvv/6KH374AXPnzrV4wBhf1157LT7//HOoVCrk5uZix44d2LBhg+n1W84YMWIEPvzwQ7z00kvo3bs3kpKScOWVV3Km9cQ65cq6Pm/ePPz444+49tprcccdd2DEiBFoaWlBQUEBvv32W5w5c8biUvL169fjuuuuo3u6CSHEU3zyzHRCCCEuMb76yN6rmYz+97//sUsuuYRFRESwiIgI1r9/fzZnzhxWXFxsSjNhwgQ2cOBAzumtXxnGGGPV1dXszjvvZAkJCUyhULC8vDyLV4AZ1dbWslmzZrHo6GimUqnYrFmz2IEDB7q9MowxxjZs2MDGjx/PwsLCWHR0NLvuuutYUVFRtzw3btzIhg0bxhQKBcvJyWH/+c9/2GOPPcZCQ0Mt0gFgc+bM4Zyn//73v6xPnz5MqVSy/v37s6VLl7KFCxdyvnbMOo+SkhIGgL3++usWwzdt2sQAsJUrV3L+prm33nqLRUZGdnvN1Pbt29mIESOYQqGweH3Y7NmzWURERLd8uMrMGGMff/wxGzFiBAsLC2NRUVEsLy+PPfHEE6yiosJuuWz9Dt989+/fz2677TaWmZnJlEolS0pKYtdeey3bu3evRT5NTU3skUceYWlpaUwul7M+ffqw119/3eI1XozZXobWr8iqr683rY+RkZFs0qRJ7NixY93S2dpujMtu06ZNpmFVVVVs6tSpLCoqigFw+PowV9YprnlijP+6zjVtU1MTW7BgAevduzdTKBQsISGBjRs3jr3xxhtMo9GY0h09etT0+kFCCCGeIWHMTU/tIIQQQnxk2rRpOHLkCE6cOOHrovCiVquRnZ2N1157DXfffbevi0P8iLvX9blz52Lr1q3Yt28fnekmhBAPoXu6CSGE+JW2tjaL7ydOnMDPP/+Myy+/3DcFcoJKpcITTzyB119/nfPp2oQAnl/Xa2tr8Z///AcvvfQSBdyEEOJBdKabEEKIX0lNTcUdd9yB7OxsnD17Fh9++CE6Ojpw4MABm+8kJ8Qf0bpOCCGBgR6kRgghxK9MnjwZX3/9NaqqqqBUKpGfn4+XX36ZghAScGhdJ4SQwEBnugkhhBBCCCGEEA+he7oJIYQQQgghhBAPoaCbEEIIIYQQQgjxkKC5p1uv16OiogJRUVH0hE5CCCGEEEIICVCMMTQ1NSEtLQ1Sqe/PMwdN0F1RUYGMjAxfF4MQQgghhBBCiBeUlZWhR48evi5G8ATdUVFRAAwVHx0d7ePSEHsYY9BqtQAAuVwOiUTCOczVPF1JF+w8WU+0DIi/onWXEEJIQCtcBEikwMAnu4878irA9MCgBd4vF4fGxkZkZGSYYkBfC5qg29j5iY6OpqBb5DQaDd555x0AwIIFC6BQKDiHuZqnK+mCnSfriZYB8Ve07hJCCAloUeFAwbNAZCiQ98zF4QUvAiUvA3kvACKLs8RyADxogm5CCCGEEEIIIU7KewaMAXUH3kDphXC0Z96BmPKliDn9LmKHvIjQvH/6uoSiRUE3IYQQQoIeYwwanR7tWj3atTq0a3Vo0+rQrtVD06lHj9gwpKpCRXPWhBBCPKWjU4fy+jaU1rUaPrWtpv/L6kahRfMVUAQAOwEMAPAZcAxQ/m8tYsMViAmXGz5hxv8Nf2PD5VCFKRDbNSw2XA5VuBzKEJlvZ9gLKOgmhBBCiN9q7ujE1uPnUd+qsQiYzYPmNq0OHWb/G8d1mH1v1+qgZ/Z/Kz5CgYHpKgxKi8agdBXy0lXoERtGgTghxK8wxlDXojELpFtxtvbi/5WN7WB22kOJBEgNOY8waTvUuig06GPRqWfo6NSjqrEdVY3tgsoTrpAhJkwOVbgxIO8K1MPkiA1XQBUuNwXzxsA9JlwOucz3TyXni4JuQgghhPgVxhj2l9Zj+e4yrCmoRKtG59b8pRIgTC5DaNcnRCbBufo21LZosPX4eWw9ft6UNjo0BIPSVRc/adHoGR8BqZQCcUKI75ifrS6ru3im+myt4XuLg3YzXCFDZlz4xU98ODK6/k8vfwehRc8AUgWg14ANegHNfeejoVVr+LRpUN+qhbrV8NcwXIOGNi3qWzVQt2rR0GYYpmdAq0aHVo0OFWphwXqkMgSqMDliI8zPqhsCdIVeWF6eRkE3IYQQQvxCbXMHVh0ox/I9ZThZ02wanp0QgZykSITKZQiTS03BsuEjNQXQYV3fQy2+mw1XyBAaIoNcJul29rpdq0NxVRMKK9QoLFejsLwRxVVNaGzvxPZTtdh+qtaUNkIhw8A0FQamRyOvKxjPTohAiB+dlSGEiBtjDPWt2q5AusUisC6ra0OFus3h2eqU6FBTIJ1lFVjHRyi4r+IpeBEoetbw0LS8Z4CCFyEpeBZREiAq7xlkxPGfB72eoamj0xCQt3YF5G1a1LdouoJyQ2Be3xWkG4P4xnYtGDNc6dTc0YnyhrbueXe08i+IF1DQTQghhBDR0ukZ/jh5Ad/sKcX6ompodYZeZJhchmsHp+LW0RkYnhnr8Uu8Q+UyDMmIwZCMGNMwTaceJ2qacKS8EQXlahRWqHG0shEtGh12n6nD7jN1ZtNLMSA1GoPSDJelD0yPRp+kKChCKBAnhHDTdOpR3mB+b3VL1/9tKKtrRXNHp93pjWerM8zPWHcF1+kxYQiVC7yXuuBFw9PLjQE3cPFvwbOW33mQSiVQhcmhCpMjK55/MXR6hsY2rcWZ8/quwN14Rr36Qj0+5p+lx1HQTURHKpUiNzfX9L+tYa7m6Uq6YOfJeqJlQPwVrbvuVd7QhpV7y7By7zmLsxhDeqgwY1QmrhuSiqhQuQ9LCChCpIYz2mkqTB+VAQDo1Olx+kKL6Wx4YbkaRyrUaNHocKC0AQdKGy5OL5OiX0pU16XphoC8X0qU8I4wIcQvmZ+tNl0GXtuKs3UtKKtrQ6W6zeGzJlKiQ5EZbxlUG4PshEgbZ6udLrDOMuA2Mn5n7r3VxxaZVILYCAViIxTohQjONI2Njfj4b14pDi8SxuxdeBA4GhsboVKpoFar6T3dhBBCiAhpOvXYcLQay/eU4fcT502XRqrC5LhxWDqmj8xAbpr/7cP1eoYztS0orGjEkXK14ax4uRqN7d3PUoXKpbhqQDKuG5yKy/slUQBOiJ/TdOpR0dCGs1aBtfH/Jgdnq8Pklmers+IvBtY9Yp04Wx0kxBb7UdBNCCGEEJ86WdOEb/aU4bv95aht0ZiGj8uJx4xRGZg0MCXgOpaMMZyrbzOcEa9Qo6DrrHid2fxHKkPwp9xkXDckFZf0TqRL0QkRKXWbFmcutHC+Yov32Wrzy8Djw7rOWke4/2x1kBBb7EdBNyGEEEK8rlXTidWHK/HNnjLsO1tvGp4UpcQtI3tg+sgMZMVzXzYYqBhjKCxvxE+HK7DmcKXFZfWqMDkmD0zBtUNSkZ8dTw9lI8RHNJ16FFU24mBpPQ6dU+NgWQNKLrTYnSZULjUF0Ya/YaZLwnvEhgfcQUUxEFvsR0E3ER2NRoNFixYBABYsWACFQsE5zNU8XUkX7DxZT7QMiL+iddcxxhgOn1Nj+Z4y/HSowvQQIJlUgiv6JeHWURm4vF8iBZQwXJJ+oKwePx2qxJqCSpxv6jCNi49QYEpeCq4bnIZRPePo9WSEeAhjDKV1rThYZngew8GyBhRVNEKj03dLmxyttHkZeGKkks5We5nYYj96kBohhBBCPG7X6Vo891MRjlY2moZlxYdjxqgM/Hl4DyRFh/qwdOIjlUowIisOI7Li8My1udhdUoefDldgbUElals0+GJnKb7YWYrkaCWm5qXh2iGpGJYRQx17QlzQ0KoxnL0ubcDBMsOZbPNbPoxiwuUYmhFj8YkJpwOtxDYKugkhhBDiMR2dOry1/jg+3noajBme+H3NoBTMGJWJMb3oLC0fMqkE+TnxyM+Jx/PXD8T2U7VYfagCvxypQnVjBz7dVoJPt5WgR2wYpg5OxXWD0zAwLZoCcELs0HTqcbSyEQfLGkwfrsvEFTIpctOiLQLsrPhw2r6IIBR0E0IIIcQjiquaMPebg6az29NH9sBT1wygM0IukMukmNA3ERP6JuKlGwfh9+MX8NPhCqwvqsa5+jb8e8tp/HvLafRKiMB1g1Nx7ZA09E2O8nWxCfEpxhjK6tpwoKzeFGAfqWiEprP7ZeI948MvBtiZsRiQGgVlCN1zTVxDQTchhBBC3EqvZ/h0Wwle+6UYGp0ecREKvHxjHiYPSvF10QKKMkSGibnJmJibjDaNDpuKa/DToQr8dqwGJRda8N5vJ/HebyfRLzkK13YF4L0SguvhdCQ4qVu1OHiugddl4kN6GAPsGAztEYPYCDooSNyPgm5CCCGEuE15QxseX3EIO07XAgCu7J+EV27OQ1IU3bPtSWEKGa7JS8U1ealo7ujEhqJqrD5cgS3Hz6O4ugnF65vw5vrjGJQejesGp2Hq4FT0iA33dbEJcZmmU49jVV2XiXc97Ow0x2XicpkEuWkqDKPLxIkPUNBNCCGEEJcxxvDDwQo880Mhmto7ESaX4Z/XDsBfRmdSp9bLIpUhmDYsHdOGpUPdqsW6oir8dKgC20/VorC8EYXljVi09hiGZ8bg2q4APJkeZEf8gJDLxLPMLxPPiEFuWjRdJk58hoJuIjpSqRR9+vQx/W9rmKt5upIu2HmynmgZEH8VzOtuQ6sG//y+EKsPVwIAhmbE4O0ZQ+lSZhFQhcsxfWQGpo/MQG1zB9YWVmH14QrsKqnD/tIG7C9twItrijAqKw7X5KVgSh4F4EQ81G1aHDJ70NmhsgbUclwmrgozPE18SEYMhnX9jaPLxImI0Hu6CSGEEOK030+cx+MrD6G6sQMyqQQPX9UHD16eQ+/aFrnqxnb8XFCJnw5VYH9pg2m4RAKMzIrFNXmpmDIoFSkqCsCJd3S7TPxcA06ft3GZeGr0xfuwM2LRky4TJ1bEFvtR0E3E6fBzgEQG5D3TfVzBiwDTAYOf83KhCCGEGLVrdXhl7TEs234GAJCdEIG3ZwzFkIwYn5aLCFfe0Ia1BZVYU1CJA2YBOHAxAL8mjwJw4j6MMZyrb8OBsosPOyt0cJn4kB6GIDs3NRqhcrpMnNgnttiPgm4iTgUvAgXPAnkvWAbetoYTQgjxmsJyNR5efgCnus5CzRqbhaeuGYAwBXWE/V1FQxt+LqjEzwWVFmfAAWCEKQBPQaoqzDcFJH5Hq9Oj5EILjlU14VhlI45VNdm9THxI1z3YdJk4cYXYYj8KuonoaDQavPHGGxiv+g0TYjeidcBLaMuZi8LPb8CE2I3ozF2IkKHPOZUnADz++ONQKLgbcL7pgp0n64mWAfFXwbDu6vQMH205hbfXH0enniExSonX/jwYV/RL8nXRiAdUNLRhbWEVfi6oxL6z9RbjhmfGmM6Ap8VQAE4MZ69rmjpwtLIRxVVNhiC7qgmnapqh0XU/gy2XSTDAeJl416dXQgRdJk7cQmyxHz1IjYiSVqvF5guXYvCoCZi2KgkNup/wR//t2FR7BcbnPuV0nu5MF+w8WU+0DIi/CuR1t7S2FY+sOGgKviYPTMHLN+XRWagAlhYThrsv6YW7L+mFSnUb1hYYAvC9Z+tND2F7ac1RDMuMwdS8VEzJS0U6BeBBoaWjE8erm8yCa8MZ7IZW7jYwQiFDv5Qo9EuJRv+UKAxKV2FgGl0mToIHBd1E1P515lqc1VQAAE62Z2Jr3QSM93GZCCEkmDDGsGJvGV74qQgtGh0ilSF4/vqBuGl4Op2RCiKpqjDcdUkv3HVJL1Sp27G2sNIUgB8obcCBrgB8aIYxAE+h94AHAJ2e4Wxti+ms9bHKRhRXN6G0rhVc18pKJUCvhAj0T41G/+Qo9EuJwoDUaKTHhEEqpfaCBC8KuoloaZkU3x0oB2BopC90qnBZ3BYAC3xaLkIICRYXmjuw4LsCrC+qBgCM7hmHN6cPQUYcBVPBLEUVijvH98Kd43uhurEdawsq8XNBFfacrTO92ulfPx/FkIwYTM1LwZRBqbTO+IHa5o5uwfXx6ia0a7tfGg4AiVFK9E+JQr/kKEOQnRKF3kmRdPaaEA4+C7qXLFmC119/HVVVVRgyZAgWL16M0aNHc6Y9cuQInn32Wezbtw9nz57F22+/jblz53q3wMTrhqj24Yvq4abvv6vz8ULmu+gsehkQeE83IYQQ/hhjWFtYhWd/KMSFZg3kMgkev7of/nZpNmR0toqYSY4OxR3je+GO8b1Q09iOtYVVWFNQiT1n6nCo673KL/98DEN6qEz3gFMA7lvtWh1O1jSb7r0urm7C0comXGju4EwfKpeib3KUIcBOicaAFMMZ7PhIpZdLToj/8knQ/c033+DRRx/FRx99hDFjxuCdd97BpEmTUFxcjKSk7g9jaW1tRXZ2Nm655RY88sgjPigx8bbL4rYgMawUqL447FDzQGyqvQJXFD0PyGy8TowQQohLyhva8Oz3hdh4rAYA0C85Cm/PGIrcNN8/iIaIW1J0KGaP64nZ43qiprEdvxypwprDldh9pg6Hzqlx6Jwai9Yew+CuAHwqBeAepdczlDe0WT3YrBElF1qg57g0XCIBsuLC0S8lCv277r3ulxKFrPgIOthGiIt8EnS/9dZbuOeee3DnnXcCAD766COsWbMGn376KebPn98t/ahRozBq1CgA4BwvRIumBTJN98teZFIZQkNCLdLZIpVIESYPcyptq7YVth4YL5FIEC4Pdyptm7YNesZ9+Q8ARCginErb3tkOnV7nlrTh8nDT/X8dnR3o1HdyptNoNJBAjy31l1gMb2VybK2bgLHjxkLW2QZtV72HycMglUgN0+o00Oq6P8RDo+n+WgqutObpzOfFVr5GoSGhkEkN65VWp4VG1/33jJQhSoRIQwSn7dR3oqOT+yg0AChkCshlcsFpdXod2jvbbaaVy+RQyBQWac3rqUXTAi203dLqmR5t2jZe+Zqn5co7RBoCZYjhiDpjDK3aVpv5CkkrZLunNoI7rS/aCKFp+bQRzqQ13+41Oo3FcjbfLqzTirWN6NTp8eWuciz+rQRtGj3kMgnun5CDByb0ApNoba7HXG2ELe5oI7hQG2EgpjYiKToUt+f3xPRRKahSt2LD0QtYV3ge+8424PA5NQ6fU+OVtceQl24IwC/pnYCEaCmilBKbzwrw9zbCk/0IdZsWJ6pbUFzdjBPVLThe1YITNS1o1XC3uTHhIeiTFIl+KRHokxyBvsmRyE2NgSrMsK6ZtxHtnd23EVf7EXzSUhsR2G2EkSf7EWLi9aBbo9Fg3759WLDg4n25UqkUEydOxI4dO9z2Ox0dHejouFjZjY2NAIC0N9OA0O7pr+lzDdb8ZY3pe9IbSTY3sglZE7D5js2m7z3f7YkLrRc4045MG4k99+wxfc9dkouz6rOcaXMTc3HkwSOm76M+GYWi80WcabNUWTgz94zp+2XLLsPeir2caRPCE3B+3nnT9ylfTsGWs1s404bLw9Hy1MUN++YVN+PnEz9zpgUAtvDihjpr1Sx8W/StzbTNC5pNG859q+/DZ4c+40wXghB80OMDnGERFsNrWSfO4AyiV3+BTnQCPy4CAJQ8XIKeMT0BAE9vfBpv7HiDM8+/4q8YmTbStDG+/PvLeH7L85zpAOBQ9SGMzRoLAHh357t4YsMTNudt0+xNuLzn5QCAj/d9jIfWPmQz7erbVmNq36kAgC8LvsSdP9xpM+2KP6/ALQNvAQCsOroK07+dbjPt0huW4o6hdwAA1p1ch2u/vtZm2venvI85o+cAAH4v/R1XfHaFzbSvTXwN88bPAwDsr9yP0f8ZbVFPSW8mGZYHgIUTFuK5y58DABw9fxSDPhxkM9/H8x/H61e/DgAoVZei17u9AIAz7wdHPoglU5cAAC60XkDSG7ZfTzR7yGwsm7YMgGFnErko0mbaP+f+GStvWWn6bi8ttREGYmgjAKDm8RokRiQCAB5d9yg+2PuBzbR82gijwgcKMTBpIADuNsLc7r/txqh0wwHhd3e+i6c2PMW5XQDibyMU+hzEaf4OJesNAEiPb8ey269Gn+QobD6zWXAbYYs72ggu1EZ0jfODNkKqjEG4Lh8Rukug1A9CQbkaBeVqvNo1Xo82dErOQyepQafkPDolNdB1/S38+1b0io+DTCrxyzbC6X4EAySIgIypIGOx+OclryIraiDONbRh4/GjOFbViBCWyJmvTMrQL1mF/ilR6JCU4NPCl6CVnsFZfR0OVcPiikJv9iNsoTbCIJjbCGvO9iMe/uVhm+l8wetB94ULF6DT6ZCcnGwxPDk5GceOHXPb7yxatAjPP2+7ISTi1YlOTLt1GtYXtmHlqgJIJTromQxVrA0HsMzpPJdhGR6/4XHI5XKH6QDgwZAHnfqtYGBeT/6UNyGe5I/rroSFIkb7V0TproMEMujRjHr5Ujx+2XXokxzl6+KRAKSXNKA5ZC2aQ9ZCylT4vymH8EthlemeYinCoGCZAMvsNu3EN3dCJpUgJToUzbrLEa+JtwjODcH6eTCJuM5wcWJSyKCClMVAxmKw/XgnTpSexoWWDvxRkoCkjucM46CCjMVAgot9l//8BgDGwEmJEBgC7k5JNTSSM9BKz0AjOQuttAT/9+c3cWueIXheeeQEPji637vzSQgBAEiYrWsKPKSiogLp6enYvn078vPzTcOfeOIJbNmyBbt27bI7fc+ePTF37lyHD1LjOtOdkZGBivMVnC9Ip0s+uNP68tLRD7ecwmu/FCM3NQpFlU2Ii5Dj9ye7vzAsEC4L45NWTJeX80lLl4VRGyE0LV06auCtNmLdkXK8tPoEKtWGaaYMSsSTU3ojMUpJbUQXaiMu8kYboW5rQXlDKyoa2lHR0IFKdbvF/1XqDnRy3YxsJS5Cjh4x4UiLCUN6bBiSo+VIjpYjLSYUaTGhUIWFWFzC7q42olWjQ12LBrXNGtS2aNHYxlDfosWFZg1qmtpwvqnDML5Fg4ZW222WLZFKGeIiFEiMUiIhUonk6FDkJIYjOzEUfZIjEBXa/Vwa9SMMqI0w8Pc2Qkg/4nzdeSTFJ0GtVnPGft7m9TPdCQkJkMlkqK6uthheXV2NlJQUt/2OUqmEUtn9qYoRigiLhWcLnzTOpDVfed2Z1nxjc2da88bBnWmVIUooYf+pl+o2w46sf0o0iiqbUNeihVwaBkWI1OY0CpnC1AA74qm0cpnctCNyZ9oQaQhCFPw2WSFpZVIZ73VYSFqpROqRtBKJxCNpAc9t99RGCE/Lp41wJi21EUBNYzue++kIfi6oAgCkx4ThpRsH4Yp+3JdbUhtxkRjSBnIboQqLgCosArmp3ON1eobzTR0ob2jFufo2VDS0o7yhFeWm/9vQ3NGJuhYt6lrUOFyu5swnXCEzBORdQXm61f9JUWEIkUmh1zM0tGlR29yBC80aXGjuQG1zDS40a1Db0oHzTYa/huEam/dP2yKVAHERCiREKhEf2fU3QomEKAUSuv4avisRH6Fw+VVc1I8woDbCubRiaCOE9iPExOtBt0KhwIgRI7Bx40ZMmzYNAKDX67Fx40Y89JDte9xI8NBoNHj33Xfxe3MqgFhkxUdALpNAq2N46Y138c9H50Ch4Ne5tc4TAB5++GGb0/NNF+w8WU+0DIi/Evu6q9czfLm7FK+tPYamjk7IpBLcfUkvzJ3YB+E8O9eE+JJMKkGKKhQpqlCMyOo+njGGxrZOnOs6W15e34ryhrauTzvK69twobkDrRrDK7NO1jTb/J2YMDka2rTQ8Tizbk4ZIkVCpBIJkVbBtNkw4/DYcAU9FZyQIOGTveyjjz6K2bNnY+TIkRg9ejTeeecdtLS0mJ5mfvvttyM9PR2LFhkelKXRaFBUVGT6v7y8HAcPHkRkZCR69+7ti1kgHtba2ooWrWFHFxshR1KUEuUN7ahtFXYU2TpPd6YLdp6sJ1oGxF+Jdd0trmrCgu8OY39pAwBgcA8VFt2Uh4FpKt8WjBA3kkgkUIXLoQpX2Vy327U6VDRYniU/19CGiq7gvLKhHZ16htqWi7d1qMLkpuA5weqMdHyEEolmZ6QjFDKbT18nhAQvnwTdM2bMwPnz5/Hss8+iqqoKQ4cOxS+//GJ6uFppaSmk0ouXEFdUVGDYsGGm72+88QbeeOMNTJgwAZs3b/Z28YmXdHStnqowOWLDFShvaDcNI4QQ4li7Vof3Np7Ax1tPo1PPEKGQ4fFJ/XB7fk86w0aCUqhchuzESGQncj9l2ngJe12LBnERCsRFKOze1kYIIXz4LIJ56KGHbF5Obh1I9+zZ0+ZN/iRwadjFoDsmzHBPYwejoJsQQvj448QFPP19Ac7WGs6+/yk3Gc9fPxBpMfzvtSMk2Jhfwk4IIe5CEQwRrQ4YHhgSE65AdFiIxTBXyI68CIQogLxnuo2TFr2MCXGbsaXO9vsmCSFEzGqbO/DSmqNYdaAcAJAcrcTz1w/C5EHue1gpIYQQQvijoJuIlvFMd4zZmW6NG850M4kMKHjW8MU88C54ESFFz4OBAm5CiH9p0+iw8Vg1Vh+qxKbiGnR06iGRALePzcLjk/ohKpTfE9AJIYQQ4n4UdBNR0jMJtF1ntVVhckSbLi93/Uy3PvcpQGYIvBs1UkQOewrSIy8BBc+iM3chtv5A9zkSQsSvXavD5uLzWH24AhuP1qBNe/FBkwPTovHStEEYlhnrwxISQgghBKCgm4iQRCJBbEo6cMbwPTpMjphwQ9AtC4ty6qmgEokEaWlppv+R9wx+OhOLx75Nx8Rf/4kPsl4G8l4A6z8faXuWXUxHOHWrTz/JmxBP8sa6q+nU44+T57H6UCV+LapGc0enaVyP2DBcOzgN1w5OxcC0aNp+CCGEEJGQsCB5QlljYyNUKhXUajWio6N9XRziwJkLLbj8jc2IVIag8PlJWLG3DE98exiX90vEsjtHu5z/9wfK8ciKg2AMCJO0o3DwXyG7rc0NJSeEEPfq1Omx/VQtVh+uwLoj1VC3aU3jUlWhmJqXimuHpGFIDxUF2oQQQgjEF/vRmW4iSi0aw9mbCOXFS8wBoKFVa3MaId5afxzGw01tLBQlbQnoXfAi58PVCCHE23R6hl0ltVh9uBK/FFahzuydwYlRSkOgPTgVwzNjIaVXfxFCCCGiRkE3EaVWjeHexAjFxYepAUBjm+tBd0enDufqWwBIkB7RgfIWJYoSn0Tvgr8bElDgTQjxgY5OHfafbcAvhZX4ubAK55s6TOPiIhSYMigF1w5Ow+hecfSObUIIIcSPUNBNREer1eLLb74FkI4whRQAECE3dDAra9XQarWQy4U9iVer1WLJkiUAgKkj2qFneQgP0eHyQX3w5a5SHAm5CtfnvQAUPIvtO3Zgd+vVmDNnjuDfCRbm9enuevJk3oR4ktB1t6NTh0Nlauw8XYudp2ux72w9Ojr1pvGqMDkmD0zBtUNSkZ8djxCZ1KPlJ4QQQohnUNBNRIcxBnVLOwAgXG64vNz4nu52JoNer7c5rd081WoAwNnGSABAZkIMBqapAABFFY3AlGfQqdNB8/tmqNVqBMnjDpxiXp/d6unwc4BExn3FQMGLANMBg59zLm9CRMzRuqvp1OPwuQbsPF2LHV1BdrvWsj1LiFTisr4JuG5wGsb3ToAihAJtQgghxN9R0E1EScsMHc0whSHoNl5eziBBS4cOSqXzeZ+JugFAMXrGRyA3zfBghaKKRjDGoM99ClvolWGusfMedBQ8C+S94JtyEeJlWp0xyK7DztO12Hum3uK1XgCQEKnAmOx4jM2OR352HHISI+lhaIQQQkiAoaCbiJIWXZeVd93THSqXQQY9dJBC3a5FnAsPITxb2woAyIoPR/+UKMikEtS2aFDd2IG4MDqr5DJjoG0eeJsH3HTPPAlQjDHU6sNQrlPhrs/2Y19pQ7cgOy5CgbHZcV1Bdjx6J1GQTQghhAQ6CrqJKHUywxnu8K4z3QCgQCfaoLB4XY4zSusMrwbLio9AqFyGnMQIHK9uRlGlGpdkx7qUt9hpdXqcrGlGz/gI01UEHpH3DBgDPtu0G+Fbp+CWmF8gGUwBNwlM5+pb8cPBCqzafw4nOwYaBp6qBQDEhssxtutM9tjsePRJiqSnjRNCCCFBhoJuIkrGM93mQbdSokMbc/21YaV1hjPdPePDAQC5qdE4Xt2Mo5VNARl0d3Tq8OPBCmwuPo+tJ86jqb0TUwenYslfhnv0d7/T3onnKgy/cU6TiEcp4CYBRN2qxZqCSnx/oBy7z9SZhsugR7pUjdsnj8UlfZPQNymKgmxCCCEkyFHQTUSJ60y3UtIJMKCxvdPpfPUMONdgONOd2RV0904yPFjt1Plmp/MVK8YY7v98HzYVn7cYvq6wCg2tGsSEKzzyu7XNHXjpx30wNjHvVc9A6PKP8eCt93rk9wjxhnatDpuO1WDVgXJsLj4Pjc7wEDSJBMjPjsd1ecko/OVLKCQ63D52OhQKz2xfhBBCCPEvFHQT0ZFIJJCFhgMtQIQyxDQsSilDdRvQ4MTl5RKJBImJiVB3yqCtYFDIpEhVhQEAchINQffp8y2mdMZp/N0PByuwqfg8FCFS3H9ZNq7on4T5/ytAcXUTfi2qxvSRGU7l66ieXvxiBeo74tA/phXXjh6KN349jtcOpkMp+wh333K/S3kT4k16PcOukjr8cLAcawoq0WR20K9/ShRuHJaO64emIVUVBq1Wi/r9cQBo3SWEEELIRRR0E9GRy+XIyumLgsOViApTmIYNy+2Lk/vOoalD+CvD5HI5HnzwQfxx4gL+/d9dyIgLg6zrks/sxItnukNCQvDggw+6b2Z8qL5FgxdWFwEA/nFlbzx0ZR8AwLWDU1G8vglrDlc6HXQb65PLlnXv4PszfSCVMLw6808YkhEDjY7hvY0n8OK+DCilH+KvNz/gVN6EeMuxqkZ8f6ACPx4sR4W63TQ8VRWKG4amY9qwNPRPsXyiI627hBBCCOFCQTcRpVaN4Ym/xqeXA0BshCEAr2/ROJ2v8X7urPgI07Cs+HBIJEBTeycuNGuQGOXC+8hE5F8/H0VdiwZ9kyNx72U5puHXDE7Fm+uPY9vJC26/xLxV04mnd2cCAO4Yl40hGTEAgEcm9kFHpw7/3nIa/9yTiZQB1ZiYm+y23yXEHfR6ht+O1eCjLaew92y9aXhUaAim5qVi2rB0jO4ZR/doE0IIIUQQCrqJKLV0GC7hDFdevKc7tis4rHfhQWrn6g1Bd4/YMNOwULkMGbHhKK1rxenzzQERdG8/eQHf7jsHiQRYdNNgKEIuvgotJzES/VOicKyqCb8eqcb0Uc6d7eby1q/Hca5FifSYMDx2dV/TcIlEgvmT+6OpvRNf7SrF6+uKcWX/JApeiChoOvX48VAF/r3lFE7UGJ7tIJdJcEW/JNw4LB1X9E9CqNyDT/snhBBCSECjoJuIjlarxZnySgBKGGNurVaLg7u3AYhHbXO7vclt5vnJJ59g04UEABEWQTcAZCdGoLSuFcerGrHvl28AAPfccw/kcrlrM+MDx6ub8OiKQwCAWWOzMCKr+xPZrx2cimNVTVhdUOlU0G2sT+BiPRWWq/HpthIAwEs3DjLdj28kkUjw5OT++PFgBYqrm7DxWA3+xHG2mytvQjyhpaMTX+8uxX//KEFl1yXkkcoQzBybibvG90JydKig/GjdJYQQQggXCrqJ6DDG0K413Lcd3nV2iTEGbXM9gHinXhnGGMP58+dR2xEPAEiPCbcYn50Qic3F53H6QjNw/rxpGn+z41Qt7v18L5raO5GdGIF5k/pxprsmLxVv/Gq4xLy+RWO6dJ8vY30a/weAVQfKoWfA5IEpuKJfEud0qjA5ZuVn4cPNp/D+ppOYOCCp2wOnuPImxJ1qmzvw2fYz+GzHWai7HsyYGKXEXeN7YebYTESHOhcs07pLCCGEEC4UdBNR0nK9MgyGS87rW52/p7tZbwguuc50A0DJhVb0cjp331G3avHj4Qq8+FMRNDo9RmbF4pPbRyLKRvCQnRiJAanROFrZiF+LqjBjVKbLZdh5uhaA4Z5xe+4a3wuf/lGCQ2UN2HGqFuN6J7j824TwUVbXik9+P40Ve8tMB/Z6xofjvgk5uHFYOl1CTgghhBCPoKCbiFInDPcgmwfdoRJD0O3MK8MAQMckaIUhCE23CrpNrw270OI3QTdjDF/sKsWq/edwsKwB+q4Ta9fkpeCt6UMdBhDXDk7F0cpGrD5c6XLQrW7VoqiyEQAwtlec3bSJUUrcOioDn+04i/c3naSgm3hcUUUjPtpyCmsKKqHr2lAG91Dh/gk5mDQwxfQmA0IIIYQQTwi+oLulBZBxBCMyGRAaapnOFqkUCAtzLm1rK2DrskOJBAgPdy5tWxugt/MqrYgI59K2twM6nXvShocbyg0AHR1AZydnMtbRAS3MznR3dACtrVB2Bd3qtk50NjUhRNr1cLCwMEM9A4BGA2g5gnKNBi1MAUCCULkU8REKi7Q5EYZynatvg04pgUzCLOfFVr5GoaEX1yut1pDeFqUSCAkRnraz01AXXd7begZvbzlj+t47MQI3jeiB+y/LgVSvs79eKhS4Ji8Vr68rxvZTtag7X484W08xl8sBRdc4nc6wnM3L3NKC3SWNYAzITghHkvE+WL3esK5xuHdUKr7cVYrtp2qxv7Qew3uoLqa1yhtaraEOlF0PuGPMsG3YIiStkO2e2gjutD5oI/imLaxswhubS7D5ZJ1p2KU58Xggvwfye8YYbm1os1o/+LQnRubbvUZjuZyN6y5XWi+1Ed0oFIbtWWha43ZvC1cbwSetnTZCcFpqIwyojXAurZDt3pU2QmT9iG6ojRCeltqIi8TYRogJCxJqtZoBYGrDqtX9c801lhOEh3OnAxibMMEybUKC7bQjR1qmzcqynTY31zJtbq7ttFlZlmlHjrSdNiHBMu2ECbbThodbpr3mGttprVefP//Zftrm5otpZ8+2ma4xNJxlPbmaZT25ml1QNzP24IOsQy5nzy587uLwsOiL05SUXMz38cc58+yQy9m9z7zJsp5cza54fZMh7cKFpvF6gA3+x9cs68nVbM6zr7HnnnuOdWzffjHf116zP2+bNl1M+/779tOuXn0x7dKl9tOuWHEx7YoVpuFfDJlsqou3xv+FlUclGPIyWr3afr7vv88YY+xPb21mWU+uZr/0GWs77WuvXcx3925TfT733HOGepLL2QtX/o1lPbmaLXjq04tpCwvtluHxeZ+wrCdXs7uX7TEsQ7NlZZ43Axh78MGL+dbU2J+32bMvpm1utp/2z3+2XIftpaU2wvARQRvBAMN6YPTggxbjzkUlskemPmraRnrNX80e+mo/KzjXYLONMH0KCy/ma9ZGcH52776Y9rXXuNdd48fLbQTnx4k2gjFmKLu9tBxthM3PwoUX0zpoI9jjj19Ma9ZGcH6ojTB8qI24+LHTRnT78OhHmD4utBF201IbYfhQG2H4UBtx8WNOQBuhvu02BoCp1WomBlJHQTkh3tYiv3gUMMzsEmmpBFAY7+sOjxacbzMzHA1Nj+n+RGIJgFHnjgAAqnRRgvP2pl/65OOZqx8AAPxj29d4ZNtXSGu64FReQ7veo12Q0tulMu3IzAMA5EubeE9zPyuFRAJsOFqNY7XCn0hPiLVGRThevWw2rrj33/hu0JUAgBuObMamW/tg8W3DMChd5eMSEkIIISQYSRhjzNeF8IbGxkaoVCqoKyoQHc0RsNElH9xpfXBZWMn5Jlzx0T7IoMexFydDrtdD29aGJUuXYtmFnmjQKbBy9lCMyowxTMDjUi+tVou/Lv4Ru1riceuoHnjl5iHd0v5nZxleWn8KPRUtmBZbjjkPPAC5cZ0QyWVhLU0tGP32DrRodLhtWCpentr34tO/nbgs7POdZ/HM94W4LCcW//eXIdxpOS4L02q1WLJ0KQBg5q1/xeh3d4MB2D3vMiTFdx204HFZ2JyVhVhTUInrB6fivRv6dVXJxbzn3Hmn4bVLdFmYAbURnGm1rW34clcp3vv9LOq63m4wNisGT03MxuC0aK9dOqptbe2+7nKlpUtHDf/TpaPOpaU2wvA/XV4uPC21EYb/qY1wLq2ftRGN589DlZQEtVrNHft5WfAF3SKpeGJbcVUTJr2zFbHhchx49mqLcdOWbMPBsgb8e9YITBqYIijfR1ccxHf7yzFvUj/MuaL7md0jFWpMfe8PRChkOLjwashl4rsQ5JfCStz/xX5kxoXjt8cmIMTFMh4qa8ANS7YhNlyO/c/8qdvru/j49UgV7v18H3ISI7DxscsFTWusc6kEWP/oBNMD7QjhgzGGdUeq8eovx1BywdAhyUmMwIIpA3AVx+voCCGEEBIcxBb7iS+qIEGvucNwNJrrdVdxXe+TbnDitWHn6g1HQK1fF2Y0ICUaqjA5WjQ6FJarBefvDb8eqQYATBqY7HLADQD9U6Mgl0lQ36o11Y9QO08bHlI1Njte8LQD01S4qn8S9Ax489dip36fBKcDpfW45aMduP+LfSi50IKESAVemjYI6+Zehom5yRRwE0IIIUQ0KOgmomMMuiOV3R+uHxNuCMTrW4W/NqzcQdAtlUowput1Vzu63jktJlqdHhuP1QAArhZ4lt8WZYgM/VIMl4MXOHmgwfh+7vwc4UE3AMyb3A8SCfBzQRUOlNY7lQcJHqW1rZjz1X7c+MF27D1bj1C5FH+/sjc2z7sCfx2b5ZaDUYQQQggh7kS9EyI66hbDvT7N9eeh7br/SavV4pNPPkH5KcPZ0LoWYWe6a9QtKG8wBN2ZHA9SMxrdMwYA8PXmw9DYu0fKB/aU1EHdpkV8hALDM2Pdlm9eegwA4PA5/kG3cXm899F/cLTK8H7uMb2cC7r7p0Tj5uE9AACvrD0GjUaDTz75BJ988olp+RPS3NGJf60pwlVvbcaaw5WQSIDpI3tg8+NX4LGr+3EepPM243ZB6y4hhBBCzFHQTUSnqd1wpptp2mB85ABjDBUVFdC1GM6E1jQKe9r1oTJDQBktaYcqzHbn/PK+CZBAj7J2JT7aWuJM8T3m1yLDpeVXDUiCTOq+S2cH9zA80bmgvIH3NMblcbCiBYwBvZMikRildLoMj/ypLxQhUuwqqcOW4xdQUVGBiooKBMkjJ4gdjDGsLajExDe34JPfS6DVMVzWNxE//+NSvPbnIUhR2T6I5m3G7YLWXUIIIYSYo6CbiI7x8nK5pPvTCSMkhrPPFWqBQXfXWdxEabPddJlx4RgrLwUAvL3xJH47Vi3odzyFMYZfj1QBAK7Odc+l5UZ5Xa9ROnxOLThQML5ebWx2nEtlSI8Jwx3jegIA3lh/AnqKVwiAsrpW3LVsDx74cj+qGtuRFR+OZXeOwv/dNRoDUn3/UBRCCCGEED4o6CaiYwq6wRV0Gy7ZrHI66LbzyoUu/UMuoJ+sBowBD399ECdr7Afq3nCkohEV6naEyWW4pE+CW/PumxwFRYgUTe2dOFtr57UYHKr0xqDbuUvLzT14eQ6iQ0NQXN2M0zrX8yP+S9Opx5JNJ/Gnt7dgU/F5KGRS/OOqPlg39zJc3i/J18UjhBBCCBGEgm4iOnzOdFep26HneTqUMYbD5fyDbgAYIy/DiMwYNHV04t7/24umdt/en2k8yz2hbyJC5TK35q0IkZrOGgp5mFoHk6GOGR5K546gOyZcgQe7XuW2vzMNnYyePh2Mdp2uxTXv/Y7X1xWjXavHuJx4rJ17KR79U1+3r/uEEEIIId5AQTcRneYOQ7CtgL7buHCJFhIJoNHpUcfztWElF1qgbuuEDHrESvi9FksmYXj/1iFIU4Xi9IUWrNx7jtd0W46fx9+/PoCbP9yO6xb/gSMV7nn12PqjxqeWJ7slP2uD0433dfMvr+EstwS9EyOQEOn8/dzm7hjXEynRSrQwJY510hnNYFLXosG8lYcw4+OdOFnTjPgIBd6eMQRf/m0Mvb+dEEIIIX6Ngm4iOvbOdEslDImRhnd1VzbYvsS8qV2LOV/ux9zlBzD/uwIAQJy0FTIJ/5uF4yMVuHN8LwCGYNqRdq0O//j6AH46VIF9Z+tRUK7G3z7bi5omYZfCW1O3anGs6wnhl/ZJdCkvW/J6GO/rbuA9TWXX/dyje7nvSeqhchkevjLHUJbOVNQ0dbgtbyJOej3Dij1luPLNzVi5z3Bw6y9jMvHbY5fjxmE96H3bhBBCCPF7FHQT0Wnuenp5pMLyUtLw8HCEh4cjOdrwtOJKte2z1p/vPIs1BZX4/mAFdpfUIVQuxeiIOoSHhzv8fePvAMClfQ33T+8qqUW7tvtBAHO/FlVD3aZFSnQolvxlOHISI1Cpbsd9n+9zOK09+0rrwBjQKyHCpSeE22N8gnlheSPvy/arYZhmbC/XHqJmbdrQNMTL2tGBEDz8zWFodd2veCCBobiqCTM+3oEn/ncYDa1a9E+Jwv8eGIeXb8yDKlzu6+I5xbz9IIQQQggBAN+/2JQQK61aQ5B1y43XQ6EwnNVWKBSYN28eAODU5/tQUN6IShsPU9Pq9Ph8x1kAwMQBSegRG467L+mFjLgpDn/b/HcAoF+yHMnRSlQ3dmDvmXq7DzFbubcMgOHdwVMHpyI3LRrTlmzDgdIGzPv2MN6dMRRSJ171teeM4TVpo3q674yytd6JkQiVS9Hc0YmS2haHl/M2tOtRpwuFRAJc1s+9l7yHhSrx7SOTcf3iP7CvtAH/WnMUz10/0K2/wRdjDKcvtCApSomoUP8MAsWooqEN72w4jm/3nYOeAeEKGR6Z2Bd3ju+JEJn/Hgu2bj8IIYQQQgAKuokIGc90R4Vyr57G9/LaCrrXHalCpbodCZEKLJk5HMoQ5x++JJFIcGmfRHy77xy2njhvM+g+V9+KP05eAADcMjIDgOHM9Aczh2P2p7vx06EKpKlCseCaAYLLsPdMHQBgZE/3nlE2FyKTYmCaynBZ/Dm1w6B72ynDvA5KUyEmXOH28vRKiMBbM4binv/bi2Xbz2BoRgymDUt3++/Yom7V4n/7z+HLXWdx6nwLZFIJBvdQYVxOPMblJGBEViw91MsJ9S0afLD5JD7bcRaaTsPBtckDU/DMdblIjwnzcekIIYQQQjyDgm4iOsZ7uiOV3KtnalfQXWXj8vLVhyoBALeNznQp4Da6tE+CIeg+fh5P2QiaV+49B8aAcTnxyIi7eGnp+N4JePXmwXhs5SH8e+tpJEeH4q5LevH+7XatDofKDA83G+XBoBswvK9739l6HD6ndhjg/nGiFoBh/jzlT7nJ+MeVvfHebycx/7vD6Jschdw0z72bmTGGQ+fU+HLnWfx0uALtXVdchEgl6NQzHChtwIHSBizZdAoKmRTDMmNwaZ8E3D6uJ6LpLLhdrZpOfPpHCf695TSaurbv0b3i8OTk/hiR5bkrOAghhBBCxICCbiI6xtdzrf/5J+TedSvkcjm0Wi2+/PJLAEDy4KsAAGX13EH3oa6HgV1iFhCaTz9z5kzI5dxBEle6S/skQiIBjlU1obqx3XRPuRFjDP/bb3gA1IxRGd3yvHlED1Q1tuP1dcV4YXURQmQS3J7fk09VoKBcDY1Oj4RIJXrGe/Y+UeN93YccPEyNMYY/ThoeLNdyeh+02hyb9ekM82Xw4G1/waFzamw5fh73f7EPPz10iUfu9V1bUIn3N53EkYpG07D+KVGYOTYL04amobG9EztO1WL7qQvYfrIWVY3t2FVSh10ldfjuQDk+njUSvZPoCdvWtDo9lu8uxbsbT+JCs+GheANSo/HE5H64vG9iwD0kjW87QwghhJDgQkE38amOTh2e+b4QfZKicM9l2WCMmc50n68sA2OGh3oxxnD2rOE+7RFXGYLP4qom6PXM4j7pmqZ2VKrbIZEAA7teg2U9vTFPLlzp4iIUyE2NxpGKRuwuqcN1Q9IspjlT24pz9W1QyKS4OjeFM98HL8+Buk2Lj7eexrM/HEGnjvE6472n69LyUT1jPR6gGM+kHyxrgLpVazO4PXW+BdWNHZBBD5w/Zbc+nWG+DKQS4N1bh+K69/9AaV0rHv7mAD65fSTkbrrvt6FVg2d+OIKfDlUAMLyz/Nq8VMwcm4XhmTGmOo8KlePPI3rgzyN6gDGGM7Wt2HbyAj7YdBKnz7dg2pJteHvGUPwp1zOvdPM3ej3DT4cr8Nb64zhb2woAyIwLx2NX98V1g9OceraBP+DbzhBCCCEkuPjvE2tIQPhyZylW7D2Hf/18FE3tWrRpdTA+PFsO7id+ZydEQCEzPPTrnNXZ7oJzhkuxeydG2rw83RnGS2APlDZ0G7fztOFS66EZMQhTcF/OLpFIsGBKfzxwueF1WC+sLsLm4hqHv7vX9BA1z15aDgAZceHomxwJnZ5h83HbZdvWde96krQZIQJeweasmHAFPvrrCChDpNhcfB5/+WQnqmzczy/EpuIaXP32Vvx0qAIyqQQPXdEbuxZchbdmDMWILNsHOSQSCXolROCvY7Pw498vwehecWju6MQ9/7cX72w4zvvp74FI06nHxqPVuO79P/Dw8oM4W9uKhEgFXrhhIDY8OgE3DE0P2ICbEEIIIcQWCrqJz3Tq9PjvHyWm79tP1ZoeoiYBQwi4XxUll0lNl/IWVTZajDvUFXQP7hHj1rIOzzQE3ftL67uN29UVdI/Nth8YSyQSPDGpH/46NhMA8NKao+i08zosvZ6ZHqLmjaAbACYOMJyp3XDUdtBtfGBcmrTRZhp3G5imwgczhyNKGYI9Z+pxzXu/4/cTjt+dzqWloxNPrSrAnUv3oKapAzmJEfjugXF4fFI/xEYIeyhcQqQSX/5tDGbnZwEA3tlwAvd9sc90i0QwKKtrxRc7z+Ke/9uLYS/8irs/24sjFY2IVIbgsT/1xZZ5V+D2/J5QhNDuhhBCCCHBiXpBxGsYYzh9vtl02WVxdRPKGy6eqd56/LzpIUty6GDvauoBqYYHah2rsgz8DnfdjzwkQ2U9iUuMQfeRCrXFO7cZY9h52hAYj82Od5iPRCLBvEn9ERsux8maZny9u9Rm2uM1TWhs70SEQoYBqVEuzgE/V3UF3ZuLazjfj92p02PnKcNBhlSZ94JuY9l++vslyE2NRl2LBrd/uhtvrT8OHc8zy4wxbD1+HlPe/R1f7TLU+13je2HNPy7FkIwYp8sll0nx/A2D8PqfB0MRIsX6ompMW7INp883O52nmLVrddhcXIPnfzqCK9/cjEtf24R/fl+I9UXVaNHokBCpwN8u6YWtT1yBv1/VBxFuvOKEEEIIIcQfUW+IeM3zPxVh2fYzmD+lP+6fkIPCcrXF+O2navHnET0AAHIJ96XlRsYg9KjZmW7GmOny8rx09wbdGXFhSIhU4EKzBkcq1BiRZTjzXFrXiqrGdshlEgzL5PcUZlWYHI/8qS+e/eEI3lp/HNcPTYcqrPv908b3cw/PivXau4uHZsQgPkKB2hYN9pTUYZzV08kPl6vR1NGJ6NAQxKPVK2Uy1zMhAt89OA7P/1SEr3eX4r2NJ7DvbB3mTuyLvHQV52u8ztW34rv95fh23zmU1hnKnB4ThtdvGYxxOe57+votIzPQNzkK932+D6fOt+CG97fhLT+/z7tdq0OVuh0V6jYUVTRi64kL2HW6Fh2dFw/IyKQSjMiMxYR+iZjQNxG5qdF0CTkhhBBCiBkKuolHHK1sxGu/HMO0Yem4YWg6th4/j2XbzwAAXll7DDNGZqCgK+i+aXg6vttfjjO1LaaHLoXD/uW5uV1nus0vLy+ra0NtiwYKmdR0JtxdJBIJhmbEYsPRauw/22AKuvncz83lL6Mz8X87zuJkTTM+2HSS8/3dm44ZLvEemeWdS8sBQwB1Rf8kfLvvHDYcrekWdG87Ybi0fGx2HKQlXDl4XqhchkU35WFMrzg8taoA207WYtvJHQiRSjAwLRrDMmMxLDMGesbw7b5z2H6qFsZnWkUqQ3Dz8HQ8Pqkfojzwmq8hGTH46e+X4MEv92HPmXrc8397cf+EHDx+dV+vHTgRorFdi5M1zahoaOv6tKNSffHvhWYN53RpqlBTkD2udwK9Mo0QQgghxA4KuonbqVu1mPXf3bjQ3IFNxeehCpNjxd4yizTfHShHYbkhYL68XxI2FFWjsb3TdL9wlEzb7XU75t8HpqkglRgC7Up1G1JVYdhXarjMe1B6NOcZT76v77GVbnhWDDYcrcaBsov3de/qurR8TC/Hl5abC5FJsWBKf9z92V78346zuPeybMRHKk3jKxraTA9au25IqqC8XTVxgCHo3nisGs9cO8DigWLbThmWz7jsOFSc81ygxWdZTRuWjkHp0Xh7/QnsPlOH800dOHROjUPn1Fi23TJtfnY8bhnZA5MHpSBc4dlmLzFKiS//NhavrD2GT7eV4KMtp3CgtB6L/zIMSVGhjjPwAMYYKtTtKKpoNHwq1SiqbERZHfdr98yFyWVIjQlFVlw4xvdOwOX9EpGTGBlwr/tyF3pNGCGEEEKsUdBNnNau1WHD0WrkZ8dbBIzL95Sa3skLAAt/PILKrqdN3zQsHd8dKMe6wirTpeF56SrkJEXiQGmD6eFYfxo/Agum/NWUh0KhwFNPPWX23fCwtINlDfj9+AVMH5WBfWe7LsfmuMzbenpb7KUzPUztbAMA4/3cxoeoCQu6AeDK/knIS1ehoFyN//5Rgicm9zeNW7G3DHpmOKOcnejd9z9f2icRCpkUZ2tbcep8M3onGS7lb9V0muZ9Qv8U9LrEcX06g++yAoDeSVFYMnM4GGM4V9+G/aX1OFDagAOl9WjT6nBNXipuHt4DGXGefce5NUWIFM9el4sRWbF44ttD2FVSh6nv/YHFtw1zal0Rqqldi63HL2B/aX1XkN0IdRv31SOpqlBkxIYjNSYUqaowpHf9TY0JRZoqDDHhcgqweRKy7hJCCCEkeFDQTZzCGMNDX+3HhqM1iI9QYPU/LkGqKgw6PcPnOw3vqZ0/pT/e3XDCdMl43+RI/P2qPvjuQDl2dz2VOyXacAYtJ9EQdFc3GoL1HjFhDstwWd9EHCxrwJYT57uC7gYAF1/v5W6De6ggk0pQ1Wg4Y1jT1I4KdTvCFTIMz4oRnJ9EIsFDV/bGfZ/vw//tOIv7LsuBKlwOnZ5hxR7DlQG3jc5081w4FqEMQX5OPLYcP48NR2tMQfeeM/XQ6PRIjwlDz3jvBrGOSCQSZMSFIyMuHDcMTfd1cUymDk5F/9QoPPjFfhRXN+Evn+zEvEn9cd9l2W6/77m6sR3ri6qxvqgaO07VQmP1ILwQqQR9kqOQmxqN3LRow9/UaJvvYyeEEEIIIe7h05sMlyxZgp49eyI0NBRjxozB7t277aZfuXIl+vfvj9DQUOTl5eHnn3/2UkmDQ1O7Fvf8315c+cZm02uwbNncFZABQG2LBp9tNwTaG49W41x9G2LD5bhjXE/881rDvcpSCfDStDz0SohAdmKEKZ8peSmQSiXIsTqbmx7rOOie0DcRAPDHiQtQt2lR3PUk8+EeCrrDFSGYPCgFAPD2huP4YPMpAMDMMZlOX7L8pwHJ6J8SheaOTizdbrhJeuvx86hQtyMmXI5JA1PcU3iBJg5IAmBYngBQpW7HJ1tPAwDG946nM58C5CRG4vs543HT8HToGfDqL8dw7+d7oW517bVijDEcr27Ckk0nccP7f2DMyxvxz+8LseX4eWh0emQnROCOcT3x+p8HY80/LsGRFyZh7cOX4s3pQ3D3Jb2QnxNPATchhBBCiBf47Ez3N998g0cffRQfffQRxowZg3feeQeTJk1CcXExkpKSuqXfvn07brvtNixatAjXXnstvvrqK0ybNg379+/HoEGDfDAHgeeVtcewvsgQZD28/CB+e3wCZzDJGMP7v50EAPSMD8eZ2lYs31OKh6/qg892nAEAzBiViVC5DDPHZCEnMRIyqcT0rulnr83FHUv3AACuHWy4X9k8EAeAg9s3oWq/HtOnT0dISAg6OzuxYsUKADANG9JDBVWYHOo2LRb+UAg9MzyVOjm6+32zXNNzcZTukYl9sbag0lRPcpkEd1+Sba9a7ZJKJZhzRW/8/esD+PSPEqREh+KXI1UAgJuH9+C8N90brhyQjGd+OIJ9Z+vx+rpj+PSPM2jTGl7jdtPwHrzr0xmezNtXwhQyvHnLEIzqGYeFPx7BhqM1uOTV3zAmOw5js+MxNjseA1KjIbNz9rujU4fiqiYUlKtRWK7G9lO1pqtIjIZlxuBPucm4OjfF9C574j2BuO4SQgghxHU+6xG89dZbuOeee3DnnXcCAD766COsWbMGn376KebPn98t/bvvvovJkydj3rx5AIAXX3wR69evx/vvv4+PPvrIq2UXE02nHs0dnYiLUHQbV9+igVQiQXRYCA6WNWDf2XpkJ0ZgULqq2wOdDpU14Cuzd0ZXNbbjw82n0C8lyvRO4+zECHRo9Thb14p9Z+sRJpfhy3vGYsa/d+BcfRte/vkotp2shVQC/HXsxcuire9hvbxfEj6eNQLVTR2m+6SHZcZYpKkrPYEmiR56veESWb1ejxMnTpj+BwwPI5s9rife23gC3x+sAADcMDSNs564pncmXe+kSNw0vAe+3XcOAHDTsB5IUbn2cKxr8lLxweZTOFrZiPnfFZiG3zY6w6V8XZEeE4YBqdE4WtmIJZsMZ/RHZMVi4XW5GNwjBhqNhld9OoPvsvI3EokEt43ORF66Cg99tR9nalux4WiN6YqR6NAQjO4Vj7FdgThjQEG5GgXlDSgoV6O4qglaneU7yRUhUozPicfVA1Nw1YAknz2ojRgE6rpLCCGEENf4JOjWaDTYt28fFixYYBomlUoxceJE7Nixg3OaHTt24NFHH7UYNmnSJHz//fec6Ts6OtDRcfFhXo2NjZzpuHx/oByrD1dwjmOMc7BNApMDMATSDAxymRQSAHoGtGl16OjUo0OrQ4hMgpgwBWqa2nH6fAs69Qx9kiKRFK2EVCJBR6ceFQ1tOFdveDJxiFSCTr1lSRIiFQhXhCBCGYKYMDmOVKjBGHDjsHT8KTcZD365H4u7zmYbbT9lecn5/Cn9kR4ThjvH98KLq4tM93JPGpiCHrH27/m92uqy6aSoUIzpFYddJYZ7veUSfh3WBybk4Nu9ZahQt6NvciT+cVUfXtO54uGr+uDHgxXQMYb7Jjh/lttIJpXgq7+NwfI9Zfjf/nM4WdOMCX0TTfdS+8q0oWk4WtmINFUo5l8zANcNTqXLyt1gULoKGx6dgKLKRuw8XYudp+uwu6QOje2d2HC0Ghu6LunnEhMuR166CnnpKgzJiMH43gmIVNLZVEIIIYQQMfNJb+3ChQvQ6XRITk62GJ6cnIxjx45xTlNVVcWZvqqqijP9okWL8PzzzztVvlPnm01nn/zFiZpmnKhp5hzXqWdQhEgxPDMGF5o1OHW+uev9u5bv4O2VEIGnpw5AQqQSd4zriWXbz0AZIsW9l2UjMUqJ6sZ2RChDEKEIweAeKgzrOkt9e34WfjxUgUNlDUiPCcPz1w90ah7euGUIbvpwOy7rHQ9wrwbdhClkeOfWYfh46yk8Obm/Vy7HzogLx4r786HV6d32ZPHYCAUeuDwH90/IRlldGxKjlI4n8rB7Ls3GqF5xGJASLegd5MSxEJkUg3vEYHCPGNx7WQ46dXoUVTZix6la7Dxdiz1n6iGTSjC4hwqDuoLsvHQVesSG0YEPQgghhBA/E7CnSBYsWGBxZryxsREZGfwu1/1TbjLS7Tw921GfVwKHCeySyySQQAKtTg/WlTxMIUNoiAxKuRRanR4NrVrEhMvRLyUaYXIZ9p+tR3NHp+kMeVyEAoPSVZBLpahpakd8pNJ0RqyloxMlF1rQ0alHU7sWDa1axEYoMKZXnClofe76gXjw8hyEKWSICrX/sCW5TIrl94zFiZom9E2OcjrwzYgLx84FV0HXqcWiRT/ynm50rziM7hXn1G86a2hGjEfylUgkyBTJk8GlUgnn69eI+5kH4fdNyAHruqSGAmxCCCGEEP/nk6A7ISEBMpkM1dWWl1FWV1cjJYX7ac0pKSmC0iuVSiiVzp0tNHZ+/cnE3GSb47LiLR9SFqEMwaB0lcM8kzgeSGZLmELmljqTSSXQuZwLIf6Ngm1CCCGEkMDhk1eGKRQKjBgxAhs3bjQN0+v12LhxI/Lz8zmnyc/Pt0gPAOvXr7eZnhBCCCGEEEII8TWfXV7+6KOPYvbs2Rg5ciRGjx6Nd955By0tLaanmd9+++1IT0/HokWLAAAPP/wwJkyYgDfffBNTp07F8uXLsXfvXnz88ce8fs94uaaQB6oR39BoNGhvbwdgWF4KhYJzmKt5upIu2HmynmgZEH9F6y4hhBAiDsaYjwl9CranMB9avHgxy8zMZAqFgo0ePZrt3LnTNG7ChAls9uzZFulXrFjB+vbtyxQKBRs4cCBbs2YN7986deoUg+Fh4vShD33oQx/60Ic+9KEPfehDnwD/nDp1yl2hq0skjIkl/PeshoYGxMbGorS0FCqVytfFIQIZH4RXVlaG6OhoXxeHCETLz7/R8vNvtPz8Fy07/0bLz7/R8vNvarUamZmZqK+vR0xMjK+LE7hPL7cmlRpuX1epVLTh+LHo6Ghafn6Mlp9/o+Xn32j5+S9adv6Nlp9/o+Xn34wxoK+JoxSEEEIIIYQQQkgAoqCbEEIIIYQQQgjxkKAJupVKJRYuXOj0u7uJb9Hy82+0/PwbLT//RsvPf9Gy82+0/PwbLT//JrblFzQPUiOEEEIIIYQQQrwtaM50E0IIIYQQQggh3kZBNyGEEEIIIYQQ4iEUdBNCCCGEEEIIIR5CQTchhBBCCCGEEOIhQRN0L1myBD179kRoaCjGjBmD3bt3+7pIQee5556DRCKx+PTv3980vr29HXPmzEF8fDwiIyNx8803o7q62iKP0tJSTJ06FeHh4UhKSsK8efPQ2dlpkWbz5s0YPnw4lEolevfujWXLlnlj9gLO1q1bcd111yEtLQ0SiQTff/+9xXjGGJ599lmkpqYiLCwMEydOxIkTJyzS1NXVYebMmYiOjkZMTAzuvvtuNDc3W6Q5fPgwLr30UoSGhiIjIwOvvfZat7KsXLkS/fv3R2hoKPLy8vDzzz+7fX4DiaNld8cdd3TbFidPnmyRhpad7yxatAijRo1CVFQUkpKSMG3aNBQXF1uk8WZ7SftP/vgsu8svv7zb9nf//fdbpKFl5xsffvghBg8ejOjoaERHRyM/Px9r1641jaftTtwcLT/a9vzLK6+8AolEgrlz55qG+fU2yILA8uXLmUKhYJ9++ik7cuQIu+eee1hMTAyrrq72ddGCysKFC9nAgQNZZWWl6XP+/HnT+Pvvv59lZGSwjRs3sr1797KxY8eycePGmcZ3dnayQYMGsYkTJ7IDBw6wn3/+mSUkJLAFCxaY0pw+fZqFh4ezRx99lBUVFbHFixczmUzGfvnlF6/OayD4+eef2dNPP82+++47BoCtWrXKYvwrr7zCVCoV+/7779mhQ4fY9ddfz3r16sXa2tpMaSZPnsyGDBnCdu7cyX7//XfWu3dvdtttt5nGq9VqlpyczGbOnMkKCwvZ119/zcLCwti///1vU5pt27YxmUzGXnvtNVZUVMT++c9/MrlczgoKCjxeB/7K0bKbPXs2mzx5ssW2WFdXZ5GGlp3vTJo0iS1dupQVFhaygwcPsmuuuYZlZmay5uZmUxpvtZe0/xSGz7KbMGECu+eeeyy2P7VabRpPy853fvzxR7ZmzRp2/PhxVlxczJ566ikml8tZYWEhY4y2O7FztPxo2/Mfu3fvZj179mSDBw9mDz/8sGm4P2+DQRF0jx49ms2ZM8f0XafTsbS0NLZo0SIflir4LFy4kA0ZMoRzXENDA5PL5WzlypWmYUePHmUA2I4dOxhjhkBCKpWyqqoqU5oPP/yQRUdHs46ODsYYY0888QQbOHCgRd4zZsxgkyZNcvPcBBfrwE2v17OUlBT2+uuvm4Y1NDQwpVLJvv76a8YYY0VFRQwA27NnjynN2rVrmUQiYeXl5Ywxxj744AMWGxtrWn6MMfbkk0+yfv36mb5Pnz6dTZ061aI8Y8aMYffdd59b5zFQ2Qq6b7jhBpvT0LITl5qaGgaAbdmyhTHm3faS9p+usV52jBk6/uadSGu07MQlNjaW/ec//6Htzk8Zlx9jtO35i6amJtanTx+2fv16i2Xm79tgwF9ertFosG/fPkycONE0TCqVYuLEidixY4cPSxacTpw4gbS0NGRnZ2PmzJkoLS0FAOzbtw9ardZiOfXv3x+ZmZmm5bRjxw7k5eUhOTnZlGbSpElobGzEkSNHTGnM8zCmoWXtXiUlJaiqqrKoa5VKhTFjxlgsr5iYGIwcOdKUZuLEiZBKpdi1a5cpzWWXXQaFQmFKM2nSJBQXF6O+vt6Uhpap+23evBlJSUno168fHnjgAdTW1prG0bITF7VaDQCIi4sD4L32kvafrrNedkZffvklEhISMGjQICxYsACtra2mcbTsxEGn02H58uVoaWlBfn4+bXd+xnr5GdG2J35z5szB1KlTu9Wzv2+DIU5P6ScuXLgAnU5nUfkAkJycjGPHjvmoVMFpzJgxWLZsGfr164fKyko8//zzuPTSS1FYWIiqqiooFArExMRYTJOcnIyqqioAQFVVFedyNI6zl6axsRFtbW0ICwvz0NwFF2N9c9W1+bJISkqyGB8SEoK4uDiLNL169eqWh3FcbGyszWVqzIMIN3nyZNx0003o1asXTp06haeeegpTpkzBjh07IJPJaNmJiF6vx9y5czF+/HgMGjQIALzWXtbX19P+0wVcyw4A/vKXvyArKwtpaWk4fPgwnnzySRQXF+O7774DQMvO1woKCpCfn4/29nZERkZi1apVyM3NxcGDB2m78wO2lh9A254/WL58Ofbv3489e/Z0G+fv+76AD7qJeEyZMsX0/+DBgzFmzBhkZWVhxYoVFAwT4kW33nqr6f+8vDwMHjwYOTk52Lx5M6666iofloxYmzNnDgoLC/HHH3/4uihEIFvL7t577zX9n5eXh9TUVFx11VU4deoUcnJyvF1MYqVfv344ePAg1Go1vv32W8yePRtbtmzxdbEIT7aWX25uLm17IldWVoaHH34Y69evR2hoqK+L43YBf3l5QkICZDJZtyfbVVdXIyUlxUelIgAQExODvn374uTJk0hJSYFGo0FDQ4NFGvPllJKSwrkcjePspYmOjqbA3o2M9W1vu0pJSUFNTY3F+M7OTtTV1bllmdL26z7Z2dlISEjAyZMnAdCyE4uHHnoIq1evxqZNm9CjRw/TcG+1l7T/dJ6tZcdlzJgxAGCx/dGy8x2FQoHevXtjxIgRWLRoEYYMGYJ3332Xtjs/YWv5caFtT1z27duHmpoaDB8+HCEhIQgJCcGWLVvw3nvvISQkBMnJyX69DQZ80K1QKDBixAhs3LjRNEyv12Pjxo0W93gQ72tubsapU6eQmpqKESNGQC6XWyyn4uJilJaWmpZTfn4+CgoKLIKB9evXIzo62nTpUH5+vkUexjS0rN2rV69eSElJsajrxsZG7Nq1y2J5NTQ0YN++faY0v/32G/R6vWlHl5+fj61bt0Kr1ZrSrF+/Hv369UNsbKwpDS1Tzzp37hxqa2uRmpoKgJadrzHG8NBDD2HVqlX47bfful3G7632kvafwjladlwOHjwIABbbHy078dDr9ejo6KDtzk8Zlx8X2vbE5aqrrkJBQQEOHjxo+owcORIzZ840/e/X26DTj2DzI8uXL2dKpZItW7aMFRUVsXvvvZfFxMRYPNmOeN5jjz3GNm/ezEpKSti2bdvYxIkTWUJCAqupqWGMGV4DkJmZyX777Te2d+9elp+fz/Lz803TG18DcPXVV7ODBw+yX375hSUmJnK+BmDevHns6NGjbMmSJfTKMCc1NTWxAwcOsAMHDjAA7K233mIHDhxgZ8+eZYwZXhkWExPDfvjhB3b48GF2ww03cL4ybNiwYWzXrl3sjz/+YH369LF47VRDQwNLTk5ms2bNYoWFhWz58uUsPDy822unQkJC2BtvvMGOHj3KFi5cSK+dcsDesmtqamKPP/4427FjByspKWEbNmxgw4cPZ3369GHt7e2mPGjZ+c4DDzzAVCoV27x5s8WrbVpbW01pvNVe0v5TGEfL7uTJk+yFF15ge/fuZSUlJeyHH35g2dnZ7LLLLjPlQcvOd+bPn8+2bNnCSkpK2OHDh9n8+fOZRCJhv/76K2OMtjuxs7f8aNvzT9ZPnPfnbTAogm7GGFu8eDHLzMxkCoWCjR49mu3cudPXRQo6M2bMYKmpqUyhULD09HQ2Y8YMdvLkSdP4trY29uCDD7LY2FgWHh7ObrzxRlZZWWmRx5kzZ9iUKVNYWFgYS0hIYI899hjTarUWaTZt2sSGDh3KFAoFy87OZkuXLvXG7AWcTZs2MQDdPrNnz2aMGV4b9swzz7Dk5GSmVCrZVVddxYqLiy3yqK2tZbfddhuLjIxk0dHR7M4772RNTU0WaQ4dOsQuueQSplQqWXp6OnvllVe6lWXFihWsb9++TKFQsIEDB7I1a9Z4bL4Dgb1l19rayq6++mqWmJjI5HI5y8rKYvfcc0+3HQktO9/hWnYALNoyb7aXtP/kz9GyKy0tZZdddhmLi4tjSqWS9e7dm82bN8/iXcGM0bLzlbvuuotlZWUxhULBEhMT2VVXXWUKuBmj7U7s7C0/2vb8k3XQ7c/boIQxxpw/T04IIYQQQgghhBBbAv6ebkIIIYQQQgghxFco6CaEEEIIIYQQQjyEgm5CCCGEEEIIIcRDKOgmhBBCCCGEEEI8hIJuQgghhBBCCCHEQyjoJoQQQgghhBBCPISCbkIIIYQQQgghxEMo6CaEEEIIIYQQQjyEgm5CCCGEEEIIIcRDKOgmhBBCCCGEEEI8hIJuQgghhBBCCCHEQyjoJoQQQgghhBBCPISCbkIIIYQQQgghxEMo6CaEEEIIIYQQQjyEgm5CCCGEEEIIIcRDKOgmhBBCCCGEEEI8hIJuQgghhBBCCCHEQyjoJoQQQginO+64Az179hQ8Xc+ePXHHHXe4vTyEEEKIP6KgmxBCCHFg2bJlkEgkNj87d+70dRHtam1txXPPPYfNmzf75PeLiorw3HPP4cyZMz75fUIIIcSXQnxdAEIIIcRfvPDCC+jVq1e34b179/ZBafhrbW3F888/DwC4/PLLeU/3ySefQK/XC/694uJiSKUXj+sXFRXh+eefx+WXX+7UmXNCCCHEn1HQTQghhPA0ZcoUjBw50tfF8LiWlhZERERALpc7Nb1SqXRziQghhBD/RZeXE0IIIW6i1+vx7rvvIi8vD6GhoUhMTMTkyZOxd+9ei3RffPEFRo8ejfDwcMTGxuKyyy7Dr7/+apFm7dq1uPTSSxEREYGoqChMnToVR44csUhzxx13IDIyEuXl5Zg2bRoiIyORmJiIxx9/HDqdDgBw5swZJCYmAgCef/550yXxzz33nEUep06dwjXXXIOoqCjMnDnTNM76zDSfeTS/p3vZsmW45ZZbAABXXHGF6fc3b96M2bNnIyEhAVqttltdXn311ejXr5+A2ieEEELEiYJuQgghhCe1Wo0LFy5YfGpra03j7777bsydOxcZGRl49dVXMX/+fISGhlrc8/38889j1qxZkMvleOGFF/D8888jIyMDv/32mynN559/jqlTpyIyMhKvvvoqnnnmGRQVFeGSSy7pdl+0TqfDpEmTEB8fjzfeeAMTJkzAm2++iY8//hgAkJiYiA8//BAAcOONN+Lzzz/H559/jptuusmUR2dnJyZNmoSkpCS88cYbuPnmm23WAZ95NHfZZZfhH//4BwDgqaeeMv3+gAEDMGvWLNTW1mLdunUW01RVVeG3337DX//6V3uLgxBCCPEPjBBCCCF2LV26lAHg/CiVSsYYY7/99hsDwP7xj390m16v1zPGGDtx4gSTSqXsxhtvZDqdjjNNU1MTi4mJYffcc4/F+KqqKqZSqSyGz549mwFgL7zwgkXaYcOGsREjRpi+nz9/ngFgCxcu7FY2Yx7z58/nHJeVlWX6zmceGWMsKyuLzZ492/R95cqVDADbtGmTxTQ6nY716NGDzZgxw2L4W2+9xSQSCTt9+nS33yGEEEL8Dd3TTQghhPC0ZMkS9O3b12KYTCYDAPzvf/+DRCLBwoULu00nkUgAAN9//z30ej2effZZiweNmadZv349GhoacNttt+HChQsWvzNmzBhs2rSpW/7333+/xfdLL70Un3/+uaB5e+CBBxym4TOPQkilUsycORPvvfcempqaEBUVBQD48ssvMW7cOM6H1hFCCCH+hoJuQgghhKfRo0fbfJDaqVOnkJaWhri4OJvTnzp1ClKpFLm5uTbTnDhxAgBw5ZVXco6Pjo62+G68r9pcbGws6uvrbf6GtZCQEPTo0cNhOj7zKNTtt9+OV199FatWrcLtt9+O4uJi7Nu3Dx999JHbfoMQQgjxJQq6CSGEEBExvqLr888/R0pKSrfxISGWu27jmXZXKJXKbmfevSU3NxcjRozAF198gdtvvx1ffPEFFAoFpk+f7pPyEEIIIe5GQTchhBDiBjk5OVi3bh3q6upsngnOycmBXq9HUVERhg4dajMNACQlJWHixIluKZszl35z4TOPzvz+7bffjkcffRSVlZX46quvMHXqVMTGxrpaXEIIIUQU6OnlhBBCiBvcfPPNYIzh+eef7zaOMQYAmDZtGqRSKV544QXTGW3rNJMmTUJ0dDRefvllzldpnT9/XnDZwsPDAQANDQ2CpzXHZx65RERE2P392267DRKJBA8//DBOnz5NTy0nhBASUOhMNyGEEMLT2rVrcezYsW7Dx40bhyuuuAKzZs3Ce++9hxMnTmDy5MnQ6/X4/fffccUVV+Chhx5C79698fTTT+PFF1/EpZdeiptuuglKpRJ79uxBWloaFi1ahOjoaHz44YeYNWsWhg8fjltvvRWJiYkoLS3FmjVrMH78eLz//vuCyh0WFobc3Fx888036Nu3L+Li4jBo0CAMGjRIUD585pHL0KFDIZPJ8Oqrr0KtVkOpVOLKK69EUlISAJje9b1y5UrExMRg6tSpgspFCCGEiBkF3YQQQghPzz77LOfwpUuXIjs7G0uXLsXgwYPx3//+F/PmzYNKpcLIkSMxbtw4U9oXXngBvXr1wuLFi/H0008jPDwcgwcPxqxZs0xp/vKXvyAtLQ2vvPIKXn/9dXR0dCA9PR2XXnop7rzzTqfK/p///Ad///vf8cgjj0Cj0WDhwoWCg27jvDqaR2spKSn46KOPsGjRItx9993Q6XTYtGmTKegGDJeYr169GtOnT4dSqXRqHgkhhBAxkjB714MRQgghhHjBDz/8gGnTpmHr1q249NJLfV0cQgghxG0o6CaEEEKIz1177bU4evQoTp486bYHvxFCCCFiQJeXE0IIIcRnli9fjsOHD2PNmjV49913KeAmhBAScOhMNyGEEEJ8RiKRIDIyEjNmzMBHH33U7T3khBBCiL+jPRshhBBCfIaO/RNCCAl09J5uQgghhBBCCCHEQyjoJoQQQgghhBBCPCRoLi/X6/WoqKhAVFQUPaSFEEIIIYQQQgIUYwxNTU1IS0uDVOr788xBE3RXVFQgIyPD18UghBBCCCGEEOIFZWVl6NGjh6+LETxBd1RUFABDxUdHR/u4NIQQQgghhBBCPKGxsREZGRmmGNDXgiboNl5SHh0dTUE3IYQQQgghhAQ4sdxW7PsL3AkhhBBCSNDoOX+Nr4tACCFeFTRnugkhhBBCiPf1nL8GZ16Zagq2zf83fieEkEBGQTdxC66j1rQTJYQQQoKXeZBt/tcc9RUIIcGALi8nLuk5f43pCLbxA3Q/ik0IIYSQ4GIeUJv3Ccz7Dcbv1GcghAQyOtNNnGbcaRr/B2CxEzUfbhxHCCGEkMDG1Sew1Qcw70sQQkigkjDGmK8L4Q2NjY1QqVRQq9X09HIv4NqJ0o5VGOvL8gghhAhD+yLvs3X/tvlf67S2vhPb7F0ZQHVIiPhiPwq6iWBcO1LjcEdHsmmH6ph1sM314BmqQ0II4cc6OKG21LP49gus09OVcfzYWnepf0WIJbHFfnRPNxHE/D4srh2r9X1ZXAEj3bfFzfr+ePO6NK9vqktCCHGMK4gzD0qoLXUv830Yn4Ma9g4o0/LgZquPAHRfn6kOCREZ5iHvv/8+y8rKYkqlko0ePZrt2rXLZtrCwkJ20003saysLAaAvf322y7naU2tVjMATK1WC50V0iXrydVOTcM1nTN5BTJjffCpL2Ma82kIIYRcZK8ttR7uqP0lwlnvo6he3Udon4rqngQrscV+Hgm6ly9fzhQKBfv000/ZkSNH2D333MNiYmJYdXU1Z/rdu3ezxx9/nH399dcsJSWFM+gWmqc1sVW8v7IO9IQ05hQk2sdVP7b+55qW6pcQQvgHJbaCb1vpCTehB4L51i0tg4us69g4zFZaPsMICXRii/08EnSPHj2azZkzx/Rdp9OxtLQ0tmjRIofTZmVlcQbdruTJGHfFUyPEn5CdJNUrf1w7UvNx9qbjmp7rzAItD0JIsLB1YNjZA8TUftrnTL3yGU51f5ErZ7FpXSbBLOCD7o6ODiaTydiqVassht9+++3s+uuvdzg9V9Dtap6MXaz4jLkr7F5eRmyzt8O0FzTa26FSvV/k7BFs63F0Sb/70IELQvyDkKuCrL/bOkhJ2z83W/sad5yJpdunLDk6qM6V3vyvvfwICXQBH3SXl5czAGz79u0Ww+fNm8dGjx7tcHquoNuZPNvb25larTZ9ysrKTBVvaydBjVF3thp8V/Mk3Jw54m9v+VDHRThHnXCqS0LESchZP75pzNsD2vYv4nuQw9Y07piWGNhar4WeDCEk0FDQ7YC7gu6FCxcyAN0+xoq3dzaQGiP3c3TWO9jYuyxcSB5c/9tKIzT/YGSvTp3pZBJCfMPR9so3QLf+Hsx9BF+dgQ7m+ub631YavvnRukyChdiCbre/MiwhIQEymQzV1dUWw6urq5GSkuK1PBcsWAC1Wm36lJWVAQAGLVwHAKZXLhhxva4p2Nl65YS94bbScL1P0vg3mN8raf3qNfPXpQhZB7nq0PrVLfRqHPv4vurG1uvxCCG+wbUdWr8azNZ4W+2i9fhgf7e3ef8IQLd+kq39jK02kmu8rbTBWt/mf231ofi89s7We+qpv0uIl3kikh89ejR76KGHTN91Oh1LT093+UFqzubJWPejHXyOcgfzEUB3X1Lu6LeCua75EnJppKN8qL4t2Vrf6b44Iia0znXH555iofszR2fGg/2Sc3u3Mln/b/zuTD3Zu9Un0Am9EtOVOg/mdZkENrGd6fbYK8OUSiVbtmwZKyoqYvfeey+LiYlhVVVVjDHGZs2axebPn29K39HRwQ4cOMAOHDjAUlNT2eOPP84OHDjATpw4wTtPR8wfpGaOq6EJxgbenKN7Wq3T8c3P1jghefk7e7c1cP1vK42Qaek2Cvu4OhxCLsuneiSeYB3Y0Xpmn6P9FZ9p+P4V+jv+zp3roJBA0FY5Ap2r8+jq/isY6thTqO7EJSiCbsYYW7x4McvMzGQKhYKNHj2a7dy50zRuwoQJbPbs2abvJSUlnPdfT5gwgXeejphXPJ8A0HpYsOB7VFlIo843j2AhpAMjJIh2lIZrXLAuA8bc14ELlo4g8R572zOtb86xt18TUp/u2Pf5E2+tb7RfMnBlXRQyna3tIdhPOgnFdWCUDpS6zl11FzRBt9jYqng+R8KDZcMRcjDCXh6unLXl+zv+yJUdpLt+mzo23bnjzBhxjOrKPludN640xIBPfbhjW+WzbwzE5SL0wLAzban5/7SfMrAXtDnTp+Kbjqv/Fgz1b6/t5drGhbTTFIDz54l6oqDbR/ic6WbM9g6aNhjbhAbQfHawwVLffDsXfHa0Qs6AB1s9G/HpzDjb8Qu2unTEXmeFWBKy7ToaFiz4BiZC9uWu1megLQ9bQYi9gMNeXnyG8Zk+0OrZnL3Aj+/0fP5yTcN3eKDgOshg76/1MEcHKQK9/tyBTx27goJuH+G6p5tPgxYMnUSuo3z20lkPs/fdVj588w8Ujhp3e2lt5Wdreq50ruQRCOytu3x3vFx5cv0f7Ox1Gin4FoZPR5nqsTtngnF7aflMH2jLwZltlW/AJ7Su7AU2gcTZddLWeuls/yDQ123G+B+M4NoO+PbluNIEYl0KZevAnScCbwq6fYRvxTtqvAJtg+FqXPkE30LzdTSdrXIEGlfniW/dO9tJCkT21i13znegrrPO4BskUn0JO7gjZLpAJvRgpav7M+t07gomxUpoW+ZMHdr6rWANBIX2j1z5Db7bj3l/MNDq2xzf+hUSCHIF7MFch1xtJd8Dm67UHQXdPuKo4vkEiYG2wThq5O01PI6CZFtp3FlGf+JM4+HqgQuheQcarg6Do06HrXz4ThvoO1ZHhG7zVF/CDnLaWgeDsQ6Fto+O8nFXIB0oy4JvJ5rPdPaCOaH52cs3WPCtO1vprcfZGxZo+zau/oD1eK7vQuqJTxkCBVe/39bBBlfjAmfqjYJuH7H3nm5nGjB/52yHwtXf4Hu0y3ycv9e3kPXJVsPuzAESd+2U/Zmz8xRsO053ELoOUf1152wdBur2y5eznV9beTib1hv7VW9wtfyODkza+w1/rztnuGt/Y6tf60z/INCXg70YgGs81/+2hgnpe/krPusX34PEXGm54jJn9nMUdPsIV8U7CmRsDQuEDo6rR5m5xgk5emhvuL/XLR+e6NQ4O22gdBSNhDbOfNZxe9tKoNSbKxwdWDP+tbUjDsY6dHSwUeg4e3kGEkfbN5910dZ4R78rZLi/cscBDK78HHWsHQU+gY7vQQlb0zkaxne8K9OKHZ/1y50HhWxtS/4eQ9jah/PtSzmzjgv5LXMUdPuIsxXvzxuGLe7csdkK3vlsVLaOdgVSIO5sAOhssMdnJ2Ivb3+tZ2uOOtmO0vNNZ2ucv+9UhbDVBtj6bj0s0NY9Plxd3wKpjRTKXkdW6HRcadxRj/66LPisj7Y6zfY6xs4uGz7bib/WtZF5nQo98OCOgyF8hgdSGy1kXRJ6AMKZ9P5ap3z2Tc6uN3zaar4o6PYRPu/pducRLrHiu3Pjmk5o4+9qQy0kgBcrPmV2V4fR1jSe2mmLEVdHj89BB/PpHeUv5Hugc3XnGGz1ZeRMZ8vRdhwMB3vcPW9Ct3frYYEeoDDGfx9m638h9SCkboUE9WIlNPC1V5/2Dobw+U1H5fTnNsZeuZ3to/HNy9/XUXPO1AOfddw6X77rL586paDbR8xfGeauzqG/bUR8A2chQZrQgNGZfPytnm3hu/PjGyS6qzF3pZMkJtYdMuvhzuZnL49AaBecJeRAHN+6DIa6c2eHgmsaf+0YCyFkn+Ppg0GO2md/4o6DQa6ue0KCI3+sYyNn+k1cw4W0E46WVaDVMRc+66uzy0ZoGn/lrkBb6G8YhwvZx1HQ7SP2HqTGxVGH0V83KGcCa67xzuyY7QWRfDsu/tSZFBqocdWPdeNir55sBZ3OlNdf6thIyDwL2WG4owPob3XJB991xR3BSyDhsy07k5e9NMGC73Ztq521l6eQfZU/tqNC9xl8ghR3zTvfAMdf6todhKyzruwXnfl9sXFm3XTU/xeaP58+n9jr097BCVfjCUdpXcmfgm4fsfcgNWd3Nv6woRhxdfbMx9mahk9+zpSBT1oh5REje42UvWlspePTgeTzG0LT+Qtfzg/fAymBxJWAxNbBJPP0gVZnfDrJztZHoNUVF+t1xny4rbS28uGazlb+tn4j0Njbh3i7ToTuN/2NkP21vfXbUdDmSr0FShvsjX2wM30uf+obCDnY4I5A3FY6Z2IVCrp9xJn3dNsbzne8WAg9QuWp+XL2SKEny+QJQhoVoY0vn4CbqwPJpxH0x0DRlQ6HkJ2gv9SHJ9kLTIzj7X23l6/1bwiZ3h8404m1V89C903+XJeudL641ieudpLPOsjnf+s8xF7v7iqfu+dV6PrrD3XNmO11zjjO0TSO8jZPby9vIf0DfyWkPp1pU7nGBUrMYOSOfbG99cxen9XZ3zBHQbePmN/TbWSvox5IDZKrG40nO2+OgiVbHR9/WB5CDnS4Y9nY29EGYhDDmLDt1Bvzbque/WWdtcVR+e3Nrz/Pt6usOxL2OhbOHqCw95v+EvjxxWfe7X3nkz+fdtuZZeVv7B2oMP719PrFNxDyp7bGVlspJDBx9rcc5c9nOn9qWxytF472ac5Mxycfe+22mPBZT/iW29W22FZc4Oj3Kej2EXsV7+rKLrYNxZyjDZ5PQ2+ejzvm1R2NmRgbKCOhnTN3zwefZSWkI+OP+HQYzf9a/+9MnvbycbbTJAb22gsh6zefbZ5rR+tv9WXEZ/vjEzgKHe+pacXMmXp0lJ+refpLXfPtDxiH+Xr7dNSWirnehW7bQvsStvIUuv/hW6+O2nZf4ppvd5bTE+ufWPd3rvST+Obrapls5UVBt4+YV7w7j2AFAj4buifm1dkAW+z1zrex8UYD62iHK+SgjJjw3YaFNvxcATXfAxi21lOx1qEjfOrY2fkVGqz7Ux1ab3Pmf+1N48w4Z/Lxp7pkzHHnlk+b5spvW/8GnyDGH9pQxvxnG+Oz/MVcfiHs7Y89/XtiXw9c5Wyfwdl6sbUs/eEAhpB9P588+My7o3yd2Y9S0O0j1kG3kdAFzDdwERt3biDuZq/zZCut8X+x1bujTpq9Yd4qm9A0Yqtja64GJXx2xK7wlw64kaP1le88uLNexbitc+EKYvgEZvaG8w3inclP7Kzr0NsBifVvWZeBzzYh5vp2tF7ZW3e9NU/OLHMx1rnQ8rj7gIi9fBy1K84EO74kpK8jdP/sSuDONczX7RoXd+27HOVv/t1enkLqx3ocBd0+Yn1PtzM7UD4dH7HgM1+udp7dwV45/aGerYm1rM40kmKdFyNXOyNCOhJCd9C2dqaOxvmaednsbYfuOJDAtz1yd+fT05xZr6y/e6pt9re65CKWbUpIZzQQ+HLehPYJxLYcHPVtrNsET/Z9PNUGiKnO+eyb+eThSjvMZxmKLdi2hStWErJNOrufcgcKun3ElXu6ne1c+5rQDYMrnbfmi28jaP2/WOtdrOzt0P25fp3ZefHpvNv7n09+QsvkS652AJyZP3sHJmwNE2M9cs2HkO+uBHBCtwfr9VmM9WmPo4Mz3iqD0GUmtnp2ph59ub7wXc8dbVe+ILZ9q7v2oWLkjgM09tYhvu240P2B9Thfbmeu/rY7D2rwrUdb+zUKun3EmYq31eG2l14M3FUOXwbcQnYKYqx3W51wMXR0+Xa2xN55Mf/uqE75bLtC5tFd656v1wXzchj/uiP4ttXxcVRvfIaLYRuy5q710DqtvTbFHR0bMdWhNXvLWWzlFmuwZ4+QbUgM88M3SBFb8Ohov+rr7dNem+tonL169yVn2gyh47nafHf1IXxVp0LLwueAgzN1wmdaW+WxHk5Bt4/wrXihHTohQbkY2OsQm6fxRbmEjLcV0PqKGHc8jghpGMU2X3waY74BnDt+294O2dZv+lsnnTHX58MdnXyx1Zu76sTeNK52Iv11+3ZHR86T+AZNvt4/WeOzPvjLgQQ+7byv8D0Y4OuyWpdTSIAp5vlwlNbWdyF9CL7TcJXR0fRC4xF3sPd7fMrhTKAsJH8hv5n15GoKun3FlYr3dUMilCtHloRO7258GhgxHCTgQ6zlYsxxB19s64Urv++pDjzfPPgG/7462GX9MS+bvQ6WdT5ChluPd2bZcJXb2/gGXe7O31F98+nc+Es7yhi/9UCsxBSUmOPbLtlL62t8gwBftw98D8xYT+dttvYDfKf1NT5tpdByOuorcaV35Tdt9cc8Xb/Wv+FMgO3OaVytB2PajLkrKOj2BWeDbluNjytHgjzJlY3A150Xvp1LX9exNT6Nla/r1hZnGklfcrSu8lkO9sY7Wx5HwzxdDlfxDY69+Ztcae21u96uR3u/aW+9sLfu2juQ4M7Ol3VZxNQ+Ce1YiYUnOvze4Itt31lC11NfrtvOBndiqm9n+PIAh71xrhygcRR42zpYIbQd49uPdHcd2/pdIeXiGubsOu2O9t84js50+4i7znQ76kzZSuNtjjZMMZSRC5/ONdcwMRwscBQQ+LqctvBdV8RQdmcPKnnywJLQA1v2xnlzHXH2t5w9UOPuYNHeX0+ytbyEtFnODLc33lGniS9ft6P26tPZ+vIGZzqlvmQrcPAXfLYR62Xizfnj+j1n201fsRdwialPwJjzQZqQ/THXOuVMmYSsF7Z+07pP6WqAa2v7cGYd5jOtve3T1T6+dVoKun3E1Yq3t/KLCVejyDegEsu8uNKweXsefBUweYqj+vR1p9yd6TyNz/rg7A7dHWVz9D+fcvBtW7j+cqXnWxZfBzmuBi2ulk9IYOrL4EMooQcUxDQvfLdhX5fZ1jrj63Lx5ahzbmucLwgNUsVSbiO+wZw39132yuCuwNOd8+CuPJ09YODM/pZPOys0HuJK4ygPvuucvWEUdPuIOyve1srB9fEmoSuokPG+ILRjLfZ5EDs+gYQvd6hCxnF1drwRiPHZEVoPt5WPp8rrrbxt7VC5Ogae/n1P5y10uHWezpRZSP0J2ZZ9ve+yt42IvT0VsjzEyJf9F2cJWUe8NU9C9wX+zFY/2Ju/76j9dWaYJ3D1S2z95bMO8Z2Wa79rPo113nznw9E4e/sdrrbGXj/B3u/bqgvGGN3T7SvuCLodbQS+5qgcnuyQuputehZLh8ZeWcRet1zsBUq20nqL0EDGepwYlwefuvVU54XvztzZ8Y6GcQ13dj4drQO+WvbO/K67yupM3fpqe3Glky7G7ZoPfy23mLjSD/Nk/XMFO/bKIPb9lCP29gne7Ic5qkcxHIhxBZ++O58+s6P1zl3tsKP8XdnfC4ljsp6kp5f7jCfOdPNJ460NWmggwncaX+IzL76eB08HFb7CVX5XOsieKJP1cLEdEOOzDvCpT3fWu60doNAdozuDXWd2pHx/1xeBrCsHNFwpm7Pz7mg98Ba+HUF/aUuFdEa9xde/705C58XT+y5ntm1f91/44rtv9XZ/V+h4W22dN/Hd3wvJy3q+bPWP+Wwzzu6juH7bneu3M/0Kxujycp9xV8ULDbh9uXHbIoaGxx18dRDBuuFy1Mn2lzp2pkETCzEF3I6CPz5l9cT6446gzFG+rpZVyA6b78EWd9cf344M3/bJXR0SIcP5lMmb7aj1d2c71WLAZ30QU9skZLw/shWIiIXYymOP0D6CLw5yOJvOm5ytGyHtvJD+sTP9J18ftLC3HzZHQbePeLrixbSCBtKOk8+8iCHgCpT65uLr+uXbuBrHiWFZOCqjreGeKru7OpxCd9yu/IY7ftsd822v0y40X093Qh0dBLT3P5/v7mKvrFxp/Y11HYtlHoS0pf7AXt3a2xbcPd/m67M7gykxEjKP7q5r63aYz0Ek87/W//sS37ZW6L5WyLbtKC1XvXG1bWKoUwq6Rcbbl5e7kt4ZXCu+vQZHDBuJs/h0Kn0VvPhzvTLG/yCHtxpaW/XtreDAVe4I9qy/O9v+CAnGHOXFJ2+hbAW2fMtib7gvOsN8Dg55Oqh1lIZPPp4ktOMp1u3cWd6cH1+uj97mjnXfld/j+h5ofQZ7B3A8HWzbKgvfPPyVM+s1323b1vIU6wELe/NlPoyCbh9xd8XzCb681VHgs+LxGS5m9ubRW/PJp+H3x7rlYj6fXMGfN8vhr+sxn+2f73br7Ly6kpejZe6Lds2VwNnTAbS7f9MdXKk/T80D33bS13Xnab7aX9gKCP29vu0FC/bSe7IMXL/j7/XsCFd/wZX9l3VfxHq89f/+1l/g07flsw4JOfDgyoESsbcV1vNETy/3EW9eXu7K0SZ3s9dg+SNfdtZsBZ98Drz4E2c65r4qh6MjnmLh6lFjZztunqwbT25nniK0zoUcMOHbDnhjPXXUKXMUFHhqv2Gvg8lnWn/ni4NXwUDo9uXudZrPcHcFomJgbz22187waXe49ln22ih7aWyVVSy4AmAhgbat4e7sw3l73yUEn/LQmW4f8cSZblc70u4qh6NhYttQPEkMgYA/NPbOcHQ01pO/5487VMaEBce2hjk773zaJesODp8OgDc6jI46IFxprcsmtPNincYdAZInA1g+v23vu630fDq4rpaJT72Ifdt2xF692eo/eLIswUBIwO2u9VpoPmIOYoQQMh/2+stcgTbXXz71LCQw9XeuzpO/9KH4sLcuUtDtI96oeL4dZ190vAJhwzKy1QB7o7No/r+3O9HexndH6sk64BM4iH0ZONr2XelI2Fsv+U7HtyzermehZRGyvjrK29Y2LqRTLwZCDzx4stPKd18UKEGJLb6Yp2AIRoRum+5cp+3lF+h172j++ATTXNM4yt/ZcokRn76skDz41L3Q3xdrfTo6oEOXl/uIJ4JuZzqongpUnOkcBgN37VidDVT8ldBG393rdKDXqa0dH99g0HoYn+DKmTq1F4B6i722zZV54sqXz+84+5u+wqfd8vSy5VO39tZhf24PbK1r1mm8XQbrcYGATwDI9dfb5QkUQg6g8U3jaNnw2Y+a/x9oy8CV/Y+z670/1yGd6fYRb1W8N4NtPjtze2XyZ97qtPDtbAdqQ29vh+jJgzx8giF/qmOhB2z4dibs7UydrR+uvH1V146WvbP1Z52H0HoTcnDEn9ZTe1yZD19NKza+CHodHYgLpPq1xtVGcqVxNm++eXn7IIsYOAqmvX0AROzsHRTj+t9WHkJ/U2h5xIyrvBR0+4gnK55vMCZknCv8bUNxha0GyV2dXq6Gx907b7HiOz/WwYur9SAkOPKnOhdSVncczRbyG/5Ql462Q2fr115Hx5l05uPEUqf25sfTBxOdaZfFUm/u4uqBHHcT07rpCa60hUJ+I5DrUAhHB3b4TGM9nO9BXyEHP8ROyHx6or/rzjy8zVaZgybofv/991lWVhZTKpVs9OjRbNeuXXbTr1ixgvXr148plUo2aNAgtmbNGovxs2fPZgAsPpMmTeJdHk9VvCsBtyuNdrB2Xsx5uiPjagczmLjzqLX5thFoBzhsHcQR0gHhm691Hvam5xonpk6lMx0vIeOt07j7jIIYCNk27R34EvqbfJYb34Mc/szRQRtPzG+g1SEfQtdzZ9ZtIW023+n8lTsDbD55W/cNPBl8+oqz82HvoKqjPIX2TcTOWO6gCLqXL1/OFAoF+/TTT9mRI0fYPffcw2JiYlh1dTVn+m3btjGZTMZee+01VlRUxP75z38yuVzOCgoKTGlmz57NJk+ezCorK02furo63mUSU8XbO2Llqd8IVLYaBXc0vnwOmrj6G2JnvXPj0yi7Ut+ePpAiBs7uRK2HO+rcucLf69jI0frqysFLT9a/pzizrbpjXoQeEHLHwTt/4I2+QDBy90E2V/MIluXKN4h2dnywcXf7yOdghb+z3seLKfZjzENB9+jRo9mcOXNM33U6HUtLS2OLFi3iTD99+nQ2depUi2Fjxoxh9913n+n77Nmz2Q033OB0mbzxnm5HK7S9oMWZo6x8zyIEAz5H8ZzJL5jqUAg+R0qdWbdd+X1/5+7ghm/Hk2uZiZm9QIXvOsennoQMt9fGixGf/YbQeuFK50pb7A/16ApPn1WiPoJtrqzbfNZpdx6M9nfuPLDHJ1j3lzbYFnf2A1zpxwZCHWY9uTrwg+6Ojg4mk8nYqlWrLIbffvvt7Prrr+ecJiMjg7399tsWw5599lk2ePBg0/fZs2czlUrFEhMTWd++fdn999/PLly4YLMc7e3tTK1Wmz5lZWVee2UY3w6fKys1NegXudKBtDWNrUbcUYc/EDmzExMazAVq3dnCVT/W/zsTyPHtTPrreiv0yL/QehMaJAZaO8w34Oazj7O1/go5IBJInDkg5K7f41pugVrPRs7ss/ikEbI+B3odGwk9wOauPrC/HewUwt39Wr6/E2j1GPBBd3l5OQPAtm/fbjF83rx5bPTo0ZzTyOVy9tVXX1kMW7JkCUtKSjJ9//rrr9kPP/zADh8+zFatWsUGDBjARo0axTo7OznzXLhwYbd7wL1V8Xw7gEKCElvTcOUbzNyxA+R7JDuYODpy7+jAhL2DGPaOygZDPbsSGAqtK1sdf3/rtDhbVkf1Za9NDsRg0Zl2zdmDQELqzx/rkg9725+97878jqPhgVrH1oQGyI7SeCKYD1T26p7vfp/qz/PTeCIPXzNuqwH/nm5PBd3WTp06xQCwDRs2cI73xZluIew1MLYCa2fOMgQLPp1pIQc1hNRfMNY3X452unzX60A9ou1s0GP9v5BgUshviZ2jgz2e+D1P5u8LtgJBW2m5/ncmL3v5BCtPdpgDcd11xHx9tNdWumPddzRNoPNEnfBZlwOdrZMUXOn4DHM0LtDqNuDPdHvq8nIuCQkJ7KOPPuJVLm+/p1tokMAVeFvnEYhnWtzJVh0JbbCEHukOtnoXepDIelq+9RuogaItturSOg2ffPjkEWh16UpQIWT7d/W3xMjZeeYKasyH28rbVv0F2kE1Iez1AVzJi9jnaD/lqF9haxriGqEHR4K9zl2tm0Ctv4A/082Y4UFqDz30kOm7Tqdj6enpdh+kdu2111oMy8/Pt3iQmrWysjImkUjYDz/8wKtMvj7a4cpKz9X4B1Nn2lnOHPmjOnQvWweO+ATffNIFKleCRiFpAqVuhQTBQoM8e+1yoNQfF0cHF/l0iu0tl0BeH/nwxHplax9GB4qFtwmO9ld8+mvBzNkDyM4uq0DHtU6a/zVP5ygPruGOpvVXvo79rHnslWFKpZItW7aMFRUVsXvvvZfFxMSwqqoqxhhjs2bNYvPnzzel37ZtGwsJCWFvvPEGO3r0KFu4cKHFK8OamprY448/znbs2MFKSkrYhg0b2PDhw1mfPn1Ye3s7rzJ5s+LtNQRcZwRsjXemMQnEjYYvvkf6bNWx0MYr2HCt164Gx0Ia+2Cpc6FBIdd0tqYP9Dq0Fwi6qx4CtZPnbMfLmfYzmAk5MGEcxveAhaMOua1hwcKZdduZA3rBWseu9FmDtc5cYSsQt5XW+v9gqPOgCLoZY2zx4sUsMzOTKRQKNnr0aLZz507TuAkTJrDZs2dbpF+xYgXr27cvUygUbODAgWzNmjWmca2trezqq69miYmJTC6Xs6ysLHbPPfeYgng+fFXx7urc2QoSg2GjcSfro9j2dqoUCDrHXmBu/tf6fyKMow51sB40cnbenD3YEahsdeZcOfBmr60Npvp2dGDe+n+u/RXXOOvhxD5HBzOcOWgR7PXu7vm3tV4H83pua56FBtbB0O4GTdAtNmKreHeeFaAg5iJbwbSttNbT2crP0fTkIld2isEaKHKxdwTbmY5fMHVS3L3uOZunv3HHPDpzRiWQ65QLn322kAAw2DvWfPDd31v/76j+qH65uboPcmcfOdjYOiAXjMQW+1HQ7UFCGnU+w4hrnG186Mhqd3x3iPaG0zouHN82hc90wcSdwXegc+Zstb32INjr01n2gj5b7aejfVWwd8AZ47fOcn13NJxw43PwWGjfioJJ4YI1EKeg20d8WfF8GxZnjnhT58Y5zpxBpPo1cOXgA9/65XNWIti4Y7sPpnq0dYBCSN0F69kWofPp7IEf2rYNhPYR+NQb1at72Ktr6n9x47tuuisIJ/wEY31S0O0jvryn25VATshOlhjwObrv6s4y2JcFn/nnc0aMa1iw1601oXVtazjVq/ArBYK98+dK8M01LNjOsgjB58w11/9811Gq94sctYvO7qeofi25qz6CvR0mzqOg20fEVvHmnLmMSegZG3KRK2cIqJ67c+d6SDtXbq508IK9s21r/umMrH2uHAxz5UBRsBASLLszP9KdO64iIq7hOtBEbTFxldhiPwq6vcTTl4BSI9Qd36sMhHZWqK4tOdPB5nt5JNX1RXzOenH9Txyj+rLP0brH5zvpzpmDabQM3EfoAQ9n+wzBzB39K6pv4ixfx37WKOj2Eb4Ni63Ghhof+/h0ErnS25qWTx7Bhu8leHzXXapbx4QciKCOiiVb2zjVj2326sfZ9Yvq/CJXDsZT38A1xvWQz3pMV795jruv+CDEnNhiPwq6vcSZBoUaGfdz9mgrLQth3FFfVOf28Tl4QXUojNCDdaR7XdG+zDXWB4ScOQjP9yAyMXAlqKaDSI5xHdygYJt4g69jP2sUdHsR107UXlpb01unoUZJGCEdaup82+dM/fDppBP7KDh0Ht8rLag+LbnSOabt3Duojl3jaD2lPpfrzPvBzgbihPAlhtjPnIQxxhAEGhsboVKpoFarER0d7evimPScvwZnXpnqs+kDmXXdOKore+Opnt3PVp1SXbsH1aNjXHVE9WZfz/lrAEBQ2yo0XTAx1icAqhsfMl83aT31DKpX4m2ii/18HfV7i9iOdjDG/5JyOgroGr73HnP9tTU9seTs1RtC8yDdcV0BQ3XpGG3rrqNt2nPceeUALQfhqM4I8X9ii/0o6PYRW51k6sS4l6OAm+rTfRwFMULum6Pl4hyqN+dQvdnnzIFfqlP+XKkrW7etUf3zw6f/Zat+qY4JETexxX50ebkIGC+5EXK5LV2mI4yQ+qK69R2uS1cJIf6L2lPhbO3zAX5tI9W58/jelkZ1TIj4iS32k/q6AOTiTtRWA841nBp7/uztNM3/2ktL+Ok5f41FfRqHcaWzNZ7qnxDx49qujcPpPmXnWAfW5vuoM69MNR2ct05vzXp6wp913QnplxFCiD10ptvHbD28w16DT4Ghe7l6VoFwowfTERJ4hDxwirZz/tz1UFVHV84R11HdEuIfxBb7UdAtQhSseI69DiPVrXvx6ZzTE2MJ8W90pYp3cbWZ1Ha6jp7AT0jgEVvsR0G3SDgKSqihdx3tVL2H7qEnJHDxuRKItmvh7O3vqT49j09/i5YDIf5DbLEfBd1+gi53dg3tKH2DHkpDSGCjANF7+F7OT/XvflSnhPgfscV+9CA1kbH3YBRq8J1n655t8+/00Bn3M3YAbT38hw4mEeLfbD30iziH6wGfRuZ1bW9/RfXvPFsPA6U6JYS4is50ixQdsfYNqm/PoXvoCQkstE17ntCH1dEycB+qW0L8m9hiPwq6RYwCb8+juiWEENdQO+oZdHuO71D/ixD/J7bYj4JuEnTo6a+EEEL8BZ9XiNI+jBBCLIkt9qOgmwQ96qwQQgjxF/QsDEIIcUxssR89SI0ELeq4EEII8SfGg8TGs9uEEEL8A53pJoQQQgghhBASMMQW+9GZbkIIIYQQQgghxEMo6CaEEEIIIYQQQjwkxNcF8BbjVfSNjY0+LgkhhBBCCCGEEE8xxnxiuZM6aILu2tpaAEBGRoaPS0IIIYQQQgghxNNqa2uhUql8XYzgCbrj4uIAAKWlpS5X/KhRo7Bnzx6XyxSI+TQ2NiIjIwNlZWUuP7RATPMlprIEah2LLR+x1bOY6sZd+YitjgM1H3fVs5jmSWz50Lrs+Tyojr2TT6DWs5jKEqh1LLZ81Go1MjMzTTGgrwVN0C2VGm5fV6lULq/gMpnMLU/BC9R8ACA6Ojqg6llMZTEKtDoWYz6AeOpZbHUTiHUcyPkArtez2OZJbPkAtC57uiwA1bE38gECr57FVBajQKtjMeYDXIwBfU0cpfAzc+bMoXy8QEzzJaayuJPY5kts+bhLIK6DgVjHgZyPO4htnsSWj7uIbb7E1H65i5jqRoz5uIuY5ktMZXEnsc2X2PIRE3pPN3ErqmfPozr2Dqpnz6M69g6qZ8+jOvY8qmPvoHr2PKpj7xBbPQfNmW6lUomFCxdCqVT6uigBjerZ86iOvYPq2fOojr2D6tnzqI49j+rYO6iePY/q2DvEVs9Bc6abEEIIIYQQQgjxtqA5000IIYQQQgghhHgbBd2EEEIIIYQQQoiHUNBNCCGEEEIIIYR4CAXdhBBCCCGEEEKIhwRN0L1kyRL07NkToaGhGDNmDHbv3u3rIonC1q1bcd111yEtLQ0SiQTff/+9xXjGGJ599lmkpqYiLCwMEydOxIkTJyzS1NXVYebMmYiOjkZMTAzuvvtuNDc3W6Q5fPgwLr30UoSGhiIjIwOvvfZat7KsXLkS/fv3R2hoKPLy8vDzzz+7fX59YdGiRRg1ahSioqKQlJSEadOmobi42CJNe3s75syZg/j4eERGRuLmm29GdXW1RZrS0lJMnToV4eHhSEpKwrx589DZ2WmRZvPmzRg+fDiUSiV69+6NZcuWdStPoG4LH374IQYPHozo6GhER0cjPz8fa9euNY2nOna/V155BRKJBHPnzjUNo3p23XPPPQeJRGLx6d+/v2k81bF7lJeX469//Svi4+MRFhaGvLw87N271zSe9n+u69mzZ7d1WSKRmN7BS+uy63Q6HZ555hn06tULYWFhyMnJwYsvvgjz5yTTuuy6pqYmzJ07F1lZWQgLC8O4ceOwZ88e03iqY+H8KQbhUxaHWBBYvnw5UygU7NNPP2VHjhxh99xzD4uJiWHV1dW+LprP/fzzz+zpp59m3333HQPAVq1aZTH+lVdeYSqVin3//ffs0KFD7Prrr2e9evVibW1tpjSTJ09mQ4YMYTt37mS///476927N7vttttM49VqNUtOTmYzZ85khYWF7Ouvv2ZhYWHs3//+tynNtm3bmEwmY6+99horKipi//znP5lcLmcFBQUerwNPmzRpElu6dCkrLCxkBw8eZNdccw3LzMxkzc3NpjT3338/y8jIYBs3bmR79+5lY8eOZePGjTON7+zsZIMGDWITJ05kBw4cYD///DNLSEhgCxYsMKU5ffo0Cw8PZ48++igrKipiixcvZjKZjP3yyy+mNIG8Lfz4449szZo17Pjx46y4uJg99dRTTC6Xs8LCQsYY1bG77d69m/Xs2ZMNHjyYPfzww6bhVM+uW7hwIRs4cCCrrKw0fc6fP28aT3Xsurq6OpaVlcXuuOMOtmvXLnb69Gm2bt06dvLkSVMa2v+5rqamxmI9Xr9+PQPANm3axBijddkd/vWvf7H4+Hi2evVqVlJSwlauXMkiIyPZu+++a0pD67Lrpk+fznJzc9mWLVvYiRMn2MKFC1l0dDQ7d+4cY4zq2Bn+FIPwKYsjQRF0jx49ms2ZM8f0XafTsbS0NLZo0SIflkp8rFd4vV7PUlJS2Ouvv24a1tDQwJRKJfv6668ZY4wVFRUxAGzPnj2mNGvXrmUSiYSVl5czxhj74IMPWGxsLOvo6DClefLJJ1m/fv1M36dPn86mTp1qUZ4xY8aw++67z63zKAY1NTUMANuyZQtjzFCncrmcrVy50pTm6NGjDADbsWMHY8zQMEmlUlZVVWVK8+GHH7Lo6GhTvT7xxBNs4MCBFr81Y8YMNmnSJNP3YNsWYmNj2X/+8x+qYzdrampiffr0YevXr2cTJkwwBd1Uz+6xcOFCNmTIEM5xVMfu8eSTT7JLLrnE5nja/3nGww8/zHJycpher6d12U2mTp3K7rrrLothN910E5s5cyZjjNZld2htbWUymYytXr3aYvjw4cPZ008/TXXsBmKOQfiUhY+Av7xco9Fg3759mDhxommYVCrFxIkTsWPHDh+WTPxKSkpQVVVlUXcqlQpjxowx1d2OHTsQExODkSNHmtJMnDgRUqkUu3btMqW57LLLoFAoTGkmTZqE4uJi1NfXm9KY/44xTSAuI7VaDQCIi4sDAOzbtw9ardZi/vv374/MzEyLes7Ly0NycrIpzaRJk9DY2IgjR46Y0tirw2DaFnQ6HZYvX46Wlhbk5+dTHbvZnDlzMHXq1G51QfXsPidOnEBaWhqys7Mxc+ZMlJaWAqA6dpcff/wRI0eOxC233IKkpCQMGzYMn3zyiWk87f/cT6PR4IsvvsBdd90FiURC67KbjBs3Dhs3bsTx48cBAIcOHcIff/yBKVOmAKB12R06Ozuh0+kQGhpqMTwsLAx//PEH1bEHiKlO+ZSFj4APui9cuACdTmfRYANAcnIyqqqqfFQq/2CsH3t1V1VVhaSkJIvxISEhiIuLs0jDlYf5b9hKE2jLSK/XY+7cuRg/fjwGDRoEwDDvCoUCMTExFmmt69nZOmxsbERbW1tQbAsFBQWIjIyEUqnE/fffj1WrViE3N5fq2I2WL1+O/fv3Y9GiRd3GUT27x5gxY7Bs2TL88ssv+PDDD1FSUoJLL70UTU1NVMducvr0aXz44Yfo06cP1q1bhwceeAD/+Mc/8NlnnwGg/Z8nfP/992hoaMAdd9wBgNoLd5k/fz5uvfVW9O/fH3K5HMOGDcPcuXMxc+ZMALQuu0NUVBTy8/Px4osvoqKiAjqdDl988QV27NiByspKqmMPEFOd8ikLHyG8UxJCXDZnzhwUFhbijz/+8HVRAlK/fv1w8OBBqNVqfPvtt5g9eza2bNni62IFjLKyMjz88MNYv359tyP+xH2MZ6gAYPDgwRgzZgyysrKwYsUKhIWF+bBkgUOv12PkyJF4+eWXAQDDhg1DYWEhPvroI8yePdvHpQtM//3vfzFlyhSkpaX5uigBZcWKFfjyyy/x1VdfYeDAgTh48CDmzp2LtLQ0Wpfd6PPPP8ddd92F9PR0yGQyDB8+HLfddhv27dvn66IRPxHwZ7oTEhIgk8m6PQ2zuroaKSkpPiqVfzDWj726S0lJQU1NjcX4zs5O1NXVWaThysP8N2ylCaRl9NBDD2H16tXYtGkTevToYRqekpICjUaDhoYGi/TW9exsHUZHRyMsLCwotgWFQoHevXtjxIgRWLRoEYYMGYJ3332X6thN9u3bh5qaGgwfPhwhISEICQnBli1b8N577yEkJATJyclUzx4QExODvn374uTJk7Quu0lqaipyc3Mthg0YMMB0GT/t/9zr7Nmz2LBhA/72t7+ZhtG67B7z5s0zne3Oy8vDrFmz8Mgjj5iuRqJ12T1ycnKwZcsWNDc3o6ysDLt374ZWq0V2djbVsQeIqU75lIWPgA+6FQoFRowYgY0bN5qG6fV6bNy4Efn5+T4smfj16tULKSkpFnXX2NiIXbt2meouPz8fDQ0NFkf6fvvtN+j1eowZM8aUZuvWrdBqtaY069evR79+/RAbG2tKY/47xjSBsIwYY3jooYewatUq/Pbbb+jVq5fF+BEjRkAul1vMf3FxMUpLSy3quaCgwKJxWb9+PaKjo00dR0d1GIzbgl6vR0dHB9Wxm1x11VUoKCjAwYMHTZ+RI0di5syZpv+pnt2vubkZp06dQmpqKq3LbjJ+/Phur248fvw4srKyAND+z92WLl2KpKQkTJ061TSM1mX3aG1thVRq2Z2XyWTQ6/UAaF12t4iICKSmpqK+vh7r1q3DDTfcQHXsAWKqUz5l4YX3I9f82PLly5lSqWTLli1jRUVF7N5772UxMTEWT8MMVk1NTezAgQPswIEDDAB766232IEDB9jZs2cZY4ZH5MfExLAffviBHT58mN1www2cj+sfNmwY27VrF/vjjz9Ynz59LB7X39DQwJKTk9msWbNYYWEhW758OQsPD+/2uP6QkBD2xhtvsKNHj7KFCxf67SsQrD3wwANMpVKxzZs3W7w6pbW11ZTm/vvvZ5mZmey3335je/fuZfn5+Sw/P9803vjalKuvvpodPHiQ/fLLLywxMZHztSnz5s1jR48eZUuWLOF8bUqgbgvz589nW7ZsYSUlJezw4cNs/vz5TCKRsF9//ZUxRnXsKeZPL2eM6tkdHnvsMbZ582ZWUlLCtm3bxiZOnMgSEhJYTU0NY4zq2B12797NQkJC2L/+9S924sQJ9uWXX7Lw8HD2xRdfmNLQ/s89dDody8zMZE8++WS3cbQuu2727NksPT3d9Mqw7777jiUkJLAnnnjClIbWZdf98ssvbO3atez06dPs119/ZUOGDGFjxoxhGo2GMUZ17Ax/ikH4lMWRoAi6GWNs8eLFLDMzkykUCjZ69Gi2c+dOXxdJFDZt2sQAdPvMnj2bMWZ4TP4zzzzDkpOTmVKpZFdddRUrLi62yKO2tpbddtttLDIykkVHR7M777yTNTU1WaQ5dOgQu+SSS5hSqWTp6enslVde6VaWFStWsL59+zKFQsEGDhzI1qxZ47H59iau+gXAli5dakrT1tbGHnzwQRYbG8vCw8PZjTfeyCorKy3yOXPmDJsyZQoLCwtjCQkJ7LHHHmNardYizaZNm9jQoUOZQqFg2dnZFr9hFKjbwl133cWysrKYQqFgiYmJ7KqrrjIF3IxRHXuKddBN9ey6GTNmsNTUVKZQKFh6ejqbMWOGxfujqY7d46effmKDBg1iSqWS9e/fn3388ccW42n/5x7r1q1jALrVHWO0LrtDY2Mje/jhh1lmZiYLDQ1l2dnZ7Omnn7Z4RRKty6775ptvWHZ2NlMoFCwlJYXNmTOHNTQ0mMZTHQvnTzEIn7I4ImGMMf7nxQkhhBBCCCGEEMJXwN/TTQghhBBCCCGE+AoF3YQQQgghhBBCiIdQ0E0IIYQQQgghhHgIBd2EEEIIIYQQQoiHUNBNCCGEkP9vv44FAAAAAAb5W49iX1kEAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmAQwQ2uiwCcG8wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QU1/838PfSQZqFoggoFuxdEXuLWGLE2GNUrEnUqF9LokkUiUkwGo2JMWriL2I0xt5iJ4ottth7RzEqdsAWVPY+f/gwYWGBBbbM7Lxf5+w5MHN35ra5M59pqxFCCBARERERERGR0dlYOgNERERERERE1opBNxEREREREZGJMOgmIiIiIiIiMhEG3UREREREREQmwqCbiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiKrcvPmTcycOROtW7dGQEAAHBwc4Ovri86dO+PgwYN6v/Pbb7+hU6dOKFOmDNzc3ODq6orKlSvjf//7H27evGnQetu1aweNRgMnJ6ds08TFxaFdu3bw9/eHs7MzypQpg3feeQcnTpzIV1mJDPHBBx9Ao9FAo9EgMTExy/xmzZplOy+zly9fYtWqVejbty8qVqwIV1dXuLm5ISQkBHPmzEFaWpre7yUkJGDIkCEoV64cnJyc4OrqitKlS6N9+/b4+uuv8fTpU4PLs3v3bowZMwbNmzeHh4cHNBoNIiIiDP6+sVy7ds2o646IiIBGo8G1a9eMsjw527t3L0aPHo3atWujaNGicHJyQoUKFfDxxx8jKSnJ0tkjIjI6O0tngIjImGbNmoWvv/4aZcqUQevWreHl5YVLly5h7dq1WLt2LZYsWYLu3bvrfGfp0qW4dOkS6tevj+LFi0MIgePHj+O7775DTEwM9u7di8qVK2e7zp9//hlbt26Fk5MThBDZ5mv48OHw9PTE22+/DS8vL1y8eBErVqzAypUrsWnTJrRq1cqodUEUGxuLuXPnolChQnkKbLNz5coVdOnSBa6urmjZsiXeeustJCcn448//sCQIUOwadMmrF+/HhqNRvrOiRMn0KxZMyQlJaFhw4Zo27YtXF1dkZCQgD179mDTpk3o3LkzypYta1AefvnlFyxcuBAuLi4ICAhASkpKgctF5tWlSxfcv38fjRo1Qp8+faDRaLBz505MnToVK1euxL59++Dj42PpbBIRGY8gIrIiq1atEjt37swyfffu3cLe3l4ULlxY/Pvvvzrznj9/rndZ8+fPFwBEly5dsl1ffHy8cHNzE2PGjBGBgYHC0dExS5oXL14Id3d34e7uLhISEnTmrV69WgAQzZs3N6R4RAZLSkoSJUuWFF26dBFNmzYVAMTt27ezpMtpXmb//POPmD17tnjy5InO9CdPnog6deoIAGL58uU681q0aCEAiF9//VXvMvft2ycePXpkcLn+/vtvcfr0afHq1Suxf/9+AUD07dvX4O8bS3x8vFHX3bdvXwFAxMfHG2V5cjZlyhRx8+ZNnWlarVZ88MEHAoAYMmSIhXJGRGQaDLqJSDVat24tAIi///7boPTJyckCgKhRo4be+VqtVjRv3lyUL19ePHv2LNug+/bt2wKAaNCgQZZ5qampQqPRiCpVquStMJksWLBAABALFiwQ69evFw0aNBCurq4iMDBQZ13Tp08XNWvWFC4uLsLV1VU0atRIrFu3LsvykpKSxIQJE0TFihVFoUKFhJubmyhTpozo06ePuHbtmk7aJ0+eiIkTJ4rg4GDh6OgoChcuLNq1ayf27t2bZbmRkZECgIiLixO//fabqF69unBychK+vr5i+PDh4tmzZ1nq5/vvvxetW7cWJUuWFA4ODsLLy0t06tRJHD16NMd62Lp1qwgNDRXOzs6iSJEiok+fPuL+/ft66+/48ePinXfeEX5+fsLBwUH4+vqKsLAwsX79+ixp165dK1q0aCE8PT2Fo6OjqFy5spg2bZp49eqV3mVbSt++fUXRokXFnTt3jBZ052TJkiUCgBg6dKjOdGdnZ+Hp6VmgZWfHVEH3ypUrRZMmTYSXl5dwdHQUxYsXFy1bthQrV64UQvzXz/R94uLihBBC3Lx5U0ycOFGEhIQILy8v4eDgIAIDA8UHH3wg7ty5o7O+wMBAvctq2rSpECL3AD9j2nS3bt0Sw4cPF2XLlhVOTk7Cw8NDVKhQQbz33nsiKSnJmNVlNLdu3RIAROXKlS2dFSIio+Lt5USkGvb29gAAOzvDhr6NGzcCAKpUqaJ3/qxZs7Br1y7s3r0bzs7O2S7Hx8cHxYoVw+nTp3Hjxg34+/vrrEMIgZYtWxpajBytWLEC27Ztw5tvvokhQ4ZIt96mpqaiTZs22LlzJ2rUqIEBAwbg5cuX2LhxIzp27IhZs2Zh2LBhAAAhBMLCwnDw4EE0bNgQbdq0gY2NDa5fv47169ejd+/eCAwMBAD8+++/aNGiBQ4dOoRatWph5MiRuHPnDpYtW4atW7fi999/R9euXbPk84cffsCWLVvQsWNHtGjRAlu2bMH333+P+/fv47fffpPSPXz4ECNHjkTjxo3Rrl07FC5cGFevXsX69euxefNm7N69G3Xr1s2y/PXr12Pjxo3o0KEDGjRogN27d+PXX3/FlStXsHfvXp20q1atwjvvvAMhBDp06IDg4GDcvXsXBw8exP/93/+hQ4cOUtrx48djypQp8PPzw9tvvw0PDw/s2bMHY8eOxcGDB7FixYqCN6IR/PHHH1i4cCGWLFkCb29vs6wzu+2raNGiSExMxK1bt1CiRAmz5KUg5syZgyFDhqB48eLo1KmTlP9Dhw5hzZo16Ny5M2rUqIERI0bgu+++Q/Xq1REeHi59v1SpUgBeP3s+ffp0tGzZEiEhIbC3t8exY8cwZ84cbN26FUePHoWHhwcAYOTIkYiJicGJEycwYsQIeHp66iwrr549e4aGDRvi2rVraN26NTp16oQXL14gPj4eixYtwpgxY6R1y0lex2giIqXgqEZEqpCQkIA///wTxYsXR9WqVfWmWb58Oc6ePYtnz57hzJkz2Lp1K0qXLo3PP/88S9pLly5h/PjxGD58OBo2bJjjujUaDWbPno13330X1apV03mme8OGDejatSu++OILo5Rzy5Yt2Lp1a5bnwz///HPs3LkTEyZMQFRUlPTM7ePHj9GiRQuMHj0ab7/9NkqUKIHTp0/j4MGDCA8Px5o1a3SWk5qaipcvX0r/T506FYcOHUKvXr2waNEiabnDhw9H/fr1MXjwYLRp0wZubm46y/nzzz9x5MgRBAcHAwC+/PJL1KhRA0uXLsW0adOk4Kxw4cJISEiAn5+fzvfPnDmD+vXr45NPPkFsbGyWevjjjz+wc+dOqW3S0tLQqlUr7Ny5EwcOHED9+vUBAHfu3EHfvn1hb2+PPXv2oGbNmjrL+eeff6S/Y2NjMWXKFISFhWHVqlUoVKgQgNcnKYYMGYK5c+di1apV6Ny5c7btky4mJiZPL8xq1qwZmjVrZlDaBw8eYNCgQQgPD0fPnj0NXkdB/fLLLwCA1q1b60zv1q0bZsyYgUaNGuH9999H48aNUb16dbi4uJgtb3kxf/58ODg44Pjx41lOWDx48AAAUKNGDYwcORLfffcdatSogUmTJmVZTosWLZCYmAhXV1ed6b/++iv69u2LH374AZ9++imA10H38ePHceLECYwcOTLfwXa67du3Iz4+HiNHjsS3336rM+/JkydScJsbfeXKSURERIHynl0fIiJSPMteaCciMr0XL16IJk2a5PhcqRBCdO7cWefWzjp16ojLly9nSZeWliZCQ0NFmTJlxNOnT6Xp2d1enm7Hjh3Cx8dHZx1Vq1YVf/zxR8EKKP673bVTp05681u4cGFRpkwZodVqs8xfv369ACBmzZolhBDi5MmTAoDo2bNnrusNCgoS9vb24saNG1nmDRo0KEudp99ePnHixCzp0+fpu6Vbnw4dOggHBwfx4sULaVp6PfTp0ydL+vR533//vTTt66+/zjY/mb311lsCgLh+/XqWeUlJSUKj0YjOnTsblPf0W7oN/URGRhq0XCGE6NatmyhcuLDO7eKmvr183rx5AoBo0aJFlnnPnz8XERERwsbGRiqPra2tqFWrlpg8eXKenufOzBS3l9eqVUsUKlRIPHz4MMd0+X2mW6vVCnd3d9GsWTOd6Tk9053X28vTt+nx48fnKW/6lpuXT/qt9flx7Ngx4eLiIry9vcW9e/cKlG8iIrnhlW4ismparRYRERHYvXs3Bg0ahN69e2ebduXKlQCApKQkHDt2DJ9++ilq166N1atXo0WLFlK6adOm4cCBA4iLizP4at3//d//YciQIRg6dCiGDRsGX19fnD9/HuPHj0eHDh0we/ZsDBkypGCFBVCvXr0s0y5cuIBHjx6hRIkSiIqKyjL/3r17AIDz588DACpWrIhq1arh999/xz///IPw8HA0a9YMNWrUgI3Nf780mZKSgqtXr6JixYooWbJkluU2b94cP//8M44fP56l3mvXrp0lffoyMv9k0PHjxzF16lTs3bsXiYmJOlfaAeD+/fsoXrx4vpZ/6NAhAIZdWTtw4AAKFSokXY3LzNnZWarD3OzcudOgdHm1bNkyLF++HL/++it8fX3ztQx9V+HDw8NRo0YNvek3bNiAYcOGITAwEIsXL84y38nJCQsWLMDkyZOxadMmHDp0CIcOHcLRo0dx9OhRzJs3D7t27UJQUBAAYObMmVn6QEGvoOZFjx498NFHH6FKlSp455130Lx5czRq1Aju7u55Xtbq1asxb948HD16FI8ePdL5SbVbt24ZM9s6mjRpguLFi2PKlCk4ceIE3nzzTTRt2hQVK1bUebN8bkQ2v8ZgbFevXkX79u2RlpaGpUuXolixYmZZLxGRuTDoJiKrpdVq0b9/fyxZsgTvvvsu5s6da9D3PD090bx5c2zZsgXBwcHo06cP4uPjYW9vj4sXLyIyMhJDhgxB06ZNDVre+fPn8f7776NDhw6YMWOGNL1WrVpYs2YNypcvj3HjxqF///45/s63IfT9zM7Dhw8BvL4l+8yZM9l+N/0npezs7LBjxw5MmjQJq1atwujRowEAXl5eGDZsGD799FPY2tpKz4tn99M+6YGwvp900hfApD/HmTEw2bdvn3TCo3Xr1ihXrhxcXV2h0Wiwdu1anDhxAqmpqflefnJyMgBkuX1dn4cPH+LVq1d6T1ykM8bPcuXXw4cPMXToULRv3z7Hk0u5iYmJwa5du3SmlSpVSm/QvWnTJnTp0gU+Pj7YsWNHlpMfGZUsWRKDBw/G4MGDAbz++bH+/ftj9+7d+N///od169YBeB10X79+Xee7zZo1M1vQPWbMGBQtWhRz5szB9OnT8c0338DOzg7t27fHt99+i9KlSxu0nOnTp2PMmDHw8vJC69atUbJkSendDzNnztTbb43Fw8MDBw4cwMSJE/HHH39g06ZNAAB/f3+MGzfOKCf4jCU+Ph7NmzfH/fv3sWrVKjRv3tzSWSIiMjoG3URklbRaLfr164dff/0VPXv2RExMjM5VWkO4u7ujfv36WLt2LS5fvoyKFSvi7NmzSE1NxezZszF79my930u/kvTo0SN4enoiNjYWr1690nsw6eLignr16mHNmjW4fPlyti9tM5S+q1jpAWjnzp2lq/m5KVq0KGbNmoXvv/8e58+fx44dOzBr1ixERkbC3t4e48ePl5Z7584dvctITEzUWX9+fPnll0hNTcWePXvQqFEjnXkHDhzAiRMn8r1sANILq27evJlrUOfu7g6NRoP79+8XaJ2AaZ7pTkhIwIMHD7Bx48Zsr2amB8XHjh3L9sq1oVfhN27ciM6dO6NYsWKIi4uTrlQbqkyZMoiJiUFQUBB27NghTc9LvZiCRqNB//790b9/fzx48AB79uzB77//juXLl+PSpUs4efIkbG1tc1zGq1evMHnyZBQvXjzLs+FCCEydOjVPeUofu169epVlXvqJo8wCAgIQExMDrVaLkydPYtu2bfj+++8xdOhQFC5c2KDn/U39TPfVq1fRvHlz3L59GytWrMCbb76Zp/URESkFg24isjoZA+7u3btj0aJFuR4kZyf9FtD0Fw+VKlUKAwYM0Jt22bJleP78OSIiIgAAjo6OAIAXL14A+O827szSp6enN7aKFSvC3d0dhw8fxsuXLw1+iRLwOgCpWLEiKlasiLfeegsBAQFYv369FHQHBQXh8uXLuHnzZparxenBW3bBnSGuXLmCIkWKZAm4nz17hqNHj+Z7uenq1auHlStXYtu2bbm+EC8kJASbN2/GpUuXUK5cuQKtV9/V5NzkFnQXLVo02765ceNGJCYm4p133oGzszOKFi2ap3XrW17nzp1RpEgRxMXFoWzZsvlaTuaXjMlN0aJFER4ejvDwcNy/fx87duzA5cuXERwcLI0pGe+cSHf//n0kJyejZcuWWV7GdvjwYTx//jzLd3JaXsaTQ5kdO3YsxzLY2NigRo0aqFGjBkJDQ9GkSROsX7/eoKA7p7s69MnLHQkZA+5ly5ahY8eOeVoXEZGiWPqhciIiY0pLS5NeSNS1a1fx8uXLHNOnpKSI8+fP6533f//3fwKAKFeunEHrzu5Faukve/Lx8RH//POPzrxNmzYJjUYj/P39dV5yFhcXp/e3d7OT8fep9fn4448FADF8+HCdF4+lO3XqlPTbwfHx8Xpf5vT3338LADovgIqKihIARO/evXXyf+LECeHo6Cg8PDxESkqKND3j73QbUobWrVsLjUYjTp8+LU179eqV+OCDD6SXN2XMa071kF6nGV9KdufOHeHq6ioKFSokjh07luU7Gdtr8+bNAoBo1KiR3t/7vn37tjh79myW6XJgzBepbdq0STg6OgpfX99st52MoqKiREJCQpbpWq1WjBo1SgAQbdq0MWjdmRnyIrX0l5Bl/M36nMTFxWV54eCLFy9EjRo1BADpd+ofP34sNBqN3m00LS1NODs7i1KlSum8bPHhw4ciJCREb37GjBmT48vIgoODhZ2dnbh06ZI0LSUlRdSvXz/LWHH69GmRmJiYZRkrVqwQAEREREQutWBaV69eFQEBAcLOzk6sWrXKonkhIjIHXukmIqvy+eefY+HChXB1dUX58uX1/hRXxpdCPXjwABUrVkSdOnVQoUIF+Pn54dGjR/j7779x9OhRuLu7Y+HChQXKU/369fHOO+9gyZIlqFixIjp16gRfX1+cO3cOGzZsgI2NDWbNmqVzS7BWqwVgvN+rjYqKwtGjR/H9999j48aNaNKkCby9vXHz5k2cOnUKJ06cwP79++Ht7Y3jx4/j7bffRr169VCpUiX4+vri5s2bWLt2LWxsbPC///1PWu5HH32EjRs3YtGiRTh37hxatmyJu3fvYtmyZXj16hV+/vnnLD8Xlhcffvghtm3bhkaNGqFbt25wcnLCzp07cfPmTTRr1qzALyTz9vbGr7/+ih49eqBevXp46623EBwcjPv37+PgwYMoVaoU1q5dCwBo06YNJkyYgMmTJ6Ns2bJo06YNAgMD8eDBA1y+fBl79uzBF198gYoVKxYoT3J2/vx5dOrUCampqWjWrBl+//33LGlKlSol3e0BADNmzMCkSZNQp04d1K5dG0WKFMGDBw8QFxeHixcvomjRopg+fbrBedi7dy/mz58P4L+7RPbu3Suts1ixYvjmm2+k9HndlsLDw6VHSwIDA/Hy5UvExsbi7Nmz6NKli/Qb9a6urqhbty52796N3r17o1y5crCxsZF+x37IkCGYPn06qlevjg4dOiAlJQWbN29GYGCg3t8rb9GiBb755hsMHjwYnTt3RqFChRAYGCg9nz969GgMHjwYoaGh6Nq1K7RaLTZv3qz3d+pjY2MxduxYNGzYEOXLl0fRokWl37d3cnLC0KFDDaxt02jevDkSEhJQv359nDx5EidPnsySJq+3thMRyZqlo34iImNKv8qd0yfjVdAnT56IiRMniiZNmghfX19hb28vChUqJCpXriz+97//6f0prOzk9JNhaWlpYs6cOSI0NFS4ubkJW1tb4e3tLTp16iT279+fJf13330nAIiff/7ZoHXndqVbiNdXiOfNmycaNmwo3N3dhaOjowgICBBt2rQRc+bMEU+ePBFCCHHjxg0xbtw4Ub9+feHt7S0cHBxEQECAePvtt/Xm9cmTJ2LChAmifPnywsHBQXh6eoq2bduKPXv2ZEmb1yvdQgixcuVKUatWLeHi4iKKFSsmunXrJq5cuaL3J5byeqU73bFjx0S3bt2Ej4+PsLe3F8WLFxdt27YVGzZsyJI2NjZWdOjQQXh5eQl7e3vh6+srQkNDxeTJk/Ve0ZWDnK5mN2rUSAAQDx48yHU56XWY0yfzld/du3eLcePGidDQUFGiRAlhb28vXF1dRbVq1cSYMWPErVu38lSW9DbO7pP5CvK6desEAPHpp58atPwff/xRvPXWWyIwMFA4OTmJokWLinr16ok5c+ZkuUvkwoULol27dsLT01NoNBqdvv3ixQvx5ZdfinLlyknb2ujRo8Xjx49FYGCg3ivvU6dOFeXKlRP29vZ663L27NnS/ICAADFx4kTx4sWLLGnPnj0rRowYIWrWrCmKFi0qHB0dRVBQkOjbt684c+aMQfVgSrn1IR6eEpG10Qhhpt+DICIig3Xp0gUHDx7ElStX4ODgYOnskBWrUKECrl69iufPn+f73QdyNmbMGMyZMwfXr1/nT1EREZFF5O1VvkREZBZ79+7F6NGjGXCTSZ07dw4XL15E7dq1rTLgBoA9e/Zg0KBBDLiJiMhieKWbiIhIZZYuXYpdu3Zh+fLlePjwIZYvX46uXbtaOltERERWiVe6iYiIVGbp0qWIiYlBYGAgfvvtNwbcREREJsQr3UREREREREQmwivdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBNxEREREREZGJMOgmIiIiIiIiMhEG3UREREREREQmwqCbiIiIrEZMTAw0Gg2uXbtm6awQEREBYNBNREQE4L9gLf1jZ2cHPz8/RERE4ObNm5bOnkWdPXsWkyZNYiBLRESUD3aWzgAREZGcfP755yhdujT+/fdfHDhwADExMdi7dy9Onz4NJycnS2fPIs6ePYuoqCg0a9YMpUqVsnR2iIiIFIVBNxERUQZt27ZFnTp1AAADBw5EsWLF8PXXX2P9+vXo1q2bhXNHRERESsPby4mIiHLQuHFjAMCVK1d0pp8/fx5dunRBkSJF4OTkhDp16mD9+vU6aV6+fImoqCiUK1cOTk5OKFq0KBo1aoTY2FiddDt27EDjxo1RqFAheHp6omPHjjh37pxOmkmTJkGj0eDy5cuIiIiAp6cnPDw80K9fPzx79kwn7YIFC9CiRQt4e3vD0dERlSpVwpw5c7KUrVSpUnjzzTexd+9e1KtXD05OTggKCsKvv/4qpYmJiUHXrl0BAM2bN5duv9+5c2e2dXby5ElEREQgKCgITk5O8PX1Rf/+/fHgwYN8l+n58+cYPnw4ihUrBjc3N7z11lu4efMmNBoNJk2alG1e0m3evFmqYzc3N7Rv3x5nzpzJ9XtEREQFxaCbiIgoB+nPMRcuXFiadubMGdSvXx/nzp3DuHHjMH36dBQqVAjh4eFYs2aNlG7SpEmIiopC8+bN8cMPP+DTTz9FQEAAjh49KqX5888/ERYWhrt372LSpEkYNWoU9u3bh4YNG+p9hrpbt254/PgxoqOj0a1bN8TExCAqKkonzZw5cxAYGIhPPvkE06dPh7+/P4YMGYLZs2dnWd7ly5fRpUsXvPHGG5g+fToKFy6MiIgIKSBt0qQJhg8fDgD45JNPsGjRIixatAgVK1bMts5iY2Nx9epV9OvXD7NmzUKPHj2wdOlStGvXDkKIfJUpIiICs2bNQrt27fD111/D2dkZ7du3zzYPGS1atAjt27eHq6srvv76a0yYMAFnz55Fo0aN+Jw6ERGZniAiIiKxYMECAUD8+eef4t69e+LGjRti5cqVwsvLSzg6OoobN25IaVu2bCmqVq0q/v33X2maVqsVDRo0EOXKlZOmVa9eXbRv3z7H9daoUUN4e3uLBw8eSNNOnDghbGxsRJ8+faRpkZGRAoDo37+/zvc7deokihYtqjPt2bNnWdYTFhYmgoKCdKYFBgYKAGL37t3StLt37wpHR0cxevRoadqKFSsEABEXF5djWXJa/++//55lXYaW6ciRIwKAGDlypE66iIgIAUBERkZK09LbMT4+XgghxOPHj4Wnp6cYNGiQzncTExOFh4dHlulERETGxivdREREGbRq1QpeXl7w9/dHly5dUKhQIaxfvx4lS5YEADx8+BA7duyQrs7ev38f9+/fx4MHDxAWFoZLly5Jbzv39PTEmTNncOnSJb3run37No4fP46IiAgUKVJEml6tWjW88cYb2LRpU5bvvP/++zr/N27cGA8ePEBKSoo0zdnZWfo7OTkZ9+/fR9OmTXH16lUkJyfrfL9SpUrSLfQA4OXlheDgYFy9etXQKssi4/r//fdf3L9/H/Xr1wcAnav8hpZpy5YtAIAhQ4bopPvwww9zzUtsbCySkpLQs2dPqa3u378PW1tbhISEIC4uLm+FIyIiyiO+SI2IiCiD2bNno3z58khOTsYvv/yC3bt3w9HRUZp/+fJlCCEwYcIETJgwQe8y7t69Cz8/P3z++efo2LEjypcvjypVqqBNmzbo3bs3qlWrBgC4fv06ACA4ODjLMipWrIitW7fi6dOnKFSokDQ9ICBAJ136be+PHj2Cu7s7AOCvv/5CZGQk9u/fn+XZ6OTkZHh4eGS7vPRlPnr0KPtKysXDhw8RFRWFpUuX4u7du1nWn1luZbp+/TpsbGxQunRpnXRly5bNNS/pJzxatGihd356nREREZkKg24iIqIM6tWrJ729PDw8HI0aNcI777yDCxcuwNXVFVqtFgAwZswYhIWF6V1GejDYpEkTXLlyBevWrcO2bdswf/58fPvtt5g7dy4GDhyYr/zZ2trqnS7+/7PSV65cQcuWLVGhQgXMmDED/v7+cHBwwKZNm/Dtt99K+Td0efnRrVs37Nu3D2PHjkWNGjWkemvTpk2W9ZsqD+nS17do0SL4+vpmmW9nx0MhIiIyLe5piIiIsmFra4vo6GjpRWjjxo1DUFAQAMDe3h6tWrXKdRlFihRBv3790K9fPzx58gRNmjTBpEmTMHDgQAQGBgIALly4kOV758+fR7FixXSuchvijz/+QGpqKtavX69zBbkgt1FrNBqD0z569Ajbt29HVFQUJk6cKE3P7hZ7QwQGBkKr1SI+Ph7lypWTpl++fDnX75YpUwYA4O3tbVB7ERERGRuf6SYiIspBs2bNUK9ePcycORP//vsvvL290axZM8ybNw+3b9/Okv7evXvS35l/IsvV1RVly5ZFamoqAKB48eKoUaMGFi5ciKSkJCnd6dOnsW3bNrRr1y7P+U2/apzxKnFycjIWLFiQ52WlSw/8M+YxL+sHgJkzZ+Z7/el3FPz4448602fNmmXQd93d3fHVV1/h5cuXWeZnbC8iIiJT4JVuIiKiXIwdOxZdu3ZFTEwM3n//fcyePRuNGjVC1apVMWjQIAQFBeHOnTvYv38//vnnH5w4cQLA65eUNWvWDLVr10aRIkVw+PBhrFy5EsOGDZOWPW3aNLRt2xahoaEYMGAAnj9/jlmzZsHDw8Og35/OrHXr1nBwcECHDh3w3nvv4cmTJ/j555/h7e2t9ySBIWrUqAFbW1t8/fXXSE5OhqOjo/Q74Jm5u7ujSZMmmDp1Kl6+fAk/Pz9s27YN8fHx+Vo3ANSuXRudO3fGzJkz8eDBA9SvXx+7du3CxYsXAeR8Jd7d3R1z5sxB7969UatWLfTo0QNeXl5ISEjAxo0b0bBhQ/zwww/5zhsREVFuGHQTERHl4u2330aZMmXwzTffYNCgQahUqRIOHz6MqKgoxMTE4MGDB/D29kbNmjV1bqkePnw41q9fj23btiE1NRWBgYH44osvMHbsWClNq1atsGXLFkRGRmLixImwt7dH06ZN8fXXX2d5cZghgoODsXLlSnz22WcYM2YMfH198cEHH8DLywv9+/fPV/l9fX0xd+5cREdHY8CAAUhLS0NcXJzeoBsAlixZgg8//BCzZ8+GEAKtW7fG5s2bUaJEiXytHwB+/fVX+Pr64vfff8eaNWvQqlUrLFu2DMHBwXBycsrxu++88w5KlCiBKVOmYNq0aUhNTYWfnx8aN26Mfv365TtPREREhtAIY7ylhIiIiMjMjh8/jpo1a2Lx4sXo1auXpbNDRESkF5/pJiIiItl7/vx5lmkzZ86EjY0NmjRpYoEcERERGYa3lxMREZHsTZ06FUeOHEHz5s1hZ2eHzZs3Y/PmzRg8eDD8/f0tnT0iIqJs8fZyIiIikr3Y2FhERUXh7NmzePLkCQICAtC7d298+umn/K1tIiKSNQbdRERERERERCbCZ7qJiIiIiIiITIRBNxEREREREZGJ8CGoPNJqtbh16xbc3Nyg0WgsnR0iIiIiIiLKQAiBx48fo0SJErCxsfx1ZgbdeXTr1i2+JZWIiIiIiEjmbty4gZIlS1o6Gwy688rNzQ3A6wZ0d3e3cG6IiIiIiIgoo5SUFPj7+0uxm6Ux6M6j9FvK3d3dGXQTERERERHJlFweB7b8De5EREREREREVopXugug1LiNeqdfm9LeZOsyxbLzK2P5zZUvudSDpfJhyfJbYt0Z12nptldjm2en1LiNFusHcpI5X6YeE+VcD+bcB8ip/KZuE7m0uaXzYe71W7qfZT6+NHX/Mse6DMF9i+X6nqX7fEZybBdj0AghhKUzoSQpKSnw8PBAcnKy3tvLTdFR5Nz5sjvxABg/v3KrB3MdYGdk6bLzRJP+IMvaD7gz03cyJJ2p+oLc6iCdvvIXtN30fV+ufQEwzX7AnGNNQallv2/pE6/mZK6gN6d1mmu92a1fLSeY5bStyeXCijn7ginH+txiNnNj0J1HhjRg5mDMkM5rzuDV1AoajCqtLowdfFt6x5dXxt5JyGkHmB1j7iSya28l1YMx8pzdAacS6kGf7PKd03iR09inL70S5FYPOe0PlVRefe1qaDkynlSyxB1keWHO/MmhH5grEJZDWTMy5wllOfR5S5zkk+OJxYKMYwVZX+YTzMZaF4NuhctLA2Y3kMhxQzOF3A4gAcPqJXM6uTJGu8ptx2sotZ9oAgoeZJn77LKp5HSVNp0hAZhSt4WMcno8wtQHG3KS09hobftDQ8c1pZ9gMXa7KaUfqOWuBsC0Zc1MbmUHTNcucm3vnCi13zPoVjhjNaAczuyZiyEH4emsrS4MOfGQkdLLn9NZ0vRp1tz383KiSYk7XkPldnUop2DUGhlyQkbffGuS23Zv7f3A0rcOm1p+x3UlbgPGKmt+lmFuxjw5rsRt3FTBppLqIF12J47TGXJxxdzHPwy6FU5uDUjKYM2BpqHUVAcMsnKnpv5ApBZ5PdEMKHf7z89dDUota2Z53ccpMeBOl9e7UnK7s0eJdZAuL+2buayWOP6RW8zGoDuP5NaAREREREqi9OAjN2o4wZrblXtrqwNDHoPK7c5OpddBTuR4N4/cYjYG3XkktwYkIiIiIrIEJV/FNha1BNaGkNMJNbnFbAy680huDUhERERERET/kVvMZmPpDBARERERERFZKwbdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE1Fs0D1p0iRoNBqdT4UKFXL8zooVK1ChQgU4OTmhatWq2LRpk5lyS0RERERERGqk2KAbACpXrozbt29Ln71792abdt++fejZsycGDBiAY8eOITw8HOHh4Th9+rQZc0xERERERERqouig287ODr6+vtKnWLFi2ab97rvv0KZNG4wdOxYVK1bE5MmTUatWLfzwww9mzDERERERERGpiaKD7kuXLqFEiRIICgpCr169kJCQkG3a/fv3o1WrVjrTwsLCsH//flNnk4iIiIiIiFTKztIZyK+QkBDExMQgODgYt2/fRlRUFBo3bozTp0/Dzc0tS/rExET4+PjoTPPx8UFiYmKO60lNTUVqaqr0f0pKinEKQERERERERFZPsUF327Ztpb+rVauGkJAQBAYGYvny5RgwYIDR1hMdHY2oqCijLY+IiIiIiIjUQ9G3l2fk6emJ8uXL4/Lly3rn+/r64s6dOzrT7ty5A19f3xyXO378eCQnJ0ufGzduGC3PREREREREZN2sJuh+8uQJrly5guLFi+udHxoaiu3bt+tMi42NRWhoaI7LdXR0hLu7u86HiIiIiIiIyBCKDbrHjBmDXbt24dq1a9i3bx86deoEW1tb9OzZEwDQp08fjB8/Xko/YsQIbNmyBdOnT8f58+cxadIkHD58GMOGDbNUEYiIiIiIiMjKKfaZ7n/++Qc9e/bEgwcP4OXlhUaNGuHAgQPw8vICACQkJMDG5r9zCg0aNMCSJUvw2Wef4ZNPPkG5cuWwdu1aVKlSxVJFICIiIiIiIiunEUIIS2dCSVJSUuDh4YHk5GTeak5ERERERCQzcovZFHt7OREREREREZHcMegmIiIiIiIiMhEG3UREREREREQmwqCbiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgm4iIiIiIiMhEGHQTERERERERmQiDbiIiIiIiIiITYdBNREREREREZCIMuomIiIiIiIhMhEE3ERERERERkYkw6CYiIiIiIiIyEQbdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBNxEREREREZGJKDbojo6ORt26deHm5gZvb2+Eh4fjwoULOX4nJiYGGo1G5+Pk5GSmHBMREREREZHaKDbo3rVrF4YOHYoDBw4gNjYWL1++ROvWrfH06dMcv+fu7o7bt29Ln+vXr5spx0RERERERKQ2dpbOQH5t2bJF5/+YmBh4e3vjyJEjaNKkSbbf02g08PX1NXX2iIiIiIiIiJR7pTuz5ORkAECRIkVyTPfkyRMEBgbC398fHTt2xJkzZ3JMn5qaipSUFJ0PERERERERkSGsIujWarUYOXIkGjZsiCpVqmSbLjg4GL/88gvWrVuHxYsXQ6vVokGDBvjnn3+y/U50dDQ8PDykj7+/vymKQERERERERFZII4QQls5EQX3wwQfYvHkz9u7di5IlSxr8vZcvX6JixYro2bMnJk+erDdNamoqUlNTpf9TUlLg7++P5ORkuLu7FzjvREREREREZDwpKSnw8PCQTcym2Ge60w0bNgwbNmzA7t278xRwA4C9vT1q1qyJy5cvZ5vG0dERjo6OBc0mERERERERqZBiby8XQmDYsGFYs2YNduzYgdKlS+d5GWlpaTh16hSKFy9ughwSERERERGR2in2SvfQoUOxZMkSrFu3Dm5ubkhMTAQAeHh4wNnZGQDQp08f+Pn5ITo6GgDw+eefo379+ihbtiySkpIwbdo0XL9+HQMHDrRYOYiIiIiIiMh6KTbonjNnDgCgWbNmOtMXLFiAiIgIAEBCQgJsbP67mP/o0SMMGjQIiYmJKFy4MGrXro19+/ahUqVK5so2ERERERERqYhVvEjNnOT2UD4RERERERH9R24xm2Kf6SYiIiIiIiKSOwbdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBNxEREREREZGJMOgmIiIiIiIiMhEG3UREREREREQmwqCbiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgm4iIiIiIiMhEGHQTERERERERmQiDbiIiIiIiIiITsbN0BoiIyLRKjdso/X1tSnsL5sSyDKmHUuM2Wn0dsT+8ll4Paq4DIiIyD40QQlg6E0qSkpICDw8PJCcnw93d3dLZMVjGgyxD8CDEuqnhoFtfn89cVjUcdOelHvTNsxaZ2zq7/9MpvR70nTzI3M762t1a6iGncmS3P1RqWXNiLe1JRKRPTscvcovZGHTnkdwaMLOcguucDsAyzrfWA/C81I3S5fUkC2BddaAvmDakTpRaB7lty4YGHEo/CaGvHnIaz3ILzJRYD7n1c31lykv/UQJD+r2hJySUVvZ0OZ1gyY5Sy5obtZx4UEs5gZzHJms9hs0sLycWrbUeMvYDfWOeNvUZbszsJpuYTfFB9+zZszFt2jQkJiaievXqmDVrFurVq5dt+hUrVmDChAm4du0aypUrh6+//hrt2rUzeH1yDbpNEVAq8aDDGAecuaWXs/zubJTY1oBx207pdZDdgXVOt1Hrm28N9ZDx/4zTCrK87KbJTXYnC/J7EkEJZc6oIPlV4r7AGHm2hiDF0H2/NZQ1s9zuWFH6SbSM8nLS2BrKq4+hJ9Ot4SRyTnI7hgGAk580llXMpuige9myZejTpw/mzp2LkJAQzJw5EytWrMCFCxfg7e2dJf2+ffvQpEkTREdH480338SSJUvw9ddf4+jRo6hSpYpB65Rj0G3KgUVJt+EZe2eqhAE7L0FWfpdX0GWaiinaJ6ezpnJkqj6aUyAvx7ow5xgo16ugltgPmGp9hjLXeCXH9gaMny+5ljMn+c2zkvZ16fKzHcp1280PQ4IsQ04iK6mf5/VEQk4nXdMpZb+eriB9WG4xm6KD7pCQENStWxc//PADAECr1cLf3x8ffvghxo0blyV99+7d8fTpU2zYsEGaVr9+fdSoUQNz5841aJ3pDeg/cjkSvu1qnIIUgCUGD7kFI6bOjxwHaHPmSW3lV8pBiqnbRY5XSuSUJ0teOZBLwGDJuk9nrnVbuu9nZK59ninXYQxqOumgprICxn3cQyn79IxMlWc57UMNoW8/m5d9L4NuI3nx4gVcXFywcuVKhIeHS9P79u2LpKQkrFu3Lst3AgICMGrUKIwcOVKaFhkZibVr1+LEiRN615OamorU1FTp/5SUFPj7+8N/5HLYOLqY9YqYXA60AMtupMa+uivXdWbHkida1NLe2eVDLuVPp8Z6kNNtopaoC7ndJmip8Ugu26I5T3xaer2W7nfmqAc5BiDmuKNJLsw5zsux/OnMPcbJbb8CGKd9GHQbya1bt+Dn54d9+/YhNDRUmv7RRx9h165dOHjwYJbvODg4YOHChejZs6c07ccff0RUVBTu3Lmjdz2TJk1CVFRUlulyaUAiIiIiIiL6j9yCbhtLZ0Duxo8fj+TkZOlz48YNS2eJiIiIiIiIFMLO0hnIr2LFisHW1jbLFeo7d+7A19dX73d8fX3zlB4AHB0d4ejoWPAMExERERERkeoo9kq3g4MDateuje3bt0vTtFottm/frnO7eUahoaE66QEgNjY22/REREREREREBaHYK90AMGrUKPTt2xd16tRBvXr1MHPmTDx9+hT9+vUDAPTp0wd+fn6Ijo4GAIwYMQJNmzbF9OnT0b59eyxduhSHDx/GTz/9ZPA60x+BT0lJMX6BiIiIiIiIqEDSYzW5vL5M0UF39+7dce/ePUycOBGJiYmoUaMGtmzZAh8fHwBAQkICbGz+u5jfoEEDLFmyBJ999hk++eQTlCtXDmvXrjX4N7oB4MGDBwAAf39/4xaGiIiIiIiIjObBgwfw8PCwdDaU+/ZyS0lKSkLhwoWRkJBQoAasW7cu/v777wLnxxjLkVNe0n+S7caNGwV606CcyiSXvBirbo2RF2MtQ055sca+a6zlsH7lnReODaZdhjX2XWMth/Ur77xwbDDtMli/pl1GcnIyAgIC8OjRI3h6ehZoWcag6CvdlpB+5dzDw6NAG4itra1RXl9vjOXIKS/p3N3dWb8mWk5B69ZYeZFTvbDvmnY5rF/55wXg2GDKvADW1XeNtRzWr/zzAnBsMGVeANavKfMCQOeuZ0uSRy5UaOjQobJZjpzyYixyKpOc8mIs1lYv1la3clsO69d0yzDmcozB2urF2upWbsth/ZpuGcZcjjFYW73IqW4BeZVJTnmRE95enkdy+6F1a8P6NR3WrWmxfk2L9Ws6rFvTYv2aFuvXdFi3psX6NS251S+vdOeRo6MjIiMj+dvdJsL6NR3WrWmxfk2L9Ws6rFvTYv2aFuvXdFi3psX6NS251S+vdBMRERERERGZCK90ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBdx7Mnj0bpUqVgpOTE0JCQnDo0CFLZ8nidu/ejQ4dOqBEiRLQaDRYu3atznwhBCZOnIjixYvD2dkZrVq1wqVLl3TSPHz4EL169YK7uzs8PT0xYMAAPHnyRCfNyZMn0bhxYzg5OcHf3x9Tp07NkpcVK1agQoUKcHJyQtWqVbFp0yajl9ecoqOjUbduXbi5ucHb2xvh4eG4cOGCTpp///0XQ4cORdGiReHq6orOnTvjzp07OmkSEhLQvn17uLi4wNvbG2PHjsWrV6900uzcuRO1atWCo6MjypYti5iYmCz5sbb+P2fOHFSrVg3u7u5wd3dHaGgoNm/eLM1n3RrPlClToNFoMHLkSGka6zf/Jk2aBI1Go/OpUKGCNJ91W3A3b97Eu+++i6JFi8LZ2RlVq1bF4cOHpfnct+VfqVKlsvRfjUYj/S4v+2/+paWlYcKECShdujScnZ1RpkwZTJ48GRnfmcy+WzCPHz/GyJEjERgYCGdnZzRo0AB///23NJ/1azglxRCG5CVXggyydOlS4eDgIH755Rdx5swZMWjQIOHp6Snu3Llj6axZ1KZNm8Snn34qVq9eLQCINWvW6MyfMmWK8PDwEGvXrhUnTpwQb731lihdurR4/vy5lKZNmzaievXq4sCBA2LPnj2ibNmyomfPntL85ORk4ePjI3r16iVOnz4tfv/9d+Hs7CzmzZsnpfnrr7+Era2tmDp1qjh79qz47LPPhL29vTh16pTJ68BUwsLCxIIFC8Tp06fF8ePHRbt27URAQIB48uSJlOb9998X/v7+Yvv27eLw4cOifv36okGDBtL8V69eiSpVqohWrVqJY8eOiU2bNolixYqJ8ePHS2muXr0qXFxcxKhRo8TZs2fFrFmzhK2trdiyZYuUxhr7//r168XGjRvFxYsXxYULF8Qnn3wi7O3txenTp4UQrFtjOXTokChVqpSoVq2aGDFihDSd9Zt/kZGRonLlyuL27dvS5969e9J81m3BPHz4UAQGBoqIiAhx8OBBcfXqVbF161Zx+fJlKQ33bfl39+5dnb4bGxsrAIi4uDghBPtvQXz55ZeiaNGiYsOGDSI+Pl6sWLFCuLq6iu+++05Kw75bMN26dROVKlUSu3btEpcuXRKRkZHC3d1d/PPPP0II1m9eKCmGMCQvuWHQbaB69eqJoUOHSv+npaWJEiVKiOjoaAvmSl4ybzBarVb4+vqKadOmSdOSkpKEo6Oj+P3334UQQpw9e1YAEH///beUZvPmzUKj0YibN28KIYT48ccfReHChUVqaqqU5uOPPxbBwcHS/926dRPt27fXyU9ISIh47733jFpGS7p7964AIHbt2iWEeF2X9vb2YsWKFVKac+fOCQBi//79QojXA5qNjY1ITEyU0syZM0e4u7tL9fnRRx+JypUr66yre/fuIiwsTPpfLf2/cOHCYv78+axbI3n8+LEoV66ciI2NFU2bNpWCbtZvwURGRorq1avrnce6LbiPP/5YNGrUKNv53LcZ14gRI0SZMmWEVqtl/y2g9u3bi/79++tMe/vtt0WvXr2EEOy7BfXs2TNha2srNmzYoDO9Vq1a4tNPP2X9FoCcYwhD8mII3l5ugBcvXuDIkSNo1aqVNM3GxgatWrXC/v37LZgzeYuPj0diYqJOvXl4eCAkJESqt/3798PT0xN16tSR0rRq1Qo2NjY4ePCglKZJkyZwcHCQ0oSFheHChQt49OiRlCbjetLTWFP7JCcnAwCKFCkCADhy5AhevnypU+4KFSogICBAp36rVq0KHx8fKU1YWBhSUlJw5swZKU1OdaeG/p+WloalS5fi6dOnCA0NZd0aydChQ9G+ffssdcD6LbhLly6hRIkSCAoKQq9evZCQkACAdWsM69evR506ddC1a1d4e3ujZs2a+Pnnn6X53LcZz4sXL7B48WL0798fGo2G/beAGjRogO3bt+PixYsAgBMnTmDv3r1o27YtAPbdgnr16hXS0tLg5OSkM93Z2Rl79+5l/RqRnOrSkLwYgkG3Ae7fv4+0tDSdAR4AfHx8kJiYaKFcyV963eRUb4mJifD29taZb2dnhyJFiuik0beMjOvILo21tI9Wq8XIkSPRsGFDVKlSBcDrMjs4OMDT01Mnbeb6zW/dpaSk4Pnz51bd/0+dOgVXV1c4Ojri/fffx5o1a1CpUiXWrREsXboUR48eRXR0dJZ5rN+CCQkJQUxMDLZs2YI5c+YgPj4ejRs3xuPHj1m3RnD16lXMmTMH5cqVw9atW/HBBx9g+PDhWLhwIQDu24xp7dq1SEpKQkREBACODQU1btw49OjRAxUqVIC9vT1q1qyJkSNHolevXgDYdwvKzc0NoaGhmDx5Mm7duoW0tDQsXrwY+/fvx+3bt1m/RiSnujQkL4awMzglEVnM0KFDcfr0aezdu9fSWbEqwcHBOH78OJKTk7Fy5Ur07dsXu3btsnS2FO/GjRsYMWIEYmNjs1wRoIJLv2oFANWqVUNISAgCAwOxfPlyODs7WzBn1kGr1aJOnTr46quvAAA1a9bE6dOnMXfuXPTt29fCubMu//d//4e2bduiRIkSls6KVVi+fDl+++03LFmyBJUrV8bx48cxcuRIlChRgn3XSBYtWoT+/fvDz88Ptra2qFWrFnr27IkjR45YOmskc7zSbYBixYrB1tY2y9sz79y5A19fXwvlSv7S6yanevP19cXdu3d15r969QoPHz7USaNvGRnXkV0aa2ifYcOGYcOGDYiLi0PJkiWl6b6+vnjx4gWSkpJ00meu3/zWnbu7O5ydna26/zs4OKBs2bKoXbs2oqOjUb16dXz33Xes2wI6cuQI7t69i1q1asHOzg52dnbYtWsXvv/+e9jZ2cHHx4f1a0Senp4oX748Ll++zL5rBMWLF0elSpV0plWsWFG6hZ/7NuO4fv06/vzzTwwcOFCaxv5bMGPHjpWudletWhW9e/fG//73P+mOI/bdgitTpgx27dqFJ0+e4MaNGzh06BBevnyJoKAg1q8RyakuDcmLIRh0G8DBwQG1a9fG9u3bpWlarRbbt29HaGioBXMmb6VLl4avr69OvaWkpODgwYNSvYWGhiIpKUnnDOGOHTug1WoREhIipdm9ezdevnwppYmNjUVwcDAKFy4spcm4nvQ0Sm4fIQSGDRuGNWvWYMeOHShdurTO/Nq1a8Pe3l6n3BcuXEBCQoJO/Z46dUpnUIqNjYW7u7t0UJlb3amp/2u1WqSmprJuC6hly5Y4deoUjh8/Ln3q1KmDXr16SX+zfo3nyZMnuHLlCooXL86+awQNGzbM8vOMFy9eRGBgIADu24xlwYIF8Pb2Rvv27aVp7L8F8+zZM9jY6B7a29raQqvVAmDfNaZChQqhePHiePToEbZu3YqOHTuyfo1ITnVpSF4MYvAr11Ru6dKlwtHRUcTExIizZ8+KwYMHC09PT523Z6rR48ePxbFjx8SxY8cEADFjxgxx7Ngxcf36dSHE61fse3p6inXr1omTJ0+Kjh076n3df82aNcXBgwfF3r17Rbly5XRe95+UlCR8fHxE7969xenTp8XSpUuFi4tLltf929nZiW+++UacO3dOREZGKu6nEzL74IMPhIeHh9i5c6fOz6s8e/ZMSvP++++LgIAAsWPHDnH48GERGhoqQkNDpfnpP63SunVrcfz4cbFlyxbh5eWl96dVxo4dK86dOydmz56t96dVrK3/jxs3TuzatUvEx8eLkydPinHjxgmNRiO2bdsmhGDdGlvGt5cLwfotiNGjR4udO3eK+Ph48ddff4lWrVqJYsWKibt37wohWLcFdejQIWFnZye+/PJLcenSJfHbb78JFxcXsXjxYikN920Fk5aWJgICAsTHH3+cZR77b/717dtX+Pn5ST8Ztnr1alGsWDHx0UcfSWnYdwtmy5YtYvPmzeLq1ati27Ztonr16iIkJES8ePFCCMH6zQslxRCG5CU3DLrzYNasWSIgIEA4ODiIevXqiQMHDlg6SxYXFxcnAGT59O3bVwjx+jX7EyZMED4+PsLR0VG0bNlSXLhwQWcZDx48ED179hSurq7C3d1d9OvXTzx+/FgnzYkTJ0SjRo2Eo6Oj8PPzE1OmTMmSl+XLl4vy5csLBwcHUblyZbFx40aTldsc9NUrALFgwQIpzfPnz8WQIUNE4cKFhYuLi+jUqZO4ffu2znKuXbsm2rZtK5ydnUWxYsXE6NGjxcuXL3XSxMXFiRo1aggHBwcRFBSks4501tb/+/fvLwIDA4WDg4Pw8vISLVu2lAJuIVi3xpY56Gb95l/37t1F8eLFhYODg/Dz8xPdu3fX+Q1p1m3B/fHHH6JKlSrC0dFRVKhQQfz0008687lvK5itW7cKAFnqTAj234JISUkRI0aMEAEBAcLJyUkEBQWJTz/9VOfnkth3C2bZsmUiKChIODg4CF9fXzF06FCRlJQkzWf9Gk5JMYQhecmNRgghDL8uTkRERERERESG4jPdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBNxEREREREZGJMOgmIiIiIiIiMhEG3UREREREREQmwqCbiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgm4iIFOPatWvQaDSIiYmRpk2aNAkajcZymcojpeWX8kaj0WDSpEmWzgYREckIg24iIpKNmJgYaDQavZ9x48YZvJyvvvoKa9euNV1GyazYnkREpGR2ls4AERFRZp9//jlKly6tM61KlSoIDAzE8+fPYW9vn+P3v/rqK3Tp0gXh4eEmzCWZC9uTiIiUjEE3ERHJTtu2bVGnTh2985ycnMycm9f+/fdfODg4wMbGcjeJPXv2DC4uLhZbPxEREeUdby8nIiLF0PdMd2YajQZPnz7FwoULpVvTIyIipPk3b95E//794ePjA0dHR1SuXBm//PKLzjJ27twJjUaDpUuX4rPPPoOfnx9cXFyQkpICADh48CDatGkDDw8PuLi4oGnTpvjrr7+y5GXv3r2oW7cunJycUKZMGcybN8/gsjZr1gxVqlTBkSNH0KRJE7i4uOCTTz4BAKSmpiIyMhJly5aFo6Mj/P398dFHHyE1NVVnGbGxsWjUqBE8PT3h6uqK4OBgaRnp7t69iwEDBsDHxwdOTk6oXr06Fi5cqJMmvd6/+eYb/PTTTyhTpgwcHR1Rt25d/P333zppT548iYiICAQFBcHJyQm+vr7o378/Hjx4oJMu/dn2y5cvIyIiAp6envDw8EC/fv3w7NkzKV1u7ZnZixcvMHHiRNSuXRseHh4oVKgQGjdujLi4uHyXCQBWrFiBSpUqwcnJCVWqVMGaNWsQERGBUqVKZZuXdIb0OSIisl680k1ERLKTnJyM+/fv60wrVqyYQd9dtGgRBg4ciHr16mHw4MEAgDJlygAA7ty5g/r160Oj0WDYsGHw8vLC5s2bMWDAAKSkpGDkyJE6y5o8eTIcHBwwZswYpKamwsHBATt27EDbtm1Ru3ZtREZGwsbGBgsWLECLFi2wZ88e1KtXDwBw6tQptG7dGl5eXpg0aRJevXqFyMhI+Pj4GFwPDx48QNu2bdGjRw+8++678PHxgVarxVtvvYW9e/di8ODBqFixIk6dOoVvv/0WFy9elJ59PnPmDN58801Uq1YNn3/+ORwdHXH58mWdkwPPnz9Hs2bNcPnyZQwbNgylS5fGihUrEBERgaSkJIwYMUInP0uWLMHjx4/x3nvvQaPRYOrUqXj77bdx9epV6Zb/2NhYXL16Ff369YOvry/OnDmDn376CWfOnMGBAweyvESuW7duKF26NKKjo3H06FHMnz8f3t7e+Prrr3NtT31SUlIwf/589OzZE4MGDcLjx4/xf//3fwgLC8OhQ4dQo0aNPJdp48aN6N69O6pWrYro6Gg8evQIAwYMgJ+fX65tmNc+R0REVkgQERHJxIIFCwQAvR8hhIiPjxcAxIIFC6TvREZGisy7s0KFCom+fftmWf6AAQNE8eLFxf3793Wm9+jRQ3h4eIhnz54JIYSIi4sTAERQUJA0TQghtFqtKFeunAgLCxNarVaa/uzZM1G6dGnxxhtvSNPCw8OFk5OTuH79ujTt7NmzwtbWNkt+9WnatKkAIObOnaszfdGiRcLGxkbs2bNHZ/rcuXMFAPHXX38JIYT49ttvBQBx7969bNcxc+ZMAUAsXrxYmvbixQsRGhoqXF1dRUpKihDiv3ovWrSoePjwoZR23bp1AoD4448/dOois99//10AELt375ampbdb//79ddJ26tRJFC1aVGdadu2pz6tXr0RqaqrOtEePHgkfHx+ddeWlTFWrVhUlS5YUjx8/lqbt3LlTABCBgYE66wIgIiMjpf8N7XNERGS9eHs5ERHJzuzZsxEbG6vzKSghBFatWoUOHTpACIH79+9Ln7CwMCQnJ+Po0aM63+nbty+cnZ2l/48fP45Lly7hnXfewYMHD6TvP336FC1btsTu3buh1WqRlpaGrVu3Ijw8HAEBAdL3K1asiLCwMIPz7OjoiH79+ulMW7FiBSpWrIgKFSrolKFFixYAIN1G7enpCQBYt24dtFqt3uVv2rQJvr6+6NmzpzTN3t4ew4cPx5MnT7Br1y6d9N27d0fhwoWl/xs3bgwAuHr1qjQtY339+++/uH//PurXrw8AWeoXAN5//32d/xs3bowHDx5It/Lnla2tLRwcHAAAWq0WDx8+xKtXr1CnTh2968+tTLdu3cKpU6fQp08fuLq6SumaNm2KqlWr5piX/PQ5IiKyPry9nIiIZKdevXrZvkgtv+7du4ekpCT89NNP+Omnn/SmuXv3rs7/md+gfunSJQCvg/HsJCcnIzU1Fc+fP0e5cuWyzA8ODsamTZsMyrOfn58UQGbMw7lz5+Dl5ZVjGbp374758+dj4MCBGDduHFq2bIm3334bXbp0kV4Gd/36dZQrVy7Ly+EqVqwozc8o4wkEAFKw+ujRI2naw4cPERUVhaVLl2apz+Tk5Cz5zWmZ7u7uesuYm4ULF2L69Ok4f/48Xr58KU3P3J65rR/4rw7Kli2b5btly5bNMWjOT58jIiLrw6CbiIhUIf1q77vvvptt0FytWjWd/zNetc24jGnTpmV5Njidq6trlhea5Vfm9afnoWrVqpgxY4be7/j7+0vf3b17N+Li4rBx40Zs2bIFy5YtQ4sWLbBt2zbY2trmOT/ZfUcIIf3drVs37Nu3D2PHjkWNGjXg6uoKrVaLNm3a6L3ibsgy82Lx4sWIiIhAeHg4xo4dC29vb9ja2iI6OhpXrlwx+fozyk+fIyIi68Ogm4iIrE7ml3UBgJeXF9zc3JCWloZWrVrla7npL/Byd3fPcRleXl5wdnaWroxndOHChXytO2MeTpw4gZYtW+otZ0Y2NjZo2bIlWrZsiRkzZuCrr77Cp59+iri4OLRq1QqBgYE4efIktFqtztXu8+fPAwACAwPzlLdHjx5h+/btiIqKwsSJE6Xp+uohL3IrZ0YrV65EUFAQVq9erfO9yMjIfK07vQ4uX76cZZ6+aRkZo88REZHy8ZluIiKyOoUKFUJSUpLONFtbW3Tu3BmrVq3C6dOns3zn3r17uS63du3aKFOmDL755hs8efIk22XY2toiLCwMa9euRUJCgjT/3Llz2Lp1ax5Lo6tbt264efMmfv755yzznj9/jqdPnwJ4fZt3ZulX59OvxLdr1w6JiYlYtmyZlObVq1eYNWsWXF1d0bRp0zzlLf2qcearxDNnzszTcjLT1555ycPBgwexf//+fK27RIkSqFKlCn799VedNt+1axdOnTqVa14K2ueIiEj5eKWbiIisTu3atfHnn39ixowZKFGiBEqXLo2QkBBMmTIFcXFxCAkJwaBBg1CpUiU8fPgQR48exZ9//qk3UM3IxsYG8+fPR9u2bVG5cmX069cPfn5+uHnzJuLi4uDu7o4//vgDABAVFYUtW7agcePGGDJkiBTMVq5cGSdPnsx32Xr37o3ly5fj/fffR1xcHBo2bIi0tDScP38ey5cvx9atW1GnTh18/vnn2L17N9q3b4/AwEDcvXsXP/74I0qWLIlGjRoBAAYPHox58+YhIiICR44cQalSpbBy5Ur89ddfmDlzJtzc3PKUN3d3dzRp0gRTp07Fy5cv4efnh23btiE+Pj7f5QWyb0993nzzTaxevRqdOnVC+/btER8fj7lz56JSpUp6T5QY4quvvkLHjh3RsGFD9OvXD48ePcIPP/yAKlWq5LrMgvY5IiJSPgbdRERkdWbMmIHBgwfjs88+w/Pnz9G3b1+EhITAx8cHhw4dwueff47Vq1fjxx9/RNGiRVG5cmXpd6Fz06xZM+zfvx+TJ0/GDz/8gCdPnsDX1xchISF47733pHTVqlXD1q1bMWrUKEycOBElS5ZEVFQUbt++XaCg28bGBmvXrsW3336LX3/9FWvWrIGLiwuCgoIwYsQIlC9fHgDw1ltv4dq1a/jll19w//59FCtWDE2bNkVUVBQ8PDwAvH7ue+fOnRg3bhwWLlyIlJQUBAcHY8GCBYiIiMhX/pYsWYIPP/wQs2fPhhACrVu3xubNm1GiRIl8lzm79tQnIiICiYmJmDdvHrZu3YpKlSph8eLFWLFiBXbu3Jmv9Xfo0AG///47Jk2ahHHjxqFcuXKIiYnBwoULcebMmRy/a4w+R0REyqYRxnhTCBEREZHK1KhRA15eXkb5STsiIrJefKabiIiIKAcvX77Eq1evdKbt3LkTJ06cQLNmzSyTKSIiUgxe6SYiIiLKwbVr19CqVSu8++67KFGiBM6fP4+5c+fCw8MDp0+fRtGiRS2dRSIikjE+001ERESUg8KFC6N27dqYP38+7t27h0KFCqF9+/aYMmUKA24iIsoVr3QTERERERERmQif6SYiIiIiIiIyEQbdRERERERERCbCZ7rzSKvV4tatW3Bzc4NGo7F0doiIiIiIiCgDIQQeP36MEiVKwMbG8teZGXTn0a1bt+Dv72/pbBAREREREVEObty4gZIlS1o6Gwy688rNzQ3A6wZ0d3e3cG6IiIiIiIgoo5SUFPj7+0uxm6Ux6M6j9FvK3d3dGXQTERERERHJlFweB2bQbUGlxm3U+f/alPYWygkRERERERGZAoNuM8ocZAP/Bdqlxm1EqXEbrSrwzs9JhfTvWFM9GCpjfSmx/ErPvzFY2zacH+wHr+kb7wH9dWLNJ2Bzq4e81JPSZFc2fayhvJR3cj/mkXv+iJREI4QQls6EkqSkpMDDwwPJycl5ur3c0IHLWg7aM5c3pwNxazvoyunkSm7pr01pr8idXMZ+a0jQldc6krv89GFrDLTyst1nnp9TOiXSN5bnFIRlrjNrqIfsypJb37eGOshLGZRe3oKOZUo7UWeM/Cph7DN2HpXWz02xj1ZaXweM2w/M3e/zG7OZCoPuPMpPA6pp5wvkXAZDgxMl10Pmg+3sBtncTkQopeyGHFjnFoQpub2B3AOs7K7qWVuglV2/NSTYzJjOWushL98H1F0PShoD9clr/pXa5tmdaMvL8U7m78u5DjKWL78BlL46klv7GzOPSrywUJB+ndPyMi9TznWQLrtj2vz2A3P2ewbdCpfXBsxPh1LKhpgdY+VfifWQW3vn5cypUsqfWz4NLbNSypuZ2sufTs3bfWbGKIPS68EYB1NKrYOCHJQqrby5nWjLbV+opBPuxshzbhcl5FLu/LaroenlVFZ9jFX+nL4j576ezpCLaHLu93ILuvlMtxnIeYOSO7kPzPrklF+llSU3hjyzqKYTTvoYWp70KwDWVv78UHI9GLJNqIVS29AY1HqFP136eGboXS6ZvydXOeXZGAGKHNo/tzbLrayZl2FNJ5ozlr+gwabc+3q67MpprH6vpmMfBt0ypOQOaMx8K2VASmeKvCqhH6i1vQEGWKagxH6QmbG2CSVs/6ampjpQWt/PrW3UdJdDxluGDX2MTt98ubS/Ie2qL+Ay9JZ7OZU1M0P6tbFOsiidMfq9mjDoNiGl7TSo4IzZ3nLeKdF/uI1zrDMFbv/KrAOl5VeO5NjuhuZHTeNgdgGXGuogt2DTGu7wy0u+5Jh/OWLQTbIn1wGJTEPN7a3ku1yMjfWgXGpvOzWX3ZqxXfVT0x0NmRU073I8wUSmY2PpDBDlRMmDsbUzxc6S7U0A+wGpl1IOwpUeLMmVpdvfnO0qx/6jhG3PGlm635sLg24TKejApcQOqOadsJrLrlZK2z7J9DgOEBmHEo+ByDpwDCdTYdBNJGM88JA37pzJlLj9sw7I8tj/yNTk1sd4Atk0GHQTEcmI0oIM7pwpIzX3ByVtt5Q3au3T5qD27YZ9Sz0YdJPsKS0IoYJhexPAfkDKxANoIsNxeyE1YdBNRHmm5qtZRESmJPcTThz/TctS7S/nPmcOai+/pcl93DMGxQbdkyZNgkaj0flUqFAhx++sWLECFSpUgJOTE6pWrYpNmzaZJG/G3CFZewe0BmwjImIgQmRcajgIlxu1j2FqLz+ZlmKDbgCoXLkybt++LX327t2bbdp9+/ahZ8+eGDBgAI4dO4bw8HCEh4fj9OnTZsxx3ihp41f7Aaeay05EpsPAg4iISPkUHXTb2dnB19dX+hQrVizbtN999x3atGmDsWPHomLFipg8eTJq1aqFH374wYw5Jso7HnTLj9pPMhERqQHHejIHOR3nsc+bjqKD7kuXLqFEiRIICgpCr169kJCQkG3a/fv3o1WrVjrTwsLCsH//flNnk4goT+S0A84Jd85kDkrYHrgtEBFRThQbdIeEhCAmJgZbtmzBnDlzEB8fj8aNG+Px48d60ycmJsLHx0dnmo+PDxITE3NcT2pqKlJSUnQ+ZH5KOOgi42F7E8B+oDQMPIkorzjOk1rYWToD+dW2bVvp72rVqiEkJASBgYFYvnw5BgwYYLT1REdHIyoqyuD0POggIiKigpDrcQSPcYiI8kexV7oz8/T0RPny5XH58mW98319fXHnzh2daXfu3IGvr2+Oyx0/fjySk5Olz40bN4yWZyIl4kEXmZNS+ppS8kmmYez2l+uVP3P3c7VeBbXEeKLmMYzHNfJg7du71QTdT548wZUrV1C8eHG980NDQ7F9+3adabGxsQgNDc1xuY6OjnB3d9f5mBMHgf/ItS7kmi8ia6CUHbBS8kmmYez2l+vBpyXypNZ9rDnrWo59jcjaKDboHjNmDHbt2oVr165h37596NSpE2xtbdGzZ08AQJ8+fTB+/Hgp/YgRI7BlyxZMnz4d58+fx6RJk3D48GEMGzbMUkUwCAfC/8ixLuSYJyIyL1NfJVFr0EEEcD9LRNZBsUH3P//8g549eyI4OBjdunVD0aJFceDAAXh5eQEAEhIScPv2bSl9gwYNsGTJEvz000+oXr06Vq5cibVr16JKlSqWKoJB5Hq2OyPelmN6SugHasH+TpbA7Z/IvDjWq4cc2lkOeWCfNy3Fvkht6dKlOc7fuXNnlmldu3ZF165dTZQjItPiQCgPbIf/sC7IXNJPPLLPkbmwr6mHXMYWS+dDDnVgzRR7pVuOLL2xWIoay2wJcrnSZa72luvVfXPlSa7lTyfnvJFlmHpskOu+Rq37fmvHMc585L6/Uws5tIE1j6UMuqnA5LCRkvmYs72tefA1hNrLDyjjYIztZJ5xQe79gMiYzDmucAwjubDmcZ5BtwJwMHxNjvUgxzxZE2sefA2h9vKnk/t2Zo52knsdqJmp2kaObc6fsjIftb29XK3tTOrBoFsB5DAYyoXc6kJu+TE13kZJlqC27Uwf1oF8mapt5NbmlsqP3OqBTMOS7SyX4xq55MOSlHB3W34x6CZSCA7G8sB2eI31QBmZoz+orc9Z88GnEli6v5mr/dV+Ml1O25il8yKXfiCXfBgbg24qMGvdOHJj7h2VpQdjQL1tnRGfaX9NDv1RLuTcTubCZ7rJVCx18kEO/Y1jC5mTHPo8IJ98GBuDbiMxZQeR+6Cr1iBETnkxF3MPhGqs44ysdceTV3LuB+Z8mz3JkynbRk7tLqe8qIWa3hchl3wQmQqDbiMy5YAh14NvNV7tTWeJAFRO5TcHOZaXBwbmJ8d+YAmsB3kyZbvIqc3V9sytWsZ6ufQxS+VDTu0sp7yQ8THopgLhAGFelq5vS6/f0uRycCIHau8LpIvPdJMpqfX2cjI9ubWz2k5u6SOXfBgbg24qELkNVtbO0vXNq/vmJdcdj5rbJDO5tpG5matPyK3vqf0lVNZKLu3Kk1lkLnIaW+WUF2Ni0K0QHBRfk1M9yCkv1kzt9WytO5+8kHMfUOs7LTKSS4BiCaYut5zq1ZJ5kVM9mJOaXlCo1jYm9WDQrRByGRQtTU71YIm8qHGnJKc2V2P962PuepBTH7AkudaDmrcLU7eJnNrcknnhSzzVgcdVlsuP3OrBGjHopgIx90aq9tuNLV12tQ/KPCB4jY8Z/EeO7WNuvNpv/dR2N4NcxhveXm56cmnrdJbKj5zqwVr7JINuIzDHzkiuHVDNQYhc8mFOchqU1YJ1/ppctzcGnOYlt+1BLft+S+fD0uu3FDXdXg6ot50pKzn1S2Nh0K0Q1tj58ksudaG2Ew6WutIhp52wnPJiSZaoB7ls95bEOpAftQRFls6DWm8vN/VdPnK7g0Ftx1X68PZy68WgmwqEG6l5qfGnJCx9sJeRnPJiSayH/3AMNG8dsL7VydyPmHCMUwc5tjNvL3/NGsd6Bt0KIdfOp+azknLJh7nIbUBWC7X1s+zIsR7UevUtMzUHQ3zmlkzNlO0vt74lt/yQ5chtrDcGBt0KIrcOaKnbkuRQD5bKg5xfKKUGau3vmbEeLIf1IC9qub1cDsGQWu+oMPXt5XLCE5nyzBMZB4PuApLb8zDmpNZyW5ranveRSz+T28GJJbEuXpNL37Q0tQZDaiKHbV7Nd1SQacixnS15UUdO5JYfY2DQrSBy64ByHKzMxdIvNFPTei29bkuT43av9hfqpVNzv8zI3PUgp3rn7eXWR24XU3h7ubpY4o5GOY2p6eSYp4Ji0K0g1tgB80MOgzLbQn3UeKJFTlgHr8lh/KPXzNUn5dD35dDv5JAHS+Dt5aYj1z4l13xRwTDopnzj26wtQ423ecthB6T2fpdODm0hF3y2/TVz1wP7oPnJod+ZKw/sX5bDt9S/xpMP8sxTQTHoVhC5dUC+TMwyeHu5+shp2+fzZv9Re78ELFMHcql3c/VJOfZ9ayaX/pVOTbeXA/LMk7WTW58H5JmngmLQXQDmfu7HGjtgfll6ULb0+klduO2/xnrg2CMnvL1cfXmwBDXdXg6YN09y7VNyzZc5WeMFNsUG3dHR0ahbty7c3Nzg7e2N8PBwXLhwIcfvxMTEQKPR6HycnJzMlGPro+ZnXC25fjXeXi4Hai9/OtaDZVl67MuML9UzPUsffMqlz6n19nJTtb/cXhhnCXLp25nx9vLX5Jqv/FJs0L1r1y4MHToUBw4cQGxsLF6+fInWrVvj6dOnOX7P3d0dt2/flj7Xr183U46tj1wHK2unxts55TDwqvFEiz6W7gtyIqd2sRQ1jkdkGeY6+SDH/mWKsUbt4xdPOvxHjn0ekG++8kuxQfeWLVsQERGBypUro3r16oiJiUFCQgKOHDmS4/c0Gg18fX2lj4+Pj5lyXHAcHP5j6bqw9PrVxtoG3rxSe/nTyWm747PtpJbfJ5dTn5NTXszJVFe65UitbUzWT7FBd2bJyckAgCJFiuSY7smTJwgMDIS/vz86duyIM2fO5Jg+NTUVKSkpOh9LkssgaekzhGq+1Y47JMtgvb+m1u1eLuRWB2reLtTylmU59Tlz5EXNfVoO1PoYQUb8RQjrZBVBt1arxciRI9GwYUNUqVIl23TBwcH45ZdfsG7dOixevBharRYNGjTAP//8k+13oqOj4eHhIX38/f0BAFUit6q6k6q57HKgtud91P5Mo6XrPyNL14VcWPLdCnJqA0vkRU7bA1kfOW1f6djnjU+O7ZzO3HmTa11YW7+3iqB76NChOH36NJYuXZpjutDQUPTp0wc1atRA06ZNsXr1anh5eWHevHnZfmf8+PFITk6WPjdu3DB29vNELh3Q0hsob7UzL0u3t9rJpf4tfYeLnLY9PuNvWXLYJtRye7maWHqMy44p+rscywnIN1/mZM6Tq3Lt84A8xnljUnzQPWzYMGzYsAFxcXEoWbJknr5rb2+PmjVr4vLly9mmcXR0hLu7u87HkqytA+aXmq96qpWagz25Xd20FNbBa6wHy1PTlShLj38ZySkvSifXcYS3l78m9/xR3ik26BZCYNiwYVizZg127NiB0qVL53kZaWlpOHXqFIoXL26CHFo3DgaWpcb654kWy1Njv6Oc8ScMrZ+cxj9T54X9yvLU/Jb6jHjyQd55yw/FBt1Dhw7F4sWLsWTJEri5uSExMRGJiYl4/vy5lKZPnz4YP3689P/nn3+Obdu24erVqzh69CjeffddXL9+HQMHDszz+k9HhRmlHEpl6cFK7Vf+1PZMN8mjDSy9zclpu5dDe1gaT4SRtZFrv+JPhpGpyLXPA/LOW34oNuieM2cOkpOT0axZMxQvXlz6LFu2TEqTkJCA27dvS/8/evQIgwYNQsWKFdGuXTukpKRg3759qFSpkiWKkC8cJP/DKyzmY20DnxKxDV6Ty/bH233VTS1vF5bz855qoqafDAM4xpF1UmzQLYTQ+4mIiJDS7Ny5EzExMdL/3377La5fv47U1FQkJiZi48aNqFmzpvkzXwByHiTNzVJ1obY24EEXyYnatj99WAeWZ4k24Jvi5ZcfczH2XT5y36/zp+Hknz9zkNPdbcag2KCbSM04GJsX6/s11gNlxP5g/eR4wGvKPLFPq4Mc+3VmfKbb+jDoVhi5nPVR60Yql7PD5uwDcigvYNl8cJt7TQ71IBdyaA9L4y32ZG04xpHayL3PW9NYz6BbgSzdAeW+gZqSpeveEuTS3pZ8nEAO7S6XdrA0toV8Tr5akqXLb4l+KIe+T5ZjzPZnXyKlsPRYb0wMuhXImjpgQVhipyGXulfjQbcay0xZsQ+8pvaDZkuPB2p5pltN5HKCNTvGfqZbzuTcDuZijjFO7n3e2jDoJsWS+06DyJjkEGRw5ywfHP/IHOS4zcsxT2RcHN/IGjHoJiLKAQ/wiLJS80kYNZVdjsGPHPNExmXqk8xK2X6Vkk8yDINuUixLX/mzNA7G5qHmPpaRXPqb2rd7IiIqGKXsQ0ydT7ns19WCQTeRQpljp6GmKzqUM6UcpJB5cFwwP3OfcFLb+C/3svKEIxmbEvqTNfV7Bt1ERAoh94NCUg9rOQgi5THVQbha+rTaTqZkpvbyk+Uw6FYgS571UfNgpeaykzyo5aBQzjgOyAfbgYiIlIJBNxEphjXdZkRUENwWeBKKiIiUg0E3kULxoNv0eFWTSL44BpKxcKwnOTLlGMc+b34MuomIFMJSQQZ3zpSRmgNdbgtE5sGTamRtGHSTonFQJlIfbveWx8CTiIjIcAy6iUgvXtEhIlInJYz/PPFGecU+o0zWcqKdQTcRKY41DL6kPOx3ZGnWcvBZUHI/IWAqBW1/JZxMMTW1l58sh0E3GUzNO3o576jU1i5ybQdSB7n1P7Vt/0TGxm2IiMyBQbdCWepst9wOONWO7WE6cj7RYk48IJUv9k9e+SXj4LZEcmWKMY7HN5bBoJuISEEsEWRw50zp1HywpuayE1kCT6qRNWHQTYrHQdn4eHBJcsftnsg0OP7LX37GPrWPl2ovv9JZwz6fQTdRLpS+kVsjaxh8SVkYiJBccPx7Ta31UJBxSO1jmNrLT5bFoFvBzLnDUfsBp5zLrtYDD1NSe39Px34lf/nd/kuN22hV7WtNZSHzYb8hJTDmcR77vOXYWToDZB45bWQMLoiUJy8nBvRt/4Z+11rGh9wONKylnDnRVwcZp+VWB3I9GWXoAWl2aQwpk1zLbmxqPCBXQ7sqnVq2P3NRcl0quS8oPuiePXs2pk2bhsTERFSvXh2zZs1CvXr1sk2/YsUKTJgwAdeuXUO5cuXw9ddfo127dmbMsfml70T1ddKMVzuy68RK2AmnH3QZevCU8XukSykDmiFtXpCDbDnLT5CRscyGbPdKkJc+kFuanJajhDEwJ4aMedbSJ7KTXdmUXG5Dxur8nHCzxnqwRnk98arUOjLGVV6lj+H0Wl6PfbSpz0ydpTxRdNC9bNkyjBo1CnPnzkVISAhmzpyJsLAwXLhwAd7e3lnS79u3Dz179kR0dDTefPNNLFmyBOHh4Th69CiqVKligRIYR3aDqSEHWunTczvwUOpgnS7zRpq+4RpywkEJZc8p+LD2uxz0ldvQE0nZ1ZfS6yW3bT/zdp/XfqMUhgZThowHcu4Thmz/hgZa2fUJufeH7Oogt/IrdVvI7eDTGk8y6FOQgEyO7WooPlaWd0rv73m5uJQda+8zmY99UlJS4DHTcvnJTCOEEJbORH6FhISgbt26+OGHHwAAWq0W/v7++PDDDzFu3Lgs6bt3746nT59iw4YN0rT69eujRo0amDt3rkHrTElJgYeHB5KTk+Hu7m6cghRQfg40clpWxu8paeec00GGvumZ52f3XSWUHci+7TJO05c+83eUUt50GfOc11tlM6dVUn8HjLft6/uOUvpCdnnPPC2/y1NKnzDFfiDjd5XQHzKWN793NClpW8ip72eenpfvyrGsOTHWmKc0hpbBGsoK5H87tJbyAzmP8/oo+Zg2J5nLkV0byy1mU2zQ/eLFC7i4uGDlypUIDw+Xpvft2xdJSUlYt25dlu8EBARg1KhRGDlypDQtMjISa9euxYkTJwxar9waEDDOgUZ2yyzocsytIHWRn9vw5EbfFX1TfEduCtJflVx+Y2771lAPGRU0/0obA1kHrxkjz0raFxQkr0oqZ25yOumcUcaxUqllzcjQRwyspaxA7m2cztraOp2h2601bd+ZGVo2ucVsig26b926BT8/P+zbtw+hoaHS9I8++gi7du3CwYMHs3zHwcEBCxcuRM+ePaVpP/74I6KionDnzh2960lNTUVqaqr0f0pKCvz9/WXTgOmUeHBkKsYKPtRej6QM3PZf43ZLasW+/5ohJw6tsa7ye5efEhl6cpj7RQLkF3Qr+pluc4iOjkZUVJSls5ErDir/KWhdsC5JSdhfX2M9kFqx779mSD1YY11lfidF5nnWxNDyWFu5yTooNuguVqwYbG1ts1yhvnPnDnx9ffV+x9fXN0/pAWD8+PEYNWqU9H/6lW4iIiIiIktjkEkkfzaWzkB+OTg4oHbt2ti+fbs0TavVYvv27Tq3m2cUGhqqkx4AYmNjs00PAI6OjnB3d9f5EBERERERERlCsVe6AWDUqFHo27cv6tSpg3r16mHmzJl4+vQp+vXrBwDo06cP/Pz8EB0dDQAYMWIEmjZtiunTp6N9+/ZYunQpDh8+jJ9++smSxSAiIiIiIiIrpeigu3v37rh37x4mTpyIxMRE1KhRA1u2bIGPjw8AICEhATY2/13Mb9CgAZYsWYLPPvsMn3zyCcqVK4e1a9fm6Te60987l5KSYtzCEBERERERUYGlx2pyeWe4Yt9ebilXr15FmTJlLJ0NIiIiIiIiysGVK1cQFBRk6Wwo+0q3JRQpUgTA66voHh4e+V5O3bp18ffffxc4P8ZYjpzykv6iuhs3bhTo+Xk5lUkueTFW3RojL8ZahpzyYo1911jLYf3KOy8cG0y7DGvsu8ZaDutX3nnh2GDaZbB+TbuM5ORkBAQESLGbpTHozqP029U9PDwKtIHY2toa5aVsxliOnPKSrqAvrZNTmeSUF6DgdWusvMipXth3Tbsc1q/88wJwbDBlXgDr6rvGWg7rV/55ATg2mDIvAOvXlHkBoPOosSXJIxcqNHToUNksR055MRY5lUlOeTEWa6sXa6tbuS2H9Wu6ZRhzOcZgbfVibXUrt+Wwfk23DGMuxxisrV7kVLeAvMokp7zICZ/pzqOUlBR4eHggOTmZPx9mAqxf02Hdmhbr17RYv6bDujUt1q9psX5Nh3VrWqxf05Jb/fJKdx45OjoiMjISjo6Ols6KVWL9mg7r1rRYv6bF+jUd1q1psX5Ni/VrOqxb02L9mpbc6pdXuomIiIiIiIhMhFe6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgOw9mz56NUqVKwcnJCSEhITh06JCls2Rxu3fvRocOHVCiRAloNBqsXbtWZ74QAhMnTkTx4sXh7OyMVq1a4dKlSzppHj58iF69esHd3R2enp4YMGAAnjx5opPm5MmTaNy4MZycnODv74+pU6dmycuKFStQoUIFODk5oWrVqti0aZPRy2tO0dHRqFu3Ltzc3ODt7Y3w8HBcuHBBJ82///6LoUOHomjRonB1dUXnzp1x584dnTQJCQlo3749XFxc4O3tjbFjx+LVq1c6aXbu3IlatWrB0dERZcuWRUxMTJb8WFv/nzNnDqpVqwZ3d3e4u7sjNDQUmzdvluazbo1nypQp0Gg0GDlypDSN9Zt/kyZNgkaj0flUqFBBms+6LbibN2/i3XffRdGiReHs7IyqVavi8OHD0nzu2/KvVKlSWfqvRqORfpeX/Tf/0tLSMGHCBJQuXRrOzs4oU6YMJk+ejIzvTGbfLZjHjx9j5MiRCAwMhLOzMxo0aIC///5bms/6NZySYghD8pIrQQZZunSpcHBwEL/88os4c+aMGDRokPD09BR37tyxdNYsatOmTeLTTz8Vq1evFgDEmjVrdOZPmTJFeHh4iLVr14oTJ06It956S5QuXVo8f/5cStOmTRtRvXp1ceDAAbFnzx5RtmxZ0bNnT2l+cnKy8PHxEb169RKnT58Wv//+u3B2dhbz5s2T0vz111/C1tZWTJ06VZw9e1Z89tlnwt7eXpw6dcrkdWAqYWFhYsGCBeL06dPi+PHjol27diIgIEA8efJESvP+++8Lf39/sX37dnH48GFRv3590aBBA2n+q1evRJUqVUSrVq3EsWPHxKZNm0SxYsXE+PHjpTRXr14VLi4uYtSoUeLs2bNi1qxZwtbWVmzZskVKY439f/369WLjxo3i4sWL4sKFC+KTTz4R9vb24vTp00II1q2xHDp0SJQqVUpUq1ZNjBgxQprO+s2/yMhIUblyZXH79m3pc+/ePWk+67ZgHj58KAIDA0VERIQ4ePCguHr1qti6dau4fPmylIb7tvy7e/euTt+NjY0VAERcXJwQgv23IL788ktRtGhRsWHDBhEfHy9WrFghXF1dxXfffSelYd8tmG7duolKlSqJXbt2iUuXLonIyEjh7u4u/vnnHyEE6zcvlBRDGJKX3DDoNlC9evXE0KFDpf/T0tJEiRIlRHR0tAVzJS+ZNxitVit8fX3FtGnTpGlJSUnC0dFR/P7770IIIc6ePSsAiL///ltKs3nzZqHRaMTNmzeFEEL8+OOPonDhwiI1NVVK8/HHH4vg4GDp/27duon27dvr5CckJES89957Ri2jJd29e1cAELt27RJCvK5Le3t7sWLFCinNuXPnBACxf/9+IcTrAc3GxkYkJiZKaebMmSPc3d2l+vzoo49E5cqVddbVvXt3ERYWJv2vlv5fuHBhMX/+fNatkTx+/FiUK1dOxMbGiqZNm0pBN+u3YCIjI0X16tX1zmPdFtzHH38sGjVqlO187tuMa8SIEaJMmTJCq9Wy/xZQ+/btRf/+/XWmvf3226JXr15CCPbdgnr27JmwtbUVGzZs0Jleq1Yt8emnn7J+C0DOMYQheTEEby83wIsXL3DkyBG0atVKmmZjY4NWrVph//79FsyZvMXHxyMxMVGn3jw8PBASEiLV2/79++Hp6Yk6depIaVq1agUbGxscPHhQStOkSRM4ODhIacLCwnDhwgU8evRISpNxPelprKl9kpOTAQBFihQBABw5cgQvX77UKXeFChUQEBCgU79Vq1aFj4+PlCYsLAwpKSk4c+aMlCanulND/09LS8PSpUvx9OlThIaGsm6NZOjQoWjfvn2WOmD9FtylS5dQokQJBAUFoVevXkhISADAujWG9evXo06dOujatSu8vb1Rs2ZN/Pzzz9J87tuM58WLF1i8eDH69+8PjUbD/ltADRo0wPbt23Hx4kUAwIkTJ7B37160bdsWAPtuQb169QppaWlwcnLSme7s7Iy9e/eyfo1ITnVpSF4MwaDbAPfv30daWprOAA8APj4+SExMtFCu5C+9bnKqt8TERHh7e+vMt7OzQ5EiRXTS6FtGxnVkl8Za2ker1WLkyJFo2LAhqlSpAuB1mR0cHODp6amTNnP95rfuUlJS8Pz5c6vu/6dOnYKrqyscHR3x/vvvY82aNahUqRLr1giWLl2Ko0ePIjo6Oss81m/BhISEICYmBlu2bMGcOXMQHx+Pxo0b4/Hjx6xbI7h69SrmzJmDcuXKYevWrfjggw8wfPhwLFy4EAD3bca0du1aJCUlISIiAgDHhoIaN24cevTogQoVKsDe3h41a9bEyJEj0atXLwDsuwXl5uaG0NBQTJ48Gbdu3UJaWhoWL16M/fv34/bt26xfI5JTXRqSF0PYGZySiCxm6NChOH36NPbu3WvprFiV4OBgHD9+HMnJyVi5ciX69u2LXbt2WTpbinfjxg2MGDECsbGxWa4IUMGlX7UCgGrVqiEkJASBgYFYvnw5nJ2dLZgz66DValGnTh189dVXAICaNWvi9OnTmDt3Lvr27Wvh3FmX//u//0Pbtm1RokQJS2fFKixfvhy//fYblixZgsqVK+P48eMYOXIkSpQowb5rJIsWLUL//v3h5+cHW1tb1KpVCz179sSRI0csnTWSOV7pNkCxYsVga2ub5e2Zd+7cga+vr4VyJX/pdZNTvfn6+uLu3bs681+9eoWHDx/qpNG3jIzryC6NNbTPsGHDsGHDBsTFxaFkyZLSdF9fX7x48QJJSUk66TPXb37rzt3dHc7Ozlbd/x0cHFC2bFnUrl0b0dHRqF69Or777jvWbQEdOXIEd+/eRa1atWBnZwc7Ozvs2rUL33//Pezs7ODj48P6NSJPT0+UL18ely9fZt81guLFi6NSpUo60ypWrCjdws99m3Fcv34df/75JwYOHChNY/8tmLFjx0pXu6tWrYrevXvjf//7n3THEftuwZUpUwa7du3CkydPcOPGDRw6dAgvX75EUFAQ69eI5FSXhuTFEAy6DeDg4IDatWtj+/bt0jStVovt27cjNDTUgjmTt9KlS8PX11en3lJSUnDw4EGp3kJDQ5GUlKRzhnDHjh3QarUICQmR0uzevRsvX76U0sTGxiI4OBiFCxeW0mRcT3oaJbePEALDhg3DmjVrsGPHDpQuXVpnfu3atWFvb69T7gsXLiAhIUGnfk+dOqUzKMXGxsLd3V06qMyt7tTU/7VaLVJTU1m3BdSyZUucOnUKx48flz516tRBr169pL9Zv8bz5MkTXLlyBcWLF2ffNYKGDRtm+XnGixcvIjAwEAD3bcayYMECeHt7o3379tI09t+CefbsGWxsdA/tbW1todVqAbDvGlOhQoVQvHhxPHr0CFu3bkXHjh1Zv0Ykp7o0JC8GMfiVayq3dOlS4ejoKGJiYsTZs2fF4MGDhaenp87bM9Xo8ePH4tixY+LYsWMCgJgxY4Y4duyYuH79uhDi9Sv2PT09xbp168TJkydFx44d9b7uv2bNmuLgwYNi7969oly5cjqv+09KShI+Pj6id+/e4vTp02Lp0qXCxcUly+v+7ezsxDfffCPOnTsnIiMjFffTCZl98MEHwsPDQ+zcuVPn51WePXsmpXn//fdFQECA2LFjhzh8+LAIDQ0VoaGh0vz0n1Zp3bq1OH78uNiyZYvw8vLS+9MqY8eOFefOnROzZ8/W+9Mq1tb/x40bJ3bt2iXi4+PFyZMnxbhx44RGoxHbtm0TQrBujS3j28uFYP0WxOjRo8XOnTtFfHy8+Ouvv0SrVq1EsWLFxN27d4UQrNuCOnTokLCzsxNffvmluHTpkvjtt9+Ei4uLWLx4sZSG+7aCSUtLEwEBAeLjjz/OMo/9N//69u0r/Pz8pJ8MW716tShWrJj46KOPpDTsuwWzZcsWsXnzZnH16lWxbds2Ub16dRESEiJevHghhGD95oWSYghD8pIbBt15MGvWLBEQECAcHBxEvXr1xIEDByydJYuLi4sTALJ8+vbtK4R4/Zr9CRMmCB8fH+Ho6ChatmwpLly4oLOMBw8eiJ49ewpXV1fh7u4u+vXrJx4/fqyT5sSJE6JRo0bC0dFR+Pn5iSlTpmTJy/Lly0X58uWFg4ODqFy5sti4caPJym0O+uoVgFiwYIGU5vnz52LIkCGicOHCwsXFRXTq1Encvn1bZznXrl0Tbdu2Fc7OzqJYsWJi9OjR4uXLlzpp4uLiRI0aNYSDg4MICgrSWUc6a+v//fv3F4GBgcLBwUF4eXmJli1bSgG3EKxbY8scdLN+86979+6iePHiwsHBQfj5+Ynu3bvr/IY067bg/vjjD1GlShXh6OgoKlSoIH766Sed+dy3FczWrVsFgCx1JgT7b0GkpKSIESNGiICAAOHk5CSCgoLEp59+qvNzSey7BbNs2TIRFBQkHBwchK+vrxg6dKhISkqS5rN+DaekGMKQvORGI4QQhl8XJyIiIiIiIiJD8ZluIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgm4iIiIiIiMhEGHQTERERERERmQiDbiIiIiIiIiITYdBNREREREREZCIMuomIiIiIiIhMhEE3ERERERERkYkw6CYiIiIiIiIyEQbdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTUREsnXt2jVoNBrExMRI0yZNmgSNRmO5TOWR0vILADExMdBoNLh27ZqlsyJRYj2mi4iIQKlSpSydDSIishAG3UREZDHpwZ2+z7hx4wxezldffYW1a9eaLqNERERE+WRn6QwQERF9/vnnKF26tM60KlWqIDAwEM+fP4e9vX2O3//qq6/QpUsXhIeHmzCX6tG7d2/06NEDjo6Ols6K5LPPPsvTiRg5+fnnn6HVai2dDSIishAG3UREZHFt27ZFnTp19M5zcnIyc25e+/fff+Hg4AAbG/XdFGZrawtbW1tLZ0OHnZ0d7OyMc9gihMC///4LZ2dnoywvN7mdNCIiIuumviMJIiJSDH3PdGem0Wjw9OlTLFy4ULo1PSIiQpp/8+ZN9O/fHz4+PnB0dETlypXxyy+/6Cxj586d0Gg0WLp0KT777DP4+fnBxcUFKSkpAICDBw+iTZs28PDwgIuLC5o2bYq//vorS1727t2LunXrwsnJCWXKlMG8efMMLuulS5fQuXNn+Pr6wsnJCSVLlkSPHj2QnJysk27x4sWoXbs2nJ2dUaRIEfTo0QM3btzQSdOsWTNUqVIFJ0+eRNOmTeHi4oKyZcti5cqVAIBdu3YhJCQEzs7OCA4Oxp9//qnz/bw8063RaDBs2DCsWLEClSpVgrOzM0JDQ3Hq1CkAwLx581C2bFk4OTmhWbNmWZa5Z88edO3aFQEBAXB0dIS/vz/+97//4fnz5zrp9D3T/erVK0yePBllypSBo6MjSpUqhU8++QSpqak66UqVKoU333wTW7duRZ06deDs7Jxj2xiSp7t378LLywvNmjWDEEKafvnyZRQqVAjdu3eXpul7pnvp0qWoXbs23Nzc4O7ujqpVq+K7777LvqKJiEixeKWbiIgsLjk5Gffv39eZVqxYMYO+u2jRIgwcOBD16tXD4MGDAQBlypQBANy5cwf169eXAkMvLy9s3rwZAwYMQEpKCkaOHKmzrMmTJ8PBwQFjxoxBamoqHBwcsGPHDrRt2xa1a9dGZGQkbGxssGDBArRo0QJ79uxBvXr1AACnTp1C69at4eXlhUmTJuHVq1eIjIyEj49PrmV48eIFwsLCkJqaig8//BC+vr64efMmNmzYgKSkJHh4eAAAvvzyS0yYMAHdunXDwIEDce/ePcyaNQtNmjTBsWPH4OnpKS3z0aNHePPNN9GjRw907doVc+bMQY8ePfDbb79h5MiReP/99/HOO+9g2rRp6NKlC27cuAE3NzeD6jyzPXv2YP369Rg6dCgAIDo6Gm+++SY++ugj/PjjjxgyZAgePXqEqVOnon///tixY4f03RUrVuDZs2f44IMPULRoURw6dAizZs3CP//8gxUrVuS43oEDB2LhwoXo0qULRo8ejYMHDyI6Ohrnzp3DmjVrdNJeuHABPXv2xHvvvYdBgwYhODg42+Uakidvb2/MmTMHXbt2xaxZszB8+HBotVpERETAzc0NP/74Y7bLj42NRc+ePdGyZUt8/fXXAIBz587hr7/+wogRI3KubCIiUh5BRERkIQsWLBAA9H6EECI+Pl4AEAsWLJC+ExkZKTLvvgoVKiT69u2bZfkDBgwQxYsXF/fv39eZ3qNHD+Hh4SGePXsmhBAiLi5OABBBQUHSNCGE0Gq1oly5ciIsLExotVpp+rNnz0Tp0qXFG2+8IU0LDw8XTk5O4vr169K0s2fPCltb2yz5zezYsWMCgFixYkW2aa5duyZsbW3Fl19+qTP91KlTws7OTmd606ZNBQCxZMkSadr58+cFAGFjYyMOHDggTd+6dWuWOk5vl/j4+BzzLYQQAISjo6NO2nnz5gkAwtfXV6SkpEjTx48fn2W5Ges7XXR0tNBoNDp1mbndjx8/LgCIgQMH6nx3zJgxAoDYsWOHNC0wMFAAEFu2bMm1PHnJkxBC9OzZU7i4uIiLFy+KadOmCQBi7dq1Omn69u0rAgMDpf9HjBgh3N3dxatXrwzKDxERKRtvLyciIoubPXs2YmNjdT4FJYTAqlWr0KFDBwghcP/+fekTFhaG5ORkHD16VOc7ffv21XnO9/jx47h06RLeeecdPHjwQPr+06dP0bJlS+zevRtarRZpaWnYunUrwsPDERAQIH2/YsWKCAsLyzWv6Veyt27dimfPnulNs3r1ami1WnTr1k2nLL6+vihXrhzi4uJ00ru6uqJHjx7S/8HBwfD09ETFihUREhIiTU//++rVq7nmMzstW7bUuX06fZmdO3fWuXqub10Z6/vp06e4f/8+GjRoACEEjh07lu06N23aBAAYNWqUzvTRo0cDADZu3KgzvXTp0ga1RV7z9MMPP8DDwwNdunTBhAkT0Lt3b3Ts2DHH5Xt6euLp06dG6edERCR/vL2ciIgsrl69etm+SC2/7t27h6SkJPz000/46aef9Ka5e/euzv+Z36B+6dIlAK+D8ewkJycjNTUVz58/R7ly5bLMDw4OlgLE7JQuXRqjRo3CjBkz8Ntvv6Fx48Z466238O6770oB+aVLlyCE0LsOIOvLukqWLJnlGWgPDw/4+/tnmQa8vh09pzJmfJ7ZwcEBRYoUkf7PeKIh4zINWVdCQgImTpyI9evXZ8lD5ufZM7p+/TpsbGxQtmxZnem+vr7w9PTE9evXdaZnbtuc5CVPRYoUwffff4+uXbvCx8cH33//fa7LHzJkCJYvX462bdvCz88PrVu3Rrdu3dCmTRuD80hERMrBoJuIiKxS+k80vfvuu9kGzdWqVdP5P/PbrNOXMW3aNNSoUUPvMlxdXbO8uCs/pk+fjoiICKxbtw7btm3D8OHDER0djQMHDqBkyZLQarXQaDTYvHmz3jeLu7q66vyf3dvHs5suMrwMLLMRI0Zg4cKF0v9NmzbFzp07C7yutLQ0vPHGG3j48CE+/vhjVKhQAYUKFcLNmzcRERFh0M9sZT6xkB1D31Senzxt3boVwOuTCf/884/Os/X6eHt74/jx49i6dSs2b96MzZs3Y8GCBejTp49OPRMRkXVg0E1ERIqnL/Dy8vKCm5sb0tLS0KpVq3wtN/2FbO7u7jkuw8vLC87OztKV8YwuXLhg8PqqVq2KqlWr4rPPPsO+ffvQsGFDzJ07F1988QXKlCkDIQRKly6N8uXL570wBfDRRx/h3Xfflf4vXLiwUZZ76tQpXLx4EQsXLkSfPn2k6Ybcdh0YGAitVotLly6hYsWK0vQ7d+4gKSkJgYGBZsnTli1bMH/+fHz00Uf47bff0LdvXxw8eDDXnzdzcHBAhw4d0KFDB2i1WgwZMgTz5s3DhAkTsly9JyIiZeMz3UREpHiFChVCUlKSzjRbW1t07twZq1atwunTp7N85969e7kut3bt2ihTpgy++eYbPHnyJNtl2NraIiwsDGvXrkVCQoI0/9y5c9JV0JykpKTg1atXOtOqVq0KGxsb6Sr622+/DVtbW0RFRWW5Ki2EwIMHD3JdT35VqlQJrVq1kj61a9c2ynLTr4RnLI8QwqCfzmrXrh0AYObMmTrTZ8yYAQBo3769yfOUlJQkvTn/q6++wvz583H06FF89dVXOa4jc1vZ2NhId10Y464JIiKSF17pJiIixatduzb+/PNPzJgxAyVKlEDp0qUREhKCKVOmIC4uDiEhIRg0aBAqVaqEhw8f4ujRo/jzzz/x8OHDHJdrY2OD+fPno23btqhcuTL69esHPz8/3Lx5E3FxcXB3d8cff/wBAIiKisKWLVvQuHFjDBkyBK9evcKsWbNQuXJlnDx5Msf17NixA8OGDUPXrl1Rvnx5vHr1CosWLZJOHACvr7p/8cUXGD9+PK5du4bw8HC4ubkhPj4ea9asweDBgzFmzBjjVKiZVKhQAWXKlMGYMWNw8+ZNuLu7Y9WqVTk+X56uevXq6Nu3L3766SckJSWhadOmOHToEBYuXIjw8HA0b97c5HkaMWIEHjx4gD///BO2trZo06YNBg4ciC+++AIdO3ZE9erV9a5j4MCBePjwIVq0aIGSJUvi+vXrmDVrFmrUqKFz1Z6IiKwDg24iIlK8GTNmYPDgwfjss8/w/Plz9O3bFyEhIfDx8cGhQ4fw+eefY/Xq1fjxxx9RtGhRVK5cWfp95Nw0a9YM+/fvx+TJk/HDDz/gyZMn8PX1RUhICN577z0pXbVq1bB161aMGjUKEydORMmSJREVFYXbt2/nGnRXr14dYWFh+OOPP3Dz5k24uLigevXq2Lx5M+rXry+lGzduHMqXL49vv/0WUVFRAF6/rKx169Z466238lFzlmVvb48//vhDen7dyckJnTp1wrBhw7INWDOaP38+goKCEBMTgzVr1sDX1xfjx49HZGSkyfO0fv16/Prrr5g+fToqVKggTZ8xYwZiY2PRt29f/P3331lecAe8fs/ATz/9hB9//BFJSUnw9fVF9+7dMWnSJNjY8CZEIiJroxE5vTmFiIiISAYmTJiA6OjoLLfhExERyR1PpxIREZHs3b59G8WKFbN0NoiIiPKMt5cTERGRbF29ehVr1qzBihUr8Oabb1o6O0RERHnGK91EREQkW7t370ZUVBSaNm0qvZmciIhISfhMNxEREREREZGJ8Eo3ERERERERkYkw6CYiIiIiIiIyEb5ILY+0Wi1u3boFNzc3aDQaS2eHiIiIiIiIMhBC4PHjxyhRogRsbCx/nZlBdx7dunUL/v7+ls4GERERERER5eDGjRsoWbKkpbPBoDuv3NzcALxuQHd3dwvnhoiIiIiIiDJKSUmBv7+/FLtZGoPuPEq/pdzd3Z1BNxERERERkUzJ5XFgy9/gTkRERERERGSleKWbFKXUuI1Zpl2b0t4COSEiIiIiIsodg26Fyhh8qiXoTC9zxvKWGrcRpcZtVE0dEBEREVmTzBdUeExH1oi3lytQ5uBT39Vfa6Mv4Nb3PxERERHJX8YLJ+mf9OlE1oZXuhUmc/CZcYCy9gA0u/Jdm9JeFeXP7sQDERERKZ8aH6HTdzGFQTdZI17pVpCcgi5rHqQMLZc1lz9j2TL/T0RERMqW8RhPDVd9cyqXNR/Tknox6FaY3M54WusglVu5rfVMsL6dsLXviImIiDJSy8nm7B6hs9ayq/WYltSJQbdCGHL7tDUGnnkdcK1xgM7uzgYiUqf0ACTjh8gaqeVOr5yO8axxf6/WY1pSNwbdCqD2wNPQgdfaBujc2pG3XxGpj9puQSX1UsudXmp/hC431lxufSdQrbm8asegWyHUGniqnSHtqYYBmjskotx/xUEt24YaxwK1jYG5vcPG2qjpqm9eXnxrTeXOTC0nleg/DLqtlDVssPl5I7m1XP01tAzWvENKp2/HZA1tTHnHKwI5/4qDtcvY5mo6OM08BmacZs1y6tPWsh9Q+52MapfTSSW2tfVh0C1z+Q08Sfny0o7WOjjndGXPWstMWen7LVe1HZgYUk5r3i70BZ5qOAmnbwy09r6vhp8AzUhNV33z22etra8b8vigIemsiRpOqjPoJlkq6Mam5I01r3m3hh2xPob8LrmS2zkvrH1HZAheEbDebT03uY0F1h54s+/rZ+3tbq3UfiHJkGMbQ+ZbE7W8q4RBt4ypOfAE8j/gWMNAlZ8yKL29MzJkp2QN7ZybzLfTZryyZ03tnRNeEchb2aw1EFHj+y1yu+JrjWOgmq5yq/kROrXLy90N1t7eub2rxJow6JY5NQeeZDhrbG9DymTNOyR9t9OmU0OgCfCKQEZqKKM+fL9F7qx9HMiN2suvFGq/kATw9vrM1HZHY56C7ujoaNStWxdubm7w9vZGeHg4Lly4kON3Vq9ejTp16sDT0xOFChVCjRo1sGjRIp00d+7cQUREBEqUKAEXFxe0adMGly5d0kmTmJiI3r17w9fXF4UKFUKtWrWwatUqnTQPHz5Er1694O7uDk9PTwwYMABPnjzRSXPy5Ek0btwYTk5O8Pf3x9SpU/NSBWQGxtrAlLihquksf3aU2G6mYshVLmuvL7VfEchPmaytLtTYBwzdF1jT/iK/fV2JrKWf5hUvJPH2+szUdJyTp6B7165dGDp0KA4cOIDY2Fi8fPkSrVu3xtOnT7P9TpEiRfDpp59i//79OHnyJPr164d+/fph69atAAAhBMLDw3H16lWsW7cOx44dQ2BgIFq1aqWz3D59+uDChQtYv349Tp06hbfffhvdunXDsWPHpDS9evXCmTNnEBsbiw0bNmD37t0YPHiwND8lJQWtW7dGYGAgjhw5gmnTpmHSpEn46aef8lINZmGM4EvJByDGKLvaKLm9M8tr+1lLudPx6h6vCGRkze2cE/YB9VFTXy9IAMo+rj7W1uZqPM7JU9C9ZcsWREREoHLlyqhevTpiYmKQkJCAI0eOZPudZs2aoVOnTqhYsSLKlCmDESNGoFq1ati7dy8A4NKlSzhw4ADmzJmDunXrIjg4GHPmzMHz58/x+++/S8vZt28fPvzwQ9SrVw9BQUH47LPP4OnpKa373Llz2LJlC+bPn4+QkBA0atQIs2bNwtKlS3Hr1i0AwG+//YYXL17gl19+QeXKldGjRw8MHz4cM2bMyHPFEZHxqelKR27UeHUvM14RKBhr6Bdq7AP5eZmmNbR1fqm9/Eqg5jsY0xXkYpo1jGv6qO1Xegr0THdycjKA11ezDSGEwPbt23HhwgU0adIEAJCamgoAcHJy+i9TNjZwdHSUAnMAaNCgAZYtW4aHDx9Cq9Vi6dKl+Pfff9GsWTMAwP79++Hp6Yk6depI32nVqhVsbGxw8OBBKU2TJk3g4OAgpQkLC8OFCxfw6NGjfNQAyZ2SNlLeWv6a2usgv/1ASX3d1KylLniQpl5qaz817f+sZXzKK97BSPllLW2f76Bbq9Vi5MiRaNiwIapUqZJj2uTkZLi6usLBwQHt27fHrFmz8MYbbwAAKlSogICAAIwfPx6PHj3Cixcv8PXXX+Off/7B7du3pWUsX74cL1++RNGiReHo6Ij33nsPa9asQdmyZQG8fubb29tbZ712dnYoUqQIEhMTpTQ+Pj46adL/T0+TWWpqKlJSUnQ+pmbMnY/SzgAbu+xqo7T2Nha1ljudtfV1BptU0H2BmscDtVJSmxtjnFJSedXOGG1lTcc5ar24kO+ge+jQoTh9+jSWLl2aa1o3NzccP34cf//9N7788kuMGjUKO3fuBADY29tj9erVuHjxIooUKQIXFxfExcWhbdu2sLH5L3sTJkxAUlIS/vzzTxw+fBijRo1Ct27dcOrUqfwWwSDR0dHw8PCQPv7+/iZdH5FaqelKR3ZYB2RsSj9IyQ8lb0P5HQOs6YA8P5Tc5vmhpPKquV9mpKQ2kyNrqL98Bd3Dhg3Dhg0bEBcXh5IlS+a+EhsblC1bFjVq1MDo0aPRpUsXREdHS/Nr166N48ePIykpCbdv38aWLVvw4MEDBAUFAQCuXLmCH374Ab/88gtatmyJ6tWrIzIyEnXq1MHs2bMBAL6+vrh7967Oel+9eoWHDx/C19dXSnPnzh2dNOn/p6fJbPz48UhOTpY+N27cMLCW8oeDk/EpoU6VkEeSN2s56OYVgdeM9TJNJVJ621HeqOlko1r7tlrv3qSs1PzTcXkKuoUQGDZsGNasWYMdO3agdOnS+VqpVquVnuXOyMPDA15eXrh06RIOHz6Mjh07AgCePXv2OrM2utm1tbWFVqsFAISGhiIpKUnnpW47duyAVqtFSEiIlGb37t14+fKllCY2NhbBwcEoXLiw3rw6OjrC3d1d52Nqxt75KGWQMsWOV0k7cjXvlBhoKXtHYmxK2m7JNNT86x1k3Ti+qYsxxyFrGdfU+vhYnoLuoUOHYvHixViyZAnc3NyQmJiIxMREPH/+XErTp08fjB8/Xvo/OjoasbGxuHr1Ks6dO4fp06dj0aJFePfdd6U0K1aswM6dO6WfDXvjjTcQHh6O1q1bA3j93HfZsmXx3nvv4dChQ7hy5QqmT5+O2NhYhIeHAwAqVqyINm3aYNCgQTh06BD++usvDBs2DD169ECJEiUAAO+88w4cHBwwYMAAnDlzBsuWLcN3332HUaNG5bsCicg4lD6YGgOf8zMu1sVrrAdlKOiJZ2s5IM8vtZVfbeVVMh7fEJDHoHvOnDlITk5Gs2bNULx4cemzbNkyKU1CQoLOC9CePn2KIUOGoHLlymjYsCFWrVqFxYsXY+DAgVKa27dvo3fv3qhQoQKGDx+O3r176/xcmL29PTZt2gQvLy906NAB1apVw6+//oqFCxeiXbt2UrrffvsNFSpUQMuWLdGuXTs0atRI5ze4PTw8sG3bNsTHx6N27doYPXo0Jk6cqPNb3pbEwZOICkLpO3ZjXxFQKjW/UNLY+0HuV+WN7WPdTPXogNr7jVLLr/a7Gu3yklgIkWua9Bekpfviiy/wxRdf5Pid4cOHY/jw4TmmKVeuHFatWpVjmiJFimDJkiU5pqlWrRr27NmTYxpLMuUBkpyfmzLlBpS+gcq57KZ6pECuZc7IFG/rV0K5M1Jink3F2PXAulUeNT9qo0Zq2T45FhmH2rdrpZdfzdtAgX6nm5RDCZ1cCXkkUgIl75CNiWPKf9gn5M1YAZnSD8iNQe3lJ/lgX6SMGHTLBDdMInUy9rbPQFPZ1PxCSe4HqaCU0teNRc4nWeSaL3NTW580Bzn3+5ww6JYRbpimpcQNtCCUMCjxea/XuO2b9tZLpfUHNVPrr3eokZput1ZrHzRV+6p9u1Zi+dW0vWeHQbeKyHUjNceGKNcNnYOQ8bE+X5Pjtm4J7A8kd6bYD3D7lx+ORUTqxqCbiMjK8OBOmczxQkmyftz+iSyPF1VMS4n7NAbdMqC0TkPKItf+xR2SfNvG3MzRF5RS12rdJkzdPkppf7XgCSbjkWN5uX83PTm2e3aUkk9TY9AtE+YcnOTU+c2ZFyUNUMai1p2ektra1D8TSOrdDpTGlM9/ypWat1E5t4sxMQA1HTVvP0rDd7Yw6FYdOQ78csyTOXBHTKbEvqUs5jhwUNLJKDUxxbbKtiZrJ+d9HLc985BzH9CHQbeFccMkNWK/p3Tm7Aty73dKO4AgIiL9zDWey32/Rv9h0C0DPNAyr//H3p2HN1HtbwB/kzRL9wJdgVKWssgORbAglCtFNhWuC6Ioi+DConIRWfR6ERdQQMWLgLgBP1ERENQLyL4ogiJLhQIiSAsItIVC9yVtcn5/pJk2NGmTtmkmzft5zCOZ+WZy5pyZM/3mzOJpHZRcRzw8fbvnmQ6laqMeWNfyxVF+z1Jb7eBp7S2X9ZVLOTyBOxzXeM+WUky6PZBc/vhwRdIhlw5KDvXvCTy9nuWyr5O8yHGbkEvfXJs8+Y9RT31MqLPIbX1rqzw8xpHctv2KMOkmchF36ijcEeuX3EVt/gDJ/cJzsK1dj2c0eR62OdnCpNuFuGOSJ+Kv0qwDs9quB46KEBFRXSPX4xrv2WKJSbeH8vQ/Pj1x3eW0zvyxyXMfE3grbguerbZH+eWyL8ilHEQ1idt17ZP7MZT3bCnFpJtcwpWj/K7eOV1xUHL1OruSp/8R4Mlt7w5cdW8LT98v5MAT727sqT+y1Aa5rC/7MyLrmHS7CDsIz8ZEqHawnonIk7EPdB1eQuh52Oau4w4/vjDpdiE57Jhy30CpbuEBifucmau2BXc4MBMREbkz/r1XHpNuD+aqnUEuf/DKpRy1yRPXWY5cse+x7UluPPXUev4xSnWRq7drV+/XriSHfk0u5FwPTLpdQM4bRG1x9R8crvzBwVOvZXclT9/nPLnt5czV/YGn7xeeRA5tLYcy1HWeul/zGEeA/LcDJt0uIvcNg6iu4L4mP574RyGRq8ipD/SUMxvYx3keV4/0y4mrt39Xf78tTLo9XG0fkOS6I5Dz8YDEOijLlfXgqaNB5Hrc7jwH+3ryZK4+q1OOfS2Tbqp1cjkQeeoPDnIpB9U+tr18yKUtXFUOTz61Xi7HQKKaIpcflOXSr7qCq/s1OTFvi+1nb3NxSSwx6a5lcumYyDVc3fau/n5X4cHIc9tezlzdJq7+fqo9ru4D+bdP7fLE4x23Lyor+a0hSJwzwNXFsMCkmwB4ZgdNtYfbF5nJaVuQU1mIyHk8aV9n8ln7+KNSKU/a1xzFpJtqraOQa6fEDqJ2yLHta5Nct39XkEM9yKEM5Fl4rHGN2t7X2deTp+P2bx2TbvJotfmDg5zIrTxUO1x9iimZyO2P8treJuSy/q7YF+Sw3kQ1SS77M8BjnKevv9w5lHTPmzcPt99+O/z9/REaGophw4bhzJkzFX5mw4YN6NatG4KCguDr64vOnTvj888/t4hJTU3FmDFj0LBhQ/j4+GDgwIE4e/asND85ORkKhcLqa926dQCAlStX2oxJS0sDAOzdu9fq/JSUFEeqocrk1DFZwx3VueTS9nIpR23jwYioPE/uDzyRqx6f5an17Uo83tUO1jPZy6Gke9++fZg0aRJ++eUX7NixA0VFRbj77ruRm5tr8zP169fHyy+/jIMHD+L48eMYO3Ysxo4di23bTHeUE0Jg2LBhOH/+PL777jscO3YMUVFRiI+Pl5YbGRmJq1evWrzmzJkDPz8/DBo0CADw8MMPl4sZMGAA4uLiEBoaalGmM2fOWMTdOt8TOfuAyIOu5+IBiczk1g/whxjyJHLa98i52Na1i/VtIrdjvNx4ORK8detWi/crV65EaGgojhw5gj59+lj9TN++fS3eP//881i1ahX279+PAQMG4OzZs/jll1+QmJiIdu3aAQCWLVuG8PBwfPXVVxg/fjxUKhXCw8MtlrNx40YMHz4cfn5+AABvb294e3tL869du4bdu3fj008/LVem0NBQBAUFObLqVIeZ//BmR+E8nl633L7IjEm+Z2If4Fq1dZzn/k1ywP5Gnqp1TXdmZiYA02i2PYQQ2LVrF86cOSMl6YWFhQAAnU5XWiilElqtFvv377e6nCNHjiAhIQHjxo2z+V3/93//Bx8fHzz44IPl5nXu3BkRERHo378/fv755wrLXFhYiKysLItXVbhLR+wu5XQncu38PLWtPXW9zTi663py6w9qc5uQ27Ynt/LUNZ5Yv3Lbv51Jjn/fePoxTm7tQaWqnHQbjUZMmTIFvXr1Qvv27SuMzczMhJ+fHzQaDYYMGYLFixejf//+AIA2bdqgSZMmmDVrFm7evAm9Xo+3334bf//9N65evWp1eZ9++iluu+029OzZ0+Z3fvrpp3j00UctRr8jIiLw4Ycf4ptvvsE333yDyMhI9O3bF0ePHrW5nHnz5iEwMFB6RUZGVriuFZH7juCs8nly5ydXct8WncVT11sO5NwPyLlsdZFc9kO5lKO21fb27qn1LAfs25yL9VuKdVG5KifdkyZNQmJiItasWVNprL+/PxISEvDbb7/hzTffxNSpU7F3714AgFqtxoYNG/Dnn3+ifv368PHxwZ49ezBo0CAoleWLl5+fjy+//LLCUe6DBw/i9OnT5WJat26Np59+GjExMejZsyc+++wz9OzZE++9957NZc2aNQuZmZnS69KlS5WuL5XnDgdddhg1j3VKZcmxH5BjmYichdu752Bb1w7WcynWRcWqlHRPnjwZmzZtwp49e9C4cePKv0SpRHR0NDp37owXXngBDz74IObNmyfNj4mJQUJCAjIyMnD16lVs3boV6enpaN68ebllrV+/Hnl5eRg1apTN7/vkk0/QuXNnxMTEVFq27t2749y5czbna7VaBAQEWLyo7uEov/N4eicsx9PvAG6briDXbcGM24RzsF6Jap+n73eevv5y5FDSLYTA5MmTsXHjRuzevRvNmjWr0pcajUbpWu6yAgMDERISgrNnz+Lw4cMYOnRouZhPP/0U9913H0JCQqwuOycnB2vXrq1wJLyshIQEREREOLYCDpL7H1pl1fS1MNzp5Z10emr7eOp6m8l5myTXqI1tQq7HwtroD+S43s4mt/Z29rW+cltfZ5PzcdST2sEaT19/uXIo6Z40aRJWr16NL7/8Ev7+/khJSUFKSgry8/OlmFGjRmHWrFnS+3nz5mHHjh04f/48Tp8+jXfeeQeff/45HnvsMSlm3bp12Lt3r/TYsP79+2PYsGG4++67Lb7/3Llz+PHHHzF+/HibZfz6669RXFxssXyzRYsW4bvvvsO5c+eQmJiIKVOmYPfu3Zg0aZIj1UAO4s4vT57aLp663q4k9z9GPf3GO55MztslUU1wZt/myfuP3I9rtYl1YR+Hku5ly5YhMzMTffv2RUREhPT6+uuvpZiLFy9a3AAtNzcXEydORLt27dCrVy988803WL16tUXifPXqVTz++ONo06YNnnvuOTz++OP46quvyn3/Z599hsaNG5dLxsv69NNPcf/991t9JJher8cLL7yADh06IC4uDr///jt27tyJfv36OVINVIfxD++aw7qUfx3IvXx1Ceua5II/MnkOJkJE8uHw6eXWXmPGjJFi9u7di5UrV0rv33jjDZw9exb5+fm4ceMGDhw4gIcffthiuc899xwuXboEvV6PCxcu4PXXX4dGoyn3/XPnzsXFixet3mDN7MCBA/jiiy+szps+fTrOnTuH/Px8pKenY8+ePfjHP/7hSBU4zB0PbJ56QK7pgxN/+eMBH5BvHci1XHWZ3OvcmX2/Jx5TAK43kat46t+yZp6+/nJUred0k33k/oeWszDpdA+e2CnzYFR73Kme3ams7shTjwdcb3lxxn7uaX2Hp63vrfj3bSlP3xYcwaSbyIPxoOE8PBCVcoftzB3KSM7BH+E8hzP3czn3Ic7YvuW8vlS7uC3Yh0m3E7nzQdxT/wipqfX29F9BPX39zdyhDjxxP69t7rY/1PQ2wW1MnngpgWdwp77HGbg9klww6XYyT+3s3O2PTPJMnn4wdvY+6o71645lrknO2iY88Xgg5+Ogs8sl1/Umz+KM7dCdjhGeOoAmV0y6qULcWR3nbnXmqZ0y/yisHe5Uz+5UVqp5ntgPeqKaPua5y3ZTU+WU849JtcXT19+M24JjmHQ7SV3YEKtafnc5ANlSEwdkd2/76nD39q8J7rb/s82cx9Pr1l3W3532Vzlzl/auaXLffuRePiJPwKSbnIIdvGdzp/b31D8SzdyprWpLTW8T7ljHNVkH7rj+noI32KK6zlPP5jPz9PWXEybdTlCXNm5Hd9a6tO5VWRd3Xn93LntV8Y9D53HX7YnbBOugJrjD2S5yLx/Jj7v26zXFHfbr2uLp20JVMOl2Ek/eKevCuldnHdxx/WuqzOyE3fegzBGvmueu20JNcbf+gCNC1eNOdeeJTyqpqXV2l/Ul5+O24Bgm3TXMnQ469rK3o66L606OYyfsfthmlph8mfAPdHIU25vkyNP7dE9ff7lg0l2DzBt0XT3oVLTD1sV1r8qp9e6+/p7YKfNgVPPqwr5QXe6+TXl6+1WHu23/7r6tEtUGd9uvnYl9RtUw6a4hdTHpLMu8XtZ2tLq+7p6iuu3HA5J7H4j440N5fIpB1bnrtuRp+0FNXlrkbtt7ddvaHbeT6qyzO7YxOQ+3Bccx6a6i9rO3oenMzdILqPsb4K2Jt6esu72n1tflOiD7cTuoG9iO1U9KWIdU13Ebdy/V+cHB3XnaD4pyxKS7ihLnDEDyW0MsXp7g1sS7rq+7PetWlzqxqnbK7l4HPBiVqm491LUfoKq6P9SlOnCUJ+9L7rru7lpuqhpH27subB/V7ZM9uU8vqy5sC67CpJsc5ok/NNjqZDxhpN9enl4HdeFA5OlteCvWh0lVtm13rjtPG+H39EuLPO2H5qq2lTu3MZXiDTJdh0k3kZ1u7ajqcsLtzn9QuFJd3BYcwe3G/ROQW9WldSG6lac9HtTTVeUHtbrUp9eV9XBXTLqJ7GAe2feE6/gdXae6lGjVpXWpDk8a5asMLz0wsbcO6tIfqJ52Cq67l58c48g+TQRwW6guJt1EDvCk6/gd6VzrQl1UZx3qUqJR1fWo6wdjT76hor3rVJe2AU87Bbc6+727rnNZnvZ4UEfL7+7rW5YjP6TWhba2hj+suwaTbiIqxxP/yDari+tUW+rqwdjTbqhoiz3rWFe3gcp4QvvXVZ66zQKVb7d1ebv21HXnD+uuw6SbiGyqqJOti6fYV2Vd6uKByNFTqutiHVjjyTdUvPXJFbeqq9uAp53xU1fbsabUpfqxd5+uC9v1rexdp7q47tXB+qgeJt1EZFVlB+SyMZ6O9VD368DW/lCX/zC9la11rKt14Gln/FTlfh51pc0d+aGxrqwz4Hn79K087UdEM/6w7hpMuonIpsoOyHWRo9d71VX21kNdroNb3Zp4e8ofpmWVvaEk4Bl14Gmn1XvSPu2Iulovt94k1hP2acCyPy/bn3nK+juK9VF9CiGEcHUh3ElWVhYCAwORmZmJgIAAVxeHqFZY+2OjLnfA9h5069JIjzX21ENdrwNbPHW9zcr2CXW9HiraD+riH+j2bNt1dfuvaL3q6jqX5QnraI0n9Wdl2buvA+5ZL3LL2TjSTUSVKtvZesKd2+29cZan10NdHfmxR11v+8p4ylMcAM+8tMCT921r6+4p9VEXt2V7eFJ/ditPO5PHlTjS7SC5/WpCRM7haaNbFbG2vp5WB0SedMZPZf1fXV1voPz6sa+juqwun90ht5zNoZHuefPm4fbbb4e/vz9CQ0MxbNgwnDlzpsLPbNiwAd26dUNQUBB8fX3RuXNnfP755xYxqampGDNmDBo2bAgfHx8MHDgQZ8+eleYnJydDoVBYfa1bt06KszZ/zZo1Ft+1d+9edO3aFVqtFtHR0Vi5cqUjVUBEHsITR7dsufXaN0+sA6Kyo2F1fVSssv6vrmNfR57E2n7u7gm3HDk00j1w4ECMGDECt99+O4qLi/HSSy8hMTERp06dgq+vr9XP7N27Fzdv3kSbNm2g0WiwadMmvPDCC9i8eTMGDBgAIQR69uwJtVqNd955BwEBAXj33XexdetWabkGgwHXrl2zWO5HH32EBQsW4OrVq/Dz8zOtjEKBFStWYODAgVJcUFAQdDodACApKQnt27fHM888g/Hjx2PXrl2YMmWKVBZ7yO1XEyJyvlsPSDwQEZEn8KTR/Vsx4SZPUVf3c7nlbNU6vfzatWsIDQ3Fvn370KdPH7s/17VrVwwZMgSvv/46/vzzT7Ru3RqJiYlo164dAMBoNCI8PBxz587F+PHjrS6jS5cu6Nq1Kz799NPSlVEosHHjRgwbNszqZ2bMmIHNmzcjMTFRmjZixAhkZGRg69atdpVdbg1IREREREREpeSWs1XrRmqZmZkAgPr169sVL4TArl27cObMGSlJLywsBABpNBoAlEoltFot9u/fb3U5R44cQUJCAsaNG1du3qRJkxAcHIzu3bvjs88+Q9nfFA4ePIj4+HiL+AEDBuDgwYN2lZ+IiIiIiIjIEV5V/aDRaMSUKVPQq1cvtG/fvsLYzMxMNGrUCIWFhVCpVFi6dCn69+8PAGjTpg2aNGmCWbNmYfny5fD19cV7772Hv//+G1evXrW6vE8//RS33XYbevbsaTH9tddew1133QUfHx9s374dEydORE5ODp577jkAQEpKCsLCwiw+ExYWhqysLOTn58Pb27vcdxUWFko/DACmX02IiIiIiIiI7FHlpHvSpElITEy0ORpdlr+/PxISEpCTk4Ndu3Zh6tSpaN68Ofr27Qu1Wo0NGzZg3LhxqF+/PlQqFeLj4zFo0CBYO/M9Pz8fX375JV555ZVy88pO69KlC3Jzc7FgwQIp6a6KefPmYc6cOVX+PBEREREREXmuKiXdkydPxqZNm/Djjz+icePGlcYrlUpER0cDADp37ozTp09j3rx56Nu3LwAgJiYGCQkJyMzMhF6vR0hICHr06IFu3bqVW9b69euRl5eHUaNGVfq9PXr0wOuvv47CwkJotVqEh4cjNTXVIiY1NRUBAQFWR7kBYNasWZg6dar0PjMzE02aNOGINxERERERkQyZczW5PB3boaRbCIFnn30WGzduxN69e9GsWbMqfanRaLQ4ZdssMDAQAHD27FkcPnwYr7/+ermYTz/9FPfddx9CQkIq/Z6EhATUq1cPWq0WABAbG4stW7ZYxOzYsQOxsbE2l6HVaqXPA8D169cBAJGRkZV+PxEREREREblGenq6lGO6kkNJ96RJk/Dll1/iu+++g7+/P1JSUgCYkmXzSPGoUaPQqFEjzJs3D4Dp9Oxu3bqhRYsWKCwsxJYtW/D5559j2bJl0nLXrVuHkJAQNGnSBCdOnMDzzz+PYcOG4e6777b4/nPnzuHHH38slzgDwP/+9z+kpqbijjvugE6nw44dOzB37lxMmzZNinnmmWfwwQcfYPr06XjiiSewe/durF27Fps32//cSfNN4y5evFitBrz99tvx22+/VfnzNbkcOZUlKysLkZGRuHTpUrXuNCindZJLWWqqbmuiLDW1DDmVpS5uuzW1HNavvMvCvsG5y6iL225NLYf1K++ysG9w7jJYv85dhvnsZHtv+O1sDiXd5kTZfFq42YoVKzBmzBgApmRUqSy9KXpubi4mTpyIv//+G97e3mjTpg1Wr16Nhx9+WIq5evUqpk6ditTUVERERGDUqFFWr9n+7LPP0Lhx43LJOACo1WosWbIE//rXvyCEQHR0NN599108+eSTUkyzZs2wefNm/Otf/8L777+Pxo0b45NPPrH7Gd0ApHULDAys1g6iUqlq5Pb1NbEcOZXFLCAggPXrpOVUt25rqixyqhduu85dDutX/mUB2Dc4syxA3dp2a2o5rF/5lwVg3+DMsgCsX2eWBYBFXupKDp9eXpm9e/davH/jjTfwxhtvVPiZ5557zq6bnc2dOxdz5861Om/gwIEYOHBgpcvo27cvjh07Vmmcs02aNEk2y5FTWWqKnNZJTmWpKXWtXupa3cptOaxf5y2jJpdTE+pavdS1upXbcli/zltGTS6nJtS1epFT3QLyWic5lUVOFEIuV5e7Cbk9aL2uYf06D+vWuVi/zsX6dR7WrXOxfp2L9es8rFvnYv06l9zqVx7j7W5Eq9Vi9uzZFjdXo5rD+nUe1q1zsX6di/XrPKxb52L9Ohfr13lYt87F+nUuudUvR7qJiIiIiIiInIQj3UREREREREROwqSbiIiIiIiIyEmYdBMRERERERE5CZNuIiIiIiIiIidh0u2AJUuWoGnTptDpdOjRowcOHTrk6iK53I8//oh7770XDRs2hEKhwLfffmsxXwiB//znP4iIiIC3tzfi4+Nx9uxZi5gbN25g5MiRCAgIQFBQEMaNG4ecnByLmOPHj6N3797Q6XSIjIzE/Pnzy5Vl3bp1aNOmDXQ6HTp06IAtW7bU+PrWpnnz5uH222+Hv78/QkNDMWzYMJw5c8YipqCgAJMmTUKDBg3g5+eHBx54AKmpqRYxFy9exJAhQ+Dj44PQ0FC8+OKLKC4utojZu3cvunbtCq1Wi+joaKxcubJceera9r9s2TJ07NgRAQEBCAgIQGxsLH744QdpPuu25rz11ltQKBSYMmWKNI31W3WvvvoqFAqFxatNmzbSfNZt9V2+fBmPPfYYGjRoAG9vb3To0AGHDx+W5vPYVnVNmzYtt/0qFArpubzcfqvOYDDglVdeQbNmzeDt7Y0WLVrg9ddfR9l7JnPbrZ7s7GxMmTIFUVFR8Pb2Rs+ePfHbb79J81m/9nOnHMKeslRKkF3WrFkjNBqN+Oyzz8TJkyfFk08+KYKCgkRqaqqri+ZSW7ZsES+//LLYsGGDACA2btxoMf+tt94SgYGB4ttvvxW///67uO+++0SzZs1Efn6+FDNw4EDRqVMn8csvv4iffvpJREdHi0ceeUSan5mZKcLCwsTIkSNFYmKi+Oqrr4S3t7dYvny5FPPzzz8LlUol5s+fL06dOiX+/e9/C7VaLU6cOOH0OnCWAQMGiBUrVojExESRkJAgBg8eLJo0aSJycnKkmGeeeUZERkaKXbt2icOHD4s77rhD9OzZU5pfXFws2rdvL+Lj48WxY8fEli1bRHBwsJg1a5YUc/78eeHj4yOmTp0qTp06JRYvXixUKpXYunWrFFMXt//vv/9ebN68Wfz555/izJkz4qWXXhJqtVokJiYKIVi3NeXQoUOiadOmomPHjuL555+XprN+q2727NmiXbt24urVq9Lr2rVr0nzWbfXcuHFDREVFiTFjxohff/1VnD9/Xmzbtk2cO3dOiuGxrerS0tIstt0dO3YIAGLPnj1CCG6/1fHmm2+KBg0aiE2bNomkpCSxbt064efnJ95//30phttu9QwfPly0bdtW7Nu3T5w9e1bMnj1bBAQEiL///lsIwfp1hDvlEPaUpTJMuu3UvXt3MWnSJOm9wWAQDRs2FPPmzXNhqeTl1h3GaDSK8PBwsWDBAmlaRkaG0Gq14quvvhJCCHHq1CkBQPz2229SzA8//CAUCoW4fPmyEEKIpUuXinr16onCwkIpZsaMGaJ169bS++HDh4shQ4ZYlKdHjx7i6aefrtF1dKW0tDQBQOzbt08IYapLtVot1q1bJ8WcPn1aABAHDx4UQpg6NKVSKVJSUqSYZcuWiYCAAKk+p0+fLtq1a2fxXQ8//LAYMGCA9N5Ttv969eqJTz75hHVbQ7Kzs0XLli3Fjh07RFxcnJR0s36rZ/bs2aJTp05W57Fuq2/GjBnizjvvtDmfx7aa9fzzz4sWLVoIo9HI7beahgwZIp544gmLaffff78YOXKkEILbbnXl5eUJlUolNm3aZDG9a9eu4uWXX2b9VoOccwh7ymIPnl5uB71ejyNHjiA+Pl6aplQqER8fj4MHD7qwZPKWlJSElJQUi3oLDAxEjx49pHo7ePAggoKC0K1bNykmPj4eSqUSv/76qxTTp08faDQaKWbAgAE4c+YMbt68KcWU/R5zTF1qn8zMTABA/fr1AQBHjhxBUVGRxXq3adMGTZo0sajfDh06ICwsTIoZMGAAsrKycPLkSSmmorrzhO3fYDBgzZo1yM3NRWxsLOu2hkyaNAlDhgwpVwes3+o7e/YsGjZsiObNm2PkyJG4ePEiANZtTfj+++/RrVs3PPTQQwgNDUWXLl3w8ccfS/N5bKs5er0eq1evxhNPPAGFQsHtt5p69uyJXbt24c8//wQA/P7779i/fz8GDRoEgNtudRUXF8NgMECn01lM9/b2xv79+1m/NUhOdWlPWezBpNsO169fh8FgsOjgASAsLAwpKSkuKpX8meumonpLSUlBaGioxXwvLy/Ur1/fIsbaMsp+h62YutI+RqMRU6ZMQa9evdC+fXsApnXWaDQICgqyiL21fqtad1lZWcjPz6/T2/+JEyfg5+cHrVaLZ555Bhs3bkTbtm1ZtzVgzZo1OHr0KObNm1duHuu3enr06IGVK1di69atWLZsGZKSktC7d29kZ2ezbmvA+fPnsWzZMrRs2RLbtm3DhAkT8Nxzz2HVqlUAeGyrSd9++y0yMjIwZswYAOwbqmvmzJkYMWIE2rRpA7VajS5dumDKlCkYOXIkAG671eXv74/Y2Fi8/vrruHLlCgwGA1avXo2DBw/i6tWrrN8aJKe6tKcs9vCyO5KIXGbSpElITEzE/v37XV2UOqV169ZISEhAZmYm1q9fj9GjR2Pfvn2uLpbbu3TpEp5//nns2LGj3IgAVZ951AoAOnbsiB49eiAqKgpr166Ft7e3C0tWNxiNRnTr1g1z584FAHTp0gWJiYn48MMPMXr0aBeXrm759NNPMWjQIDRs2NDVRakT1q5diy+++AJffvkl2rVrh4SEBEyZMgUNGzbktltDPv/8czzxxBNo1KgRVCoVunbtikceeQRHjhxxddFI5jjSbYfg4GCoVKpyd89MTU1FeHi4i0olf+a6qajewsPDkZaWZjG/uLgYN27csIixtoyy32Erpi60z+TJk7Fp0ybs2bMHjRs3lqaHh4dDr9cjIyPDIv7W+q1q3QUEBMDb27tOb/8ajQbR0dGIiYnBvHnz0KlTJ7z//vus22o6cuQI0tLS0LVrV3h5ecHLywv79u3Df//7X3h5eSEsLIz1W4OCgoLQqlUrnDt3jttuDYiIiEDbtm0tpt12223SKfw8ttWMCxcuYOfOnRg/frw0jdtv9bz44ovSaHeHDh3w+OOP41//+pd0xhG33epr0aIF9u3bh5ycHFy6dAmHDh1CUVERmjdvzvqtQXKqS3vKYg8m3XbQaDSIiYnBrl27pGlGoxG7du1CbGysC0smb82aNUN4eLhFvWVlZeHXX3+V6i02NhYZGRkWvxDu3r0bRqMRPXr0kGJ+/PFHFBUVSTE7duxA69atUa9ePSmm7PeYY9y5fYQQmDx5MjZu3Ijdu3ejWbNmFvNjYmKgVqst1vvMmTO4ePGiRf2eOHHColPasWMHAgICpD8qK6s7T9r+jUYjCgsLWbfV1K9fP5w4cQIJCQnSq1u3bhg5cqT0b9ZvzcnJycFff/2FiIgIbrs1oFevXuUez/jnn38iKioKAI9tNWXFihUIDQ3FkCFDpGncfqsnLy8PSqXln/YqlQpGoxEAt92a5Ovri4iICNy8eRPbtm3D0KFDWb81SE51aU9Z7GL3Ldc83Jo1a4RWqxUrV64Up06dEk899ZQICgqyuHumJ8rOzhbHjh0Tx44dEwDEu+++K44dOyYuXLgghDDdYj8oKEh899134vjx42Lo0KFWb/ffpUsX8euvv4r9+/eLli1bWtzuPyMjQ4SFhYnHH39cJCYmijVr1ggfH59yt/v38vISCxcuFKdPnxazZ892u0cn3GrChAkiMDBQ7N271+LxKnl5eVLMM888I5o0aSJ2794tDh8+LGJjY0VsbKw03/xolbvvvlskJCSIrVu3ipCQEKuPVnnxxRfF6dOnxZIlS6w+WqWubf8zZ84U+/btE0lJSeL48eNi5syZQqFQiO3btwshWLc1rezdy4Vg/VbHCy+8IPbu3SuSkpLEzz//LOLj40VwcLBIS0sTQrBuq+vQoUPCy8tLvPnmm+Ls2bPiiy++ED4+PmL16tVSDI9t1WMwGESTJk3EjBkzys3j9lt1o0ePFo0aNZIeGbZhwwYRHBwspk+fLsVw262erVu3ih9++EGcP39ebN++XXTq1En06NFD6PV6IQTr1xHulEPYU5bKMOl2wOLFi0WTJk2ERqMR3bt3F7/88ouri+Rye/bsEQDKvUaPHi2EMN1m/5VXXhFhYWFCq9WKfv36iTNnzlgsIz09XTzyyCPCz89PBAQEiLFjx4rs7GyLmN9//13ceeedQqvVikaNGom33nqrXFnWrl0rWrVqJTQajWjXrp3YvHmz09a7NlirVwBixYoVUkx+fr6YOHGiqFevnvDx8RH//Oc/xdWrVy2Wk5ycLAYNGiS8vb1FcHCweOGFF0RRUZFFzJ49e0Tnzp2FRqMRzZs3t/gOs7q2/T/xxBMiKipKaDQaERISIvr16ycl3EKwbmvarUk367fqHn74YRERESE0Go1o1KiRePjhhy2eIc26rb7//e9/on379kKr1Yo2bdqIjz76yGI+j23Vs23bNgGgXJ0Jwe23OrKyssTzzz8vmjRpInQ6nWjevLl4+eWXLR6XxG23er7++mvRvHlzodFoRHh4uJg0aZLIyMiQ5rN+7edOOYQ9ZamMQggh7B8XJyIiIiIiIiJ78ZpuIiIiIiIiIidh0k1ERERERETkJEy6iYiIiIiIiJyESTcRERERERGRkzDpJiIiIiIiInISJt1ERERERERETsKkm4iIiIiIiMhJmHQTEREREREROQmTbiIiIiIiIiInYdJNRERERERE5CRMuomIiIiIiIichEk3ERERERERkZMw6SYiIiIiIiJyEibdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24iIiIiIiIiJ2HSTUREta5v377o27dvjS0vOTkZCoUCK1eurLFluqP58+ejTZs2MBqNri6KVTXd7jWhadOmGDNmjKuLUSUKhQKvvvqqQ58ZMWIEhg8f7pwCERGRVUy6iYgIALBy5UooFArppdPp0KpVK0yePBmpqamuLh5VIisrC2+//TZmzJgBpZKHd7JuxowZ+Oabb/D777+7uihERB7Dy9UFICIieXnttdfQrFkzFBQUYP/+/Vi2bBm2bNmCxMRE+Pj41Mh3bN++vUaWQ6U+++wzFBcX45FHHnF1UWySY7ufOXPGbX+kyM/Ph5eXY3/KdenSBd26dcM777yD//u//3NSyYiIqCz3PMoQEZHTDBo0CI899hjGjx+PlStXYsqUKUhKSsJ3331X7WXn5eUBADQaDTQaTbWX52pGoxEFBQWuLgYAYMWKFbjvvvug0+lcXRSb5NjuWq0WarW6RpZVUFBQq6f263Q6h5NuABg+fDg2bNiAnJwcJ5SKiIhuxaSbiIgqdNdddwEAkpKSpGmrV69GTEwMvL29Ub9+fYwYMQKXLl2y+Fzfvn3Rvn17HDlyBH369IGPjw9eeuklad6t1/ampaVh3LhxCAsLg06nQ6dOnbBq1apy5cnIyMCYMWMQGBiIoKAgjB49GhkZGVbLvnv3bvTu3Ru+vr4ICgrC0KFDcfr06XJxe/fuRbdu3aDT6dCiRQssX74cr776KhQKhUWcQqHA5MmT8cUXX6Bdu3bQarXYunUrAGDhwoXo2bMnGjRoAG9vb8TExGD9+vXlvsu8jHXr1qFt27bw9vZGbGwsTpw4AQBYvnw5oqOjodPp0LdvXyQnJ1tdt7KSkpJw/PhxxMfHl5u3Zs0axMTEwN/fHwEBAejQoQPef//9cnU6ZcoUREZGQqvVIjo6Gm+//bZFAmm+bn7hwoVYsmQJmjdvDh8fH9x99924dOkShBB4/fXX0bhxY3h7e2Po0KG4ceOGxffYe023+VKH/fv347nnnkNISAiCgoLw9NNPQ6/XIyMjA6NGjUK9evVQr149TJ8+HUIIi2XY2x7Wruk+f/48HnroIdSvXx8+Pj644447sHnzZouYvXv3QqFQYM2aNfj3v/+NRo0awcfHB1lZWTbXy54yrVixAgqFAp999pnF9Llz50KhUGDLli3StFuv6c7OzsaUKVPQtGlTaLVahIaGon///jh69KjFsvr374/c3Fzs2LHDZlmJiKjm8PRyIiKq0F9//QUAaNCgAQDgzTffxCuvvILhw4dj/PjxuHbtGhYvXow+ffrg2LFjCAoKkj6bnp6OQYMGYcSIEXjssccQFhZm9Tvy8/PRt29fnDt3DpMnT0azZs2wbt06jBkzBhkZGXj++ecBAEIIDB06FPv378czzzyD2267DRs3bsTo0aPLLXPnzp0YNGgQmjdvjldffRX5+flYvHgxevXqhaNHj6Jp06YAgGPHjmHgwIGIiIjAnDlzYDAY8NprryEkJMRqWXfv3o21a9di8uTJCA4Olpbz/vvv47777sPIkSOh1+uxZs0aPPTQQ9i0aROGDBlisYyffvoJ33//PSZNmgQAmDdvHu655x5Mnz4dS5cuxcSJE3Hz5k3Mnz8fTzzxBHbv3l1hGx04cAAA0LVrV4vpO3bswCOPPIJ+/frh7bffBgCcPn0aP//8s1SneXl5iIuLw+XLl/H000+jSZMmOHDgAGbNmoWrV69i0aJFFsv84osvoNfr8eyzz+LGjRuYP38+hg8fjrvuugt79+7FjBkzcO7cOSxevBjTpk0rlzw64tlnn0V4eDjmzJmDX375BR999BGCgoJw4MABNGnSBHPnzsWWLVuwYMECtG/fHqNGjZI+60h7lJWamoqePXsiLy8Pzz33HBo0aIBVq1bhvvvuw/r16/HPf/7TIv7111+HRqPBtGnTUFhYWOFIvj1lGjt2LDZs2ICpU6eif//+iIyMxIkTJzBnzhyMGzcOgwcPtrn8Z555BuvXr8fkyZPRtm1bpKenY//+/Th9+rTFtmH+sefnn38utz5EROQEgoiISAixYsUKAUDs3LlTXLt2TVy6dEmsWbNGNGjQQHh7e4u///5bJCcnC5VKJd58802Lz544cUJ4eXlZTI+LixMAxIcffljuu+Li4kRcXJz0ftGiRQKAWL16tTRNr9eL2NhY4efnJ7KysoQQQnz77bcCgJg/f74UV1xcLHr37i0AiBUrVkjTO3fuLEJDQ0V6ero07ffffxdKpVKMGjVKmnbvvfcKHx8fcfnyZWna2bNnhZeXl7j1MAlAKJVKcfLkyXLrlJeXZ/Fer9eL9u3bi7vuuqvcMrRarUhKSpKmLV++XAAQ4eHh0roKIcSsWbMEAItYa/79738LACI7O9ti+vPPPy8CAgJEcXGxzc++/vrrwtfXV/z5558W02fOnClUKpW4ePGiEEKIpKQkAUCEhISIjIyMcmXs1KmTKCoqkqY/8sgjQqPRiIKCAmnare1ui3lbHDBggDAajdL02NhYoVAoxDPPPCNNKy4uFo0bNy63XHvbIyoqSowePVp6P2XKFAFA/PTTT9K07Oxs0axZM9G0aVNhMBiEEELs2bNHABDNmzcv91222Fumq1evivr164v+/fuLwsJC0aVLF9GkSRORmZlpEQdAzJ49W3ofGBgoJk2aZFdZWrVqJQYNGmRXLBERVQ9PLyciIgvx8fEICQlBZGQkRowYAT8/P2zcuBGNGjXChg0bYDQaMXz4cFy/fl16hYeHo2XLltizZ4/FsrRaLcaOHVvpd27ZsgXh4eEWNwFTq9V47rnnkJOTg3379klxXl5emDBhghSnUqnw7LPPWizv6tWrSEhIwJgxY1C/fn1peseOHdG/f3/pFF2DwYCdO3di2LBhaNiwoRQXHR2NQYMGWS1rXFwc2rZtW266t7e39O+bN28iMzMTvXv3LndqLwD069dPGiEHgB49egAAHnjgAfj7+5ebfv78eatlMUtPT4eXlxf8/PwspgcFBVV6GvG6devQu3dv1KtXz6JN4+PjYTAY8OOPP1rEP/TQQwgMDCxXxscee8zi+uIePXpAr9fj8uXLFZa9IuPGjbM4xb9Hjx4QQmDcuHHSNJVKhW7dupWrI0fao6wtW7age/fuuPPOO6Vpfn5+eOqpp5CcnIxTp05ZxI8ePdriuypib5nCw8OxZMkS7NixA71790ZCQgI+++wzBAQEVLj8oKAg/Prrr7hy5UqlZTG3NxEROR9PLyciIgtLlixBq1at4OXlhbCwMLRu3Vq6u/PZs2chhEDLli2tfvbWG1I1atTIrhtnXbhwAS1btix3F+nbbrtNmm/+f0RERLnksnXr1uWWZ226eZnbtm1Dbm4usrKykJ+fj+jo6HJx1qYBQLNmzaxO37RpE9544w0kJCSgsLBQmn7rdeEA0KRJE4v35iQ2MjLS6vSbN29a/c7KTJw4EWvXrsWgQYPQqFEj3H333Rg+fDgGDhwoxZw9exbHjx+3eTp9Wlqa08qekpJS7jNlE1NHvuvW73GkPcq6cOGC9ENCWWW3xfbt20vTbW0P1jhSphEjRmD16tXYvHkznnrqKfTr16/S5c+fPx+jR49GZGQkYmJiMHjwYIwaNQrNmzcvFyuEqLQuiIioZjDpJiIiC927d0e3bt2szjMajVAoFPjhhx+gUqnKzb81GbZ3BNCdWFunn376Cffddx/69OmDpUuXIiIiAmq1GitWrMCXX35ZLt5a3VU0Xdxyk7BbNWjQAMXFxcjOzrYYKQ8NDUVCQgK2bduGH374AT/88ANWrFiBUaNGSTepMxqN6N+/P6ZPn2512a1atXJa2SMiIizer1ixwuKmZo58V9nvcbQ9qsPebdzRMqWnp+Pw4cMAgFOnTsFoNFb6aLPhw4ejd+/e2LhxI7Zv344FCxbg7bffxoYNG8qduXHz5k2bP54REVHNYtJNRER2a9GiBYQQaNasWblkrDqioqJw/PjxconFH3/8Ic03/3/Xrl3IycmxSPDPnDlTbnnWppuXGRwcDF9fX+h0Ouh0Opw7d65cnLVptnzzzTfQ6XTYtm0btFqtNH3FihV2L6M62rRpA8B0F/OOHTtazNNoNLj33ntx7733wmg0YuLEiVi+fDleeeUVREdHo0WLFsjJybF653Nnu/W093bt2tXIcqvTHlFRUTa3G/P82ijTpEmTkJ2djXnz5mHWrFlYtGgRpk6dWun3REREYOLEiZg4cSLS0tLQtWtXvPnmmxZJd3FxMS5duoT77ruvSutCRESO4TXdRERkt/vvvx8qlQpz5swpN4IphEB6enqVljt48GCkpKTg66+/lqYVFxdj8eLF8PPzQ1xcnBRXXFyMZcuWSXEGgwGLFy+2WF5ERAQ6d+6MVatWWTxOLDExEdu3b5fuAK1SqRAfH49vv/3W4jrYc+fO4YcffrC7/CqVCgqFAgaDQZqWnJyMb7/91u5lVEdsbCwASCOjZre2h1KplJJy8+nNw4cPx8GDB7Ft27Zyy83IyEBxcbEzigzAdP+Asq9bR76rqjrtMXjwYBw6dAgHDx6UpuXm5uKjjz5C06ZNrV7PX9NlWr9+Pb7++mu89dZbmDlzJkaMGIF///vf+PPPP20u32AwIDMz02JaaGgoGjZsaHEqO2AaOS8oKEDPnj2rtC5EROQYjnQTEZHdWrRogTfeeAOzZs1CcnIyhg0bBn9/fyQlJWHjxo146qmnMG3aNIeX+9RTT2H58uUYM2YMjhw5gqZNm2L9+vX4+eefsWjRIumU6XvvvRe9evXCzJkzkZycjLZt22LDhg3lkg0AWLBgAQYNGoTY2FiMGzdOemRYYGCgxbONX331VWzfvh29evXChAkTYDAY8MEHH6B9+/ZISEiwq/xDhgzBu+++i4EDB+LRRx9FWloalixZgujoaBw/ftzh+nBU8+bN0b59e+zcuRNPPPGENH38+PG4ceMG7rrrLjRu3BgXLlzA4sWL0blzZ+ka5RdffBHff/897rnnHowZMwYxMTHIzc3FiRMnsH79eiQnJyM4ONjp61CTqtMeM2fOxFdffYVBgwbhueeeQ/369bFq1SokJSXhm2++qfQU7+qWKS0tDRMmTMA//vEPTJ48GQDwwQcfYM+ePRgzZgz2799vtQzZ2dlo3LgxHnzwQXTq1Al+fn7YuXMnfvvtN7zzzjsWsTt27ICPjw/69+9fpXUhIiLHMOkmIiKHzJw5E61atcJ7772HOXPmADDd2Oruu++u8umq3t7e2Lt3L2bOnIlVq1YhKysLrVu3LneNr1KpxPfff48pU6Zg9erVUCgUuO+++/DOO++gS5cuFsuMj4/H1q1bMXv2bPznP/+BWq1GXFwc3n77bYubX8XExOCHH37AtGnT8MorryAyMhKvvfYaTp8+LZ1SXJm77roLn376Kd566y1MmTIFzZo1w9tvv43k5ORaSboB4IknnsB//vMf5OfnS9cZP/bYY/joo4+wdOlSZGRkIDw8HA8//DBeffVVKXHz8fHBvn37MHfuXKxbtw7/93//h4CAALRq1Qpz5syxuFO5u6hOe4SFheHAgQOYMWMGFi9ejIKCAnTs2BH/+9//Kny+d02VacKECSgsLMSKFSukG501aNAAH330EYYOHYqFCxdavf7ex8cHEydOxPbt26WnDERHR2Pp0qUWd/sHTHesv//++y2u/yciIudRiMruzkJEROSBhg0bhpMnT+Ls2bOuLopdMjMz0bx5c8yfP9/ikVpUscjISAwYMACffPKJq4tSKxISEtC1a1ccPXoUnTt3dnVxiIg8Aq/pJiIij5efn2/x/uzZs9iyZQv69u3rmgJVQWBgIKZPn44FCxbAaDS6ujhuoaioCOnp6W53+nx1vPXWW3jwwQeZcBMR1SKOdBMRkceLiIjAmDFj0Lx5c1y4cAHLli1DYWEhjh07xscq1VHbtm3DmjVrsHLlSmzfvp3XNxMRkdMw6SYiIo83duxY7NmzBykpKdBqtYiNjcXcuXPRtWtXVxeNnOQf//gHzp07hwkTJuCll15ydXGIiKgOY9JNRERERERE5CS8ppuIiIiIiIjISZh0ExERERERETkJn9PtIKPRiCtXrsDf3196fiYRERERERHJgxAC2dnZaNiwIZRK148zM+l20JUrVxAZGenqYhAREREREVEFLl26hMaNG7u6GEy6HeXv7w/A1IABAQEuLg3VNXq9Hu+88w561fsZfer/BLR7CWg3ozTg5NvAyblAu5egb/kvvPPOOwCAF154ARqNxkWlJiIiIiKSj6ysLERGRkq5m6sx6XaQ+ZTygIAAJt1U4/R6PXQ6HY7k98PAbnfB69QcwE8HdHgFOPE6kDQX6PEa0OEVKRYwbY9MuomIiIiISsnlcmAm3UQyZWz7EqBS4fufdmL75jy8HP4xImJMCTcREREREbkHJt1EctbhFSz+JhhnC5ogIa8lvrj3YUS5ukxERERERGQ319/KjYhsEsdfx2V9CADgb30YHvpgO5Kv57q4VEREREREZC8m3UQypTw1F5kJ85Fn9AYAtArMR1q+Bh9/t87FJSMiIiIiInsx6SaSoT7198Hr1BxcaTobANDAV4Px8T0AAH+nXDDdVI2IiIiIiGSP13QTyYhSqUTbtm0RakiE4bZXcUX9OIDDaBjkjbBA053KU1XtAJEoxZo/R0RERERE8sOkm0hGvLy88NBDDwF4CABw5WAyAKBhkA7hAaak+2phANDxVXgBJbFERERERCRXHB4jkrErGQUAgIhAb4SXjHRn5hehoMjgymIREREREZGdmHQTydiVjHwAQKMgbwTovOCtVgEAUjILXFksIiIiIiKyE5NuIhnR6/WYM2cO5syZA71eLyXdDYO8oVAopNHulKyCcrFERERERCQ/TLqJZOxqyYh2RJAp2Q4L0AIAUrM40k1ERERE5A6YdBPJlMEokFKSXDcKMj2r23wzNZ5eTkRERETkHph0E8nUtexCGIwCapUCIX6mEe6wMqeXExERERGR/DHpJpKpKyWj2WEBOiiVCgAc6SYiIiIicjdMuolkypx0Nyw5tRwAIjjSTURERETkVph0E8mUeTS7YUmiDZhGvQEglSPdRERERERuwcvVBSCiUkqlEi1btgQAnM4qBGA50m1+ZFhadiEAhRSrVPL3MyIiIiIiOWLSTSQjXl5eePTRRwEA41cdBmCZdIf4aaFUAMVGgYxCgxRLRERERETyxOExIpm6mpkPAGgYVHp6uZdKieCSO5mnZha6pFxERERERGQ/Jt1EMnUlw5x0e1tMD+fN1IiIiIiI3AZPLyeSEb1ej4ULF6JYKHAzryMAICLQMuk23UwtE3/fyMHcuZ8CAKZNmwaNRlPbxSUiIiIiokow6SaSmaKiIuQYTQm0WqVAgM5yNzU/Niw1qxBFRUW1Xj4iIiIiIrIfTy8nkqFCqAAAQT4aKBQKi3nSY8N4ejkRERERkewx6SaSoUJhGt0O8laXmxceUDrSTURERERE8sakm0iGCkuu/KjnU/46bfON1FKzmXQTEREREckdk24iGZJGun3Kj3SHcaSbiIiIiMhtMOkmkqFCYb6mu3zSHeJvek53TmExioWi3HwiIiIiIpIP3r2cSEYUCgWioqLwR6ovcNP66eUBOi+oVQoUGQQaNGqKILWx3M3WiIiIiIhIHph0E8mIWq3GmDFjkLjud+DI3wi0MtKtUChQz0eDtOxC9Bs0FB0aB7qgpEREREREZA+eXk4kQxl5egDWR7oBoL6vaXp6Lq/rJiIiIiKSMybdRDJ0M68IgPVHhgFAAz9T0n0jV19rZSIiIiIiIscx6SaSEb1ejwULFuD83ykAgCCbI92mm6l9s2kbFixYAL2eyTcRERERkRy5fdK9ZMkSNG3aFDqdDj169MChQ4dsxq5cuRIKhcLipdPparG0RJXLy8tDvsG0a1q7ezkANCg5vTxLL5CXl1drZSMiIiIiIse4ddL99ddfY+rUqZg9ezaOHj2KTp06YcCAAUhLS7P5mYCAAFy9elV6XbhwoRZLTFQ5IYDCknsc2rqm25x0FwjeC5GIiIiISM7cOul+99138eSTT2Ls2LFo27YtPvzwQ/j4+OCzzz6z+RmFQoHw8HDpFRYWVoslJqpcEVQQMD0CzNZId30/Jt1ERERERO7AbZNuvV6PI0eOID4+XpqmVCoRHx+PgwcP2vxcTk4OoqKiEBkZiaFDh+LkyZMVfk9hYSGysrIsXkTOVChUAACdWgmdWmU1RhrphvWknIiIiIiI5MFtk+7r16/DYDCUG6kOCwtDSkqK1c+0bt0an332Gb777jusXr0aRqMRPXv2xN9//23ze+bNm4fAwEDpFRkZWaPrQXQr86nltu5cDpTeSI0j3URERERE8ua2SXdVxMbGYtSoUejcuTPi4uKwYcMGhISEYPny5TY/M2vWLGRmZkqvS5cu1WKJyRMVliTSgRUm3RqLWCIiIiIikie3/Ys9ODgYKpUKqampFtNTU1MRHh5u1zLUajW6dOmCc+fO2YzRarXQarXVKiuRvRQKBXyCQoA0oJ6N67mB0tPL9fBCWERDKBSK2ioiERERERE5wG1HujUaDWJiYrBr1y5pmtFoxK5duxAbG2vXMgwGA06cOIGIiAhnFZPIIWq1Gl3uuBMAUM/X9o89gd5qqJSmRPufIx6HWs1ru4mIiIiI5Mhtk24AmDp1Kj7++GOsWrUKp0+fxoQJE5Cbm4uxY8cCAEaNGoVZs2ZJ8a+99hq2b9+O8+fP4+jRo3jsscdw4cIFjB8/3lWrQFRORl4RACDIxuPCAECpVEgj4ek5+lopFxEREREROc5tTy8HgIcffhjXrl3Df/7zH6SkpKBz587YunWrdHO1ixcvQqks/V3h5s2bePLJJ5GSkoJ69eohJiYGBw4cQNu2bV21CkTl3MwzJdG2HhdmVt9Xg+s5etzIZdJNRERERCRXCiGEcHUh3ElWVhYCAwORmZmJgIAAVxeH6piioiLc++Z6/FEQgBkDWmHCP1rajH14+QH8mnQTAwOvYvG00TzFnIiIiIgI8svZ3Pr0cqK6RgiBbL3pd7BA74pPRKlfcvr5zbwi8LczIiIiIiJ5YtJNJDOFQgWg4ud0A0A9X9N8PqubiIiIiEi+mHQTyUxhya0WKr2mu2Skm0k3EREREZF8MekmkpnCkiS6spHu+r7mpJvXchMRERERyRWTbiIZMRgF9Cg5vbzSu5eXnF7u3g8hICIiIiKq05h0E8lIVkERAAUAIEDH08uJiIiIiNwdk24iGckqKAYAaBRGaNWqCmMb+JmSbr1CA4VC4fSyERERERGR45h0E8mI+XFhIYG+lT53OzTQFwBQIFRQqjjaTUREREQkR0y6iWTkRo4eQOkodkXqlVzzLQRwM0/v1HIREREREVHVMOkmkpEbuabk2Xxn8op4qZTSzdbMnyMiIiIiInlh0k0kI2lZ+QCA638noaioqMLYoqIiKPV5ps9l5jm9bERERERE5Dgm3UQykp5baPpHYQ6EEBXGCiGgNhaYPpfDkW4iIiIiIjli0k0kIzdyTaPbOlQ8ym2mhelu5zd4TTcRERERkSwx6SaSEfO12TpFsV3xPgpTcp6aVei0MhERERERUdUx6SaSEUeTbl+FKT4lq8BpZSIiIiIioqpj0k0kI+lS0m3f6eVS0p3JpJuIiIiISI6YdBPJhBACN/JMybY3HBvpvsqkm4iIiIhIlph0E8lETmEx9MVGAEBokA8UCkWF8QqFAuEBWgBASlZhpXc7JyIiIiKi2sekm0gmzNdze6tVePFfz0OtVlcYr1arMWvKRCgUQGGxUfo8ERERERHJB5NuIpm4XvKs7QZ+Grs/o/FSItjPNNrNU8yJiIiIiOSHSTeRTJhHqhv42p90A0DDQB0A4EpGfo2XiYiIiIiIqodJN5FMpOeYnrWdeyMVH3/8MYqKKr6DeVFRET7++GMU3EwBwJFuIiIiIiI58nJ1AYjIxPy4MBTm4MqVK5XeGE0IgStXrkCpVwHwxpVMjnQTEREREckNR7qJZCI9x7FndJtJjw3L4Eg3EREREZHcMOkmkokbuabTy3V2PqPbrPRZ3RzpJiIiIiKSGybdRDJhPr3cW1G1pPsKR7qJiIiIiGSHSTeRTFT39PLUrAIYjBVfB05ERERERLWLSTeRTJgfGaZzcKTbR1EEpQIoNgpcL7kDOhERERERyQOTbiIZEEIgveSa7nreXvDx8bHrcz4+PvDz9UGovxYAn9VNRERERCQ3fGQYkQxkFxajyGA6NfylF56DTq2q9DMajQYvvvgiAODg0p+RklWIq5kF6OLUkhIRERERkSM40k0kA+bruX01KrsS7ltFBHkD4Eg3EREREZHcMOkmkgHz48Ia+Gmr9PmGgToAwNVM3sGciIiIiEhOeHo5kQxcLxnpruejxsqVKwEAI0eOhFqttvmZoqIifPHFFwCA0OZ3AgBSmHQTEREREckKk24iGfj7pum08LAALS4kXQBgurlaRYQQuHDBFNu1cz8AwJVMnl5ORERERCQnTLqrKFefC5W+/LW3KqUKOi+dRZwtSoUS3mrvKsXmFeXZTMoUCgV81D5Vis0vyodRGG2Ww1fjW6XYguICGIyGGon1UftAoVAAAAqLC1FstP2ILUdivdXeUCpMV1zoDXoUGWw/L9uRWJ2XDiqlqsLYxMs3AAAtQ3yQl2SaVmQoQpHe9nIVRoX07xA/0658JSPP6nak9dLCS2mKKTYWo7DY9qPFNCoN1Cq1w7EGowEFxbZH2tUqNTQqjcOxRmFEfpHtHxMcifVSekHrZTqFXwiBvKK8Gol1ZL9nH2E9ln1ExX2EtdgiQxH0Br3N2LL7vSOx7CPYR7CPqFos+wgT9hGOx7KPKFVTfURF6+oKTLqrqOE7DQFd+emDWw7G5kc3S+9DF4ba3MniouKwd8xe6X3T95viet51q7HdGnbDb0/+Jr1vu6QtLmResBrbNqQtTk48Kb2//ePbceraKauxUYFRSJ6SLL3vs7IPDl85bDU22CcY1168Jr0f9MUg7Luwz2qsj9oHuS+VbuwPrH0AW85usRoLAGJ26Y76+MbHsf7UepuxObNypJ3s6U1PY9Xvq2zGpk1LQ4hvCABg6rapWHp4qc3YpOeT0DSoKQDg5V0vY+HBhTZjEyckol1oOwDA3J/mYs6+OTZjD40/hNsb3Q4AeP+X9zF95/RyMeEF70GLlhBel6VpK46twLM7nrW53O8e+k769+HUrQBCkZqlR8DcxjAqMixi1z64Fg+1ewgAsPH0RgxfP9zmclcMXYExnccAALad24Z7vrrHZuwHgz7ApO6TAAA/XfwJ/1j1D5ux8+Pn48VeprutH716FN0/6W4zdnbcbLza91UAwOlrp9F+WXubsdNip2HB3QsAABczL6LZ+81sxk7sNhFLhiwBAFzPu47QhaE2Y0d3Go2Vw1YCMB1M/Ob52Yx9sO2DWPfQOul9RbHsI0zYR5Syp48w2zN6D/o27QsA+OjIR5j8w2SbsZse2YQhrYYAAL448QXGfjfWZiz7CBP2ESXz2EdI2EeYsI8wYR9RMs8d+giZXXHJG6kRuZpQQiOiAACN6ysqCbbORytQqPgTAOBtuL3GikZERERERNWjEJVdOEoWsrKyEBgYiCvXriAgIKDcfJ7yYT3W008L++taHp5fk4CuTQIxbUAzaLxKf+/661ou7lv8G7w1ShyeGYeFC0y/tk6bPg2o4OlhCqMCC94ujV36YzKW7ElGv9uC8d9HLH/R5WlhJjwtzIR9RNVieeqoCfsIx2PZR5RiH+F4LPsIE/YRjsd6ch+RlZWFhiENkZmZaTVnq208vbyKfDW+Fg1dUZwjy7RX2Y23JmPL7mw1GVu2c6jJWK2XFlrY95gtR2I1Ko3UAVc3NrugCM98fgTnr+fi9NUsJF3Pw7LHYhDobTrIXLieCQBoEx4AtVfpLqlWqaHR2F6uXq+3iB3UvjGW7EnGgXM3oVLobD7v20vpBS+Nfbu+I7EqpcrubdiRWKVC6ZRYhULhlFjAefs9+wjHY92hj6hqrFqllv5YrclY9hEm7COqFss+woR9hOOx7CNKySHW3fsIg8b2D2+uwKS7qnJzAZWVpEalAnQ6yzhblErA27tqsXl5gK2TFBQKwMenarH5+YDR9i9K8PWtWmxBAWCoYON3JNbHx1RuACgsBIpt/+rsUKy3t6meAUCvB4ps/5Jsb6wQAtM3/oHz13MR6q9FTmExDvyVjpfXHcMHD5iu5frjYjoAoE2wN2AwlD4mrKio4jIoFBax7QJVCPPXIDVbj19OXUbf6AalsVotCoQCRiHgoyypC1s0GsC83OJi+2MNBlPb2aJWm+IdjTUaTdtaTcR6eQHakj+YhDDtGzUR68h+zz7CeqyH9hEATNuD+XjiSGxRkSneFq3WtB07GuvIfs8+wr5Y9hGl2Ec4Hss+woR9hOOxntxHVLSuriDIIZmZmQKAyDRtWuVfgwdbfsDHx3ocIERcnGVscLDt2G7dLGOjomzHtm1rGdu2re3YqCjL2G7dbMcGB1vGxsXZjvXxsYwdPNh27K2b4YMPVhybk1MaO3p0xbFpaaWxEydWHJuUVBo7bVrFsYmJpbGzZ9uM29nidhE1Y5OIfmmzOHrhhjj85mIRNWOTaPbid+JiYJgQgBj7wH9E1IxNYlWXIULs2VO63A8+qLgMmzaVxq5YIQQgZg6YJKJmbBL/7v+MReyxFetF9zd3iBazNovhr38nlvZ4QPztH2J9uStWlC5306aKy/DBB6Wxe/ZUHDt/fmnsoUMVx86eXRqbmFhx7LRppbFJSRXHTpxYGpuWVnHs6NGlsTk5Fcc++KDlNlxRLPsI04t9ROnr0KHS2PnzK46tZh9h87V2bWns2rUVx7KPML3YR5he7CNKX+wjTC/2EaYX+wjTy0V9RCYgAIjMzEwhB7yRGpGTCADv3jkSAPDEnc3QpUk9xKjz0TvpKIxKFVbE3AsA+CO0KQCgzbXkan9n/LlDAIBd0d0hSqZ9f1sfPHxGi9SsQhQbBX7NUeHtvmMx8InFONKwTbW/k4iIiIiIbHP7G6ktWbIECxYsQEpKCjp16oTFixeje3fbjxBYt24dXnnlFSQnJ6Nly5Z4++23MXjwYLu/z3wjtcwr1m+kxlM+bMR64Glh2/64hqfXnYSvRoWfZtyF+r4aQK/H3tMpGPPVCfhpVNj69O24c/EvAIDjL96JgCC/ap0WVlBkQOeFP6Og2IhZ/ZojMSUH/zuZBgDo1yYULw5sjUPnruPrw5dwMiUHPmolPnm4A3o2q1e6XBunhRUUG6BVKaUbypSL5Wlhpe95WpjjsR7YR0h46qgJ+wjHY9lHVC2WfYQJ+wjHY9lHmLhBH5GVlYXAhvK5kZpbJ91ff/01Ro0ahQ8//BA9evTAokWLsG7dOpw5cwahoeWfm3fgwAH06dMH8+bNwz333IMvv/wSb7/9No4ePYr27W0/v68sKemWSQNWl9EosO1kCto2DEBUA/tvrlBVBUUGHLuYgfaNAuCvs++GHe4oT1+MoR/8jLNpOZj8j2hMG9BamieEQP/3fsS5tBy0DPXD2bQcNAryxs8z70JxcTHWrl0LABg+fDi8vGzfdsFW7LiVv2HXH2kWsU/2boaZg26DSmn6wyFfb8BTnx/GT2evQ+OlxDsPdcI9HSMsE2oA6TmF+P73K9hw9DJOXM6EWqVAA18tGvhpcHvT+hjdsymaBTu23eTpi3H5Zj6uZBYgJTMfKZmFCPJRo13DANwWEQBfLW81QURERERVJ7ecza2T7h49euD222/HBx98AAAwGo2IjIzEs88+i5kzZ5aLf/jhh5Gbm4tNmzZJ0+644w507twZH374oV3fKbcGrK6le89h/tYzaFzPG1+OvwOR9b2hUChgNAoolVV7ZjRgSiyFgMUybuTq8eCHB3D+mummYl89dQdahPjVxGrIisEoMGH1EWw/lYr6vhrsfiEOQT6WdxrddPwKnv3qmPSjYPxtYfhkdDfo9XrMmzcPADBr1qxK715uLXbvmTQ89fkRNA/2RVzrENzdNgwxUfXLfb6w2IDJXx7DjlOpAIDbIgIwoW8LRNX3wYG/0nHgr+s4+Fc6io22uwiFArirdShG92yK2BYNoFZZv2LlWnYhtp1MwdbEFBw8nw6DjWUqFECzYF90ahyEO5rXxx3NG6BJfZ9yPwbYw2gUuJmnR0GxESqFAkoloFIooFIqoPVSwVtTwfPYiIiIiMhtyS1nc9shJb1ejyNHjmDWrFnSNKVSifj4eBw8eNDqZw4ePIipU6daTBswYAC+/fbbGi9fbmExkq47dtc8az9/CNhITmBKQoqNRhiFgFKhgFKhwPnrOfBSKqFSKuCv84JKqZDeeykVMAiBfL0Bh5Nv4vNfknE9x3Qq0d8389FnwR4Mah+OEH8t1hy6hP7twtCvTShC/XVQKk3fqVAASoUCxQYjfv/bNPIZoFMjJasA4QE6BPtrcDY1Bx/u+wsGo0B82zCk5+gRHqDDH6nZOH/NVCdp2YV46MODGNQ+HH46L2i9VNB6KU0vdZl/e6mgVSuhK/m/AkBhsRFCQCqLQgEoYHocg/nfRQaBa9mFyMwvglqlgL9ODR+NCsnpuTh1JQs3cvXw1qjQOtwfrUL94aNR4WZeEXL1xfBWq+CtVsFHo4IAkJZdgNSsQuTrDfDWqBARqEOATo0buXrcyNUjPVePG7mFUEABtZcCCZcykHg5CxqVEh89HlMu4QaAezo2RPNgP/x87jrOpeVgVM8oh7aVivRtHYozrw+sNFHVeqmwdGRXvLvjT6w6kIzTV7Pw3FfHysV1bByI+7s0wqAOESg2CqTnFOLyzXysPXwJe85cw64/0rDrjzT4ab0Q26IBercMRgNfLZLTc5F0PRdn03Jw/O8Mi+07QOeFhkHeCA/UITxAh2vZhUi8konUrEKcv5aL89dysfHYZQBAw0AdejRvgMb1vFHfVyO9vJRKXM8pxLXsQlzLKcT1kv9fyy7E9ZxCXM/R20zuAUCnVkqj9uZlBnqr4a9Tw1/rBX+dF/x1avhqVaYfooSA0ShgFIBRCAhR+m+jQMl7AaPRtG2qlAooFApTwq8w/QBlTv6VJcm/eb81/dv0g42hZBnmfdtgNE03/dv0/2KDOa7M/40CBgEYjEYYjJDizZ9RKEx9gLkvKPt/lVJZOk1lKlPZ9+b5SoXC1CeJkruTCFMfJaT3JT1W2ell5pXMKtkWyn6u/HJwy3QAJft3yX5eUq8KlPy/ZJoCpf2CsqRDUN4yvexySmNLy2o0mtbDWDLBWFIOcztL62qeV7INQIop2UbKxAmY2tVyuaXfY1GHonSasWTljWW/r+S4INUFSvtDUz0pLKaZY3BrPcCy3qQ6vaWeLZYF85m25tiSZZYcI0r+K/MdpjhYtJX1ftv8GWv1V7aey25bxpL9rrI2qbA+y7ZRmVhzW5duD7e0T5nlmJm7XfMxuvR9xfPN7WY99pb5Zafb/Iwd329r+bfGVqnMFX8/Sravqnx/maI7/P0oM9+u+r2lzLZZP9bYGtaydWSyGW9jhsPLsfWJmiqnzU9UpS4cW2fb6+Bg2zi5nLaHOmuy7mzF19R26th4bY2Vx8Fy5uVkV1ywWua2Sff169dhMBgQFhZmMT0sLAx//PGH1c+kpKRYjU9JSbH5PYWFhSgscy1KVlaWXeU7fTULD35oPfmXsx8SS+ti8/Gr2Hz8arWWt+HoZYv3apUCn425HXO3/IHTV7Pwxa8Xq7V8uVIpFVjwUEd0a1p+hNmsbcMAtG3onF/e7B0ZVquUmDGwDZ7u0xyrDlzAqoPJKDIYcUfzBujZogF6twxBdKjl2QiNgrzRsXEQBnWIwF/XcrDqQDK+//0KMvKKsONUqjRyfqtOjQMxsH0EBrYPt3lK+rXsQpy8kokjF27i4F/pSLiUgSuZBVICXhUaL6WUnJbtsAuKjLickY/LGRVcu0VEREREbsdYWME19C7gtkl3bZk3bx7mzJnj8OfUKiXCA3SVB96i3K+yKJ9AlR0xMo+WGYymkTc/nReEAHRqFYqNAgajseT/ptExhQLw0aigVCgQGqBDZn4RxvZsigZ+GtzI1eObo5eRmlmA2yL8cSOvCAV6A27m6aVf9RUAzIOHrcP8ISCQpzcgPECH1OxC3MzVw0ulwIMxjVHPR4PTV7MQGqDDL+fTkZpZgMl3RaN3yxBsnFgf6w5fQmpWIQqLDSgsNqKwyFj672IjCorM/zaUzDON/Gm8TCPepSNq5UdAvJQKhPhrEeSjgb7YiOyCIuQUFiOyng/aNgxAeKBp3c+kZONcWg70xcaSUU4v5BcZkK83IL/IAKMAQv21CAvQwUejQr7egL9v5iOnsNhihLSBr2k0O09vQMswP3Rv1gCNgrzhLoJ8NHg+viWe6xdd7rKAirQI8cNrQ9tj9r3tcPJKJn46ex0/n7uOPL0BzYN90bTkFRNVz676CPHXom/rUPRtbbonQ56+GIeTb+LYxQxczymUzi64katHkcGIYH8tQvy1CPGz/H9wyf8b+GksTnkXJaO/+UUG3MwtQnquaZnpOaYzFrIKipBTUIzsgiJkFxQju7AYuYWmm+YoFaWjdEoFpFFq8wigeQTbrHRkGiUj5KaRaHMZTPssTCPVJT8IKBSlp8CbX+aRcPMouZdSWTJqDov5SvPItUJRZlRdAVXJafXGku8yGET5vqHM/41GgWKj0XK6wTzfaDHyaTFaVHZ62ZFS08wyI6RlRjjLLMc8emU5ymr5HeZ6LTsSXG50GCV91C19grURTVFmGUYhpNFW66PjVkaPpRjLkfeyZS97llBpjL3LLTMab66zMqN8Zc8SQJn1uPXMA2k9b6mPsmcbWKvP0tF5a58Xpd9f9t9lRvTLLqfsZ3DL58uOFpvP3AJKR89vHR23qJdbRtqVJZVZtp5L29SeNik988FWrLX2MI/Qm9sFKPveckbpfGEltnRe2fe4ZVnm9rh1mrXvh5X5ty7f1vej3Hz7v99ame39fticX7qtVKXMtr7fWtvY+n5pxP0Wtn7rtnU0tfXjuM2jr5OXb7v8jq1vRWqsTDVUVtt1XVN1Zyvewbav8Dsc+3Jnt7+ztyNH6k6fn4M1ji3eqdw26Q4ODoZKpUJqquWoWmpqKsLDw61+Jjw83KF4wHStbNlT0rOyshAZGVlp+TpFBuGXl/pVGic3Qzs3qtHlDe4QAQB4/I4oi+k6tQqPxzat0e+i6jP/EekolVKBjo2D0LFxECb9I7rGyuOj8UKfViHo0yqkRpanUJhOl/ZXKeGvU6NJA5/KP0REREREbiUrKwtrJru6FKXc9jndGo0GMTEx2LVrlzTNaDRi165diI2NtfqZ2NhYi3gA2LFjh814ANBqtQgICLB4EREREREREdnDbUe6AWDq1KkYPXo0unXrhu7du2PRokXIzc3F2LFjAQCjRo1Co0aNpDs8P//884iLi8M777yDIUOGYM2aNTh8+DA++ugju7/TfMqRvdd2EzlCr9ejoOS5k1lZWZXevdzeWCIiIiIiT2HO1WTzoC7h5hYvXiyaNGkiNBqN6N69u/jll1+keXFxcWL06NEW8WvXrhWtWrUSGo1GtGvXTmzevNmh7/vrr78ESi4J4osvvvjiiy+++OKLL7744kuer7/++qsmUs5qc+vndLtCRkYG6tWrh4sXLyIwMNDVxSE7mK/Dv3TpEi8PcCNsN/fEdnM/bDP3xHZzP2wz98R2c0+ZmZlo0qQJbt68iaCgIFcXx71PL3cFpdJ0GXxgYCB3PDfDa/LdE9vNPbHd3A/bzD2x3dwP28w9sd3ckzl3czV5lIKIiIiIiIioDmLSTUREREREROQkTLodpNVqMXv2bGi1WlcXhezENnNPbDf3xHZzP2wz98R2cz9sM/fEdnNPcms33kiNiIiIiIiIyEk40k1ERERERETkJEy6iYiIiIiIiJyESTcRERERERGRkzDpJiIiIiIiInISJt0OWLJkCZo2bQqdTocePXrg0KFDri6Sx3j11VehUCgsXm3atJHmFxQUYNKkSWjQoAH8/PzwwAMPIDU11WIZFy9exJAhQ+Dj44PQ0FC8+OKLKC4utojZu3cvunbtCq1Wi+joaKxcubI2Vq/O+PHHH3HvvfeiYcOGUCgU+Pbbby3mCyHwn//8BxEREfD29kZ8fDzOnj1rEXPjxg2MHDkSAQEBCAoKwrhx45CTk2MRc/z4cfTu3Rs6nQ6RkZGYP39+ubKsW7cObdq0gU6nQ4cOHbBly5YaX9+6oLI2GzNmTLl9b+DAgRYxbLPaNW/ePNx+++3w9/dHaGgohg0bhjNnzljE1GafyGOjfexpt759+5bb35555hmLGLZb7Vq2bBk6duyIgIAABAQEIDY2Fj/88IM0n/ua/FTWZtzP3MNbb70FhUKBKVOmSNPcen8TZJc1a9YIjUYjPvvsM3Hy5Enx5JNPiqCgIJGamurqonmE2bNni3bt2omrV69Kr2vXrknzn3nmGREZGSl27dolDh8+LO644w7Rs2dPaX5xcbFo3769iI+PF8eOHRNbtmwRwcHBYtasWVLM+fPnhY+Pj5g6dao4deqUWLx4sVCpVGLr1q21uq7ubMuWLeLll18WGzZsEADExo0bLea/9dZbIjAwUHz77bfi999/F/fdd59o1qyZyM/Pl2IGDhwoOnXqJH755Rfx008/iejoaPHII49I8zMzM0VYWJgYOXKkSExMFF999ZXw9vYWy5cvl2J+/vlnoVKpxPz588WpU6fEv//9b6FWq8WJEyecXgfuprI2Gz16tBg4cKDFvnfjxg2LGLZZ7RowYIBYsWKFSExMFAkJCWLw4MGiSZMmIicnR4qprT6Rx0b72dNucXFx4sknn7TY3zIzM6X5bLfa9/3334vNmzeLP//8U5w5c0a89NJLQq1Wi8TERCEE9zU5qqzNuJ/J36FDh0TTpk1Fx44dxfPPPy9Nd+f9jUm3nbp37y4mTZokvTcYDKJhw4Zi3rx5LiyV55g9e7bo1KmT1XkZGRlCrVaLdevWSdNOnz4tAIiDBw8KIUyJhVKpFCkpKVLMsmXLREBAgCgsLBRCCDF9+nTRrl07i2U//PDDYsCAATW8Np7h1gTOaDSK8PBwsWDBAmlaRkaG0Gq14quvvhJCCHHq1CkBQPz2229SzA8//CAUCoW4fPmyEEKIpUuXinr16kntJoQQM2bMEK1bt5beDx8+XAwZMsSiPD169BBPP/10ja5jXWMr6R46dKjNz7DNXC8tLU0AEPv27RNC1G6fyGNj1d3abkKYkoGyf2Deiu0mD/Xq1ROffPIJ9zU3Ym4zIbifyV12drZo2bKl2LFjh0Vbufv+xtPL7aDX63HkyBHEx8dL05RKJeLj43Hw4EEXlsyznD17Fg0bNkTz5s0xcuRIXLx4EQBw5MgRFBUVWbRPmzZt0KRJE6l9Dh48iA4dOiAsLEyKGTBgALKysnDy5EkppuwyzDFs45qRlJSElJQUizoODAxEjx49LNopKCgI3bp1k2Li4+OhVCrx66+/SjF9+vSBRqORYgYMGIAzZ87g5s2bUgzbsubs3bsXoaGhaN26NSZMmID09HRpHtvM9TIzMwEA9evXB1B7fSKPjdVza7uZffHFFwgODkb79u0xa9Ys5OXlSfPYbq5lMBiwZs0a5ObmIjY2lvuaG7i1zcy4n8nXpEmTMGTIkHL16+77m1eVP+lBrl+/DoPBYNGAABAWFoY//vjDRaXyLD169MDKlSvRunVrXL16FXPmzEHv3r2RmJiIlJQUaDQaBAUFWXwmLCwMKSkpAICUlBSr7WeeV1FMVlYW8vPz4e3t7aS18wzmerZWx2XbIDQ01GK+l5cX6tevbxHTrFmzcsswz6tXr57NtjQvg+w3cOBA3H///WjWrBn++usvvPTSSxg0aBAOHjwIlUrFNnMxo9GIKVOmoFevXmjfvj0A1FqfePPmTR4bq8hauwHAo48+iqioKDRs2BDHjx/HjBkzcObMGWzYsAEA281VTpw4gdjYWBQUFMDPzw8bN25E27ZtkZCQwH1Npmy1GcD9TM7WrFmDo0eP4rfffis3z92PbUy6yS0MGjRI+nfHjh3Ro0cPREVFYe3atUyGiZxoxIgR0r87dOiAjh07okWLFti7dy/69evnwpIRYBoRSExMxP79+11dFHKArXZ76qmnpH936NABERER6NevH/766y+0aNGitotJJVq3bo2EhARkZmZi/fr1GD16NPbt2+fqYlEFbLVZ27ZtuZ/J1KVLl/D8889jx44d0Ol0ri5OjePp5XYIDg6GSqUqd3e81NRUhIeHu6hUni0oKAitWrXCuXPnEB4eDr1ej4yMDIuYsu0THh5utf3M8yqKCQgIYGJfA8z1XNF+FB4ejrS0NIv5xcXFuHHjRo20JffX6mvevDmCg4Nx7tw5AGwzV5o8eTI2bdqEPXv2oHHjxtL02uoTeWysGlvtZk2PHj0AwGJ/Y7vVPo1Gg+joaMTExGDevHno1KkT3n//fe5rMmarzazhfiYPR44cQVpaGrp27QovLy94eXlh3759+O9//wsvLy+EhYW59f7GpNsOGo0GMTEx2LVrlzTNaDRi165dFteHUO3JycnBX3/9hYiICMTExECtVlu0z5kzZ3Dx4kWpfWJjY3HixAmL5GDHjh0ICAiQTjeKjY21WIY5hm1cM5o1a4bw8HCLOs7KysKvv/5q0U4ZGRk4cuSIFLN7924YjUbpoBgbG4sff/wRRUVFUsyOHTvQunVr1KtXT4phWzrH33//jfT0dERERABgm7mCEAKTJ0/Gxo0bsXv37nKn7tdWn8hjo2MqazdrEhISAMBif2O7uZ7RaERhYSH3NTdibjNruJ/JQ79+/XDixAkkJCRIr27dumHkyJHSv916f6vyLdg8zJo1a4RWqxUrV64Up06dEk899ZQICgqyuDseOc8LL7wg9u7dK5KSksTPP/8s4uPjRXBwsEhLSxNCmB4h0KRJE7F7925x+PBhERsbK2JjY6XPmx8hcPfdd4uEhASxdetWERISYvURAi+++KI4ffq0WLJkCR8Z5qDs7Gxx7NgxcezYMQFAvPvuu+LYsWPiwoULQgjTI8OCgoLEd999J44fPy6GDh1q9ZFhXbp0Eb/++qvYv3+/aNmypcXjpzIyMkRYWJh4/PHHRWJiolizZo3w8fEp9/gpLy8vsXDhQnH69Gkxe/ZsPn7KhoraLDs7W0ybNk0cPHhQJCUliZ07d4quXbuKli1bioKCAmkZbLPaNWHCBBEYGCj27t1r8cibvLw8Kaa2+kQeG+1XWbudO3dOvPbaa+Lw4cMiKSlJfPfdd6J58+aiT58+0jLYbrVv5syZYt++fSIpKUkcP35czJw5UygUCrF9+3YhBPc1OaqozbifuZdb7zTvzvsbk24HLF68WDRp0kRoNBrRvXt38csvv7i6SB7j4YcfFhEREUKj0YhGjRqJhx9+WJw7d06an5+fLyZOnCjq1asnfHx8xD//+U9x9epVi2UkJyeLQYMGCW9vbxEcHCxeeOEFUVRUZBGzZ88e0blzZ6HRaETz5s3FihUramP16ow9e/YIAOVeo0ePFkKYHhv2yiuviLCwMKHVakW/fv3EmTNnLJaRnp4uHnnkEeHn5ycCAgLE2LFjRXZ2tkXM77//Lu68806h1WpFo0aNxFtvvVWuLGvXrhWtWrUSGo1GtGvXTmzevNlp6+3OKmqzvLw8cffdd4uQkBChVqtFVFSUePLJJ8sddNhmtctaewGw6K9qs0/ksdE+lbXbxYsXRZ8+fUT9+vWFVqsV0dHR4sUXX7R4frAQbLfa9sQTT4ioqCih0WhESEiI6Nevn5RwC8F9TY4qajPuZ+7l1qTbnfc3hRBCVH2cnIiIiIiIiIhs4TXdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24iIiIiIiIiJ2HSTUREREREROQkTLqJiIiIiIiInIRJNxEREREREZGTMOkmIiIiIiIichIm3UREREREREROwqSbiIiIiIiIyEmYdBMRERERERE5CZNuIiIiIiIiIidh0k1ERERERETkJEy6iYiIiIiIiJyESTcRERERERGRkzDpJiIiIiIiInISJt1ERERERERETsKkm4iIqq1v377o27dvjS0vOTkZCoUCK1eurLFluqP58+ejTZs2MBqNlcaOGTMGfn5+tVAqckdNmzbFmDFjHP5ceno6fH19sWXLlpovFBGRh2DSTURUR61cuRIKhUJ66XQ6tGrVCpMnT0Zqaqqri0eVyMrKwttvv40ZM2ZAqTQdrvPy8vDqq69i7969ri0cAQCWLl1a538YatCgAcaPH49XXnnF1UUhInJbXq4uABEROddrr72GZs2aoaCgAPv378eyZcuwZcsWJCYmwsfHp0a+Y/v27TWyHCr12Wefobi4GI888og0LS8vD3PmzAGAGj2zgKpm6dKlCA4OrtIIsjt55pln8N///he7d+/GXXfd5eriEBG5HY50ExHVcYMGDcJjjz2G8ePHY+XKlZgyZQqSkpLw3XffVXvZeXl5AACNRgONRlPt5bma0WhEQUGBq4sBAFixYgXuu+8+6HQ6VxelUrm5ua4uAjnRbbfdhvbt29f5UX0iImdh0k1E5GHMI1VJSUnStNWrVyMmJgbe3t6oX78+RowYgUuXLll8rm/fvmjfvj2OHDmCPn36wMfHBy+99JI079aR17S0NIwbNw5hYWHQ6XTo1KkTVq1aVa48GRkZGDNmDAIDAxEUFITRo0cjIyPDatl3796N3r17w9fXF0FBQRg6dChOnz5dLm7v3r3o1q0bdDodWrRogeXLl+PVV1+FQqGwiFMoFJg8eTK++OILtGvXDlqtFlu3bgUALFy4ED179kSDBg3g7e2NmJgYrF+/vtx3mZexbt06tG3bFt7e3oiNjcWJEycAAMuXL0d0dDR0Oh369u2L5ORkq+tWVlJSEo4fP474+HhpWnJyMkJCQgAAc+bMkS4bePXVVy0+e/nyZQwbNgx+fn4ICQnBtGnTYDAYLGKMRiMWLVqEdu3aQafTISwsDE8//TRu3rxZadnM147/9ddfGDx4MPz9/TFy5EiHlnv48GEMGDAAwcHB8Pb2RrNmzfDEE09YxOTm5uKFF15AZGQktFotWrdujYULF0IIYRFnrv9vv/0W7du3h1arRbt27aR2NLtw4QImTpyI1q1bw9vbGw0aNMBDDz1Urj3Ml2X8/PPPmDp1KkJCQuDr64t//vOfuHbtmhTXtGlTnDx5Evv27ZPaorKzDxzdpipbJ8D+bd2ajIwMTJkyRarj6OhovP3221bvIdC/f3/873//K1f/RERUOZ5eTkTkYf766y8Apms1AeDNN9/EK6+8guHDh2P8+PG4du0aFi9ejD59+uDYsWMICgqSPpueno5BgwZhxIgReOyxxxAWFmb1O/Lz89G3b1+cO3cOkydPRrNmzbBu3TqMGTMGGRkZeP755wEAQggMHToU+/fvxzPPPIPbbrsNGzduxOjRo8stc+fOnRg0aBCaN2+OV199Ffn5+Vi8eDF69eqFo0ePomnTpgCAY8eOYeDAgYiIiMCcOXNgMBjw2muvSQnrrXbv3o21a9di8uTJCA4Olpbz/vvv47777sPIkSOh1+uxZs0aPPTQQ9i0aROGDBlisYyffvoJ33//PSZNmgQAmDdvHu655x5Mnz4dS5cuxcSJE3Hz5k3Mnz8fTzzxBHbv3l1hGx04cAAA0LVrV2laSEgIli1bhgkTJuCf//wn7r//fgBAx44dpRiDwYABAwagR48eWLhwIXbu3Il33nkHLVq0wIQJE6S4p59+GitXrsTYsWPx3HPPISkpCR988AGOHTuGn3/+GWq1usLyFRcXY8CAAbjzzjuxcOFC6TIFe5ablpaGu+++GyEhIZg5cyaCgoKQnJyMDRs2SMsXQuC+++7Dnj17MG7cOHTu3Bnbtm3Diy++iMuXL+O9996zKM/+/fuxYcMGTJw4Ef7+/vjvf/+LBx54ABcvXpS2899++w0HDhzAiBEj0LhxYyQnJ2PZsmXo27cvTp06Ve5Si2effRb16tXD7NmzkZycjEWLFmHy5Mn4+uuvAQCLFi3Cs88+Cz8/P7z88ssAYHN/MHNkm7JnnRzd1svKy8tDXFwcLl++jKeffhpNmjTBgQMHMGvWLFy9ehWLFi2yiI+JicF7772HkydPon379pUun4iIyhBEmX8TtQAAZRxJREFURFQnrVixQgAQO3fuFNeuXROXLl0Sa9asEQ0aNBDe3t7i77//FsnJyUKlUok333zT4rMnTpwQXl5eFtPj4uIEAPHhhx+W+664uDgRFxcnvV+0aJEAIFavXi1N0+v1IjY2Vvj5+YmsrCwhhBDffvutACDmz58vxRUXF4vevXsLAGLFihXS9M6dO4vQ0FCRnp4uTfv999+FUqkUo0aNkqbde++9wsfHR1y+fFmadvbsWeHl5SVuPewBEEqlUpw8ebLcOuXl5Vm81+v1on379uKuu+4qtwytViuSkpKkacuXLxcARHh4uLSuQggxa9YsAcAi1pp///vfAoDIzs62mH7t2jUBQMyePbvcZ0aPHi0AiNdee81iepcuXURMTIz0/qeffhIAxBdffGERt3XrVqvTbX3PzJkzLabbu9yNGzcKAOK3336z+R3m7eKNN96wmP7ggw8KhUIhzp07J00DIDQajcW033//XQAQixcvlqbd2p5CCHHw4EEBQPzf//2fNM2838THxwuj0ShN/9e//iVUKpXIyMiQprVr185iu6+MI9uUPevkyLYeFRUlRo8eLb1//fXXha+vr/jzzz8t4mbOnClUKpW4ePGixfQDBw4IAOLrr7+2e32JiMiEp5cTEdVx8fHxCAkJQWRkJEaMGAE/Pz9s3LgRjRo1woYNG2A0GjF8+HBcv35deoWHh6Nly5bYs2ePxbK0Wi3Gjh1b6Xdu2bIF4eHhFjcBU6vVeO6555CTk4N9+/ZJcV5eXhajsCqVCs8++6zF8q5evYqEhASMGTMG9evXl6Z37NgR/fv3lx5nZDAYsHPnTgwbNgwNGzaU4qKjozFo0CCrZY2Li0Pbtm3LTff29pb+ffPmTWRmZqJ37944evRoudh+/fpJI+QA0KNHDwDAAw88AH9//3LTz58/b7UsZunp6fDy8qrSI8CeeeYZi/e9e/e2+L5169YhMDAQ/fv3t2jzmJgY+Pn5lWtzW8q2mSPLNZ85sWnTJhQVFVld9pYtW6BSqfDcc89ZTH/hhRcghMAPP/xgMT0+Ph4tWrSQ3nfs2BEBAQEW6122PYuKipCeno7o6GgEBQVZbdOnnnrK4hTt3r17w2Aw4MKFCxVVS4Uc2aYqW6eqbOtlrVu3Dr1790a9evUs2is+Ph4GgwE//vijRXy9evUAANevX3dspYmIiKeXExHVdUuWLEGrVq3g5eWFsLAwtG7dWnoE1dmzZyGEQMuWLa1+9tbTjBs1amTXDdMuXLiAli1bSt9jdtttt0nzzf+PiIgol1y2bt263PKsTTcvc9u2bcjNzUVWVhby8/MRHR1dLs7aNABo1qyZ1embNm3CG2+8gYSEBBQWFkrTrV0r26RJE4v3gYGBAIDIyEir0+25droqdDpduVOL69WrZ/F9Z8+eRWZmJkJDQ60uIy0trdLv8fLyQuPGjS2m2bvcuLg4PPDAA5gzZw7ee+899O3bF8OGDcOjjz4KrVYLwNTeDRs2tPjBAii//ZjdWv9A+fXOz8/HvHnzsGLFCly+fNni2uTMzMxyn791meakszptV51tylwG8/enpaU5vK2XdfbsWRw/ftzmqei3bgfm+rLnWnEiIrLEpJuIqI7r3r07unXrZnWe0WiEQqHADz/8AJVKVW7+rclw2ZG6usLaOv3000+477770KdPHyxduhQRERFQq9VYsWIFvvzyy3Lx1uquoumikptRNWjQAMXFxcjOzi6XeFbE1veVZTQaERoaii+++MLqfHuuB9ZqteV+ULF3uQqFAuvXr8cvv/yC//3vf9i2bRueeOIJvPPOO/jll1+qNLpvTz0/++yzWLFiBaZMmYLY2FgEBgZCoVBgxIgRVm8cVtW2s6Wmtqmqfv+tjEYj+vfvj+nTp1ud36pVK4v35mQ/ODi4Rr6fiMiTMOkmIvJgLVq0gBACzZo1K/dHdnVERUXh+PHjMBqNFsnZH3/8Ic03/3/Xrl3IycmxSLbOnDlTbnnWppuXGRwcDF9fX+h0Ouh0Opw7d65cnLVptnzzzTfQ6XTYtm2bNPoKmB7jVRvatGkDwHQX87I3SquJUcYWLVpg586d6NWrV43+iOLocu+44w7ccccdePPNN/Hll19i5MiRWLNmDcaPH4+oqCjs3Lmz3I8Ot24/jli/fj1Gjx6Nd955R5pWUFBg80759nCkPWp6mwoNDa3Wtt6iRQvk5ORY3CG/IuanHZjPNiAiIvvxmm4iIg92//33Q6VSYc6cOeVG0IQQSE9Pr9JyBw8ejJSUFOlOz4DpjteLFy+Gn58f4uLipLji4mIsW7ZMijMYDFi8eLHF8iIiItC5c2esWrXKIklKTEzE9u3bMXjwYACm0cH4+Hh8++23uHLlihR37ty5ctcBV0SlUkGhUFg8ais5ORnffvut3cuojtjYWACmR2uVZb7DdnUSxeHDh8NgMOD1118vN6+4uLjKy7Z3uTdv3iy3rXXu3BkApFOuBw8eDIPBgA8++MAi7r333oNCobDrmuVbqVSqct+7ePHico9Tc4Svr6/d9VXT21R1t/Xhw4fj4MGD2LZtW7l5GRkZKC4utph25MgRBAYGol27dlUqLxGRJ+NINxGRB2vRogXeeOMNzJo1C8nJyRg2bBj8/f2RlJSEjRs34qmnnsK0adMcXu5TTz2F5cuXY8yYMThy5AiaNm2K9evX4+eff8aiRYuk0ct7770XvXr1wsyZM5GcnIy2bdtiw4YNVq+xXbBgAQYNGoTY2FiMGzdOemRYYGCgxbOqX331VWzfvh29evXChAkTpOStffv2SEhIsKv8Q4YMwbvvvouBAwfi0UcfRVpaGpYsWYLo6GgcP37c4fpwVPPmzdG+fXvs3LnT4vnV3t7eaNu2Lb7++mu0atUK9evXR/v27R16hFNcXByefvppzJs3DwkJCbj77ruhVqtx9uxZrFu3Du+//z4efPBBh8ts73JXrVqFpUuX4p///CdatGiB7OxsfPzxxwgICJB+PLn33nvxj3/8Ay+//DKSk5PRqVMnbN++Hd999x2mTJlicYMxe91zzz34/PPPERgYiLZt2+LgwYPYuXOn9PitqoiJicGyZcvwxhtvIDo6GqGhobjrrrusxjpjm6rOtv7iiy/i+++/xz333IMxY8YgJiYGubm5OHHiBNavX4/k5GSLU8l37NiBe++9l9d0ExFVhUvumU5ERE5nfvRRRY9mMvvmm2/EnXfeKXx9fYWvr69o06aNmDRpkjhz5owUExcXJ9q1a2f187c+MkwIIVJTU8XYsWNFcHCw0Gg0okOHDhaPADNLT08Xjz/+uAgICBCBgYHi8ccfF8eOHSv3yDAhhNi5c6fo1auX8Pb2FgEBAeLee+8Vp06dKrfMXbt2iS5dugiNRiNatGghPvnkE/HCCy8InU5nEQdATJo0yeo6ffrpp6Jly5ZCq9WKNm3aiBUrVojZs2dbfezYrctISkoSAMSCBQsspu/Zs0cAEOvWrbP6nWW9++67ws/Pr9xjpg4cOCBiYmKERqOxeHzY6NGjha+vb7nlWCuzEEJ89NFHIiYmRnh7ewt/f3/RoUMHMX36dHHlypUKy2Xre+xd7tGjR8UjjzwimjRpIrRarQgNDRX33HOPOHz4sMVysrOzxb/+9S/RsGFDoVarRcuWLcWCBQssHuMlhO02vPURWTdv3pS2Rz8/PzFgwADxxx9/lIuztd+Y227Pnj3StJSUFDFkyBDh7+8vAFT6+LDqbFPW1kkI+7d1a5/Nzs4Ws2bNEtHR0UKj0Yjg4GDRs2dPsXDhQqHX66W406dPS48fJCIixymEqKE7chAREcnYsGHDcPLkSZw9e9bVRbFLZmYmmjdvjvnz52PcuHGuLg65kZre1qdMmYIff/wRR44c4Ug3EVEV8JpuIiKqc/Lz8y3enz17Flu2bEHfvn1dU6AqCAwMxPTp07FgwQKrd9cmApy/raenp+OTTz7BG2+8wYSbiKiKONJNRER1TkREBMaMGYPmzZvjwoULWLZsGQoLC3Hs2DGbzyQnckfc1omI5I83UiMiojpn4MCB+Oqrr5CSkgKtVovY2FjMnTuXSQjVOdzWiYjkjyPdRERERERERE7Ca7qJiIiIiIiInIRJNxEREREREZGT8JpuBxmNRly5cgX+/v68iycREREREZHMCCGQnZ2Nhg0bQql0/Tgzk24HXblyBZGRka4uBhEREREREVXg0qVLaNy4sauLwaTbUf7+/gBMDRgQEODi0lBdI4RAUVERVKfnQ+nlBUW7meWDTr4NCCNEu5koKioCAKjVap55QUREREQEICsrC5GRkVLu5mpMuh1kTmwCAgKYdFON0+v1WLRoEfrUP4x/NNgD+HkDHV4pDTjxOpA0F+jwGvTe3li0aBEAYNasWdBoNK4pNBERERGRDMllUIpJN5EM/XgjDr1794HXif8gp0iJa02moNnVd4ET/wE6vGZKxPV6VxeTiIiIiIgqwaSbSKaMbV8CVCr863/52Jm1G8ujNuPuO1+zHPkmIiIiIiJZc/2t3IjItg6vICGvDQSUePnyZGS0mOHqEhERERERkQOYdBPJWMGxN3CtuB4A4FpxPby+eo2LS0RERERERI5g0k0kU8pTc3H52IcAALVKAQUEvjnfAD9uX+TaghERERERkd2YdBPJUJ/6++B1ag4uN54GAGge7IdHe0QBAL47dsF0F3MiIiIiIpI9Jt1EMqJUKtG2bVuEhjSAod2r+DvwfgBAo3re6NrEdJp5qrY7IAxSbNu2baFUclcmIiIiIpIj3r2cSEa8vLzw0EMPAXgIAPD31j8AAI3reSMsQAcASDU2BDo+Ai+gJJaIiIiIiOSKw2NEMnY5Ix+AKekOD9QCAFKyClxZJCIiIiIicgCTbiIZ+/umOen2QWjJSHd2QTHy9MWuLBYREREREdmJp5cTyYher8e8efMAALNmzcLfN/MAAI2CvOGv9YKPRoU8vQFpWYVoGGC0iNVoNC4rNxERERERWceRbiKZ0hcbkZpVCMB0erlCoZCu6+Yp5kRERERE7oFJN5FMXc00JdbeahXq+5pGscMCTNd1pzLpJiIiIiJyC0y6iWTq75KbqDUqGeUGUHoHcybdRERERERugUk3kUyVvXO5WWnSXeiSMhERERERkWOYdBPJ1OWbptFsa0k3r+kmIiIiInIPTLqJZOpypjnp9pGmma/pTmPSTURERETkFvjIMCIZUSqVaNmyJQDghPma7qDSke7wMqeXl41VKvn7GRERERGRHDHpJpIRLy8vPProowCAxfN2AbB9erlKpZJiiYiIiIhInjg8RiRDRQajdIfysqeXh5acXq4vNiIzv8glZSMiIiIiIvsx6SaSoRu5ehgFoFQADUqe0Q0AWi8V6vmoAfBmakRERERE7oCnlxPJiF6vx8KFC3HDoAPQGkE+GiiVCouYsAAdbuYV4XJ6DjZ89gEAYNq0adBoNFaWSERERERErsSRbiKZKSoqQk7JmeNBJaPaZUnP6s4uRFFREYqKeJo5EREREZFcMekmkqFCqAAA9XzKj16b72CellVYq2UiIiIiIiLHMekmkqFCYbryo57VkW7TzdRSs5l0ExERERHJHZNuIhkyJ91BVka6Q80j3Uy6iYiIiIhkj0k3kQwVwPZIt/n08lSeXk5EREREJHtMuolkSDq93Lf8SHeYNNLNR4YREREREckdk24iGVEoFIiKioLS2x+A9Rupma/pvp6jR2STKERFRUGhUJSLIyIiIiIi1+NzuolkRK1WY8yYMfh+6c9ATobV08vNo99GAQx96BE08NPWdjGJiIiIiMhOHOkmkqGMPNOzt63dSE2tUiLQ25SM38jV12q5iIiIiIjIMUy6iWToZp4pmbZ2ejkANCgZ7U5n0k1EREREJGtMuolkRK/XY/78BciQku7yp5cDQP2SpHvFl+uwYMEC6PVMvomIiIiI5IjXdBPJTEZeIQRMN0azdno5ADTwM03PKjQiz5BXa2UjIiIiIiLHcKSbSGYKSh4X5qtRQeNlfRet72u6eVq+4O9mRERERERyxqSbSGYKS05ACbJxajlQek13gbAdQ0RERERErsekm0hmCktGr4O8bSfU5mu6C3iFCBERERGRrLl90r1kyRI0bdoUOp0OPXr0wKFDh2zGrly5EgqFwuKl0+lqsbRElZOS7opGuv3MI91MuomIiIiI5Mytk+6vv/4aU6dOxezZs3H06FF06tQJAwYMQFpams3PBAQE4OrVq9LrwoULtVhiosrZd3q56ZpuJt1ERERERPLm1kn3u+++iyeffBJjx45F27Zt8eGHH8LHxwefffaZzc8oFAqEh4dLr7CwsFosMVHFFAoF1L5BAGw/oxsoPb28SKlFw4YNoVAoaqN4RERERETkILdNuvV6PY4cOYL4+HhpmlKpRHx8PA4ePGjzczk5OYiKikJkZCSGDh2KkydPVvg9hYWFyMrKsngROYtarUbT1u0AAPX9bF/6UPb08nHjxkOt5g3ViIiIiIjkyG2T7uvXr8NgMJQbqQ4LC0NKSorVz7Ru3RqfffYZvvvuO6xevRpGoxE9e/bE33//bfN75s2bh8DAQOkVGRlZo+tBdKuMvCIAQL0KTi83j4IbjAKZ+UW1Ui4iIiIiInKc2ybdVREbG4tRo0ahc+fOiIuLw4YNGxASEoLly5fb/MysWbOQmZkpvS5dulSLJSZPdDNPD6Di08s1Xkr460zXc6fn6mulXERERERE5Di3TbqDg4OhUqmQmppqMT01NRXh4eF2LUOtVqNLly44d+6czRitVouAgACLF5GzFBUV4c8LVwAA/tqKd0/zs7o/XLkaRUUc7SYiIiIikiO3Tbo1Gg1iYmKwa9cuaZrRaMSuXbsQGxtr1zIMBgNOnDiBiIgIZxWTyCFCCOQVm26KFuhd8Z3J65ecfp6eUwghhNPLRkREREREjnPr5w1NnToVo0ePRrdu3dC9e3csWrQIubm5GDt2LABg1KhRaNSoEebNmwcAeO2113DHHXcgOjoaGRkZWLBgAS5cuIDx48e7cjWILJgfGVbR6eUAUM/XfDM13kSNiIiIiEiu3Drpfvjhh3Ht2jX85z//QUpKCjp37oytW7dKN1e7ePEilMrSwfybN2/iySefREpKCurVq4eYmBgcOHAAbdu2ddUqEFnI1xtgKDkBpZ53xcl0fd/SO5gTEREREZE8uf1f65MnT8bkyZOtztu7d6/F+/feew/vvfdeLZSKqGoySu5EroARvlpVhbHm08uZdBMRERERyZfbXtNNVBfdLHlcmA4GKBSKCmPNN1IrAE8vJyIiIiKSKybdRDKSUfK4MK2iuNJYnl5ORERERCR/TLqJZORGyUi3v0ZR6Uh3fT9T0l2s0lUaS0RERERErsGkm0hGMgsMAICOrZpBra74tPHQAB/TP3T+lcYSEREREZFrMOkmkpEbuabTy82njlekQclI981cPYxGPqebiIiIiEiOmHQTyUi6A0m3OabYKJBVUOTUchERERERUdUw6SaSkevZBQCAk0d/QVFRxYm0UhihURgBAKkZeU4vGxEREREROY5JN5GMpOeYRrqLczMgRMWnjAshoIUpPj230OllIyIiIiIixzHpJpKRGyWPDNOh8keGlY27kcvTy4mIiIiI5IhJN5GM3CxJnnUK+5JoncKcdOudViYiIiIiIqo6Jt1EMlFsMCIj35x02zfS7V2SnKdl8/RyIiIiIiI5YtJNJBM388yj2wJaO08v91WYRrhTsgqcVCoiIiIiIqoOJt1EMmG+GZoWxVAq7PuMOem+ksGkm4iIiIhIjph0E8nEjZI7l/uqjAgMDIRCUXHmrVAoEOanBsCRbiIiIiIiuWLSTSQT6SU3Q4tuEoEpU6ZArVZXGK9WqzF53GMAgKuZhZU+YoyIiIiIiGofk24imTDfgTzYT2P3ZyICdQCA/CIDMvP52DAiIiIiIrlh0k0kE+aR7vq+9ifdOrUKDUrieV03EREREZH8MOkmkon0HNON1JLPnMTHH3+MoqKKR66Liorw8ccfQ12UAwC4kpHv9DISEREREZFjvFxdACIyMZ9eXpRzA1cKrlV6jbYQAleuXIGm2BuABlczmXQTEREREckNR7qJZMJ8erm3nc/oNpMeG5bJ08uJiIiIiOSGSTeRTJhHunWKqiXdV3l6ORERERGR7DDpJpIJ8zXdOoVjdyGXRrp5IzUiIiIiItlh0k0kAwajQEbJI78cH+k2fe4Kr+kmIiIiIpIdJt1EMnAzTw8hAIUC0Dp8TbdphDw1qwBGY8U3XyMiIiIiotrFu5cTyYD5eu5AbzX8vH3s/pyPjw90AlDqgSKDwPWcQoQG6JxVTCIiIiIichCTbiIZSM8xJd0NfDV48YUX7fqMRqPBiy+aYr+dtwtXMwtwOSOfSTcRERERkYzw9HIiGUjPNZ0i3sBXW6XPRwSaEu2rfGwYEREREZGsMOkmkoEL6XkAgIZBVRuljgjyBgBc4WPDiIiIiIhkhaeXE8nA2dRsAECLYB+sXLkSADBy5Eio1WqbnykqKsIXX3wBAAhv0A0AR7qJiIiIiOSGSTeRDJxNywEARIf64tDPFwAAQlR8J3IhBC5cMMU2an4nAOAqHxtGRERERCQrPL2cyMUMRoFz5qQ7xK9KywgvuXna5QyOdBMRERERyQlHuqsoV58LlV5VbrpKqYLOS2cRZ4tSoYS32rtKsXlFeTZHQhUKBXzUPlWKzS/Kh1EYbZbDV+NbpdiC4gIYjIYaifVR+0ChUAAACosLUWy0/VxrR2K91d5QKky/Q+kNehQZimokVuelg0qpshl78UY+CouN0HopERGokaYXGYpQpLe9XIVRIf07xN+0/CsZeVa3I62XFl5K0+5ebCxGYXGhzeVqVBqoVWqHYw1GAwqKbSf9apUaGpXG4VijMCK/yPYIviOxXkovaL1MN6sTQiCvKK9GYh3Z79lHWI9lH2G7j7AVW2Qogt6gtxlbdr93JJZ9BPsI9hFVi2UfYcI+wvFY9hGlaqqPqGhdXYFJdxU1fKchYOWeV4NbDsbmRzdL70MXhtrcyeKi4rB3zF7pfdP3m+J63nWrsd0adsNvT/4mvW+7pC0uZF6wGts2pC1OTjwpvb/949tx6topq7FRgVFInpIsve+zsg8OXzlsNTbYJxjXXrwmvR/0xSDsu7DPaqyP2ge5L5Vu7A+sfQBbzm6xGgsAYnbpjvr4xsex/tR6m7E5s3KknezpTU9j1e+rbMamTUtDiG8IAGDqtqlYenipzdik55PQNKgpAODlXS9j4cGFNmMTJySiXWg7AMDcn+Zizr45NmMPjT+E24K74JOfziM5dwfeT5hsMd/b0B2h+A+yDWfx6+XSpHvFsRV4dsezNpf73UPfSf8+nLoVAsG4lq1H4NwoGBTpFrFrH1yLh9o9BADYeHojhq8fbnO5K4auwJjOYwAA285twz1f3WMz9oNBH2BS90kAgJ8u/oR/rPqHzdj58fPxYi/TI86OXj2K7p90txk7O242Xu37KgDg9LXTaL+svc3YabHTsODuBQCAi5kX0ez9ZjZjJ3abiCVDlgAAruddR+jCUJuxozuNxsphKwGYDiZ+82yfhfBg2wex7qF10vuKYtlHmLCPKHVo/CHc3uh2AMD7v7yP6Tun24zdM3oP+jbtCwD46MhHmPzDZJuxmx7ZhCGthgAAvjjxBcZ+N9ZmLPsIE/YRJfPYR0jYR5iwjzBhH1Eyzx36CJmd/MnTy4mcrMgg8PTnh7Fo51l8/0sUfAw9LearjZGmOOWlKn+Ht0agUPmH6d8G2wchIiIiIiKqXQpR2d2ayEJWVhYCAwNx5doVBAQElJvPUz6sx3rqaWFCCExffwZbTqRI01RK4P0R7fGPNsEAgFnfnMb3v6fiuX7NMKF3M8x/ez4AYNr0aUD5KxgkCqMCC95eIMV+cuAi3ttxHr1b1seHj3e0iOVpYSY8LcyEfUTVYnnqqAn7CMdj2UeUYh/heCz7CBP2EY7HenIfkZWVhYYhDZGZmWk1Z6ttPL28inyLTK9yVLCoVasxZkoAZZ4I5UisTxEAWz+XKKoe610MwPa2DZSe/exQrK4YgO3jn2OxZcqrNQBa28c/x2K9YKoPABoDoKmoPeyM/eH0dWw5kQK1SoFPRt+O745cwobfr+LtLecwqFkDqJQKJKWZOsB29X2gEpAeE6Y2ApoK6levsIwd0qIB3ttxHr+evwnkFsNXU2ZDVAJXs/Nx/O9MKI1GKIuL0CHCH6H+2vILVkBK9r2MgFdF9VAmViUq2YZRtVhlTcZ6Qdo/FajBWEf2e/YRVmM9tY8AYPHjmiOxaiOgrmybUDoe68h+zz7Czlj2EaXYRzgeyz6iFPsI9hE2Ym/d7yv4bco1BDkkMzNTABCZgBDWXoMHW37Ax8d6HCBEXJxlbHCw7dhu3Sxjo6Jsx7Ztaxnbtq3t2Kgoy9hu3WzHBgdbxsbF2Y718bGMHTzYduytm+GDD1Ycm5NTGjt6dMWxaWmlsRMnVhyblFQaO21axbGJiaWxs2dbjSlWKEX/J5aIqBmbxMJtfwghhMh7e4Ho/OwXImrGJrG5dS9hgEK0+dd6ETVjk/irXkMh9uwpXe4HH1Rchk2bSmNXrBBGQMQ9+ZGImrFJ/NAq1iL2l0/Xi9b/3iKiZmySXm2nrBWbW/cqv9wVK0qXu2lTxWX44IPS2D17Ko6dP7809tChimNnzy6NTUysOHbatNLYpKSKYydOLI1NS6s4dvTo0ticnIpjH3zQchuuKJZ9hOnFPqL0dehQaez8+RXHVqOPqDB27drS2LVrK45lH2F6sY8wvdhHlL7YR5he7CNML/YRppeL+ohMQAAQmZmZQg54TTeRk2xqcyf+DIlCgFqB8b2bAwC8FQKPHzPd5GF59/txOTAU+RodNMVFaJKRUtHiKqUAEH/uVwDAjuge0vRjEa3wxDktCoqMaNrAB519DYi6eQW5Wh9MHDYLc/uORbGCXQERERERkTO4/TXdS5YswYIFC5CSkoJOnTph8eLF6N7d9o2k1q1bh1deeQXJyclo2bIl3n77bQwePNju7zNf0515xfo13VCpAF2Z25rnVnC7eqUS8PauWmxenul3HGsUCsDHp2qx+fmAsYLzOHx9qxZbUAAYKjjXy5FYHx9TuQGgsBAoruBcL0divb1N9QwAej1QVMF5KZXE5ukNGPTRb7hwswAvxLfEs/H/3969x0dR3f0D/+wlu0nIFXIjMQl3kDsEEgMiVvIyUNqK+ihSCkF9bLVgoSgCWgloNaC0PxQoqG3BegvQR7CP3EQgWH0CCCVCCERuCgoJ11wgkMvu9/dH2GE32U12k93sbPJ5v177SnbmzMyZc2Zm57vn7JkeStoLV65h+Ju5qDIJ0rp3wOfHLqFXVDts+c3Q2mNHd7OPU3V17bodMRoBvd4m7e7vS/DIP/IQHqDHvpnDkXe2DI9+dAhlN2owrGsH/H3KUPhrBDXXr+O1Hafwdm7t4G2DbwvBqz/tgV7RQYDBANzsto6amtpyc8Q6rclUW3eO+PnVpnc1rdlce6y5I61eX1tuQO05UeH491UupXXlvOc1wn7aNnaNsGF93ruStgnXCKfSunLe8xrhXFpeI27hNcL1tLxG1OI1wvW0bfgaUVZWhtBY9fym26eD7jVr1mDy5MlYuXIlUlJSsGTJEqxbtw6FhYWIiqo/hP///d//4a677kJWVhZ+9rOf4cMPP8SiRYvwn//8B337On6UgDUl6FZJBZI6PbP2G/zPf35AdIgR25+5G0FG2+ET5n58EB/tvTVa+YODb8OfHh6AmpoarF27FgDw8MMPQ6+3Xc6avbQ1JjOS/vg5Sq9Xo3fHEBScKwMAJCWG4x+PJaNdnXxsOnQOs9Z9g2tVJui0Gjx+Z2c8MaILgox6GPRalF2vxpGiMhw9V44fS64jyKhH+3YGhLcz4PaYYHSLClIGmHFGjcmMo0XluHC1EmXXq2tfN2oQGuCHLpHt0C0yCJHBRpfWSURERERkTW0xm08H3SkpKRg6dCiWLVsGADCbzYiPj8fTTz+NOXPm1Es/fvx4XLt2DZ9++qky7Y477sDAgQOxcuVKp7aptgok11kO+bqBXWWNCdcqTUrAWXcZswA6re0yVTVmnC25jisVVdBqNNBpNfjXN2fx9hcnodUAHz5xB+7o0qFeHi5ercT/2/YtdFoNokP88VDSbYgK8UdVVRWysrIAAHPnzoXB8s2rHY7Szsg+gA15ZwHU5vdn/Tvi5XF9EeLvZ3c9Z0uuY8H/HsbWw8UOt+XIbeEB+EnPKIzoHoFeMSGICw9QykhEcKG8EicvXsP+769gz6nL2P/dZVyramh0GyDYqEfXqCDc3jEEvTsG4/aOIegZE4xgB/m3qDaZcfVGDa5W2r7MZoG/nw7+floY9ToEGHQI8NMh2F+PdgY9tFr3BPgigmqToNpkhkYD+Om00Gs1XvkCQURgMgtMlr9mUY5Pvbb2L7/YICJqeSJS+4NTy/+obSA037w3qZ0nyjTLfNi8vzXd5n/cWgdqF7HZrvW8W9Ot/newvHWoIPWWs5pXbznb9dpMayD6qPvxVO89NI3Mb3j5uikaX17TyPyG82dPcz+CG1vemc/4xlI0uo1G1uDMPjaapBl5KC8rQ9fbolQTs/ns6OVVVVXYv38/5s6dq0zTarVIS0tDbm6u3WVyc3Mxc+ZMm2np6enYsGGDw+1UVlai0qpbTFlZmVP5O36+HAs3H3UqbVN446sSy4W+pbdpMguqasyoMplRbTKjukZQbTYjyKhHiL8fqmrMuFFjQo1J0M6og0GvRWX1rWnB/noEGPQoqajChfJKXLxaCZ1Wg9jQgJutqsAPV67jbMl1mKX2IhEfHoiYUH9oNcC50hs4V3oD1SYz2gca0CHIgACDHtcqa/D9pWuoNtkvkxlpPewG3AAQEWTEK/f380iZPXV3N5wtuYHBieGYnJqI2LCABtPHhgXgrUlDsONoMf746RGcvGjb9SihfSB6xQQjsUMgrlWZUFJRhYvlVcj7oQQ/XLmO93Z/j/d2fw8AMOi16NyhHbRaDb6/dA0VdgLsYH89EtoHIjTADyH+fgj21+PStSqcvHAVpy9XoLyyBnlnSpB3psRmOYNOi3ZGHdoZa4NlnVaDa1U1SqBdWdPQ8Jb2aTVAkFGP4Jv5MOq10N0MSrUaDfS62r+W46+qxlz//xozKm8em/ZOD4NOC71OAz+dFn46LQw6Dfz0tQG5n04Lg752uk6rgYigxiwwm2v/mswCs9U0kwhMJttgWnlZTTM7cZpa9lOnuRmI624F5DqN5b3WJlC3BOsa1J4nWqv/racDgFkA8838m8TqiwBz7c2kSWrnWfbLbK69oTSLwGTz/62bT61Go2xXa9m+1f9aDaC9WXe35lvmWf2vBXT1ltXY3HBaX+/EahrqTbNaRupfJ61voG8tZ3ULKvWnWS9jc0NsvRxws7xrC7y2DmpvQKzrBppb6ZS6upnGZpr19Jsr1Nw8R+oue2udtduxzrN1+d3av/r7X69cby5orwzqrrNu8NDQ+lFnuYbWX7ecHa//1s7ZO+dtbzQ19aZp7KSzvnG0TLdeTb2bfk3dtFbHQZ1llCXrrNd6vr312G7PTloHy9zanqbevjrKm3Js2cmnpR6dCTjN5jrHgJ3lbNd1aznUWbdNwGsnCG4oeL517NkJnomoRZgrG+jO7wU+G3RfvHgRJpMJ0dHRNtOjo6Nx9Kj9YLeoqMhu+qIixwNYZWVlYcGCBS7nr6SiGp8fOe/yctQyqk2Ckxev1QswgdoPxdOXK3D6cv2T9dK1Kly6Zvubp0CDDuGBBogIrlbWYHBiOO4fFIdfDIj1WP4b0jMmGGufTHV5uXt6ReOeXtGoMdUGlTeqzTDqtfW6pFtUVNUg98Ql7Cw8j69PXcGpS9dQVWNGYXG5kkarAeLCA9CnYyhSurRHSucO6BkTXK/HgEVljQmnL1WgsLgcR86V4ci52r/nSm/UBroVZlypaPgZEP5+WgQZ/RBk1CHIXw+dRoMb1WZcrzbhxs1XRZWpNpAVoOxGDcpuNPQMmOapMplR+91Dwy38Lc0SABMRkW+yfMlS74sxwOZbm/pffjj+ksf6C566X9jYS2f/C6X669DYWZmjltD6X05II/PrpqjfSGTv065+q3/jy9Sd2Nh2G1m80TzZLtvIuhtctrENNzbbcYLGvkxqfJ8bWHejyzaSQEV8NuhuKXPnzrVpHS8rK0N8fHyjyyV0CMTCBzzTkmnRUr1DReq3cLQkvU4Dg04HP50GBr0Whputglcra1B2o7q2y7CfDlqtBtcqa1BVUxss+vvplHQVVSaEBfghMtiIiGAjakxmnC25gQtXKyEi6BgagE4RgWgfaMCVimqcuHAVF69WwmSundcx1B/+fjpculaJi+VVuF5tQqBBh8QOgYgLC2hVXXX1Oi30Oi0CHfdsBwAEGvQYdXs0Rt1e+0WWySz48cp1nLh4FSKCxA7tEB8eWK+rfkOMeh26Rweje3Qwftb/1pcW5TeqUX6jBtcqa1BeWfu3xiwINuoRdLObeLC/Hu2MevjpGt+eiKCyxqz8przs5vqra8w3g3HrVmNRWqQNei2MVv9bjsdb83TK/io9M6x6Z1j+t8yrudkdverm/zotbFrYbVqj606ztEhrG5+m1WiU1mWTSVBjNsNk1Zpe+9esvLeZZ7K8N9u0OttraVJaeFDbkmzd8qzT1t6IWfKn0dxMo721X9atzrV5v7WMRnNrG+ab2zXLrRZx63m170VpbTc5mm+2nWZ7c6ip12pYt5VPY3VBtL7xtZ5vc0NrZ5pGU/e9ktrmhtp6vgaaWy3hqNsyaz391jzzzYnWrXt1l7dtmWtkvVYteI5aTBvbrwbLVSkvxy2y1uuB1XL11m/zvvHyrZv/uvmy9Aywl86mxbxOV13r/+11t7XW0HrqtfjbpHeUtk4PgLp5sZO+7rbtbdf6H3s9B6yXqbtue3m1t13rnhuW+qvXA8PmvaWXhnXPDet1aGzq3vp/bd1zVGO9HksvktoVWparOx+ove5Zn69aDWzO/7rLQVO/V4mlF4nttm17FxGRY2VlZQhd4u1c3OKzQXdERAR0Oh2Ki21/h1pcXIyYmBi7y8TExLiUHgCMRiOMlpEHXRAV7I9HkhNcXo5aTmKHdnanRwYbERlsv84jg42A48OlTdNpNUjoEIiEDoGNJ3ZRbffvhn/T7QqNRnPzd946RHnoZz4B0HlmxURERETkU3z24bwGgwFJSUnYvn27Ms1sNmP79u1ITbXftTY1NdUmPQBs27bNYXoiIiIiIiKi5vDZlm4AmDlzJjIyMjBkyBAkJydjyZIluHbtGh599FEAwOTJkxEXF6eM8Dx9+nSMHDkSf/rTnzB27FhkZ2dj3759ePvtt53epqVblbMDqhG5oqqqCjduPneyrKys0dHLnU1LRERERNRWWGI11TyoS3zc0qVLJSEhQQwGgyQnJ8vu3buVeSNHjpSMjAyb9GvXrpUePXqIwWCQPn36yMaNG13a3okTJwQ3f3rEF1988cUXX3zxxRdffPHFlzpfJ06ccEfI2Ww+/ZxubygpKUF4eDhOnz6N0NBQb2eHnGAZ/O7MmTOqeE4fOYf15ptYb76HdeabWG++h3Xmm1hvvqm0tBQJCQm4cuUKwsLCvJ0d3+5e7g1abe3P4ENDQ3ni+ZiQkBDWmQ9ivfkm1pvvYZ35Jtab72Gd+SbWm2+yxG7epo5cEBEREREREbVCDLqJiIiIiIiIPIRBt4uMRiMyMzOb9Oxu8g7WmW9ivfkm1pvvYZ35Jtab72Gd+SbWm29SW71xIDUiIiIiIiIiD2FLNxEREREREZGHMOgmIiIiIiIi8hAG3UREREREREQewqCbiIiIiIiIyEMYdLtg+fLl6NSpE/z9/ZGSkoK9e/d6O0ttxvz586HRaGxevXr1UubfuHEDU6dORYcOHRAUFIQHH3wQxcXFNus4ffo0xo4di8DAQERFRWHWrFmoqamxSZOTk4PBgwfDaDSiW7duWL16dUvsXqvxxRdf4Oc//zliY2Oh0WiwYcMGm/kignnz5qFjx44ICAhAWloajh07ZpPm8uXLmDhxIkJCQhAWFobHH38cV69etUlz8OBBjBgxAv7+/oiPj8drr71WLy/r1q1Dr1694O/vj379+mHTpk1u39/WoLE6mzJlSr1zb/To0TZpWGctKysrC0OHDkVwcDCioqIwbtw4FBYW2qRpyWsiPxud40y93X333fXOtyeffNImDeutZa1YsQL9+/dHSEgIQkJCkJqais2bNyvzea6pT2N1xvPMNyxcuBAajQYzZsxQpvn0+SbklOzsbDEYDPL3v/9dDh8+LE888YSEhYVJcXGxt7PWJmRmZkqfPn3k3LlzyuvChQvK/CeffFLi4+Nl+/btsm/fPrnjjjtk2LBhyvyamhrp27evpKWlyYEDB2TTpk0SEREhc+fOVdKcPHlSAgMDZebMmVJQUCBLly4VnU4nW7ZsadF99WWbNm2SF154QT7++GMBIOvXr7eZv3DhQgkNDZUNGzbIN998I7/4xS+kc+fOcv36dSXN6NGjZcCAAbJ7927597//Ld26dZMJEyYo80tLSyU6OlomTpwo+fn58tFHH0lAQIC89dZbSpqvvvpKdDqdvPbaa1JQUCB/+MMfxM/PTw4dOuTxMvA1jdVZRkaGjB492ubcu3z5sk0a1lnLSk9Pl1WrVkl+fr7k5eXJT3/6U0lISJCrV68qaVrqmsjPRuc5U28jR46UJ554wuZ8Ky0tVeaz3lrev/71L9m4caN8++23UlhYKM8//7z4+flJfn6+iPBcU6PG6oznmfrt3btXOnXqJP3795fp06cr0335fGPQ7aTk5GSZOnWq8t5kMklsbKxkZWV5MVdtR2ZmpgwYMMDuvJKSEvHz85N169Yp044cOSIAJDc3V0RqAwutVitFRUVKmhUrVkhISIhUVlaKiMhzzz0nffr0sVn3+PHjJT093c170zbUDeDMZrPExMTI66+/rkwrKSkRo9EoH330kYiIFBQUCAD5+uuvlTSbN28WjUYjP/74o4iI/OUvf5Hw8HCl3kREZs+eLT179lTeP/zwwzJ27Fib/KSkpMhvfvMbt+5ja+Mo6L7vvvscLsM6877z588LANm1a5eItOw1kZ+NTVe33kRqgwHrG8y6WG/qEB4eLn/96195rvkQS52J8DxTu/Lycunevbts27bNpq58/Xxj93InVFVVYf/+/UhLS1OmabVapKWlITc314s5a1uOHTuG2NhYdOnSBRMnTsTp06cBAPv370d1dbVN/fTq1QsJCQlK/eTm5qJfv36Ijo5W0qSnp6OsrAyHDx9W0livw5KGdewep06dQlFRkU0Zh4aGIiUlxaaewsLCMGTIECVNWloatFot9uzZo6S56667YDAYlDTp6ekoLCzElStXlDSsS/fJyclBVFQUevbsiaeeegqXLl1S5rHOvK+0tBQA0L59ewAtd03kZ2Pz1K03iw8++AARERHo27cv5s6di4qKCmUe6827TCYTsrOzce3aNaSmpvJc8wF168yC55l6TZ06FWPHjq1Xvr5+vumbvGQbcvHiRZhMJpsKBIDo6GgcPXrUS7lqW1JSUrB69Wr07NkT586dw4IFCzBixAjk5+ejqKgIBoMBYWFhNstER0ejqKgIAFBUVGS3/izzGkpTVlaG69evIyAgwEN71zZYytleGVvXQVRUlM18vV6P9u3b26Tp3LlzvXVY5oWHhzusS8s6yHmjR4/GAw88gM6dO+PEiRN4/vnnMWbMGOTm5kKn07HOvMxsNmPGjBkYPnw4+vbtCwAtdk28cuUKPxubyF69AcAvf/lLJCYmIjY2FgcPHsTs2bNRWFiIjz/+GADrzVsOHTqE1NRU3LhxA0FBQVi/fj169+6NvLw8nmsq5ajOAJ5napadnY3//Oc/+Prrr+vN8/XPNgbd5BPGjBmj/N+/f3+kpKQgMTERa9euZTBM5EGPPPKI8n+/fv3Qv39/dO3aFTk5ORg1apQXc0ZAbYtAfn4+vvzyS29nhVzgqN5+/etfK//369cPHTt2xKhRo3DixAl07dq1pbNJN/Xs2RN5eXkoLS3FP//5T2RkZGDXrl3ezhY1wFGd9e7dm+eZSp05cwbTp0/Htm3b4O/v7+3suB27lzshIiICOp2u3uh4xcXFiImJ8VKu2rawsDD06NEDx48fR0xMDKqqqlBSUmKTxrp+YmJi7NafZV5DaUJCQhjYu4GlnBs6j2JiYnD+/Hmb+TU1Nbh8+bJb6pLna/N16dIFEREROH78OADWmTdNmzYNn376KXbu3InbbrtNmd5S10R+NjaNo3qzJyUlBQBszjfWW8szGAzo1q0bkpKSkJWVhQEDBuCNN97guaZijurMHp5n6rB//36cP38egwcPhl6vh16vx65du/Dmm29Cr9cjOjrap883Bt1OMBgMSEpKwvbt25VpZrMZ27dvt/l9CLWcq1ev4sSJE+jYsSOSkpLg5+dnUz+FhYU4ffq0Uj+pqak4dOiQTXCwbds2hISEKN2NUlNTbdZhScM6do/OnTsjJibGpozLysqwZ88em3oqKSnB/v37lTQ7duyA2WxWPhRTU1PxxRdfoLq6Wkmzbds29OzZE+Hh4Uoa1qVn/PDDD7h06RI6duwIgHXmDSKCadOmYf369dixY0e9rvstdU3kZ6NrGqs3e/Ly8gDA5nxjvXmf2WxGZWUlzzUfYqkze3ieqcOoUaNw6NAh5OXlKa8hQ4Zg4sSJyv8+fb41eQi2NiY7O1uMRqOsXr1aCgoK5Ne//rWEhYXZjI5HnvPMM89ITk6OnDp1Sr766itJS0uTiIgIOX/+vIjUPkIgISFBduzYIfv27ZPU1FRJTU1Vlrc8QuDee++VvLw82bJli0RGRtp9hMCsWbPkyJEjsnz5cj4yzEXl5eVy4MABOXDggACQP//5z3LgwAH5/vvvRaT2kWFhYWHyySefyMGDB+W+++6z+8iwQYMGyZ49e+TLL7+U7t272zx+qqSkRKKjo2XSpEmSn58v2dnZEhgYWO/xU3q9XhYvXixHjhyRzMxMPn7KgYbqrLy8XJ599lnJzc2VU6dOyeeffy6DBw+W7t27y40bN5R1sM5a1lNPPSWhoaGSk5Nj88ibiooKJU1LXRP52ei8xurt+PHj8tJLL8m+ffvk1KlT8sknn0iXLl3krrvuUtbBemt5c+bMkV27dsmpU6fk4MGDMmfOHNFoNPLZZ5+JCM81NWqoznie+Za6I8378vnGoNsFS5culYSEBDEYDJKcnCy7d+/2dpbajPHjx0vHjh3FYDBIXFycjB8/Xo4fP67Mv379uvz2t7+V8PBwCQwMlPvvv1/OnTtns47vvvtOxowZIwEBARIRESHPPPOMVFdX26TZuXOnDBw4UAwGg3Tp0kVWrVrVErvXauzcuVMA1HtlZGSISO1jw1588UWJjo4Wo9Eoo0aNksLCQpt1XLp0SSZMmCBBQUESEhIijz76qJSXl9uk+eabb+TOO+8Uo9EocXFxsnDhwnp5Wbt2rfTo0UMMBoP06dNHNm7c6LH99mUN1VlFRYXce++9EhkZKX5+fpKYmChPPPFEvQ8d1lnLsldfAGyuVy15TeRno3Maq7fTp0/LXXfdJe3btxej0SjdunWTWbNm2Tw/WIT11tIee+wxSUxMFIPBIJGRkTJq1Cgl4BbhuaZGDdUZzzPfUjfo9uXzTSMi0vR2ciIiIiIiIiJyhL/pJiIiIiIiIvIQBt1EREREREREHsKgm4iIiIiIiMhDGHQTEREREREReQiDbiIiIiIiIiIPYdBNRERERERE5CEMuomIiIiIiIg8hEE3ERERERERkYcw6CYiIiIiIiLyEAbdRERERERERB7CoJuIiIiIiIjIQxh0ExEREREREXkIg24iIiIiIiIiD2HQTUREREREROQhDLqJiIiIiIiIPIRBNxEREREREZGHMOgmIiIiIiIi8hAG3URERNRkU6ZMQadOnVxerlOnTpgyZYrb80NERKQ2DLqJiIjcYPXq1dBoNA5fu3fv9nYWG1RRUYH58+cjJyfHK9svKCjA/Pnz8d1333ll+0RERJ6i93YGiIiIWpOXXnoJnTt3rje9W7duXsiN8yoqKrBgwQIAwN133+30cu+88w7MZrPL2yssLIRWe+u7/4KCAixYsAB33313k1rOiYiI1IpBNxERkRuNGTMGQ4YM8XY2PO7atWto164d/Pz8mrS80Wh0c46IiIjUid3LiYiIWpDZbMYbb7yBfv36wd/fH5GRkRg9ejT27dtnk+79999HcnIyAgMDER4ejrvuugufffaZTZrNmzdjxIgRaNeuHYKDgzF27FgcPnzYJs2UKVMQFBSEH3/8EePGjUNQUBAiIyPx7LPPwmQyAQC+++47REZGAgAWLFigdImfP3++zTpOnDiBn/70pwgODsbEiROVeXVbpp3ZR+vfdK9evRoPPfQQAOAnP/mJsv2cnBxkZGQgIiIC1dXV9cry3nvvRc+ePV0ofSIiopbHoJuIiMiNSktLcfHiRZvXpUuXlPmPP/44ZsyYgfj4eCxatAhz5syBv7+/zW++FyxYgEmTJsHPzw8vvfQSFixYgPj4eOzYsUNJ895772Hs2LEICgrCokWL8OKLL6KgoAB33nlnvd9Fm0wmpKeno0OHDli8eDFGjhyJP/3pT3j77bcBAJGRkVixYgUA4P7778d7772H9957Dw888ICyjpqaGqSnpyMqKgqLFy/Ggw8+6LAMnNlHa3fddRd+97vfAQCef/55Zfu33347Jk2ahEuXLmHr1q02yxQVFWHHjh341a9+1VB1EBEReZ8QERFRs61atUoA2H0ZjUYREdmxY4cAkN/97nf1ljebzSIicuzYMdFqtXL//feLyWSym6a8vFzCwsLkiSeesJlfVFQkoaGhNtMzMjIEgLz00ks2aQcNGiRJSUnK+wsXLggAyczMrJc3yzrmzJljd15iYqLy3pl9FBFJTEyUjIwM5f26desEgOzcudNmGZPJJLfddpuMHz/eZvqf//xn0Wg0cvLkyXrbISIiUhP+ppuIiMiNli9fjh49ethM0+l0AID/+Z//gUajQWZmZr3lNBoNAGDDhg0wm82YN2+ezUBj1mm2bduGkpISTJgwARcvXrTZTkpKCnbu3Flv/U8++aTN+xEjRuC9995zad+eeuqpRtM4s4+u0Gq1mDhxIt58802Ul5cjODgYAPDBBx9g2LBhdgetIyIiUhMG3URERG6UnJzscCC1EydOIDY2Fu3bt3e4/IkTJ6DVatG7d2+HaY4dOwYAuOeee+zODwkJsXlv+V21tfDwcFy5csXhNurS6/W47bbbGk3nzD66avLkyVi0aBHWr1+PyZMno7CwEPv378fKlSvdtg0iIiJPYdBNRETkYyyP6HrvvfcQExNTb75eb/vxbmlpbw6j0Viv5b2l9O7dG0lJSXj//fcxefJkvP/++zAYDHj44Ye9kh8iIiJXMOgmIiJqIV27dsXWrVtx+fJlhy3BXbt2hdlsRkFBAQYOHOgwDQBERUUhLS3NLXlrStdve5zZx6Zsf/LkyZg5cybOnTuHDz/8EGPHjkV4eHhzs0tERORxHL2ciIiohTz44IMQESxYsKDePBEBAIwbNw5arRYvvfSS0qJdN016ejpCQkLw6quv2n2U1oULF1zOW2BgIACgpKTE5WWtObOP9rRr167B7U+YMAEajQbTp0/HyZMnOWo5ERH5DLZ0ExERudHmzZtx9OjRetOHDRuGn/zkJ5g0aRLefPNNHDt2DKNHj4bZbMa///1v/OQnP8G0adPQrVs3vPDCC3j55ZcxYsQIPPDAAzAajfj6668RGxuLrKwshISEYMWKFZg0aRIGDx6MRx55BJGRkTh9+jQ2btyI4cOHY9myZS7lOyAgAL1798aaNWvQo0cPtG/fHn379kXfvn1dWo8z+2jPwIEDodPpsGjRIpSWlsJoNOKee+5BVFQUACjP+l63bh3CwsIwduxYl/JFRETkLQy6iYiI3GjevHl2p69atQpdunTBqlWr0L9/f/ztb3/DrFmzEBoaiiFDhmDYsGFK2pdeegmdO3fG0qVL8cILLyAwMBD9+/fHpEmTlDS//OUvERsbi4ULF+L1119HZWUl4uLiMGLECDz66KNNyvtf//pXPP300/j973+PqqoqZGZmuhx0W/a1sX2sKyYmBitXrkRWVhYef/xxmEwm7Ny5Uwm6gdou5p9++ikefvhhGI3GJu0jERFRS9NIQ329iIiIiFTik08+wbhx4/DFF19gxIgR3s4OERGRUxh0ExERkU/42c9+hiNHjuD48eNuG/iNiIjI09i9nIiIiFQtOzsbBw8exMaNG/HGG28w4CYiIp/Clm4iIiJSNY1Gg6CgIIwfPx4rV66s9xxyIiIiNeOnFhEREaka2weIiMiX8TndRERERERERB7CoJuIiIiIiIjIQ9i93EVmsxlnz55FcHAwB3IhIiIiIiJSGRFBeXk5YmNjodV6v52ZQbeLzp49i/j4eG9ng4iIiIiIiBpw5swZ3Hbbbd7OBoNuVwUHBwOorcCQkBAv54aIiIiIiIislZWVIT4+XondvI1Bt4ssXcpDQkIYdBMREREREamUWn4O7P0O7kRERESkSp3mbFT+Wv9v72/d/4mIqJZG+PBLl5SVlSE0NBSlpaVs6SYiIiKfUDcY/m7h2GYHyK6sw5L2u4Vjm7VNIiJnqC1mU3XQvXz5crz++usoKirCgAEDsHTpUiQnJ9tN+8477+Af//gH8vPzAQBJSUl49dVXbdJPmTIF7777rs1y6enp2LJli9N5UlsFEhERkW+zBKPWfxvijoDZ2xiEE5EnqS1mU23QvWbNGkyePBkrV65ESkoKlixZgnXr1qGwsBBRUVH10k+cOBHDhw/HsGHD4O/vj0WLFmH9+vU4fPgw4uLiANQG3cXFxVi1apWynNFoRHh4uNP5UlsFEhERkfo5G1CrTUNfBrh7fxiAE5G7qC1mU23QnZKSgqFDh2LZsmUAap+PHR8fj6effhpz5sxpdHmTyYTw8HAsW7YMkydPBlAbdJeUlGDDhg1NzpfaKpCIiIjUyV5A6u3A21uBrSv7zFZwImoutcVsqhy9vKqqCvv378fcuXOVaVqtFmlpacjNzXVqHRUVFaiurkb79u1tpufk5CAqKgrh4eG455578Mc//hEdOnRwa/6JiIio7XEmsHS263hrCzzr7kdD5WBvgLbWUg5E1DapMui+ePEiTCYToqOjbaZHR0fj6NGjTq1j9uzZiI2NRVpamjJt9OjReOCBB9C5c2ecOHECzz//PMaMGYPc3FzodDq766msrERlZaXyvqysrAl7RERERK2Rq63WzgSPljStOdB0JQi3nt+ay4SIWi9VBt3NtXDhQmRnZyMnJwf+/v7K9EceeUT5v1+/fujfvz+6du2KnJwcjBo1yu66srKysGDBAo/nmYiIiHyLMwE3g0TnOBuEM/gmIl+kyqA7IiICOp0OxcXFNtOLi4sRExPT4LKLFy/GwoUL8fnnn6N///4Npu3SpQsiIiJw/Phxh0H33LlzMXPmTOV9WVkZ4uPjndwTIiIiam2c6SJOzWMpw8aCb+u0RERqpcqg22AwICkpCdu3b8e4ceMA1A6ktn37dkybNs3hcq+99hpeeeUVbN26FUOGDGl0Oz/88AMuXbqEjh07OkxjNBphNBpd3gciIiJqPRoKtBn0eY512bL1m4h8lWpHL1+zZg0yMjLw1ltvITk5GUuWLMHatWtx9OhRREdHY/LkyYiLi0NWVhYAYNGiRZg3bx4+/PBDDB8+XFlPUFAQgoKCcPXqVSxYsAAPPvggYmJicOLECTz33HMoLy/HoUOHnA6s1TYSHhEREXkGW7TVi3VDRA1RW8ymypZuABg/fjwuXLiAefPmoaioCAMHDsSWLVuUwdVOnz4NrVarpF+xYgWqqqrwX//1XzbryczMxPz586HT6XDw4EG8++67KCkpQWxsLO699168/PLLbMkmIiIiBQM69XO2+znriojUQLUt3Wqltm9NiIiIyD0YbPsu1h0RWVNbzMag20Vqq0AiIiJqHv5eu3VhAE5EaovZGHS7SG0VSERERE3nKEBjYObb+Dg3orZNbTEbg24Xqa0CiYiIyHVs3W47GIATtT1qi9kYdLtIbRVIREREzmG347bNenA19nAgat3UFrMx6HaR2iqQiIiIGsZWbbLmTMu3BY8PIt+ktpiNQbeL1FaBRERE5BgDbnKEwTdR66W2mI1Bt4vUVoFERERUH7sPU1Pw999ErYPaYjYG3S5SWwUSERFRbbBk77e6lmkMlMgVDL6JfJvaYjYG3S5SWwUSERG1Vc52D2ZwRE3FY4zIN6ktZmPQ7SK1VSAReU7dljPrFjO2nBF5DwMh8haOgE/kG9QWszHodpHaKpCIms6Zx8c0FW+8iNyHA16R2rD7OZG6qS1mY9DtIrVVIBE1zt0BtSvYKk7UNK6etzzHyFvY+k2kPmqL2Rh0u0htFUhE9rkj0K7bAm594+Rqy1vd9TAQJ7LFIJt8HYNvIvVQW8zGoNtFaqtAorbMXYG1uzUlX7wZo7aoqecwzxdSM2eCb37xSuRZaovZGHS7SG0VSNSWNOcG3Vs3OI4eY+QIb8KoLWCrNrUV9no5WeOxTeQZaovZGHS7SG0VSNTauBqk2qP2mxgGHNTWOHp2tiM85qm1YddzopaltpiNQbeL1FaBRL5Mrd3DWxqDcGqN2MuDqD5+2UTUMtQWszHodpHaKpDIVzDAdg5/D06+jo/3Imqco/OEv/cmcg+1xWwMul2ktgokUhN3PpqLNxzNK0/euFFLc/a59zwmiW5ht3Miz1BbzMag20Vqq0Aib2vNv71WI3cE4tb/sw6ouRg0EDUfv6gici+1xWwMul2ktgokakkMsNXHnb0LLFhX5Axnjj0eS0SuYfBN5B5qi9kYdLtIbRVI1FKcGRSJrafe547R3xvCum3b7B1XdY83HiNEzdfQb76J2hrrextHvfbqTjv4/AhVxWwMul3EoJvaCo443Pq4+zf3/IKlbWELHFHL4k83qC1o7Fn21lxpVDBXVuDMkodVE7Mx6HYRg25qC/hB3/Y0NyBnEN56Mdgm8i57PUmsW/WIfIWne+NZY9Dt4xh0U2vGm2uy5sq3z/bwmPFtvB4QqQvPSfI1LRFcO8Kg28cx6KbWhq3a5CpXfnrA1m/fw2sCkbo5ai3kuUlqoJZBd9UWszHodpHaKpCoqex9WHMwJHKVMwEau0H6BgbbRL6Drd6kFk3pBdcSX8irLWZj0O0itVUgkasa+j0NP6ipuTgAn2+qO+qrNdYVkXox+CZvcCXQ9tZxqLaYjUG3i9RWgUSu4CNIqCU11pvCMo28gy3bRK0Hg2/yNF8ItK2pLWZTddC9fPlyvP766ygqKsKAAQOwdOlSJCcn2037zjvv4B//+Afy8/MBAElJSXj11Vdt0osIMjMz8c4776CkpATDhw/HihUr0L17d6fzpLYKJHIGP4zJm5x5trNlGnkeg22i1ouf9+RuvtqDTW0xm2qD7jVr1mDy5MlYuXIlUlJSsGTJEqxbtw6FhYWIioqql37ixIkYPnw4hg0bBn9/fyxatAjr16/H4cOHERcXBwBYtGgRsrKy8O6776Jz58548cUXcejQIRQUFMDf39+pfKmtAokawg9fUhNf/eBuLRrq6cLf3RO1Hg31MuI5Ts5oDZ/XaovZVBt0p6SkYOjQoVi2bBkAwGw2Iz4+Hk8//TTmzJnT6PImkwnh4eFYtmwZJk+eDBFBbGwsnnnmGTz77LMAgNLSUkRHR2P16tV45JFHnMqX2iqQyB4G26R2bG1tGa3hxomImobXWXKFr3Ufb4zaYja9tzNgT1VVFfbv34+5c+cq07RaLdLS0pCbm+vUOioqKlBdXY327dsDAE6dOoWioiKkpaUpaUJDQ5GSkoLc3FyHQXdlZSUqKyuV92VlZU3ZJaIWwWCbfIXleHT0LHB2PW8eBttEZO86a42t322XK08esbyn5lFl0H3x4kWYTCZER0fbTI+OjsbRo0edWsfs2bMRGxurBNlFRUXKOuqu0zLPnqysLCxYsMCV7BN5BQdJI19kfXw2dBPAD//GNfalG2+widomR08sseC1oW1wpSW7JR7p1daoMuhuroULFyI7Oxs5OTlO/1bbkblz52LmzJnK+7KyMsTHxzc3i0Ruxcd/UWvQUKsMW8Fvaeyxf/am8waKqG1rrNXbel5LPUeZPKuhzwpHWOeeo8rfdFdVVSEwMBD//Oc/MW7cOGV6RkYGSkpK8MknnzhcdvHixfjjH/+Izz//HEOGDFGmnzx5El27dsWBAwcwcOBAZfrIkSMxcOBAvPHGG07lTW2/D6C2ja3b1Jq5cqNQlzvOgcYGHnP1ZsZV7lo/rwdEVJer1xZeR9StqZ8VrfkLFrXFbKoMuoHagdSSk5OxdOlSALUDqSUkJGDatGkOB1J77bXX8Morr2Dr1q244447bOZZBlJ79tln8cwzzwCorYyoqCgOpEY+hQOjUFvkKMj1dOCrdg21eBMROcvZayuvLd7nji9920I9qi1mU23QvWbNGmRkZOCtt95CcnIylixZgrVr1+Lo0aOIjo7G5MmTERcXh6ysLAC1jwObN28ePvzwQwwfPlxZT1BQEIKCgpQ0CxcutHlk2MGDB/nIMPIp/BAkal4ruCc403WzKetkt0AiaklsAVeX5rZg153WlqgtZlNt0A0Ay5Ytw+uvv46ioiIMHDgQb775JlJSUgAAd999Nzp16oTVq1cDADp16oTvv/++3joyMzMxf/58ALWt3ZmZmXj77bdRUlKCO++8E3/5y1/Qo0cPp/OktgqktoHdyInsc2UE1sZGTFcz3kARUUtjAN5yrFuv7Y0c7soYHtbz2zK1xWyqDrrVSG0VSK0bL6ZErvNEa7N1wM5zj4jakoYCPgZ+TefuzyqypbaYjUG3i9RWgdQ68QOMiIiI1KaxASYb0lbvXxpqxW6KtlqOrlJbzMag20Vqq0BqXRhsExERkS9g8OiYs2XTUBDemsunJagtZmPQ7SK1VSC1HrzoEhERka9ydYyN1jYwLL+EUBe1xWwMul2ktgok38fWbSIiImptXAnCG0qjVgyy1U1tMRuDbheprQLJN/nyhwwRERGRKxprYHAmgPXmvZE7Bj3jvV3LUlvMxqDbRWqrQPItjQ1AwgsyERERtWbuHlgMcG9A60q+WmM3+dZCbTEbg24Xqa0CyTeo/RtcIiIiIm9y5yO0rLlrxPDGgnHex6mL2mI2Bt0uUlsFkrox2CYiIiJyTUMBrrtaxxvDZ5D7NrXFbAy6XaS2CiT1YaBNRERE5F6eDLR9fVA3qk9tMRuDbheprQJJPRhsExEREbU8d7aI816tdVBbzKb3dgaIfF1jz5y0zCMiIiIi97N3n+VowDbek5E3sKXbRWr71oS8g63aRERERETqpLaYjS3dRC5gsE1ERERERK5g0E3kBA6uQURERERETaH1dgaI1KzTnI31Au66ATYDbiIiIiIicoRBdxP1zdzq7SyQhzlq3bYeiIMBNxERERERNYTdy5uBoyC2Tg11JWddExERERGRKxh0uwGDb9/X2PMdWbdERERERNQU7F7uRvZ+/0vqZ11n1sG15bmODLiJiIiIiKip+JxuF9V95htHtfZtjuqP9UZERERE5JvU9pxuBt0usleB1l2QGcSpH3+zTURERETUejHo9nENVaAzXcsZ1HkPeyUQEREREbV+DLp9nLMVyABPPVgXRERERERth9qCbg6k5iF1A7m67zngmuc5GtjOui4YcBMRERERkSexpdtFTf3WhL8jbjmWUcdZ5kREREREbY/aWroZdLuoORXI33x7Vt3y5XO2iYiIiIjaHgbdPs4dFcjg2/3Yqk1ERERERACDbp/nzgpk8N10znQhB1h+RERERERtDYNuH+eJCnR2UDUGkA13Ia87nYiIiIiI2h61Bd2qHr18+fLl6NSpE/z9/ZGSkoK9e/c6THv48GE8+OCD6NSpEzQaDZYsWVIvzfz586HRaGxevXr18uAeOOe7hWOdChIto3G3tZHPG9pv62mWcmTATUREREREaqH3dgYcWbNmDWbOnImVK1ciJSUFS5YsQXp6OgoLCxEVFVUvfUVFBbp06YKHHnoIv//97x2ut0+fPvj888+V93q9eorAOlh01HprmW49QFjdwLM1cPWLhday30RERERE1Lqotnt5SkoKhg4dimXLlgEAzGYz4uPj8fTTT2POnDkNLtupUyfMmDEDM2bMsJk+f/58bNiwAXl5eU3OV0t3VWio63RjXa0dvbdeXi3BalNb79WSfyIiIiIiUge1dS9XTzOvlaqqKuzfvx9z585Vpmm1WqSlpSE3N7dZ6z527BhiY2Ph7++P1NRUZGVlISEhwWH6yspKVFZWKu/LysqatX1X2Wv9dhSg1p3u6L319OZ2VbcO5Ou2vtub5y4MtomIiIiIyBeoMui+ePEiTCYToqOjbaZHR0fj6NGjTV5vSkoKVq9ejZ49e+LcuXNYsGABRowYgfz8fAQHB9tdJisrCwsWLGjyNt2pbqCpht92N9TdvbEvCVzBIJuIiIiIiHyRqgdSc7cxY8bgoYceQv/+/ZGeno5NmzahpKQEa9eudbjM3LlzUVpaqrzOnDnTgjluWN2Bw+r+dXVdrr63t53mPMLL0TYYcBMRERERka9SZUt3REQEdDodiouLbaYXFxcjJibGbdsJCwtDjx49cPz4cYdpjEYjjEaj27bpKY0F3o4GXqs7v6nvndXQcmr6jTkREREREZE7qDLoNhgMSEpKwvbt2zFu3DgAtQOpbd++HdOmTXPbdq5evYoTJ05g0qRJblunWlkHs+4KbB0N0uZoMDcG1ERERERE1NaoMugGgJkzZyIjIwNDhgxBcnIylixZgmvXruHRRx8FAEyePBlxcXHIysoCUDv4WkFBgfL/jz/+iLy8PAQFBaFbt24AgGeffRY///nPkZiYiLNnzyIzMxM6nQ4TJkzwzk76OEdd0Bvrmk5ERERERNRWqDboHj9+PC5cuIB58+ahqKgIAwcOxJYtW5TB1U6fPg2t9tZP0s+ePYtBgwYp7xcvXozFixdj5MiRyMnJAQD88MMPmDBhAi5duoTIyEjceeed2L17NyIjI1t034iIiIiIiKhtUO1zutVKbc98IyIiIiIiolvUFrOptqVbrSzfUbT087qJiIiIiIiocZZYTS3tywy6XXTp0iUAQHx8vJdzQkRERERERI5cunQJoaGh3s4Gg25XtW/fHkDtb8qbU4FDhw7F119/3ez8uGM9aspLWVkZ4uPjcebMmWZ1BVHTPqklL+4qW3fkxV3rUFNeWuOx6671sHzVnRdeGzy7jtZ47LprPSxfdeeF1wbProPl69l1lJaWIiEhQYndvI1Bt4ssg7eFhoY26wTR6XRu+X2BO9ajprxYhISEsHw9tJ7mlq278qKmcuGx69n1sHzVnxeA1wZP5gVoXceuu9bD8lV/XgBeGzyZF4Dl68m8ALAZeNub1JGLNmjq1KmqWY+a8uIuatonNeXFXVpbubS2slXbeli+nluHO9fjDq2tXFpb2aptPSxfz63Dnetxh9ZWLmoqW0Bd+6SmvKgJRy93kdpGwmttWL6ew7L1LJavZ7F8PYdl61ksX89i+XoOy9azWL6epbbyZUu3i4xGIzIzM2E0Gr2dlVaJ5es5LFvPYvl6FsvXc1i2nsXy9SyWr+ewbD2L5etZaitftnQTEREREREReQhbuomIiIiIiIg8hEE3ERERERERkYcw6CYiIiIiIiLyEAbdRERERERERB7CoNsFy5cvR6dOneDv74+UlBTs3bvX21nyui+++AI///nPERsbC41Ggw0bNtjMFxHMmzcPHTt2REBAANLS0nDs2DGbNJcvX8bEiRMREhKCsLAwPP7447h69apNmoMHD2LEiBHw9/dHfHw8XnvttXp5WbduHXr16gV/f3/069cPmzZtcvv+tqSsrCwMHToUwcHBiIqKwrhx41BYWGiT5saNG5g6dSo6dOiAoKAgPPjggyguLrZJc/r0aYwdOxaBgYGIiorCrFmzUFNTY5MmJycHgwcPhtFoRLdu3bB69ep6+Wltx/+KFSvQv39/hISEICQkBKmpqdi8ebMyn2XrPgsXLoRGo8GMGTOUaSzfpps/fz40Go3Nq1evXsp8lm3z/fjjj/jVr36FDh06ICAgAP369cO+ffuU+fxsa7pOnTrVO341Go3yXF4ev01nMpnw4osvonPnzggICEDXrl3x8ssvw3rMZB67zVNeXo4ZM2YgMTERAQEBGDZsGL7++mtlPsvXeb4UQziTl0YJOSU7O1sMBoP8/e9/l8OHD8sTTzwhYWFhUlxc7O2sedWmTZvkhRdekI8//lgAyPr1623mL1y4UEJDQ2XDhg3yzTffyC9+8Qvp3LmzXL9+XUkzevRoGTBggOzevVv+/e9/S7du3WTChAnK/NLSUomOjpaJEydKfn6+fPTRRxIQECBvvfWWkuarr74SnU4nr732mhQUFMgf/vAH8fPzk0OHDnm8DDwlPT1dVq1aJfn5+ZKXlyc//elPJSEhQa5evaqkefLJJyU+Pl62b98u+/btkzvuuEOGDRumzK+pqZG+fftKWlqaHDhwQDZt2iQREREyd+5cJc3JkyclMDBQZs6cKQUFBbJ06VLR6XSyZcsWJU1rPP7/9a9/ycaNG+Xbb7+VwsJCef7558XPz0/y8/NFhGXrLnv37pVOnTpJ//79Zfr06cp0lm/TZWZmSp8+feTcuXPK68KFC8p8lm3zXL58WRITE2XKlCmyZ88eOXnypGzdulWOHz+upOFnW9OdP3/e5tjdtm2bAJCdO3eKCI/f5njllVekQ4cO8umnn8qpU6dk3bp1EhQUJG+88YaShsdu8zz88MPSu3dv2bVrlxw7dkwyMzMlJCREfvjhBxFh+brCl2IIZ/LSGAbdTkpOTpapU6cq700mk8TGxkpWVpYXc6UudU8Ys9ksMTEx8vrrryvTSkpKxGg0ykcffSQiIgUFBQJAvv76ayXN5s2bRaPRyI8//igiIn/5y18kPDxcKisrlTSzZ8+Wnj17Ku8ffvhhGTt2rE1+UlJS5De/+Y1b99Gbzp8/LwBk165dIlJbln5+frJu3TolzZEjRwSA5ObmikjtBU2r1UpRUZGSZsWKFRISEqKU53PPPSd9+vSx2db48eMlPT1ded9Wjv/w8HD561//yrJ1k/Lycunevbts27ZNRo4cqQTdLN/myczMlAEDBtidx7JtvtmzZ8udd97pcD4/29xr+vTp0rVrVzGbzTx+m2ns2LHy2GOP2Ux74IEHZOLEiSLCY7e5KioqRKfTyaeffmozffDgwfLCCy+wfJtBzTGEM3lxBruXO6Gqqgr79+9HWlqaMk2r1SItLQ25ublezJm6nTp1CkVFRTblFhoaipSUFKXccnNzERYWhiFDhihp0tLSoNVqsWfPHiXNXXfdBYPBoKRJT09HYWEhrly5oqSx3o4lTWuqn9LSUgBA+/btAQD79+9HdXW1zX736tULCQkJNuXbr18/REdHK2nS09NRVlaGw4cPK2kaKru2cPybTCZkZ2fj2rVrSE1NZdm6ydSpUzF27Nh6ZcDybb5jx44hNjYWXbp0wcSJE3H69GkALFt3+Ne//oUhQ4bgoYceQlRUFAYNGoR33nlHmc/PNvepqqrC+++/j8ceewwajYbHbzMNGzYM27dvx7fffgsA+Oabb/Dll19izJgxAHjsNldNTQ1MJhP8/f1tpgcEBODLL79k+bqRmsrSmbw4g0G3Ey5evAiTyWRzgQeA6OhoFBUVeSlX6mcpm4bKraioCFFRUTbz9Xo92rdvb5PG3jqst+EoTWupH7PZjBkzZmD48OHo27cvgNp9NhgMCAsLs0lbt3ybWnZlZWW4fv16qz7+Dx06hKCgIBiNRjz55JNYv349evfuzbJ1g+zsbPznP/9BVlZWvXks3+ZJSUnB6tWrsWXLFqxYsQKnTp3CiBEjUF5ezrJ1g5MnT2LFihXo3r07tm7diqeeegq/+93v8O677wLgZ5s7bdiwASUlJZgyZQoAXhuaa86cOXjkkUfQq1cv+Pn5YdCgQZgxYwYmTpwIgMducwUHByM1NRUvv/wyzp49C5PJhPfffx+5ubk4d+4cy9eN1FSWzuTFGXqnUxKR10ydOhX5+fn48ssvvZ2VVqVnz57Iy8tDaWkp/vnPfyIjIwO7du3ydrZ83pkzZzB9+nRs27atXosANZ+l1QoA+vfvj5SUFCQmJmLt2rUICAjwYs5aB7PZjCFDhuDVV18FAAwaNAj5+flYuXIlMjIyvJy71uVvf/sbxowZg9jYWG9npVVYu3YtPvjgA3z44Yfo06cP8vLyMGPGDMTGxvLYdZP33nsPjz32GOLi4qDT6TB48GBMmDAB+/fv93bWSOXY0u2EiIgI6HS6eqNnFhcXIyYmxku5Uj9L2TRUbjExMTh//rzN/JqaGly+fNkmjb11WG/DUZrWUD/Tpk3Dp59+ip07d+K2225TpsfExKCqqgolJSU26euWb1PLLiQkBAEBAa36+DcYDOjWrRuSkpKQlZWFAQMG4I033mDZNtP+/ftx/vx5DB48GHq9Hnq9Hrt27cKbb74JvV6P6Oholq8bhYWFoUePHjh+/DiPXTfo2LEjevfubTPt9ttvV7rw87PNPb7//nt8/vnn+O///m9lGo/f5pk1a5bS2t2vXz9MmjQJv//975UeRzx2m69r167YtWsXrl69ijNnzmDv3r2orq5Gly5dWL5upKaydCYvzmDQ7QSDwYCkpCRs375dmWY2m7F9+3akpqZ6MWfq1rlzZ8TExNiUW1lZGfbs2aOUW2pqKkpKSmy+IdyxYwfMZjNSUlKUNF988QWqq6uVNNu2bUPPnj0RHh6upLHejiWNL9ePiGDatGlYv349duzYgc6dO9vMT0pKgp+fn81+FxYW4vTp0zble+jQIZuL0rZt2xASEqLcVDZWdm3p+DebzaisrGTZNtOoUaNw6NAh5OXlKa8hQ4Zg4sSJyv8sX/e5evUqTpw4gY4dO/LYdYPhw4fXezzjt99+i8TERAD8bHOXVatWISoqCmPHjlWm8fhtnoqKCmi1trf2Op0OZrMZAI9dd2rXrh06duyIK1euYOvWrbjvvvtYvm6kprJ0Ji9OcXrItTYuOztbjEajrF69WgoKCuTXv/61hIWF2Yye2RaVl5fLgQMH5MCBAwJA/vznP8uBAwfk+++/F5HaIfbDwsLkk08+kYMHD8p9991nd7j/QYMGyZ49e+TLL7+U7t272wz3X1JSItHR0TJp0iTJz8+X7OxsCQwMrDfcv16vl8WLF8uRI0ckMzPT5x6dUNdTTz0loaGhkpOTY/N4lYqKCiXNk08+KQkJCbJjxw7Zt2+fpKamSmpqqjLf8miVe++9V/Ly8mTLli0SGRlp99Eqs2bNkiNHjsjy5cvtPlqltR3/c+bMkV27dsmpU6fk4MGDMmfOHNFoNPLZZ5+JCMvW3axHLxdh+TbHM888Izk5OXLq1Cn56quvJC0tTSIiIuT8+fMiwrJtrr1794per5dXXnlFjh07Jh988IEEBgbK+++/r6ThZ1vzmEwmSUhIkNmzZ9ebx+O36TIyMiQuLk55ZNjHH38sERER8txzzylpeOw2z5YtW2Tz5s1y8uRJ+eyzz2TAgAGSkpIiVVVVIsLydYUvxRDO5KUxDLpdsHTpUklISBCDwSDJycmye/dub2fJ63bu3CkA6r0yMjJEpHaY/RdffFGio6PFaDTKqFGjpLCw0GYdly5dkgkTJkhQUJCEhITIo48+KuXl5TZpvvnmG7nzzjvFaDRKXFycLFy4sF5e1q5dKz169BCDwSB9+vSRjRs3emy/W4K9cgUgq1atUtJcv35dfvvb30p4eLgEBgbK/fffL+fOnbNZz3fffSdjxoyRgIAAiYiIkGeeeUaqq6tt0uzcuVMGDhwoBoNBunTpYrMNi9Z2/D/22GOSmJgoBoNBIiMjZdSoUUrALcKydbe6QTfLt+nGjx8vHTt2FIPBIHFxcTJ+/HibZ0izbJvvf//3f6Vv375iNBqlV69e8vbbb9vM52db82zdulUA1CszER6/zVFWVibTp0+XhIQE8ff3ly5dusgLL7xg87gkHrvNs2bNGunSpYsYDAaJiYmRqVOnSklJiTKf5es8X4ohnMlLYzQiIs63ixMRERERERGRs/ibbiIiIiIiIiIPYdBNRERERERE5CEMuomIiIiIiIg8hEE3ERERERERkYcw6CYiIiIiIiLyEAbdRERERERERB7CoJuIiIiIiIjIQxh0ExEREREREXkIg24iIiIiIiIiD2HQTUREREREROQhDLqJiIiIiIiIPIRBNxEREREREZGH/H+9wg/fIJETqQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVf4//tekJySTUBIgCIQmEUILTUQRIUuRRXF1Rb+sUtRFDbsE1FVkEVzUWFnLRxEbrAVRlN6UFhBFqggBBRQQkColoZlAcn5/8JtxZjKTTLl37jn3vp6PxzyUmZs757zf55x7z21jE0IIEBEREREREZHmIowuABEREREREZFZcdJNREREREREpBNOuomIiIiIiIh0wkk3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTUQkmYKCAthsNkyYMMHoohARERFRiDjpJiKpPffcc7DZbLDZbPj22299Lrd3717cd999aNiwIWJjY1G7dm3ccMMNmDlzpttyO3fuxH333Yd27dohNTUVsbGxyMjIwJ///GcsX748oLJ1794dNpsNR44cCapuRCooLS1F27ZtYbPZkJmZ6XWZyj7zdOLECbz11lu46aab0LhxY8TGxqJWrVro27cvvvjiC59/9/XXX+Ovf/0r6tWrh5iYGFSvXh2ZmZn4f//v/+F///tfQHX68MMPMXz4cHTo0AGxsbGw2WyYNm1aQOvQwrRp0zT97oyMDGRkZGiyLpldvHgRn3/+OQYPHoyrrroKiYmJSEpKQufOnTF58mSUlZUZXUQiIjdRRheAiMiXwsJCjB8/HtWqVcO5c+d8Lrd06VIMGDAAANC/f380btwYp06dwtatW7Fs2TL89a9/dS67bds2zJo1C126dME111wDu92OX3/9FXPnzsXChQvx1FNPYezYsXpXjUgZTz75JH766SfN1jdz5kw88MADSE9PR8+ePVGvXj0cPHgQn3/+OZYsWYLnn38ejzzyiNvfTJs2DcOGDUNUVBRuvPFGNGvWDDabDTt37sSiRYuwevVqDB482O8y/Pvf/8Yvv/yCWrVqoW7duvjll180qx/p7+eff8Ztt92GxMRE9OzZEzfddBOKioowf/58PPjgg1i0aBHmzZsHm81mdFGJiABw0k1Ekrp48SIGDx6Mtm3bolmzZvjwww+9Lrd//37cdtttqFevHpYtW4YGDRq4fX7p0iW3f/fv3x+33nprhZ2xQ4cOoV27dnjyySeRm5uLlJQUTetDpKL169fjueeewyuvvIIRI0Zoss4rr7wS8+bNQ79+/RAR8ccFd//+97/RuXNnjB07FoMGDUJ6ejoA4Pz58/jnP/+JpKQkfPPNN2jZsqXb+i5evIiCgoKAyvDOO++gWbNmaNiwIZ599lmMGTMm5HpR+CQlJeH111/H4MGDUa1aNef7L730Erp3744FCxbgs88+czvgSkRkJF5eTkRSevrpp7F9+3a89957iIyM9LncM888g+LiYrz55psVJtwAEBXlfmzRcSmpp/T0dHTt2hUXL17U5azXpUuXMGnSJLRp0wbx8fFITk7GDTfcgPnz5/u9jpUrV2LYsGFo3rw5EhMTkZiYiA4dOuCtt97SpIxDhgyBzWbDnj178NJLL6FFixaIjY3FkCFDnMscO3YMo0aNQtOmTZ2XBd96660oLCyssL7du3dj6NChaNSoEWJjY1GjRg20adMGeXl5EEK4LfvLL7/gnnvucV46fMUVV+Cee+7B/v37K6zXcVn/xYsXMWHCBGRkZCA2NhZXXnkl3njjjQrLHzp0COPHj8fVV1+NtLQ05y0FDz74II4dO+YzDnv37sWrr76KzMxMxMbGomHDhnjyySdRXl7uNX5z585Fr169ULNmTcTFxSEjIwN33XVXhdiUlpZi0qRJyM7ORrVq1ZCUlITrrrsO8+bN87peo/z+++8YPHgwrr32Wjz44IOarbdHjx7o37+/24QbAJo3b46BAwfi4sWL+Oabb5zvFxYW4syZM7jhhhsqTLgBIDo6Gn/6058CKkNOTg4aNmwYXAX88Pvvv+Oll15CmzZtkJycjGrVqiEjIwO33347vv/+ewCX29nQoUMBAEOHDnXeRuM6Pm3atAkjRoxAVlYWkpOTER8fj1atWuHZZ5/FxYsXncvt27cPNpsNv/zyC3755Re3dTmeDVHZpey+niOxefNm3HbbbWjQoAFiY2ORmpqKjh074umnn9Y2YAGqV68eHnzwQbcJNwBUq1YNo0ePBgCsWrXKiKIREXnFM91EJJ3Nmzfj6aefxn/+8x+0aNHC53JCCMycORM1a9ZEjx49sGnTJqxatQrl5eVo27YtevToUWHH3pcTJ05g3bp1SEhIQOPGjbWqirOct912G+bOnYsrr7wSubm5OHfuHD755BPcdNNNmDRpEkaNGlXlep577jn89NNPuPrqq3HLLbfg9OnTWLJkCYYPH46dO3fipZde0qS8//jHP/Dtt9+iX79+6N+/P9LS0gBcvqSze/fuOHjwIHr16oUBAwbg2LFj+Pzzz/HFF19g+fLl6Ny5M4DLE91OnTrh3Llz6NevHwYOHIhz585h9+7deOONN/Diiy86D4js2rUL1157LY4fP47+/fujZcuWKCwsxHvvvYf58+djzZo1uPLKKyuU884778T69evRt29fREZG4tNPP0Vubi6io6Nx3333OZdbvXo1XnrpJfTs2ROdO3dGdHQ0vvvuO0yePBlffPEFNm/ejOTk5Arrf+SRR7Bq1Sr8+c9/Ru/evTFnzhxMmDABpaWlFSYdDz30ECZNmoQaNWpgwIABSEtLw4EDB7Bs2TK0b98eWVlZAICSkhL06dMHBQUFaNu2Le655x5cvHgRCxcuxM0334zXXntNszPKoXr88cexf/9+LFiwIGyX6UZHRwNwP1hWs2ZNAMCePXtQVlZW6UE4WQwePBiffvopWrdujaFDhyI2NhYHDhzAypUrsWHDBrRp0wYDBgzA6dOnMXfuXNx8881o27ZthfW8/fbbmD9/Prp164Ybb7wR58+fR0FBAcaMGYMNGzbg888/BwCkpKRg/PjxePnllwEAeXl5znV07949qDps2bIF11xzDSIjI3HzzTejYcOGOH36NHbs2IG33npL2ttwvLUhIiKjcUQiIqmUlJTg7rvvRtu2bfGvf/2r0mX37t2LkydPokOHDhg+fHiFM77t2rXDvHnzcMUVV1T42127dmH69OkoKyvDoUOHMG/ePJw+fRpvvvkmkpKSNK3TBx98gLlz5+L666/Hl19+iZiYGADAmDFj0L59e/zrX//CzTffXOVkf/LkyWjUqJHbe5cuXcKNN96IV155BSNHjvR6tj9QW7duxXfffVdhXXfffTcOHz6MJUuWoHfv3s73//3vf6NDhw647777sHXrVgDA559/jtOnT+Pll1/GyJEj3dZz8uRJtx3i+++/H8ePH8eUKVPw97//3fn+G2+8gdzcXDzwwANeH3J38OBBFBYWwm63AwBGjhyJrKwsvPTSS26T7h49euDIkSNITEx0+/v3338fgwcPxv/93/95nUBs3rwZW7duRd26dQEA48aNQ7NmzfDaa69h/PjxzjwuWLAAkyZNQqtWrbBy5UrnJBG4nJ8TJ044//2f//wHBQUFGDduHJ588knnZPbMmTPo0aMHHnroIfzlL39xXlpdmUCfbj9kyBC/H7K1evVqvPLKK5g0aRKaNGkS0PcEq7i4GJ999hni4uJw3XXXOd9v3Lgx2rdvj02bNqF79+4YPHgwrr76alx11VVSTsCLioowc+ZMtG/fHuvWrXMrY1lZGc6cOQMAbpPuAQMGuF1R4vD444/j9ddfd1uHEAL33nsv3nvvPXz99dfo2rUrUlJSMGHCBOdZbC1++eCDDz5ASUkJ5syZg5tvvtntM9c2XZl9+/YF/JC4UMv+3nvvAQB69eoV0nqIiDQliIgk8q9//UvExMSIbdu2Od8bPHiwACDWrl3rtuzatWsFABEZGSkSExPF1KlTxcmTJ8XevXvFfffdJwCIzp07e/2e+fPnCwDOV2Jiovjggw8CKuv1118vAIjDhw9XulyPHj0EALFu3boKnz399NMCgPjPf/7jfG/lypUCgBg/frxf5fj8888FADFt2rSAyu/JEedXXnmlwmebN28WAMSwYcO8/u3o0aMFAGfeXn31VQFATJkypdLv/OWXXwQA0aJFC1FeXu72WVlZmcjMzBQAxP79+53vO+K+YsWKCutzfFZcXFxlfcvLy4Xdbhfdu3d3e98Rh/fee6/C3zg+27p1q/O9vn37+iyPZ32qV68umjRpUqGuQggxb948AUC89tprVZZdCOHWfv15rVy50q/1nj17VjRu3Fh07dpVlJWVuX1f8+bNfZbF12f+uvPOOyv0BYe9e/eKrl27utUnISFB9OzZU0ydOlVcunQp6O/Nz88XAMTUqVNDKP0fioqKBADRtWtXr3l2NXXq1KC+e9OmTQKAmDBhgtv7DRs2FA0bNgz4u7yNOY4+/cUXXwRUNm/rDeQViilTpggAokePHiGth4hIazzTTUTSWLt2LV588UVMmDDBeTluZRz31paVlWHixInOM0XVq1fHW2+9ha1bt2LdunVYs2YNrr32Wre//fOf/wwhBEpLS7Fv3z68/fbbuPvuu7F+/Xq8+uqrmtbru+++Q0JCAjp16lThsxtuuAHA5Us5q3LmzBm8+OKLmDNnDn7++ecKT3Q/dOiQJuX1Vk7Hz7UdPXrU65moH3/80fnfrKws9O/fH2PGjEFubi6WL1+OPn364Prrr69wNt9R7+uvv77CJcwRERHo1q0bfvzxR2zZsgX169d3+7x9+/YVyuG4quH06dNuVyzMmjULU6ZMwebNm3Hq1Cm3nxTyFbeq1u+wfv16xMbG4vrrr/e6HoedO3fi1KlTSE9Px5NPPlnh8+PHjwP4I5ZVER73xWvl4YcfxqFDh7B48WK/b8/w5K2N5OXl+XxA4ZgxY/Dxxx+jT58+ePzxxyt8npGRgTVr1mDLli1YtmwZNm7ciK+//hrLly/H8uXL8f7772Px4sWIjY11XmHhT5n0YLfbceONN2LRokXIzs7GX//6V3Tv3h0dO3Z0Xvrsr9LSUvzf//0fZsyYgR9//BFnz551y7tWfd6b22+/HS+//DJuueUWDBw4EH/605/QrVs31KtXz+91dO/eXbd26mnBggUYMWIEGjZs6PPBm0RERuGkm4ikcOnSJQwePBitW7fGY4895tffuN6He9NNN1X4vH///li3bh02btxYYdLtEBMTgyuvvBIvvPACzp8/j9deew19+/ZF3759g6uIF8XFxRUmjA6OS5eLi4srXUdpaSm6d++OzZs3o127drjrrrtQs2ZNREVFYd++ffjf//6HkpISTcpbu3btCu+dPHkSALBw4UIsXLjQ5986DgRkZGTg22+/xYQJE7Bo0SJ8+umnAIDMzEz85z//cT5V2FFvb98JVB4fx2XlrhyXrbtOql966SU8/PDDSE1NRa9evXDFFVcgPj4eAPDyyy/7jJu/6y8qKkK9evWqnKA6Yrh9+3Zs377d53KV/Tye3goKCvDmm2/ihRde8Hofvb+8HVQYMmSI10n3uHHj8Oyzz6JHjx6YNWtWpZeMt23b1u3e54KCAvztb3/DypUr8cYbb2DUqFE4ffq01+8P16QbuPyzaM888wymT5/uvHXBbrdj6NCheOaZZ5CQkODXem677TbMnz8fV155JQYOHIi0tDRER0fj9OnTeOWVVzTr89507twZBQUFznpMnToVANCxY0c899xzzgOGMli0aBFuu+021K5dGytWrHCOG0REsuCkm4ikcPbsWezevRsAnPfKeurSpQsAYPbs2RgwYACaNGmCyMhIlJWVed2Zd7x34cIFv8rQq1cvvPHGGygoKNB00m23270+JRsAjhw54lymMnPnzsXmzZtxzz334J133nH7bMaMGfjf//6nTWEBrw/NcpQvkAd9ZWVl4bPPPsPFixexadMmLF68GK+++ioGDhzofFq8Y71Hjx71ug5/4+PLpUuXMHHiRNStWxdbtmxxPhQOuHym+Pnnnw9qva5SUlJw5MgRlJeXVzrxdtTh1ltvxWeffRby9+pxT7fjyoNHHnmkwm9lA5fP1ttsNiQnJ7ud7ffk79nNcePG4amnnkL37t0xf/5858EQf3Xv3h0TJ07EsGHDsGLFCowaNQoZGRlhO7vqS0JCAp566ik89dRT2Lt3L1auXIk333wTr7zyCi5cuIApU6ZUuY4NGzZg/vz56N27NxYuXOh2MOLbb7/FK6+8ElCZHG3T82cUgcsHjry57rrrsHjxYly4cAHr1q3D/Pnz8cYbb6Bfv34oLCys8jkU4bine+HChbj11ltRq1YtrFy5UvMHYRIRaYGTbiKSQmxsLO655x6vn61evRq7d+/GTTfdhNTUVOfEIS4uDtdccw2++uor7Nixo8LZ7B07dgCA3w+PclyqGegloFVp164dVqxYgfXr11e4dNvx+8Lenlzs6ueffwaACg80AoCvvvpKk3JWxvFU8rVr1wb8dO3o6GhcffXVuPrqq9G0aVPcfffdWLBgAbp27eqs9+rVqyGEcJvwCyGwevVqAFXHx5fffvsNRUVF6Nmzp9uEGwA2btzo9wGZynTq1AmLFi3CqlWrKj37d9VVV8Fut2Pjxo24ePFiyO3M29ncynTv3r3KvpCVleWzH7777rtITk7Gbbfd5veZ2so4JtzXX389Fi5cGPQ6PR+QJ5tGjRqhUaNGuPPOO5GWloZ58+Y5J92OibTrlRMOjj7fr1+/Cmf/ffX5yMhIlJaWev2sevXqAIBff/21wmffffddpXWIj49H9+7d0b17d6SkpOCJJ57A0qVLMXz48Er/bt++fQG300Am3Y4Jd40aNbBy5Uo0bdo0oO8iIgoX/k43EUkhPj4e77zzjtfXNddcA+DyfZ/vvPOO2wTsgQceAHB5R831Ussff/wR06ZNQ1JSEvr06eN8f9OmTV7Pgv3yyy/Iz88HAE3PcgOXfz7IUX7X39Y9cOAAJk2ahKioKAwaNKjSdTh+U3jNmjVu769atQpvv/2217+ZMGGC19/eDUanTp3QuXNnfPzxx/jkk08qfF5eXu72u7ibNm3yekm444x2XFwcAKBBgwa44YYbnL/J7uqtt97CDz/8gB49evi8PL8qaWlpiI+Px+bNm3H+/Hnn+6dOncI//vGPoNbpKTc3F8Dlp6c7LiF3uHTpkrPOUVFReOCBB/DLL7/g4YcfdmsLDoWFhT6vivAkhAjo5c9PR+Xk5PjshwBQp04dvPPOOyE/9+CJJ57AU089heuuu67KCffevXvxf//3f86nfrs6f/6884yvr1tItOD4jWtvTxj3dPz4ca+/W3/q1CmUlJQ42z4A1KhRA8DlscCTrz6/fft251jlqUaNGvjtt9/w+++/V/isffv2sNlsmDFjhtvnu3fv9nrWfO3atV7X49mHK+O4pzuQl78WL16MW2+9FdWrV8fKlSvRrFkzv/+WiCjceKabiJR2xx13YNasWfjss8/Qpk0b9O7dG0VFRfj888/x+++/4/3333ee4QEu/57yTz/9hM6dO6NBgwaIiIjAzz//jMWLF6O0tBQPP/wwunbtGlAZRo4c6fOy2BdffBF33XUXZs2ahblz56J169b485//7Pyd7pMnT+Kll16q8pLI/v37IyMjA88//zwKCwuRlZWFnTt3YsGCBbjlllu8Xq7seNCcVr9X+/HHH+OGG27AHXfcgZdffhnZ2dmIj4/H/v37sXbtWhw/fty5k/7BBx9gypQp6NatG5o0aQK73Y4dO3Zg0aJFqFGjBoYOHepc7+TJk3Httdfivvvuw/z589GiRQts374d8+bNQ2pqKiZPnhx0mSMiIvDggw/ipZdeQps2bdC/f38UFxdj8eLFaNiwoV8/zVWVG2+8EQ8//DBefPFFNGvWDLfccgvS0tLw66+/Yvny5Xj44Yedv5v85JNPYvPmzXj11VexcOFCdOvWzbnstm3b8P3332Pt2rUVzsqbybRp0zBx4kRERUWhU6dOeOGFFyos4zirCly+9Pkf//gHHnnkEVx77bXIyspCfHw8fv31VyxcuBAnTpxA+/btAzqI8s477zgns9u2bXO+57jy5Nprr8W9997rXD6QvvTrr7+iXbt2aNOmDVq3bo169erhxIkTmDt3Li5evIiHH37YuWyXLl0QHx+Pl19+GadOnUJqaiqAyz/D16lTJ3Tq1AmffvopDh8+jKuvvhr79+/HvHnz0K9fP699vkePHti4cSP69u2L6667DjExMejWrRu6deuG9PR03HnnnZg+fTrat2+PPn364NixY5g9ezb69Onj/M1vh+eeew4rV65Et27d0KhRI8TFxWHz5s1Yvnw5GjdujFtuucXveGvtxx9/xC233IKSkhJ0794dH3/8cYVlMjIy/DpIQkQUFno/Hp2IKFS+fjLM4eLFi2LSpEmiZcuWIjY2VtjtdtGrVy9RUFBQYdmZM2eKv/71r6Jx48aiWrVqIjo6WtSrV0/85S9/EUuWLAmoXI6fp6rstXfvXmcZX3zxRdGqVSsRGxsrkpKSxPXXXy/mzp1bYb2+fjJsz5494tZbbxWpqakiISFBdOzYUcyYMcPn8rfccouIiIgQO3fu9Ks+jjg7yuzNyZMnxb///W+RlZUl4uPjRWJiomjWrJn4f//v/4lZs2Y5l/v222/F8OHDRVZWlkhJSRHx8fGiWbNmYsSIEeKXX36psN59+/aJoUOHirp164qoqChRt25dMXToULFv374Kyzri7m8dSktLxdNPPy2aNWsmYmNjRYMGDcRDDz0kzpw54/UnliqLw/jx433+/Nbnn38ubrjhBpGcnCxiY2NFRkaGuOuuu0RhYaHbcpcuXRJTpkwRXbt2FXa73VmmPn36iMmTJ4uzZ896rZvR4ONnwS5duiQAiFatWvm1HkcMK3u5tuXff/9dfP755+Lvf/+7aNOmjahVq5aIjIwU1atXF9dee62YNGmSuHDhQkB1ceTY12vw4MFuy48aNUoAEEuXLq1y3adOnRITJkwQ3bp1E3Xr1hUxMTEiPT1d9OnTRyxevLjC8gsXLhQdO3YU8fHxFX4269ixY2LYsGEiPT1dxMXFiVatWonXX39d7Nmzx2s5z5w5I+677z5Rt25dERkZWSGW58+fF//85z9F7dq1RWxsrGjdurX46KOPvI4hS5YsEXfffbdo3ry5SEpKEomJiaJFixbi8ccfF8ePH/crznrx56fIrr/+ekPLSETkyiaEwU8bISIiXaSlpaF79+7OJ4cT6eHIkSOoW7cubrjhBqxYscLo4uiiQ4cOiIyMxLp164wuChERKYiXlxMRmdAPP/yA48ePY8yYMUYXhUxu7ty5AP542J7ZnDlzBlu2bNHkifNERGRNPNNNREREAXvmmWdQWFiITz/9FHFxcSgsLPT7lwKIiIishJNuIiIiClj16tVRVlaGLl264KmnnkLHjh2NLhIREZGUOOkmIiIiIiIi0gl/p5uIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ6iTK6AGZUXl6OQ4cOISkpCTabzejiEBERERERWYYQAmfOnEF6ejoiIow/z8xJtw4OHTqE+vXrG10MIiIiIiIiyzpw4ACuuOIKo4vBSbcekpKSAFxOst1uN7g0RERERERE1lFcXIz69es752VG46RbB45Lyu12OyfdREREREREBpDlVl/jL3AnIiIiIiIiMilOuomIiIiIwkiWs2/kjnkhvXDSbWIqDRwqlRVQp7yqlNPBZrMpV2ZA3XI7qF5+T2aqi4PqdVK9/A6q1sNMfdws9TATM7UvszFbXlSuDyfdXvz666/429/+hpo1ayI+Ph6tWrXCxo0bjS6WadlsNgghjC6G6agYV9XK64plJ72purOh4lhkRmbKgap9wazM1LbMyCz9RfVtCR+k5uHUqVPo2rUrbrjhBixevBipqanYvXs3qlevbnTRSDKqd36ZqRRbs2zMSG5CCLY1CTjyoMr4ZEZm6AtsQxQuZugvgDn2tTjp9vDcc8+hfv36mDp1qvO9Ro0aGVii0HBg14fsg5jMZauK7LH1hn1MHhzziNypNp6SulQff1Uvv9mpnhteXu5h3rx56NChA/76178iLS0N7dq1w9tvv13p35SUlKC4uNjtJQMVGicHOP0wrvoz086sigc7SH4c4+VgxhyoOl6ZtU+YsU4kB1X7uidOuj3s2bMHkydPRrNmzfDFF1/ggQcewD//+U/873//8/k3+fn5SE5Odr7q168fxhKTkcwyEMhGpQkgdzTkYdadWQeV+oWZqZQHVcoZKDP3c5Wp1DesxAx5MUOftwkz1EJDMTEx6NChA7755hvne//85z+xYcMGrF271uvflJSUoKSkxPnv4uJi1K9fH0VFRbDb7bqXuTIy74Q6BgBZy+cPGeMrY5mCoUI9VChjIFSvj+rl94dqdVStvP5SpV6qlDMYqtZN1XL7S9V9OyvkRcX6hdKeiouLkZycLMV8DOCZ7grq1q2LFi1auL131VVXYf/+/T7/JjY2Fna73e0lC9mPbqk4AFD4yNx2ZS5bsGQfLyqj6g4FEQVPtfHKCuOUivVTrR1ZjYptyhtOuj107doVO3fudHtv165daNiwoUElItlxsNaHCoOsCmW0Aqv1QVXqa/YJhux5kL18oTJz2zID1dqfFdqTajkxG066PYwaNQrffvstnnnmGfz000+YPn063nrrLeTm5hpdtJDI1tHMsjMmWx3MElcylmzjhT+s0u6tUk/ZqZIHVcpJ5qJSu1NxexcMlXLiYLbccNLtoWPHjpg9ezY+/vhjZGVlYeLEiXj55ZcxaNAgo4sWNBU7GhEg7+XOMpZJKxwvSAtm7iOuZK2nlQ7AypoDT1bKiSpUvf/cSsyUGz5ITQey3bgPyDWwyFQWLchUHzNu1GWsk4xl0pJMbboqZs+FNyrkxyp5kbWespZLD6rUVZVyaoXjlHxUyImrUPMj23yMZ7otQrYOJlt5QiFLXay28SD9sB3JTfb8qHLmUSuy1ZfbApKB7G1Qtn4bDrLnxJUZ88NJNxFJTbZLzGUqi96sVFfSlko7d6GQrZ5W7LOybSO84YEQOVk1J7L3Fwez5YeTbguRYcNk1g2P0bE1Oq9WY8Y27EmFOlq53Rs95vgiY5nCQaZ6q9B3yRpkHaeszDE+MC/hx0k3kUlwR4u0psIOE9u9PFS7X1ArVquvjGQeq2Qtl5WZ9QSQv2SfeJs1P5x0W5CsncwMGFv9yBBbGcpA5CDjRMOMO0r+MjoXZt1RNQPmhWTDNhl+nHRbjJGdzOgdEr0ZFVsr7GjJVD+ZyhIuZu+7qpMhPzKUwUhWHBdkI+NBKNnKYwTZ8iJTWWQgWzxkK4+WOOmmsLLCjomZBwyyHln7rBUONvlDpssErZ4PIycXMuSfvLN6v5ARc3KZrHGQtVyh4qTbgmQ76mgm4R4orDTxMLrdWinWpBa2SwLYDgDjtxOuZCmHLBgPecmSG1nKoRdOuiksrDZhCcfAYfbByRcj6m3VWLtiDORn5FlWK43vlTFi0se+WZEsMWG/uIxxkJcsubHCgzg56bYwWTZKZhPOAcPMg5M3Rl5Ka7VYu5Kt7hy7KpItRxRezP8fZIgFD0R5Z/TYzbz4ZvSVhIAcfVdPnHRbVDgbttGDrBH0PtthxZg68BJ+Asy/cVaFlceiyoQrLoy/b4yNXIx+/gTbg28yPGTZCtt0TropLKzQmcLN6jEN1yX8Vo+zbLjj5JtR97Oyj7gLdzwY/4qMnkQwJ94ZPfFmXuRklbxw0m1xeg98Vt9B1qP+Vo8pYJ0BWiYyPaCI+SfZhaO/yNIf6Q/MSdWMGL+ZF//weRT64qTbwsI18Fl1B1nPels1pp70voSfcZYLc+KfcF7azHwYw0qXZAaLV37IK1y5sdls7Ct+Mio+VsqL8pPu33//HSUlJUYXQ2l6DXxWO4Lli5Zx4E7uH/S8TI1t1zfejyc3jg/y0GNiwUkEmUk4nn0jhGBfCQC3tfpRbtJdUFCAUaNGoVOnTkhMTES1atWQkJCApKQkdOrUCXl5eSgoKDC6mMrQayDiTsFlVq+/3ng1QXgZFRPHwSbmxH/huLSZ+fCPVrngJCI4vPJDTuGIFfMRmHA/ZNlq+bEJBWp88eJFTJkyBZMmTcK+fftQo0YNZGdno3HjxqhevTqEEDh16hT27t2LzZs34+TJk2jYsCEeeughDB8+HNHR0WEtb3FxMZKTk1FUVAS73R7W7w6G1hNkTrjdaRUPxtU7PQZuK24M/BXudsh2Hxy92rDrBIY58Z8W7Zh9ITjhiBtzExy94sZ8hMbzQJVe2xK98yPbfEyJSXfDhg1RWlqKwYMH4/bbb0d2dnaly2/atAkzZ87E+++/j5iYGOzbty88Bf3/yZZkf2g5QHHCUlGo8eUGpHJatjm236qFsz0yH8HRI0cch0ITSvwY+9DoPY5wnAoeD5zLS8+DIuHIj2zzMSUm3VOmTMGQIUMQGxsb0N+VlpZi6tSpGD58uE4l8062JPuLR+L1FWxsGNOq8WoCY4RjRxZgPoKl5Vlp5kIbwcSRsQ+dnjFkfkLDqy3lpnJ+ZJuPKTHpVo1sSQ4Ej8TrK9CdYF7K6T8tJoA8Oh44PWPGfGgj1HGEY7u2AoknY68dPbanzI82eLWa3LSYG7gKV35km49FGV0AkovjaavBDloc6Crn+sTtymLMyXZwgjmoYdTPypiFI35sp/LS4kn/zK92PLezVeWFsdeGv9tff3AbrS3XfhBqXpgP7QW7n8SDUu6Ue3o5AERERCAyMrLSV7Vq1dC8eXPcf//9+Pnnn40uslK0OpJFvvnaCfb8ORgOVP7zjJdrLL1xfMZ4y4k7T/oIdKzm2K4Pb9sAxxjk+SJtaXWrhRbroooc225/xh7X5ThW6c9bjKvKFfvIH5Q80/3EE09g7ty52L59O/r27YumTZsCAHbv3o0lS5agVatW6NGjB3766SdMnToVH3/8MVavXo02bdoYXHK1+LvTyyNZwXE92+H5PgXP28TbM6Zss9ri2W41VHYlk7c+wX6iL8bVOKGOWcyd9rzF1NcY5O2Eha91kDaqukLHsz9xn6AiJSfd6enp+O233/Djjz+icePGbp/99NNP6N69O1q0aIEXXngBu3fvRpcuXfD4449j4cKFBpVYPd52zngkS3uusWUMtVdZO2a85cX+oB9/dpw8lycyq0DHGo5N4VXZGMU8hJ/nySJfJzl41YF3Sl5e/sILLyA3N7fChBsAmjZtitzcXOTn5wMAmjVrhvvvvx/ffPNNUN/17LPPwmazIS8vL5QiK8nz/ifP9339mwLHGOrHWztmvPUR7IbW9e+4sdaftwNQ3i5nZj8hM/O2bajs0mZOuI3hOtHjNtx4vm594YmNqil5pvvgwYOIivJd9KioKBw4cMD574yMDJSUlAT8PRs2bMCUKVPQunXroMppBr46DTsTqYTtVX/BPoTR2/14zJf+Kosx409W4XpWjld9yEurB62Rvpibyil5prtly5aYPHkyjh49WuGzI0eOYPLkyWjZsqXzvT179qBOnToBfcfZs2cxaNAgvP3226hevXrIZSYiMjvPM0dVPRCnqjOtRER68/UAO45LcmEeSHVKnul+8cUXnQ9QGzBggPNBaj/99BPmzJmDixcv4r333gMA/P7775g2bRr69u0b0Hfk5uaiX79+yMnJwVNPPVXpsiUlJW5n0ouLiwOsERGROXh7QJG3M+A8a0FERERWoeSku3v37vjmm28wfvx4zJo1CxcuXAAAxMXFIScnBxMmTEB2drbzvUOHDgW0/hkzZmDz5s3YsGGDX8vn5+fjySefDKwSREQm5e1eL28PWeGEm4iIiKzAJhTf6ykvL8exY8cAAGlpaYiICO2K+QMHDqBDhw5YunSp817u7t27o23btnj55Ze9/o23M93169dHUVER7HZ7SOUhIjIL3rdNRERE4VBcXIzk5GRp5mPKT7q1NmfOHNxyyy2IjIx0vldWVgabzYaIiAiUlJS4feaNbEkmIiIiIiKyCtnmY0peXu5QUlKCzZs349ixY+jatStq1aoV8jp79uyJbdu2ub03dOhQZGZm4tFHH61ywk1ERERERETkoOTTywHg1VdfRd26dXHttdfiL3/5C7Zu3QoA+O2331CrVi3ng9QClZSUhKysLLdXtWrVULNmTWRlZWlZBSIiIiIiIjI5JSfdU6dORV5eHvr06YN3333X7d7AWrVqoUePHpgxY4aBJSQiIiIiIiJS9PLyl156CTfffDOmT5+OEydOVPi8ffv2ePXVVzX7voKCAs3WRURERERERNah5Jnun376qdLf3a5Ro4bXyTgRERERERFROCk56U5JScFvv/3m8/MdO3agTp06YSwRERERERERUUVKTrpvvPFGvPXWWzh9+nSFz7Zv3463334bN910U/gLRkRERERERORCyd/pPnToEDp37gwhBPr374+33noLf/vb31BWVobPP/8cdevWxfr16zX5CbFgyPa7cERERERERFYh23xMyTPd6enp2LRpE/r06YNPPvkEQgh88MEHmD9/Pu688058++23hk24iYiIiIiIiByUPNPt6fjx4ygvL0dqaioiIow/jiDbkRUiIiIiIiKrkG0+puRPhnlKTU01ughEREREREREFSgx6Y6IiIDNZgv478rKynQoDREREREREZF/lJh0P/HEExUm3bNnz8b27dvRu3dvNG/eHADw448/4ssvv0RWVhYGDBhgQEmJiIiIiIiI/qDEpHvChAlu/37rrbdw7NgxFBYWOifcDj/88AN69OiB9PT0MJaQiIiIiIiIqCLjnzoWhBdeeAEjRoyoMOEGgKuuugojRozA888/b0DJiIiIiIiIiP6g5KT74MGDiI6O9vl5dHQ0Dh48GMYSEREREREREVWk5KQ7KysLb7zxBn799dcKnx08eBBvvPEGWrVqZUDJiIiIiIiIiP6gxD3dnv773/+id+/euPLKK3HLLbegadOmAIDdu3djzpw5EELgww8/NLiUREREREREZHVKTrqvvfZarFu3DuPGjcPs2bNx4cIFAEB8fDx69+6NJ598kme6iYiIiIiIyHA2IYQwuhChKC8vx/HjxwEAqampiIgw/or54uJiJCcno6ioCHa73ejiEBERERERWYZs8zElz3S7ioiIQO3atY0uBhEREREREVEFxp8WJiIiIiIiIjIpJSbdLVq0wPvvv4/S0lK//6akpARTp05FixYtdCwZERERERERkW9KXF4+ZMgQjB49GiNHjsRNN92EnJwcZGdno1GjRkhISAAAnDt3Dnv37sXGjRuxbNkyzJ8/HzExMXjkkUcMLj0RERERERFZlTIPUjtz5gzeffddTJs2DVu3boXNZgMAREVdPm5w6dIlAIAQAllZWRg2bBiGDRtmyI3zst24T0REREREZBWyzceUmXS72rdvH7755hv8+OOPOHHiBACgZs2ayMzMRJcuXdCoUSNDy+cryY4DBQ4Khp6IiDzYbDaO50RERBKRbdKtxOXlnjIyMpCRkWF0MQLimHA7dsxsNluFSbgDd96IiNTgGMc9x3giIiIiByUepBZO+fn56NixI5KSkpCWloYBAwZg586dIa3T286YEKLCzpnrhJyIiOTgOEjqerDU8f+OsZyTbSIiIvKFk24Pq1atQm5uLr799lssXboUFy9eRK9evXDu3Lmg1lfV2Q/PHTZOvImI5OE6hnuOz94OnHLsNg5jT0REslLynu5wOn78ONLS0rBq1Sp069bNr79x3EPgEEyIeY8gkbXxGRByCHQs5mXm4edtss34hxdzIBeOQ2rgvr6+eE+3YoqKigAANWrUCOrvQ+lM7IzB4WSFzMLzGRDeroRh+9ZPMGOw42w3cxQe3iYXnv2F9ONre+vaB5iH8HLNia/+wZwYq6ockTkpeXl506ZNMXHiRN2/p7y8HHl5eejatSuysrJ8LldSUoLi4mK3F/DHhD0Y7HyB87WR97wfk5cghoax1J/nTpHj0mZvbZw50EcocfUcv9lXtONt/Kns+SiMu/a8jf+ezzXwdjsG6c/zdhjPvuD5TAoyDp8HYj1Knunes2cPNm7ciE2bNmHXrl2w2+246qqr0LhxY02/Jzc3F4WFhVizZk2ly+Xn5+PJJ5/U9LsdeETSP74eVudrOcY1OL6ews9YaqeyHSFf9xAzB9rS4syDt4k3BS/QKwdc76/nVQfaCbRv8MqP8KnqIJS35bnt0Fcgv1LEXJifkvd0R0REeN35b9myJR5//HHccccdIX/HiBEjMHfuXKxevbrK3/0uKSlBSUmJ89/FxcWoX7++JvcQ8LKTqgUTI8bVf1Vdrs9YaifYWHJjrS094sl+EhotcsIchEaL+DEH2gvlgAbzoR9fV6VVdhDE8Tnzog3e062R6OhojB07Ftdffz1KS0uxceNGfPbZZxg0aBAKCgrw5ptvBrVeIQT+8Y9/YPbs2SgoKKhywg0AsbGxiI2NDer7/CkPj0b6FuzAxKcMV83fDbm/GxTyTotnEDjaM2MfGj3HBI45wdMqbtyehi7UuDEH2tHi6gGOS/rw9+pLV96uCuF+lbkoe6b70UcfRX5+foXP/vvf/+Lhhx/Ge++9h8GDBwe87gcffBDTp0/H3Llz0bx5c+f7ycnJiI+P92sdehxZYcerKNSYMKa+hRIbxtV/WsaKcQ9euGLHHAVHywkacxAcrSfJnHSHhtsOuWk9ZjE3wZHtTLeSD1KLj4/HFVdc4fWzUaNGYeDAgXjttdeCWvfkyZNRVFSE7t27o27dus7XJ598EkqRQ8YO507Ley55lNddqLF1fegXVU2rvs0xIjThiB9zFDitxxHmIHB6jeXcRgRH60ky94W0pUccmRtzUHLSnZmZiYULF/r8/LrrrsOOHTuCWrfr0wRdX0OGDAmytNrhROYyLTc43AHzTuuzSlSRXkevGfPAGBEv5igwWvcTbksDp0cOKHh65YP9Qhta5od9xTyUnHQPHz4cS5YswT/+8Q9cuHChwudff/01EhISDChZeHBQ1H4QYkwv0zIO3IiHH2MenHDu1HAHyn96t2P2k6rpeWkrD34ETu/nTni7r5j8p2fcmBP1Kfkgtb///e/44Ycf8Morr2DGjBno27cvsrKyEBMTg2XLlmHx4sVSnJnWg9U3UnrsAPDBLu60PkJr5fbqSzge2MX2TCrT+z5Tjk1VC1d8OFYFRu9YsW8ER88xizkJTnJystFFcKPkg9QcvvrqK/z3v//FsmXLcPbsWef7AwYMwLRp0wy7aV7vG/etvIHS+5Jcq8YV0C8GjG1F4erDVh4r/GFk22RufOOD7YwXztiwL/gn3O2VefGPFk+R9/d7mI/AOHIjy4PUlJ50O5SVlWHfvn04c+YMGjRogBo1ahhannA8Lc+KnS8cGxwrxtVBz7pbOa6ewr0zG67vUpGR7ZK58c6IiUU4v08FzIGcwj1eMS9V44EQebkeDJFl0q3k5eWeIiMj0aRJE6OLQWHAo+764GVL4RWu9sVL0uTF2wB8C/c99sxDRcyBXIwYx7n98E+42yz7if+KioqkusRcyQepkfWEa+C34kAWjiO13Hgbi7GvSIYdFz74zp1ROTG6HcjEqLbIHPhm9Blnjk/eGTFecZuhNk66FWXFSYwRl1VZBXd4wsPIjTTJifmRh9XGfV+MbJPMgXdG5YTjk3w48a6aDAfVveGkm6QX7oFFxo6ql3AOTFY8UOTKynWXjWy5sHrfAIzfSbLSuO+L0W2QOajI6JyQd0bnhRNvNXHSTUrgxlh7Rg3WVt5I8AySPDimkCce/DC+XzAHfzD6snIH5sQ7GfJCFcncVjnpVhgHQv1YJba81Dk8eBZPHjL3a5nLpier1lsmzIGcOHZTZayyr+ovWQ5U+cJJN0mNg4k+jIyr1TYSVqqrKmTcIMtYpnCSqf5W7bOy5MBq2whvZKy/jGUygtEH0alyMueGk24TMPtAyEty9SHzwGQWsh11NXN79ofV609Vk6WvEsnUFmUqC1XEbZsaB0M46Vac7A0sFEYPImaOrdGsdCZDlnYkSzmMJnMcrNQvHFTYUTI7WXNgtb7gIHO9ZS6bVcnYd8NNlXbJSbdJqNLgAsXBRHuy7mAR6YntnvxlxYMfsrF6X5Wx/nxiNrcjMlMhL5x0m4AKDS1Qsgzq3PnSj9ljK2PdzB5zIgoMxwMKhBn3N83Aytt2lerNSTdJi4O79lQanMyAbVgOqp2dsEo/tUo9ZSdz37BaG1FlrLJaXgB1cmNFquSFk26TMNNRLrPUQ1aqDE6kDzONFWZktf4pc33N3k9kr5/MbcPKrJgX2fsKqYGTbpKSTIM6Jyn6MWtszVgnVTEXcpI9LzJtg/RklXqS9mTvw1qR7VdIKmOVnDioVl9Ouk1GtQZI4cO2EV6yb6Ct1B5kz4U3VsiPCnkxax5UqZdZD8x6o9Lly6qUUysq1FeFMupBpXpz0m0iKjU8X2TeuMpcNn/J2kbMEFuV8Cm0cpO1n2pFlXZn9jyYvX5EoVJlrCI1cNJN0pFxR0DGMpkFY2sMxp2MxPZnHBUnEiqWORAq1s8qVyGoNFZZJSeq4qTbZNjhyBu2ifBR6RJBwNxtQ7VceDJjblSrk1m3qSr1C5XKGgqr1FMVZuz3ZqLi9p2TbpKGCgOcCmX0RbXBifTHNiEvM98CwHZnHDO2JyK9qDpWsZ/LiZNukorMA5zMZTMDM2wkzFAHkofZxhxV+4fZznar2K7MlgNXKtfLzHlRlZkP2KqOk24fXn/9dWRkZCAuLg6dO3fG+vXrjS5SQNjZ9KNabFW4BEf28gVCxbqo1qb9YaY6makuKvYPIr2xX8hF9THX7O1Jhf1abzjp9uKTTz7B6NGjMX78eGzevBlt2rRB7969cezYMaOL5hcVG6IqGFt9qb6hU5GZ27QZ6maGOpiBGc7oqV5+M+TAk1nqY5Z6uDLD2GvGvKiMk24vJk2ahPvuuw9Dhw5FixYt8OabbyIhIQHvvfee0UUzLVWPWslOpbiqUk5fuHEjPanevlQai8yMOZCP6jlRvfxmZda8qLwt5KTbQ2lpKTZt2oScnBznexEREcjJycHatWu9/k1JSQmKi4vdXmReZjzaTtow60aOjMV2JQ+O/cbi9pcoMGbsL6puEznp9vDbb7+hrKwMtWvXdnu/du3aOHLkiNe/yc/PR3JysvNVv379cBS1Uqo1SJZXH6qU00G18rpi2eVitjqpXh/Vyw9croPK9VC57K7MUg/APHUxSz0czFIf1ccsb1SuDyfdGhgzZgyKioqcrwMHDhhdJCIiIiIiIpJAlNEFkE2tWrUQGRmJo0ePur1/9OhR1KlTx+vfxMbGIjY2NhzFIyIiIiIiIoXwTLeHmJgYtG/fHsuXL3e+V15ejuXLl6NLly4GloyIiIiIiIhUwzPdXowePRqDBw9Ghw4d0KlTJ7z88ss4d+4chg4danTRiIiIiIiISCGcdHsxcOBAHD9+HE888QSOHDmCtm3bYsmSJRUeruaL4yZ/PsWciIiIiIgovBzzMFkevmYTspTERPbs2YMmTZoYXQwiIiIiIiLL+vnnn9G4cWOji8Ez3XqoUaMGAGD//v1ITk4Oej0dO3bEhg0bQi6PFuuRZR3FxcWoX78+Dhw4ALvdbmhZzJQfreKqRVm0WocsZTFjbGXJj0zjgVbrkWUdjK1+65AptmbKD8da/dYjU5vVaj2ylIWx1W8dRUVFaNCggXNeZjROunUQEXH5+XTJyckhdaDIyMiQNxxarUeWdTjY7XbDY2u2/AChx1WrsjC2+pVFlnVouR4ZxgOt1iPLOhwYW+3X4SBDbM2WH4BjrZ7rkaHNarUemcoCMLZ6rMPBMS8zmhylIK9yc3OlWY8s69CKTPWRqSxakKk+MpVFC7LUR6b8aEGm+siyDq0wtvqRqT4ylUULstRHpvxoQab6yFQWLchUH1nWIRve062D4uJiJCcno6ioSLOjNHQZY6sPxlU/jK1+GFv9MLb6YWz1wbjqh7HVD2OrH9liyzPdOoiNjcX48eMRGxtrdFFMh7HVB+OqH8ZWP4ytfhhb/TC2+mBc9cPY6oex1Y9sseWZbiIiIiIiIiKd8Ew3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ5x0a+z1119HRkYG4uLi0LlzZ6xfv97oIhlq9erV6N+/P9LT02Gz2TBnzhy3z4UQeOKJJ1C3bl3Ex8cjJycHu3fvdlvm5MmTGDRoEOx2O1JSUnDPPffg7Nmzbsts3boV1113HeLi4lC/fn08//zzFcoyc+ZMZGZmIi4uDq1atcKiRYs0r2845efno2PHjkhKSkJaWhoGDBiAnTt3ui3z+++/Izc3FzVr1kRiYiJuvfVWHD161G2Z/fv3o1+/fkhISEBaWhoeeeQRXLp0yW2ZgoICZGdnIzY2Fk2bNsW0adMqlMcsbX/y5Mlo3bo17HY77HY7unTpgsWLFzs/Z0y18+yzz8JmsyEvL8/5HuMbnAkTJsBms7m9MjMznZ8zrqH59ddf8be//Q01a9ZEfHw8WrVqhY0bNzo/57YsOBkZGRXarc1mc/5GL9ttcMrKyjBu3Dg0atQI8fHxaNKkCSZOnAjXZyezzQbvzJkzyMvLQ8OGDREfH49rrrkGGzZscH7O2PpHpTmCP2WpkiDNzJgxQ8TExIj33ntPbN++Xdx3330iJSVFHD161OiiGWbRokVi7NixYtasWQKAmD17ttvnzz77rEhOThZz5swR33//vbjppptEo0aNxIULF5zL9OnTR7Rp00Z8++234quvvhJNmzYVd955p/PzoqIiUbt2bTFo0CBRWFgoPv74YxEfHy+mTJniXObrr78WkZGR4vnnnxc7duwQ//73v0V0dLTYtm2b7jHQS+/evcXUqVNFYWGh2LJli7jxxhtFgwYNxNmzZ53L3H///aJ+/fpi+fLlYuPGjeLqq68W11xzjfPzS5cuiaysLJGTkyO+++47sWjRIlGrVi0xZswY5zJ79uwRCQkJYvTo0WLHjh3itddeE5GRkWLJkiXOZczU9ufNmycWLlwodu3aJXbu3Ckef/xxER0dLQoLC4UQjKlW1q9fLzIyMkTr1q3FyJEjne8zvsEZP368aNmypTh8+LDzdfz4cefnjGvwTp48KRo2bCiGDBki1q1bJ/bs2SO++OIL8dNPPzmX4bYsOMeOHXNrs0uXLhUAxMqVK4UQbLfBevrpp0XNmjXFggULxN69e8XMmTNFYmKieOWVV5zLsM0G7/bbbxctWrQQq1atErt37xbjx48XdrtdHDx4UAjB2PpLpTmCP2WpCifdGurUqZPIzc11/rusrEykp6eL/Px8A0slD88OVV5eLurUqSNeeOEF53unT58WsbGx4uOPPxZCCLFjxw4BQGzYsMG5zOLFi4XNZhO//vqrEEKIN954Q1SvXl2UlJQ4l3n00UdF8+bNnf++/fbbRb9+/dzK07lzZzF8+HBN62ikY8eOCQBi1apVQojLsYyOjhYzZ850LvPDDz8IAGLt2rVCiMsDXkREhDhy5IhzmcmTJwu73e6M57/+9S/RsmVLt+8aOHCg6N27t/PfZm/71atXF++88w5jqpEzZ86IZs2aiaVLl4rrr7/eOelmfIM3fvx40aZNG6+fMa6hefTRR8W1117r83Nuy7QzcuRI0aRJE1FeXs52G4J+/fqJYcOGub33l7/8RQwaNEgIwTYbivPnz4vIyEixYMECt/ezs7PF2LFjGdsgyTxH8Kcs/uDl5RopLS3Fpk2bkJOT43wvIiICOTk5WLt2rYElk9fevXtx5MgRt5glJyejc+fOzpitXbsWKSkp6NChg3OZnJwcREREYN26dc5lunXrhpiYGOcyvXv3xs6dO3Hq1CnnMq7f41jGTLkpKioCANSoUQMAsGnTJly8eNGt3pmZmWjQoIFbfFu1aoXatWs7l+nduzeKi4uxfft25zKVxc7Mbb+srAwzZszAuXPn0KVLF8ZUI7m5uejXr1+FGDC+odm9ezfS09PRuHFjDBo0CPv37wfAuIZq3rx56NChA/76178iLS0N7dq1w9tvv+38nNsybZSWluLDDz/EsGHDYLPZ2G5DcM0112D58uXYtWsXAOD777/HmjVr0LdvXwBss6G4dOkSysrKEBcX5/Z+fHw81qxZw9hqRKY4+lMWf3DSrZHffvsNZWVlbgM/ANSuXRtHjhwxqFRyc8SlspgdOXIEaWlpbp9HRUWhRo0abst4W4frd/haxiy5KS8vR15eHrp27YqsrCwAl+scExODlJQUt2U94xts7IqLi3HhwgVTtv1t27YhMTERsbGxuP/++zF79my0aNGCMdXAjBkzsHnzZuTn51f4jPENXufOnTFt2jQsWbIEkydPxt69e3HdddfhzJkzjGuI9uzZg8mTJ6NZs2b44osv8MADD+Cf//wn/ve//wHgtkwrc+bMwenTpzFkyBAAHA9C8dhjj+GOO+5AZmYmoqOj0a5dO+Tl5WHQoEEA2GZDkZSUhC5dumDixIk4dOgQysrK8OGHH2Lt2rU4fPgwY6sRmeLoT1n8EeX3kkQkrdzcXBQWFmLNmjVGF8UUmjdvji1btqCoqAifffYZBg8ejFWrVhldLOUdOHAAI0eOxNKlSyucJaDQOM5gAUDr1q3RuXNnNGzYEJ9++ini4+MNLJn6ysvL0aFDBzzzzDMAgHbt2qGwsBBvvvkmBg8ebHDpzOPdd99F3759kZ6ebnRRlPfpp5/io48+wvTp09GyZUts2bIFeXl5SE9PZ5vVwAcffIBhw4ahXr16iIyMRHZ2Nu68805s2rTJ6KKRxHimWyO1atVCZGRkhadqHj16FHXq1DGoVHJzxKWymNWpUwfHjh1z+/zSpUs4efKk2zLe1uH6Hb6WMUNuRowYgQULFmDlypW44oornO/XqVMHpaWlOH36tNvynvENNnZ2ux3x8fGmbPsxMTFo2rQp2rdvj/z8fLRp0wavvPIKYxqiTZs24dixY8jOzkZUVBSioqKwatUqvPrqq4iKikLt2rUZX42kpKTgyiuvxE8//cR2G6K6deuiRYsWbu9dddVVzsv3uS0L3S+//IJly5bh3nvvdb7Hdhu8Rx55xHm2u1WrVrjrrrswatQo5xVGbLOhadKkCVatWoWzZ8/iwIEDWL9+PS5evIjGjRszthqRKY7+lMUfnHRrJCYmBu3bt8fy5cud75WXl2P58uXo0qWLgSWTV6NGjVCnTh23mBUXF2PdunXOmHXp0gWnT592O3q4YsUKlJeXo3Pnzs5lVq9ejYsXLzqXWbp0KZo3b47q1as7l3H9HscyKudGCIERI0Zg9uzZWLFiBRo1auT2efv27REdHe1W7507d2L//v1u8d22bZvboLV06VLY7XbnTmZVsbNC2y8vL0dJSQljGqKePXti27Zt2LJli/PVoUMHDBo0yPn/jK82zp49i59//hl169Zluw1R165dK/wc465du9CwYUMA3JZpYerUqUhLS0O/fv2c77HdBu/8+fOIiHDfxY+MjER5eTkAtlmtVKtWDXXr1sWpU6fwxRdf4Oabb2ZsNSJTHP0pi1/8fuQaVWnGjBkiNjZWTJs2TezYsUP8/e9/FykpKW5P1bSaM2fOiO+++0589913AoCYNGmS+O6778Qvv/wihLj8CP6UlBQxd+5csXXrVnHzzTd7/TmAdu3aiXXr1ok1a9aIZs2auf0cwOnTp0Xt2rXFXXfdJQoLC8WMGTNEQkJChZ8DiIqKEi+++KL44YcfxPjx45X6WQVvHnjgAZGcnCwKCgrcfnLl/PnzzmXuv/9+0aBBA7FixQqxceNG0aVLF9GlSxfn546fW+nVq5fYsmWLWLJkiUhNTfX6cyuPPPKI+OGHH8Trr7/u9edWzNL2H3vsMbFq1Sqxd+9esXXrVvHYY48Jm80mvvzySyEEY6o116eXC8H4Buuhhx4SBQUFYu/eveLrr78WOTk5olatWuLYsWNCCMY1FOvXrxdRUVHi6aefFrt37xYfffSRSEhIEB9++KFzGW7LgldWViYaNGggHn300Qqfsd0GZ/DgwaJevXrOnwybNWuWqFWrlvjXv/7lXIZtNnhLliwRixcvFnv27BFffvmlaNOmjejcubMoLS0VQjC2/lJpjuBPWarCSbfGXnvtNdGgQQMRExMjOnXqJL799luji2SolStXCgAVXoMHDxZCXH4M/7hx40Tt2rVFbGys6Nmzp9i5c6fbOk6cOCHuvPNOkZiYKOx2uxg6dKg4c+aM2zLff/+9uPbaa0VsbKyoV6+eePbZZyuU5dNPPxVXXnmliImJES1bthQLFy7Urd7h4C2uAMTUqVOdy1y4cEE8+OCDonr16iIhIUHccsst4vDhw27r2bdvn+jbt6+Ij48XtWrVEg899JC4ePGi2zIrV64Ubdu2FTExMaJx48Zu3+FglrY/bNgw0bBhQxETEyNSU1NFz549nRNuIRhTrXlOuhnf4AwcOFDUrVtXxMTEiHr16omBAwe6/Y404xqa+fPni6ysLBEbGysyMzPFW2+95fY5t2XB++KLLwSACvESgu02WMXFxWLkyJGiQYMGIi4uTjRu3FiMHTvW7WeT2GaD98knn4jGjRuLmJgYUadOHZGbmytOnz7t/Jyx9Y9KcwR/ylIVmxBC+H9enIiIiIiIiIj8xXu6iYiIiIiIiHTCSTcRERERERGRTjjpJiIiIiIiItIJJ91EREREREREOuGkm4iIiIiIiEgnnHQTERERERER6YSTbiIiIiIiIiKdcNJNREREREREpBNOuomIiIiIiIh0wkk3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSrQMhBIqLiyGEMLooREREREREliLbfCzK6AKYUXFxMVJSUnDgwAHY7Xaji0NERERERGQZxcXFqF+/Pk6fPo3k5GSji8NJtx7OnDkDAKhfv77BJSEiIiIiIrKmM2fOcNJtVklJSQDAM91ERERERERh5jjT7ZiXGY2Tbh3YbDYAgN1u56SbiIiIiIjIAI55mdH4IDUiIiIiIiIinfBMNxERERERacpxhlGWp0c7yFoucj8rbbb88Ew3ERERkeJsNpvzRSQTGdukEELKctEfk22z5YeTbiIiP3GHVi7MBcnC6LGBZ+7kZHS7MJLNZoMQQroJlKNcVidj2zTzWW6Ak24iUoAMZ3BcN9SybaisyJED5kIOMvRRo7jW2cj6m3EnNRCytj+eUZW3bTI38m1DZW0rWuCkm8JG1g2ilsJdPyvt6Bo54TX70VdfZG1fPKv3B5lyZOV8uJ7RCzfP3FtxIuF6VlWWuvOMqnxkaRtG89yGyhwXmcsWKE66LcaoHTRZzgToyagzbyoMmqFw3XExcgfGqjtPstbbtU2Yte1XRZaDD57xt2o+AOPao9FtgCpn5XHKlQwxYF+5TIb9KlfeDlLJUjatcNJtQUY1YiPPBIRLOI+0yzIZJXPybF8y7CxRRa59X4ZLm602FvFspnxkGK+s3i6sMIEiChQn3RZi1E60VTc+Rm/0zSrcO1S+dh6YX2NYdTypiiyXNtNl3L6GD2NA/mA7uczb2GT0Po1VtiOcdJMhzNbBPAdzvQd2bjzICGbrtyqTKRcci9zJEA+jd6JlYFT9rR73ysjYLmUsk95kGKM8yVgmrXHSbXF6DzS+jqiR9sy44ajs4EK4LuGny2Tut2Zs+/6Q9QoMWcphNMbAOEaPV0Zut6gixt0/jJO+OOm2sHBtlIze+BlJjwGMg2J425QV26+sV1LIWi6rYj58C0dcGH+1MFd/4MMG5cNblPTHSbdFcOMcfnrGm7kko1hpA6kq5ig8uF2Vn5G/1ELesc+Qp8rahJmunOKkm3RrzGbpJCQvo5/WbLU2zp0l+TFHcuH2VV+VHfgw8pdarE6mGLCvBIbx0g8n3Ran98Ao08Crl6rOdmg5gHEw/IMMD6uzQvuWBdu+XJiPqnH7Slbk79gQzjGEfeWyqvZrwh0nq21HOOkmQ1jlLKEeAxg3HvKwQhv2xqh6s+37Lxw5Yj5IBVYdp2XGsYMc/GkLZmkvnHSTLhNgbuQoVP7eL8mH1YWXWTZ+KpPtbIWvMrAfXabH9tXfHVWr5yCcfYH3+MuHfcWdv+1TtljIVp5gcdJNuuHG5zKtBnN/1mGVDYcDH1ZnDWz7cglkR9bqGAMi32Qas63QV/3dloaDFQ9ScdJNpBAr7eiapR4qMuoKg8qwPQTO6B1ao79fJlrFItD1sN+E54Ccv+u3Qj78raNsseB45Y7x0B4n3Rbg7wOhjNopsIpwxcUs8Q+kHnxYnXZkOhJOwdMrR1bvHw6BnKXROheBrI/5Ch9VL93Vmiz1s+KZVK2E40G1VsRJN+mCA527UOPBjYdvRj6sjjnRXyAbZ6vkw+h6Gv39MggmBqHuaFp1R7UyPAChNt4WJDc9cxNI3zXLNoeTbjKMWTqRWeqhunDdN6/1d6osXPXnGSR3gVzKyqtA9GHUZd7c3vxBlgNy7BfyCeZEhRX6lgwT3WD7ixn6GSfdFhDIWTstjsRbaQc5HJM0M8QpGEZtHKyw4dUC42RNMuy0qSzcO5zMQXiwX/zBiKtAtCBDGfQmyz6o2fuAL5x0W4CsA4nVLisKZZCx4gZdhbZhlli7kqlOgZ6tkKnssjBynFWhD4eTo30Ge7BW1cmMTGT4eVQz5ySYumk9bvN2PO9kOPsfSts3Q0456aYKwnkk3gydKBCB7gBzg+6/UCcXVr7kyVWgl2zKVH+ZyqInI8ZN7si6CzYWgf5dKBNuszN6AqH3eq3GiFvEXDGPvmm5bQ02zmbYvis/6f79999RUlJidDFMI9RBJ9gdClWFY/Cw6oYgnAMzd2xJFcEe3DTigJSZ+1OoO/f+/L0W4xJzoN3fabUeM+ckXAej9FiX6vujVTE6N6EeuDVDv1Fu0l1QUIBRo0ahU6dOSExMRLVq1ZCQkICkpCR06tQJeXl5KCgoMLqYUgnHJWlmH6x80fPsfrADlBkGJiN2ZozeIMlClktYZbgUzmyMOAtk1W1DVRwTb1/x0epAIOPvzsifb3Mwc07CcTBKj+92fL+ZqZwbrdZhNJtQoJVdvHgRU6ZMwaRJk7Bv3z7UqFED2dnZaNy4MapXrw4hBE6dOoW9e/di8+bNOHnyJBo2bIiHHnoIw4cPR3R0dFjLW1xcjOTkZBQVFcFut4f1u70JZuc10L+x6qWHodS7sr8NdYdL9XyEGlcg8CdeWzXWnsIxXqhUDjMJNqYA+4deKtuRlOUMk9locUAj1PvsmQ/vgo2rlgepzJqbUOumYm6km4+pMOlu2LAhSktLMXjwYNx+++3Izs6udPlNmzZh5syZeP/99xETE4N9+/aFp6D/P5mSrNek0HM5gBufQLnubHl7wE6og6NV4wr43ya12vkyS6yDrYvWl+eHY9xSlUoHpMzM7O1MBeHsC1p+t5lpERcjxynmtXKqbUNkmo8Biky6p0yZgiFDhiA2NjagvystLcXUqVMxfPhwnUrmnWxJDpY/ncXqGy4tNzAOKsdDK+HYcBu9MTAbLfuy6uOCnsJ1toJnjsyDOfAulIOM7BfeaVUvf09AcDvuv3DmRqsTSJ7r5JluqkCmJOu5g8bBTt4Np6zl8pceGwdveGTcnZFnjrQogxZ/bwWV7RBpvbNk1nyYtV4qMeJyWe73hJeveOsxqXOsl7n1Tzj2r0Il03wMAKKMLgDJzfNhL54PUzB6B9tospZd1nL5S6vyu65Hr50l1WPtKpS6hPqgFUCbB6WYKR/eaDFmut7O4i3mWsbQjPlQbbulWnn9oVU/cPQBvW+l87Yus+UE0L5e3m69c31fa2bMiYNeuQkXM/QZ5Z5eHm7PPvssbDYb8vLyjC5KULRooEKICgOf63tWpcUEQS8yl80fepRfrzareqxdaVGXUNeh9e0aZqP1TpO3l5bMmA+rb/tkoOWBWc+TC548TzyQb3pOhvUao1yZcbwyCy0O7BtNyUl3REQEIiMjK31Vq1YNzZs3x/3334+ff/45qO/ZsGEDpkyZgtatW2tcg/DRsoHqMeCpvAFTueyyY2zV5OushD/McBQ7HFTb6TBjTpkD42mdA8+rP1xfjs+571M11fqGlZihzaleByUn3U888QRat26NyMhI/PnPf0ZeXh7y8vLQr18/REZGom3btnjwwQfRokULTJ06FdnZ2fj+++8D+o6zZ89i0KBBePvtt1G9enWdaqI/2RuoygO0zGWXPe9VkTm2nlSPtSutrowB/M9hIJd3BvL9JAeV+rK/VGtjzIH/6wzH1R+AOXMCqNc3PKle/sqYoc2pXgcl7+lOT0/Hb7/9hh9//BGNGzd2++ynn35C9+7d0aJFC7zwwgvYvXs3unTpgscffxwLFy70+ztyc3PRr18/5OTk4Kmnnqp02ZKSEpSUlDj/XVxcHFiFdCT72SOZy6Yy2fNeFdXKrnq8HbSqh7dnQfj6vso+D4ZZcuGLmeumCtXamEpl9ZdqOfCkctl9UT0ngDnq4IsZ6qV6HZQ80/3CCy8gNze3woQbAJo2bYrc3Fzk5+cDAJo1a4b7778f33zzjd/rnzFjBjZv3uxcR1Xy8/ORnJzsfNWvX9/v79KbCg1U1SNXMsdW5rL5Q7U2oXq8HfS4XxjwfskmH2wXONX6BWDOfKhWJxXbTVVUy4En5kROZqiDN2Zpb6rXQ8lJ98GDBxEV5fskfVRUFA4cOOD8d0ZGhtuZ6MocOHAAI0eOxEcffYS4uDi//mbMmDEoKipyvly/22gqNFBVBzmZYytz2fyhWptQPd4Oej7Ajpdthk61fgGYMx+q1UnFdlMV1XLgiTmRkxnq4I1Z2pvq9VBy0t2yZUtMnjwZR48erfDZkSNHMHnyZLRs2dL53p49e1CnTh2/1r1p0yYcO3YM2dnZiIqKQlRUFFatWoVXX30VUVFRKCsrq/A3sbGxsNvtbi/yn6qDnMydX+ay+UO1NqF6vB3MUA8z1MEX1foFYM58qFYnFdtNVVTLgSfmRE5mqIM3ZmlvqtdDyXu6X3zxRfTt2xdNmzbFgAED0LRpUwCX7+eeM2cOLl68iPfeew8A8Pvvv2PatGno27evX+vu2bMntm3b5vbe0KFDkZmZiUcffRSRkZHaVkZnKgwgKpTRG9nv/ZG9fL6oWG4Vy+yNGephhjr4omq9zJYT1eqjUln9pVoOPKlcdl9Uz4mDWerhyiz1Ub0eSk66u3fvjm+++Qbjx4/HrFmzcOHCBQBAXFwccnJyMGHCBGRnZzvfO3TokN/rTkpKQlZWltt71apVQ82aNSu8LztVBg5VyulJ9jLLXj5fVCy3imX2xgz1MEMdfOFYScFSte2YFfMhLzPmxSztTfV6KDnpBoB27dph3rx5KC8vx7FjxwAAaWlpiIhQ8op5XajcMFUge+eXvXy+qFhuFcvsyQx1cDBTXVypWiez5UPFuqhY5sqoXh/Vy++NWepktvEKME9uVK+HspNu4PJPdW3evBnHjh1D165ddZtwFxQU6LJevakycKhQRm9ULbfsVIyrimU2M7PmQ5Ux3ZOKZa6MinlQscyVMUN9zFAHV2apjxnq4MksuVG9HsqeFn711VdRt25ddO3aFX/5y1+wdetWAMBvv/2GWrVqOe/ptjJVGqaqD0aQvdyq5N+T7HH1RsUye1K1vXhjhnyYidnyoWJfUbHMlTFDfcxQB1dmqY/ZxivAPLlRvR5KTrqnTp2KvLw89OnTB++9955bEmrVqoUePXpgxowZBpZQDqoMHKp2ItnLrUr+PckeV29ULLMnVduLN2bIhzeq1kvVcnujaj9Rtdy+mKE+ZqiDK7PUx0zjlYNZcqN6PZScdL/00ku4+eabMX36dPTv37/C5+3bt8f27dsNKJlcVBk4VOxEKpRZlfx7UiG2nlQssydV24s3ZsiHN6rWS9Vye6NqP1G13L6YoT5mqIMrs9THTOOV2ajexpScdP/000+V/gRYjRo1cOLEiTCWSE6qDBwqdiIVyqxK/j2pEFtPKpbZk6rtxRsz5MMbVeularm9UbWfqFpub8xSF7PUw2zMNF45mKlOKvcbJSfdKSkp+O2333x+vmPHDtSpUyeMJZKTKp1MxQ6kQplVyb8nFWLrScUye1K1vXhjhnx4o2q9VC23N6r2E1XL7Y1Z6mKWejiYpZ+bpR5mpXK/UXLSfeONN+Ktt97C6dOnK3y2fft2vP3227jpppvCXzDJqDJwqNiBVCizKvn3pEJsPalYZk+qthdvzJAPb1Stl6rl9kbVfqJqub0xS13MUg8Hs/Rzs9TDlZnamsp1sQkFW9ehQ4fQuXNnCCHQv39/vPXWW/jb3/6GsrIyfP7556hbty7Wr1+PWrVqGVK+4uJiJCcno6ioCHa73ZAyqEa1nwFQrbwqUTW2qpbbjMyYC5XrpHLZicg/ZunnZqkHyTcfU/JMd3p6OjZt2oQ+ffrgk08+gRACH3zwAebPn48777wT3377rWETbpmodDRItQFOhfKqlH9XKsTWG1XL7aBqe/FG9Vx4o3KdVC67J1X7iarl9sYsdTFLPRzM0s/NUg8Hs7Uzleuj5JluT8ePH0d5eTlSU1MREWH8cQTZjqyoQLUji6qVVyWqxlbVcpuRGXOhcp1ULjsRVc1MfdxMdbE62eZjUUYXQAupqalGF0FKKg0cqpTTQZXyqtQGHFQrr4Oq5XZQsa34YpZ6uFK5TiqX3SzM1L/NUhez1AMwVx83U10Ac7UzQO36GH9amHSjUqNU7XIRVcqrUhsA1ImrNyqXHVCvrVRG9Vx4o3qdVC+/g6r1MFP/NktdzFIPQN1+4Y2Z6gKYq50BatdHiTPdERERQXWCsrIyHUqjDpWOBqlSTgdVyqtSGwDUias3KpddtXZSFTPVxUH1OqlefgeV62GWfs56yMcs9QDMVRfAXO0MULs+Sky6n3jiiQqT7tmzZ2P79u3o3bs3mjdvDgD48ccf8eWXXyIrKwsDBgwwoKRyUalRqtaJVCmvCmV0pUpcvVG57KqWuzIq58OMzJIPleuhark9sR7yUblfeGOm+pilHg4q10eJSfeECRPc/v3WW2/h2LFjKCwsdE64HX744Qf06NED6enpYSyhfFQbMFQqK6BOedkOwkflsqvWTvxhtvqoniOVy+5K5Xqo3obMyCw5MUMdXJmpPmZpYw4q10fJe7pfeOEFjBgxosKEGwCuuuoqjBgxAs8//7wBJZOHag1StXtoVCkv20H4qFx21dqJP1TOhzeq58gs+VC5Hqq3IQeVc+CJOSG9maWNOahcHyUn3QcPHkR0dLTPz6Ojo3Hw4MEwlkg+qg2AqnUi1cqrCpXjqnLZVRsv/KFyPrxRPUdmyYfK9VC9DTmonANPzImczJIXwFx1AdSuj5KT7qysLLzxxhv49ddfK3x28OBBvPHGG2jVqpUBJZOHagOgap1IlfKqUk4zUDnWqo0X/lA5H96oniMz5EP1OqjehhxUz4Mr5kROZskLYK66AGrXR4l7uj3997//Re/evXHllVfilltuQdOmTQEAu3fvxpw5cyCEwIcffmhwKY2l2j0PKpUVUKe8qpTTQbV260rVcgNqx90Xs9VH9RypXHYH1eugehtyMEMdHJgTOZklL4C56gKoXR8lJ93XXnst1q1bh3HjxmH27Nm4cOECACA+Ph69e/fGk08+yTPdijVIlToRy6oflcrqSbVYu1K13JVROR/eqF4XM+RD9TqoXHYH1XPgySx1YV7kZaa6AGrXxyZULj2A8vJyHD9+HACQmpqKiAjjr5gvLi5GcnIyioqKYLfbDSmD2QZAsga2W2Mw7vJjjihUbEPyYU7kZKa8mKkuDv7WSYb5mCslz3S7ioiIQO3atY0uBmlAlYFBlXICapUVUPsIJqBevB1ULHNVVM2FL6rXxQz5UL0OKpfdQfUceDJLXZgXeZmpLg6q1sn408J+aNGiBd5//32Ulpb6/TclJSWYOnUqWrRooWPJ5KVig1SlzKqUE1CrrID6D2NRLd4OqsfdG1Vz4YvqOTJDPlSvg+ptCFA/B57MkBOAeZGVWerhSdV6KXGme8iQIRg9ejRGjhyJm266CTk5OcjOzkajRo2QkJAAADh37hz27t2LjRs3YtmyZZg/fz5iYmLwyCOPGFx6Y6h41FGVMqtSTkCtsgLqb7hVi7eDimWuiqq58EX1upghH6rXQeWyO6ieA09mqIvZcgKYIy+AeerhSdV6KXNP95kzZ/Duu+9i2rRp2Lp1q/MoR1TU5eMGly5dAnA5EVlZWRg2bBiGDRtmyDX8st1DQNoy4wZGFoytMcwYdzPVyUx1IeOwHcmHOZGTWfJilnp4UvWebmUm3a727duHb775Bj/++CNOnDgBAKhZsyYyMzPRpUsXNGrUyNDyyZBkFTuaimWWnUoxVamsvpihDkR6Ub1/qF5+M2AO5MOckKxkmI+5UuLyck8ZGRnIyMgwuhhSU3EAVKXMKm1gVCknoFZZfVG1Diq16UCYpV5mqYfqdVC9/ID6bUnlsnujej4A8+UEMEdeAPPUw5Oq9VLiQWoUGFUfMKBKuVXr6KrEVZVyVkbVOqjWpv1llnqZpR6q9g8H1csPqN+WzJADV6rnAzBfTgBz5AUwTz08qVovTrpNSNXGqEq5zbiBkYEq+a+MinUwc3s2S93MUg8V+4cr1csPqN+WzJADT8yJnFTPC2COOnijar046TYhVRujKuVWbQOjSnlVyX9lVKyDKu0jGGapm1nqoWL/cKV6+QH125IZcuCJOZGT6nkBzFEHb1StFyfdJqRqY1SFahsYVcprhnarYh1UaR/BMEvdzFIPFfuHK9XLD6jflsyQA0/MiZxUzwtgjjp4o2q9lJ90T5o0yegiSEfVxqjKwK1KOR1UKa+q7daVinVQpX0Ew8x1U5GK/cNB5bK7Ur1PmCUPrpgTOameF8AcdfBG1XopP+l+6qmnnP9/6623GlgS/9hsNq8vUmPgVqGMnlQps6qDqCsV66BK+wiGWeqmYrvyRuV6qFx2Vyr3CVWfWFwVlXMCmKdveFI9L4A56uCNqvVSftJ91VVX4bnnnsOuXbuwdOlSo4vjk+vkWgjh9vL8PFSqDoAqlFuFMnpSpcyqDqKuVKyDKu0jGHrVLdwHTlVsV96oXA+Vy+5K5f6uctkro3q9zNI3zEj1tuWLqvVS8ne6XU2fPh0TJkxATk4Ozp8/j7Zt26JVq1Zo3bo1WrdujVatWiE9Pd2w8rkORr4aiefEO9TGpPLRYNnLLnv5vFGlzCqU0YxUaR/B0LpuvsZzz4OqWjNLfsxSD5Wp3N9VLntlzFov1ZkhJ2ZuWyrWzSZUK3ElEhMTsWzZMmzduhVbt27Ftm3bsG3bNkREROC3337zax35+fmYNWsWfvzxR8THx+Oaa67Bc889h+bNm/tdjuLiYiQnJzv/HUiI9dxxo9Cp2MlVwdgaw8xx16pu/o7L/hxkDfb7zZAjs9SDSEvsF3JiXuTmT34c87GioiLY7fYwlcw3Jc90N23aFIMHD8a4cePc3j9y5AgSExNx9dVXu71/8OBBv9e9atUq5ObmomPHjrh06RIef/xx9OrVCzt27EC1atUCKmcwSRZChHypjsoDhexll7lsvsgeU7NRLd4qlTVQ4Zxwuy6j1VVLnusl46jWr31RuR4ql70yKtfJrDkB1M4LYO7cAGrmR8lJ9549e7Bx40Zs2rQJu3btgt1ux1VXXYXGjRt7Xf6KK67we91Llixx+/e0adOQlpaGTZs2oVu3biGVOxBm7yyqYl70Y5a4al0Pz4NweqzfLLH3pFXdAl2H4+Cp1W8X8qRHPXwdpNb6u8ySAz1UdqJAy7iZNQcq93FVy+0PlfMCmDs3gJr5UXLSDQALFizAggUL3M4stGzZEo8//jjuuOMOzb6nqKgIAFCjRg3N1lmVUM92q9YIXWl5ZkqPdasYWxXKrOLg6YvelzRrfQuKWeLujWMsDbaOofytFlctOdZjJlr3D8B7H9G6n5hljArHMw5cP9cyD2bJgSe9D9Tq+X1mzQmg/thr5twAauZH2Ul3dHQ0xo4di+uvvx6lpaXYuHEjPvvsMwwaNAgFBQV48803Q/6O8vJy5OXloWvXrsjKyvK5XElJCUpKSpz/Li4uDvm7g91ZVL2ThVr+yiYqVj7rJHu5ZS6bESrbUXU90OhrmUC/y8zxD2XCrcV3azGmmSk/4bjkX4/L/M2Sg3A+50Cv2y3MRsvYVJUXrQ+EmDmnerTZcF0VYgUqjinKTrpHjRrldk93Tk4OHnvsMfz3v//Fww8/jC5dumDw4MEhfUdubi4KCwuxZs2aSpfLz8/Hk08+GdJ3UeiqmqhYecOv5xUEWqzfTHnRIhb+rEeLNm2muPsS6tlqo8tgNnodWPWGl/lXFO7nHDiW41UfvoVrwu36GftF1bQ4aOoQ7qtCtFwPaUfJ3+mOj4/3eZ/2qFGjMHDgQLz22mshfceIESOwYMECrFy5ssp7wseMGYOioiLn68CBAyF9t0MwGyrVO1moZ6X83dgES9X4avFwPqDib8xrEVOzCSUWwezMhkLV9hyIYOoo00PQrJAjfwWzU8oxqiIjJsBaTLzNmkMt6uUYswLddpg1plrR+iBVZVfnaJ0Ts+dWxW2jkpPuzMxMLFy40Ofn1113HXbs2BHUuoUQGDFiBGbPno0VK1agUaNGVf5NbGws7Ha728soqncyvSfEoQ5qqsc3GIFcyhksFQdPrQV7lDuUnVkrtGdZ6sgcXWbEQQiOUdrR6kqFYJg1B6EekAg2J+wXVdPyhIU/tJx4MzfyUXLSPXz4cCxZsgT/+Mc/cOHChQqff/3110hISAhq3bm5ufjwww8xffp0JCUl4ciRIzhy5IjX7wkXFRtWOAW6wbHipbh6XkHg+jknFqFt6MLdvlRtz3rSo58zzn8waozQ6rYPMzDqOQfcTvhmdE6CZeachCqUA+mufx/q95M8bELRvYFRo0bhlVdeQc2aNdG3b19kZWUhJiYGy5Ytw+LFizFkyBC8++67Aa/XVyOdOnUqhgwZ4tc6tP4xdpUne+EQ7APnAOvsDAfbhgL9u2DjaqY2blR7tOKDF/0RTBvWIyZWG3N8CddY5GsdgLXHJ8DYHAS7HrPlwJOK/UKr7zcjrbbpoayDudF+PhYqZSfdAPDVV1/hv//9L5YtW4azZ8863x8wYACmTZtmWICNnHSboZOFq76y7IyHQzgngirHSQtG7VAGky+r58qT3hNjTjaCo2UMGE/jD1TzAFRFRo8N7BfeqXiAykqqio9sk25ln14OXL53+7rrrkNZWRn27duHM2fOoEGDBmH9Te1wcNzvw46nPavENdg68oBG4ILdmdXie3k5WUXhuv3EX2Zq68GQof5WHp+A8G8PvK0n0LHKbDnwJEPdjJ74m4XW22GjJ/6kHaUn3Q6RkZFo0qSJ0cWgMAt1QAl0w6/y4BXOnUxO/uSb6Mn2vTIKR5sNpm9YPUda54XjU/C3DZF+jD4QxAMh3ql4gIrkpeSD1Mg7KwyAevB3QOPAFxjGq2pGTyiYI3eyjZ9mzE8wMdbzHnujvl81ejxc0IztW2XMSUXBHIiQoRyANcYt1erISbci/BkMVWt8odDyklwrCGRjqkVsrXzpZqCsXPdwkG1HUrbyhJsMB4WMugVEFiqe5eY4+QdZtpkylEFGehygCpQs/VZvqtWTk24TUa3x+eLvAMMBXz/hjC3zqD1/xgJZdtxkIOvYacb8WOm2HlnJdIsDrzSTD3Pyh3CfsDBy/aQ/TrpJOkYMLFYYzMK98+rvxsqMsfcn1npNejlJCY6McTNj35CFla84kKXuMvY5owTyiy0ylMNKZHg+S6DrZR7lxEm3QmTZUBpNjweIhPs7jcCzn+GjQj9lno2lQhsxEuNjPOYgvPyNdzjGbub+DyrGQsUyWwEn3USkKw7+xqgq7szLZUbEweoHPFS7hUiWchhB77rzZIJ8rNzegxWOExbsKxWpFhNOukk6RnUilTquHvSoPzfe3um9gWbcA8N4hZcsY60/2xpZymplvALrMrZFIrVx0q0YXzsJVtko8T5YfTEO2lDt6CsZg23EO6tsz2TGHMgpnDnh+OSfcMeJeVEXJ91EpKvKJqBW3HiEq86c+P+hsoOVRqlq55mTnvBhPzEWxyr5cHwKTLhiwZirjZNuRVlxAxWOp3aaOa6yTn6tuBExus5mbueBMjoX5C7cbZP5r4jjg3w4ySV/sa3Ii5NuBVm5M1m57npjbK2F+Tae2Q/0+VJVvdk29ccckD+sOD4Fwqj4MC9q4qSbpGTkzqjn9/KoYeisOrnwZMRZPMbdO8aFXLE9GItjlXwx4H7PZbIdoGJe3MnWbyrDSbfCHI3MCpPCcNXR7HH0xgrtxwi+NgSMtXE888FcEOC7HXBsNJ4qO9N6YjskMgdOuhXlGIDNvkGy2Wymr6OVuOaSOxLhwz7kPrGSKR4qHaXXG8cE4xmdAx6olIu38Ynj1WVGPwuHeVAPJ90KE0I4X2bkWq9w1tF1MDPboOY5UIezfmZtp/4yamfW8zvN1qYD5ai/zO3RKjmSrZ6ylcdqZO6TRpG1TTJXlzEOcktOTja6CG446SapGXlQQYWdcy2Eu35Wu3pBlvq6lsHsbdoXmQ9UWu3Sd9kOBpk93t4YeRCWvPN2BlOGtsm2UfFKPRnJWi69qXJFBifdRF44NnIybOz0YNRE0KirF4wiS32tcjuKqqzQF/whQxys9KwUb4yus5mvNAuULPWX9daccPLWL2TqK57vW5Vj39YRl6KiIoNL5I6TbiIfzDpwGT0RlPVMo15kqa/ZDySZgSxXRYSTTHW26sEpmXLgYJUrzXyRrf6uEzxZymQU2foKXea5bytjO40yugBEFH4yDkakP+ZdXlbcqZWxzo4yyVIevcmaAyuTtf6ylitcZOwrgHWvyvFG9jhw0k1ERCQB2XcY9CBjnWUsk56sVl+iYMnWVxwHAmQ8GEAV8fJyIiIiIiIixXCirQ6e6SYiIiIiIlIQJ95q4JluIiIiIiIiIp1w0k1ERERERESkE066iYiIiIiIiHTCe7p14Li3ori42OCSEBERERERWYtjHibLPe+cdOvgxIkTAID69esbXBIiIiIiIiJrOnHiBJKTk40uBifdeqhRowYAYP/+/SEluWPHjtiwYUPI5dFiPbKso7i4GPXr18eBAwdgt9sNLYuZ8qNVXLUoi1brkKUsZoytLPmRaTzQaj2yrIOx1W8dMsXWTPnhWKvfemRqs1qtR5ayMLb6raOoqAgNGjRwzsuMxkm3DiIiLt8qn5ycHFIHioyMDHnDodV6ZFmHg91uNzy2ZssPEHpctSoLY6tfWWRZh5brkWE80Go9sqzDgbHVfh0OMsTWbPkBONbquR4Z2qxW65GpLABjq8c6HBzzMqPJUQryKjc3V5r1yLIOrchUH5nKogWZ6iNTWbQgS31kyo8WZKqPLOvQCmOrH5nqI1NZtCBLfWTKjxZkqo9MZdGCTPWRZR2ysQlZ7i43keLiYiQnJ6OoqEizozR0GWOrD8ZVP4ytfhhb/TC2+mFs9cG46oex1Q9jqx/ZYssz3TqIjY3F+PHjERsba3RRTIex1Qfjqh/GVj+MrX4YW/0wtvpgXPXD2OqHsdWPbLHlmW4iIiIiIiIinfBMNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ64aSbiIiIiIiISCecdGvs9ddfR0ZGBuLi4tC5c2esX7/e6CIZavXq1ejfvz/S09Nhs9kwZ84ct8+FEHjiiSdQt25dxMfHIycnB7t373Zb5uTJkxg0aBDsdjtSUlJwzz334OzZs27LbN26Fddddx3i4uJQv359PP/88xXKMnPmTGRmZiIuLg6tWrXCokWLNK9vOOXn56Njx45ISkpCWloaBgwYgJ07d7ot8/vvvyM3Nxc1a9ZEYmIibr31Vhw9etRtmf3796Nfv35ISEhAWloaHnnkEVy6dMltmYKCAmRnZyM2NhZNmzbFtGnTKpTHLG1/8uTJaN26Nex2O+x2O7p06YLFixc7P2dMtfPss8/CZrMhLy/P+R7jG5wJEybAZrO5vTIzM52fM66h+fXXX/G3v/0NNWvWRHx8PFq1aoWNGzc6P+e2LDgZGRkV2q3NZnP+Ri/bbXDKysowbtw4NGrUCPHx8WjSpAkmTpwI12cns80G78yZM8jLy0PDhg0RHx+Pa665Bhs2bHB+ztj6R6U5gj9lqZIgzcyYMUPExMSI9957T2zfvl3cd999IiUlRRw9etToohlm0aJFYuzYsWLWrFkCgJg9e7bb588++6xITk4Wc+bMEd9//7246aabRKNGjcSFCxecy/Tp00e0adNGfPvtt+Krr74STZs2FXfeeafz86KiIlG7dm0xaNAgUVhYKD7++GMRHx8vpkyZ4lzm66+/FpGRkeL5558XO3bsEP/+979FdHS02LZtm+4x0Evv3r3F1KlTRWFhodiyZYu48cYbRYMGDcTZs2edy9x///2ifv36Yvny5WLjxo3i6quvFtdcc43z80uXLomsrCyRk5MjvvvuO7Fo0SJRq1YtMWbMGOcye/bsEQkJCWL06NFix44d4rXXXhORkZFiyZIlzmXM1PbnzZsnFi5cKHbt2iV27twpHn/8cREdHS0KCwuFEIypVtavXy8yMjJE69atxciRI53vM77BGT9+vGjZsqU4fPiw83X8+HHn54xr8E6ePCkaNmwohgwZItatWyf27NkjvvjiC/HTTz85l+G2LDjHjh1za7NLly4VAMTKlSuFEGy3wXr66adFzZo1xYIFC8TevXvFzJkzRWJionjllVecy7DNBu/2228XLVq0EKtWrRK7d+8W48ePF3a7XRw8eFAIwdj6S6U5gj9lqQon3Rrq1KmTyM3Ndf67rKxMpKeni/z8fANLJQ/PDlVeXi7q1KkjXnjhBed7p0+fFrGxseLjjz8WQgixY8cOAUBs2LDBuczixYuFzWYTv/76qxBCiDfeeENUr15dlJSUOJd59NFHRfPmzZ3/vv3220W/fv3cytO5c2cxfPhwTetopGPHjgkAYtWqVUKIy7GMjo4WM2fOdC7zww8/CABi7dq1QojLA15ERIQ4cuSIc5nJkycLu93ujOe//vUv0bJlS7fvGjhwoOjdu7fz32Zv+9WrVxfvvPMOY6qRM2fOiGbNmomlS5eK66+/3jnpZnyDN378eNGmTRuvnzGuoXn00UfFtdde6/Nzbsu0M3LkSNGkSRNRXl7OdhuCfv36iWHDhrm995e//EUMGjRICME2G4rz58+LyMhIsWDBArf3s7OzxdixYxnbIMk8R/CnLP7g5eUaKS0txaZNm5CTk+N8LyIiAjk5OVi7dq2BJZPX3r17ceTIEbeYJScno3Pnzs6YrV27FikpKejQoYNzmZycHERERGDdunXOZbp164aYmBjnMr1798bOnTtx6tQp5zKu3+NYxky5KSoqAgDUqFEDALBp0yZcvHjRrd6ZmZlo0KCBW3xbtWqF2rVrO5fp3bs3iouLsX37ducylcXOzG2/rKwMM2bMwLlz59ClSxfGVCO5ubno169fhRgwvqHZvXs30tPT0bhxYwwaNAj79+8HwLiGat68eejQoQP++te/Ii0tDe3atcPbb7/t/JzbMm2Ulpbiww8/xLBhw2Cz2dhuQ3DNNddg+fLl2LVrFwDg+++/x5o1a9C3b18AbLOhuHTpEsrKyhAXF+f2fnx8PNasWcPYakSmOPpTFn9w0q2R3377DWVlZW4DPwDUrl0bR44cMahUcnPEpbKYHTlyBGlpaW6fR0VFoUaNGm7LeFuH63f4WsYsuSkvL0deXh66du2KrKwsAJfrHBMTg5SUFLdlPeMbbOyKi4tx4cIFU7b9bdu2ITExEbGxsbj//vsxe/ZstGjRgjHVwIwZM7B582bk5+dX+IzxDV7nzp0xbdo0LFmyBJMnT8bevXtx3XXX4cyZM4xriPbs2YPJkyejWbNm+OKLL/DAAw/gn//8J/73v/8B4LZMK3PmzMHp06cxZMgQABwPQvHYY4/hjjvuQGZmJqKjo9GuXTvk5eVh0KBBANhmQ5GUlIQuXbpg4sSJOHToEMrKyvDhhx9i7dq1OHz4MGOrEZni6E9Z/BHl95JEJK3c3FwUFhZizZo1RhfFFJo3b44tW7agqKgIn332GQYPHoxVq1YZXSzlHThwACNHjsTSpUsrnCWg0DjOYAFA69at0blzZzRs2BCffvop4uPjDSyZ+srLy9GhQwc888wzAIB27dqhsLAQb775JgYPHmxw6czj3XffRd++fZGenm50UZT36aef4qOPPsL06dPRsmVLbNmyBXl5eUhPT2eb1cAHH3yAYcOGoV69eoiMjER2djbuvPNObNq0yeiikcR4plsjtWrVQmRkZIWnah49ehR16tQxqFRyc8SlspjVqVMHx44dc/v80qVLOHnypNsy3tbh+h2+ljFDbkaMGIEFCxZg5cqVuOKKK5zv16lTB6WlpTh9+rTb8p7xDTZ2drsd8fHxpmz7MTExaNq0Kdq3b4/8/Hy0adMGr7zyCmMaok2bNuHYsWPIzs5GVFQUoqKisGrVKrz66quIiopC7dq1GV+NpKSk4Morr8RPP/3EdhuiunXrokWLFm7vXXXVVc7L97ktC90vv/yCZcuW4d5773W+x3YbvEceecR5trtVq1a46667MGrUKOcVRmyzoWnSpAlWrVqFs2fP4sCBA1i/fj0uXryIxo0bM7YakSmO/pTFH5x0ayQmJgbt27fH8uXLne+Vl5dj+fLl6NKli4Elk1ejRo1Qp04dt5gVFxdj3bp1zph16dIFp0+fdjt6uGLFCpSXl6Nz587OZVavXo2LFy86l1m6dCmaN2+O6tWrO5dx/R7HMirnRgiBESNGYPbs2VixYgUaNWrk9nn79u0RHR3tVu+dO3di//79bvHdtm2b26C1dOlS2O12505mVbGzQtsvLy9HSUkJYxqinj17Ytu2bdiyZYvz1aFDBwwaNMj5/4yvNs6ePYuff/4ZdevWZbsNUdeuXSv8HOOuXbvQsGFDANyWaWHq1KlIS0tDv379nO+x3Qbv/PnziIhw38WPjIxEeXk5ALZZrVSrVg1169bFqVOn8MUXX+Dmm29mbDUiUxz9KYtf/H7kGlVpxowZIjY2VkybNk3s2LFD/P3vfxcpKSluT9W0mjNnzojvvvtOfPfddwKAmDRpkvjuu+/EL7/8IoS4/Aj+lJQUMXfuXLF161Zx8803e/05gHbt2ol169aJNWvWiGbNmrn9HMDp06dF7dq1xV133SUKCwvFjBkzREJCQoWfA4iKihIvvvii+OGHH8T48eOV+lkFbx544AGRnJwsCgoK3H5y5fz5885l7r//ftGgQQOxYsUKsXHjRtGlSxfRpUsX5+eOn1vp1auX2LJli1iyZIlITU31+nMrjzzyiPjhhx/E66+/7vXnVszS9h977DGxatUqsXfvXrF161bx2GOPCZvNJr788kshBGOqNdenlwvB+AbroYceEgUFBWLv3r3i66+/Fjk5OaJWrVri2LFjQgjGNRTr168XUVFR4umnnxa7d+8WH330kUhISBAffvihcxluy4JXVlYmGjRoIB599NEKn7HdBmfw4MGiXr16zp8MmzVrlqhVq5b417/+5VyGbTZ4S5YsEYsXLxZ79uwRX375pWjTpo3o3LmzKC0tFUIwtv5SaY7gT1mqwkm3xl577TXRoEEDERMTIzp16iS+/fZbo4tkqJUrVwoAFV6DBw8WQlx+DP+4ceNE7dq1RWxsrOjZs6fYuXOn2zpOnDgh7rzzTpGYmCjsdrsYOnSoOHPmjNsy33//vbj22mtFbGysqFevnnj22WcrlOXTTz8VV155pYiJiREtW7YUCxcu1K3e4eAtrgDE1KlTnctcuHBBPPjgg6J69eoiISFB3HLLLeLw4cNu69m3b5/o27eviI+PF7Vq1RIPPfSQuHjxotsyK1euFG3bthUxMTGicePGbt/hYJa2P2zYMNGwYUMRExMjUlNTRc+ePZ0TbiEYU615TroZ3+AMHDhQ1K1bV8TExIh69eqJgQMHuv2ONOMamvnz54usrCwRGxsrMjMzxVtvveX2Obdlwfviiy8EgArxEoLtNljFxcVi5MiRokGDBiIuLk40btxYjB071u1nk9hmg/fJJ5+Ixo0bi5iYGFGnTh2Rm5srTp8+7fycsfWPSnMEf8pSFZsQQvh/XpyIiIiIiIiI/MV7uomIiIiIiIh0wkk3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ64aSbiIiIiIiISCecdBMRERERERHphJNuIiIiIiIiIp1w0k1ERERERESkkyijC2BG5eXlOHToEJKSkmCz2YwuDhERERERkWUIIXDmzBmkp6cjIsL488ycdOvg0KFDqF+/vtHFICIiIiIisqwDBw7giiuuMLoYnHTrISkpCcDlJNvtdoNLQ0REREREZB3FxcWoX7++c15mNE66deC4pNxut3PSTUREREREZABZbvU1/gJ3IiIiIiIiIpPipJsMZ7PZpDkKRUREREREpCVOuslQrpNtTr6JiIiIiMhseE83GcZms0EIUeE9b+9T4BwHMBhLIiIiIiLj8Ew3GcLXGW1OEEPnecUAryAgIiIiIjKOtJPu/Px8dOzYEUlJSUhLS8OAAQOwc+fOSv9m1qxZ6NChA1JSUlCtWjW0bdsWH3zwgdsyR48exZAhQ5Ceno6EhAT06dMHu3fvdlvm559/xi233ILU1FTY7XbcfvvtOHr0qOZ1tCp/zsBykhgc19i6vlw/IyIiIiKi8JF20r1q1Srk5ubi22+/xdKlS3Hx4kX06tUL586d8/k3NWrUwNixY7F27Vps3boVQ4cOxdChQ/HFF18AuDwRGTBgAPbs2YO5c+fiu+++Q8OGDZGTk+Nc77lz59CrVy/YbDasWLECX3/9NUpLS9G/f3+Ul5eHpe5WUNmEm2e7Q+MtfoypPhxXEbi+yFjMBREREcnGJhTZGz9+/DjS0tKwatUqdOvWze+/y87ORr9+/TBx4kTs2rULzZs3R2FhIVq2bAkAKC8vR506dfDMM8/g3nvvxZdffom+ffvi1KlTzt/YLioqQvXq1fHll18iJyenyu8sLi5GcnIyioqK+DvdHgK5z5j3dgfG3ysIGFNteIs376M3juskWwjBXEjEMzdERER6k20+Ju2Zbk9FRUUALp/N9ocQAsuXL8fOnTudk/SSkhIAQFxcnHO5iIgIxMbGYs2aNc5lbDYbYmNjncvExcUhIiLCuQyFhjtd+vH3YAaFxteEjpfyG8PztgrX/2cujOXZV3gVQvjxihy5MB9E1qTEpLu8vBx5eXno2rUrsrKyKl22qKgIiYmJiImJQb9+/fDaa6/hT3/6EwAgMzMTDRo0wJgxY3Dq1CmUlpbiueeew8GDB3H48GEAwNVXX41q1arh0Ucfxfnz53Hu3Dk8/PDDKCsrcy7jqaSkBMXFxW4v0gY3Rv7xN0484BG6qs6gcuJtDD4jQj6efYXPmAg/x9VNfMaHHJgPIutSYtKdm5uLwsJCzJgxo8plk5KSsGXLFmzYsAFPP/00Ro8ejYKCAgBAdHQ0Zs2ahV27dqFGjRpISEjAypUr0bdvX0REXA5FamoqZs6cifnz5yMxMRHJyck4ffo0srOznct4ys/PR3JysvNVv359zepuJoFe2swJYmACiRc38MHx95Jltt3wqaotc6fWGJX1FfaP8PC1zeVVIMZgPoisTfp7ukeMGIG5c+di9erVaNSoUcB/f++99+LAgQPOh6k5FBUVobS0FKmpqejcuTM6dOiA119/3W2Z3377DVFRUUhJSUGdOnXw0EMP4ZFHHqnwHSUlJc5L14HL9xDUr19fmnsIZBHM/cS8L7NqwcSI93YHJ9C4Mc764jMi5ORvXpgT/QTyKyHMgf78aevMh/H4/Ak5Bfszw7Ld0x1ldAF8EULgH//4B2bPno2CgoKgJtzA5UvTXSfEDsnJyQCA3bt3Y+PGjZg4cWKFZWrVqgUAWLFiBY4dO4abbrrJ63fExsa63QNOFQV7BJdHf/0TzMaBO7yBYTuUEw+CyMnfODMn2gvkihzHPcXMgX4Cuf2L+TCGtwdx8iCIHHzlQcW+Iu2kOzc3F9OnT8fcuXORlJSEI0eOALg8WY6PjwcA3H333ahXrx7y8/MBXL7Mu0OHDmjSpAlKSkqwaNEifPDBB5g8ebJzvTNnzkRqaioaNGiAbdu2YeTIkRgwYAB69erlXGbq1Km46qqrkJqairVr12LkyJEYNWoUmjdvHsYImI9KHUMVPJgRXoG2YUec2fa1F2j7ZZsPj0BizJzox98xhzkID+ZDXt4mdZ4PfuQ23BhV3aakWn6knXQ7Jsrdu3d3e3/q1KkYMmQIAGD//v1u91mfO3cODz74IA4ePIj4+HhkZmbiww8/xMCBA53LHD58GKNHj8bRo0dRt25d3H333Rg3bpzbd+zcuRNjxozByZMnkZGRgbFjx2LUqFH6VJT8olKnCjfGRX/cCZITD4LIKZjbiJgTbQQ7VjEH+gg2rsxHePjzYFTVJnZm4c+VBqrlR/p7ulUk2z0ERtOiM6jSocIt1Lgwrv5hnOUSymV/zIV+gs0Lc6IdTvLkwnzIK9Bngvi7LGkjkD7gKz+yzceUeHo5EVXEs69kZaEeBCF9BJsX5iR0ocaQOdBWKBNnXmYeHoFc9k/hY9ZfO+Kkm5TADZB3Wgw0jGvltDrjwDjLQZWNs2pCad/MiXZCmeSRdjjeyy2Y/HA/NDxCibHs+eGkm3TFS6TkxtyEB+OsHR4EkVcoeeEObWi0ih1zoJ1Qxyn2CX2Eeqk4c6K/YHLj+vA7WXHSTaQgmQcVM9E6zsybHHgQhMxIi0kehY7bDfnxihA5hdrWZZ94c9JNyuBRX3daDv6Mq29axZkb69BpfeUM2702tMwLcxI4TvLkw+2GnHhFiPy0OngoY4446SbdyNjgqSJu1MmK2O7lw5wEj5M8OXC/R368IkROWvYdR46Sk5M1W6cWOOkmXXFw0h436uGhx/MIeLVG8Bg3OemRF+baf3rFijkInh77PcxH6HhFiPy07DtCCBQVFWm2Pi1w0k1K4aTlMk4GyYrY7uWk9Y4SBUaPfkHyYD60wytC5GSV7TAn3aQLq3QgMie92y/7B5kB27G5Mb+B4XZDXnrEjgdttWWFAxmcdJNurNCBwk3vn2DjBuQPesWZ/SJwbPfy0iMv3Jn1j54x4jgVHG435MUYyslKYz0n3aQc7pDpgxsksiK2e1IZ268cwrVPwn2fwOl9cIo5CZ1VxjFOuklzHIBIZXqfVQW4oQ4E4ySncOSFufctHLHhOBWYcGw3KDiMnZysNr5w0k264ACnPR5JJ6viQRA56ZkXbkOqxhjJIdxjB8cq/3G/SX5WGsc0m3T//vvvKCkp0Wp1RJWy6k4yj6TriztPcmF85BTOvLANVMRxSj7h2nZafRsdDO43kSyCnnQXFBRg1KhR6NSpExITE1GtWjUkJCQgKSkJnTp1Ql5eHgoKCjQsKqmAG2dSHXee5BLOOHH88l848sI+4hvHKTkYNWZwrJIPcxKYcNzKJxubCKDGFy9exJQpUzBp0iTs27cPNWrUQHZ2Nho3bozq1atDCIFTp05h79692Lx5M06ePImGDRvioYcewvDhwxEdHa1nXaRRXFyM5ORkFBUVwW63G12csApnJ7JSh3UM5uGobzi/SzbhblNWasPBYD7kxHHeWEb0C8Ca24SqGNU+2S+qxu2H3MIRL9nmYwFNuhs2bIjS0lIMHjwYt99+O7KzsytdftOmTZg5cybef/99xMTEYN++faGWVwmyJTmcOMjpg3HVn1E7llaMtT+MyAcnF1UzKi/MyWWc5MmF+ZAXD07JK1y5kW0+FtCke8qUKRgyZAhiY2MD+pLS0lJMnToVw4cPD7iAKpItyeHEyaE+GFf9cedJLsyHnIyID3PyB/YLeRgdE6O/X2bsJ3LjpJs0I1uSw8WonTHA3EcWeQY2PIzcSAPmbsOBMjImVmv3gTByLDLie2VjdBzYN9wZHQ+jv19m3J7LK5y5kW0+xp8MI6VZZWCzSj2NYuTOC3PrndE7s+SdEXlhH/kDYyEHGcYIq/6KS1WMjAn7J1WGk24i8okbdLIa7jQRecdJnjuOFfIyOjfsJ95ZPS5Rgf5Bjx49fH5ms9kQFxeHhg0b4sYbb8Sf//znkApH6uBlTvow+oitFQZIGeroiDX7kDxjiSzlkIXR/cTqfcTKdZeN0X3BldX7hScZcmOVfadgWbmtBjzpPnbsWKWN6fz581i6dCmmTJmC3r17Y+7cuZb5qTAyhtk3Omatl0wYY3LFnSbv2E8I4AEAgH1BZsyNnLhNDWLSXVhYWOUyFy5cwJQpUzB69Gg8//zzGDt2bFCFIyLjcQcrfKwea9nqL1t5jCLLzpLZD7D6Ikv8AR6QkrXuVuwXsmNOKrJ6PHS5pzs+Ph55eXm44447MH36dD2+giQiy8Ai68ZQZTLkVU+ytF3A/LFWDfPhjvEwlmzxt/L2VrZcyFYeo3B7Li8rjxeudH2QWteuXbF37149v0JqycnJRhfBMsw4wMm0ASHSm6wbZVnLZWVWyomMdbXqdknGXLiSvXxWxJz8warjhitdJ93nz59HVFTAV7CbCjscmYEZ27GMdbL6pZuybZRlK48RZDv4J1NZwsWKdZaVrLmQtVzhIts4BTAnDlbep/Gk26RbCIF58+ahVatWen2F9IqKigCYu8HJNtCZJdYy1UOm/GrNzHVTiUztnUgWMvcLqx0gVKWuqpTTSpgT7ms5BDzpPnnyZKWvX3/9FStWrMDtt9+Ob775BiNGjAiqYPn5+ejYsSOSkpKQlpaGAQMGYOfOnZX+zaxZs9ChQwekpKSgWrVqaNu2LT744AO3ZY4ePYohQ4YgPT0dCQkJ6NOnD3bv3u22zJEjR3DXXXehTp06qFatGrKzs/H5558HVQ82tPAxW6zNVh/ynxU30rK2d6tNLlzJWm8r5UTWfmFFsudC9vLpRbaTP65kLVe4WGWc9lfA137XqlXLryBGR0dj4sSJuPPOO4Mq2KpVq5Cbm4uOHTvi0qVLePzxx9GrVy/s2LED1apV8/o3NWrUwNixY5GZmYmYmBgsWLAAQ4cORVpaGnr37g0hBAYMGIDo6GjMnTsXdrsdkyZNQk5Ojtt67777bpw+fRrz5s1DrVq1MH36dNx+++3YuHEj2rVrF1R9ZB4UiKpitqcGy7whsNKEApA7F67M1P4DYcU6k3/Mtl3wRZUxCrBOTlRj5ZxYtd7e2ESA0ZgwYUKlA1BcXBwaNmyInj17IjU1NeQCOhw/fhxpaWlYtWoVunXr5vffZWdno1+/fpg4cSJ27dqF5s2bo7CwEC1btgQAlJeXo06dOnjmmWdw7733AgASExMxefJk3HXXXc711KxZE88995xzmcoUFxcjOTkZRUVFsNvtAP4YtM3U+GStk+qDG+OqP9nrImsb0IPsuXBQpZxaUaENmjknKsQfMHcOHFSro2rlDQX7ibxkyI23+ZiRAj7TPWHChICWP3XqFKpXrx7o11TguD+6Ro0afi0vhMCKFSuwc+dOPPfccwCAkpISAJcPDDhEREQgNjYWa9ascU6or7nmGnzyySfo168fUlJS8Omnn+L3339H9+7dgy6/Wc9eWW0QCRdZ42rFDYcRzDpeeFKtjlZr/1aqq4xUiL/Zz6yqNkY5mDknnlSpp5Vy4mC1+lZFlweplZSUYObMmRgwYADq1q0b8vrKy8uRl5eHrl27Iisrq9Jli4qKkJiYiJiYGPTr1w+vvfYa/vSnPwEAMjMz0aBBA4wZMwanTp1CaWkpnnvuORw8eBCHDx92ruPTTz/FxYsXUbNmTcTGxmL48OGYPXs2mjZt6rO+xcXFbi9fVB3AVcM4a88sg6cVN3wyUyUXqpRTC6qMn2Y9OGXGOqlMtb6vWnmDpVI/sUpOHFTKTThp9nteQggsX74cH330EWbPno3i4mKkpqbi//2//xfyunNzc1FYWIg1a9ZUuWxSUhK2bNmCs2fPYvny5Rg9ejQaN26M7t27Izo6GrNmzcI999yDGjVqIDIyEjk5Oejbt69bhxg3bhxOnz6NZcuWoVatWpgzZw5uv/12fPXVV16fxp6fn48nn3yyyrKZaQdB5nqoHGdVy03a4xkkOZk5J66sUEeZqRZ/M/YLVccowPzbDwfV6meFnDhYpZ6BCPiebk+bNm3CRx99hBkzZuDIkSOw2Wy44447MGLECFx99dUhD1ojRozA3LlzsXr1ajRq1Cjgv7/33ntx4MABfPHFF27vFxUVobS0FKmpqejcuTM6dOiA119/HT///DOaNm3qdt83AOTk5KBp06Z48803K3xHSUmJ89J14PI9BPXr1/d6D4EM9zhoQfaBQ/by+aJCuVUooy+q9T+VY10VVeumarkDoVIdVevTVVG1Piq1GX+pXidV25I/VK2b6m3KHzLlRvl7ugFgz549+Oijj/DRRx9h9+7dqFevHgYNGoROnTph4MCBuPXWW9GlS5eQCiaEwD/+8Q/Mnj0bBQUFQU24gcuXprtOiB2Sk5MBALt378bGjRsxceJEAMD58+cBXL7X21VkZCTKy8u9fkdsbCxiY2P9Ko/KZ2FVY4XBjQKnWpswYztWfQw0Y04cVKubGbepKsXflWptpzJmaFNm7BuuVG1rZuonvpi9fsEKeNLdpUsXrF+/HrVq1cJtt92Gd955B9deey0A4Oeff9asYLm5uZg+fTrmzp2LpKQkHDlyBMDlyXJ8fDyAyz/tVa9ePeTn5wO4fJl3hw4d0KRJE5SUlGDRokX44IMPMHnyZOd6Z86cidTUVDRo0ADbtm3DyJEjMWDAAPTq1QvA5fu+mzZtiuHDh+PFF19EzZo1MWfOHCxduhQLFizQrH4qdzoVyq7ixkal8qrQBsxAxXbsL1Xbj5lzojIzjEkqtysz9gvV25ODGfqGK5XbmRn7iSuztTWtBTzpXrduHRo1aoRJkyahX79+iIrS7LZwN46JsucTw6dOnYohQ4YAAPbv3+92RvrcuXN48MEHcfDgQcTHxyMzMxMffvghBg4c6Fzm8OHDGD16NI4ePYq6devi7rvvxrhx45yfR0dHY9GiRXjsscfQv39/nD17Fk2bNsX//vc/3HjjjZrUzeydjoKnwmClavtVeWOgctk9qdh2vDFTThxUrZOqY5I3KsbflaptyJVZ2hJgrr7hygxtTPU6UOACvqf7jTfewPTp0/HNN9+gRo0auPXWW3HHHXege/fu2LNnD5o1a4bPPvsMf/nLX/Qqs/T8uYdA5Q6nUtlZVn2oVFYHFcvsoHLZPZmlLmaphyuV6yTTfYTBUjn+DqyDfMzQNxzMUheztTFAztzIdk93wD8Z9uCDD2LNmjX4+eefkZeXh6+++go9e/ZEvXr18MQTT8Bms5nyqJrWVD36aMaBQgaqtgWiQJipzag6hvuiel1U3y6pHn9XKtdF5bL7onrf8GS2+pgJc1O5kJ9eDvzxBPNPPvkEhw8fRu3atdG/f3/cdNNNyMnJQVxcnBZlVYa/R1ZUnMCqVmYZj7x5o1pcAbXKrFJZfWEd5KPK+OIPM+RG5XyYIf4OKtdF5bJXRuW+4cpM+WFd9CfbmW5NJt0O5eXlWLFiBT788EPMnj0bZ86cQUJCAs6ePavVVyghkEk3oNYgKGvHqowKZVahjJ5Uar8qxteT6nVQqb0EQvW8AObKjYr5MFP8AXXro2q5/aVi33Clevk9mak+stZFtkl3wJeXV7qyiAjk5ORg2rRpOHr0KD7++GP07NlTy68wFRkbaGVk7VSqU/VyNlXagqrx9Ub1uqjSZgKlel4Ac+VGxXyYKf4q10XlsvtDxb5hVma5RYlzA/9peqabLgvkyIpKR1ZV7lgyl13mslVFhbKrUEZ/qVoXlca5YKiaF8CcuVEpH2aMP6BevVQrb7BU6huuVC13VVRvd7KXX+kz3S1atMD777+P0tJSv/+mpKQEU6dORYsWLQIunBXI2lCJ/GWGI7UqUTXeZh/rVM0LYP7cyM6M8VexTiqWORgqj1VmY4Y2Z4Y6hEtAP7I9ZMgQjB49GiNHjnQ+JC07OxuNGjVCQkICgMu/lb13715s3LgRy5Ytw/z58xETE4NHHnlElwpQeJj1KKPRVI+r7JdHqR5fT7LH2xvVyhsMFfNiZo58yN73rdBmmAe5qDhWqdCGQmWFOlIQl5efOXMG7777LqZNm4atW7c6O29U1OX5+6VLlwBc7thZWVkYNmwYhg0bJsVp/XAJ5nIG2Tuc7OXzh4x1kLFMgZK5DjKXLViq1Um18gZL9svsvDFzblSomwplDJUKdVShjFpSbayyQn5UrKMKZZbt8vKQ7unet28fvvnmG/z44484ceIEAKBmzZrIzMxEly5d0KhRI80KqhKzTbpVG6B9kTHGMpYpGDLWwyzt1hsZ4+2NmXPgjSp5cVCtvIFQoe2ZOf4OstdRhXaiB9nz4qBKOUOlWj1V6TeyTboDurzcU0ZGBjIyMjQqCsnc6WQtl8pkzrdZML7Gs1oOVOnXql1iGijZL6OVuWxaUuFSf5nLpifZ82IlKvQTTyqVVRaa/mQYBY+NV3+y74SpjrENL9njLXv59KDaOK5aeYMhczu0QvxlJnPb0JsKbc/K+ZEZ8xI8TrqpUuxc5A/ZNuBmb7eyxdsXVcqpNdnbn+zl04qs7c8q8Xcla51lbSPhImteHKyUH5VODFkpL1ripFsyMnY4s3UuGWIsQxnMzmzt1htZ25Gs5QoHVdqdKuXUgozt0Urxt1JdVSJzXmTss8S8hIqTbonIPACahUwxlqksWuGAHD6ytx/Zy6c39gU5WL0dykSmPqHa/bN6kikvrqyYHxXOdlsxL1rRbNI9adIkrVZlebJ0OFnKQWqQZSDmzhQZTeb2x/5hLKvG34p1VoGMeeG+p5yYl9BpNul+6qmnnP9/6623arVay5FtAJStPFoxcvDgwEVakfGouFUnFd7IlhsrYy7IgW2hItliYuVtiIzbdQcr50ULmk26r7rqKjz33HPYtWsXli5dqtVqiTQnw6AhQxn0YPTGQtYNFVmPjH3cqv1DllxYNf4ORm8fXMnSJmQgUyxkaR/kjnnRRki/0+1q+vTpmDBhAnJycnD+/Hm0bdsWrVq1QuvWrdG6dWu0atUK6enpWn2dqcnwe33sYKQqmXYgwsXo8UK2cshEtpjIVJZwkyEXRn+/1XHfxjcZ+gfAPuIgSz4cZCqLqmxChygmJiZi2bJl2Lp1K7Zu3Ypt27Zh27ZtiIiIwG+//ab110mnuLgYycnJKCoqgt1uD2odRnc2o79fb44Nb7jraNT3hpORdTR7u/VFlnrLUg6ZyBQTmcpiBKPrb/T3y8DobSBz4JsMsZGhDLKQJRZG99lQaDEf05JmZ7pdHTlyBImJibj66qvd3j948KAeX0cUMCMvc1Nx4AqEUbHlGQxjMf6+ybDzJEMZZGBUHBj/y4zc9nKMqpqR7ZR9pCJZYiJDGcxAk3u6S0tLcf78eee/ExMTvS53xRVXaPF1lsANE1HgrLphkOVeSavGvzKMiTyYC3nwoLd8GBu5MB/mE9KZ7iNHjuDuu+/GypUrUV5ejlq1aqF169Zo06aN878tWrRAdHS0VuWlMLFKZw/nUUQZJkXhJMsRWtKf1dq2apgfYzH+7mQ5SEjyYHvwjVcfmEdIk+6HH34Yq1evxpgxY5CSkoKHH34Yhw4dQkFBAcrLyy9/QVQUSkpKNCmsFbHB68eIDb9Vchnu2HKDfZmR44VV2nYwZHg4JvNzmVG5YPyNxW2Ef4wcq9hHKuIBKnMJ6fLy5cuX4/7778d//vMfDB48GADw2muvYf/+/ejTpw9at26NsWPHalJQKzLqvjMiFVl9g231+pN3HNNJRjzoTQ4co+TEvGgvpEl3cXExWrduDeDyGW3g8v3ddevWxZw5c1BWVoaMjIyQC0nhZbUNEwcW/TC24RfumBt9BlclvI9VHuHKBfuH8bgdCgwPiMiFD/41j5Am3fXr18eRI0cAAMnJyYiPj3f+JFh0dDTuuusu/Pe//w29lBbHDYZ+wnk/t9UGL94rH35Wa2MqYW7kwVzII1zjN3NO5D/uV+kjpEn3DTfcgK+++sr578zMTLd/x8fHY9euXaF8heWFc0PBTkaq4g6VMThmBC7czzpg3zAO+0flwtE2mYPghSN2HKP8x6sP1BfSg9RGjhyJ9957D7///jvi4uKQm5uLBx54AFlZWWjSpAlefvllXl6uGKt2Mg78+mFswyvcD8Jhbv3Hh+LIJRz9hP2janrngTkIHMcquYQzH8y7fkI6052ZmYnnn38ecXFxAIAhQ4bgtttuw8iRI/HnP/8ZR44cwYsvvhjUuvPz89GxY0ckJSUhLS0NAwYMwM6dOyv9m1mzZqFDhw5ISUlBtWrV0LZtW3zwwQduyxw9ehRDhgxBeno6EhIS0KdPH+zevdv5+b59+2Cz2by+Zs6cGVRdQsXBT196b5CtPOlkbM2LY1LwwnUGiXzjuCEH5kFueo4jHKMCx9sx1GYTOkT2hx9+wMGDB9G2bVukpqYGtY4+ffrgjjvuQMeOHXHp0iU8/vjjKCwsxI4dO1CtWjWvf1NQUIBTp04hMzMTMTExWLBgAR566CEsXLgQvXv3hhAC11xzDaKjo/HSSy/Bbrdj0qRJWLJkiXO9ZWVlOH78uNt633rrLbzwwgs4fPgwEhMTqyx7cXExkpOTUVRUBLvdHlT9PYVjcmHlCYyedbdyXAHG1ggcL+TG/MjBsQOrR5z0XLfZ6BUr9oHQcfstF71jZrZxS4/5WCh0mXTr4fjx40hLS8OqVavQrVs3v/8uOzsb/fr1w8SJE7Fr1y40b94chYWFaNmyJQCgvLwcderUwTPPPIN7773X6zratWuH7OxsvPvuu359p4qTbrN1tEDpvfNl1bg66BUDxta3cIwZjH1wOOmWB8cmOegRL+YgdHoeENFjvWbH7XpgZJt0h3R5eTgVFRUBAGrUqOHX8kIILF++HDt37nRO0ktKSgDAeTk8AERERCA2NhZr1qzxup5NmzZhy5YtuOeee3x+V0lJCYqLi91eetD7shIzdbRA8Uiuehhb4/CywNDpfdkm+4Zx2D+Mxxxog/fay4W3m6pNiUl3eXk58vLy0LVrV2RlZVW6bFFRERITExETE4N+/frhtddew5/+9CcAl+9Bb9CgAcaMGYNTp06htLQUzz33HA4ePIjDhw97Xd+7776Lq666Ctdcc43P78zPz0dycrLzVb9+/eAr6wMHJyIKlJ4bZ45JwWPs5KHXTixzHDit88AcaIcTPfPjwVr9KTHpzs3NRWFhIWbMmFHlsklJSdiyZQs2bNiAp59+GqNHj0ZBQQGAy78dPmvWLOzatQs1atRAQkICVq5cib59+yIiomIoLly4gOnTp1d6lhsAxowZg6KiIufrwIEDQdXTKBxM/8BY6INHZ8NPz6s3SBt6xJL5IRVpOV6xD2iLl/3LhftT6grpJ8PCYcSIEViwYAFWr16NK664osrlIyIi0LRpUwBA27Zt8cMPPyA/Px/du3cHALRv3x5btmxBUVERSktLkZqais6dO6NDhw4V1vXZZ5/h/PnzuPvuuyv9ztjYWMTGxgZeuQDp+VNAHAC1H8g4KOqHG23/6RErxj50eu44MT+B06qfcGwKjVbxYw6I/Mf91fCQ9ky3EAIjRozA7NmzsWLFCjRq1Cio9ZSXlzvv5XaVnJyM1NRU7N69Gxs3bsTNN99cYZl3330XN910U9BPYCfiht8dB/bwYvuTHw/0GY/9RA5aHfQg7Wl1kJAHpbShx0Fb5kV/0p7pzs3NxfTp0zF37lwkJSXhyJEjAC5PluPj4wEAd999N+rVq4f8/HwAl++t7tChA5o0aYKSkhIsWrQIH3zwASZPnuxc78yZM5GamooGDRpg27ZtGDlyJAYMGIBevXq5ff9PP/2E1atXY9GiRWGqsTG4gaqIGwV9aLnRJmOwb2iLO05yCbV9c2zSRqh5YB8g8h/HrfCRdtLtmCg7Lgt3mDp1KoYMGQIA2L9/v9u92OfOncODDz6IgwcPIj4+HpmZmfjwww8xcOBA5zKHDx/G6NGjcfToUdStWxd33303xo0bV+H733vvPVxxxRUVJuNG0+MSc26g/sCJoRrYZv2n520ppA3mx3hajf3MY2hCyQO3u/oKdVvCcU57vB1DLcr8TrdK9P5dOC0HLg6CFWkRE8bVNy3OJjG2gWGblhvzI4dQfjuYvzusrWDaM/uA/kLtI8yPtrS6OseseeHvdJM0eFTYN8ZGTtxoB49tmqhyoY4tHJuMw/EtPHiWWz6htn3mJXw46VaQlvcBsrNVpMUZJ6ocYxRebNPyCyXGzI+2Ao0n46+9QPZzzH62TkaBtHn2D/3wqkG1cNJNpAMOZL6FcqScQhNKDNmm9cN78uQRbBwZf334O2Yx/uHjiHUg2xPmRz/BnIjj/pQxOOm2KHa4qjFG8uGGO3g82CG/YGLN/Ogj0LOspD1/JneMvzH83Z4wP+ETaKy5PxV+nHQrSotLzNnhfON9S/oKtP1yw62dYGLJNq0//kSSPAKNJ+Ovn8om3rys3Hj+HBBhfvQXSIy5P2UcTrqJKsHBSR7ccIcumKcBU/jwYJRcqoovD7KGh+vE2/UlhGD8DcQDIvLxZ8wCmBejcNKtOF6OqB9OUPTl7wSDcdVWoBM7bpzDL5B+wfzoo6pLmzkuhZdjgu36IuM5cuF5QMTxGYWPv2MW82IcTroVxssR5cO4Bs6fnVfGVXs8iyenQGLO/OjL104sd16J3PGgiBw8rwrx/H/mxVicdBNVQsufZ6OKqtoAMPb6YNzlVtW4w/yEj7czeY73iYhk43rQw3W84phlvCijC0ChcewMBPIkSXY87TGuofEWP+7c6st1YucaY8ZdHuwX8mC8iUglHLPkw0k3URWqOrDBs06hcT2L5O3oLOnHNfae75OxKrs/j/khIiJSCyfdJuDv2W6ejQ1NZfFjXEPjbYLBmIYH4yw35oeIiEh9nHQT+cHXPZY8y60tTjCIiIiIyGw46TYRXgKtL18Tb04UiYiIiIjIFz693CQqu/+P98dqxzWGfBokERERERFVhZNuE/E28eaEW3ucbBMRERERkb846TYZ14k3J9xERERERETG4j3dJsRJNhERERERkRx4ppuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTPkhNB44HmRUXFxtcEiIiIiIiImtxzMNkecA0J906OHHiBACgfv36BpeEiIiIiIjImk6cOIHk5GSji8FJtx5q1KgBANi/f39ISe7YsSM2bNgQcnm0WI8s6yguLkb9+vVx4MAB2O12Q8tipvxoFVctyqLVOmQpixljK0t+ZBoPtFqPLOtgbPVbh0yxNVN+ONbqtx6Z2qxW65GlLIytfusoKipCgwYNnPMyo3HSrYOIiMu3yicnJ4fUgSIjI0PecGi1HlnW4WC32w2PrdnyA4QeV63KwtjqVxZZ1qHlemQYD7RajyzrcGBstV+HgwyxNVt+AI61eq5Hhjar1XpkKgvA2OqxDgfHvMxocpSCvMrNzZVmPbKsQysy1UemsmhBpvrIVBYtyFIfmfKjBZnqI8s6tMLY6kem+shUFi3IUh+Z8qMFmeojU1m0IFN9ZFmHbGxClrvLTaS4uBjJyckoKirS7CgNXcbY6oNx1Q9jqx/GVj+MrX4YW30wrvphbPXD2OpHttjyTLcOYmNjMX78eMTGxhpdFNNhbPXBuOqHsdUPY6sfxlY/jK0+GFf9MLb6YWz1I1tseaabiIiIiIiISCc8001ERERERESkE066iYiIiIiIiHTCSTcRERERERGRTjjpJiIiIiIiItIJJ90ae/3115GRkYG4uDh07twZ69evN7pIhlq9ejX69++P9PR02Gw2zJkzx+1zIQSeeOIJ1K1bF/Hx8cjJycHu3bvdljl58iQGDRoEu92OlJQU3HPPPTh79qzbMlu3bsV1112HuLg41K9fH88//3yFssycOROZmZmIi4tDq1atsGjRIs3rG075+fno2LEjkpKSkJaWhgEDBmDnzp1uy/z+++/Izc1FzZo1kZiYiFtvvRVHjx51W2b//v3o168fEhISkJaWhkceeQSXLl1yW6agoADZ2dmIjY1F06ZNMW3atArlMUvbnzx5Mlq3bg273Q673Y4uXbpg8eLFzs8ZU+08++yzsNlsyMvLc77H+AZnwoQJsNlsbq/MzEzn54xraH799Vf87W9/Q82aNREfH49WrVph48aNzs+5LQtORkZGhXZrs9mcv9HLdhucsrIyjBs3Do0aNUJ8fDyaNGmCiRMnwvXZyWyzwTtz5gzy8vLQsGFDxMfH45prrsGGDRucnzO2/lFpjuBPWaokSDMzZswQMTEx4r333hPbt28X9913n0hJSRFHjx41umiGWbRokRg7dqyYNWuWACBmz57t9vmzzz4rkpOTxZw5c8T3338vbrrpJtGoUSNx4cIF5zJ9+vQRbdq0Ed9++6346quvRNOmTcWdd97p/LyoqEjUrl1bDBo0SBQWFoqPP/5YxMfHiylTpjiX+frrr0VkZKR4/vnnxY4dO8S///1vER0dLbZt2/b/sXfn8U1Ue//AP9m70JXuWApltSxlqZS6gFz6sHpFvSoqCqKisnjxh7IUhQqoRUUfUBEUZbkuVPCRRQSUWwFFy1YoUMCyFSjShaV7S5Mm5/dHzNC0TemSNEn7efOaF8nMNycnc2ZO883MnLH5OrCVoUOHilWrVom0tDSRmpoqRowYIdq2bSuKi4ulmBdffFGEhoaKpKQkcfDgQdG/f39x5513SssrKipE9+7dRWxsrDh8+LDYunWr8PPzE3FxcVLMuXPnhJubm5g2bZo4ceKE+Oijj4RCoRDbt2+XYprTtr9582bx448/ilOnTon09HQxe/ZsoVKpRFpamhCC69Ra9u/fL9q1ayd69uwppk6dKs3n+m2Y+Ph40a1bN5GVlSVNV65ckZZzvTbc9evXRVhYmHj66afFvn37xLlz58RPP/0kzpw5I8Xwb1nD5Obmmm2zO3bsEADEzp07hRDcbhvqrbfeEq1btxZbtmwRGRkZYv369aJVq1ZiyZIlUgy32YZ79NFHRUREhNi9e7c4ffq0iI+PF56enuLSpUtCCK7bunKmHKEudbkVJt1W1K9fPzF58mTpuV6vFyEhISIhIcGOtXIcVXcog8EggoKCxHvvvSfNy8/PFxqNRqxdu1YIIcSJEycEAHHgwAEpZtu2bUImk4m//vpLCCHEJ598Inx8fER5ebkUM3PmTNGlSxfp+aOPPipGjhxpVp/o6GjxwgsvWPUz2lNubq4AIHbv3i2EMK5LlUol1q9fL8WcPHlSABDJyclCCGOHJ5fLRXZ2thSzbNky4enpKa3PGTNmiG7dupm91+jRo8XQoUOl58192/fx8RGff/4516mVFBUViU6dOokdO3aIgQMHSkk312/DxcfHi8jIyBqXcb02zsyZM8Xdd99tcTn/llnP1KlTRYcOHYTBYOB22wgjR44UzzzzjNm8hx56SIwZM0YIwW22MUpLS4VCoRBbtmwxm9+nTx/x2muvcd02kCPnCHWpS13w9HIr0Wq1SElJQWxsrDRPLpcjNjYWycnJdqyZ48rIyEB2drbZOvPy8kJ0dLS0zpKTk+Ht7Y2oqCgpJjY2FnK5HPv27ZNiBgwYALVaLcUMHToU6enpyMvLk2Iqv48ppjm1TUFBAQDA19cXAJCSkgKdTmf2ubt27Yq2bduard8ePXogMDBQihk6dCgKCwtx/PhxKaa2ddect329Xo/ExESUlJQgJiaG69RKJk+ejJEjR1ZbB1y/jXP69GmEhIQgPDwcY8aMwcWLFwFwvTbW5s2bERUVhUceeQQBAQHo3bs3VqxYIS3n3zLr0Gq1+Oqrr/DMM89AJpNxu22EO++8E0lJSTh16hQA4MiRI9izZw+GDx8OgNtsY1RUVECv18PFxcVsvqurK/bs2cN1ayWOtB7rUpe6YNJtJVevXoVerzfr+AEgMDAQ2dnZdqqVYzOtl9rWWXZ2NgICAsyWK5VK+Pr6msXUVEbl97AU01zaxmAw4OWXX8Zdd92F7t27AzB+ZrVaDW9vb7PYquu3oeuusLAQZWVlzXLbP3bsGFq1agWNRoMXX3wRGzZsQEREBNepFSQmJuLQoUNISEiotozrt+Gio6OxevVqbN++HcuWLUNGRgbuueceFBUVcb020rlz57Bs2TJ06tQJP/30EyZOnIh///vfWLNmDQD+LbOWjRs3Ij8/H08//TQA9geNMWvWLDz22GPo2rUrVCoVevfujZdffhljxowBwG22MTw8PBATE4MFCxbg8uXL0Ov1+Oqrr5CcnIysrCyuWytxpPVYl7rUhbLOkUTksCZPnoy0tDTs2bPH3lVpFrp06YLU1FQUFBTgu+++w7hx47B79257V8vpZWZmYurUqdixY0e1owTUOKYjWADQs2dPREdHIywsDOvWrYOrq6sda+b8DAYDoqKi8PbbbwMAevfujbS0NCxfvhzjxo2zc+2ajy+++ALDhw9HSEiIvavi9NatW4evv/4a33zzDbp164bU1FS8/PLLCAkJ4TZrBV9++SWeeeYZtGnTBgqFAn369MHjjz+OlJQUe1eNHBiPdFuJn58fFApFtVE1c3JyEBQUZKdaOTbTeqltnQUFBSE3N9dseUVFBa5fv24WU1MZld/DUkxzaJspU6Zgy5Yt2LlzJ2677TZpflBQELRaLfLz883iq67fhq47T09PuLq6NsttX61Wo2PHjujbty8SEhIQGRmJJUuWcJ02UkpKCnJzc9GnTx8olUoolUrs3r0bH374IZRKJQIDA7l+rcTb2xudO3fGmTNnuN02UnBwMCIiIszm3X777dLp+/xb1ngXLlzAf//7Xzz33HPSPG63DTd9+nTpaHePHj3w1FNP4f/9v/8nnWHEbbZxOnTogN27d6O4uBiZmZnYv38/dDodwsPDuW6txJHWY13qUhdMuq1ErVajb9++SEpKkuYZDAYkJSUhJibGjjVzXO3bt0dQUJDZOissLMS+ffukdRYTE4P8/HyzXw9/+eUXGAwGREdHSzG//vordDqdFLNjxw506dIFPj4+Ukzl9zHFOHPbCCEwZcoUbNiwAb/88gvat29vtrxv375QqVRmnzs9PR0XL140W7/Hjh0z67R27NgBT09P6UvmrdZdS9j2DQYDysvLuU4bafDgwTh27BhSU1OlKSoqCmPGjJEec/1aR3FxMc6ePYvg4GBut4101113Vbsd46lTpxAWFgaAf8usYdWqVQgICMDIkSOledxuG660tBRyuflXfIVCAYPBAIDbrLW4u7sjODgYeXl5+OmnnzBq1CiuWytxpPVYl7rUSZ2HXKNbSkxMFBqNRqxevVqcOHFCPP/888Lb29tsVM2WpqioSBw+fFgcPnxYABAffPCBOHz4sLhw4YIQwjgEv7e3t9i0aZM4evSoGDVqVI23A+jdu7fYt2+f2LNnj+jUqZPZ7QDy8/NFYGCgeOqpp0RaWppITEwUbm5u1W4HoFQqxaJFi8TJkydFfHy8U91WoSYTJ04UXl5eYteuXWa3XCktLZViXnzxRdG2bVvxyy+/iIMHD4qYmBgRExMjLTfdbmXIkCEiNTVVbN++Xfj7+9d4u5Xp06eLkydPiqVLl9Z4u5Xmsu3PmjVL7N69W2RkZIijR4+KWbNmCZlMJn7++WchBNeptVUevVwIrt+GeuWVV8SuXbtERkaG+P3330VsbKzw8/MTubm5Qgiu18bYv3+/UCqV4q233hKnT58WX3/9tXBzcxNfffWVFMO/ZQ2n1+tF27ZtxcyZM6st43bbMOPGjRNt2rSRbhn2/fffCz8/PzFjxgwphttsw23fvl1s27ZNnDt3Tvz8888iMjJSREdHC61WK4Tguq0rZ8oR6lKXW2HSbWUfffSRaNu2rVCr1aJfv35i79699q6SXe3cuVMAqDaNGzdOCGEchn/OnDkiMDBQaDQaMXjwYJGenm5WxrVr18Tjjz8uWrVqJTw9PcX48eNFUVGRWcyRI0fE3XffLTQajWjTpo1YuHBhtbqsW7dOdO7cWajVatGtWzfx448/2uxzN4Wa1isAsWrVKimmrKxMTJo0Sfj4+Ag3Nzfx4IMPiqysLLNyzp8/L4YPHy5cXV2Fn5+feOWVV4ROpzOL2blzp+jVq5dQq9UiPDzc7D1Mmsu2/8wzz4iwsDChVquFv7+/GDx4sJRwC8F1am1Vk26u34YZPXq0CA4OFmq1WrRp00aMHj3a7D7SXK+N88MPP4ju3bsLjUYjunbtKj777DOz5fxb1nA//fSTAFBtfQnB7bahCgsLxdSpU0Xbtm2Fi4uLCA8PF6+99prZbZO4zTbct99+K8LDw4VarRZBQUFi8uTJIj8/X1rOdVs3zpQj1KUutyITQoi6HxcnIiIiIiIiorriNd1ERERERERENsKkm4iIiIiIiMhGmHQTERERERER2QiTbiIiIiIiIiIbYdJNREREREREZCNMuomIiIiIiIhshEk3ERERERERkY0w6SYiIiIiIiKyESbdRERERERERDbCpJuIiIiIiIjIRph0ExEREREREdkIk24iIiIiIiIiG2HSTURERERERGQjTLqJiIiIiIiIbIRJNxEREREREZGNMOkmIiIiIiIishGlvSvQHBkMBly+fBkeHh6QyWT2rg4REREREVGLIYRAUVERQkJCIJfb/zgzk24buHz5MkJDQ+1dDSIiIiIiohYrMzMTt912m72rwaTbFjw8PAAYG9nT09POtXE+Wq0W77//PgDglVdeAQCz52q12m51o+ah6jZWeZt65x3g7beB2bOBmTOrv7a25bWVS0RERERNo7CwEKGhoVJeZm9Mum3AdEq5p6cnk+4G0Gq1cHFxAQBp/VV+zkSGGqvqNlZ5m3rrLcDFBZg71/j/nDk3X7dggTHhnj/ffH5dyiUiIiKipuUol/oy6SYiqsKUUM+da7wmaPZsPRISlJg713LCTURERERUEybdREQ1uJl4T0Z8/H8A/IH583sy4SYiIiKierH/UG5ERA7q6aczAXwGoARy+f8y4SYiIiKiemPSTURkwZNPLgegBwAYDImYPTvPvhUiIiIiIqfDpJuIqAZz597Ar79+BgBwd3cHcAMJCf/BggX2rRcRERERORde000ORy6XIyoqSnoMoNpzosaoaRurbMECYMGCdQCuIjQ0FDNmzMBLL70EP7/lmDv33wBkNZ5qfqtyiYiIiKjlkQkhhL0r0dwUFhbCy8sLBQUFvGUYkZNZsACYO1cgJKQfLl8+iLfffhtTpkxBSEgIiouLMX78LqxaNZCjmBMRERE5KEfLx3gohojob8aEG5gwYT8uXz4IjUaD5557Dh4eHhgzZgwAoKxsOebPN8bxVHMiIiIiuhUm3eRwhBAoKSlBSUkJhBDVnhM1Vk3blCnhnj8fKC39CADw2GOPwd/fHwDwwgsvAAD+7//+Dy+8kFtj4s1tlYiIiIiq4jXd5HB0Oh0WLVoEAIiLiwMAs+dqtdpudaPmoeo2plarodcbE+4JE7LRtu06AMBLL70kvaZ3797o168f9u/fj1WrVmHOnJkAAL2+9nKJiIiIqGXjkW4iIgBvvGG8RnvFihXQ6XSIiYlB3759zWJefPFFAMCnn34Kg8GAOXOMryMiIiIisoRJNxHR33Q6HZYvXw4AmDJlSrXlo0ePhpeXFzIyMrBjx46mrh4REREROSEm3UREf/v+++9x+fJlBAUF4eGHH6623M3NDePGjQMAKTknIiIiIqoNk24ior99/PHHAIyDplm6Hts0oNoPP/yAS5cuNVndiIiIiMg5MekmIgJw6tQp7NmzB0qlEs8//7zFuIiICAwYMAB6vR5ffPFFE9aQiIiIiJwRk24iIgApKSkAgH79+iEkJKTWWNOAaitWrOCtwYiIiIioVrxlGDkcuVyOyMhI6TGAas+JGqOmbez48eMAgG7dut3y9Q899BDUajX++usvZGRkIDw83GK5RERERNSyMekmh6NUKvHAAw+Yzav6nKgxatrG6pN0azQa9OjRAykpKTh06JCUdNdULhERERG1bDwUQ0QE4MSJEwDqlnQDkO7hbTotnYiIiIioJjzSTQ5HCAGdTgcAUKlUAGD2XCaT2a1u1DxU3cbKy8tx5swZAMaB0uqiT58+AIBDhw5ZLJfbKhEREREx6SaHo9PpkJCQAACIi4sDALPnlm7lRFRXVbex9PR0GAwGeHt7Izg4uE5lVD7SLYSATCarVi63VSIiIiLi6eVE1OJVvp67rkenu3fvDqVSiWvXriEzM9OW1SMiIiIiJ8akm4havPpezw0ALi4u6N69OwBe101EREREljHpJqIWz3Sku67Xc5uYrutm0k1EREREljDpJqIWrz63C6vMdF135cHUiIiIiIgqY9JNRC3ajRs3cPbsWQD1T7orH+kWQli9bkRERETk/Jh0E1GLdurUKRgMBvj4+CAoKKher42MjIRCoUBubi4uX75soxoSERERkTPjLcPI4cjlcunaWrnc+LtQ1edEjVF5Gzt58iSA+o1cbuLq6oqIiAgcO3YMKSkpGDFiBLdVIiIiIjLTIr4VLl26FO3atYOLiwuio6Oxf//+Or0uMTERMpkMDzzwgG0rSGaUSiUeeeQRPPLII1AqldWeEzVW5W3qzz//BFD/QdRMTKeYHzp0iNsqEREREVXT7JPub7/9FtOmTUN8fDwOHTqEyMhIDB06FLm5ubW+7vz583j11Vdxzz33NFFNicgeGjqImolpMDWOYE5ERERENWn2SfcHH3yACRMmYPz48YiIiMDy5cvh5uaGlStXWnyNXq/HmDFjMG/ePISHhzdhbYmoqTU26eZtw4iIiIioNs36/EetVouUlBTExcVJ8+RyOWJjY5GcnGzxdfPnz0dAQACeffZZ/Pbbb01RVapEq9UiISEBAKS2q/xcrVbbrW7UPJi2MZ1Oh3PnzgFoeNLdq1cvyGQyZGVl4cKFC1i9ejUAbqtEREREZNSsk+6rV69Cr9cjMDDQbH5gYKB0HWdVe/bswRdffIHU1NQ6v095eTnKy8ul54WFhQ2qLxE1ratXr0ojl1ftJ+rK3d0dXbt2xcmTJ3H48GEr15CIiIiInF2zP728PoqKivDUU09hxYoV8PPzq/PrEhIS4OXlJU2hoaE2rCURWcuVK1cANGzk8spM13XX58c6IiIiImoZmnXS7efnB4VCgZycHLP5OTk5Nd6P9+zZszh//jz++c9/SqNm/+c//8HmzZuhVCpx9uzZGt8nLi4OBQUF0pSZmWmTz0NE1mUaULGhp5abVB7BnIiIiIiosmaddKvVavTt2xdJSUnSPIPBgKSkJMTExFSL79q1K44dO4bU1FRpuv/++zFo0CCkpqZaPIKt0Wjg6elpNhGR46t8pLsxeKSbiIiIiCxp1td0A8C0adMwbtw4REVFoV+/fli8eDFKSkowfvx4AMDYsWPRpk0bJCQkwMXFBd27dzd7vbe3NwBUm09Ezs+UdDf0Ht0mvXr1AgBkZmaipKQE7u7uja0aERERETUTzT7pHj16NK5cuYK5c+ciOzsbvXr1wvbt26VBky5evAi5vFkf8CeiGuh0Oly/fh1A4490e3p6onPnzjh16hSysrLQsWNHa1SRiIiIiJqBZp90A8CUKVMwZcqUGpft2rWr1teabv9DTUcul6NTp07SYwDVnhM1hlwuh5ubGwDA19e3wSOXV9anTx+cOnUKWq0WnTp14rZKRERERABaSNJNzkWpVOKJJ54wm1f1OVFjKJVKtG3bFkDjRy436du3LxITE1FRUcHtlYiIiIgkPBRDRC3SiRMnADT+1HIT02BqHMGciIiIiCpj0k1ELdLx48cBNH4QNZPevXsDAM6fP49r165ZpUwiIiIicn5MusnhaLVavP3223j77beh1WqrPSdqLK1Wiz179gAAOnfubJUyvb29ER4eDgCYPn06t1UiIiIiAsCkmxyUTqeDTqez+JyoMUpLS6WRy611pBu4ebQ7MzPTamUSERERkXNj0k1ELc6pU6cAAK6urggICLBauX369AEAZGVlWa1MIiIiInJuTLqJqMUxDaLm7+9vlZHLTXr16gUAuHz5stXKJCIiIiLnxqSbiFqc9PR0AMak25pMR7rz8vI4mBoRERERAWDSTUQtkOn08tatW1u1XF9fX/j6+gIADhw4YNWyiYiIiMg5MekmohbHlHT7+flZvezbbrsNALB//36rl01EREREzsdhk+6XX34ZV69etXc1yA5kMhnCwsIQFhYGmUxW7TlRYxgMBpw5cwYA0LNnT6tuUzKZDJGRkQCYdBMRERGRkUwIIexdiZrI5XLMmTMHN27cQEBAAEaOHImuXbvau1p1UlhYCC8vLxQUFMDT09Pe1SGiSs6fP4/27dtDpVKhtLQUSqXSquUfOnQIffv2hbe3N65duwa53GF/2yQiIiJqlhwtH3Pob4Nr165FSUkJDh8+jIEDB+KZZ56BVqu1d7WIyImZBlHr2LGj1RNuAOjRowdcXFyQn58vncZORERERC2Xwybdcrkcf/zxBz7++GN89dVXyMjIgFarxdy5c+1dNSJyYqaku0uXLjYpX6VSISoqCgCwd+9em7wHERERETkPh026Q0JCzE7LdHNzwyeffILExEQ71oqaglarxXvvvYf33nsPWq222nOixjAl3fn5+Vbfpkzbqqnv2rdvn9XKJiIiIiLn5LBJ90MPPYQnn3zSbDC13Nxc3Lhxw461oqZSWlqK0tJSi8+JGsqUdHt5edlkmyotLUVQUBAAHukmIiIiIgdOuhcuXIj27dujbdu2uPPOOzFy5EhER0fj+eeft3fViMiJ2eoe3ZW1adMGAHD06FGUlJTY7H2IiIiIyPE5bNLt4uKCpUuX4tKlS3j11Vfx4IMPYsuWLZg/f769q0ZETqqkpASZmZkAbHOPbhMvLy+0adMGBoMBKSkpNnsfIiIiInJ81h+6twG2bduGr7/+GpmZmXB3d0fPnj3xr3/9C3fccQd8fX3x0EMP2buKRNQMnD59GoDxKLebm5tN36tfv37YsGED9u7diwEDBtj0vYiIiIjIcdn9SPfixYtx3333YcOGDSgpKUFubi4+/PBD9O/fHyNHjkR2dra9q0hEzYTpeu5OnTrZ/L3uuOMOALyum4iIiKils3vSvWTJEvTq1QsXLlzAwYMHcfDgQeTl5eHjjz9GWloa+vXrh7/++sve1SSiZsCUdHfu3Nnm7xUdHQ3AmHQLIWz+fkRERETkmOyedOfk5OC5554zu75So9Fg4sSJOHjwIGQyGWbMmGHHGlJTk8lkCAkJQUhICGQyWbXnRA1VOem2xTZVeVvt27cvFAoFsrKycOnSJau9BxERERE5F7tf092lSxfk5OTUuMzf3x+TJk3CwoULm7hWZE8qlQoTJkwwm1f1OVFDmJLuiIgIPPjgg1Yvv+q2GxkZiUOHDmHv3r0IDQ21+vsRERERkeOz+5HuGTNm4OOPP5YGOKrKzc2NRzeJqNGEEFLS3aVLlyZ5z8qnmBMRERFRy2T3pPv999+HQqFAv3798O677+Ly5cvSsrNnz2Lp0qV45JFH7FhDImoOsrKyUFxcDLlcjg4dOjTJe/bv3x8AsG/fviZ5PyIiIiJyPHZPukNCQuDu7o7CwkLMmjULoaGh8Pf3R1BQEDp37gxXV1c8//zz0Ol09q4qNRGdTofFixdj8eLF0Ol01Z4TNYTpKHf79u0hl8ttsk1V3VZNSXdKSgq0Wq3V3oeIiIiInIfdr+nevHkzAKC4uBjHjx/HsWPHkJaWJv1/5MgR9OvXDwqFAuHh4bj99tsRERGBt956y841J1sRQqCgoEB6DKDac6L6qnxqeU3bmDVULbdTp07w8fFBXl4ejh49iqioKKu9FxERERE5B7sn3SatWrVCdHS0dA2kSW5ubrVEPCkpiUk3EdVLU1/PDRhHM4+Ojsb27duxb98+Jt1ERERELZDdTy+/lYCAAAwePBhTp07F559/jr1796KwsLBeZSxduhTt2rWDi4sLoqOjsX//fouxK1aswD333AMfHx/4+PggNja21ngicg72SLqBm9d1czA1IiIiopbJ4ZPuxvr2228xbdo0xMfH49ChQ4iMjMTQoUORm5tbY/yuXbvw+OOPY+fOnUhOTkZoaCiGDBmCv/76q4lrTkTWxKSbiIiIiOyh2SfdH3zwASZMmIDx48cjIiICy5cvh5ubG1auXFlj/Ndff41JkyahV69e6Nq1Kz7//HMYDAYkJSU1cc2JyFrKy8tx/vx5AE2fdPfr1w8AcObMGVy7dq1J35uIiIiI7K9ZJ91arRYpKSmIjY2V5snlcsTGxiI5OblOZZSWlkKn08HX19dW1SQiGztz5gwMBgM8PDwQFBTUpO/t4+MjJfq8dRgRERFRy9Osk+6rV69Cr9cjMDDQbH5gYCCys7PrVMbMmTMREhJilrhXVV5ejsLCQrOJGk4mk8Hf3x/+/v6QyWTVnhPV16lTpwAYj3LbcpuyVC5PMSciIiJquRxm9HJHtHDhQiQmJmLXrl1wcXGxGJeQkIB58+Y1Yc2aN5VKhUmTJpnNq/qcqD6qXs9d0zZmDZbK7d+/P9asWcMj3UREREQtULM+0u3n5weFQoGcnByz+Tk5Obc8xXTRokVYuHAhfv75Z/Ts2bPW2Li4OBQUFEhTZmZmo+tORNZjr0HUTExHuvft2weDwWCXOhARERGRfTTrpFutVqNv375mg6CZBkWLiYmx+Lp3330XCxYswPbt2+t0X12NRgNPT0+ziYgchynp7ty5s13ev3v37nBzc0NBQQFOnDhhlzoQERERkX0066QbAKZNm4YVK1ZgzZo1OHnyJCZOnIiSkhKMHz8eADB27FjExcVJ8e+88w7mzJmDlStXol27dsjOzkZ2djaKi4vt9RFaHJ1Oh08++QSffPIJdDpdtedE9VX1SLettilL5SqVStx7770AgPXr11vt/YiIiIjI8TX7pHv06NFYtGgR5s6di169eiE1NRXbt2+XBle7ePEisrKypPhly5ZBq9Xi4YcfRnBwsDQtWrTIXh+hxRFC4MqVK7hy5QqEENWeE9XH1atXcf36dQBAp06dAFTfxqyltnKfeOIJAMbbEnI7JiIiImo5WsRAalOmTMGUKVNqXLZr1y6z56Z7+VLTe+MNQKEAZs6s+2sWLAD0euNriWpiOsodGhoKd3d3u9Vj1KhRcHNzw9mzZ3HgwAHp/t1ERERE1Lw1+yPd5DwUCmDuXODtt+u2WS5YYIxXKGxcMXJqpmuo7TWImkmrVq3wwAMPADAe7SYiIiKiloFJNzmMOXOA+fOBefOU2L17QK2xpoR7/nzj64gsMd2mqy6DItqa6RTzxMREVFRU2Lk2RERERNQUmHSTQ5kzB4iPr8DOnYMsJt5MuKk+kpOTAdy8bZc9DRkyBH5+fsjNzTW7qwIRERERNV9MusnhzJ5twKBBO7Fz56Bqp5q//bacCTfVWX5+vnR6eW23CWwqKpUKjz76KADgm2++sXNtiIiIiKgpMOkmhyOTyXD//UcwfPgfmDdPiTffBLy8vLBv3/9g3jwlE26qs/379wMAwsPDERAQIM2XyWTw8vKCl5cXZDKZ1d6vLuWOGTMGAPD999+jtLTUau9NRERERI5JJnjvGqsrLCyEl5cXCgoK4Onpae/qOLU77/x/SE5eArl8LAyG1Uy4qV7mzZuHN954A0888YTDDF4mhEB4eDjOnz+PxMREjB492t5VIiIiImpWHC0f45FuclhCCCQnLwYgYDCsgUplYMJN9WK6ntsRTi03kclkZvfsJiIiIqLmjUk3OawLFy6YPdfpLmPBAjtVhpyOwWCQRi53pKQbuHmK+bZt23Dt2jU714aIiIiIbIlJNzkcnU6HFStWYPTo783m33nnj5g7F0y8qU7S09ORn58PV1dX9OzZ02yZaRtbsWIFdDqd1d6zruVGREQgMjISFRUV+O6776z2/kRERETkeJh0k8MRQmDt2o7Yv7/cbH7r1j8iPr6CiTfVienU8qioKKhUKrNlQghcvnwZly9fhjWHtahPuaaj3TzFnIiIiKh5Y9JNDuftt+XYuXMQgoP3mM2/fv06Zs82YP58MPGmW3LE67kre/zxxyGTyfDbb79Vu5SCiIiIiJoPpb0r0JyVaEug0CqqzVfIFXBRupjFWSKXyeGqcm1QbKmu1OLRNplMBjeVW4Niy3RlMAiDxXq4q90bFHuj4gbeelOON+epMWjQTpw/fxIA0LlLZ5xKP4WSEuNnnzMHqDDoMHeuClq9FrNmVz+N103lJt2yqbyiHBWGCot1qE+sq8oVcpnxtyqtXgud3vIpxPWJdVG6QCFX1DtWp9dBq9dajNUoNVDKlfWOrTBUoLyi3GKsWqGGSqGqd6zeoMeNihsWY1UKFdQKdb1jDcKAMl2Z2fI/kv8AAPSO6g2tXmsWW3k/KtGWQIeb61spV0Kj1AAwHrku1Vm+rVfV2NrKrbrf+wT44K577sKeX/fgP1//B9NenWYxln2E0Y2KG9Ab9FaJZR9h1JL7iIbGNqaPqC22Pvs9+4iaY9lHsI9gH1H/2ObaR9T2OeyBSbcNhbwfArhUnz+i0wj8+MSP0vOARQEWd7KBYQOx6+ld0vN2S9rhaunVGmOjQqJwYMIB6XnE0ghcKKj5CFqEfwSOTzouPb9jxR04ceVEjbFhXmE4//J56fmA1QNw8PLBGmP93PxwZfoV6fnwr4dj94XdNca6qdxQMvvmDtHz8fU4/d1TkA96AwMHynD4cB4A4LTLaQCQkm4AOBHxBDCoK96ctwBv/roAGPimWdnFccXSDvnClhew5siaGusAALmv5sLf3R8AMO2nafjk4CcWYzOmZqCddzsAwGtJr2FR8iKLsWkT09AtoBsA4O3f3sa83fMsxu5/bj/uaHMHAGDJ3iWY8d8ZFmN3jtuJe9vdCwD4LOUzTNk2xWLslse3YGTnkQCAr499jfGbxluMXffwOjzS7REAwIaTG/Dod49ajF01ahWe7vU0AOCnMz/hvrX3WYz9ePjHmNxvMgDgt4u/YdCaQRZj3419F9Pvmg4AOJR1CP0+72cxNn5gPN649w0AwMkrJ9F9WfebC28A+Hvzfnzf43jV61W8N+Q9AMDFgovovKQzXsNrAIDA9wPNkuNJUZOwdORSAMDV0qsIWHTz/t5VjYsch9UPrAZg/GMS+H6gxXIfjngY6x9ZLz1vldAK8DI+nrtkLubq5krL2EcYVe0j/rXuX9h6emuNsQAg4m/+MX9qw1P47oTl6+XZRxi12D6iildjzPuI9kvaW4xtTB/RKqGVxdga+wgL2EcYsY+4iX2EEfsII/YRMH4XdCA8vZwchjDIgUFzoBj4NvR6PQoKCgAAsjbGX49LS6t0FgPfBAbNAQzVzyagFu6vv//3BuBhx3rcSgSMvXAugBw714WIiIiIbEImrDmKEAG4eTP2y1cu13gzdp7yUXOs6VQvrVaLea/Pw5IlS6BWq7Fxy0aMGDIC3t7eyMnJgVqt5mlhPC2s1lO9Fr69EG/OexOPjH4Eq/6zqlpsQUkBPnz/QwDAv1/5N9RqtfTaxpwWll+Sb7FcS/v9Yw8/hi0/bMH/e+X/YcHbC2qNrUlL7COsEcs+wqil9hGNieWpo0bsIxoWyz7CiH1E/WPZR9xUlz6isLAQIf4hKCgoqDEfa2o8vdyG3NXuZhtFbXH1KbOuKm+81oytvLNZM9bUOaigQlmZsTMLCwtDWJswAOZHuit3JLeiUWqggcbqsWqFWuqA7RWrUqikP0TWjFXKlVCq69Y91CdWIVfUeRuuT6xcJjeLTdmfAgC45657qpVhinVzM27z7mp3s+S4MplMVuc6mGLrUq5pOQA8Pe5pbPlhCz75+BM88q9Hahz4jX2EUX32e/YRRuwjjKr2EdaKbUgfUVeOEMs+woh9RP1j2UcYsY9oWKw1+gi92vKPavbAI902YDrS7Si/rDijlStX4tlnn8XQoUOxbt06eHkZL34tKSmRkhqimhgMBvj5+SEvLw/79+/HHXfcYe8q1cpgMOBf//oXNm7ciICAAOzfvx9hYWH2rhYRERGR03K0fIzXdJNDysjIAAC0b98eHh4e0hHDK1eu1PYyIpw6dQp5eXlwcXFBZGSkvatzS3K5HF9++SUiIyORm5uLf/7znygqKrJ3tYiIiIjISph0k0OqnHTLZDL4+xtHBWXSTbeyd+9eAEBUVFStp3c7klatWuGHH35AYGAgjh07hieeeAJ6vWOdFkVEREREDcOkmxyOTqfDvn37AAChoaHQ6XRQKIwDfmRlZdmzauQEkpOTAaDGa6NNdDodVq9ejdWrV0OnszzYTH01ptzQ0FBs2rQJGo0GW7ZswcyZM61WLyIiIiKyHybd5HCEEMjOzgYAtGvXDkIIqFTGgTtyc3PtWTVqInq9Hps2bcITTzyBVatWWRztsiampLt///4WY4QQuHDhAi5cuFCvsm+lseVGR0dj9erVAID3338fX3zxhdXqRkRERET2wdHLbamkBFDUcA9phQJwcTGPs0QuB1xdGxZbWgpY+uIvkwGVBySrT2xZGWCwPIw/3N0bFnvjBqDXo6ygAMXFxQCAdgEBQKXB06TTy/+OtcjNzVhvACgvByos376jXrGursb1DABaLVDb0cz6xLq43NxW6hOr0xnjLdFoAKWy/rEVFcZ1YYlaDfz9Q0i9YvV6Y9tZcCU/H198+SWWLVuGixcvAgDWrl2LTd9/jxUffSRdZgDAWKbp9HGDASgrw5UrV5CWlgYAiImMvLm/VI2tvB+VlJivb6XSuC4A4z5R9f7wlVWNra3cOu73j/3zn/jztdcw76238OKLL6JDhw64t7bB4FpgH2GVWPYRRk7WR5jty/WJ/buPsEpsY/qI2mLr892A3yNqjmUfUf9Y9hHGx+wjGhbryH1EbZ/DHgRZXUFBgQAgCoybVvVpxAjzF7i51RwHCDFwoHmsn5/l2Kgo89iwMMuxERHmsRERlmPDwsxjo6Isx/r5mccOHGg51s3NPHbECCEAkapUCgBCrVaLG0qlKFepRP/+/QUA8corrxhjH37YcrmAEMXFN8sdN6722Nzcm7GTJtUem5FxM/bVV2uPTUu7GRsfX3vs/v03Y999t/bYnTtvxn78ce2xW7bcjF21qvbYdetuxq5bV3vsqlU3Y7dsqT32449vxu7caTHuW0C4/N32AERrLy/xJCDUfz8PBMSPlV8TH3+z3LQ0UQGIoX/H9qha/quv3ozNyBDlKpV44403xBtvvCHKVSrz2EmTbsbm5tb+2caNuxlbXFx7uQ8/LMzUUq5h+HAxevRoAUD4+vqKfRqN5fgW2EdYnCpjH2HUjPoIARg/u8n+/bXHVukjao2t0kfUGtuIPqLW2Hr0Efwe8ffEPuLmxD7COLGPME7sI0QBjN8JCwoKhCPg6eXkcM4LAQDw8fGB7O9fjt3//kWLA6k5HoPBgGQA3wJYAuA1AJth7Onq6isAjwO4UVGBPn36YNWqVcj84Qd8CWA/gG4AcgCMBPBvADX9fv8GgJ8AuAL4soGfxVHIZDKsWrUKd9xxB65fv47o8nL0BPAugEv2rhwRERER1Qvv020D0n3hLl+u+b5wPOWj5ti/T/VatGQJpr/2Grp27Yojf/wBAHh43Dj88MMPGD58OLZu3crTwhzktLCioiI8Nno0tm7bVi3k/pEjsWzxYoSEhdV6WtiqL7/Es5MmQQiBZ55+Gp99/rlx4LxKsWVlZYiLj8eSTz4BAPxj4ECsT0yEb1AQAGDThg144KGHAABffv45nnzsMfPKVDktTFtQgIQPPwQAxP373+ajnDfitDBtfr7lchtwWlhOTg5eeuklbNq0Cdq/204mk2HQgAF48rHH8K9Ro+Dp7d3i+girxLKPMOKpo/WP5amjRuwjGhbLPsKIfUT9Y9lH3FSHPqKwsBBeISEOc59uJt024Gg3Y3dUX331Ff7zn/9g4cKF6NOnjzT/2WefxcqVKzFgwADs2LEDADBu3DgkJiYiKioKBw4csFeVqZK//voL9913H1JTU+Hi4oJ+/fohKCgILi4uWLt2LXQ6Hby8vPD+++9j/PjxkMurn1jz6aef4sUXXwQAvPjii1i6dGmNcSabN2/GmDFjUFxcjI4dO2LLli2QyWS44447UFhYiH//+99YsmTJLeuu1WqRkJAAAIiLi7ParcVsVW5eXh6+++47fPnll/jtt9+k+S4uLhg+fLg03XbbbVZ5PyIiIiJn5mj5GE8vJ7u4cOECnnrqKezYsQOvv/662bITJ04AAIKDg6V5Xl5eAHh6uaM4cuQIoqOjkZqaioCAAOzevRu7d+/Gt99+izVr1iAlJQVRUVEoKCjAc889hx49euCbb75BRUUFDAYDNm3ahAEDBkgJ97///W988skntSbcAHD//ffj999/R9u2bXHmzBlER0dj5MiRKCwsxD333INFixbV+TOoVCppVHxrskW5Pj4+mDBhAn799VdkZGTgrbfeQteuXXHjxg1s2LABzz//PEJDQ9GzZ0/MmjULu3fvtuqt0IiIiIio4Xik2wYc7ZeVhqqoqIBcLr9lIlQfQgj83//9HxYuXIiUlBQAgEKhwLVr1+Dl5QW9Xg9fX18UFhbiyJEj6NmzJwDjUdXbbrsNCoUCZWVlNkmWqG7279+PoUOHIj8/H7fffju2bt2Kdu3aVYurqKjA4sWL8eabb6KgoAAA0LFjR8jlcpw6dQoAoFQqERcXh3nz5knX79dFbm4uHnzwQfzx9+UHwcHBOHToEIL+Pt28JRBCIDU1FT/88AO2bduGffv2oXJ37unpif/5n/+RjoKHhITYsbZERERETcfR8rEWkXQvXboU7733HrKzsxEZGYmPPvoI/fr1sxi/fv16zJkzB+fPn0enTp3wzjvvYMSIEXV+P0dr5IZITU3FoEGD0K1bN+zatQtKpXXuLrdkyRK8/PLL1eb/9NNP8PX1RV5eHoYMGQIPDw9cv35del8hBDw8PFBSUoKTJ0/i5MmT8PLywqBBg+qVrFHj/P777xg+fDiKiopw1113YcuWLfD29q71NQUFBfj444/xv//7v7h27RoA45kLL774Il566SW0adOmQXUpLy/H1KlTsWPHDnz11VeIiYlpUDnNxdWrV/Hzzz9j27Zt2L59O65evWq2PDIyEsOHD8eIESMQExNjtX26KoPBgMzMTJw5cwZnzpzB6dOncebMGZw9exalpaVQKBSQy+VQKBTSVPW5t7c3OnXqhM6dO0tTmzZtrPoDIBERETVfjpaPNfuk+9tvv8XYsWOxfPlyREdHY/HixVi/fj3S09MREBBQLf6PP/7AgAEDkJCQgPvuuw/ffPMN3nnnHRw6dAjdu3ev03s6WiM3xFNPPYWvvvoKALBt2zYMGzas0WUKIdCpUyecPXsWABAVFYX27dtj/fr18Pb2Rn5+vhQ7YsQI/Pjjj2av79OnDw4fPowBAwbg119/ler5+eefW+3aWbIsKSkJo0aNQklJCe6991788MMPaNWqVZ1fX1xcjG+++QYA8Pjjj8PDw8NWVW3x9Ho9UlJSsG3bNmzduhUHDhwwOwru5eUlHQWPiIhAUFCQdD3+rRgMBly5cgWZmZnSdOHCBSm5PnfuHMprGxCngVxdXdGxY0ezRLxTp07o2LEjAgIC+OMbERERSRwtH2v2SXd0dDTuuOMOfPzxxwCMXxhDQ0Px0ksvYdasWdXiR48ejZKSEmzZskWa179/f/Tq1QvLly+v03s6WiPXl8FgQGBgoHSkrHXr1njuuecwe/bsBn2ekpISvPrqq/j222+Rl5cHDw8PXLp0CR4eHlixYgVeeOGFaq954YUXMGDAADz66KMAgHXr1uGjjz7C3r17q8UGBgbiH//4B2bMmIFevXrVu34tmRAC+fn5uHDhAvLz8+Hn54eAgAD4+PhApVJBCIHdu3cjISEBP//8MwAgNjYWmzZtglvlUSadTEVFBdatWwcAePTRR6121NdW5TbWlStX8NNPP0lHwa9fv15jnLe3t5SABwUFITg4GGq1GpcuXZIS7L/++ksaSd0SlUqF8PBwdOzYUUqMO3ToIF1CotfrYTAYpMdVn1+5cgWnT5/GqVOncOrUKZw9exYVtYwG7OLignbt2plNYWFh0uPAwECbJ+VCCJSWlqK4uBglJSUoLy+v96TT6aBSqaBWq+s0aTSaas9dXV3h6uoKFxcXqNVq/hhBREQtkqPlY47xjdBGtFotUlJSEBcXJ82Ty+WIjY1FcnJyja9JTk7GtGnTzOYNHToUGzdutHr98vPzpWtbLRFCVJuqzgeMn6vyMqVSieLiYuh0Ohw7dgxFRUVo27YtOnXqBL1ej+LiYhQVFeGXX37Bzp07cfHiRQQFBeHpp59GWlqa2amp165dwzvvvIOkpCSMGDEC4eHh8PX1hVqtRmZmJs6fP49evXrB1dUVxcXFUCgUOHbsGLRaLY4cOYKTJ0/i/PnzUnmPP/64tPE/+OCDmDRpEvR6Pbp06YJRo0YhJCQEeXl5OH36NAx/3wLg9OnTcK10i4KYmBjMnj0bzzzzDHJycrB27Vp89913mD59OjQaDXbv3o3WrVujb9++6N69O1xdXaFUKqFSqXDjxg1kZmbi4sWLuH79Ojw8PKSjrgaDAR4eHvDx8YFCoZDWk+l/IQRcXFyg0Wjg4uJS46TRaFBQUIDLly8jKysL5eXl0Gg00mSKsfTctG1kZWXh7NmzuHz5Mq5duwa9Xo+goCCEhIQgODhYOh0/NzcXubm5uHLlivS4qKgIvr6+aN26tdTubdq0gV6vR3l5OU6fPo3Dhw/j2LFj0vXWVSkUCri4uKDk71tHKBQKjBs3DkuXLq3TEVFHZjAYcPr0aemxo5fbWP7+/njyySfx5JNPQq/X48CBA9i2bRuSkpJw6dIlZGVlQavVIj8/H/n5+fjzzz9rLU8mkyE4OBihoaHSZEquO3bsiLZt2xpv+2YlFRUVOH/+vJSEnzp1CqdPn0Z6ejouXbqEGzdu4M8//7RYbxcXF4SFhSE0NBRubm5SX6BSqcweV32uVCqh0+mkPqByf1D1cXFxMRztN2yZTCYl4JWTcUuPXVxcpNP9q06W5tcUA8DsBxVLU0VFhVViGlKWEKJBn7E+60KpVJr9b+lxXedVXS6XyyGTySCTycwe1zbVNc5SbOXvHgaDoc7P6xPb1M8b8tqq+1nl/2uad6v/HfE19qxTXTC2/rG2LtvRlNV2Wzc7aNZJ99WrV6HX6xEYGGg2PzAw0OKXs+zs7Brjs7OzLb6P6SiFSWFhYZ3q9/vvv+O+++6rU2xTyM7OxsKFC6Xnzz33HH766SdkZmYCAA4ePIiDBw82uPzevXsjODhYuqUSYEwGPvvsM+zbtw+vvfYa2rZta3bbpcqioqKQk5ODM2fOICEhAQMHDsSFCxewd+9eLFmyBJs2bcLbb79t9pr169c3uL7OLisrq86x/v7+8PX1xbVr13Dt2jUIIaDX61FSUgKNRoNnn30Wr776Ktq3b2/DGlNTUCgU6N+/P/r374958+YBuHnGQ3Z2drWprKwMt912m1mCHRIS0qSDGSqVSimhrzq+hlarlX78O3/+PC5cuCA9Pn/+vJSUp6enIz09vUnq6+bmVusPazVNLi4uUCqVqKiogFarhVarRXl5ufS46lR1menvUOUvGaaj76W13feViIiIbK5ZJ91NJSEhQfryWh9ubm4ICwuzuLzyL39VH1eeB6DaERa9Xg93d3cIIdCuXTsUFxejrKwMhYWFkMlkUCgUKC8vR0BAAEJCQqQjST4+PigsLMSoUaMwc+ZMHDt2DNu3b8fAgQOxcOFC5OXloaioCGq1WroPc9u2bXHs2DEolUq4uroiLy8P3bt3h1KpRJcuXZCbm4v7778fsbGxNX7OZ555Bs8888wt15e7uzsOHjyI/Px86XZirq6uGDRoEO699158+eWXSExMhIuLC4YMGYLCwkKkpKTg1KlT0Gq10Ov10umboaGhCAsLQ+vWraUjVqb1WVRUhLy8PFRUVEhHwVu1agUPDw/I5XKUl5fjxo0b1abK8z08PKQj0q6urmankJpiLT0GjKf5+vv7o0OHDggNDUXr1q2hUCiQlZWFrKwsXL58GdevX4evry8CAgIQEBAAf39/6XGrVq2Ql5eHq1evIiMjA2fOnEFOTo50FC80NBS9e/dGZGQkOnToAHd3d2k9V1RUoKioCGVlZSgrK4Ofn590yzZqnmQyGXx8fODj44Pbb7/d3tWpF7VajQ4dOqBDhw41Ltdqtbh06ZKUgJeXl6OiogI6nQ46ne6Wj9VqNVq1aiVNpv6g6mPTc1dXV7sO+CaEkPoT0z5s6XHV5+Xl5TAYDHWeTJcFVJ2EEGYD491qqnwkt6niTUdtb/VZ6vqZq8bUdHS9pse3Wl7bY9MR+5qOxtY2NSbW0lHwxj63RZm2fk/T/lb5/5rm2Sqmub7nrTCucXG2em9rHhW3Vlk6nQ4bNmywSlnW0KyTbj8/PygUCuTk5JjNz8nJsXhroaCgoHrFA0BcXJzZKemFhYUIDQ29Zf0GDRpkdtq1I+rduzd69+4NANi8ebOda2M8Slf5/t0mMpkMY8eOxdixY+1Qq+ZFqVRKCRiRs1Or1QgPD0d4eLi9q9IkZDKZdKr4re4sQERE1FwVFhY6VNLdrO+/olar0bdvXyQlJUnzDAYDkpKSLN5eKCYmxiweAHbs2FHr7Yg0Gg08PT3NJiIiIiIiIqJmfaQbAKZNm4Zx48YhKioK/fr1w+LFi1FSUoLx48cDAMaOHYs2bdpI1xBPnToVAwcOxPvvv4+RI0ciMTERBw8exGeffWbPj0FEREREREROqNkn3aNHj8aVK1cwd+5cZGdno1evXti+fbs0WNrFixfNrr+788478c033+D111/H7Nmz0alTJ2zcuLHO9+gGbl4DUdcB1cicVqvFjRs3ANxch5Wf857c1FhVtzFrbVO2KpeIiIiI6s6UQ9Tnendbavb36baHc+fOWRzUh4iIiIiIiGzv7NmzDjGuS7M/0m0Pvr6+AIxH0Tnqs+MzDXyXmZnJ6/GdBNvMubC9nA/bzLmwvZwP28y5sL2cT0FBAdq2bSvlZfbGpNsGTKere3l5ccd0IhwEz/mwzZwL28v5sM2cC9vL+bDNnAvby/nY8zaelTlGLYiIiIiIiIiaISbdRERERERERDbCpNsGNBoN4uPjodFo7F0VqgO2l/NhmzkXtpfzYZs5F7aX82GbORe2l/NxtDbj6OVERERERERENsIj3UREREREREQ2wqSbiIiIiIiIyEaYdBMRERERERHZCJNuIiIiIiIiIhth0m1lS5cuRbt27eDi4oLo6Gjs37/f3lVqEd544w3IZDKzqWvXrtLyGzduYPLkyWjdujVatWqFf/3rX8jJyTEr4+LFixg5ciTc3NwQEBCA6dOno6Kiwixm165d6NOnDzQaDTp27IjVq1c3xcdzer/++iv++c9/IiQkBDKZDBs3bjRbLoTA3LlzERwcDFdXV8TGxuL06dNmMdevX8eYMWPg6ekJb29vPPvssyguLjaLOXr0KO655x64uLggNDQU7777brW6rF+/Hl27doWLiwt69OiBrVu3Wv3zNge3arOnn3662j43bNgwsxi2WdNJSEjAHXfcAQ8PDwQEBOCBBx5Aenq6WUxT9oP8W1i7urTXvffeW20fe/HFF81i2F5NZ9myZejZsyc8PT3h6emJmJgYbNu2TVrO/cux3Kq9uH85voULF0Imk+Hll1+W5jn1fibIahITE4VarRYrV64Ux48fFxMmTBDe3t4iJyfH3lVr9uLj40W3bt1EVlaWNF25ckVa/uKLL4rQ0FCRlJQkDh48KPr37y/uvPNOaXlFRYXo3r27iI2NFYcPHxZbt24Vfn5+Ii4uToo5d+6ccHNzE9OmTRMnTpwQH330kVAoFGL79u1N+lmd0datW8Vrr70mvv/+ewFAbNiwwWz5woULhZeXl9i4caM4cuSIuP/++0X79u1FWVmZFDNs2DARGRkp9u7dK3777TfRsWNH8fjjj0vLCwoKRGBgoBgzZoxIS0sTa9euFa6uruLTTz+VYn7//XehUCjEu+++K06cOCFef/11oVKpxLFjx2y+DpzNrdps3LhxYtiwYWb73PXr181i2GZNZ+jQoWLVqlUiLS1NpKamihEjRoi2bduK4uJiKaap+kH+Lby1urTXwIEDxYQJE8z2sYKCAmk526tpbd68Wfz444/i1KlTIj09XcyePVuoVCqRlpYmhOD+5Whu1V7cvxzb/v37Rbt27UTPnj3F1KlTpfnOvJ8x6baifv36icmTJ0vP9Xq9CAkJEQkJCXasVcsQHx8vIiMja1yWn58vVCqVWL9+vTTv5MmTAoBITk4WQhgTDLlcLrKzs6WYZcuWCU9PT1FeXi6EEGLGjBmiW7duZmWPHj1aDB061MqfpnmrmsAZDAYRFBQk3nvvPWlefn6+0Gg0Yu3atUIIIU6cOCEAiAMHDkgx27ZtEzKZTPz1119CCCE++eQT4ePjI7WXEELMnDlTdOnSRXr+6KOPipEjR5rVJzo6WrzwwgtW/YzNjaWke9SoURZfwzazr9zcXAFA7N69WwjRtP0g/xbWX9X2EsKYFFT+slkV28v+fHx8xOeff879y0mY2ksI7l+OrKioSHTq1Ens2LHDrJ2cfT/j6eVWotVqkZKSgtjYWGmeXC5HbGwskpOT7VizluP06dMICQlBeHg4xowZg4sXLwIAUlJSoNPpzNqma9euaNu2rdQ2ycnJ6NGjBwIDA6WYoUOHorCwEMePH5diKpdhimH7Nk5GRgays7PN1q2Xlxeio6PN2sfb2xtRUVFSTGxsLORyOfbt2yfFDBgwAGq1WooZOnQo0tPTkZeXJ8WwDa1n165dCAgIQJcuXTBx4kRcu3ZNWsY2s6+CggIAgK+vL4Cm6wf5t7BhqraXyddffw0/Pz90794dcXFxKC0tlZaxvexHr9cjMTERJSUliImJ4f7l4Kq2lwn3L8c0efJkjBw5stq6dfb9TNngV5KZq1evQq/XmzUyAAQGBuLPP/+0U61ajujoaKxevRpdunRBVlYW5s2bh3vuuQdpaWnIzs6GWq2Gt7e32WsCAwORnZ0NAMjOzq6x7UzLaospLCxEWVkZXF1dbfTpmjfT+q1p3VZe9wEBAWbLlUolfH19zWLat29frQzTMh8fH4ttaCqD6m7YsGF46KGH0L59e5w9exazZ8/G8OHDkZycDIVCwTazI4PBgJdffhl33XUXunfvDgBN1g/m5eXxb2E91dReAPDEE08gLCwMISEhOHr0KGbOnIn09HR8//33ANhe9nDs2DHExMTgxo0baNWqFTZs2ICIiAikpqZy/3JAltoL4P7lqBITE3Ho0CEcOHCg2jJn/zvGpJuaheHDh0uPe/bsiejoaISFhWHdunVMhols4LHHHpMe9+jRAz179kSHDh2wa9cuDB482I41o8mTJyMtLQ179uyxd1WoDiy11/PPPy897tGjB4KDgzF48GCcPXsWHTp0aOpqEoAuXbogNTUVBQUF+O677zBu3Djs3r3b3tUiCyy1V0REBPcvB5SZmYmpU6dix44dcHFxsXd1rI6nl1uJn58fFApFtRH0cnJyEBQUZKdatVze3t7o3Lkzzpw5g6CgIGi1WuTn55vFVG6boKCgGtvOtKy2GE9PTyb2jWBav7XtO0FBQcjNzTVbXlFRgevXr1ulDbmPNl54eDj8/Pxw5swZAGwze5kyZQq2bNmCnTt34rbbbpPmN1U/yL+F9WOpvWoSHR0NAGb7GNuraanVanTs2BF9+/ZFQkICIiMjsWTJEu5fDspSe9WE+5f9paSkIDc3F3369IFSqYRSqcTu3bvx4YcfQqlUIjAw0Kn3MybdVqJWq9G3b18kJSVJ8wwGA5KSksyuH6GmUVxcjLNnzyI4OBh9+/aFSqUya5v09HRcvHhRapuYmBgcO3bMLEnYsWMHPD09pVORYmJizMowxbB9G6d9+/YICgoyW7eFhYXYt2+fWfvk5+cjJSVFivnll19gMBikP5QxMTH49ddfodPppJgdO3agS5cu8PHxkWLYhrZx6dIlXLt2DcHBwQDYZk1NCIEpU6Zgw4YN+OWXX6qdtt9U/SD/FtbNrdqrJqmpqQBgto+xvezLYDCgvLyc+5eTMLVXTbh/2d/gwYNx7NgxpKamSlNUVBTGjBkjPXbq/azBQ7BRNYmJiUKj0YjVq1eLEydOiOeff154e3ubjaBHtvHKK6+IXbt2iYyMDPH777+L2NhY4efnJ3Jzc4UQxlsMtG3bVvzyyy/i4MGDIiYmRsTExEivN91iYMiQISI1NVVs375d+Pv713iLgenTp4uTJ0+KpUuX8pZhdVRUVCQOHz4sDh8+LACIDz74QBw+fFhcuHBBCGG8ZZi3t7fYtGmTOHr0qBg1alSNtwzr3bu32Ldvn9izZ4/o1KmT2e2n8vPzRWBgoHjqqadEWlqaSExMFG5ubtVuP6VUKsWiRYvEyZMnRXx8PG8/ZUFtbVZUVCReffVVkZycLDIyMsR///tf0adPH9GpUydx48YNqQy2WdOZOHGi8PLyErt27TK7BU5paakU01T9IP8W3tqt2uvMmTNi/vz54uDBgyIjI0Ns2rRJhIeHiwEDBkhlsL2a1qxZs8Tu3btFRkaGOHr0qJg1a5aQyWTi559/FkJw/3I0tbUX9y/nUXWUeWfez5h0W9lHH30k2rZtK9RqtejXr5/Yu3evvavUIowePVoEBwcLtVot2rRpI0aPHi3OnDkjLS8rKxOTJk0SPj4+ws3NTTz44IMiKyvLrIzz58+L4cOHC1dXV+Hn5ydeeeUVodPpzGJ27twpevXqJdRqtQgPDxerVq1qio/n9Hbu3CkAVJvGjRsnhDDeNmzOnDkiMDBQaDQaMXjwYJGenm5WxrVr18Tjjz8uWrVqJTw9PcX48eNFUVGRWcyRI0fE3XffLTQajWjTpo1YuHBhtbqsW7dOdO7cWajVatGtWzfx448/2uxzO7Pa2qy0tFQMGTJE+Pv7C5VKJcLCwsSECROq/TFimzWdmtoKgFkf1ZT9IP8W1u5W7XXx4kUxYMAA4evrKzQajejYsaOYPn262X2EhWB7NaVnnnlGhIWFCbVaLfz9/cXgwYOlhFsI7l+Oprb24v7lPKom3c68n8mEEKLhx8mJiIiIiIiIyBJe001ERERERERkI0y6iYiIiIiIiGyESTcRERERERGRjTDpJiIiIiIiIrIRJt1ERERERERENsKkm4iIiIiIiMhGmHQTERERERER2QiTbiIiIiIiIiIbYdJNREREREREZCNMuomIiIiIiIhshEk3ERERERERkY0w6SYiIiIiIiKyESbdRERERERERDbCpJuIiIiIiIjIRph0ExEREREREdkIk24iIiIiIiIiG1HauwLNkcFgwOXLl+Hh4QGZTGbv6hAREREREbUYQggUFRUhJCQEcrn9jzMz6baBy5cvIzQ01N7VICIiIiIiarEyMzNx22232bsaTLptwcPDA4CxkT09Pe1cGyLrEkKgoKAAAODl5WXxbI66xtlDbXV75x3g7beB2bOBmTOrv7a25Y78mYmIiIhaisLCQoSGhkp5mb0x6bYB0xdtT09PJt3U7Gi1WixevBgAEBcXB7Va3ag4e6itbm+9Bbi4AHPnGv+fM+fm6xYsMCbc8+ebz69LuURERETUtBzlAAiTbiKiKkwJ9dy5N58vWGB8binhJiIiIiKqCZNuIqIa3Ey8D2DevB3Q66dj/nwVE24iIiIiqhf7D+VGROSgpk4tBHAf9PrXoFCsYMJNRERERPXGpJuIyIIRI94EkAsA0Ou/wIIF9q0PERERETkfJt1ERDV4+eXT+P33xQBMg3Acwty5h5l4ExEREVG9MOkmIqpiwQJgyZJXAegwbNgwPPLIIwCAfv2+wNy5YOJNRERERHXGgdSIqF7kcjmioqKkx42Ns4fa6mYcpXwHgM1QKpX44IMPcOnSJaxbtw7p6V9hzpz3MHeuK4Dqo5g78mcmIiIiIvuQCSGEvSvR3BQWFsLLywsFBQW8TzeREzEm3BXw94/ElSsnMHXqVCxevBgGgwHh4eG4cOECvvrqK5w7N4a3DyMiIiJyUI6Wjzn9oZilS5eiXbt2cHFxQXR0NPbv328x9t5774VMJqs2jRw5Uop5+umnqy0fNmxYU3wUIrIj0324R45cjitXTqB169aIj48HYDxqPX78eADA559/jjlzjAk3TzUnIiIioltx6qT722+/xbRp0xAfH49Dhw4hMjISQ4cORW5ubo3x33//PbKysqQpLS0NCoVCul7TZNiwYWZxa9eubYqPQ+QUhBAoKSlBSUkJajtRpq5x9lBT3fR6YNasa/jjj7kAgAULFsDHx0d6zfjx4yGTybBr1y6cPXtWSrz1+trLJSIiIqKWzamT7g8++AATJkzA+PHjERERgeXLl8PNzQ0rV66sMd7X1xdBQUHStGPHDri5uVVLujUajVlc5S/eRC2dTqfDokWLsGjRIuh0ukbH2UNNdXvjDaC4+A3k5eWhR48emDBhgtlr2rZtiyFDhgCA1MfMmWN8XW3lEhEREVHL5rRJt1arRUpKCmJjY6V5crkcsbGxSE5OrlMZX3zxBR577DG4u7ubzd+1axcCAgLQpUsXTJw4EdeuXbNq3YnI8WRmZmLZsmUAgMWLF0OprD7O5HPPPQcAWLVqFSoqKpq0fkRERETknJw26b569Sr0ej0CAwPN5gcGBiI7O/uWr9+/fz/S0tKkL9Emw4YNw3/+8x8kJSXhnXfewe7duzF8+HDoK59DWkV5eTkKCwvNJiJyLvv27YNer0efPn3wj3/8o8aY+++/H35+fsjKysL27dubuIZERERE5IycNulurC+++AI9evRAv379zOY/9thjuP/++9GjRw888MAD2LJlCw4cOIBdu3ZZLCshIQFeXl7SFBoaauPaE5G1HT9+HADQs2dPizFqtRpjx44FYBxQjYiIiIjoVpw26fbz84NCoUBOTo7Z/JycHAQFBdX62pKSEiQmJuLZZ5+95fuEh4fDz88PZ86csRgTFxeHgoICacrMzKzbhyAih2FKurt161ZrnKnf2LJlS53OqiEiIiKils1pk261Wo2+ffsiKSlJmmcwGJCUlISYmJhaX7t+/XqUl5fjySefvOX7XLp0CdeuXUNwcLDFGI1GA09PT7OJiJxLXZPuiIgI9O/fH3q9HmvWrGmKqhERERGRE3PapBsApk2bhhUrVmDNmjU4efIkJk6ciJKSEul+umPHjkVcXFy1133xxRd44IEH0Lp1a7P5xcXFmD59Ovbu3Yvz588jKSkJo0aNQseOHTF06NAm+UxE1PS0Wi1OnToF4NZJN3BzQLWVK1fy1mBEREREVKvqw/M6kdGjR+PKlSuYO3cusrOz0atXL2zfvl0aXO3ixYuQy81/V0hPT8eePXvw888/VytPoVDg6NGjWLNmDfLz8xESEoIhQ4ZgwYIF0Gg0TfKZiBydXC5HZGSk9LixcfZQtW7p6emoqKiAh4dHncZkePTRR/HCCy/g1KlTyMrKQkhISI3lEhERERHJBA/TWF1hYSG8vLxQUFDAU82JnMC6deswevRoREdHY+/evXV6TY8ePZCWlobNmzfjn//8p41rSERERER15Wj5GA/FEFGLV9fruSvr06cPAODQoUM2qRMRERERNQ9MuomoXoQQ0Gq10Gq1tV7PXNc4e6haN2sl3Y78mYmIiIjIPpz6mm4iano6nQ4JCQkAjLfLU6vVjYqzh6p1s1bS7cifmYiIiIjsg0e6iahFKy8vx+nTpwHUL+nu1asXZDIZLl26hNzcXFtVj4iIiIicHJNuImrRTp8+Db1eD09PT7Rp06bOr/Pw8EDnzp0B8LpuIiIiIrKMSTcRtWgnTpwAYDzKLZPJ6vVaDqZGRERERLfCpJuIWrTKSXd9MekmIiIiolth0k1ELRqTbiIiIiKyJSbdRNSiNSbp7t27NwAgIyMDeXl5Vq0XERERETUPvGUYEdWLXC5HRESE9LixcfZgqptWq8XZs2cBNCzp9vHxQXh4OM6dO4dDhw5h4MCBDvuZiYiIiMg+mHQTUb0olUo88sgjVouzB1Pdjhw5AoPBAG9vbwQHBzeorD59+khJ9+DBgx32MxMRERGRffBQDBG1WI0ZudyE13UTERERUW2YdBNRi3X8+HEADTu13IRJNxERERHVhqeXE1G9aLVaJCQkAADi4uKgVqsbFWcPprr93//9HwDrJN2nTp3C1atXsXTpUgCO95mJiIiIyD54pJuIWqzc3FwAjUu6/f39ERoaCgA4evSoVepFRERERM0Hk24iapF0Op10m6/GJN0ATzEnIiIiIsuYdBNRi3T16lUIIeDr64vAwMBGlWVKulNTU61QMyIiIiJqTph0E1GLdOXKFQBAREREg0cuNzEl3YcPH250vYiIiIioeWHSTUQtkul67ttvv73RZZmS7j///BNarbbR5RERERFR88Gkm4hapMpHuhsrJCQEQUFBMBgMyMnJaXR5RERERNR8MOkmonqRy+Xo1KkTOnXqBLncchdS1zh7kMvlyM/PBwB0797dKmWajnZXVFQ45GcmIiIiIvvgfbqJqF6USiWeeOIJq8XZg1arlU4v79mzp1XK7NOnD7Zu3QqFQuGwn5uIiIiImp7TH4pZunQp2rVrBxcXF0RHR2P//v0WY1evXg2ZTGY2ubi4mMUIITB37lwEBwfD1dUVsbGxOH36tK0/BhE1oT///BNCCPj5+SEgIMAqZfK2YURERERUE6dOur/99ltMmzYN8fHxOHToECIjIzF06FDpCFZNPD09kZWVJU0XLlwwW/7uu+/iww8/xPLly7Fv3z64u7tj6NChuHHjhq0/DhE1kRMnTgBo/P25KzMl3WlpaSgvL7dauURERETk3Jw66f7ggw8wYcIEjB8/HhEREVi+fDnc3NywcuVKi6+RyWQICgqSpsr35xVCYPHixXj99dcxatQo9OzZE//5z39w+fJlbNy4sQk+EZHj02q1ePvtt/H222/XOlJ3XePs4eTJkwCA0tJSq9Wtbdu2aN26NSoqKjBt2jSH+8xEREREZB9Om3RrtVqkpKQgNjZWmieXyxEbG4vk5GSLrysuLkZYWBhCQ0MxatQoHD9+XFqWkZGB7OxsszK9vLwQHR1da5lELY1Op4NOp7NaXFM7d+4cAMDb29tqZcpkMvTq1QsAcPHiRauVS0RERETOzWmT7qtXr0Kv15sdqQaAwMBAZGdn1/iaLl26YOXKldi0aRO++uorGAwG3Hnnnbh06RIASK+rT5kAUF5ejsLCQrOJiBzX2bNnAQA+Pj5WLbd3794AgKysLKuWS0RERETOy2mT7oaIiYnB2LFj0atXLwwcOBDff/89/P398emnnzaq3ISEBHh5eUlTaGiolWpMRLZgSrp9fX2tWi6TbiIiIiKqymmTbj8/PygUCuTk5JjNz8nJQVBQUJ3KUKlU6N27N86cOQMA0uvqW2ZcXBwKCgqkKTMzsz4fhYiaUF5eHq5fvw7A+km36fTynJwchzytnoiIiIiantMm3Wq1Gn379kVSUpI0z2AwICkpCTExMXUqQ6/X49ixYwgODgYAtG/fHkFBQWZlFhYWYt++fbWWqdFo4OnpaTYRkWMyHeVu1aoV1Gq1VcsODw+HRqOBXq/Hn3/+adWyiYiIiMg52S3p3r17NzZu3IgTJ07AYDA0qIxp06ZhxYoVWLNmDU6ePImJEyeipKQE48ePBwCMHTsWcXFxUvz8+fPx888/49y5czh06BCefPJJXLhwAc899xwA40BIL7/8Mt58801s3rwZx44dw9ixYxESEoIHHnig0Z+ZiOzPVqeWA8bBHE0/4vF+3UREREQEAEp7vOmkSZPwww8/oF+/fti8eTNcXV3RuXNnREZG4osvvqhzOaNHj8aVK1cwd+5cZGdno1evXti+fbs0ENrFixchl9/8XSEvLw8TJkxAdnY2fHx80LdvX/zxxx+IiIiQYmbMmIGSkhI8//zzyM/Px913343t27fDxcXFeiuAyInJZDKEhYVJjxsb19RMl5OEhoYiLCzMqnWTyWTo0qULzp8/j9TUVKuVS0RERETOSyaEEE39pr6+vjh27BjatGkDHx8f/PnnnxgzZgx69OiB//3f/23q6lhdYWEhvLy8UFBQwFPNiRzM+PHjsXr1aixYsACvv/661cv/+uuv8eSTT+LOO+/E77//bvXyiYiIiKh2jpaP2eX0cqVSKZ2CqVQqERAQgJUrVyItLc0e1SGiFsR0ennHjh1tUn6fPn0AAKmpqdDr9TZ5DyIiIiJyHnZJuvv27Yvk5GQAxoGHTpw4gTZt2mD//v32qA4RtSCm08s7dOhgk/I7d+4Md3d3lJaW4tSpUzZ5DyIiIiJyHnZJuj/77DP4+PgAAKZMmYJHHnkE999/P7p27WqP6hBRPWi1Wrz33nt47733oNVqGx3XlEpKSqR7aG/dutXqddNqtfjggw/g7+8PAEhJSbFa2URERETknOwykFpoaKj0+KmnnkJgYCCOHj2KMWPG2KM6RFRPpaWlVo1rKufOnQMA6Uc/W9SvtLQUAQEBOH/+vHSXBCIiIiJquWyedG/btg1ff/01MjMz4e7ujp49e+Lhhx9GVFSUFDNkyBAMGTLE1lUhohbO1qeWm/C2YURERERkYtPTyxcvXoz77rsPGzZsQElJCXJzc/Hhhx8iOjoaI0eORHZ2ti3fnojIjGkQtaZKug8fPgyDwWDT9yIiIiIix2bTpHvJkiXo1asXLly4gIMHD+LgwYPIy8vDxx9/jLS0NPTr1w9//fWXLatARCQxHekODw+36fv4+/tDo9GgsLBQOqWdiIiIiFommybdOTk5eO655+DnLzg+XgAAU1VJREFU5yfN02g0mDhxIg4ePAiZTIYZM2bYsgpERJKmOtKtUCjQs2dPABxMjYiIiKils2nS3aVLF+Tk5NS4zN/fH5MmTcLWrVttWQUiIklTHekGgF69egHgdd1ERERELZ1NB1KbMWMGXnrpJYwZMwadOnWqttzNzQ0ymcyWVSAiK5PJZAgJCZEeNzauqWi1Wly8eBEA0LFjRykBt2bdKn/mwMBAAEy6iYiIiFo6mRBC2KrwqKgoZGZmQqvVIi4uDk8++aT0hfTs2bMYOXIkBg4ciE8//dRWVbCLwsJCeHl5oaCgAJ6envauDhEBOHXqFLp06QJ3d3cUFRXZ/IeAlJQUREVFwdfXF1evXnWIHx6IiIiIWgJHy8dsenp5SEgI3N3dUVhYiFmzZiE0NBT+/v4ICgpC586d4erqiueffx46nc6W1SAiMrtdWFMkwN27d4dKpcL169elI+xERERE1PLY9PTyzZs3AwCKi4tx/PhxHDt2DGlpadL/R44cQb9+/aBQKBAeHo7bb78dEREReOutt2xZLSJqgUyDqHXs2LFJ3k+j0aB79+44fPgwDh06hLCwsCZ5XyIiIiJyLDZNuk1atWqF6OhoREdHm83Pzc2tlognJSUx6SZyYDqdDkuXLgUATJ48GSqVqlFxTaXykW5b1a1quX369MHhw4eRkpKCBx980CrvQURERETOpUmSbksCAgIwePBgDB482J7VIKJ6EEKgoKBAetzYuKZiSro7duxos7pVLbdPnz744osvOJgaERERUQtm02u6iYgcRVOfXg4Affr0AWAcVM0RfnggIiIioqbHpJuImj29Xo9z584BMJ5e3lR69uwJuVyO3NxcZGVlNdn7EhEREZHjYNJNRM3epUuXoNPpoFarcdtttzXZ+7q5uSEiIgIA79dNRERE1FIx6SaiZs90PXf79u2hUCia9L0rn2JORERERC0Pk24iavbscT23iSnp5pFuIiIiopbJrqOXE5Hzkclk8Pf3lx43Nq4pVB65HLBd3Woql0k3ERERUcsmExxS1+oKCwvh5eWFgoICeHp62rs6RC3eQw89hA0bNuDDDz/ESy+91KTvXVRUBC8vLwghkJOTg4CAgCZ9fyIiIqKWxtHyMac/vXzp0qVo164dXFxcEB0djf3791uMXbFiBe655x74+PjAx8cHsbGx1eKffvppyGQys2nYsGG2/hhEZEP2PL3cw8MDnTt3BgAcPny4yd+fiIiIiOzLqZPub7/9FtOmTUN8fDwOHTqEyMhIDB06FLm5uTXG79q1C48//jh27tyJ5ORkhIaGYsiQIfjrr7/M4oYNG4asrCxpWrt2bVN8HCKyASGElHQ35e3CKuNgakREREQtl1Mn3R988AEmTJiA8ePHIyIiAsuXL4ebmxtWrlxZY/zXX3+NSZMmoVevXujatSs+//xzGAwGJCUlmcVpNBoEBQVJk4+PT1N8HCKnoNPp8Mknn+CTTz6BTqdrdJyt5eTkoKSkBHK5HO3atbNp3SyVy+u6iYiIiFoupx1ITavVIiUlBXFxcdI8uVyO2NhYJCcn16mM0tJS6HQ6+Pr6ms3ftWsXAgIC4OPjg3/84x9488030bp1a4vllJeXo7y8XHpeWFhYz09D5DyEELhy5Yr0uLFxtmYaRC0sLAxqtdqmdbNULpNuIiIiopbLaY90X716FXq9HoGBgWbzAwMDkZ2dXacyZs6ciZCQEMTGxkrzhg0bhv/85z9ISkrCO++8g927d2P48OHQ6/UWy0lISICXl5c0hYaGNuxDEZHVpaenA7DfqeUA0Lt3bwBARkYG8vLy7FYPIiIiImp6Tpt0N9bChQuRmJiIDRs2wMXFRZr/2GOP4f7770ePHj3wwAMPYMuWLThw4AB27dplsay4uDgUFBRIU2ZmZhN8AiKqiwMHDgC4mfjag4+PjzSI286dO+1WDyIiIiJqek6bdPv5+UGhUCAnJ8dsfk5ODoKCgmp97aJFi7Bw4UL8/PPP6NmzZ62x4eHh8PPzk05RrYlGo4Gnp6fZRESOYe/evQCA/v3727UeDzzwAADjAJBERERE1HI4bdKtVqvRt29fs0HQTIOixcTEWHzdu+++iwULFmD79u2Iioq65ftcunQJ165dQ3BwsFXqTURNp7i4GMeOHQNg/6T7scceAwD88MMPKC4utmtdiIiIiKjpOG3SDQDTpk3DihUrsGbNGpw8eRITJ05ESUkJxo8fDwAYO3as2UBr77zzDubMmYOVK1eiXbt2yM7ORnZ2tvQFuLi4GNOnT8fevXtx/vx5JCUlYdSoUejYsSOGDh1ql89IRA2XkpICg8GA0NBQhISE2LUuffr0QYcOHVBWVoYtW7bYtS5ERERE1HScOukePXo0Fi1ahLlz56JXr15ITU3F9u3bpcHVLl68iKysLCl+2bJl0Gq1ePjhhxEcHCxNixYtAgAoFAocPXoU999/Pzp37oxnn30Wffv2xW+//QaNRmOXz0jkaGQymTRooEwma3ScLVk6tdxWdautXJlMJh3tTkxMtNp7EhEREZFjkwl73sunmSosLISXlxcKCgp4fTeRHT344IPYuHEjFi1ahFdeecXe1UFaWhp69OgBtVqNnJwceHt727tKRERERM2Oo+VjTn2km4jIEiGEwwyiZtK9e3dERERAq9Vi06ZN9q4OERERETUBJt1E1CxdvHgR2dnZUCqV6NOnj72rI+Ep5kREREQtC5NuIqoXnU6HFStWYMWKFdDpdI2Os5V9+/YBAHr16gVXV9cmqVtdyh09ejQA4L///S+uXr1qtfcmIiIiIsfEpJuI6kUIgcuXL+Py5cuobUiIusbZSm2nltuqbnUpt3PnzujduzcqKirw/fffW+29iYiIiMgxMekmombJlHRHR0fbuSbV8RRzIiIiopaDSTcRNTvl5eU4dOgQAMcZRK2yRx99FACwa9cus9saEhEREVHzw6SbiJqdI0eOoLy8HK1bt0aHDh3sXZ1q2rVrh/79+0MIge+++87e1SEiIiIiG2LSTUTNTuXruWUymZ1rUzOeYk5ERETUMjDpJqJmxzRyuSOeWm7yyCOPQCaT4Y8//sDFixftXR0iIiIishEm3URUb25ubnBzc7NanLXVNnK5ia3qVtdyQ0JCMGDAAADAunXrrF4PIiIiInIMMmGPe/k0c4WFhfDy8kJBQQE8PT3tXR2iFiU3NxeBgYGQyWTIy8uDl5eXvatk0fLlyzFx4kT07dsXBw8etHd1iIiIiJoFR8vHlPauQHNWoi2BQquoNl8hV8BF6WIWZ4lcJoeryrVBsaW6Uov3CpbJZHBTuTUotkxXBoMwWKyHu9q9QbE3Km5Ab9BbJdZN5SZdy1teUY4KQ4VVYl1VrpDLjCeIaPVa6PQ6q8S6KF2gkCvqHavT66DVay3GapQaKOXKesdWGCpQXlFuMVatUEOlUNU7Vm/Q40bFDYuxKoUKaoUaAFBYVIgVX6xA/5j+6NW7V62xBmFAma4MALB7z24AQJeuXaB0VaJEW2IxtiZKuRIapQaA8b7bpbpSq8TWtN8P++cwKKYokJKSgqMnjqJDxw4WYy1hH9GwWPYRRs7cR9Qn9lb7vaP2EdaIZR/RsFj2EUbsI+ofyz7CyN59RG2fwx54pNsGTL+sYBYAl+rLR3QagR+f+FF67v62u8WdbGDYQOx6epf03P89f1wtvVpjbFRIFA5MOCA9b7e4HS4UXKgxNsI/AscnHZeed/ukG05cOVFjbJhXGM6/fF56fseKO3Dwcs1H5fzc/HBl+hXp+b2r78XuC7trjHVTuaFk9s0dYuQ3I7H19NYaYwFAxN/cVB9Z/wi+O2F51OfiuGJph3x649NYc2SNxdjcV3Ph7+4PAJj842R8cvATi7EZUzPQzrsdAGD6z9OxKHmRxdi0iWnoFtANAPDGrjcwb/c8i7H7n9uPO9rcAQB47/f3MOO/MyzG7hy3E/e2uxcAsHT/UkzZNsVi7JbHt2Bk55EAgNWpqzF+03iLseseXodHuj0CAFh/fD0e/e5Ri7GrRq3C+Y1PQ6EA+oz+Efetvc9i7MfDP8bkfpMBAM9My8CqQ2uAQTWvi3dj38X0u6bj9OnTGP7P4TibfhaQAbgLwL0w+5kwfmA83rj3DQDA8dzj6L6su3FBEoDfAPQGMMo469WYV/HekPcAAOfzz6P9kvYW6zspahKWjlwKALhScgUBiwIsxo6LHIfVD6wGYOzcWyW0shj7cMTDWP/Ieum5bN7fA7x9CeAsgEEABhpnsY8wYh9xkzP2EU/3ehoA8OOpuvcRu87vwqA1gyzGmvoIADjw1wH0+7yfxViLfUQNHLqPqAH7CCP2ETexjzBiH2HEPgLADQAL4TBHunlNNxHVixJKZO/JxtGjhzB3LrB2aUeLcU/jaeTvy4dOp8OCBcCq/20PyC0fWQCATZs2ISoqyphwqwAIAHsAfArgrzpU8NLf/99W+2d4+u9/Siue8NOgck1/4/cAOGW1qhARERGRg+CRbhswHem+fOVyjb+s8JSPmmN5WphznBam1Wrx4fsfAgCEeA3z5inxerwWs2brbhn3xjwDXp1V8ylZBoMBb817C+8sfAcAcOddd2LNV2uwf/9+vPzSy7iSewUKhQKz58zGjFkzoFaqq53qpdfrcVvgbSgqKsLelL3o3t2Y0VY9LaygpECq279f+TfUarVUj8acFpZfkm+xXEv7vVarxeh/jcaOn3dAoVDgw6Uf4plnn2EfUUMs+wjn6CMAnjrakFieOnoT+4j6x7KPMGIfUf/Y5tpHFBYWIsQ/xGGOdPOabhtyV7ubbRS1xdWnzLqqvPFaM7byzmbN2MqdgzVjNUoNNNBYPVatuJn02StWpVBJf4isGauUK6FU19w9qHCzjNmzDVAogLlzjXWeM6d63O7dA7BzpxLz5wNz5sgB1LwNz5kzR0q4p06divfeew8qlQod23XEkH8MwZQpU/Dtt99iwRsLoLuhw9tvvy29Vi6Tw0XhgolTJqKoqAienp6IioyCQlF9TAW5TG62H7mr3c2S48pkMlmd97mqsbWVa1pu+v/HLT/i+eefx+rVqzH5xcm4mnMVc+bMkb7EsY8wYh9R/1h79BGNiVXIFXXehusTW3W/t1ZsY/qIW3GEWPYRRuwj6h/LPsKIfUTDYq3RR+jVtZ9Z2dR4ejkRNcqcOcD8+cDcucCCBebLjAn3IMTHV5gl5FX997//xVtvvQUA+Oyzz7B48WKoVDf/sPv5+SExMREfffQRAGDhwoWYM2eO9IupVqvFE088gRUrVkAul+Ojjz6qMeF2VCqVCitXrsRrr70GAIiPj8eLL76IigrLR0uIiIiIyDnwSDcRNdqcOYBOdwNz517EuXOXkJAQgeXL/bBz5yAMGrQTs2ffZfG12dnZePLJJyGEwPPPP48JEyZYjJ0yZQoMBgOmTp2Kt956CwqFAjNnzsTDDz+Mbdu2QaVS4ZtvvsHDDz9si49pUzKZDG+++SZCQkIwZcoUfPbZZ8jOzsbatWvtcq9zIiIiIrIOJt22VFIC1HS0TaEAXFzM4yyRywFX14bFlpYCli7Zl8mAyl/k6xNbVgYYLF9nAXf3hsXeuAHoazkVpD6xbm7GegNAeTlQ2xHD+sS6uhrXMwBotYDO8jVT9Yp1cbm5rdQnVqczxlui0QBKZf1jKyqM66ImVcr45ssvMWv2bGReMo5gtno1sHq1G4C3ce+93TBw4O8wDj8OY5vduHl9lcFgwFNPPIGcnBx0j4jA4nffvVlwlViTfz/7LPRlZZg2axbmz5+PNWvW4MKFC3B1dcWGtWsxNDa2+n6iUgGmU70NBvPlJSXm61upNK4LwLhPlFq+vqpabG3l1nG/nzRuHIJbt8bj48Zh8+bNiI2NxeKEBNzepQs8PDyqv4B9RMNi2UcY2aKPAIz7m+lslfrEWtjvJZX35frEGgzGbc0asY3pI2qLrc93A36PqDmWfUT9Y9lHGB+zj2hYrCP3EbV9DnsQZHUFBQUCgCgwblrVpxEjzF/g5lZzHCDEwIHmsX5+lmOjosxjw8Isx0ZEmMdGRFiODQszj42Kshzr52ceO3Cg5Vg3N/PYESMsx1bdVB9+uPbY4uKbsePG1R6bm3szdtKk2mMzMm7Gvvpq7bFpaTdj4+Nrj92//2bsu+/WHrtz583Yjz+uPXbLlpuxq1bVHrtu3c3YdessxpWrVOKNN94Qb7zxhnjvvfcEAGlyBwTQRnoeGhoqJk+eLMrLy43l7txpVtZbf8e5AeI4YPzsJvv311rfd2Njpffx8vAQe2r7bK++erPcjAyzz1CuUpnHTpp0MzY3t/Z1Nm7czdji4trLffhh8224tnJHjBC//fab8Pb2Nlu/oYAYAoipgPgUEL8CIv+uu8zLZR9hxD7CyA59hACMZZls2VJ77Mcf34yt0kdUm+rRR4j4+JuxaWm1x1bpI2qNbUQfUWtsPfsIM/weYcQ+woh9hBH7iJtaYB9RAON3p4KCAuEIeE03EdWbEsCuXbswfbrxXphTAVwFMAOvAbgIBT4C4IHMzEx8unw5pk+fjtzcXOn1lwFMAWC6zHspgIh61mH6XXfh448/xuDBg7Fr1SpYPoG9ZiqtFqrafrFvIGuVe/fdd+P333/H8OHDEfj3vEwAPwNYAuAFAAMA+Pz+O3r27ImJEyfiyy+/xDm9HqLR705ERERE1sJbhtmA6ZZhBZdrvmUYT/mwEMvTwuofa4fTwvR6PSa/+io+XbECAPDWggWIe/llvPmOGnPfVGP+61rMmaXDK3FZ+OCjlwBsBwC4u7vjpcmToS0rwycrVuDG36d8vfDMM1i2ZIlxpG6eFmYx9vr16ziZno6T6ek48eef0v8XMzOrvTwoMBB3RkfjrpgYjBgyBF27dDEuaMI+wlBRgZN//om9Bw4gef9+7D94ENfz8mAwGKA3GGCoNOn1erPnXp6e6B4Rge4REejRpw969OiBbt26oZVSyT6ivrE8ddT4uAX0ERbxe0TDYtlHGLGPqH8s+wgjO/cRhYWF8ApxnFuGOX3SvXTpUrz33nvIzs5GZGQkPvroI/Tr189i/Pr16zFnzhycP38enTp1wjvvvIMRI0ZIy4UQiI+Px4oVK5Cfn4+77roLy5YtQ6dOnepcJynpdpBGJrKW8vJyPPXUU1i/fj1kMhmWLVuGF154AQsWGEcvN94W7Gb8/PkC8fE/ISRkDi5fPmhW1l133YUFCxZg0KBBTfwpmpfs7Gz88ccf+P333/HHH38gJSUFuipftm6//XY89NBDeOihh9C7d2/pVmTWlJeXh3379iE5ORnJycnYt28fCgsLrfoe7du3R48ePdCjRw90794dPXr0QOfOnc1GuiciIiJytHzMqZPub7/9FmPHjsXy5csRHR2NxYsXY/369UhPT0dAQEC1+D/++AMDBgxAQkIC7rvvPnzzzTd45513cOjQIXTv3h0A8M477yAhIQFr1qxB+/btMWfOHBw7dgwnTpyAS+VfjGrhaI1MdCtCCOj1eiiVlsdWLC4uxkMPPYQdO3ZApVLhq6++wqOPPmox4TYxLhd44okfcObMW1AqlZgzZw6GDh1qk+SvpSsrK8PBgwfxxx9/YOfOnfjll1/MkvCwsDA8+OCDeOihh3DnnXc26NZqRUVFSE1NxaFDh5CSkoIDBw7gzz//rBbn5uaGfv36ISYmBv3790doaCjkcrk0KRSKGh/n5OQgLS0Nx44dk6bs7Owa66JUKtGxY0fcfvvtZlPXrl3hXvmXcCIiImoxHC0fc+qkOzo6GnfccQc+/vhjAMaRkENDQ/HSSy9h1qxZ1eJHjx6NkpISbNmyRZrXv39/9OrVC8uXL4cQAiEhIXjllVfw6quvAgAKCgoQGBiI1atX47HHHqtTvRytkZ1VaWkpTp48iRMnTkClUuF//ud/0Lp1a3tXy6oqKipQUlICV1dXqE2nLdWguLgYpaWlaNWqFVxdXWtMVktLS3H+/HlkZGTg6tWraN26Nfz9/dGuXTsEBASYvebSpUvYuXMnfv/9dxw/fhwnTpxAXl4eQkND0bFjR3Tu3Bk9e/ZEZGQkCgsLsWXLFmzevBmZmZnG08Rfegk9evTA6dOj8cYbihoT7oqKCqxbtw4Aao2zh8p1e/TRR2v9scERym2MgoIC/Pjjj/j++++xbds2lFY6dS0gIADdunVDcHCwxclgMODw4cNISUnBoUOHcOjQIZw+fRo1/eno2LGjlGDHxMSgR48eVlsHV69eNUvE09LSkJaWhqKiIouvadu2rVki3uXvEeBdXFyqTRqN5pY/QOj1epSUlKCkpATFxcUW/y8rK4NOp4NOp0NFRYX0uLapoqICer0eGo3GYv1qml/bVPk1Go2myX/kMhgMKC8vR3l5OW7cuFHn/6vOq6ioMLv8QAhh9rwuU9XXAMYfbFQqldlU13n1ia3LvIb8+OWITOtZr9ejoqJC2q4r/1/fx5X/N7WlaartuS1jAZj9gFjTj4d1ee7Ir5HJZPxh3IlU3j6r9nmWHlszrvL+4ihTaWkpJkyY4DD5mP2/ETaQVqtFSkoK4uLipHlyuRyxsbFITk6u8TXJycmYNm2a2byhQ4di48aNAICMjAxkZ2cjNjZWWu7l5YXo6GgkJydbTLpNXypM6npK5YEDBxAfH1+n2KZQn99fqsZaeq2p066oqIBWq0V5ebnZ/1qtFu7u7vD09MT169ehUCjQqlUrFBQU4MyZM2blqlQqtGvXTvojoFKpoNFopEmpVKKsrAxCCCiVSiiVSigUCotfemUyGTw9PeHu7m72BU+j0cDDwwMymQzFxcXSl2mNRgNPT0+4uLigvLwcZWVl0pfrVq1awdPTE66uriguLkZRUZE0KZVK+Pj4wNfXFy4uLigoKEB+fj7y8vJQXFwsfT5XV1e0adMGAQEB0Gg00Gq1yM7ORnZ2NkoqXV+jUqkQEhKCoKAgyGQy6HQ6XLp0CTk5ORbby9PTE23atEF5eTmKi4vNBjWr7OLFi7h48SJ++eWXGpf7+/vj+++/R1JSEj7/PBg7d1pOpA0GA06fPg0AiIvTQy5XYO5c4zJ7J96V62b6AuXI5TaGl5cXnnjiCTzxxBMoLS3Fzz//jO+//x4//PADcnNzLW4Lt3LbbbehT58+0tS/f3/4+/tbufY3+fn54d5778W9994rzRNC4NKlSzh58mS16cqVK9L2/NNPP9XpPZRKZbWk1fTDWHFxsTQOgbO6VeKuUqnMEia9Xt+gSafToby8vNplDmSZTCard9KuVCqrfcm01pdfS+WY2ri2JJmaj1sl7tb8AaBygn+r75iVn9cntjGvrW9s5f2oKZJfcnxOm3RfvXoVer0egYGBZvMDAwNrPM0RMF77WFO86bRF0/+1xdQkISEB8+bNq/dnuHLlCrZt21bv17Ukfn5+6N69O65fv46jR49KCY2zycvLw7lz52qNKSsrw5kzZ3DmzJla43Q6HS5cuIALFy5UW+bl5YX27dvD398feXl5yMnJwaVLl1BYWGj2Y5BcLkffvn0xcOBA9O7dGxEREQgICMD58+dx9uxZnDhxAkeOHMGRI0egUqkwdOhQjBw5EoMHD4ZKpUJSUhIMBhni4yswZ07duhFTol3buDVkW25ubnjggQfwwAMPQKfTYd++fbhw4QKysrJqnEzbTHh4uFmC3bt37xov4WlqMpkMoaGhCA0NxZAhQ8yWXbt2rVoifvbsWZSWlpodUa2cJFRUVEg/tNVGLpejVatWcHd3l/6v/NjV1bXGI6O3muRyObRarVQ3S1Pl+t9qqvxF0PQDcUFBgXUbog5kMlm1I+91/V+lUkEmk9V4ZLHyUbnalleNEUJU+0G2ph9oGxJzq3k1JaZCCOmH6OZKLpdLP4ZX/mG86mNLy6sega38uOrz2pZZIxaAWcJTdTDIqs/rEmPt55Zi6nOAhQld81d5u7bUn1paVtP+4kiTXq/H7t277b2KJU6bdDuSuLg4syPohYWFCA0NveXrevbsidWrV9uwZvVXn1OJqsZWfV7513GlUgm1Wg2NRmP2v1qtRn5+PkpKSuDr6wuDwYCSkhK4uLige/fuZqdFnzp1Crm5uVKZpi8opi+SFRUVcHFxkY5um355t3SUQAiBwsJC6f1MX/DKy8tRVFQEIQRatWqFVq1awc3NDeXl5SgsLERZWRlcXV2lSaVSoaioSFrWqlUreHh4SJNer8f169dx/fp13LhxA97e3maTu7s7bty4gby8PFy6dAlXr16FVquFUqlEUFCQNLm5uaG0tBTXr1/HX3/9hZycHMhkMigUCgQHByM8PBw+Pj7V2unGjRs4d+4csrOz4ebmBldXV7Rv377GU21CQkJw55131trupi+FgwbtRlxc7bFV2fsIN92kUqlw99134+6777YYU1paioqKCoc4Lau+WrdufcvPBxgT7cqnQFedlEpltcTaHqdqN4QQAjqdrs6JularhUKhaPRkOmOgpsSZICX8jU3gKyoqak0WGzrVVs6tEubakme2v2OofBS2qRL9uj6vvI3c6jtmQ2Mb89r6xNYlWa1rUmvLuObMdLmvo3DapNvPzw8KhaLaKbU5OTkICgqq8TVBQUG1xpv+z8nJQXBwsFlMr169LNbFdHpzfd12220YN25cvV/XUnXu3BmdO3e2dzVswtXVFT4+PggPD681zvQjQNu2betctouLCyIiIhARUd87YVNL51b59h3NlCkpaI6DrslkMunHTXIcMplM+gHYtfKtd4iaQOUfVxxh3BGilkJu7wo0lFqtRt++fZGUlCTNMxgMSEpKQkxMTI2viYmJMYsHgB07dkjx7du3R1BQkFlMYWEh9u3bZ7FMIiIiIiIiIkuc+ieuadOmYdy4cYiKikK/fv2wePFilJSUYPz48QCAsWPHok2bNkhISAAATJ06FQMHDsT777+PkSNHIjExEQcPHsRnn30GwPjr38svv4w333wTnTp1km4ZFhISggceeMBeH5OIiIiIiIiclFMn3aNHj8aVK1cwd+5cZGdno1evXti+fbs0ENrFixchl988mH/nnXfim2++weuvv47Zs2ejU6dO2Lhxo3SPbgCYMWMGSkpK8PzzzyM/Px933303tm/fXud7dAM3RzCs6yjmRM7ENNATYNzGLZ26Wtc4e7BV3Rz5MxMRERG1FKY8rD6DB9qSU9+n21GdO3cOHTp0sHc1iIiIiIiIWqyzZ8/ecsykpuDUR7odla+vLwDjkXZHGjWPamYabT4zM9MpR2luidhmzoXt5XzYZs6F7eV82GbOhe3lfAoKCtC2bVspL7M3Jt02YDql3cvLizumE/H09GR7ORm2mXNhezkftplzYXs5H7aZc2F7OZ/Klxrbk2PUgoiIiIiIiKgZYtJNREREREREZCNMum1Ao9EgPj4eGo3G3lWhOmB7OR+2mXNhezkftplzYXs5H7aZc2F7OR9HazOOXk5ERERERERkIzzSTURERERERGQjTLqJiIiIiIiIbIRJNxEREREREZGNMOkmIiIiIiIishEm3Va2dOlStGvXDi4uLoiOjsb+/fvtXaUW4Y033oBMJjObunbtKi2/ceMGJk+ejNatW6NVq1b417/+hZycHLMyLl68iJEjR8LNzQ0BAQGYPn06KioqzGJ27dqFPn36QKPRoGPHjli9enVTfDyn9+uvv+Kf//wnQkJCIJPJsHHjRrPlQgjMnTsXwcHBcHV1RWxsLE6fPm0Wc/36dYwZMwaenp7w9vbGs88+i+LiYrOYo0eP4p577oGLiwtCQ0Px7rvvVqvL+vXr0bVrV7i4uKBHjx7YunWr1T9vc3CrNnv66aer7XPDhg0zi2GbNZ2EhATccccd8PDwQEBAAB544AGkp6ebxTRlP8i/hbWrS3vde++91faxF1980SyG7dV0li1bhp49e8LT0xOenp6IiYnBtm3bpOXcvxzLrdqL+5fjW7hwIWQyGV5++WVpnlPvZ4KsJjExUajVarFy5Upx/PhxMWHCBOHt7S1ycnLsXbVmLz4+XnTr1k1kZWVJ05UrV6TlL774oggNDRVJSUni4MGDon///uLOO++UlldUVIju3buL2NhYcfjwYbF161bh5+cn4uLipJhz584JNzc3MW3aNHHixAnx0UcfCYVCIbZv396kn9UZbd26Vbz22mvi+++/FwDEhg0bzJYvXLhQeHl5iY0bN4ojR46I+++/X7Rv316UlZVJMcOGDRORkZFi79694rfffhMdO3YUjz/+uLS8oKBABAYGijFjxoi0tDSxdu1a4erqKj799FMp5vfffxcKhUK8++674sSJE+L1118XKpVKHDt2zObrwNncqs3GjRsnhg0bZrbPXb9+3SyGbdZ0hg4dKlatWiXS0tJEamqqGDFihGjbtq0oLi6WYpqqH+TfwlurS3sNHDhQTJgwwWwfKygokJazvZrW5s2bxY8//ihOnTol0tPTxezZs4VKpRJpaWlCCO5fjuZW7cX9y7Ht379ftGvXTvTs2VNMnTpVmu/M+xmTbivq16+fmDx5svRcr9eLkJAQkZCQYMdatQzx8fEiMjKyxmX5+flCpVKJ9evXS/NOnjwpAIjk5GQhhDHBkMvlIjs7W4pZtmyZ8PT0FOXl5UIIIWbMmCG6detmVvbo0aPF0KFDrfxpmreqCZzBYBBBQUHivffek+bl5+cLjUYj1q5dK4QQ4sSJEwKAOHDggBSzbds2IZPJxF9//SWEEOKTTz4RPj4+UnsJIcTMmTNFly5dpOePPvqoGDlypFl9oqOjxQsvvGDVz9jcWEq6R40aZfE1bDP7ys3NFQDE7t27hRBN2w/yb2H9VW0vIYxJQeUvm1WxvezPx8dHfP7559y/nISpvYTg/uXIioqKRKdOncSOHTvM2snZ9zOeXm4lWq0WKSkpiI2NlebJ5XLExsYiOTnZjjVrOU6fPo2QkBCEh4djzJgxuHjxIgAgJSUFOp3OrG26du2Ktm3bSm2TnJyMHj16IDAwUIoZOnQoCgsLcfz4cSmmchmmGLZv42RkZCA7O9ts3Xp5eSE6Otqsfby9vREVFSXFxMbGQi6XY9++fVLMgAEDoFarpZihQ4ciPT0deXl5Ugzb0Hp27dqFgIAAdOnSBRMnTsS1a9ekZWwz+yooKAAA+Pr6Ami6fpB/CxumanuZfP311/Dz80P37t0RFxeH0tJSaRnby370ej0SExNRUlKCmJgY7l8Ormp7mXD/ckyTJ0/GyJEjq61bZ9/PlA1+JZm5evUq9Hq9WSMDQGBgIP7880871arliI6OxurVq9GlSxdkZWVh3rx5uOeee5CWlobs7Gyo1Wp4e3ubvSYwMBDZ2dkAgOzs7BrbzrSstpjCwkKUlZXB1dXVRp+ueTOt35rWbeV1HxAQYLZcqVTC19fXLKZ9+/bVyjAt8/HxsdiGpjKo7oYNG4aHHnoI7du3x9mzZzF79mwMHz4cycnJUCgUbDM7MhgMePnll3HXXXehe/fuANBk/WBeXh7/FtZTTe0FAE888QTCwsIQEhKCo0ePYubMmUhPT8f3338PgO1lD8eOHUNMTAxu3LiBVq1aYcOGDYiIiEBqair3Lwdkqb0A7l+OKjExEYcOHcKBAweqLXP2v2NMuqlZGD58uPS4Z8+eiI6ORlhYGNatW8dkmMgGHnvsMelxjx490LNnT3To0AG7du3C4MGD7Vgzmjx5MtLS0rBnzx57V4XqwFJ7Pf/889LjHj16IDg4GIMHD8bZs2fRoUOHpq4mAejSpQtSU1NRUFCA7777DuPGjcPu3bvtXS2ywFJ7RUREcP9yQJmZmZg6dSp27NgBFxcXe1fH6nh6uZX4+flBoVBUG0EvJycHQUFBdqpVy+Xt7Y3OnTvjzJkzCAoKglarRX5+vllM5bYJCgqqse1My2qL8fT0ZGLfCKb1W9u+ExQUhNzcXLPlFRUVuH79ulXakPto44WHh8PPzw9nzpwBwDazlylTpmDLli3YuXMnbrvtNml+U/WD/FtYP5baqybR0dEAYLaPsb2allqtRseOHdG3b18kJCQgMjISS5Ys4f7loCy1V024f9lfSkoKcnNz0adPHyiVSiiVSuzevRsffvghlEolAgMDnXo/Y9JtJWq1Gn379kVSUpI0z2AwICkpyez6EWoaxcXFOHv2LIKDg9G3b1+oVCqztklPT8fFixeltomJicGxY8fMkoQdO3bA09NTOhUpJibGrAxTDNu3cdq3b4+goCCzdVtYWIh9+/aZtU9+fj5SUlKkmF9++QUGg0H6QxkTE4Nff/0VOp1OitmxYwe6dOkCHx8fKYZtaBuXLl3CtWvXEBwcDIBt1tSEEJgyZQo2bNiAX375pdpp+03VD/JvYd3cqr1qkpqaCgBm+xjby74MBgPKy8u5fzkJU3vVhPuX/Q0ePBjHjh1DamqqNEVFRWHMmDHSY6fezxo8BBtVk5iYKDQajVi9erU4ceKEeP7554W3t7fZCHpkG6+88orYtWuXyMjIEL///ruIjY0Vfn5+Ijc3VwhhvMVA27ZtxS+//CIOHjwoYmJiRExMjPR60y0GhgwZIlJTU8X27duFv79/jbcYmD59ujh58qRYunQpbxlWR0VFReLw4cPi8OHDAoD44IMPxOHDh8WFCxeEEMZbhnl7e4tNmzaJo0ePilGjRtV4y7DevXuLffv2iT179ohOnTqZ3X4qPz9fBAYGiqeeekqkpaWJxMRE4ebmVu32U0qlUixatEicPHlSxMfH8/ZTFtTWZkVFReLVV18VycnJIiMjQ/z3v/8Vffr0EZ06dRI3btyQymCbNZ2JEycKLy8vsWvXLrNb4JSWlkoxTdUP8m/hrd2qvc6cOSPmz58vDh48KDIyMsSmTZtEeHi4GDBggFQG26tpzZo1S+zevVtkZGSIo0ePilmzZgmZTCZ+/vlnIQT3L0dTW3tx/3IeVUeZd+b9jEm3lX300Ueibdu2Qq1Wi379+om9e/fau0otwujRo0VwcLBQq9WiTZs2YvTo0eLMmTPS8rKyMjFp0iTh4+Mj3NzcxIMPPiiysrLMyjh//rwYPny4cHV1FX5+fuKVV14ROp3OLGbnzp2iV69eQq1Wi/DwcLFq1aqm+HhOb+fOnQJAtWncuHFCCONtw+bMmSMCAwOFRqMRgwcPFunp6WZlXLt2TTz++OOiVatWwtPTU4wfP14UFRWZxRw5ckTcfffdQqPRiDZt2oiFCxdWq8u6detE586dhVqtFt26dRM//vijzT63M6utzUpLS8WQIUOEv7+/UKlUIiwsTEyYMKHaHyO2WdOpqa0AmPVRTdkP8m9h7W7VXhcvXhQDBgwQvr6+QqPRiI4dO4rp06eb3UdYCLZXU3rmmWdEWFiYUKvVwt/fXwwePFhKuIXg/uVoamsv7l/Oo2rS7cz7mUwIIRp+nJyIiIiIiIiILOE13UREREREREQ2wqSbiIiIiIiIyEaYdBMRERERERHZCJNuIiIiIiIiIhth0k1ERERERERkI0y6iYiIiIiIiGyESTcRERERERGRjTDpJiIiIiIiIrIRJt1ERERERERENsKkm4iIiIiIiMhGmHQTERERERER2QiTbiIiIiIiIiIbYdJNREREREREZCNMuomIiIiIiIhshEk3ERERERERkY0w6SYiIiIiIiKyEaW9K9AcGQwGXL58GR4eHpDJZPauDhERERERUYshhEBRURFCQkIgl9v/ODOTbhu4fPkyQkND7V0NIiIiIiKiFiszMxO33XabvavBpNsWPDw8ABgb2dPT0861ISIiIiIiajkKCwsRGhoq5WX2xqTbBkynlHt6ejLpJiIiIiIisgNHudTX/ie4ExERERERETVTPNLdwt3q1x8hRBPVhIiIiIiIqPlh0t3C1PcUi6rxTMKJiIiIiIjqjqeXtxAymQwymazRSbOjXBdBRERERETkDHikuwWonCjX98h1TUm2aR6PehMREREREdWOSXczVlPCXN9EuXJ81fKYfBMREREREdWOSXczZI1kuyaWEnBrnLZORERERETUHDHpbkZslWzXRAhR42nrTL6JiIiIiIhu4kBqzURTJtyVy2eSTUREREREZBmPdDsxeyTaNal81JtHvImIiIiIiG7ikW4nVdMo5PZMdKu+P28tRkRERPT/27v34KjK+4/jnySQC2ISMJALDQQEpaAg1zSKP2ZqxogMarWKDApiq9WiJcUb1EqcsTYUqYMXitUqdLwBtmK9YJBGwOJwUS5yU0ShgmgSUZNw0QDJ8/vD2e3usrvZ7J7dPWfzfs2cgZx99jnPefbsOee7z3OeBwAIuh3HNd+2Jzu1KhN4AwAAAMD/EHQ7hL9gW7JXwO1C4A0AAAAAPyDojqKsrCxL8gkUbNsx4HbxDbwJvgEAAAC0RwykFmWewWaoQbJr3muntGwHEmgfAAAAAKC9IOiOobYEoHZ+brstGNkcAAAAQHtG9/IoamhoiCjAdHUhd3qQ6lt+Wr8BAAAAtBe0dMdAW4NOpwfZ/vh2NXd1oQcAAACAREbQHQftNdgk8AYAAADQ3tC9HDFFkA0AAACgPSHoRsx5PqfOdGIAAAAAEhlBN+LGdy5vAAAAAEg0BN2IK9/Am+AbAAAAQCIh6EbcOeU5b9/5xvmBAAAAAEBrGL0ctuA5srnr33gG466R1X0D69YCb6f8gAAAAAAgNgi6YRueg6u5/o11EOs7pVkk7ycABwAAAOD47uXz589XUVGR0tPTVVxcrI0bNwZM+9RTT+nCCy9Uly5d1KVLF5WWlp6S3hijWbNmKT8/XxkZGSotLdWePXuivRsIIBbPebu2QXdxAAAAAFZzdNC9ZMkSTZ8+XRUVFdq8ebMGDx6ssrIy1dXV+U2/evVqTZgwQatWrdK6detUWFioiy++WAcPHnSnmTNnjh599FE98cQT2rBhg0477TSVlZXp+++/j9VutXueU4q5WB0Uhxpou8oSyhJoGwAAAADaryTj4D6wxcXFGjFihB5//HFJUktLiwoLC3X77bdrxowZrb6/ublZXbp00eOPP65JkybJGKOCggLdcccduvPOOyVJDQ0Nys3N1aJFi3TttdeGVK7GxkZlZWWpoaFBmZmZ4e8gQgqKQ83H3zPakeQZbFvRyBcAAABA6+wWjzm2pfv48ePatGmTSktL3euSk5NVWlqqdevWhZTHsWPHdOLECXXt2lWStG/fPtXU1HjlmZWVpeLi4pDzhLUCtSK7eLYme7Ze+y6u11vbjhWBcbCWbwAAAADti2MHUjt06JCam5uVm5vrtT43N1cfffRRSHncc889KigocAfZNTU17jx883S95k9TU5Oamprcfzc2Noa0fYTO1UodqLU6nIA22i3PvgPDef6fVm8AAACgfXBsS3ekZs+ercWLF2vZsmVKT0+PKK/KykplZWW5l8LCQotKCU+uQDWSVmkrW7Tbsk1ftHoDAAAA7YNjg+6cnBylpKSotrbWa31tba3y8vKCvnfu3LmaPXu23nrrLQ0aNMi93vW+tuY5c+ZMNTQ0uJcDBw60dXcQpkADmoU62Fmsy+mJwBsAAABIfI4NulNTUzVs2DBVV1e717W0tKi6ulolJSUB3zdnzhw98MADqqqq0vDhw71e6927t/Ly8rzybGxs1IYNG4LmmZaWpszMTK8F8WPnrtsE3gAAAED74thnuiVp+vTpmjx5soYPH66RI0dq3rx5Onr0qKZMmSJJmjRpknr06KHKykpJ0p/+9CfNmjVLL7zwgoqKitzPaXfu3FmdO3dWUlKSysvL9Yc//EH9+vVT7969dd9996mgoEBXXHFFvHYTCcb3uXTXs+oAAAAAEo+jg+7x48frq6++0qxZs1RTU6PzzjtPVVVV7oHQ9u/fr+Tk/zXmL1iwQMePH9fPf/5zr3wqKip0//33S5LuvvtuHT16VDfffLPq6+s1atQoVVVVRfzcN+CJwBsAAABoHxw9T7dd2W1eONiXb/dyvo4AAABAZOwWjzn2mW4gEfCMNwAAAJDYCLqBOKN1GwAAAEhcBN2ADXgG3klJSbR4AwAAAAmCoBuwCVq8AQAAgMRD0A3YCC3eAAAAQGIh6AZsxjPwpvUbgFVcP+LxYx4AALHl6Hm6gUTlCrZdN8cE3wDaIlBgHSzw5jwDAEB0EHQDNuV5U5yUlMQNMYCArGi99syD8w0AANYh6AZsyhhD4A0goNYC7VDOF621iHPOAQAgcgTdgI35Bt4AEOyc0NYg2Te9b960fgMAEDkGUgNszndEcwDtU7AZDYwxlgTFrnz85cX5BwCA8BB0Aw5A4A2ExhWY+g4Y5uTvTaBgO1iAbAV/eTu5HgEAiBe6lwMO4dnVnOctAe/vgb9gMFjg7XqPnb9DwVq1Y8l3NgXOPwAAtA1BN+AgnsEFN7xoj4IF123NxzdYt8t3yi7BdqDtE3wDANA2BN2Aw7gCBW540Z60JbD2/XGqtRG6A/0dy++WXQNtf5hZAQCAtiHoBhzIt6s5N7xIVKEE2/6Of891wb4fwfKPRSu4k4JtT/4Cb9d6AADgLeZBd1NTkzZv3qy6ujpdcMEFysnJiXURgIRD4I1EY+W0WMGEOlCY1QG4U4NtT77dzT3/76T9AAAg2mI6evmjjz6q/Px8jRo1SldeeaW2bdsmSTp06JBycnL0zDPPxLI4gKM5ZVRhzxZ535GlAX+iPS1WMKGMCO57LPsLOkNN77tdJ2KUcwAAgotZ0L1w4UKVl5frkksu0dNPP+11gc7JydFPf/pTLV68OFbFARKCnW50gwXXrQUigOR/aqxoT4sVTFu27Xu8h3p8OznY9mWn8xEAtAdtvfdC/MQs6P7zn/+syy+/XC+88ILGjRt3yuvDhg3Tzp07Y1UcIGH43rTH8mRr1Qme4Lt9C9b6axeeAXikgXI8f0iItkDnIwBA5NrSsOGbHvEVs6D7k08+0ZgxYwK+3rVrV3399dexKg6QcHxvdKN5Q2/FCdxf+bg4tC9O72odKBD3tz6RA21/fM9HfK8BIDxWnUM5D8dXzAZSy87O1qFDhwK+vmvXLuXl5cWqOEBC8h3V3HN9JCI5SbvK5PlvKHkyIFP7kwifdSLsg1UYaA0Awhfu7B2t5cF5OD5i1tJ96aWX6sknn1R9ff0pr+3cuVNPPfWULrvsslgVB0hYwVqQ26Ktv6wGa9Xz/dc3fWvlQGIJ9Ow2ElOgcxIA4FTB7r3a2nMqWHpavmMrycToTueLL75QcXGxjDEaN26cnnzySV133XVqbm7WP//5T+Xn52vjxo0JMYVYY2OjsrKy1NDQoMzMzHgXB+1UNE6kvnPzRuP0EaupohAfdn92G9Fjt2nSPHvg+JbHX+8cAIimWJ4j28O12G7xWMxaugsKCrRp0yZdcsklWrJkiYwxevbZZ/Xaa69pwoQJWr9+fUIE3IBdtPYraDgnV9cNaDSfTQ2Ur7+bYzhLoJHJ0T601toSzVaXQNO2tTYAUazKB6B9i/X4JrR8x17MWrp9ffXVV2ppaVG3bt2UnBzT6cKjzm6/rAAu4ZxM4xkU2a1lLNba8nnZuU7awy/qCE8oU6q1pbU5ljeMHMMAImWX62MiPvJlt3gsZgOp+erWrVu8Ng20W/4GNvJsQbZbd8pAg67ZqYxWiiRgsONnaJebCdhXawMrRnsKRM/tt3WqM7t8zwA4j92uj769CRlszXpxC7oBxI/vSdR3gDO78de1PNFueMPtheCvXvzlF8u6au89FNB2vsGv1UF2a8desHOiC6MAA7CC3QJu3zIQfEcHQTcAR/DXIu/kwNuK4KIt7432AHi+2/Dk1M8IsedvpgPJ/49I/nrsRPNYC9Yqz40pgNbYNdj2FSj4tmNZnYSgG4BjJMqFIJQus+EOdNeWdFbVGyPOI9r8HUehtE5HuyyBeppw3APw5MRnpulybi3Hj2A2f/58FRUVKT09XcXFxdq4cWPAtDt37tRVV12loqIiJSUlad68eaekuf/++08ZqbR///5R3AMAbdVaK5hdtTYyaKQjw7d1/s5IRmQO5b1cmJHoAn3XnHJOAhBdvtdJp83awSjn1nF00L1kyRJNnz5dFRUV2rx5swYPHqyysjLV1dX5TX/s2DH16dNHs2fPVl5eXsB8Bw4cqC+//NK9rF27Nlq7ACBMTrsIBGqRj+YUbOEG4KEsoWwXaC8IvAF48netdPJ10UnnOFfdZ2VlxbsoXhwddD/88MO66aabNGXKFA0YMEBPPPGEOnXqpGeeecZv+hEjRuihhx7Stddeq7S0tID5dujQQXl5ee6F+cMBe3LKRcAOg5vFYn51gm20Z045HwFO5OTvUqJcG+3a6t2WRoF4cmzQffz4cW3atEmlpaXudcnJySotLdW6desiynvPnj0qKChQnz59NHHiRO3fvz9o+qamJjU2NnotAGLDzheyQBeAeF+AfQNkK7qzA7DvTSngBJ4/UPsLpMLtfRUr/sqTiNdHO5zn7PbZh8KxQfehQ4fU3Nys3Nxcr/W5ubmqqakJO9/i4mItWrRIVVVVWrBggfbt26cLL7xQhw8fDvieyspKZWVluZfCwsKwtw+g7eJ98vfHjsG2P56Bt28gHuhvO+4HYCd8P4DW+QbTnuvCyStegXigruSJfh4IFnxH4zMIlG+gQTUbGhos3X6kHBt0R8uYMWN09dVXa9CgQSorK9Py5ctVX1+vpUuXBnzPzJkz1dDQ4F4OHDgQwxIDkOzTtTNY67ZTxGtUaCCR+N6Q2uHHQMAOrAiy27KdaG2jvQbbvoLts1UDtgZ7v2vMHCt68EWTY6cMy8nJUUpKimpra73W19bWBh0kra2ys7N11lln6ZNPPgmYJi0tLegz4gBiI95TigW6KNjx5A8gNnyn3QHas1C+C229Zrqu860FZpFsp7VtcJ33fw/mycrzoBPr27Et3ampqRo2bJiqq6vd61paWlRdXa2SkhLLtnPkyBF9+umnys/PtyxPANEVrLtTNAT7tduJFwYA1qLFG+1dsOM+0keXAj0WFWqZQnl23LU+UNnxP1bf//h71M2JHNvSLUnTp0/X5MmTNXz4cI0cOVLz5s3T0aNHNWXKFEnSpEmT1KNHD1VWVkr6YfC1Xbt2uf9/8OBBbd26VZ07d1bfvn0lSXfeeafGjRunXr166YsvvlBFRYVSUlI0YcKE+OwkgLAE+kXatc6Kkza/eAMIle85KZa9cIB4idd10t+P76EINR3f3dCE8zkEqlun17mjg+7x48frq6++0qxZs1RTU6PzzjtPVVVV7sHV9u/fr+Tk/zXmf/HFFxoyZIj777lz52ru3LkaPXq0Vq9eLUn6/PPPNWHCBH399dfq1q2bRo0apfXr16tbt24x3TcAkQvWFSySG95gFw2nXxQARA+BN9oLu41tEum4L3xPrdGe6zHJtOe9j5LGxkZlZWWpoaFBmZmZ8S4OAFkTKBNsA7BKok8rhPbLbgE32ie7xWOObukGgFC11uodad4AEC5avJEoWpvOCWivCLoBtBu+gxlZlRcAtBVdzZFoCLiBwAi6AbRLrU1t0dr7ACBS/kY15xwDp6E7OdA6gm4A7VqwGwMrRzoHgEB8W7wlzjtwBlq3gdAQdANAANw8AIiFcHveAPFEwA2ELrn1JAAAAIglV3dzwI4IuIG2IegGAACwAWOMV/ASbNYFIF4IuIG2I+gGAACwEd/u5gTesAvf+eUJuIHQ8Ew3AACAzTClGOyClm0gcrR0AwAA2JBvcMNz3og1jjfAGrR0AwAA2JS/kc2ZVgyxQAs3YB1augEAAGzOX8BDKySihYAbsBZBNwAAgAMECrwJvmEVz+PJdbwRcAORo3s5AACAQwSaRsx3VGkr+duebzkIzJzP93Nm8D7AOgTdAAAADuIZCAULwF2BcSiBk7/uxMFa0P0FaMHKCfviswOij6AbAADAofwNtOYSyTzfVnRZZ8A3ewv0GfN5AdYj6AYAAHC41lqm44lu6PZCsA3EHkE3AABAAvA3r7eV+YWitW3S+h17oRwHfB5AdBF0AwAAJKBggVS0Bslq7Xlz39faW7BnRW+EUHo1tKXnQ3v7DIB4IOgGAABoZ2IRaPkLwH2DwUQMvqPdzT9Y9/BQn+NPpPoGnIB5ugEAABBVxhivoNDqrvB2EO8504Nt23PObQJuIPZo6QYAAEBM+I62Hqx11gnBYbSCbM968pz6LZQ5033zCPQ3gNgh6AYAAEBMBZvqzCVaz51HKpxAO9z98GyhDpaPHesJwP8QdAMAACAuWht4zU7PfDMwGYBwEXQDAAAg7oK1fscz+CbYBhApgm4AAADYRrDprmIZfDO/NQCrEHQDAADAVuLV7ZxAG0A0EHQDAADAtmLR7ZxgG0A0EXQDAADA9kIJvj3TtYZntQHESnK8CxCp+fPnq6ioSOnp6SouLtbGjRsDpt25c6euuuoqFRUVKSkpSfPmzYs4TwAAAMSOMSZoIJyUlOS1+FvXWsDt2gYBNwArODroXrJkiaZPn66Kigpt3rxZgwcPVllZmerq6vymP3bsmPr06aPZs2crLy/PkjwBAAAQe5G0aAeb75pAG4DVkoyDzyzFxcUaMWKEHn/8cUlSS0uLCgsLdfvtt2vGjBlB31tUVKTy8nKVl5dblqdLY2OjsrKy1NDQoMzMzLbvGAAAANok1O7ivhx8KwwgALvFY45t6T5+/Lg2bdqk0tJS97rk5GSVlpZq3bp1tskTAAAA0efZJdwVSPsLqP2lA4BocuxAaocOHVJzc7Nyc3O91ufm5uqjjz6KaZ5NTU1qampy/93Y2BjW9gEAAGCNYIE3AMSSY1u67aSyslJZWVnupbCwMN5FAgAAAADYgGOD7pycHKWkpKi2ttZrfW1tbcBB0qKV58yZM9XQ0OBeDhw4ENb2AQAAAACJxbFBd2pqqoYNG6bq6mr3upaWFlVXV6ukpCSmeaalpSkzM9NrAQAAAADAsc90S9L06dM1efJkDR8+XCNHjtS8efN09OhRTZkyRZI0adIk9ejRQ5WVlZJ+GCht165d7v8fPHhQW7duVefOndW3b9+Q8gyF69khnu0GAAAAgNhyxWG2GdPBONxjjz1mevbsaVJTU83IkSPN+vXr3a+NHj3aTJ482f33vn37jKRTltGjR4ecZyg+/fRTv9thYWFhYWFhYWFhYWFhic3y6aefRhJqWsbR83TbVX19vbp06aL9+/crKysr7HxGjBih9957L+LyWJGPXfJobGxUYWGhDhw4EFE3frvsj13KYlW9WlEWq/KwS1kSsW7t8vnY6XxgVT52yYO6jV4edqrbRPp8ONdGLx87HbNW5WOXslC30cujoaFBPXv21Lfffqvs7OyI8rKCo7uX21Vy8g+PymdlZUX0BUpJSbHk+XAr8rFLHi6RPjtvp/2xU1msGJPATvtjp7IkUt3a6fOR7HE+sCofu+ThQt1an4eLHeo20T4fiXNtNPOxwzFrVT52KotE3UYjDxdXXBZv9igF/Jo6dapt8rFLHlax0/7YqSxWsNP+2KksVrDL/tjp87GCnfbHLnlYhbqNHjvtj53KYgW77I+dPh8r2Gl/7FQWK9hpf+ySh93QvTwKGhsblZWVpYaGBkYytxh1Gx3Ua/RQt9FD3UYPdRs91G10UK/RQ91GD3UbPXarW1q6oyAtLU0VFRVKS0uLd1ESDnUbHdRr9FC30UPdRg91Gz3UbXRQr9FD3UYPdRs9dqtbWroBAAAAAIgSWroBAAAAAIgSgm4AAAAAAKKEoBsAAAAAgCgh6AYAAAAAIEoIui02f/58FRUVKT09XcXFxdq4cWO8ixRX77zzjsaNG6eCggIlJSXplVde8XrdGKNZs2YpPz9fGRkZKi0t1Z49e7zSfPPNN5o4caIyMzOVnZ2tX/ziFzpy5IhXmm3btunCCy9Uenq6CgsLNWfOnFPK8tJLL6l///5KT0/Xueeeq+XLl1u+v7FUWVmpESNG6PTTT1f37t11xRVXaPfu3V5pvv/+e02dOlVnnHGGOnfurKuuukq1tbVeafbv36+xY8eqU6dO6t69u+666y6dPHnSK83q1as1dOhQpaWlqW/fvlq0aNEp5UmUY3/BggUaNGiQMjMzlZmZqZKSEr355pvu16lT68yePVtJSUkqLy93r6N+w3P//fcrKSnJa+nfv7/7deo1MgcPHtR1112nM844QxkZGTr33HP1/vvvu1/nWhaeoqKiU47bpKQk9xy9HLfhaW5u1n333afevXsrIyNDZ555ph544AF5jp3MMRu+w4cPq7y8XL169VJGRobOP/98vffee+7XqdvQOClGCKUsrTKwzOLFi01qaqp55plnzM6dO81NN91ksrOzTW1tbbyLFjfLly839957r3n55ZeNJLNs2TKv12fPnm2ysrLMK6+8Yj744ANz2WWXmd69e5vvvvvOneaSSy4xgwcPNuvXrzf/+c9/TN++fc2ECRPcrzc0NJjc3FwzceJEs2PHDvPiiy+ajIwM89e//tWd5t133zUpKSlmzpw5ZteuXeb3v/+96dixo9m+fXvU6yBaysrKzMKFC82OHTvM1q1bzaWXXmp69uxpjhw54k5zyy23mMLCQlNdXW3ef/9985Of/MScf/757tdPnjxpzjnnHFNaWmq2bNlili9fbnJycszMmTPdafbu3Ws6depkpk+fbnbt2mUee+wxk5KSYqqqqtxpEunYf/XVV80bb7xhPv74Y7N7927zu9/9znTs2NHs2LHDGEOdWmXjxo2mqKjIDBo0yEybNs29nvoNT0VFhRk4cKD58ssv3ctXX33lfp16Dd8333xjevXqZW644QazYcMGs3fvXrNixQrzySefuNNwLQtPXV2d1zG7cuVKI8msWrXKGMNxG64HH3zQnHHGGeb11183+/btMy+99JLp3LmzeeSRR9xpOGbDd80115gBAwaYNWvWmD179piKigqTmZlpPv/8c2MMdRsqJ8UIoZSlNQTdFho5cqSZOnWq++/m5mZTUFBgKisr41gq+/D9QrW0tJi8vDzz0EMPudfV19ebtLQ08+KLLxpjjNm1a5eRZN577z13mjfffNMkJSWZgwcPGmOM+ctf/mK6dOlimpqa3Gnuuecec/bZZ7v/vuaaa8zYsWO9ylNcXGx+9atfWbqP8VRXV2ckmTVr1hhjfqjLjh07mpdeesmd5sMPPzSSzLp164wxP5zwkpOTTU1NjTvNggULTGZmprs+7777bjNw4ECvbY0fP96UlZW5/070Y79Lly7mb3/7G3VqkcOHD5t+/fqZlStXmtGjR7uDbuo3fBUVFWbw4MF+X6NeI3PPPfeYUaNGBXyda5l1pk2bZs4880zT0tLCcRuBsWPHmhtvvNFr3ZVXXmkmTpxojOGYjcSxY8dMSkqKef31173WDx061Nx7773UbZjsHCOEUpZQ0L3cIsePH9emTZtUWlrqXpecnKzS0lKtW7cujiWzr3379qmmpsarzrKyslRcXOyus3Xr1ik7O1vDhw93pyktLVVycrI2bNjgTvN///d/Sk1NdacpKyvT7t279e2337rTeG7HlSaRPpuGhgZJUteuXSVJmzZt0okTJ7z2u3///urZs6dX/Z577rnKzc11pykrK1NjY6N27tzpThOs7hL52G9ubtbixYt19OhRlZSUUKcWmTp1qsaOHXtKHVC/kdmzZ48KCgrUp08fTZw4Ufv375dEvUbq1Vdf1fDhw3X11Vere/fuGjJkiJ566in361zLrHH8+HE999xzuvHGG5WUlMRxG4Hzzz9f1dXV+vjjjyVJH3zwgdauXasxY8ZI4piNxMmTJ9Xc3Kz09HSv9RkZGVq7di11axE71WMoZQkFQbdFDh06pObmZq8TvyTl5uaqpqYmTqWyN1e9BKuzmpoade/e3ev1Dh06qGvXrl5p/OXhuY1AaRLls2lpaVF5ebkuuOACnXPOOZJ+2OfU1FRlZ2d7pfWt33DrrrGxUd99911CHvvbt29X586dlZaWpltuuUXLli3TgAEDqFMLLF68WJs3b1ZlZeUpr1G/4SsuLtaiRYtUVVWlBQsWaN++fbrwwgt1+PBh6jVCe/fu1YIFC9SvXz+tWLFCt956q37zm9/o73//uySuZVZ55ZVXVF9frxtuuEES54NIzJgxQ9dee6369++vjh07asiQISovL9fEiRMlccxG4vTTT1dJSYkeeOABffHFF2pubtZzzz2ndevW6csvv6RuLWKnegylLKHoEHJKALY1depU7dixQ2vXro13URLC2Wefra1bt6qhoUH/+Mc/NHnyZK1ZsybexXK8AwcOaNq0aVq5cuUprQSIjKsFS5IGDRqk4uJi9erVS0uXLlVGRkYcS+Z8LS0tGj58uP74xz9KkoYMGaIdO3boiSee0OTJk+NcusTx9NNPa8yYMSooKIh3URxv6dKlev755/XCCy9o4MCB2rp1q8rLy1VQUMAxa4Fnn31WN954o3r06KGUlBQNHTpUEyZM0KZNm+JdNNgYLd0WycnJUUpKyimjatbW1iovLy9OpbI3V70Eq7O8vDzV1dV5vX7y5El98803Xmn85eG5jUBpEuGzue222/T6669r1apV+tGPfuRen5eXp+PHj6u+vt4rvW/9hlt3mZmZysjISMhjPzU1VX379tWwYcNUWVmpwYMH65FHHqFOI7Rp0ybV1dVp6NCh6tChgzp06KA1a9bo0UcfVYcOHZSbm0v9WiQ7O1tnnXWWPvnkE47bCOXn52vAgAFe63784x+7u+9zLYvcZ599pn//+9/65S9/6V7HcRu+u+66y93afe655+r666/Xb3/7W3cPI47ZyJx55plas2aNjhw5ogMHDmjjxo06ceKE+vTpQ91axE71GEpZQkHQbZHU1FQNGzZM1dXV7nUtLS2qrq5WSUlJHEtmX71791ZeXp5XnTU2NmrDhg3uOispKVF9fb3Xr4dvv/22WlpaVFxc7E7zzjvv6MSJE+40K1eu1Nlnn60uXbq403hux5XGyZ+NMUa33Xabli1bprffflu9e/f2en3YsGHq2LGj137v3r1b+/fv96rf7du3e520Vq5cqczMTPdNZmt11x6O/ZaWFjU1NVGnEbrooou0fft2bd261b0MHz5cEydOdP+f+rXGkSNH9Omnnyo/P5/jNkIXXHDBKdMxfvzxx+rVq5ckrmVWWLhwobp3766xY8e613Hchu/YsWNKTva+xU9JSVFLS4skjlmrnHbaacrPz9e3336rFStW6PLLL6duLWKnegylLCEJecg1tGrx4sUmLS3NLFq0yOzatcvcfPPNJjs722tUzfbm8OHDZsuWLWbLli1Gknn44YfNli1bzGeffWaM+WEI/uzsbPOvf/3LbNu2zVx++eV+pwMYMmSI2bBhg1m7dq3p16+f13QA9fX1Jjc311x//fVmx44dZvHixaZTp06nTAfQoUMHM3fuXPPhhx+aiooKR02r4M+tt95qsrKyzOrVq72mXDl27Jg7zS233GJ69uxp3n77bfP++++bkpISU1JS4n7dNd3KxRdfbLZu3WqqqqpMt27d/E63ctddd5kPP/zQzJ8/3+90K4ly7M+YMcOsWbPG7Nu3z2zbts3MmDHDJCUlmbfeessYQ51azXP0cmOo33DdcccdZvXq1Wbfvn3m3XffNaWlpSYnJ8fU1dUZY6jXSGzcuNF06NDBPPjgg2bPnj3m+eefN506dTLPPfecOw3XsvA1Nzebnj17mnvuueeU1zhuwzN58mTTo0cP95RhL7/8ssnJyTF33323Ow3HbPiqqqrMm2++afbu3WveeustM3jwYFNcXGyOHz9ujKFuQ+WkGCGUsrSGoNtijz32mOnZs6dJTU01I0eONOvXr493keJq1apVRtIpy+TJk40xPwzDf99995nc3FyTlpZmLrroIrN7926vPL7++mszYcIE07lzZ5OZmWmmTJliDh8+7JXmgw8+MKNGjTJpaWmmR48eZvbs2aeUZenSpeass84yqampZuDAgeaNN96I2n7Hgr96lWQWLlzoTvPdd9+ZX//616ZLly6mU6dO5mc/+5n58ssvvfL573//a8aMGWMyMjJMTk6OueOOO8yJEye80qxatcqcd955JjU11fTp08drGy6JcuzfeOONplevXiY1NdV069bNXHTRRe6A2xjq1Gq+QTf1G57x48eb/Px8k5qaanr06GHGjx/vNY809RqZ1157zZxzzjkmLS3N9O/f3zz55JNer3MtC9+KFSuMpFPqyxiO23A1NjaaadOmmZ49e5r09HTTp08fc++993pNm8QxG74lS5aYPn36mNTUVJOXl2emTp1q6uvr3a9Tt6FxUowQSllak2SMMaG3iwMAAAAAgFDxTDcAAAAAAFFC0A0AAAAAQJQQdAMAAAAAECUE3QAAAAAARAlBNwAAAAAAUULQDQAAAABAlBB0AwAAAAAQJQTdAAAAAABECUE3AAAAAABRQtANAAAAAECUEHQDAAAAABAlBN0AAAAAAETJ/wNU2VyZe7JS7wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -319,7 +69,6 @@ } ], "source": [ - "sim = resonances.find([463, 490, 2348], ['Jupiter', 'Saturn'])\n", "sim.run()" ] }, @@ -327,84 +76,71 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Thus, all these asteroids are in resonances: 463 and 2348 — in 4J-2S-1, whereas 490 — in 5J-2S-2.\n", + "## Configuring the integrator\n", "\n", - "If you want to customise some variables, it is a good idea to check the original code, which is in `resonances/finder.py`:" + "By default, the package uses `ias15` and adaptive timestamp. However, sometimes, one might want to perform a quick integration using another integrator, i.e., `whfast`. The default functions does not support such a customization. However, it is easy to create a custom simulation and proceed with it." ] }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import Union, List\n", - "import astdys\n", - "\n", - "def find(asteroids: Union[int, str, List[Union[int, str]]], planets=None) -> resonances.Simulation:\n", - " sim = resonances.Simulation()\n", - " sim.create_solar_system()\n", - "\n", - " asteroids = convert_input_to_list(asteroids)\n", - "\n", - " elems = astdys.search(asteroids)\n", - " for asteroid in asteroids:\n", - " elem = elems[asteroid]\n", - " mmrs = resonances.ThreeBodyMatrix.find_resonances(elem['a'], planets=planets)\n", - " mmrs2 = resonances.TwoBodyMatrix.find_resonances(elem['a'], planets=planets)\n", - " mmrs = mmrs + mmrs2\n", - " sim.add_body(elem, mmrs, f\"{asteroid}\")\n", - " resonances.logger.info('Adding a possible resonance for an asteroid {} - {}'.format(asteroid, ', '.join(map(str, elems.values()))))\n", - "\n", - " # default settings\n", - " sim.dt = 1\n", - " sim.plot = 'nonzero'\n", - " return sim" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", + "execution_count": 2, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching NASA Horizons for 'Sun'... \n", + "Found: Sun (10) \n", + "Searching NASA Horizons for 'Mercury'... \n", + "Found: Mercury Barycenter (199) (chosen from query 'Mercury')\n", + "Searching NASA Horizons for 'Venus'... \n", + "Found: Venus Barycenter (299) (chosen from query 'Venus')\n", + "Searching NASA Horizons for 'Earth'... \n", + "Found: Earth-Moon Barycenter (3) (chosen from query 'Earth')\n", + "Searching NASA Horizons for 'Mars'... \n", + "Found: Mars Barycenter (4) (chosen from query 'Mars')\n", + "Searching NASA Horizons for 'Jupiter'... \n", + "Found: Jupiter Barycenter (5) (chosen from query 'Jupiter')\n", + "Searching NASA Horizons for 'Saturn'... \n", + "Found: Saturn Barycenter (6) (chosen from query 'Saturn')\n", + "Searching NASA Horizons for 'Uranus'... \n", + "Found: Uranus Barycenter (7) (chosen from query 'Uranus')\n", + "Searching NASA Horizons for 'Neptune'... \n", + "Found: Neptune Barycenter (8) (chosen from query 'Neptune')\n", + "Searching NASA Horizons for 'Pluto'... \n", + "Found: Pluto Barycenter (9) (chosen from query 'Pluto')\n", + "Searching NASA Horizons for '463;'... \n", + "Found: 463 Lola (A900 UK) \n" + ] + } + ], "source": [ - "## Find resonances within a range\n", + "import resonances\n", "\n", - "Let's imagine another task. Let one want to find what are the possible two-body mean-motions resonances between `2.3` and `2.4` AU." + "sim = resonances.Simulation(name='test_whfast', date='2025-01-01 00:00', integrator='whfast', dt=0.1)\n", + "sim.create_solar_system()\n", + "sim.add_body(463, '4J-2S-1', '463 Lola')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, - "outputs": [], - "source": [ - "from resonances import ThreeBodyMatrix, TwoBodyMatrix" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "1V-6\n", - "1V+6\n", - "2E-7\n", - "2E+7\n", - "3E-11\n", - "10J-3\n", - "8S-1\n", - "8S+1\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVf4//tekTRKSCS0BgkBoEiG00EQUEbIUWRRXV/TLKkVd1LBLQF1FFsFFjZW1fBSxwVoQRelNaQFRpIoQUEABAalSEpoJJOf3R34zZiYzyZR7555z7+v5eMxDmbm58z7vU+49t41NCCFARERERERERJqLMDoAIiIiIiIiIrPipJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ64aSbiEgyeXl5sNlsmDhxotGhEBEREVGIOOkmIqk999xzsNlssNls+Pbbb30ut2/fPtx3331o1KgR7HY76tSpgxtuuAGzZs1yW27Xrl2477770L59eyQnJ8NutyMtLQ1//vOfsWLFioBi69GjB2w2G44ePRpU2YhUUFxcjHbt2sFmsyE9Pd3rMpV95unkyZN46623cNNNN6FJkyaw2+2oXbs2+vXrhy+++MLn33399df461//ivr16yMmJgY1atRAeno6/t//+3/43//+F1CZPvzwQ4wYMQIdO3aE3W6HzWbD9OnTA1qHFqZPn67pd6elpSEtLU2Tdcns0qVL+PzzzzFkyBBcddVVSEhIQGJiIrp06YIpU6agpKTE6BCJiNxEGR0AEZEv+fn5mDBhAqpVq4bz58/7XG7ZsmUYOHAgAGDAgAFo0qQJTp8+jW3btmH58uX461//6lp2+/btmD17Nrp27YprrrkGDocDv/76K+bNm4dFixbhqaeewrhx4/QuGpEynnzySfz000+arW/WrFl44IEHkJqail69eqF+/fo4dOgQPv/8cyxduhTPP/88HnnkEbe/mT59OoYPH46oqCjceOONaN68OWw2G3bt2oXFixdjzZo1GDJkiN8x/Pvf/8Yvv/yC2rVro169evjll180Kx/p7+eff8Ztt92GhIQE9OrVCzfddBMKCgqwYMECPPjgg1i8eDHmz58Pm81mdKhERAA46SYiSV26dAlDhgxBu3bt0Lx5c3z44Ydelztw4ABuu+021K9fH8uXL0fDhg3dPr98+bLbvwcMGIBbb721ws7Y4cOH0b59ezz55JPIzs5G9erVNS0PkYo2bNiA5557Dq+88gpGjhypyTqvvPJKzJ8/H/3790dExB8X3P373/9Gly5dMG7cOAwePBipqakAgAsXLuCf//wnEhMT8c0336BVq1Zu67t06RLy8vICiuGdd95B8+bN0ahRIzz77LMYO3ZsyOWi8ElMTMTrr7+OIUOGoFq1aq73X3rpJfTo0QMLFy7EZ5995nbAlYjISLy8nIik9PTTT2PHjh147733EBkZ6XO5Z555BoWFhXjzzTcrTLgBICrK/dii81JST6mpqejWrRsuXbqky1mvy5cvY/LkyWjbti3i4uKQlJSEG264AQsWLPB7HatWrcLw4cPRokULJCQkICEhAR07dsRbb72lSYxDhw6FzWbD3r178dJLL6Fly5aw2+0YOnSoa5njx49j9OjRaNasmeuy4FtvvRX5+fkV1rdnzx4MGzYMjRs3ht1uR82aNdG2bVvk5ORACOG27C+//IJ77rnHdenwFVdcgXvuuQcHDhyosF7nZf2XLl3CxIkTkZaWBrvdjiuvvBJvvPFGheUPHz6MCRMm4Oqrr0ZKSorrloIHH3wQx48f95mHffv24dVXX0V6ejrsdjsaNWqEJ598EqWlpV7zN2/ePPTu3Ru1atVCbGws0tLScNddd1XITXFxMSZPnozMzExUq1YNiYmJuO666zB//nyv6zXK77//jiFDhuDaa6/Fgw8+qNl6e/bsiQEDBrhNuAGgRYsWGDRoEC5duoRvvvnG9X5+fj7Onj2LG264ocKEGwCio6Pxpz/9KaAYsrKy0KhRo+AK4Ifff/8dL730Etq2bYukpCRUq1YNaWlpuP322/H9998DKGtnw4YNAwAMGzbMdRtN+fFp8+bNGDlyJDIyMpCUlIS4uDi0bt0azz77LC5duuRabv/+/bDZbPjll1/wyy+/uK3L+WyIyi5l9/UciS1btuC2225Dw4YNYbfbkZycjE6dOuHpp5/WNmEBql+/Ph588EG3CTcAVKtWDWPGjAEArF692ojQiIi84pluIpLOli1b8PTTT+M///kPWrZs6XM5IQRmzZqFWrVqoWfPnti8eTNWr16N0tJStGvXDj179qywY+/LyZMnsX79esTHx6NJkyZaFcUV52233YZ58+bhyiuvRHZ2Ns6fP49PPvkEN910EyZPnozRo0dXuZ7nnnsOP/30E66++mrccsstOHPmDJYuXYoRI0Zg165deOmllzSJ9x//+Ae+/fZb9O/fHwMGDEBKSgqAsks6e/TogUOHDqF3794YOHAgjh8/js8//xxffPEFVqxYgS5dugAom+h27twZ58+fR//+/TFo0CCcP38ee/bswRtvvIEXX3zRdUBk9+7duPbaa3HixAkMGDAArVq1Qn5+Pt577z0sWLAAa9euxZVXXlkhzjvvvBMbNmxAv379EBkZiU8//RTZ2dmIjo7Gfffd51puzZo1eOmll9CrVy906dIF0dHR+O677zBlyhR88cUX2LJlC5KSkiqs/5FHHsHq1avx5z//GX369MHcuXMxceJEFBcXV5h0PPTQQ5g8eTJq1qyJgQMHIiUlBQcPHsTy5cvRoUMHZGRkAACKiorQt29f5OXloV27drjnnntw6dIlLFq0CDfffDNee+01zc4oh+rxxx/HgQMHsHDhwrBdphsdHQ3A/WBZrVq1AAB79+5FSUlJpQfhZDFkyBB8+umnaNOmDYYNGwa73Y6DBw9i1apV2LhxI9q2bYuBAwfizJkzmDdvHm6++Wa0a9euwnrefvttLFiwAN27d8eNN96ICxcuIC8vD2PHjsXGjRvx+eefAwCqV6+OCRMm4OWXXwYA5OTkuNbRo0ePoMqwdetWXHPNNYiMjMTNN9+MRo0a4cyZM9i5cyfeeustaW/D8daGiIiMxhGJiKRSVFSEu+++G+3atcO//vWvSpfdt28fTp06hY4dO2LEiBEVzvi2b98e8+fPxxVXXFHhb3fv3o0ZM2agpKQEhw8fxvz583HmzBm8+eabSExM1LRMH3zwAebNm4frr78eX375JWJiYgAAY8eORYcOHfCvf/0LN998c5WT/SlTpqBx48Zu712+fBk33ngjXnnlFYwaNcrr2f5Abdu2Dd99912Fdd199904cuQIli5dij59+rje//e//42OHTvivvvuw7Zt2wAAn3/+Oc6cOYOXX34Zo0aNclvPqVOn3HaI77//fpw4cQJTp07F3//+d9f7b7zxBrKzs/HAAw94fcjdoUOHkJ+fD4fDAQAYNWoUMjIy8NJLL7lNunv27ImjR48iISHB7e/ff/99DBkyBP/3f//ndQKxZcsWbNu2DfXq1QMAjB8/Hs2bN8drr72GCRMmuOpx4cKFmDx5Mlq3bo1Vq1a5JolAWf2cPHnS9e///Oc/yMvLw/jx4/Hkk0+6JrNnz55Fz5498dBDD+Evf/mL69LqygT6dPuhQ4f6/ZCtNWvW4JVXXsHkyZPRtGnTgL4nWIWFhfjss88QGxuL6667zvV+kyZN0KFDB2zevBk9evTAkCFDcPXVV+Oqq66ScgJeUFCAWbNmoUOHDli/fr1bjCUlJTh79iwAuE26Bw4c6HZFidPjjz+O119/3W0dQgjce++9eO+99/D111+jW7duqF69OiZOnOg6i63FLx988MEHKCoqwty5c3HzzTe7fVa+TVdm//79AT8kLtTY33vvPQBA7969Q1oPEZGmBBGRRP71r3+JmJgYsX37dtd7Q4YMEQDEunXr3JZdt26dACAiIyNFQkKCmDZtmjh16pTYt2+fuO+++wQA0aVLF6/fs2DBAgHA9UpISBAffPBBQLFef/31AoA4cuRIpcv17NlTABDr16+v8NnTTz8tAIj//Oc/rvdWrVolAIgJEyb4Fcfnn38uAIjp06cHFL8nZ55feeWVCp9t2bJFABDDhw/3+rdjxowRAFz19uqrrwoAYurUqZV+5y+//CIAiJYtW4rS0lK3z0pKSkR6eroAIA4cOOB635n3lStXVlif87PCwsIqy1taWiocDofo0aOH2/vOPLz33nsV/sb52bZt21zv9evXz2c8nuWpUaOGaNq0aYWyCiHE/PnzBQDx2muvVRm7EMKt/frzWrVqlV/rPXfunGjSpIno1q2bKCkpcfu+Fi1a+IzF12f+uvPOOyv0Bad9+/aJbt26uZUnPj5e9OrVS0ybNk1cvnw56O/Nzc0VAMS0adNCiP4PBQUFAoDo1q2b13oub9q0aUF99+bNmwUAMXHiRLf3GzVqJBo1ahTwd3kbc5x9+osvvggoNm/rDeQViqlTpwoAomfPniGth4hIazzTTUTSWLduHV588UVMnDjRdTluZZz31paUlGDSpEmuM0U1atTAW2+9hW3btmH9+vVYu3Ytrr32Wre//fOf/wwhBIqLi7F//368/fbbuPvuu7Fhwwa8+uqrmpbru+++Q3x8PDp37lzhsxtuuAFA2aWcVTl79ixefPFFzJ07Fz///HOFJ7ofPnxYk3i9xen8ubZjx455PRP1448/uv6bkZGBAQMGYOzYscjOzsaKFSvQt29fXH/99RXO5jvLff3111e4hDkiIgLdu3fHjz/+iK1bt6JBgwZun3fo0KFCHM6rGs6cOeN2xcLs2bMxdepUbNmyBadPn3b7SSFfeatq/U4bNmyA3W7H9ddf73U9Trt27cLp06eRmpqKJ598ssLnJ06cAPBHLqsiPO6L18rDDz+Mw4cPY8mSJX7fnuHJWxvJycnx+YDCsWPH4uOPP0bfvn3x+OOPV/g8LS0Na9euxdatW7F8+XJs2rQJX3/9NVasWIEVK1bg/fffx5IlS2C3211XWPgTkx4cDgduvPFGLF68GJmZmfjrX/+KHj16oFOnTq5Ln/1VXFyM//u//8PMmTPx448/4ty5c271rlWf9+b222/Hyy+/jFtuuQWDBg3Cn/70J3Tv3h3169f3ex09evTQrZ16WrhwIUaOHIlGjRr5fPAmEZFROOkmIilcvnwZQ4YMQZs2bfDYY4/59Tfl78O96aabKnw+YMAArF+/Hps2baow6XaKiYnBlVdeiRdeeAEXLlzAa6+9hn79+qFfv37BFcSLwsLCChNGJ+ely4WFhZWuo7i4GD169MCWLVvQvn173HXXXahVqxaioqKwf/9+/O9//0NRUZEm8dapU6fCe6dOnQIALFq0CIsWLfL5t84DAWlpafj2228xceJELF68GJ9++ikAID09Hf/5z39cTxV2ltvbdwKV58d5WXl5zsvWy0+qX3rpJTz88MNITk5G7969ccUVVyAuLg4A8PLLL/vMm7/rLygoQP369aucoDpzuGPHDuzYscPncpX9PJ7e8vLy8Oabb+KFF17weh+9v7wdVBg6dKjXSff48ePx7LPPomfPnpg9e3all4y3a9fO7d7nvLw8/O1vf8OqVavwxhtvYPTo0Thz5ozX7w/XpBso+1m0Z555BjNmzHDduuBwODBs2DA888wziI+P92s9t912GxYsWIArr7wSgwYNQkpKCqKjo3HmzBm88sormvV5b7p06YK8vDxXOaZNmwYA6NSpE5577jnXAUMZLF68GLfddhvq1KmDlStXusYNIiJZcNJNRFI4d+4c9uzZAwCue2U9de3aFQAwZ84cDBw4EE2bNkVkZCRKSkq87sw737t48aJfMfTu3RtvvPEG8vLyNJ10OxwOr0/JBoCjR4+6lqnMvHnzsGXLFtxzzz1455133D6bOXMm/ve//2kTLOD1oVnO+AJ50FdGRgY+++wzXLp0CZs3b8aSJUvw6quvYtCgQa6nxTvXe+zYMa/r8Dc/vly+fBmTJk1CvXr1sHXrVtdD4YCyM8XPP/98UOstr3r16jh69ChKS0srnXg7y3Drrbfis88+C/l79bin23nlwSOPPFLht7KBsrP1NpsNSUlJbmf7Pfl7dnP8+PF46qmn0KNHDyxYsMB1MMRfPXr0wKRJkzB8+HCsXLkSo0ePRlpaWtjOrvoSHx+Pp556Ck899RT27duHVatW4c0338Qrr7yCixcvYurUqVWuY+PGjViwYAH69OmDRYsWuR2M+Pbbb/HKK68EFJOzbXr+jCJQduDIm+uuuw5LlizBxYsXsX79eixYsABvvPEG+vfvj/z8/CqfQxGOe7oXLVqEW2+9FbVr18aqVas0fxAmEZEWOOkmIinY7Xbcc889Xj9bs2YN9uzZg5tuugnJycmuiUNsbCyuueYafPXVV9i5c2eFs9k7d+4EAL8fHuW8VDPQS0Cr0r59e6xcuRIbNmyocOm28/eFvT25uLyff/4ZACo80AgAvvrqK03irIzzqeTr1q0L+Ona0dHRuPrqq3H11VejWbNmuPvuu7Fw4UJ069bNVe41a9ZACOE24RdCYM2aNQCqzo8vv/32GwoKCtCrVy+3CTcAbNq0ye8DMpXp3LkzFi9ejNWrV1d69u+qq66Cw+HApk2bcOnSpZDbmbezuZXp0aNHlX0hIyPDZz989913kZSUhNtuu83vM7WVcU64r7/+eixatCjodXo+IE82jRs3RuPGjXHnnXciJSUF8+fPd026nRPp8ldOODn7fP/+/Suc/ffV5yMjI1FcXOz1sxo1agAAfv311wqffffdd5WWIS4uDj169ECPHj1QvXp1PPHEE1i2bBlGjBhR6d/t378/4HYayKTbOeGuWbMmVq1ahWbNmgX0XURE4cLf6SYiKcTFxeGdd97x+rrmmmsAlN33+c4777hNwB544AEAZTtq5S+1/PHHHzF9+nQkJiaib9++rvc3b97s9SzYL7/8gtzcXADQ9Cw3UPbzQc74y/+27sGDBzF58mRERUVh8ODBla7D+ZvCa9eudXt/9erVePvtt73+zcSJE73+9m4wOnfujC5duuDjjz/GJ598UuHz0tJSt9/F3bx5s9dLwp1ntGNjYwEADRs2xA033OD6Tfby3nrrLfzwww/o2bOnz8vzq5KSkoK4uDhs2bIFFy5ccL1/+vRp/OMf/whqnZ6ys7MBlD093XkJudPly5ddZY6KisIDDzyAX375BQ8//LBbW3DKz8/3eVWEJyFEQC9/fjoqKyvLZz8EgLp16+Kdd94J+bkHTzzxBJ566ilcd911VU649+3bh//7v/9zPfW7vAsXLrjO+Pq6hUQLzt+49vaEcU8nTpzw+rv1p0+fRlFRkavtA0DNmjUBlI0Fnnz1+R07drjGKk81a9bEb7/9ht9//73CZx06dIDNZsPMmTPdPt+zZ4/Xs+br1q3zuh7PPlwZ5z3dgbz8tWTJEtx6662oUaMGVq1ahebNm/v9t0RE4cYz3USktDvuuAOzZ8/GZ599hrZt26JPnz4oKCjA559/jt9//x3vv/++6wwPUPZ7yj/99BO6dOmChg0bIiIiAj///DOWLFmC4uJiPPzww+jWrVtAMYwaNcrnZbEvvvgi7rrrLsyePRvz5s1DmzZt8Oc//9n1O92nTp3CSy+9VOUlkQMGDEBaWhqef/555OfnIyMjA7t27cLChQtxyy23eL1c2fmgOa1+r/bjjz/GDTfcgDvuuAMvv/wyMjMzERcXhwMHDmDdunU4ceKEayf9gw8+wNSpU9G9e3c0bdoUDocDO3fuxOLFi1GzZk0MGzbMtd4pU6bg2muvxX333YcFCxagZcuW2LFjB+bPn4/k5GRMmTIl6JgjIiLw4IMP4qWXXkLbtm0xYMAAFBYWYsmSJWjUqJFfP81VlRtvvBEPP/wwXnzxRTRv3hy33HILUlJS8Ouvv2LFihV4+OGHXb+b/OSTT2LLli149dVXsWjRInTv3t217Pbt2/H9999j3bp1Fc7Km8n06dMxadIkREVFoXPnznjhhRcqLOM8qwqUXfr8j3/8A4888giuvfZaZGRkIC4uDr/++isWLVqEkydPokOHDgEdRHnnnXdck9nt27e73nNeeXLttdfi3nvvdS0fSF/69ddf0b59e7Rt2xZt2rRB/fr1cfLkScybNw+XLl3Cww8/7Fq2a9euiIuLw8svv4zTp08jOTkZQNnP8HXu3BmdO3fGp59+iiNHjuDqq6/GgQMHMH/+fPTv399rn+/Zsyc2bdqEfv364brrrkNMTAy6d++O7t27IzU1FXfeeSdmzJiBDh06oG/fvjh+/DjmzJmDvn37un7z2+m5557DqlWr0L17dzRu3BixsbHYsmULVqxYgSZNmuCWW27xO99a+/HHH3HLLbegqKgIPXr0wMcff1xhmbS0NL8OkhARhYXej0cnIgqVr58Mc7p06ZKYPHmyaNWqlbDb7cLhcIjevXuLvLy8CsvOmjVL/PWvfxVNmjQR1apVE9HR0aJ+/friL3/5i1i6dGlAcTl/nqqy1759+1wxvvjii6J169bCbreLxMREcf3114t58+ZVWK+vnwzbu3evuPXWW0VycrKIj48XnTp1EjNnzvS5/C233CIiIiLErl27/CqPM8/OmL05deqU+Pe//y0yMjJEXFycSEhIEM2bNxf/7//9PzF79mzXct9++60YMWKEyMjIENWrVxdxcXGiefPmYuTIkeKXX36psN79+/eLYcOGiXr16omoqChRr149MWzYMLF///4Kyzrz7m8ZiouLxdNPPy2aN28u7Ha7aNiwoXjooYfE2bNnvf7EUmV5mDBhgs+f3/r888/FDTfcIJKSkoTdbhdpaWnirrvuEvn5+W7LXb58WUydOlV069ZNOBwOV0x9+/YVU6ZMEefOnfNaNqPBx8+CXb58WQAQrVu39ms9zhxW9irfln///Xfx+eefi7///e+ibdu2onbt2iIyMlLUqFFDXHvttWLy5Mni4sWLAZXFWce+XkOGDHFbfvTo0QKAWLZsWZXrPn36tJg4caLo3r27qFevnoiJiRGpqamib9++YsmSJRWWX7RokejUqZOIi4ur8LNZx48fF8OHDxepqakiNjZWtG7dWrz++uti7969XuM8e/asuO+++0S9evVEZGRkhVxeuHBB/POf/xR16tQRdrtdtGnTRnz00Udex5ClS5eKu+++W7Ro0UIkJiaKhIQE0bJlS/H444+LEydO+JVnvfjzU2TXX3+9oTESEZVnE8Lgp40QEZEuUlJS0KNHD9eTw4n0cPToUdSrVw833HADVq5caXQ4uujYsSMiIyOxfv16o0MhIiIF8fJyIiIT+uGHH3DixAmMHTvW6FDI5ObNmwfgj4ftmc3Zs2exdetWTZ44T0RE1sQz3URERBSwZ555Bvn5+fj0008RGxuL/Px8v38pgIiIyEo46SYiIqKA1ahRAyUlJejatSueeuopdOrUyeiQiIiIpMRJNxEREREREZFO+DvdRERERERERDrhpJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0kmU0QGYUWlpKQ4fPozExETYbDajwyEiIiIiIrIMIQTOnj2L1NRUREQYf56Zk24dHD58GA0aNDA6DCIiIiIiIss6ePAgrrjiCqPD4KRbD4mJiQDKKtnhcBgcDRERERERkXUUFhaiQYMGrnmZ0Tjp1oHzknKHw8FJNxERERERkQFkudXX+AvciYiIiIiIiEyKk24iE5Pl6B4RERH9wUzbZzOVhUgvnHSbmEqDoEqxAmrEq0KMnmw2G+M2gOrxezJTWZxUL5Pq8TupWg4z9XGzlMNszFIvZimHE8sjD066vfj111/xt7/9DbVq1UJcXBxat26NTZs2GR2WadlsNgghjA7DlFTLq2rxlsfYSW+q7mxwjJeDmepA1b5gVmZqW2Zklv6iejn4IDUPp0+fRrdu3XDDDTdgyZIlSE5Oxp49e1CjRg2jQyPJcEdSPyrlVvWNAKlBCMG2JgFnPagyPpmRGfoC2xCFixn6C/DHvpbK/YaTbg/PPfccGjRogGnTprnea9y4sYERhYYDuz5kH8RUrnfZc+uNqrk2I5XbPpEeVBtPSU1mOCClevxmp3rd8PJyD/Pnz0fHjh3x17/+FSkpKWjfvj3efvvtSv+mqKgIhYWFbi8ZqNA4OcCRysy0M6viwQ6SH8d4OZixDlQdr8zeJ1StF5KXWdoUJ90e9u7diylTpqB58+b44osv8MADD+Cf//wn/ve///n8m9zcXCQlJbleDRo0CGPEZCSzDASyUWkCaOadJ9WYfWdWpX5hZirVgypxBsrM/VxlrBc5qTRm+WKGtmUTZiiFhmJiYtCxY0d88803rvf++c9/YuPGjVi3bp3XvykqKkJRUZHr34WFhWjQoAEKCgrgcDh0j7kyMu+EmuH+DBnzK2NMwVChHCrEGAjVy6N6/P5QrYyqxesvVcqlSpzBULVsqsbtL1X37axQLyqWL5T2VFhYiKSkJCnmYwDPdFdQr149tGzZ0u29q666CgcOHPD5N3a7HQ6Hw+0lC9mPbqk4AFD4yNx2ZY4tWLKPF5VRdYfCzFRtS6QO1dqYFcYpFcunWjuyGhXblDecdHvo1q0bdu3a5fbe7t270ahRI4MiItlxsNaHCoOsCjFagdX6oErlNWsfUeEAlezxhcqsbcssVGt/VmhPqtWJ2XDS7WH06NH49ttv8cwzz+Cnn37CjBkz8NZbbyE7O9vo0EIiW0czy9Fe2cpglrySsWQbL/xhlXZvlXKSNtheyAgqtTsVt3fBUKlOnMxWN5x0e+jUqRPmzJmDjz/+GBkZGZg0aRJefvllDB482OjQgqZiRyMC5D2bJGNMWuF4QVowcx8pT9ZyWukArKx14MlKdaIKVe8/txIz1Q0fpKYD2W7cB+QaWGSKRQsylceMG3UZyyRjTFqSqU1Xxex14Y0K9WOVepG1nLLGpQdVyqpKnFrhOCUfFeqkvFDrR7b5GM90W4RsHUy2eEIhS1mstvEg/bAdyU32+lHlzKNWZCsvtwUkA9nboGz9Nhxkr5PyzFg/nHQTkdRku8Rcplj0ZqWykrZU2rkLhWzltGKflW0b4Q0PhMjJqnUie39xMlv9cNJtITJsmMy64TE6t0bXq9WYsQ17UqGMVm73Ro85vph1jK+KTHVhxfyTnGQdp6zMOT6wXsKPk24ik+COFmlNhR0mq7d7mepHpljCyeptUAYyj1WyxmVlVq8T2SfessYVKk66LcisjVkGRuTWKvUpQzmtehaP5CRjW5QxpnAxeozi+CQv1ot8rF4nspdf9viCwUm3xRjZiI3eIdGbkbk14+BUntnLJzuz912VyXKGT4YYjMQxyniy9IXyZIvHCLLVi0yxyEC2fMgWj5Y46aawssKOiZkHDLIeWfssz+q5k2HcsXp9GDm5kKH+yTur9wsZsU7KyJoHWeMKFSfdFiTbUUczCfdAYaWJh9Ht1kq5JrWwXRLAdgAYv50oT5Y4ZMF8yEuWupElDr1w0k1hYbUJSzgGDrMPTr7wvnljMAfyM/Isq5XG98oYMelj36zI6Jw4v5/9ogzzIC9Z6sYKfYaTbgszeqNkVuEcMMw8OHljxBM3rbAhqIpsZefYVZFsdUThxfr/gyy5kCUOmRg9dvMAoW9GX0kImL/PcNJtUeFs2EYPskbQ+2yHFXPqZMSgbPYNgYpYJ3Kw8ljkSzjPdjP/vjE3cjH6Z6rYHnyT4SHLVtimc9JNYWGFzhRuVs9puC7ht3qeZcMdJ9+Mup+VfcRYzH9FRk8iWCfeGT3xZr3IySr1wkm3xek98Fl9B1mP8ls9p4B1BmiZyPSAIta/HGRpDzIKR39h/uXDOqmakbeJkW98HoX+OOm2sHDtuFp1B1nPcls1p+WF4xJ+5lkurBP/hHNHhvVhDCtdkhksXvkhr3DlyGazsa9Izkr1ovyk+/fff0dRUZHRYShNr42S1Y5g+aJlHjjpqIhXE4QX78eTG8cHeegx6eMkgswkHM++EUKwrwSA21r9KDfpzsvLw+jRo9G5c2ckJCSgWrVqiI+PR2JiIjp37oycnBzk5eUZHaYy9BqIuFNQxurl1xuvJggvo3LiPNjEOvFfOC5tZn34p/xEOdT1AJxEBCLcD7VjvfgvHLlifQQm3A9Ztlr92IQCJb506RKmTp2KyZMnY//+/ahZsyYyMzPRpEkT1KhRA0IInD59Gvv27cOWLVtw6tQpNGrUCA899BBGjBiB6OjosMZbWFiIpKQkFBQUwOFwhPW7g6Vl4+eE251W+WBevdNj4LbixsBf4W6HbPfB0asNl5/AsE78p0U7Zl8ITjjyxroJjl55Y32ExvNAlV7bEr3rR7b5mBKT7kaNGqG4uBhDhgzB7bffjszMzEqX37x5M2bNmoX3338fMTEx2L9/f3gC/f/JVsn+0HKA4oSlolDzyw1I5bQ+aMQ8Vy6c7ZH1ERw96ojjUGhCyR9zHxq988dxKng8cC4v1Q+KyDYfU2LSPXXqVAwdOhR2uz2gvysuLsa0adMwYsQInSLzTrZK9hePxOsr2Nwwp1Xj1QTGCMeOrJ7rNzstz0qzLrQRTB6Z+9DpmUPWT2i0zh/rQ3uqXg0r23xMiUm3amSr5EDwSLy+At0J5qWc/tNio8Cj44HTM2esD22EOo5wbNdWIPlk7rXFCZ6ceLWl3LSYG5QXrvqRbT4WZXQAJBfnQ0eCHbQ40FWu/O9TVpZjTrYD5/nAHH93aI36WRmzcOaP7VRe5cedUNdBofPczlZVL8y9dkLdx3HiNlpbWtYL60N7we4n8aCUO+WeXg4AERERiIyMrPRVrVo1tGjRAvfffz9+/vlno0NWilZHssg3XzvBnj8Hw4EqMOXzVdUTg52fMd9y4s6TPgIdqzm268PbNsA5Bnm+SFta3WqhxbqoIue225+n/pdfhmOV/nzts1aWe/aRPyh5pvuJJ57AvHnzsGPHDvTr1w/NmjUDAOzZswdLly5F69at0bNnT/z000+YNm0aPv74Y6xZswZt27Y1OHJ1BHL2ikeyglP+yK7n+xQ8bxNvz5yyzWqLZ7vVUNnZJG99gv1EX8yrcUIds1h32vOW06rGK89/s170U9UVOp71xH2CipQ8052amorffvsNP/74I+bNm4eXXnoJL730EubPn4+dO3fi2LFjaNmyJebMmYP8/HxER0fj8ccfD+q7nn32WdhsNuTk5GhbCEWU71SeRx89z8pS4MqfyeBZDe15O5vENis/bqz149knPA/8cWwnKwnmyg/2ifDxNRF3fsarQsLLc/vhmXtedVA5JSfdL7zwArKzs9GkSZMKnzVr1gzZ2dnIzc0FADRv3hz3338/vvnmm4C/Z+PGjZg6dSratGkTcswq8rz/2PN9z/9S8JhD/Xhrx8y3PoLd0Ho7KEL6qWzHqXzfYD8hM/O2bajscllOuI1R/gwrt+HG83WQw9t2hdwpOek+dOgQoqJ8XxkfFRWFgwcPuv6dlpaGoqKigL7j3LlzGDx4MN5++23UqFEj6FhV5+tIIifcpBIeDddfsA/r8nbGlXWkv8r6A/sJWYW32ynK/7v8i33COLwiUA3cz6qckpPuVq1aYcqUKTh27FiFz44ePYopU6agVatWrvf27t2LunXrBvQd2dnZ6N+/P7KyskKOl4jICjzPHFX1kJWqzrQSEenN1wPsOC7JhXVAqlPyQWovvvii6wFqAwcOdD1I7aeffsLcuXNx6dIlvPfeewCA33//HdOnT0e/fv38Xv/MmTOxZcsWbNy40a/li4qK3M6kFxYWBlAaIiLz8PaAIm9ninhWm4iIiKxCyUl3jx498M0332DChAmYPXs2Ll68CACIjY1FVlYWJk6ciMzMTNd7hw8f9nvdBw8exKhRo7Bs2TLExsb69Te5ubl48sknAy8IEZEJebvXy9tTTznhJiIiIiuwCcX3ekpLS3H8+HEAQEpKCiIiQrtifu7cubjlllsQGRnpeq+kpAQ2mw0REREoKipy+wzwfqa7QYMGKCgogMPhCCkeIiKz4O/bEhERUTgUFhYiKSlJmvmYkme6y4uIiAj4fu3K9OrVC9u3b3d7b9iwYUhPT8ejjz5aYcINAHa7HXa7XbMYiIjMiBNtIiIisiKlJ91FRUXYsmULjh8/jm7duqF27dohrzMxMREZGRlu71WrVg21atWq8D4RERERERFRZZR8ejkAvPrqq6hXrx6uvfZa/OUvf8G2bdsAAL/99htq167tepAaERERERERkVGUnHRPmzYNOTk56Nu3L9599123SxZr166Nnj17YubMmZp9X15eHl5++WXN1kdERERERETWoOSk+6WXXsLNN9+MGTNmYMCAARU+79ChA3bs2GFAZERERERERER/UHLS/dNPP1X6u9s1a9bEyZMnwxgRERERERERUUVKTrqrV6+O3377zefnO3fu1PSJ5kRERERERETBUHLSfeONN+Ktt97CmTNnKny2Y8cOvP3227jpppvCHxgRERERERFROTah4A+nHj58GF26dIEQAgMGDMBbb72Fv/3tbygpKcHnn3+OevXqYcOGDZr8hFgwZPsxdiIiIiIiIquQbT6m5Jnu1NRUbN68GX379sUnn3wCIQQ++OADLFiwAHfeeSe+/fZbwybcRERERERERE5Knun2dOLECZSWliI5ORkREcYfR5DtyAoREREREZFVyDYfizI6AC0kJycbHQIRERERERFRBUpMuiMiImCz2QL+u5KSEh2iISIiIiIiIvKPEpPuJ554osKke86cOdixYwf69OmDFi1aAAB+/PFHfPnll8jIyMDAgQMNiJSIiIiIiIjoD0pMuidOnOj277feegvHjx9Hfn6+a8Lt9MMPP6Bnz55ITU0NY4REREREREREFRn/1LEgvPDCCxg5cmSFCTcAXHXVVRg5ciSef/55AyIjIiIiIiIi+oOSk+5Dhw4hOjra5+fR0dE4dOhQGCMiIiIiIiIiqkjJSXdGRgbeeOMN/PrrrxU+O3ToEN544w20bt3agMiIiIiIiIiI/qDEPd2e/vvf/6JPnz648sorccstt6BZs2YAgD179mDu3LkQQuDDDz80OEoiIiIiIiKyOiUn3ddeey3Wr1+P8ePHY86cObh48SIAIC4uDn369MGTTz7JM91ERERERERkOJsQQhgdRChKS0tx4sQJAEBycjIiIoy/Yr6wsBBJSUkoKCiAw+EwOhwiIiIiIiLLkG0+puSZ7vIiIiJQp04do8MgIiIiIiIiqsD408JEREREREREJqXEpLtly5Z4//33UVxc7PffFBUVYdq0aWjZsqWOkRERERERERH5psTl5UOHDsWYMWMwatQo3HTTTcjKykJmZiYaN26M+Ph4AMD58+exb98+bNq0CcuXL8eCBQsQExODRx55xODoiYiIiIiIyKqUeZDa2bNn8e6772L69OnYtm0bbDYbACAqquy4weXLlwEAQghkZGRg+PDhGD58uCE3zst24z4REREREZFVyDYfU2bSXd7+/fvxzTff4Mcff8TJkycBALVq1UJ6ejq6du2Kxo0bGxqfr0p2HihwUjD1RETkwWazcTwnIiKSiGyTbiUuL/eUlpaGtLQ0o8MIiHPC7dwxs9lsFSbhTtx5IyJSg3Mc9xzjiYiIiJyUeJBaOOXm5qJTp05ITExESkoKBg4ciF27doW0Tm87Y0KICjtn5SfkREQkB+dB0vIHS53/7xzLOdkmIiIiXzjp9rB69WpkZ2fj22+/xbJly3Dp0iX07t0b58+fD2p9VZ398Nxh48SbiEge5cdwz/HZ24FTjt3GYe6JiEhWSt7THU4nTpxASkoKVq9eje7du/v1N857CJyCSTHvESSyNj4DQg6BjsW8zDz8vE22mf/wYh3IheOQGrivry/e062YgoICAEDNmjWD+vtQOhM7Y3A4WSGz8HwGhLcrYdi+9RPMGOw82806Cg9vkwvP/kL68bW9Ld8HWA/hVb5OfPUP1omxqqojMiclLy9v1qwZJk2apPv3lJaWIicnB926dUNGRobP5YqKilBYWOj2Av6YsAeDnS9wvjbynvdj8hLE0DCX+vPcKXJe2uytjbMO9BFKXj3Hb/YV7Xgbfyp7Pgrzrj1v47/ncw283Y5B+vO8HcazL3g+k4KMw+eBWI+SZ7r37t2LTZs2YfPmzdi9ezccDgeuuuoqNGnSRNPvyc7ORn5+PtauXVvpcrm5uXjyySc1/W4nHpH0j6+H1flajnkNjq+n8DOX2qlsR8jXPcSsA21pcebB28SbghfolQPl76/nVQfaCbRv8MqP8KnqIJS35bnt0Fcgv1LEujA/Je/pjoiI8Lrz36pVKzz++OO44447Qv6OkSNHYt68eVizZk2Vv/tdVFSEoqIi178LCwvRoEEDTe4h4GUnVQtmY868+q+qy/WZS+0Em0turLWlVz5ZT8HTInccq0KjRf5YB9oL5YAG60M/vq5Kq+wgiPNz1os2eE+3RqKjozFu3Dhcf/31KC4uxqZNm/DZZ59h8ODByMvLw5tvvhnUeoUQ+Mc//oE5c+YgLy+vygk3ANjtdtjt9qC+z594eDTSt2AHJj5luGr+bsj93aCQd1o8g8DZnpn70HBMkJNW9cLtaehCzRvrQDtaXD3AfSF9+Hv1ZXnergrhfpW5KHum+9FHH0Vubm6Fz/773//i4YcfxnvvvYchQ4YEvO4HH3wQM2bMwLx589CiRQvX+0lJSYiLi/NrHXocWWHHqyjUnDCnvoWSG+bVf1rminkPXrgufWUdBUfLCRrrIDhaT5I56Q4Ntx1y03rMYt0ER7Yz3Uo+SC0uLg5XXHGF189Gjx6NQYMG4bXXXgtq3VOmTEFBQQF69OiBevXquV6ffPJJKCGHjB3OnZb3XPIor7tQc1v+oV9UNa36NseI0ITjgTaso8BpPY6wDgKn11jObURwtJ4kc19IW3rkkXVjDkpOutPT07Fo0SKfn1933XXYuXNnUOsu/zTB8q+hQ4cGGa12OJEpo+UGhztg3ml9Vokq0vO+YfKfEfliHQVG637CbWng9KgDCp5e9cF+oQ0t64d9xTyUnHSPGDECS5cuxT/+8Q9cvHixwudff/014uPjDYgsPDgoaj8IMadltMwDN+Lhx5wHJ5w7NdyB8p/e7Zj9pGp6XtrKgx+B0zNf5a9SY70ER8+8sU7Up+SD1P7+97/jhx9+wCuvvIKZM2eiX79+yMjIQExMDJYvX44lS5ZIcWZaD1bfSOmxA8AHu7jT+gitldurL3rvOLE9k+r0vs+UY1PVwpUfjlWBCcdtMOwbgdNzzGKdBCcpKcnoENwo+SA1p6+++gr//e9/sXz5cpw7d871/sCBAzF9+nTDbprX+8Z9K2+g9Cy7lfMK6LfBsHpevQlXTpj7yhn5ACHWjW/hqhc+QMq3cOaGfcE/4W6vrBf/hPNBnKyPwDjrRpYHqSk96XYqKSnB/v37cfbsWTRs2BA1a9Y0NJ5wPC3Pip0vHBscK+bViQc0wiPcO7Ph+i4VGdkuWTfeGTGxCOf3qYB1IKdwj1esl6rxQIi8yh8MkWXSreTl5Z4iIyPRtGlTo8OgMOBRd33wsqXwClf74iVp8uJtAL6F+x571kNFrAO5GDGOc/vhn3C3WfYT/xUUFEh1ibmSD1Ij6wnXwG/FgSwcR2q58TYWc1+RDDsufPCdO6PqxOh2IBOj2iLrwDejzzhzfPLOiPGK2wy1cdKtKCtOYoy4rMoquMMTHkZupElOrB95WG3c98XINsk68M6oOuH4JB9OvKsmw0F1bzjpJumFe2CRsaPqJZwDkxUPFJVn5bLLRra6sHrfAIzfSbLSuO+L0W2QdVCR0XVC3hldL5x4q4mTblICN8baM2qwtvJGgmeQ5MExhTzx4Ifx/YJ18AejLyt3Yp14J0O9ANy2e5I5H5x0K4wDoX6sklte6hwePIsnD5n7tcyx6cmq5ZYJ60BOHLupMmwf3smaF066SWrcEdCHkXm1ygENJyuVVRUybpBljCmcZCq/VfusLHVgtW2ENzKWX8aYjGD0QXTyTfa64aTbBMw+EPKSXH3IPDCZhSyXBzqZuT37w+rlp6rJ0leJZGqLMsVC7niQqowKOeCkW3FmHgiN7kBmzq3RrLSRkKUdyRKH0WTOg5X6hZPsZyasQNY6sFpfcJK53DLHRtYl2wkOXzjpNgmzDoSydyAVybqDRaQntnvylxUPfsjG6n1VxvLzwV3cjshMhXrhpNsEVGhogZJlUOfOl37MnlsZy2b2nBNRYDgeUCDMuL9pBty2q4GTbpIWB3ftcVAOL7ZhOah2dsIq/dQq5ZSdzH3Dam1ElbHKavUCqFM3VqNSvXDSbRJmOspllnLISpXBifRhprHCjKzWP2Uur9n7iezlk7ltWJkV60X2vkJq4KSbpCTToM5Jin7MmlszlklVrAs5yV4vMm2D9GSVcpK2zLrtrowKfcVqdaJaeTnpNhnVGiCFD9tGeMm+gbZSe5C9LryxQv2oUC9mrQdVymWlyZ1Kl8laiSrtz6ptR6Vyc9JtIio1PF9kHtxkjs1fsrYRM+RWJXwKrdxk7adaUaXdmb0ezF4+olCp8lNUpAZOukk6Mg5uMsZkFsytMZh3MhLbn3FUOehRnooxB0LF8lnlKgSVxiqr1ImqOOk2GXY48oZtInxUu0TQzG1DtbrwZMa6Ua1MZt2mqtQvVIo1FFYppyrM2O/NRMXtOyfdJA0VBjgVYvRFtcGJ9Mc2IS8z3wLAdmccM7YnIr2oOFaZ9UChGXDSTVKReYCTOTYzMMNGwgxlIHmYbcxRtX+YbSdWxXZltjooT+VymbleVMd6kQ8n3T68/vrrSEtLQ2xsLLp06YINGzYYHVJA2Nn0o1puVbgER/b4AqFiWVRr0/4wU5nMVBYV+weR3tgv5KL6mGv29qTCfq03nHR78cknn2DMmDGYMGECtmzZgrZt26JPnz44fvy40aH5RcWGqArmVl+qb+hUZOY2bYaymaEMZmCGM3qqx2+GOvBklvKYpRzlmWHsNWO9qIyTbi8mT56M++67D8OGDUPLli3x5ptvIj4+Hu+9957RoZmWqketZKdSXlWJ0xdu3EhPqrcvlcYiM2MdyEf1OlE9frMya72ovC3kpNtDcXExNm/ejKysLNd7ERERyMrKwrp167z+TVFREQoLC91eZF5mPNpO2jDrRo6MxXYlD479xuL2l8h/Zu0vqm4TOen28Ntvv6GkpAR16tRxe79OnTo4evSo17/Jzc1FUlKS69WgQYNwhFop1Rok49WHKnE6qRZveYxdLmYrk+rlUT1+oKwMKpdD5djLM0s5APOUxSzlcDJTecxUFkDt8nDSrYGxY8eioKDA9Tp48KDRIREREREREZEEoowOQDa1a9dGZGQkjh075vb+sWPHULduXa9/Y7fbYbfbwxEeERERERERKYRnuj3ExMSgQ4cOWLFiheu90tJSrFixAl27djUwMiIiIiIiIlINz3R7MWbMGAwZMgQdO3ZE586d8fLLL+P8+fMYNmyY0aERERERERGRQjjp9mLQoEE4ceIEnnjiCRw9ehTt2rXD0qVLKzxczRfnTf58ijkREREREVF4Oedhsjx8zSZkicRE9u7di6ZNmxodBhERERERkWX9/PPPaNKkidFh8Ey3HmrWrAkAOHDgAJKSkoJeT6dOnbBx48aQ49FiPbKso7CwEA0aNMDBgwfhcDgMjcVM9aNVXrWIRat1yBKLGXMrS/3INB5otR5Z1sHc6rcOmXJrpvrhWKvfemRqs1qtR5ZYmFv91lFQUICGDRu65mVG46RbBxERZc+nS0pKCqkDRUZGhrzh0Go9sqzDyeFwGJ5bs9UPEHpetYqFudUvFlnWoeV6ZBgPtFqPLOtwYm61X4eTDLk1W/0AHGv1XI8MbVar9cgUC8Dc6rEOJ+e8zGhyREFeZWdnS7MeWdahFZnKI1MsWpCpPDLFogVZyiNT/WhBpvLIsg6tMLf6kak8MsWiBVnKI1P9aEGm8sgUixZkKo8s65AN7+nWQWFhIZKSklBQUKDZURoqw9zqg3nVD3OrH+ZWP8ytfphbfTCv+mFu9cPc6ke23PJMtw7sdjsmTJgAu91udCimw9zqg3nVD3OrH+ZWP8ytfphbfTCv+mFu9cPc6ke23PJMNxEREREREZFOeKabiIiIiIiISCecdBMRERERERHphJNuIiIiIiIiIp1w0k1ERERERESkE066Nfb6668jLS0NsbGx6NKlCzZs2GB0SIZas2YNBgwYgNTUVNhsNsydO9ftcyEEnnjiCdSrVw9xcXHIysrCnj173JY5deoUBg8eDIfDgerVq+Oee+7BuXPn3JbZtm0brrvuOsTGxqJBgwZ4/vnnK8Qya9YspKenIzY2Fq1bt8bixYs1L2845ebmolOnTkhMTERKSgoGDhyIXbt2uS3z+++/Izs7G7Vq1UJCQgJuvfVWHDt2zG2ZAwcOoH///oiPj0dKSgoeeeQRXL582W2ZvLw8ZGZmwm63o1mzZpg+fXqFeMzS9qdMmYI2bdrA4XDA4XCga9euWLJkietz5lQ7zz77LGw2G3JyclzvMb/BmThxImw2m9srPT3d9TnzGppff/0Vf/vb31CrVi3ExcWhdevW2LRpk+tzbsuCk5aWVqHd2mw212/0st0Gp6SkBOPHj0fjxo0RFxeHpk2bYtKkSSj/7GS22eCdPXsWOTk5aNSoEeLi4nDNNddg48aNrs+ZW/+oNEfwJ5YqCdLMzJkzRUxMjHjvvffEjh07xH333SeqV68ujh07ZnRohlm8eLEYN26cmD17tgAg5syZ4/b5s88+K5KSksTcuXPF999/L2666SbRuHFjcfHiRdcyffv2FW3bthXffvut+Oqrr0SzZs3EnXfe6fq8oKBA1KlTRwwePFjk5+eLjz/+WMTFxYmpU6e6lvn6669FZGSkeP7558XOnTvFv//9bxEdHS22b9+uew700qdPHzFt2jSRn58vtm7dKm688UbRsGFDce7cOdcy999/v2jQoIFYsWKF2LRpk7j66qvFNddc4/r88uXLIiMjQ2RlZYnvvvtOLF68WNSuXVuMHTvWtczevXtFfHy8GDNmjNi5c6d47bXXRGRkpFi6dKlrGTO1/fnz54tFixaJ3bt3i127donHH39cREdHi/z8fCEEc6qVDRs2iLS0NNGmTRsxatQo1/vMb3AmTJggWrVqJY4cOeJ6nThxwvU58xq8U6dOiUaNGomhQ4eK9evXi71794ovvvhC/PTTT65luC0LzvHjx93a7LJlywQAsWrVKiEE222wnn76aVGrVi2xcOFCsW/fPjFr1iyRkJAgXnnlFdcybLPBu/3220XLli3F6tWrxZ49e8SECROEw+EQhw4dEkIwt/5SaY7gTyxV4aRbQ507dxbZ2dmuf5eUlIjU1FSRm5trYFTy8OxQpaWlom7duuKFF15wvXfmzBlht9vFxx9/LIQQYufOnQKA2Lhxo2uZJUuWCJvNJn799VchhBBvvPGGqFGjhigqKnIt8+ijj4oWLVq4/n377beL/v37u8XTpUsXMWLECE3LaKTjx48LAGL16tVCiLJcRkdHi1mzZrmW+eGHHwQAsW7dOiFE2YAXEREhjh496lpmypQpwuFwuPL5r3/9S7Rq1crtuwYNGiT69Onj+rfZ236NGjXEO++8w5xq5OzZs6J58+Zi2bJl4vrrr3dNupnf4E2YMEG0bdvW62fMa2geffRRce211/r8nNsy7YwaNUo0bdpUlJaWst2GoH///mL48OFu7/3lL38RgwcPFkKwzYbiwoULIjIyUixcuNDt/czMTDFu3DjmNkgyzxH8icUfvLxcI8XFxdi8eTOysrJc70VERCArKwvr1q0zMDJ57du3D0ePHnXLWVJSErp06eLK2bp161C9enV07NjRtUxWVhYiIiKwfv161zLdu3dHTEyMa5k+ffpg165dOH36tGuZ8t/jXMZMdVNQUAAAqFmzJgBg8+bNuHTpklu509PT0bBhQ7f8tm7dGnXq1HEt06dPHxQWFmLHjh2uZSrLnZnbfklJCWbOnInz58+ja9euzKlGsrOz0b9//wo5YH5Ds2fPHqSmpqJJkyYYPHgwDhw4AIB5DdX8+fPRsWNH/PWvf0VKSgrat2+Pt99+2/U5t2XaKC4uxocffojhw4fDZrOx3YbgmmuuwYoVK7B7924AwPfff4+1a9eiX79+ANhmQ3H58mWUlJQgNjbW7f24uDisXbuWudWITHn0JxZ/cNKtkd9++w0lJSVuAz8A1KlTB0ePHjUoKrk581JZzo4ePYqUlBS3z6OiolCzZk23Zbyto/x3+FrGLHVTWlqKnJwcdOvWDRkZGQDKyhwTE4Pq1au7LeuZ32BzV1hYiIsXL5qy7W/fvh0JCQmw2+24//77MWfOHLRs2ZI51cDMmTOxZcsW5ObmVviM+Q1ely5dMH36dCxduhRTpkzBvn37cN111+Hs2bPMa4j27t2LKVOmoHnz5vjiiy/wwAMP4J///Cf+97//AeC2TCtz587FmTNnMHToUAAcD0Lx2GOP4Y477kB6ejqio6PRvn175OTkYPDgwQDYZkORmJiIrl27YtKkSTh8+DBKSkrw4YcfYt26dThy5AhzqxGZ8uhPLP6I8ntJIpJWdnY28vPzsXbtWqNDMYUWLVpg69atKCgowGeffYYhQ4Zg9erVRoelvIMHD2LUqFFYtmxZhbMEFBrnGSwAaNOmDbp06YJGjRrh008/RVxcnIGRqa+0tBQdO3bEM888AwBo37498vPz8eabb2LIkCEGR2ce7777Lvr164fU1FSjQ1Hep59+io8++ggzZsxAq1atsHXrVuTk5CA1NZVtVgMffPABhg8fjvr16yMyMhKZmZm48847sXnzZqNDI4nxTLdGateujcjIyApP1Tx27Bjq1q1rUFRyc+alspzVrVsXx48fd/v88uXLOHXqlNsy3tZR/jt8LWOGuhk5ciQWLlyIVatW4YorrnC9X7duXRQXF+PMmTNuy3vmN9jcORwOxMXFmbLtx8TEoFmzZujQoQNyc3PRtm1bvPLKK8xpiDZv3ozjx48jMzMTUVFRiIqKwurVq/Hqq68iKioKderUYX41Ur16dVx55ZX46aef2G5DVK9ePbRs2dLtvauuusp1+T63ZaH75ZdfsHz5ctx7772u99hug/fII4+4zna3bt0ad911F0aPHu26wohtNjRNmzbF6tWrce7cORw8eBAbNmzApUuX0KRJE+ZWIzLl0Z9Y/MFJt0ZiYmLQoUMHrFixwvVeaWkpVqxYga5duxoYmbwaN26MunXruuWssLAQ69evd+Wsa9euOHPmjNvRw5UrV6K0tBRdunRxLbNmzRpcunTJtcyyZcvQokUL1KhRw7VM+e9xLqNy3QghMHLkSMyZMwcrV65E48aN3T7v0KEDoqOj3cq9a9cuHDhwwC2/27dvdxu0li1bBofD4drJrCp3Vmj7paWlKCoqYk5D1KtXL2zfvh1bt251vTp27IjBgwe7/p/51ca5c+fw888/o169emy3IerWrVuFn2PcvXs3GjVqBIDbMi1MmzYNKSkp6N+/v+s9ttvgXbhwARER7rv4kZGRKC0tBcA2q5Vq1aqhXr16OH36NL744gvcfPPNzK1GZMqjP7H4xe9HrlGVZs6cKex2u5g+fbrYuXOn+Pvf/y6qV6/u9lRNqzl79qz47rvvxHfffScAiMmTJ4vvvvtO/PLLL0KIskfwV69eXcybN09s27ZN3HzzzV5/DqB9+/Zi/fr1Yu3ataJ58+ZuPwdw5swZUadOHXHXXXeJ/Px8MXPmTBEfH1/h5wCioqLEiy++KH744QcxYcIEpX5WwZsHHnhAJCUliby8PLefXLlw4YJrmfvvv180bNhQrFy5UmzatEl07dpVdO3a1fW58+dWevfuLbZu3SqWLl0qkpOTvf7cyiOPPCJ++OEH8frrr3v9uRWztP3HHntMrF69Wuzbt09s27ZNPPbYY8Jms4kvv/xSCMGcaq3808uFYH6D9dBDD4m8vDyxb98+8fXXX4usrCxRu3Ztcfz4cSEE8xqKDRs2iKioKPH000+LPXv2iI8++kjEx8eLDz/80LUMt2XBKykpEQ0bNhSPPvpohc/YboMzZMgQUb9+fddPhs2ePVvUrl1b/Otf/3ItwzYbvKVLl4olS5aIvXv3ii+//FK0bdtWdOnSRRQXFwshmFt/qTRH8CeWqnDSrbHXXntNNGzYUMTExIjOnTuLb7/91uiQDLVq1SoBoMJryJAhQoiyx/CPHz9e1KlTR9jtdtGrVy+xa9cut3WcPHlS3HnnnSIhIUE4HA4xbNgwcfbsWbdlvv/+e3HttdcKu90u6tevL5599tkKsXz66afiyiuvFDExMaJVq1Zi0aJFupU7HLzlFYCYNm2aa5mLFy+KBx98UNSoUUPEx8eLW265RRw5csRtPfv37xf9+vUTcXFxonbt2uKhhx4Sly5dcltm1apVol27diImJkY0adLE7TuczNL2hw8fLho1aiRiYmJEcnKy6NWrl2vCLQRzqjXPSTfzG5xBgwaJevXqiZiYGFG/fn0xaNAgt9+RZl5Ds2DBApGRkSHsdrtIT08Xb731ltvn3JYF74svvhAAKuRLCLbbYBUWFopRo0aJhg0bitjYWNGkSRMxbtw4t59NYpsN3ieffCKaNGkiYmJiRN26dUV2drY4c+aM63Pm1j8qzRH8iaUqNiGE8P+8OBERERERERH5i/d0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ64aSbiIiIiIiISCecdBMRERERERHphJNuIiIiIiIiIp1w0k1ERERERESkE066iYiIiIiIiHTCSTcRERERERGRTjjpJiIiIiIiItIJJ91EREREREREOuGkm4iIiIiIiEgnUUYHYEalpaU4fPgwEhMTYbPZjA6HiIiIiIjIMoQQOHv2LFJTUxERYfx5Zk66dXD48GE0aNDA6DCIiIiIiIgs6+DBg7jiiiuMDoOTbj0kJiYCKKtkh8NhcDRERERERETWUVhYiAYNGrjmZUbjpFsHzkvKHQ4HJ91EREREREQGkOVWX+MvcCciIiIiIiIyKZ7pJiIiIiIiTTnPMAohDI7EnaxxkftZabPVD890ExERESnOZrO5XkSyEEJI2SZljYv+mGybrX446SYiJRg9+HKHVj6sC5KF0WMDz9zJycrbDZvN5tYeZcmBZ1xWJWO7NPNZboCTbiLlyTZo6sFZRqPLatajryqSpU1QGU4uhOFnzmSc4IRL+fYnS9l5IOQPsubA6D4rA9nKL2tb0QIn3RQ2Mm0M9RLuMlpp4mHkhNfsR199kW0n1ok7s3+QqY5YH2XCXRee32fVenAe+JCJbPFYnQzjpAzKHyh0/ltWMscWKE66LcaoHbTyl/OYqQOVV75c4Sij58TDzHl1ltHIHRir7jzJ2r7KtwnZYgsXWQ4+eObfSvUhy4TX6DYgG9naoJXHKSdZcsC+4k6WfHi77F+W2LTCSbeFyLCDZrYO5CncR9plmIwaQYYNtwwx6EmWgx1UOVkuKbZyW7FimWUiy4GP8qx+37DVy68is+/TyICTbosx4uyQVQdfDmD6CHdbssLRV5VYdTypilE54ThXEbev4cccqMOoMYN9pYy3/BudF6tsRzjpprCT5RIjLXkO5noPYNx4kBHM1m9VJlNdcCySjxm3s4EwsvxWzntVZBwrrNhXZK0Hs+Ok2+L0HmisNpAZyYwbjsoOLoTzvnmSe4NoxrbvD29XYMiQB1niMBpzYF3exkv2C+Mw7/5hnvTFSbeFhWsnWuaddb3pMYBxUAxvm7Ji+5X1SgpZ47Iq1odv4cgL80+qMmI/hn2lcrxFSX+cdFsEN87hp2e+WZdkFCttIFXFOgoPblflZ/TPt1FF7DPkqbI2YaYrRDjpJt0as1k6CcnL6Kc1W62Nc2dJfqwjuXD7qq/KDnzw59uMIdvBKPaVwDBf+uGk2+L0HhhlGnj1UtUGRssBjIPhH/iwOmth25cL66Nq3L6SFfnbLsM5hrCvlKlqv8aIX4exEk66yRBWOUuoxwDGjYc8rFoXRvVdq+Y7GOGoI6vXh9XLrwor7GvIxJ98s++Qkz9twSzthZNu0mUCzI0chcrfM81GPqzOiu3cLBs/lcl2tsJXDGbvH/5OLvTYvvq7o2r2OqhKOPsCr46SD/tK4GTMhWzxBIuTbtINNz5ltBrAjNrBkxkfVmcNbPty4eSCiLQg05jNMS28rLgd4aSbSCFWugzHLOVQkVFXGFSG7SFwRu/Qss7+oFVdGF2nKgrHATl/188+8QfZcmGFvhVIzq2Qj3DjpNsC/DmapOVGiR3Vu3DlxSz5D2Qnhg+r0w7vxzMHveookP5h5r4UyFkaresikPWxr4aPjA8QM4Isbc6KZ1KrIsvBoUD7gFnqkZNu0oVZOohWQs0HNx7hZdTONFUUyMbZKvVh9NkKq+S5MsHkINS6CObvOcH7g9lzIYtAx2zWi7z0rBsr9l1OuskwZtlxM0s5VBeu++a1/k6Vhav8PIPkzqizFVbJrz+MOlPD7c0fZDkgx34hn2BOVLBvuZPhaiknsxyc4aSbXLRo1IEMdGboQOE4omuGPAXDqEsoueH1D/NkTby0OTTBjufB/h3rIDzYL/5gxFUgWpAhBr3JUjdm7wO+cNJtAbI2brMcuQoHK27QVWgbZmzDMrWfQM9WyBS7LIxso2brG6Fyts9gr6iRZYdZZTL8PKqZ6yTYs5hax8BtQUWy1E2wzFCnnHRbQLgumTXzhkQrge4AB7PxsGo9hDq5CHZDbYYNQXkq348nUyx6Mup+YrO19VAEm4tAJ96hTLjNTpbLh1k3oQvnT6tWFgN5p+W2Ndg8m2H7rvyk+/fff0dRUZHRYZhGqIOOLBvBcLHy4KG3cOY21Mk6aY959c6IsxWhXNps1nrUYue+qnVoMeFWfRtbGaNPEPCS/4pkKBv3y7wL14FCX0I9cCtD2wqVcpPuvLw8jB49Gp07d0ZCQgKqVauG+Ph4JCYmonPnzsjJyUFeXp7RYUolHGdFjN74GUXPHWArn3k1Ymcm1A2SWch0CavVDuLpzYizQKwT76rakdXqDLfq21itGfnzbU5mrpNQxxgjD4Cbfawy8ioAo69ikIVNKNDKLl26hKlTp2Ly5MnYv38/atasiczMTDRp0gQ1atSAEAKnT5/Gvn37sGXLFpw6dQqNGjXCQw89hBEjRiA6Ojqs8RYWFiIpKQkFBQVwOBxh/W5vgr1EOdDH+Qe78VGgCfoUSvyV/W2oO1xWzysQ+BOvrZprT+EYL1SKw0xCuV2F/UMfvnYktcwZ66CiUHMS6n32rA/vgs2rlgepzFo3WpTNiG1IKN8t3XxMhUl3o0aNUFxcjCFDhuD2229HZmZmpctv3rwZs2bNwvvvv4+YmBjs378/PIH+/2SqZL0mhZ7LAeY/Sqi18jtb3s56hLpDYOX68LdNatF2zZTrUA6eAdqNAeEYt1SlxWQhXAekzMzs7UwF4Tw4q+V3m5lWEzsgfAfOPdfFevXNyLoJhkzzMUCRSffUqVMxdOhQ2O32gP6uuLgY06ZNw4gRI3SKzDvZKjlY/nQWq2+4tNzAOKmcD62EY8Nt9MbAbLTsy6qPC3oK1xk6njkyD9aBd0ZeoWfWOtGqXP6egOB23H9ab6OdvK1TqxNInuvkmW6qQKZK1nMHjYOdvBtOWePyl14bB088Mu7OyDNHWsSgxd9bQWU7RFrvLJm1PsxaLpUYMfnlfk94VXVFYPn3tfo+s9atXreB+SJDHmWajwFAlNEBkNycD7Yov6HRcqdM9QFO1thljctfWsavdy5Uz3V5oZQl1IfgANo8KMVM9eGNFmNm+Z1XbzlXqf8ZQbXtlmrx+kOPA7PhuvrDuS6z1Qmgfbl8jVV65c6MdeKkR9nCmS8z9Bnlnl4ebs8++yxsNhtycnKMDiUoWjRQIUSFI4zl37MqmZ+kKHNs/lApfpVirUqoZQll4q3lmXLyj3Mc93xpyYz1YfVtnwy0qgNv+zeePE88kG96Tob1GqPKM+N45aR62bQ4sG80JSfdERERiIyMrPRVrVo1tGjRAvfffz9+/vnnoL5n48aNmDp1Ktq0aaNxCcJHywaqx4Cn8gZM5dhlx9yqLdBxhzu0/lMtR6rF6w/VdvxYB1XzPKNa/uX8nPs+VVOtb3gya70A5iib6mVQctL9xBNPoE2bNoiMjMSf//xn5OTkICcnB/3790dkZCTatWuHBx98EC1btsS0adOQmZmJ77//PqDvOHfuHAYPHoy3334bNWrU0Kkk+pO9gao8QMscu+z1XhWZc+tJ9VyXp9WVMYD/daj1hNtM9eGNSn0DUC9ef6jWxlgH/q8zHFd/AOasE0C9vuHJrPUCmKNsqpdByXu6U1NT8dtvv+HHH39EkyZN3D776aef0KNHD7Rs2RIvvPAC9uzZg65du+Lxxx/HokWL/P6O7Oxs9O/fH1lZWXjqqacqXbaoqAhFRUWufxcWFgZWIB3Jfg+EzLGpTPZ6r4pqsauebyetyuHtWRC+vq+yz4NhlrrwxcxlU4VqbUylWP2lWh14Ujl2X1SvE7MzQ92oXgYlz3S/8MILyM7OrjDhBoBmzZohOzsbubm5AIDmzZvj/vvvxzfffOP3+mfOnIktW7a41lGV3NxcJCUluV4NGjTw+7tI3SNXMnd+mWPzh2ptQvV8O2l9+WRll2zqdUm5WerCG9X6BWDO+lCtTCq2m6qoVgeezFgnZqB6u/LFLO1N9XIoOek+dOgQoqJ8n6SPiorCwYMHXf9OS0tzOxNdmYMHD2LUqFH46KOPEBsb69ffjB07FgUFBa5X+e82mgoDiAoxeiNz55c5Nn+o1iZUz7eTHuWo7JJNXrYZGNX6BWDO+lCtTCq2m6qoVgeezFgnZiiT6u3KFzPUDaB+OZScdLdq1QpTpkzBsWPHKnx29OhRTJkyBa1atXK9t3fvXtStW9evdW/evBnHjx9HZmYmoqKiEBUVhdWrV+PVV19FVFQUSkpKKvyN3W6Hw+Fwe8lChQFEhRi9kbnzyxybP1RrE6rn28kM5TBDGXxRrV8A5qwP1cqkYrsxOzPWiRnKpFrf9pcZ6gZQvxxK3tP94osvol+/fmjWrBkGDhyIZs2aASi7n3vu3Lm4dOkS3nvvPQDA77//junTp6Nfv35+rbtXr17Yvn2723vDhg1Deno6Hn30UURGRmpbGJ2ZdQCRgez3L8keny8qxq1izN6YoRxmKIMvqpbLbHWiWnlUitVfqpdJ9fi9MUuZVOvfVqJ6vSg56e7Rowe++eYbTJgwAbNnz8bFixcBALGxscjKysLEiRORmZnpeu/w4cN+rzsxMREZGRlu71WrVg21atWq8L7sVBk4VIjRG9njlj0+X1SMW8WYPakyXlTFDGXwRdU6UjFms1G17fiienlUj98bs5TJDGXwZJYyqd7GlJx0A0D79u0xf/58lJaW4vjx4wCAlJQUREQoecW8LlRpmKp2Itnjlj0+X1SMW8WYPakef3lmqA9vVC2T2epDxbKoGHNlVC+P6vF7Y5YymW28AsxTJtXLoOykGyj7qa4tW7bg+PHj6Natm24T7ry8PF3WqzdVOpkKMXqjatyyUzGvKsbsSZXxwh9mKYcnVetIxZgro2I9qBhzZcxQHjOUoTyzlMcMZfBkljKp3saUPS386quvol69eujWrRv+8pe/YNu2bQCA3377DbVr13bd021lqjRMVR+MIHvcqtS/J9nz6o2KMXtStb14Y4b6MBOz1YeKfUXFmCtjhvKYoQzlmaU8ZhuvAPOUSfU2puSke9q0acjJyUHfvn3x3nvvuVVC7dq10bNnT8ycOdPACOWgSidTtRPJHrcq9e9J9rx6o2LMnlRtL96YoT68UbVcqsbtjar9RNW4fTFDecxQhvLMUh4zjVdOZimT6m1MyUn3Sy+9hJtvvhkzZszAgAEDKnzeoUMH7Nixw4DI5KJKJ1OxE6kQsyr170mF3HpSMWZPqrYXb8xQH96oWi5V4/ZG1X6iaty+mKE8ZihDeWYpj5nGKyezlEn1NqbkpPunn36q9CfAatasiZMnT4YxIjmp0slU7EQqxKxK/XtSIbeeVIzZk6rtxRsz1Ic3qpZL1bi9UbWfqBq3N2Ypi1nK4WSW8phpvHIyU5lUbmdKTrqrV6+O3377zefnO3fuRN26dcMYkZxU6WQqdiAVYlal/j2pkFtPKsbsSdX24o0Z6sMbVculatzeqNpPVI3bG7OUxSzlcDJLecw0XjmZqUwqtzMlJ9033ngj3nrrLZw5c6bCZzt27MDbb7+Nm266KfyBSUaVTqZiB1IhZlXq35MKufWkYsyeVG0v3pihPrxRtVyqxu2Nqv1E1bi9MUtZzFIOJ7OUx0zjlZOZyqRyO7MJBWvi8OHD6NKlC4QQGDBgAN566y387W9/Q0lJCT7//HPUq1cPGzZsQO3atQ2Jr7CwEElJSSgoKIDD4TAkBtWo9jMAqsWrElVzq2rcZmTGulC5TCrHTkTWYrbxymzlCYRs8zElz3SnpqZi8+bN6Nu3Lz755BMIIfDBBx9gwYIFuPPOO/Htt98aNuGWiUpHg1QbEFSIV6X6L0+F3HqjatxOqrYXb1SvC29ULpPKsXtStZ+oGrc3ZimLWcphNmYarwDzlUflfqPkmW5PJ06cQGlpKZKTkxERYfxxBNmOrKhAtSNxqsWrElVzq2rcZmTGulC5TCrHTkRVM1MfN1NZAPOVJxCyzceijA5AC8nJyUaHICWVOpoqcTqpEq9KbcBJtXidVI3bScW24otZylGeymVSOXZPqvYTVeP2xixlMUs5AHP1cTOVBTBfeVTuN8afFibdqNQoVbtcRJV4VWoDgDp59Ubl2AH12kplVK8Lb1Qvk+rxO6naT1SN2xuzlMUs5QDM078Bc5XFjFTuN0qc6Y6IiAiqE5SUlOgQjTpUOhqkSpxOqsSrUhsA1MmrNyrHrlo7qYqZyuKkeplUj98MzNLPWQ75mKUcgLnKApirnQFql0eJSfcTTzxRYdI9Z84c7NixA3369EGLFi0AAD/++CO+/PJLZGRkYODAgQZEKheVGqVqnUiVeFWIsTxV8uqNyrGrGndlVK4PMzJLfahcDlXj9sRyyEflfmF2ZqsXlcujxKR74sSJbv9+6623cPz4ceTn57sm3E4//PADevbsidTU1DBGKB/VBkCVYgXUiZftIHxUjl21duIPs5VH9TpSOfbyVC6H6m3IjMxSJ2YoQ3lmqRfAXGUB1C6Pkvd0v/DCCxg5cmSFCTcAXHXVVRg5ciSef/55AyKTh2oNUrV7aFSJl+0gfFSOXbV24g+V68Mb1evILPWhcjlUb0NOKteBJ9aJnMxSL4C5ygKoXR4lJ92HDh1CdHS0z8+jo6Nx6NChMEYkH9UGQNU6kWrxqkLlvKocu2rjhT9Urg9vVK8js9SHyuVQvQ05qVwHnlgncjJLvQDmKgugdnmUnHRnZGTgjTfewK+//lrhs0OHDuGNN95A69atDYhMHqoNgKp1IlXiVSVOM1A516qNF/5QuT68Ub2OzFAfqpdB9TbkpHo9lMc6kZNZ6gUwV1kAtcujxD3dnv773/+iT58+uPLKK3HLLbegWbNmAIA9e/Zg7ty5EELgww8/NDhKY6l2z4NKsQLqxKtKnE6qtdvyVI0bUDvvvpitPKrXkcqxO6leBtXbkJMZyuDEOpGTWeoFMFdZALXLo+Sk+9prr8X69esxfvx4zJkzBxcvXgQAxMXFoU+fPnjyySd5pluxBqlSJ2Ks+lEpVk+q5bo8VeOujMr14Y3qZTFDfaheBpVjd1K9DjyZpSysF3mZqSyA2uWxCZWjB1BaWooTJ04AAJKTkxERYfwV84WFhUhKSkJBQQEcDochMZhtACRrYLs1BvMuP9YRhYptSD6sEzmZqV7MVJZAyTAfK0/JM93lRUREoE6dOkaHQRpQZWBQJU5ArVgBtY9gAurl20nFmKuial34onpZzFAfqpdB5didVK8DT2YpC+tFXmYqi5Oq7c3408J+aNmyJd5//30UFxf7/TdFRUWYNm0aWrZsqWNk8lKxMaoSsypxAmrFCqj/MBbV8u2ket69UbUufFG9jsxQH6qXQfU2BKhfB57MUCcA60VWZimHJ1XbmxJnuocOHYoxY8Zg1KhRuOmmm5CVlYXMzEw0btwY8fHxAIDz589j37592LRpE5YvX44FCxYgJiYGjzzyiMHRG0PFo0CqxKxKnIBasQLqDqROquXbScWYq6JqXfiielnMUB+ql0Hl2J1UrwNPZiiL2eoEMEe9AOYphydV25wy93SfPXsW7777LqZPn45t27a5jt5ERZUdN7h8+TKAsgaWkZGB4cOHY/jw4YZcwy/bPQREqlB1IFWdGfNupjKZqSxkHLYj+bBO5GSWejFLOTz5Wy7Z5mPKTLrL279/P7755hv8+OOPOHnyJACgVq1aSE9PR9euXdG4cWND45OhklXsaKrErEqcAGMNNzOUgUgvqvcP1eM3A9aBfFgnJCsZ5mPlKXF5uae0tDSkpaUZHYbUVBwAVYxZdirlVKVYfVG1DGbdaTJLucxSDtXLoHr8gPptSeXYvVG9PgDz1QlgjnoBzFMOT6qWS4kHqVFgVH1wgipxq9bRVcmrKnFWRtUyqNam/WWWcpmlHKr2DyfV4wfUb0tmqIPyVK8PwHx1ApijXgDzlMOTquXipNuEVG2MqsRtxg2MDFSp/8qoWAYzt2ezlM0s5VCxf5SnevyA+m3JDHXgiXUiJ9XrBTBHGbxRtVycdJuQqo1RlbhV28CoEq8q9V8ZFcugSvsIhlnKZpZyqNg/ylM9fkD9tmSGOvDEOpGT6vUCmKMM3qhaLk66TUjVxqgK1TYwqsRrhnarYhlUaR/BMEvZzFIOFftHearHD6jflsxQB55YJ3JSvV4Ac5TBG1XLpfyke/LkyUaHIB1VG6MqA7cqcTqpEq+q7bY8FcugSvsIhpnLpiIV+4eTyrGXp3qfMEs9lMc6kZPq9QKYowzeqFou5SfdTz31lOv/b731VgMj8Z/NZqvw0pKqjVGFgVuFGD2pErOq7bY8FcugSvsIhlnKpmK78kblcqgce3kq9wlVn1hcFZXrBDBP3/Cker0A5iiDN6qWS/lJ91VXXYXnnnsOu3fvxrJly4wOx6fyE2whhNvL+bmW36UiFQZuFWL0pErMqrbb8lQsgyrtIxh6lU3vA6fevs8MVC6HyrGXp3J/Vzn2yqheLrP0DTNSvW35omq5lPyd7vJmzJiBiRMnIisrCxcuXEC7du3QunVrtGnTBm3atEHr1q2RmppqWHzlByNfjcRz4q1qY9KC7EeyZY/PG1ViViFGM1KlfQRD67L5Gs/LT7z1yKVZ6scs5VCZyv1d5dgrY9Zyqc4MdWLmtqVi2WxCtYgrkZCQgOXLl2Pbtm3Ytm0btm/fju3btyMiIgK//fabX+vIzc3F7Nmz8eOPPyIuLg7XXHMNnnvuObRo0cLvOAoLC5GUlOT6dyAp5sSbrErFAZTkplWb8ufgaSDLBfP9ZugbZikHEZkfxyv1OedjBQUFcDgcRoej5pnuZs2aYciQIRg/frzb+0ePHkVCQgKuvvpqt/cPHTrk97pXr16N7OxsdOrUCZcvX8bjjz+O3r17Y+fOnahWrVpAcQZTyUKIkC/VUXmgkD122ePzRsWYVaZavlWLNxBaTrj9WVf5q5a0zKtZ60clZuknKpdD5dgro3K5VI69KqqXy8x1A6hZPiUn3Xv37sWmTZuwefNm7N69Gw6HA1dddRWaNGnidfkrrrjC73UvXbrU7d/Tp09HSkoKNm/ejO7du4cUdyBUbExEoTBLe9e6HJ4H4cySp3DQahwNdB3Og6dafL+ZtgV6lMPXQWqtv4t14FtlJwq0/D6z1IGZmLlOVB97VY7drJScdAPAwoULsXDhQrczC61atcLjjz+OO+64Q7PvKSgoAADUrFlTs3VWJdSz3Sp3NK0vBdV63SrmVoWYVd+4lafnJc163Dtslrx7Y+SEV4urlpzrMZNwXPKvRz8xyxil13MOvK1T6ys+zFIHnvQ+UKvn95m1TgD1x14z1w2gZv0oO+mOjo7GuHHjcP3116O4uBibNm3CZ599hsGDByMvLw9vvvlmyN9RWlqKnJwcdOvWDRkZGT6XKyoqQlFRkevfhYWFIX+3c4ct0EaleicLNX5fOwBWP+ske9wyx2YEX+3Y8+Fd3pYJ5rvMnP9gy6fVhFmLMc1M9ROOS/71uMzfTHWgBX/Gn/L1wPz5pvWBCcB3vWh9QMrM9apHuw3XVSFWoOK4ouyke/To0W73dGdlZeGxxx7Df//7Xzz88MPo2rUrhgwZEtJ3ZGdnIz8/H2vXrq10udzcXDz55JMhfZdWVGuAWqpsQ6Ll5Z4q0nqDrvX6zVQvWuTCn/Vo1abNknc98Ayd9vQ6sOoNL/OvKNzPOXAup0X+zJB/b8I14S7/GftF1bRqt0DVD9nkVWzWoOTvdMfFxfm8T3v06NEYNGgQXnvttZC+Y+TIkVi4cCFWrVpV5T3hY8eORUFBget18ODBkL7bKZjLE1X/vcRgB4lANzbBUnUQ0+LhfM6Nj+dLi/WbSSi5CGZnNhRWqLdgz3LLsuOj6pijh2B2SjlGVWTEbQ9a3G5h1jrUolzlt8/+YL/wj9YHqSq7OkfrOjF73aq4bVRy0p2eno5Fixb5/Py6667Dzp07g1q3EAIjR47EnDlzsHLlSjRu3LjKv7Hb7XA4HG4vCo7eE+JQBzWzD2LeBHIpZ7BUHDx90fPAUVV/SxXJkhuOOWWMOAjBMUo7Wl2pEAyz1kGoBySC/VteXl41rQ4UGXEwhHUjHyUn3SNGjMDSpUvxj3/8AxcvXqzw+ddff434+Pig1p2dnY0PP/wQM2bMQGJiIo4ePYqjR496/Z5wUbFhhVOgOwGhTIpUHcT0ngjyYMYfwr1TyUvLtaVHP2cd/cGoMYJXhfwh1O1BqN/L7URFRhysdf6dERN+VYTrVhhv38krQ8zHJhTdoo8ePRqvvPIKatWqhX79+iEjIwMxMTFYvnw5lixZgqFDh+Ldd98NeL2+Gum0adMwdOhQv9ah9Y+xqzzZC4dgHzgHmG+H1pdQHiYVyN8Fm1cztXGj2qMVH7zoj2DasB45Yd8IjVb3nwKsg3BtD7Rcj9nqwJORdRLqVVasF+3/1vn3gDVPFGlF6/lYqJSddAPAV199hf/+979Yvnw5zp0753p/4MCBmD59umEJNnLSbYZOFq7yyrIzHg7hnAiqnCctGLVDyR3Z0Ol9MI51ZHwOzJbPcNGyb1jtoLc/jD55wH7hnYoHqKykqvzINulW9unlQNm929dddx1KSkqwf/9+nD17Fg0bNgzrb2qHg/PyH3Y87Vklr6FcehYMKx3Q8BTsjpMW32umPGolXLef+Eu2eKzIyuMTEHx5tMpBMJc0m60OPIV7G+2N0QfEZCTDM1aMnviTdpSedDtFRkaiadOmRodBYRbqgBLohl/lwSvYy8SDEeo9YmagysRK5TattXC0WU42Aqd1vXB8ChzzpT+jDwRxbPJOxQNUJC8lH6RG3llhANSDvwOa1QY+PnhIf0ZPKFhH7mQbP804phu5A1ueVQ64akWPhwty/JEP6yQ0euUvmPVaYdxSrYycdCvCnw2Uao3PF3/KoeUluVYQyA6OFrm18qWbgbJy2cNBxp172eIJJxkOChl1C4gswnXVk5Y4Tv5Br21moOtknXinxwGqQMnSb/WmWjk56TYR1RqfL/6WgwN+YGS93Jn1qD1/+pDVD3aUF86xU9Z+GC5Wuq1HVoG2dz3rgFealZGpnbNO/qBivZC8OOkmgjUGs3CX0d+dazPmPpxXawTz3YEsZwb+lFXGfJixb8jEqvmV5eoPGfucUWSoD4B14k0gByH0yh+vQjAHTroVIsuG0mh6PEAk3N8pK6uUU28qXK1hpbFExrLKGFO4GHlQKpAYrM7KbTTcAjlIHY62y7pXG+tPTpx0E5GuOPgbg3n3jxF5svqET4WDUuXJEocROMGzHiu392DJ+usXZqdaTjjpJukY1YlU6rh60KP83Hh7p/fZCuY9MMyXNfmzrbH6dkFvvNLMf2yLcmMbpapw0q0YXzsJVtkoyfLUTrNiHrSh2tFXMgbbiHdW2Z7JjHUgp3DWCccn/4Q7T6wXdXHSTUS64gTUXThzwbyXqexgpVGq2nnmpCd82E+MxW2EfDg+BSZcuWDO1cZJNykjHA/WMfOGv7LyGVVuq264w1Hmyr7DzO08UFZsf/QH1j+pgGM2+cuq+1Uq4KRbQWafHFaGA4l+mFtrYX3LwYpjeVUHANk29cc6UI8RdWLF8SkQRp6wIPVw0k1SkunAAndAtCFLfRpJ1t9KtyIZ8sJxRR4ytAers3odyDZec3wqU1W9hDtPrBd3svWbynDSrTBnI7PCpDBcHUqlzquVcLQfs7dPb3y1JSvmQhae9cG6IMB3O7DCtlUWldWB1bEdEpkDJ92Kcg7AZt8glS8fNzrqK1+fZm+7MmGu3ccPmfJhxQN9vnByYTwZ60C2eKzE2/jE8aqM0Q/iZD2oh5NuhTk3RGbdIJU/sBDOMpYfzMw4qBk18fVWh2Ztu94YtTPr+Z1mbNOBcJZf5rZn9ToyCvNuLE4kKpI1HzKPn+HEPMgtKSnJ6BDccNKtOLN3eCGEYWVUYec8UDJMfG02m7Q7EnqQsbxmatOBcI4nKpRfhRhD4TnBMrqPmD3f3shWB+T9wIMMbZNtQ40r9WSNKxxUuCKDk24iL2TYyOnJqIlg+byaPceAPOV17sjJuBEinuFzkmFMsNKzUrwxusxmv9IsELKUX9Zbc8JJhhMW3r6fz40p4+uKvoKCAiPC8YmTbiIfVDkjFiijJ4JmzasvspVXpljInRUPjMhUZiv3DVnqwMmMV5oFQrbyl5/gyRKTUWTrK1TG8+SCjO00yugAiCj8ZByMSF+sc7lZcadWxjJb7aoDWevAymQtv6xxhZNsfQWw7lU53sieB066iYiIJCD7DoMeZCyzjDHpyWrlJQqGjP1EhbO79AdeXk5ERERERKQYTrTVwTPdRERERERECuLEWw08001ERERERESkE066iYiIiIiIiHTCSTcRERERERGRTnhPtw6c91YUFhYaHAkREREREZG1OOdhstzzzkm3Dk6ePAkAaNCggcGREBERERERWdPJkyeRlJRkdBicdOuhZs2aAIADBw6EVMmdOnXCxo0bQ45Hi/XIso7CwkI0aNAABw8ehMPhMDQWM9WPVnnVIhat1iFLLGbMrSz1I9N4oNV6ZFkHc6vfOmTKrZnqh2OtfuuRqc1qtR5ZYmFu9VtHQUEBGjZs6JqXGY2Tbh1ERJTdKp+UlBRSB4qMjAx5w6HVemRZh5PD4TA8t2arHyD0vGoVC3OrXyyyrEPL9cgwHmi1HlnW4cTcar8OJxlya7b6ATjW6rkeGdqsVuuRKRaAudVjHU7OeZnR5IiCvMrOzpZmPbKsQysylUemWLQgU3lkikULspRHpvrRgkzlkWUdWmFu9SNTeWSKRQuylEem+tGCTOWRKRYtyFQeWdYhG5uQ5e5yEyksLERSUhIKCgo0O0pDZZhbfTCv+mFu9cPc6oe51Q9zqw/mVT/MrX6YW/3Illue6daB3W7HhAkTYLfbjQ7FdJhbfTCv+mFu9cPc6oe51Q9zqw/mVT/MrX6YW/3Illue6SYiIiIiIiLSCc90ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJt8Zef/11pKWlITY2Fl26dMGGDRuMDslQa9aswYABA5CamgqbzYa5c+e6fS6EwBNPPIF69eohLi4OWVlZ2LNnj9syp06dwuDBg+FwOFC9enXcc889OHfunNsy27Ztw3XXXYfY2Fg0aNAAzz//fIVYZs2ahfT0dMTGxqJ169ZYvHix5uUNp9zcXHTq1AmJiYlISUnBwIEDsWvXLrdlfv/9d2RnZ6NWrVpISEjArbfeimPHjrktc+DAAfTv3x/x8fFISUnBI488gsuXL7stk5eXh8zMTNjtdjRr1gzTp0+vEI9Z2v6UKVPQpk0bOBwOOBwOdO3aFUuWLHF9zpxq59lnn4XNZkNOTo7rPeY3OBMnToTNZnN7paenuz5nXkPz66+/4m9/+xtq1aqFuLg4tG7dGps2bXJ9zm1ZcNLS0iq0W5vN5vqNXrbb4JSUlGD8+PFo3Lgx4uLi0LRpU0yaNAnln53MNhu8s2fPIicnB40aNUJcXByuueYabNy40fU5c+sfleYI/sRSJUGamTlzpoiJiRHvvfee2LFjh7jvvvtE9erVxbFjx4wOzTCLFy8W48aNE7NnzxYAxJw5c9w+f/bZZ0VSUpKYO3eu+P7778VNN90kGjduLC5evOhapm/fvqJt27bi22+/FV999ZVo1qyZuPPOO12fFxQUiDp16ojBgweL/Px88fHHH4u4uDgxdepU1zJff/21iIyMFM8//7zYuXOn+Pe//y2io6PF9u3bdc+BXvr06SOmTZsm8vPzxdatW8WNN94oGjZsKM6dO+da5v777xcNGjQQK1asEJs2bRJXX321uOaaa1yfX758WWRkZIisrCzx3XfficWLF4vatWuLsWPHupbZu3eviI+PF2PGjBE7d+4Ur732moiMjBRLly51LWOmtj9//nyxaNEisXv3brFr1y7x+OOPi+joaJGfny+EYE61smHDBpGWlibatGkjRo0a5Xqf+Q3OhAkTRKtWrcSRI0dcrxMnTrg+Z16Dd+rUKdGoUSMxdOhQsX79erF3717xxRdfiJ9++sm1DLdlwTl+/Lhbm122bJkAIFatWiWEYLsN1tNPPy1q1aolFi5cKPbt2ydmzZolEhISxCuvvOJahm02eLfffrto2bKlWL16tdizZ4+YMGGCcDgc4tChQ0II5tZfKs0R/ImlKpx0a6hz584iOzvb9e+SkhKRmpoqcnNzDYxKHp4dqrS0VNStW1e88MILrvfOnDkj7Ha7+Pjjj4UQQuzcuVMAEBs3bnQts2TJEmGz2cSvv/4qhBDijTfeEDVq1BBFRUWuZR599FHRokUL179vv/120b9/f7d4unTpIkaMGKFpGY10/PhxAUCsXr1aCFGWy+joaDFr1izXMj/88IMAINatWyeEKBvwIiIixNGjR13LTJkyRTgcDlc+//Wvf4lWrVq5fdegQYNEnz59XP82e9uvUaOGeOedd5hTjZw9e1Y0b95cLFu2TFx//fWuSTfzG7wJEyaItm3bev2MeQ3No48+Kq699lqfn3Nbpp1Ro0aJpk2bitLSUrbbEPTv318MHz7c7b2//OUvYvDgwUIIttlQXLhwQURGRoqFCxe6vZ+ZmSnGjRvH3AZJ5jmCP7H4g5eXa6S4uBibN29GVlaW672IiAhkZWVh3bp1BkYmr3379uHo0aNuOUtKSkKXLl1cOVu3bh2qV6+Ojh07upbJyspCREQE1q9f71qme/fuiImJcS3Tp08f7Nq1C6dPn3YtU/57nMuYqW4KCgoAADVr1gQAbN68GZcuXXIrd3p6Oho2bOiW39atW6NOnTquZfr06YPCwkLs2LHDtUxluTNz2y8pKcHMmTNx/vx5dO3alTnVSHZ2Nvr3718hB8xvaPbs2YPU1FQ0adIEgwcPxoEDBwAwr6GaP38+OnbsiL/+9a9ISUlB+/bt8fbbb7s+57ZMG8XFxfjwww8xfPhw2Gw2ttsQXHPNNVixYgV2794NAPj++++xdu1a9OvXDwDbbCguX76MkpISxMbGur0fFxeHtWvXMrcakSmP/sTiD066NfLbb7+hpKTEbeAHgDp16uDo0aMGRSU3Z14qy9nRo0eRkpLi9nlUVBRq1qzptoy3dZT/Dl/LmKVuSktLkZOTg27duiEjIwNAWZljYmJQvXp1t2U98xts7goLC3Hx4kVTtv3t27cjISEBdrsd999/P+bMmYOWLVsypxqYOXMmtmzZgtzc3AqfMb/B69KlC6ZPn46lS5diypQp2LdvH6677jqcPXuWeQ3R3r17MWXKFDRv3hxffPEFHnjgAfzzn//E//73PwDclmll7ty5OHPmDIYOHQqA40EoHnvsMdxxxx1IT09HdHQ02rdvj5ycHAwePBgA22woEhMT0bVrV0yaNAmHDx9GSUkJPvzwQ6xbtw5HjhxhbjUiUx79icUfUX4vSUTSys7ORn5+PtauXWt0KKbQokULbN26FQUFBfjss88wZMgQrF692uiwlHfw4EGMGjUKy5Ytq3CWgELjPIMFAG3atEGXLl3QqFEjfPrpp4iLizMwMvWVlpaiY8eOeOaZZwAA7du3R35+Pt58800MGTLE4OjM491330W/fv2QmppqdCjK+/TTT/HRRx9hxowZaNWqFbZu3YqcnBykpqayzWrggw8+wPDhw1G/fn1ERkYiMzMTd955JzZv3mx0aCQxnunWSO3atREZGVnhqZrHjh1D3bp1DYpKbs68VJazunXr4vjx426fX758GadOnXJbxts6yn+Hr2XMUDcjR47EwoULsWrVKlxxxRWu9+vWrYvi4mKcOXPGbXnP/AabO4fDgbi4OFO2/ZiYGDRr1gwdOnRAbm4u2rZti1deeYU5DdHmzZtx/PhxZGZmIioqClFRUVi9ejVeffVVREVFoU6dOsyvRqpXr44rr7wSP/30E9ttiOrVq4eWLVu6vXfVVVe5Lt/ntix0v/zyC5YvX457773X9R7bbfAeeeQR19nu1q1b46677sLo0aNdVxixzYamadOmWL16Nc6dO4eDBw9iw4YNuHTpEpo0acLcakSmPPoTiz846dZITEwMOnTogBUrVrjeKy0txYoVK9C1a1cDI5NX48aNUbduXbecFRYWYv369a6cde3aFWfOnHE7erhy5UqUlpaiS5curmXWrFmDS5cuuZZZtmwZWrRogRo1ariWKf89zmVUrhshBEaOHIk5c+Zg5cqVaNy4sdvnHTp0QHR0tFu5d+3ahQMHDrjld/v27W6D1rJly+BwOFw7mVXlzgptv7S0FEVFRcxpiHr16oXt27dj69atrlfHjh0xePBg1/8zv9o4d+4cfv75Z9SrV4/tNkTdunWr8HOMu3fvRqNGjQBwW6aFadOmISUlBf3793e9x3YbvAsXLiAiwn0XPzIyEqWlpQDYZrVSrVo11KtXD6dPn8YXX3yBm2++mbnViEx59CcWv/j9yDWq0syZM4XdbhfTp08XO3fuFH//+99F9erV3Z6qaTVnz54V3333nfjuu+8EADF58mTx3XffiV9++UUIUfYI/urVq4t58+aJbdu2iZtvvtnrzwG0b99erF+/Xqxdu1Y0b97c7ecAzpw5I+rUqSPuuusukZ+fL2bOnCni4+Mr/BxAVFSUePHFF8UPP/wgJkyYoNTPKnjzwAMPiKSkJJGXl+f2kysXLlxwLXP//feLhg0bipUrV4pNmzaJrl27iq5du7o+d/7cSu/evcXWrVvF0qVLRXJystefW3nkkUfEDz/8IF5//XWvP7dilrb/2GOPidWrV4t9+/aJbdu2iccee0zYbDbx5ZdfCiGYU62Vf3q5EMxvsB566CGRl5cn9u3bJ77++muRlZUlateuLY4fPy6EYF5DsWHDBhEVFSWefvppsWfPHvHRRx+J+Ph48eGHH7qW4bYseCUlJaJhw4bi0UcfrfAZ221whgwZIurXr+/6ybDZs2eL2rVri3/961+uZdhmg7d06VKxZMkSsXfvXvHll1+Ktm3bii5duoji4mIhBHPrL5XmCP7EUhVOujX22muviYYNG4qYmBjRuXNn8e233xodkqFWrVolAFR4DRkyRAhR9hj+8ePHizp16gi73S569eoldu3a5baOkydPijvvvFMkJCQIh8Mhhg0bJs6ePeu2zPfffy+uvfZaYbfbRf369cWzzz5bIZZPP/1UXHnllSImJka0atVKLFq0SLdyh4O3vAIQ06ZNcy1z8eJF8eCDD4oaNWqI+Ph4ccstt4gjR464rWf//v2iX79+Ii4uTtSuXVs89NBD4tKlS27LrFq1SrRr107ExMSIJk2auH2Hk1na/vDhw0WjRo1ETEyMSE5OFr169XJNuIVgTrXmOelmfoMzaNAgUa9ePRETEyPq168vBg0a5PY70sxraBYsWCAyMjKE3W4X6enp4q233nL7nNuy4H3xxRcCQIV8CcF2G6zCwkIxatQo0bBhQxEbGyuaNGkixo0b5/azSWyzwfvkk09EkyZNRExMjKhbt67Izs4WZ86ccX3O3PpHpTmCP7FUxSaEEP6fFyciIiIiIiIif/GebiIiIiIiIiKdcNJNREREREREpBNOuomIiIiIiIh0wkk3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ5x0ExEREREREemEk24iIiIiIiIinXDSTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3UREREREREQ64aSbiIiIiIiISCecdBMRERERERHpJMroAMyotLQUhw8fRmJiImw2m9HhEBERERERWYYQAmfPnkVqaioiIow/z8xJtw4OHz6MBg0aGB0GERERERGRZR08eBBXXHGF0WFw0q2HxMREAGWV7HA4DI6GiIiIiIjIOgoLC9GgQQPXvMxonHTrwHlJucPh4KSbiIiIiIjIALLc6mv8Be5EREREREREJsVJNxnOZrNJcxSKiIiIiIhIS7y8nAzjOdF2/lsIYUQ4REREREREmuOkmwzlOcF2nvXmxDt0PIhBRERERGQ8Xl5OhvA1seYEMXSel+vz8n0iIiIiIuNIO+nOzc1Fp06dkJiYiJSUFAwcOBC7du2q9G9mz56Njh07onr16qhWrRratWuHDz74wG2ZY8eOYejQoUhNTUV8fDz69u2LPXv2uC3z888/45ZbbkFycjIcDgduv/12HDt2TPMyWpU/E0BOEoNT/ux2+Vf5z4iIiIiIKHyknXSvXr0a2dnZ+Pbbb7Fs2TJcunQJvXv3xvnz533+Tc2aNTFu3DisW7cO27Ztw7BhwzBs2DB88cUXAMomIgMHDsTevXsxb948fPfdd2jUqBGysrJc6z1//jx69+4Nm82GlStX4uuvv0ZxcTEGDBiA0tLSsJTdCio7o82z3aHhFQTh47yKoPyLjMd6ICIiIpnYhCJ74ydOnEBKSgpWr16N7t27+/13mZmZ6N+/PyZNmoTdu3ejRYsWyM/PR6tWrQAApaWlqFu3Lp555hnce++9+PLLL9GvXz+cPn3a9RvbBQUFqFGjBr788ktkZWVV+Z2FhYVISkpCQUEBf6fbg7/3GfN+5MD5kzPeL68db/lmuzWWt8k260IO7BtERBROss3HpD3T7amgoABA2dlsfwghsGLFCuzatcs1SS8qKgIAxMbGupaLiIiA3W7H2rVrXcvYbDbY7XbXMrGxsYiIiHAtQ6HxZ6eLO2bB8SdvPAsYOufBC89881J+4/i6tYJ1YSw+Y8J4vCJHLqwPImtSYtJdWlqKnJwcdOvWDRkZGZUuW1BQgISEBMTExKB///547bXX8Kc//QkAkJ6ejoYNG2Ls2LE4ffo0iouL8dxzz+HQoUM4cuQIAODqq69GtWrV8Oijj+LChQs4f/48Hn74YZSUlLiW8VRUVITCwkK3F2mDGyP/+JsnHswIXVW55sQ7/Ko6i8q6MAafMWE8b3VQ/n0KL9YHkXUpMenOzs5Gfn4+Zs6cWeWyiYmJ2Lp1KzZu3Iinn34aY8aMQV5eHgAgOjoas2fPxu7du1GzZk3Ex8dj1apV6NevHyIiylKRnJyMWbNmYcGCBUhISEBSUhLOnDmDzMxM1zKecnNzkZSU5Ho1aNBAs7KbSaCXNnOCGJhA8sUNfHD8vUSWbTd8qqoT7tQao7J6YZ2Eh6864FUgxmB9EFmb9Pd0jxw5EvPmzcOaNWvQuHHjgP/+3nvvxcGDB10PU3MqKChAcXExkpOT0aVLF3Ts2BGvv/662zK//fYboqKiUL16ddStWxcPPfQQHnnkkQrfUVRU5Lp0HSi7h6BBgwbS3EMgi2DuJ+Z9gFULJke8tzs4geSNbTc8/K0Ttvnw8iffrBP9BPL8FNaB/lgf8uMzQeTl64BUVfUj2z3dUUYH4IsQAv/4xz8wZ84c5OXlBTXhBsouTS8/IXZKSkoCAOzZswebNm3CpEmTKixTu3ZtAMDKlStx/Phx3HTTTV6/w263u90DThUFewSXR3/9ww2D/gJth2y7+gtkB9VZH+wr+gv04BTrRFuBHvBjHeiL9SE/Xw9GZV0Yz1f/UbF+pJ10Z2dnY8aMGZg3bx4SExNx9OhRAGWT5bi4OADA3Xffjfr16yM3NxdA2WXeHTt2RNOmTVFUVITFixfjgw8+wJQpU1zrnTVrFpKTk9GwYUNs374do0aNwsCBA9G7d2/XMtOmTcNVV12F5ORkrFu3DqNGjcLo0aPRokWLMGbAfFTqGKoI9WAG6yQwweSLedZHsG2f9aGvQOqFB6b0E+jBKNIX60NelV32r+LEzkyquk1JtfqRdtLtnCj36NHD7f1p06Zh6NChAIADBw643Wd9/vx5PPjggzh06BDi4uKQnp6ODz/8EIMGDXItc+TIEYwZMwbHjh1DvXr1cPfdd2P8+PFu37Fr1y6MHTsWp06dQlpaGsaNG4fRo0frU1Dyi0qdKtyYF/3xSg05Bdr2WR/hEeizOzi+a4cHo+QSTF7ZJ8LHn2eCqDaxM5vK8q5a/Uh/T7eKZLuHwGha3NuqSocKt1DywnuO/cc8yyWUnHIs0U+w9cI60U6wuWQd6COU+gC43dBTIDlmfYSfFs/QkW0+psTTy0l9HKi0F+oZO9ZJeDDP+gj1IB7pI5h64RUI2gglh6wD7YVyIIPbjfAI5LJ/Cp9gnqGjAk66SQncIfBOi4GGea2cVmeAmGdt8GCTnNi+5cD2LQet+gP7lT5CuQ2DwiOUK0RkxUk36Ur2DmB13EELD+ZZWzwIIqdQ6oUHVkOjRe5YB9oKdZzidkNfwdxrD3DbobdgT3SoUD+cdJPuuOHQnsyDiplonWfWmxw4JpEZsV3LgdsNufGyf/OSfeLNSTcpg0fh3Wk5+DOvvmmVZ26sQ6f1w57Y7rWhZb2wTgKnZc64ndUGtxvmxj6iD62u2JGVtD8ZRkThwZ2s8OJTguXAdi8f1knwOKbIge1XblpsfzlO6UuLsUzWOuKZbtKNXpMLGTtSOHHSFh565Jn1Fjyr93tZ6VEvrGv/6ZUr1kHw9NhusD7kwzrRltb7XDLub3HSTUqRsROZBTcgJDvuzMrJ7DtKsuPBQaKqaTmpYx9RQ0FBgdEhuOGkm4i4AfGg90SME73AMF9yYr2YG+s3MHpehcYDhHJinWjDKldwctJNurBKBwo35jV89Nx5osDpmTfuOAVPj3rhBMM/ek/yiMyCt4uRDDjpJuVwh0wfzCtZEXeciHzjNsE/4Tggzm20nFgnobHSySROuomIyuHOk1ystEFWSTjaL/uIb+HIDfsdmQGvCCFZcNJNmuNOsj7CtQPKHV2yGh4ECY6e4zy3IVVjjuQQ7rGDY5V8WCfBsVreNJt0//777ygqKtJqdUSVsupOcjjOwFoZd57kwvzIKZz1wjZQUThzYtVtbaDCte20+jY6UOG6co2CZ6X8BT3pzsvLw+jRo9G5c2ckJCSgWrVqiI+PR2JiIjp37oycnBzk5eVpGCoRkf648ySXcOaJkwv/haNe2Ed8Y27kYNSYwbGKVGfFNmwTAYzcly5dwtSpUzF58mTs378fNWvWRGZmJpo0aYIaNWpACIHTp09j37592LJlC06dOoVGjRrhoYcewogRIxAdHa1nWaRRWFiIpKQkFBQUwOFwGB1OWIXz0nJnh7XCzkc4y2qlvHoK960RVs61P4yoD9ZF1cI9zrNO/mDEmMFxyjej2if7RdXC3W5ZJ4EJR75km48FNOlu1KgRiouLMWTIENx+++3IzMysdPnNmzdj1qxZeP/99xETE4P9+/eHGq8SZKvkcOJOsj6YV/0ZtWNpxVz7w4i8cHJRNaPqhXVShpM8eRg5XnCsqhr3m+QVrvYr23wsKpCFH3/8cQwdOhR2u92v5Tt06IAOHTrgP//5D6ZNmxZUgERE4cINprXx/lUi3zipqMiofHCsqpwRuXHWCfuIf6yYp4DOdJN/ZDuyEi687E0fzGt4GHkGCbBWrqti9Bkk1oV3Rl4NYsT3ysbotmn098vG6HywX/jGK0LkFc52K9t8jD8ZRpoK92BjlcGNedWXkWcMrJZrf/EMkpyMqBf2EZKNDJMro79fVkZvz7n9qJpV2y4n3UREsO5GQDbcYSGqSIZ+wQmFnFgnFXF7TjIK6J5uAOjZs6fPz2w2G2JjY9GoUSPceOON+POf/xxScKQOowd9GY4660GGI7ZmzGt5RrddwDq59pcMeWB9uDO6n7CPyNEvSK6xgQdC3MmSC5naiEysnpeAJ93Hjx+vtFFfuHABy5Ytw9SpU9GnTx/MmzfPMj8VZnW8HFQfVh6gwoU5pvLMPqYEi/2EePCDZGd02+T2g3wJeNKdn59f5TIXL17E1KlTMWbMGDz//PMYN25cUMERkfG4gxU+Vs+1bOWXLR6jyLIDadUJnxXLLCtZ+kJ5Vu0XsmOduGM+dLqnOy4uDjk5ObjjjjswY8YMPb6CJCLLRkiWOMzE7AOkTG3G7LlWDevDHfNB5ck0doYb+4KcZGqTbCPuZKobI+n6ILVu3bph3759en6F1JKSkowOIWyMHmCM/n498KhgeDDHcpB1oyxrXFZmpTqRsaxWHTNlrAsnXtJcRra2yTr5g2x1YwRdJ90XLlxAVFTAV7CbCjscmYEZ27GMZbL6jpNsG2XZ4jGCbAf/ZIolXGQtsxXHKlnrwupkbItsK2VkrBuj6DbpFkJg/vz5aN26tV5fIb2CggIA5m5wMpXNTBMWmcph5g2HmcumEpnauzeyx2dFVqgTmctotbFT5rpwMtM+UDBkbZNWrhMnWesm3AKedJ86darS16+//oqVK1fi9ttvxzfffIORI0cGFVhubi46deqExMREpKSkYODAgdi1a1elfzN79mx07NgR1atXR7Vq1dCuXTt88MEHbsscO3YMQ4cORWpqKuLj49G3b1/s2bPHbZmjR4/irrvuQt26dVGtWjVkZmbi888/D6ocVmhoViijEZhX67LiRlrW9i5rXOEgazu0Up3IXlZZ24geZK8LJyvVCSB3eVVpM3qRuW6MEPC137Vr1/YridHR0Zg0aRLuvPPOoAJbvXo1srOz0alTJ1y+fBmPP/44evfujZ07d6JatWpe/6ZmzZoYN24c0tPTERMTg4ULF2LYsGFISUlBnz59IITAwIEDER0djXnz5sHhcGDy5MnIyspyW+/dd9+NM2fOYP78+ahduzZmzJiB22+/HZs2bUL79u2DKo9sl+gRBcJsT0eVeUNgtbMVqpTVTO0/EDKX2ap1IgurjFUqldEqdeJJ9nHAymOVVcvtjU0EmI2JEydW2qFjY2PRqFEj9OrVC8nJySEH6HTixAmkpKRg9erV6N69u99/l5mZif79+2PSpEnYvXs3WrRogfz8fLRq1QoAUFpairp16+KZZ57BvffeCwBISEjAlClTcNddd7nWU6tWLTz33HOuZSpTWFiIpKQkFBQUwOFwAPhj0DZT45O1TKoPbsyr/mQvi+zxaUmVsqoSp5ZkL7Ps8YVC1u2AJ1XiDIVq7Uy1eEOhSvuzUp04yVA33uZjRgr4TPfEiRMDWv706dOoUaNGoF9TgfP+6Jo1a/q1vBACK1euxK5du/Dcc88BAIqKigCUHRhwioiIgN1ux9q1a10T6muuuQaffPIJ+vfvj+rVq+PTTz/F77//jh49egQdv1mPPlptEAkXWfNqxQ2HEcx2ZYEvqo2JVqgTJyuVVVYq5N+s+zZOKpbNKtsPJ6uUU0WsG3e6PEitqKgIs2bNwsCBA1GvXr2Q11daWoqcnBx069YNGRkZlS5bUFCAhIQExMTEoH///njttdfwpz/9CQCQnp6Ohg0bYuzYsTh9+jSKi4vx3HPP4dChQzhy5IhrHZ9++ikuXbqEWrVqwW63Y8SIEZgzZw6aNWvms7yFhYVuL19UHMCJAPMMnlbaGVGBKnWhSpxWYtYJnxnLpDJV+77Z25FK5TPrWOWLlcoaCM1+z0sIgRUrVuCjjz7CnDlzUFhYiOTkZPy///f/Ql53dnY28vPzsXbt2iqXTUxMxNatW3Hu3DmsWLECY8aMQZMmTdCjRw9ER0dj9uzZuOeee1CzZk1ERkYiKysL/fr1cxtUx48fjzNnzmD58uWoXbs25s6di9tvvx1fffWV16ex5+bm4sknn6wyNjN1OpnLofJRXpnzSuGnajs2MyvUiRXKKDuV8q/yNrcyKm+PzbS/WRnV2pwZ+4kvVilnIAK+p9vT5s2b8dFHH2HmzJk4evQobDYb7rjjDowcORJXX311yJ1+5MiRmDdvHtasWYPGjRsH/Pf33nsvDh48iC+++MLt/YKCAhQXFyM5ORldunRBx44d8frrr+Pnn39Gs2bN3O77BoCsrCw0a9YMb775ZoXvKCoqcl26DpTdQ9CgQQOv9xDIcI+DFmQfOGSPzxcV4lYhRl9U638q57oqqpZN1bgDoVoZVYu3MqqNUU5mqgMn1cukalvyh6plU71N+UOmulH+nm4A2Lt3Lz766CN89NFH2LNnD+rXr4/Bgwejc+fOGDRoEG699VZ07do1pMCEEPjHP/6BOXPmIC8vL6gJN1B2aXr5CbFTUlISAGDPnj3YtGkTJk2aBAC4cOECgLJ7vcuLjIxEaWmp1++w2+2w2+1+xWOVo48ysMLgRoFTrU2YsR2rPAaa9ayek8p1Yxaqti0z9Qsz9AOz72+q2tbM1E98MXv5ghXwpLtr167YsGEDateujdtuuw3vvPMOrr32WgDAzz//rFlg2dnZmDFjBubNm4fExEQcPXoUQNlkOS4uDkDZT3vVr18fubm5AMou8+7YsSOaNm2KoqIiLF68GB988AGmTJniWu+sWbOQnJyMhg0bYvv27Rg1ahQGDhyI3r17Ayi777tZs2YYMWIEXnzxRdSqVQtz587FsmXLsHDhQs3Kp3KnUyF2FTc2KsWrQhswAxXbsb/YfuSlYt2YYUxSua+bcaxSvT05maFvlKdyOzNjPynPzGXTQsCT7vXr16Nx48aYPHky+vfvj6gozW4Ld+OcKHs+MXzatGkYOnQoAODAgQNuZ6TPnz+PBx98EIcOHUJcXBzS09Px4YcfYtCgQa5ljhw5gjFjxuDYsWOoV68e7r77bowfP971eXR0NBYvXozHHnsMAwYMwLlz59CsWTP873//w4033qhJ2cze6Sh4KmwYVW2/ZtvxUJWKbccbM7YnVetG1THJG9XblBn6hVnaEmCuvlGeGdqY6mXwxazl0kLA93S/8cYbmDFjBr755hvUrFkTt956K+644w706NEDe/fuRfPmzfHZZ5/hL3/5i14xS8+fewhU7nAqxc5Y9aFSrE4qxuykcuyezFIWs5SjPJXLJNN9hMFSOf9OLIN8zNA3nMxSFrO1MUDOupHtnu6AfzLswQcfxNq1a/Hzzz8jJycHX331FXr16oX69evjiSeegM1mM+VRNT2omCczDhQyULUtEAXCTG3GbGeQVC+L6tsl1fNfnsplUTl2X1TvG57MUh62NesJ+enlwB9PMP/kk09w5MgR1KlTBwMGDMBNN92ErKwsxMbGahGrMvw9sqLiBFa1mGU88uaNankF1IpZpVi9UaUdV0X1evBkpvKYoSwq9xMz5N9J5bKoHHtlVO4b5ZmpflgW/cl2pluTSbdTaWkpVq5ciQ8//BBz5szB2bNnER8fj3Pnzmn1FUoIZNINqDUIytqxKqNCzCrE6Eml9qtifj2pXgaV2ksgVK8XwFx1o2J9mCn/gLrlUTVuf6nYN8pTPX5PZmpvstaNbJPugC8vr3RlERHIysrC9OnTcezYMXz88cfo1auXll9hKjI20MrI2qlUp+olRqq0BVXz643qZVGlzQRK9XoBzFU3KtaHmfKvcllUjt0fKvYNszJLW+PcwH+anummMoEcWVGpsaoUa3myH01UNa+AGrGrEKO/VC2L7H0wVKrWi5Pq8XtSqTxm7RuqlUu1eIOlUt8oT9W4q6J6u5M9fqXPdLds2RLvv/8+iouL/f6boqIiTJs2DS1btgw4OCsw28N4ZCTrYGAGbL/hp2q+zd4PVa0Xs+7MqsSM+VexTCrGHAxVxyozMkObM0MZwiWgH9keOnQoxowZg1GjRrkekpaZmYnGjRsjPj4eQNlvZe/btw+bNm3C8uXLsWDBAsTExOCRRx7RpQAUHtwx0wc3fvoyW7tV8SCHavEGQ8V6MTNnfcje99lm5GClelBxrFKhL4fKCmWkIC4vP3v2LN59911Mnz4d27Ztc3XeqKiy+fvly5cBlHXsjIwMDB8+HMOHD5fitH64BHo5g+yXZwDqDwiy5lj1vAJyl0Hm2IKlWplUizdYso4xlTFz3ahQNhViDJUKZVQhRi2pNlZZoX5ULKMKMct2eXlI93Tv378f33zzDX788UecPHkSAFCrVi2kp6eja9euaNy4sWaBqiSYSpa58ao2QPsiY45ljCkYMpbDLO3WGxnz7Y2Z68AbVerFSbV4A6FC2zNz/p1kL6MK7UQPsteLk1XqR5X6cFKlXmSbdAd0ebmntLQ0pKWlaRQKyUz2jqUi1QZZFTG/xrNaHajSr1W7xDRQsl9GK3NsWlLhUn+ZY9OT7PXipEKMoVKhn3hSKVZZaPqTYRQ82XcQzIA51hdzG16y51v2+PSg2k6IavEGQ+Z2aIX8y0zmtqE3FdqeletHZqyX4HHSTZVi5yJ/yLYBN3u7lS3fvqgSp9Zkb3+yx6cVWdufVfJfnqxllrWNhIus9eJkpfpR6cSQlepFS5x0S0bGDme2ziVDjmWIwezM1m69kbUdyRpXOKjS7lSJUwsytkcr5d9KZVWJzPUiY58l1kuoOOmWiMwDoFnIlGOZYtEKB+Twkb39yB6f3tgX5GD1digTmfqETLEYTdZcWLHvqnC224r1ohXNJt2TJ0/WalWWJ0uHkyUOUoMsA7FqDyMxG44b8vQFb9g/jGXV/MtYZhljCjcZc8BtCJmVZpPup556yvX/t956q1artRzZBkDZ4tGKkYM6NyikFVmPipt13AiUjHVjVawLcmJbqEi2nFh5GyLrdt2qBwy1pNmk+6qrrsJzzz2H3bt3Y9myZVqtlkhzMgwaMsSgB6M3FjJuqMiaZOzjVu0fstSFVfPvZPT2oTxZ2oQMmAui8Ajpd7rLmzFjBiZOnIisrCxcuHAB7dq1Q+vWrdGmTRu0adMGrVu3RmpqqlZfZ2oq/l4fkSys2G9kGS9kiUMmsuVEpljCTYa6MPr7rU6WSb+MZOgfMsQgC5lyIVMsKrMJHbKYkJCA5cuXY9u2bdi2bRu2b9+O7du3IyIiAr/99pvWXyedwsJCJCUloaCgAA6HI6h1GN3Ajf5+vTk3vOEuo1HfG05GltHs7dYXWcotSxwykSknMsViBKPLb/T3y8LIPLAOfJMhNzLEIAuZciFTLIHQYj6mJc3OdJd39OhRJCQk4Oqrr3Z7/9ChQ3p8HVHAjLzMTcWBKxBG5ZZnMIyl6kY5HGTIjQwxWBnHJ+OxDuTG+qlIhnFbhhjMQpN7uouLi3HhwgXXvxMSErwud8UVV2jxdZYg071PRKqw6oaB44W8rNomZWR0P2Fb+AMPesvH6P7hjIHKMBfmE9KZ7qNHj+Luu+/GqlWrUFpaitq1a6NNmzZo27at678tW7ZEdHS0VvFSGFjpqFY4y2r0xoxIL2zbcmP9GIv5dyfD5I7kwvbgG2/HMI+QJt0PP/ww1qxZg7Fjx6J69ep4+OGHcfjwYeTl5aG0tLTsC6KiUFRUpEmwVsQGrx8jNvxWqctwPwyQG+wyRo4XVmnbwZDh4Zisnz8YURfMv7GM7n+qMHKsYv1UxANU5hLS5eUrVqzA/fffj//85z8YMmQIAOC1117DgQMH0LdvX7Rp0wbjxo3TJFAr4gBE5D+r9xerl5+84w6bO/YTOXAyQSQ39k/thTTpLiwsRJs2bQCUndEGyu7vrlevHubOnYuSkhKkpaWFHCSFjxWPBnNg0Q9za35WHDOCxftYrYdjoPFYB4ELZ864DakcH/xrHiFNuhs0aICjR48CAJKSkhAXF+f6SbDo6Gjcdddd+O9//xt6lBbHDYZ+wnn5s9UGL+Y2/Hj2SF5so/IIdz9h3fsWrnpgHfiPuSLuR+gjpEn3DTfcgK+++sr17/T0dLd/x8XFYffu3aF8heVx8CMiWXHDHDieQbIO9o/KhaNtsg6CF47csX78w2cQmUNID1IbNWoU3nvvPfz++++IjY1FdnY2HnjgAWRkZKBp06Z4+eWXeXm5Qqy6gybDQ47MjLkNv3DmnHXrP16JIJdw9BP2j6rpXQ+sg8CFc6xi/ciF2yj9hHSmOz09Hc8//zxiY2MBAEOHDsVtt92GUaNG4c9//jOOHj2KF198Mah15+bmolOnTkhMTERKSgoGDhyIXbt2Vfo3s2fPRseOHVG9enVUq1YN7dq1wwcffOC2zLFjxzB06FCkpqYiPj4effv2xZ49e1yf79+/Hzabzetr1qxZQZUlVNxRU5uV607vjSkn9BXxifHy4xkk43HckIOe9cA+EDo9c8j6CRwPhKjNJnTI7A8//IBDhw6hXbt2SE5ODmodffv2xR133IFOnTrh8uXLePzxx5Gfn4+dO3eiWrVqXv8mLy8Pp0+fRnp6OmJiYrBw4UI89NBDWLRoEfr06QMhBK655hpER0fjpZdegsPhwOTJk7F06VLXektKSnDixAm39b711lt44YUXcOTIESQkJFQZe2FhIZKSklBQUACHwxFU+T2FY3Jh5QmMnmW3cl4B5tYIHC/kxvqRg3MHVo886blus9GrrbIPhI7bb7lw2xEYPeZjodBl0q2HEydOICUlBatXr0b37t39/rvMzEz0798fkyZNwu7du9GiRQvk5+ejVatWAIDS0lLUrVsXzzzzDO69916v62jfvj0yMzPx7rvv+vWdKk66rb6DoPfOl1Xz6qRHDqzeZqsSjjGDuQ8Od5zkwQmfHPTaRrAOQsNJt1z03u8xW53INukO6fLycCooKAAA1KxZ06/lhRBYsWIFdu3a5ZqkFxUVAYDrcngAiIiIgN1ux9q1a72uZ/Pmzdi6dSvuuecen99VVFSEwsJCt5ce9L6sxEwdLVB6DmCkHyu3WSOZbcNsBF62SaQfjlHa0Ov2RtZPcJgztSkx6S4tLUVOTg66deuGjIyMSpctKChAQkICYmJi0L9/f7z22mv405/+BKDsHvSGDRti7NixOH36NIqLi/Hcc8/h0KFDOHLkiNf1vfvuu7jqqqtwzTXX+PzO3NxcJCUluV4NGjQIvrA+sKOpi3VHRuHkS07hGBM47vhHj0kFJxTB4XhFZBz2P/0pMenOzs5Gfn4+Zs6cWeWyiYmJ2Lp1KzZu3Iinn34aY8aMQV5eHoCy3w6fPXs2du/ejZo1ayI+Ph6rVq1Cv379EBFRMRUXL17EjBkzKj3LDQBjx45FQUGB63Xw4MGgymkUdrQ/MBf60HrHlvVUNV69IT+9ziARqUbL8Yp9QFt6bL95UCp4ej5cmfWir5B+MiwcRo4ciYULF2LNmjW44oorqlw+IiICzZo1AwC0a9cOP/zwA3Jzc9GjRw8AQIcOHbB161YUFBSguLgYycnJ6NKlCzp27FhhXZ999hkuXLiAu+++u9LvtNvtsNvtgRcuCHoNVuxonBiqhm3WOMx96LjjJBettq0c90OjVT2wDxD5j+NWeEh7plsIgZEjR2LOnDlYuXIlGjduHNR6SktLXfdyl5eUlITk5GTs2bMHmzZtws0331xhmXfffRc33XRT0E9g1xo3IuphnbnjwB5ePJAkP+bUeFqP0xz3g8ODHnLTIresH23ocdCW45b+pD3TnZ2djRkzZmDevHlITEzE0aNHAZRNluPi4gAAd999N+rXr4/c3FwAZfdWd+zYEU2bNkVRUREWL16MDz74AFOmTHGtd9asWUhOTkbDhg2xfft2jBo1CgMHDkTv3r3dvv+nn37CmjVrsHjx4jCV2BgcACvipU/60GojwTZrLPYN7fCyTbmEmj+OTdoItR7YB7Sn5VjF+pELx63wkXbS7ZwoOy8Ld5o2bRqGDh0KADhw4IDbvdjnz5/Hgw8+iEOHDiEuLg7p6en48MMPMWjQINcyR44cwZgxY3Ds2DHUq1cPd999N8aPH1/h+9977z1cccUVFSbjRnMOfFoOWhwA/6DnJZ+kHbbZwHAyRlQ5rcZ+9rPQhFIPHOf0F0qOWT/a4+0YalHmd7pVovfvwmk5cHEQrEiLnDCv3mnxG5PMbeDYpuXG+pFDKOOT3r+fayXB5pJ9QH+cdMtFq6tzzFov/J1ukgbP6PrG3OiDEwvjsE0TVS7UsYVjkzaCPejB/Osv2CsRuP3RT6i5Zb8JH066FcR7a/SlxcSQKscchRfbtPxCyTHrR1vMp/EC2c9hfYVfIDk3+9lUI/GqQbVw0k2kAw5kvoVyaRqFJpQcsk3rh/fkyYNnWeVS1ZjFCV34BZNr1o9++CwidXDSbVHsoFVjjuTDDXfweLBDfrxsUx48y2o855hVVY65XQg/fyd67B/hE+jVB+w34cdJt6K0OLLFDucbJyj6C+byNApdMLnkWKE//kSSPALNJ/OvH18Tb5vNxomDBCrbnvAqhPAJJMfcnzIOJ91EleAERR+8PM0YwTwNmMIn0IOprB99+XtpM+mr/MTb+Sr/PhmjsisRWEfG4O0YcuOkW3G8HFE/nKDoi5enGSeQvHPjHH6BtHnWjz6qurSZ/SO8hBAVXmQ8bwdE2DeMwTFLfpx0K4yXI8qHeQ2cPxMM5lU7/t4nWX5ZCh9/c85La/VX2aXN5T8nsjJvB0TYN4zheRDEiWOWHDjpJqoEnwqpr6o2AMy9Pph3uVU17rB+woeXNhORSsof9OCYJZcoowOg0Dh3znh2RF9V5Y15DY23/HFDoa/yE7vyOWbe5cF+IQfmmohUw3FLPjzTTVQFnhXUl7dLODmxCA+exZMX75UkIiIyD57pNgF/z3ZzchiaynLMneDQeJt4M6fhwTzLi3VDRERkDjzTbTHciQtOVQ/UIW3wISxEREREZDacdJsIH7yjL16KS0REREREgeLl5SbhvMScD97RF3NIRERERESB4JluE+EDqYiIiIiIiOTCSbfJ8Lf5iIiIiIiI5MHLy02Ik2wiIiIiIiI58Ew3ERERERERkU446SYiIiIiIiLSCSfdRERERERERDrhpJuIiIiIiIhIJ3yQmg6cDzIrLCw0OBIiIiIiIiJrcc7DZHnANCfdOjh58iQAoEGDBgZHQkREREREZE0nT55EUlKS0WFw0q2HmjVrAgAOHDgQUiV36tQJGzduDDkeLdYjyzoKCwvRoEEDHDx4EA6Hw9BYzFQ/WuVVi1i0WocssZgxt7LUj0zjgVbrkWUdzK1+65Apt2aqH461+q1Hpjar1XpkiYW51W8dBQUFaNiwoWteZjROunUQEVF2q3xSUlJIHSgyMjLkDYdW65FlHU4Oh8Pw3JqtfoDQ86pVLMytfrHIsg4t1yPDeKDVemRZhxNzq/06nGTIrdnqB+BYq+d6ZGizWq1HplgA5laPdTg552VGkyMK8io7O1ua9ciyDq3IVB6ZYtGCTOWRKRYtyFIemepHCzKVR5Z1aIW51Y9M5ZEpFi3IUh6Z6kcLMpVHpli0IFN5ZFmHbGxClrvLTaSwsBBJSUkoKCjQ7CgNlWFu9cG86oe51Q9zqx/mVj/MrT6YV/0wt/phbvUjW255plsHdrsdEyZMgN1uNzoU02Fu9cG86oe51Q9zqx/mVj/MrT6YV/0wt/phbvUjW255ppuIiIiIiIhIJzzTTURERERERKQTTrqJiIiIiIiIdMJJNxEREREREZFOOOkmIiIiIiIi0gkn3Rp7/fXXkZaWhtjYWHTp0gUbNmwwOiRDrVmzBgMGDEBqaipsNhvmzp3r9rkQAk888QTq1auHuLg4ZGVlYc+ePW7LnDp1CoMHD4bD4UD16tVxzz334Ny5c27LbNu2Dddddx1iY2PRoEEDPP/88xVimTVrFtLT0xEbG4vWrVtj8eLFmpc3nHJzc9GpUyckJiYiJSUFAwcOxK5du9yW+f3335GdnY1atWohISEBt956K44dO+a2zIEDB9C/f3/Ex8cjJSUFjzzyCC5fvuy2TF5eHjIzM2G329GsWTNMnz69QjxmaftTpkxBmzZt4HA44HA40LVrVyxZssT1OXOqnWeffRY2mw05OTmu95jf4EycOBE2m83tlZ6e7vqceQ3Nr7/+ir/97W+oVasW4uLi0Lp1a2zatMn1ObdlwUlLS6vQbm02m+s3etlug1NSUoLx48ejcePGiIuLQ9OmTTFp0iSUf3Yy22zwzp49i5ycHDRq1AhxcXG45pprsHHjRtfnzK1/VJoj+BNLlQRpZubMmSImJka89957YseOHeK+++4T1atXF8eOHTM6NMMsXrxYjBs3TsyePVsAEHPmzHH7/NlnnxVJSUli7ty54vvvvxc33XSTaNy4sbh48aJrmb59+4q2bduKb7/9Vnz11VeiWbNm4s4773R9XlBQIOrUqSMGDx4s8vPzxccffyzi4uLE1KlTXct8/fXXIjIyUjz//PNi586d4t///reIjo4W27dv1z0HeunTp4+YNm2ayM/PF1u3bhU33nijaNiwoTh37pxrmfvvv180aNBArFixQmzatElc/f+xd+fxTVTr/8A/WZp0gW50h1IoFLBshSKlKqCXfimL1+2qqMiqqCxe/YEoRdmVonK9uKAoCuh1KeAFVBQUy6Jcy1YoUFpZC2Xpwta9NGlyfn/EDE2blC5Jk7SfN695kcw8OTmZM3PSJzNzZsAAcccdd0jLKysrRY8ePURcXJw4dOiQ+Omnn4Sfn59ISEiQYs6cOSPc3d3F9OnTRUZGhnj//feFQqEQW7dulWKa07b//fffix9//FGcOHFCHD9+XMyePVu4uLiI9PR0IQTXqbXs27dPdOjQQfTq1Uu88MIL0nyu34aZN2+e6N69u8jJyZGmy5cvS8u5Xhvu2rVrIiwsTIwfP17s3btXnDlzRvz888/i1KlTUgy/yxomPz/fZJvdtm2bACB27NghhOB221BvvPGGaNOmjdi8ebPIysoS69evF61atRLvvvuuFMNttuEeffRRERkZKXbt2iVOnjwp5s2bJzw9PcWFCxeEEFy3deVMOUJd6nIrTLqtqH///mLq1KnSc51OJ0JCQkRiYqIda+U4qu9Qer1eBAUFibfffluaV1BQINRqtfjmm2+EEEJkZGQIAGL//v1SzJYtW4RMJhMXL14UQgjx4YcfCh8fH1FRUSHFvPLKK6Jr167S80cffVSMHDnSpD4xMTHi2WeftepntKf8/HwBQOzatUsIYViXLi4uYv369VJMZmamACBSUlKEEIYOTy6Xi9zcXCnmo48+Ep6entL6fPnll0X37t1N3mvUqFEiPj5eet7ct30fHx/x6aefcp1aSXFxsYiIiBDbtm0TgwcPlpJurt+Gmzdvnujdu7fZZVyvjfPKK6+Iu+66y+JyfpdZzwsvvCA6deok9Ho9t9tGGDlypJg4caLJvIceekiMHj1aCMFttjHKysqEQqEQmzdvNpnft29f8eqrr3LdNpAj5wh1qUtd8PRyK9FoNEhNTUVcXJw0Ty6XIy4uDikpKXasmePKyspCbm6uyTrz8vJCTEyMtM5SUlLg7e2Nfv36STFxcXGQy+XYu3evFDNo0CCoVCopJj4+HsePH8f169elmKrvY4xpTm1TWFgIAPD19QUApKamQqvVmnzubt26oX379ibrt2fPnggMDJRi4uPjUVRUhGPHjkkxta275rzt63Q6JCUlobS0FLGxsVynVjJ16lSMHDmyxjrg+m2ckydPIiQkBOHh4Rg9ejSys7MBcL021vfff49+/frhkUceQUBAAPr06YOVK1dKy/ldZh0ajQZffvklJk6cCJlMxu22Ee644w4kJyfjxIkTAIDDhw9j9+7dGD58OABus41RWVkJnU4HV1dXk/lubm7YvXs3162VONJ6rEtd6oJJt5VcuXIFOp3OpOMHgMDAQOTm5tqpVo7NuF5qW2e5ubkICAgwWa5UKuHr62sSY66Mqu9hKaa5tI1er8eLL76IO++8Ez169ABg+MwqlQre3t4msdXXb0PXXVFREcrLy5vltn/06FG0atUKarUazz33HDZu3IjIyEiuUytISkrCwYMHkZiYWGMZ12/DxcTEYM2aNdi6dSs++ugjZGVlYeDAgSguLuZ6baQzZ87go48+QkREBH7++WdMnjwZ//znP/H5558D4HeZtWzatAkFBQUYP348APYHjTFr1iw89thj6NatG1xcXNCnTx+8+OKLGD16NABus43RunVrxMbGYtGiRbh06RJ0Oh2+/PJLpKSkICcnh+vWShxpPdalLnWhrHMkETmsqVOnIj09Hbt377Z3VZqFrl27Ii0tDYWFhfj2228xbtw47Nq1y97Vcnrnz5/HCy+8gG3bttU4SkCNYzyCBQC9evVCTEwMwsLCsG7dOri5udmxZs5Pr9ejX79+WLx4MQCgT58+SE9Px4oVKzBu3Dg71675+OyzzzB8+HCEhITYuypOb926dfjqq6/w9ddfo3v37khLS8OLL76IkJAQbrNW8J///AcTJ05E27ZtoVAo0LdvXzz++ONITU21d9XIgfFIt5X4+flBoVDUGFUzLy8PQUFBdqqVYzOul9rWWVBQEPLz802WV1ZW4tq1ayYx5sqo+h6WYppD20ybNg2bN2/Gjh070K5dO2l+UFAQNBoNCgoKTOKrr9+GrjtPT0+4ubk1y21fpVKhc+fOiI6ORmJiInr37o13332X67SRUlNTkZ+fj759+0KpVEKpVGLXrl147733oFQqERgYyPVrJd7e3ujSpQtOnTrF7baRgoODERkZaTLvtttuk07f53dZ4507dw6//vornn76aWket9uGmzlzpnS0u2fPnhgzZgz+3//7f9IZRtxmG6dTp07YtWsXSkpKcP78eezbtw9arRbh4eFct1biSOuxLnWpCybdVqJSqRAdHY3k5GRpnl6vR3JyMmJjY+1YM8fVsWNHBAUFmayzoqIi7N27V1pnsbGxKCgoMPn1cPv27dDr9YiJiZFifvvtN2i1Wilm27Zt6Nq1K3x8fKSYqu9jjHHmthFCYNq0adi4cSO2b9+Ojh07miyPjo6Gi4uLyec+fvw4srOzTdbv0aNHTTqtbdu2wdPTU/oj81brriVs+3q9HhUVFVynjTRkyBAcPXoUaWlp0tSvXz+MHj1aesz1ax0lJSU4ffo0goODud020p133lnjdownTpxAWFgYAH6XWcPq1asREBCAkSNHSvO43TZcWVkZ5HLTP/EVCgX0ej0AbrPW4uHhgeDgYFy/fh0///wz7r//fq5bK3Gk9ViXutRJnYdco1tKSkoSarVarFmzRmRkZIhnnnlGeHt7m4yq2dIUFxeLQ4cOiUOHDgkA4p133hGHDh0S586dE0IYhuD39vYW3333nThy5Ii4//77zd4OoE+fPmLv3r1i9+7dIiIiwuR2AAUFBSIwMFCMGTNGpKeni6SkJOHu7l7jdgBKpVIsXbpUZGZminnz5jnVbRXMmTx5svDy8hI7d+40ueVKWVmZFPPcc8+J9u3bi+3bt4sDBw6I2NhYERsbKy033m5l6NChIi0tTWzdulX4+/ubvd3KzJkzRWZmpli+fLnZ2600l21/1qxZYteuXSIrK0scOXJEzJo1S8hkMvHLL78IIbhOra3q6OVCcP021IwZM8TOnTtFVlaW+N///ifi4uKEn5+fyM/PF0JwvTbGvn37hFKpFG+88YY4efKk+Oqrr4S7u7v48ssvpRh+lzWcTqcT7du3F6+88kqNZdxuG2bcuHGibdu20i3DNmzYIPz8/MTLL78sxXCbbbitW7eKLVu2iDNnzohffvlF9O7dW8TExAiNRiOE4LqtK2fKEepSl1th0m1l77//vmjfvr1QqVSif//+Ys+ePfaukl3t2LFDAKgxjRs3TghhGIZ/zpw5IjAwUKjVajFkyBBx/PhxkzKuXr0qHn/8cdGqVSvh6ekpJkyYIIqLi01iDh8+LO666y6hVqtF27ZtxZIlS2rUZd26daJLly5CpVKJ7t27ix9//NFmn7spmFuvAMTq1aulmPLycjFlyhTh4+Mj3N3dxYMPPihycnJMyjl79qwYPny4cHNzE35+fmLGjBlCq9WaxOzYsUNERUUJlUolwsPDTd7DqLls+xMnThRhYWFCpVIJf39/MWTIECnhFoLr1NqqJ91cvw0zatQoERwcLFQqlWjbtq0YNWqUyX2kuV4b54cffhA9evQQarVadOvWTXzyyScmy/ld1nA///yzAFBjfQnB7bahioqKxAsvvCDat28vXF1dRXh4uHj11VdNbpvEbbbh1q5dK8LDw4VKpRJBQUFi6tSpoqCgQFrOdVs3zpQj1KUutyITQoi6HxcnIiIiIiIiorriNd1ERERERERENsKkm4iIiIiIiMhGmHQTERERERER2QiTbiIiIiIiIiIbYdJNREREREREZCNMuomIiIiIiIhshEk3ERERERERkY0w6SYiIiIiIiKyESbdRERERERERDbCpJuIiIiIiIjIRph0ExEREREREdkIk24iIiIiIiIiG2HSTURERERERGQjTLqJiIiIiIiIbIRJNxEREREREZGNMOkmIiIiIiIishGlvSvQHOn1ely6dAmtW7eGTCazd3WIiIiIiIhaDCEEiouLERISArnc/seZmXTbwKVLlxAaGmrvahAREREREbVY58+fR7t27exdDSbdttC6dWsAhkb29PS0c22cj0ajwb/+9S8AwIwZMwDA5LlKpbJb3ah5qL6NVd2m3nwTWLwYmD0beOWVmq+tbXlt5RIRERFR0ygqKkJoaKiUl9kbk24bMJ5S7unpyaS7ATQaDVxdXQFAWn9VnzORocaqvo1V3abeeANwdQXmzjX8P2fOzdctWmRIuBcuNJ1fl3KJiIiIqGk5yqW+TLqJiKoxJtRz5xquCZo9W4fERCXmzrWccBMRERERmcOkm4jIjJuJ91TMm/cFgBQsXNiTCTcRERER1Yv9h3IjInJQ48efB/AJgFLI5e8w4SYiIiKiemPSTURkwejRHwHQAQD0+rWYPfu6fStERERERE6HSTcRkRlz55bj998/AQB4eHgAKEdi4n+waJF960VEREREzoXXdJPDkcvl6Nevn/QYQI3nRI1hbhuratEiYNGiJABX0b59e7z00kv45z//CX//jzF37vMAZGZPNb9VuURERETU8siEEMLelWhuioqK4OXlhcLCQt4yjMjJLFoEzJ0rEBwcjZycQ1iyZAkmT56MkJAQlJaWYuLE37Bq1UCOYk5ERETkoBwtH+OhGCKivxgSbuCpp/5ATs4huLq64umnn4anpycef/xxAEBFxcdYuNAQx1PNiYiIiOhWmHSTwxFCoLS0FKWlpRBC1HhO1Fjmtiljwr1wIVBS8j4A4IknnkCbNm0AAM899xwAYP369Zg8+YrZxJvbKhERERFVx2u6yeFotVosXboUAJCQkAAAJs9VKpXd6kbNQ/VtTKVSQaczJNxPPXUJYWH/BQA8//zz0muio6MRHR2N1NRUfP7555gzZwYAQKervVwiIiIiatl4pJuICMD8+YZrtFesWIHKykoMHDgQUVFRJjHGo90ff/wx9Ho95swxvI6IiIiIyBIm3UREf6moqMDHH38MwPQot9Fjjz2G1q1b4+TJk9ixY0dTV4+IiIiInBCTbiKiv6xbtw75+flo27YtHnjggRrLW7VqhTFjxgCAlJwTEREREdWGSTcR0V/ef98wgNrkyZPh4uJiNubZZ58FAGzcuBG5ublNVjciIiIick5MuomIABw7dgz79++HSqXCpEmTLMb16tULsbGxqKysxOrVq5uwhkRERETkjJh0ExEBOHToEAAgJiYGAQEBtcYaj3Z/8sknvDUYEREREdWKtwwjhyOXy9G7d2/pMYAaz4kaw9w2lpGRAQDo3r37LV//yCOP4Omnn8bZs2eRnZ2NsLAwi+USERERUcvGpJscjlKprDGIlblBrYgaytw2duzYMQBAZGTkLV/v7u6OHj16IC0tDQcPHpSSbnPlEhEREVHLxkMxRES4mXTX5Ug3AERHRwMAUlNTbVYnIiIiInJ+TLrJ4QghoNFooNFoIISo8ZyosapvU2VlZThz5gyAuifdffv2BQAcPHjQYrlERERERDy9nByOVqtFYmIiACAhIQEATJ6rVCq71Y2ah+rb2J9//gkhBNq0aXPLQdSMqh7pFkJAJpPVKJfbKhERERHxSDcRtXhVTy2XyWR1ek2vXr2gUCiQn5+PS5cu2bJ6REREROTEmHQTUYtnHLm8LoOoGbm5uUnxvK6biIiIiCxh0k1ELV59B1EzMnddNxERERFRVUy6iajFa2jSzRHMiYiIiOhWmHQTUYtWVlaGrKwsADzSTURERETWx6SbiFo048jlfn5+dR653CgqKgoymQyXLl1Cbm6ujWpIRERERM6MtwwjhyOXy6UBquRyw+9C1Z8TNUbVbezPP/8EUL9B1Iw8PDzQrVs3ZGZm4uDBgxg6dCi3VSIiIiIy0SL+Kly+fDk6dOgAV1dXxMTEYN++fXV6XVJSEmQyGR544AHbVpBMKJVKPPLII3jkkUegVCprPCdqrKrblDHpru+p5UZVr+vmtkpERERE1TX7pHvt2rWYPn065s2bh4MHD6J3796Ij49Hfn5+ra87e/YsXnrpJQwcOLCJakpE9tDQQdSMeF03EREREdWm2Sfd77zzDiZNmoQJEyYgMjISK1asgLu7O1atWmXxNTqdDqNHj8aCBQsQHh7ehLUloqbW2KSbI5gTERERUW2a9fmPGo0GqampSEhIkObJ5XLExcUhJSXF4usWLlyIgIAAPPXUU/j999+boqpUhUajQWJiIgBIbVf1uUqlslvdqHkwbmMajabBI5cbRUVFAQDOnz+Pixcv4tNPPwXAbZWIiIiIDJp10n3lyhXodDoEBgaazA8MDJSu46xu9+7d+Oyzz5CWllbn96moqEBFRYX0vKioqEH1JaKmdeXKFQCAn58f/P39G1SGp6cnunTpghMnTuDQoUPWrB4RERERNQPN/vTy+iguLsaYMWOwcuVK+Pn51fl1iYmJ8PLykqbQ0FAb1pKIrMU4tkNDj3IbGa/rZtJNRERERNU166Tbz88PCoUCeXl5JvPz8vIQFBRUI/706dM4e/Ys/v73v0ujZn/xxRf4/vvvoVQqcfr0abPvk5CQgMLCQmk6f/68TT4PEVnX5cuXATQ+6TZe182km4iIiIiqa9ZJt0qlQnR0NJKTk6V5er0eycnJiI2NrRHfrVs3HD16FGlpadJ033334Z577kFaWprFI9hqtRqenp4mExE5Pmsf6eYI5kRERERUXbO+phsApk+fjnHjxqFfv37o378/li1bhtLSUkyYMAEAMHbsWLRt2xaJiYlwdXVFjx49TF7v7e0NADXmE5Hzs9aRbmPSfe7cOZSVlcHd3b3RdSMiIiKi5qHZJ92jRo3C5cuXMXfuXOTm5iIqKgpbt26VBlfLzs6GXN6sD/gTkRkajQYFBQUAgMjIyEaV5e3tjfDwcJw5cwY5OTno1KmTFWpIRERERM1Bs0+6AWDatGmYNm2a2WU7d+6s9bVr1qyxfoWoVnK5HBEREdJjADWeEzWGXC6Hm5sbAMDf37/BI5dXFR0djTNnzkCr1SIiIoLbKhEREREBaCFJNzkXpVKJJ554wmRe9edEjaFUKqUxGhp7arlR3759sX79euj1em6vRERERCThoRgiapGOHTsGwHpJt3EEcw6mRkRERERVMekmohbJ2km3cTC1U6dOobCw0CplEhEREZHzY9JNDkej0WDx4sVYvHgxNBpNjedEjaXRaJCSkgLg5ngBjdWmTRuEhYUBAGbMmMFtlYiIiIgAMOkmB6XVaqHVai0+J2qMkpISXL9+HUDjRy6vKioqCgBw/vx5q5VJRERERM6NSTcRtTh//vknAMDDwwN+fn5WK9d4inlOTo7VyiQiIiIi58akm4hanMzMTACwyq3CqjIe6b506ZJVyyUiIiIi58Wkm4hanOPHjwOAVY9yAzePdF+9ehUFBQVWLZuIiIiInBOTbiJqcU6cOAHA+kl3QEAAvL29AQAHDhywatlERERE5JyYdBNRi2NMutu0aWP1stu1awcA2L9/v9XLJiIiIiLn47BJ94svvogrV67YuxpkBzKZDGFhYQgLC4NMJqvxnKgxdDodTp8+DQDo3bu3VbcpmUyGnj17AgD27dtntXKJiIiIyHnJhBDC3pUwRy6XY86cObhx4wYCAgIwcuRIdOvWzd7VqpOioiJ4eXmhsLAQnp6e9q4OEVVx+vRpdO7cGWq1GqWlpVAoFFYtf+/evRgwYADatGmDy5cv84ciIiIioibmaPmYwx7pBoBvvvkGpaWlOHToEAYPHoyJEydCo9HYu1pE5MSMg6hFRERYPeEGDCOYq1QqXL16FWfOnLF6+URERETkXBw26ZbL5fjjjz/wwQcf4Msvv0RWVhY0Gg3mzp1r76oRkRMzJt1du3a1SflqtVoaxXzPnj02eQ8iIiIich4Om3SHhIRALr9ZPXd3d3z44YdISkqyY62oKWg0Grz99tt4++23odFoajwnagxj0n39+nWrb1PGbVWpVAJg0k1EREREDpx0P/TQQ3jyySdNBlPLz8/HjRs37FgraiplZWUoKyuz+JyooYwjl3t6etpkmyorK0NgYCAAJt1ERERE5MBJ95IlS9CxY0e0b98ed9xxB0aOHImYmBg888wz9q4aETkx45Fua9+juyrjbcPS0tJQXl5us/chIiIiIsfnsEm3q6srli9fjgsXLuCll17Cgw8+iM2bN2PhwoX2rhoROani4mJcunQJgG3u0W3k7e2NwMBAVFZW4tChQzZ7HyIiIiJyfEp7VwAAtmzZgq+++grnz5+Hh4cHevXqhX/84x+4/fbb4evri4ceesjeVSSiZsB4arm/vz/c3Nxs9j4ymQy33347Nm/ejD179uCOO+6w2XsRERERkWOz+5HuZcuW4d5778XGjRtRWlqK/Px8vPfeexgwYABGjhyJ3Nxce1eRiJoJ46nlXbp0sfl7xcTEADDct5uIiIiIWi67J93vvvsuoqKicO7cORw4cAAHDhzA9evX8cEHHyA9PR39+/fHxYsX7V1NImoGmjLp7t+/PwAOpkZERETU0tk96c7Ly8PTTz9tMqiRWq3G5MmTceDAAchkMrz88st2rCE1NZlMhpCQEISEhEAmk9V4TtRQVZNuW2xTVbfVfv36QS6XIzs7Gzk5OVZ7DyIiIiJyLna/prtr167Iy8szu8zf3x9TpkzBkiVLmrhWZE8uLi6YNGmSybzqz4kawph0R0ZG4r777rN6+dW33e7du+Po0aPYu3cvHnjgAau/HxERERE5Prsf6X755ZfxwQcf4OTJk2aXu7u78+gmETWaXq+XBlLr2rVrk7zngAEDAPAUcyIiIqKWzO5J97/+9S8oFAr0798fb731lnQ7HwA4ffo0li9fjkceecSONSSi5uDixYsoKyuDUqlEeHh4k7wnk24iIiIisnvSHRISAg8PDxQVFWHWrFkIDQ2Fv78/goKC0KVLF7i5ueGZZ56BVqu1d1WpiWi1WixbtgzLli2DVqut8ZyoIYynlhsTbltsU9W3VWPSvX//flRWVlrtfYiIiIjIedj9mu7vv/8eAFBSUoJjx47h6NGjSE9Pl/4/fPgw+vfvD4VCgfDwcNx2222IjIzEG2+8Yeeak60IIVBYWCg9BlDjOVF9VT213Nw2Zg3Vy+3WrRs8PT1RVFSEY8eOoXfv3lZ7LyIiIiJyDnZPuo1atWqFmJgY6d62Rvn5+TUS8eTkZCbdRFQvxiPdTXU9NwDI5XL0798fv/76K/bs2cOkm4iIiKgFsvvp5bcSEBCAIUOG4IUXXsCnn36KPXv2oKioqF5lLF++HB06dICrqytiYmKwb98+i7ErV67EwIED4ePjAx8fH8TFxdUaT0TOwR5JN8DruomIiIhaOodPuhtr7dq1mD59OubNm4eDBw+id+/eiI+PR35+vtn4nTt34vHHH8eOHTuQkpKC0NBQDB06FBcvXmzimhORNVW9R3dTMibde/fubdL3JSIiIiLH0OyT7nfeeQeTJk3ChAkTEBkZiRUrVsDd3R2rVq0yG//VV19hypQpiIqKQrdu3fDpp59Cr9cjOTm5iWtORNZSXl6Oc+fOAWj6I939+/cHAGRmZqKgoKBJ35uIiIiI7K9ZJ90ajQapqamIi4uT5snlcsTFxSElJaVOZZSVlUGr1cLX19dW1SQiGzt16hSEEPDy8kJAQECTvre/vz86deoEALxUhYiIiKgFatZJ95UrV6DT6RAYGGgyPzAwELm5uXUq45VXXkFISIhJ4l5dRUUFioqKTCZqOJlMBn9/f/j7+0Mmk9V4TlRfVa/ntuU2ZalcXtdNRERE1HI5zOjljmjJkiVISkrCzp074erqajEuMTERCxYsaMKaNW8uLi6YMmWKybzqz4nqo/ogaua2MWuwVO6AAQPw1Vdf8bpuIiIiohaoWR/p9vPzg0KhQF5ensn8vLw8BAUF1frapUuXYsmSJfjll1/Qq1evWmMTEhJQWFgoTefPn2903YnIeuw1crmR8VaIe/bs4b3miYiIiFqYZp10q1QqREdHmwyCZhwULTY21uLr3nrrLSxatAhbt25Fv379bvk+arUanp6eJhMROQ57J929e/eGWq3GtWvXcOLECbvUgYiIiIjso1kn3QAwffp0rFy5Ep9//jkyMzMxefJklJaWYsKECQCAsWPHIiEhQYp/8803MWfOHKxatQodOnRAbm4ucnNzUVJSYq+P0OJotVp8+OGH+PDDD6HVams8J6oPIUSNpNtW25SlclUqFQYOHAgA+O9//2u19yMiIiIix9fsk+5Ro0Zh6dKlmDt3LqKiopCWloatW7dKg6tlZ2cjJydHiv/oo4+g0Wjw8MMPIzg4WJqWLl1qr4/Q4gghcPnyZVy+fBlCiBrPierj8uXLKCwshEwmQ+fOnQHU3MaspbZyn3jiCQCG2xJyOyYiIiJqOVrEQGrTpk3DtGnTzC7buXOnyfOzZ8/avkJk1vz5gEIBvPJK3V+zaBGg0xleS2SO8Sh3WFgY3Nzc7FaPhx56CJMnT0ZGRgYOHz6MqKgou9WFiIiIiJpOsz/STc5DoQDmzgUWL67bZrlokSFeobBxxcipHTt2DID9ruc28vLywr333gvAcLSbiIiIiFoGJt3kMObMARYuBBYsUGLXrkG1xhoT7oULDa8jssR4m666DIpoa6NHjwYAfPPNN9DpdHauDRERERE1BSbd5FDmzAHmzavEjh33WEy8mXBTfaSkpAAw3Cvb3kaMGAFvb29cvHgRv//+u72rQ0RERERNgEk3OZzZs/W4554d2LHjnhqnmi9eLGfCTXV27do16ZpuR0i61Wo1Hn74YQA8xZyIiIiopWDSTQ5HJpPhvvsOY/jwP7BggRJvvCGDl5cX9u79PyxYoGTCTXVmPLU8IiICfn5+0nyZzLBNeXl5QSaTWe396lKucRTzb7/9FhUVFVZ7byIiIiJyTDLBe9dYXVFREby8vFBYWAhPT097V8ep3XnnDPzxxzLI5eOg169iwk31MnfuXCxatAhjxozBF198Ye/qAAD0ej3at2+PixcvYsOGDXjwwQftXSUiIiKiZsXR8jEe6SaHJYTAH3+8A0APvX41XFz0TLipXvbs2QMAiI2NtXNNbpLL5Xj88ccB8BRzIiIiopaASTc5rOzsbJPnWm0OFi2yU2XI6ej1eun0cke4nrsq4yjmmzdvRmFhoZ1rQ0RERES2xKSbHI5Wq8XKlSvx6KP/NZl/xx2bMXcumHhTnWRmZqKoqAgeHh7o2bOnyTLjNrZy5UpotVqrvWddy+3duzciIyNRUVGB//73vxbjiIiIiMj5MekmhyOEwDffdMa+faaDTLVp8yPmzatk4k11YrxV2O233w6lUmmyTAiBS5cu4dKlS7DmsBZ1LVcmk0kDqn399ddWe38iIiIicjxMusnhLF4sx44d9yA4eLfJ/OvXr2P2bD0WLgQTb7olR7o/tznGpHv79u24dOmSnWtDRERERLaivHUINVSpphQKjaLGfIVcAVelq0mcJXKZHG4ubg2KLdOWWTzaJpPJ4O7i3qDYcm059EJvsR4eKo8Gxd6ovIE3Xpfj9QUq3HPPDpw9mwkAiOgSgZMnTqKkpASAYfTySr0Wc+e6QKPTYNbsmqfxuru4S7dsqqisQKW+0mId6hPr5uIGuczwW5VGp4FWZ/kU4vrEuipdoZAr6h2r1Wmh0WksxqqVaijlynrHVuorUVFp+XZWKoUKLgqXesfq9DrcqLxhMdZF4QKVQlXvWL3Qo1xbbrL8j5Q/AAB9+vWBRqcxia26H5VqSqHFzfWtlCuhVqoBGI5cl2nLLNahemxt5Vbf7wPaBmBA7ADsSdmDL778As+/+LzFWPYRBjcqb0Cn11klln2EQUvuIxoa25g+orbY+uz37CPMx7KPYB/BPqL+sc21j6jtc9gDk24bCvlXCOBac/6IiBH48YkfpecBSwMs7mSDwwZj5/id0vMO73bAlbIrZmP7hfTD/kn7peeRyyNxrvCc2dhI/0gcm3JMen77ytuRcTnDbGyYVxjOvnhWej5ozSAcuHTAbKyfux8uz7wsPR/+1XDsOrfLbKy7iztKZ9/cIXo9vh4nvx0D+T3zMXiwDIcOXQcAnHI7BQAoLb0ZmxH5BHBPN7y+YBFe/20RMPh1k7JLEkqkHfLZzc/i88Ofm60DAOS/lA9/D38AwPSfp+PDAx9ajM16IQsdvDsAAF5NfhVLU5ZajE2fnI7uAd0BAIt/X4wFuxZYjN339D7c3vZ2AMC7e97Fy7++bDF2x7gduLvD3QCAT1I/wbQt0yzGbn58M0Z2GQkA+OroV5jw3QSLseseXodHuj8CANiYuRGPfvuoxdjV96/G+KjxAICfT/2Me7+512LsB8M/wNT+UwEAv2f/jns+v8di7Ftxb2HmnTMBAAdzDqL/p/0txs4bPA/z754PAMi8nIkeH/W4ubAcgOE3G4zaMwovtX4Jbw99GwCQXZiNLu92wat4FQAQ+K9Ak+R4Sr8pWD5yOQDgStkVBCwNsFiHcb3HYc0DawAYvkwC/xVosdyHIx/G+kfWS89bJbYCfAyPE5YlIKE8QVrGPsKgeh/xj3X/wE8nfzIbCwBi3s0v8zEbx+DbjG8txrKPMGixfUQ1L8Wa9hEd3+1oMbYxfUSrxFYWY832ERawjzBgH3ET+wgD9hEG7CMAWP69xS54ejk5DKGXA/fMgWLwYuh0OmlUZ1lbw6/HZWXVOovBrwP3zAH0Nc8moBbu4l//+wCw/J1kf91h6IVzAFy+RSwREREROSWZsOYoQgTg5s3YL12+ZPZm7Dzlw3ys8VQvjUaDBa8twLvvvguVSoVNmzdhxNAR8Pb2Rl5eHlQqFU8L42lhtZ7qtfj1xVi8aDFGPT4Kn635rEZsYWkh3vvXewCAf874J1QqlfTaxpwWVlBaYLFcS/v9P+7/B37e+jNeTngZc+fPrTXWnJbYR1gjln2EQUvtIxoTy1NHDdhHNCyWfYQB+4j6x7KPuKkufURRURFC/ENQWFhoNh9rajy93IY8VB4mG0VtcfUps66qbrzWjK26s1kz1tg5uMAF5eWGziwsLAxhbcMAmB7prtqR3IpaqYYaaqvHqhQqqQO2V6yLwkX6IrJmrFKuhFJVt+6hPrEKuaLO23B9YuUyuUnswf0HAQB33XFXjTKMse7uhm3eQ+VhkhxXJZPJ6lwHY2xdyjUuB4BxY8fh560/44N3P8BjjzyGPn36WIyti5bQR1g7ln1E/WOdvY+wVmxD+oi6coRY9hEG7CPqH8s+woB9RMNirdFH6FSWf1SzBx7ptgHjkW5H+WXFGa1atQpPPfUU4uPjsXbtWnh7ewMwJN5ubnXfEanl0ev1aNOmDQoKCnDgwAFER0fbu0q1qqysxMiRI/HLL7+gbdu22LdvH0JCQuxdLSIiIiKn5Wj5GK/pJoeUlZUFAOjYsSM8PT2lI4aXL/PCV6rd8ePHUVBQADc3N/Tq1cve1bklpVKJtWvX4rbbbsPFixdx//331xy/gIiIiIicFpNuckhVk26ZTAZ/f8OooPn5+fasFjmBPXv2AAD69esHF5e6nQZnb97e3vjhhx/Qpk0bHDhwAOPHj4deb/laJiIiIiJyHky6yeFotVrs3bsXABAaGgqtVguFwjDgR05Ojj2rRk4gJSUFABAbG2sxRqvVYs2aNVizZg20WsuDzdRXY8rt1KkTNm7cCBcXF6xfvx7z58+3Wr2IiIiIyH6YdJPDEUIgNzcXANChQwcIIaQjljzS3TLodDp89913eOKJJ7BmzRqLo12aYzzSPWDAAIsxQgicO3cO586dq1fZt9LYcgcOHIhPPvkEALBo0SJ89dVXVqsbEREREdkHRy+3pdJSQGHmHtIKBeDqahpniVwOVB04rD6xZWWApT/8ZTLA3b1hseXlQG2nvnp4NCz2xg1Ap0N5YSFKSkoAAB0CAoDSUmlEaOma7r9iLXJ3N9QbACoqgErLt++oV6ybm2E9A4BGA9R2NLM+sa6uN7eV+sRqtYZ4S9RqQKmsf2xlpWFdWKJSAcZTt+sTq9MZ2s6CvGvX8Nl//oOPP/4Y2dnZAIBvvvkG32/YgJUffIA2bdrcDHZxMZQNGLax8nJcvnwZ6enpAIABvXrd3F+qx1bdj0pLTde3UmlYF4Bhn6jt+urqsbWVW8f9fvwjjyDz6FG89c47eOqppxAeHo7Y2q5Nb4F9hFVi2UcYOFkfYbIv1yf2rz7CKrGN6SNqi63P3wb8O8J8LPuI+seyjzA8Zh/RsFhH7iNq+xz2IMjqCgsLBQBRaNi0ak4jRpi+wN3dfBwgxODBprF+fpZj+/UzjQ0LsxwbGWkaGxlpOTYszDS2Xz/LsX5+prGDB1uOdXc3jR0xQghApCmVAoBQqVTihlIpKlxcxIABAwQAMWPGDEPsww9bLhcQoqTkZrnjxtUem59/M3bKlNpjs7Juxr70Uu2x6ek3Y+fNqz12376bsW+9VXvsjh03Yz/4oPbYzZtvxq5eXXvsunU3Y9etqz129eqbsZs31x77wQc3Y3fssBj3NSDUf7U9ANHGy0uMBoTLX8+DAfFz1dfMm3ez3PR0UQmIoX/F9qpe/ksv3YzNyhIVLi5i/vz5Yv78+aLCxcU0dsqUm7H5+bV/tnHjbsaWlNRe7sMPCxO1lKsbPlw88MADAoAICAgQR1xdLce3wD7C4lQV+wiDZtRHCMDw2Y327as9tlofUWtstT6i1thG9BG1xtajj+DfEX9N7CNuTuwjDBP7CMPEPkIUwvA3YWFhoXAEPL2cHM5ZIQAAPj4+kP31y7HHX79ocfRyx6PX67EHwDoA7wOYB+DHepbxOYAnAVRUVuL222/HF198gQubN+NLAHsB3AYgB0A8gJcAmDuGMB/ALwDcAPynIR/EgchlMvznP/9BVFQU8vPz0evGDcTAsH55gQURERGRc+F9um1Aui/cpUvm7wvHUz7Mx/51qtfSd9/FzFdfRbdu3XD4jz8AAA+PG4cffvgBw4cPx08//cTTwhzktLDi4mI8NmoUftqypUbIQ/fdh+X//jeCQkNrPS3s0zVr8Mzzz0MIgWeeegofffIJ5HK5SWxZWRlefu01LP/reuf4uDgkffUVvAMCAADfb9qE+x98EADw5WefYfSoUaaVqXZamKawEInvvQcASPjnP6Vb0gFo1GlhmoICy+U24LSwixcv4rnnnsOWLVug+2t7VygUiI+Lw5OjRuH+e++Fe6tWLa6PsEos+wgDnjpa/1ieOmrAPqJhsewjDNhH1D+WfcRNdegjioqK4BUS4jD36WbSbQOOdjN2R/Xll1/iiy++wJIlS9C3b19p/lNPPYVVq1Zh0KBB2LZtGwBg3LhxSEpKwu233459+/bZq8pUxYULF3Dvvffi8OHDcHV1xe23347AwECo1WqsXbsWlZWV8PHxwbJlyzBmzBjprIWqPvzwQ0ydOhUAMG3aNLz33ntm44w2bNiAMWPGoKysDF27dsXmzZshhEC/fv1QVFSE559/Hu/9lfTWRqPRIDExEQCQkJBgmhw3gq3KzcvLw9q1a/Hll19i//790vxWrVrh3nvvxfDhwzFs2DAE/PUjBBEREVFL5mj5GE8vJ7s4d+4cxowZg23btuG1114zWZaRkQEACA4OluZ5eXkB4OjljiItLQ0xMTE4fPgwAgICsGvXLvz2229Yv349vvzySxw4cAB9+vTB9evXMW7cOPTu3RtJSUnQ6XTQ6/XYtGkT7rrrLinhnj59+i0TbgB46KGHsHv3brRr1w7Hjx9H//79ce+996KoqAh33nknli5dWufP4OLiYpP7eNui3MDAQPzzn//Evn378Oeff2LOnDkIDw9HSUkJkpKSMG7cOAQGBuL222/H3LlzkZKSIh0ZJyIiIiL74pFuG3C0X1YaqrKyEnK53HCqr5UIIfDf//4XS5YsQWpqKgDD6bJXr16Fl5cXdDodfH19UVRUhMOHD6PXX6M2X7hwAaGhoVAoFCgvL7dJskR1s2fPHgwbNgyFhYWIjIzEjz/+iA4dOtSI02q1+Ne//oXFixejuLgYANClSxcAwIkTJwAAKpUKr776KubMmXPLhLuqnJwcPPDAA9JZD0FBQTh48KDJDzXNnRACe/fuxQ8//IAtW7bg0KFDJst9fX0xdOhQDB8+HPHx8QgMDLRTTYmIiIialqPlYy0i6V6+fDnefvtt5Obmonfv3nj//ffRv39/i/Hr16/HnDlzcPbsWURERODNN9/EiBEj6vx+jtbIDZGWloZ77rkHPXr0wI4dO6BUWufucu+++y5efPHFGvN//vln+Pr64vr16xg6dChat26Na9euSe8rhECrVq1QVlaGzMxMZGZmwtvbG3fffXe9kjVqnN27d2PEiBEoLi7GXXfdhR9++AHe3t61vub69et4//33sWzZMly/fh0A4O3tjcmTJ+P5559vcKJcXl6OqVOn4tdff8XXX3+Nu+66q0HlNBe5ubnYunUrtmzZgl9++QUFBQUmy6OjozF8+HCMGDEC/fv3h8Lc7QytQK/X48KFCzh16pTJdPr0aZSVlUGhUEChUEAul0uPq05yuRw+Pj6IiIhAly5dpCk4OJj7OhEREdWJo+VjzT7pXrt2LcaOHYsVK1YgJiYGy5Ytw/r163H8+HGz1z/+8ccfGDRoEBITE3Hvvffi66+/xptvvomDBw+iR48edXpPR2vkhhgzZgy+/PJLAMCWLVswbNiwRpcphEBERAROnz4NwJAEhIeHY/369fD29jZJEkaMGIEffzQdA7tPnz5IS0vDoEGD8NtvvwEAxo4di5UrV1rt2lmybNu2bXjwwQdRWlqKe+65Bz/88IM0qnxdFBcX46uvvoJcLsfjjz+O1q1bW6VeQggmY9VUVlZi7969+Omnn2o9Cj5s2DBERkYiKCgIgYGBddqP9Ho9Ll++jPPnz0vTuXPncOrUKZw8eRJnzpxBRW0D4jSQh4dHjUQ8IiICnTt3Rps2bbgNEBERkcTR8rFmn3THxMTg9ttvxwcffADA8AdjaGgonn/+ecyaNatG/KhRo1BaWorNmzdL8wYMGICoqCisWLGiTu/paI1cX3q9HoGBgbhy5QoAwM/PD0899RRmz57doM9TWlqKGTNmYP369bh27Rpat26NCxcuoHXr1li5ciWeffbZGq959tlnMWjQIDz66KMAgHXr1uH999/Hnj17asQGBgbib3/7G15++WVERUXVu34tmRACBQUFOHfuHAoKCuDn54eAgAD4+PjAxcUFQgjs3LkTiYmJ0qB2//d//4dNmzbBveook06msrIS69atAwA8+uijVjuTw1blNtatjoIb+fr6IigoyGRSqVS4cOGClGBfuHABmtpGrwWgVCoRHh6Ozp07S1OnTp3g6ekJvV4PnU4nTdWf63Q6XL58GSdPnsSJEydw4sQJZGVl1XqNuru7Ozp06CBNYWFhJs/9/f1tnpQLIVBWVoaSkhKUlpaioqKi3pNWq4WLiwtUKpXJpFara8wzF6NWq+Hm5gY3Nze4urrCxcWFP0YQEVGL5Gj5mGP8RWgjGo0GqampSEhIkObJ5XLExcUhJSXF7GtSUlIwffp0k3nx8fHYtGmT1etXUFCAkydP1hojhLjlBBg+l/GxEAJKpRIlJSXQarU4evQoiouL0b59e0RERECn06GkpATFxcXYvn07duzYgezsbAQGBmLChAlIT0+XEm4AuHLlCt58800kJydj5MiR6NixI3x9faFSqZCdnY0TJ06gf//+CAgIQGFhIeRyOfbv3w+NRoPDhw8jMzMTZ8+elcp7/PHHpY3/wQcfxJQpU6DT6dC1a1fcd999CAkJkdaN/q9bAJw8eRJuVW5REBsbi4SEBEycOBF5eXn45ptv8O2332LmzJlQq9XYtWsX/Pz80LdvX/To0QNubm5QKpVwcXHBjRs3cP78eWRnZ0s/AhiPuur1erRu3Ro+Pj5QKBTSejL+L4SAq6sr1Go1XF1dzU5qtRqFhYW4dOkScnJyUFFRIf1BbHxdbc8BwynZubm5OH36NC5duoSrV69Cp9MhKCgIISEhCA4Olk7Hz8/PR35+Pi5fviw9Li4uhq+vL/z8/NC+fXt07twZbdu2hU6nQ0VFBU6ePIlDhw7h6NGjKCwsNLvtKRQKuLq6ovSvW0coFAqMHz8eH3zwAVyr3obCCen1emnf09d2SwoHKbexgoKCMH78eIwfP97kKPj27dtx4cIF5ObmorKyEteuXcO1a9ekwQwtkclkCAoKQmhoKEJDQ6W+xZhgh4aGWvUHB41Gg7Nnz0pJeNXp4sWLKCsrQ0ZGhsV6u7m5ISwsDKGhoXBzc5MGuzP2CZYeK5VKaLVaqQ+o2h9Uf1xSUgJH+w1bLpdLCXjVZNzSY1dXV+kU/7pO5uIB1Pgh5VZTZWVlk8YLIer0Wer6mc3FKJVK6bKJ+jyua6xcLodMJoNMJjN5XNtU1zhLsVX/9tDr9VZ9bosybfWeVRl/2Kr6A1f1ebaKaa7veSuMa1ycrcq0Bmt+j5bXdls3O2jWSfeVK1eg0+lqDCAUGBiIP//80+xrcnNzzcbn5uZafB/jUQqjoqKiOtXvjz/+wMiRI+sU2xTy8vKwZMkS6fnTTz+Nn3/+GefPnwcAHDhwAAcOHGhw+X369EFwcLB0SyUA8Pf3x8cff4x9+/bh1VdfRfv27U1uu1RVv379kJeXh1OnTiExMRGDBw/GuXPnsGfPHrz33nv47rvvsHjxYpPXGI86tkQ5OTl1jvX394evry+uXr2Kq1evQggBnU6H0tJSqNVqPPXUU3jppZfQsWNHG9aYmoJSqcSdd96JO++8U5qn1+ulH3pyc3ORl5cnPS4vL0e7du2kBDs0NBQhISFNekmHSqWSTimvrqKiAtnZ2Th37hzOnj1bY7p06RLKy8vx559/Wuz3rc3d3d3kh7RbTcYf3pRKJSorK6HRaMxOFRUVtS6rqKgw+SNDr9ejtLRU+uGMiIiI7KNZJ91NJTExEQsWLKj364xHX27F3C/QVecDNX8Z0ul08PDwgBACHTp0QElJCcrLy1FUVASZTAaFQoGKigoEBAQgJCQElZWVOHv2LHx8fFBUVIT7778fr7zyCo4ePYqtW7di8ODBWLJkCa5fv47i4mKoVCpotVp4eXmhQ4cOSE9PR1FREVq3bo0bN26gV69eUCqV6Nq1K/Lz83HfffchLi7O7Od76qmn8NRTT91yPXh4eODAgQMoKCiQBt9yd3fH3/72N9xzzz34z3/+g6SkJLi6uuL//u//UFRUhIMHD+LEiRPQaDTQ6XTS6ZvGo3Nt2rSRjlIZf8UvLi7G9evXodPppKPgrVq1QuvWrSGXy1FRUYEbN27UmKrOb926tXRE2s3NzeQUUmOspccA4OPjA39/f4SHhyM0NBRt2rSBQqFATk4OcnJycOnSJVy7dg2+vr4ICAhAQEAA/P39pcetWrXC9evXcfnyZZw9exanTp1Cbm6udCQvNDQUffr0QVRUFDp16mRyqnhlZSWKiopQXl6OGzduwM/PT7plGzVPcrkcbdq0QZs2bdC9e3d7V6de1Go1IiIiEBERYXa5RqPB+fPncfbsWenUeK1WC61Wi8rKSpP/zc1TqVRo1aqVNBn7g+qPjc/d3NyseseH+hJCSP1JeXm5tB+be1z9eUVFBfR6fY3JeBlAbVPVGCGE2UHyqk5Vj9o2JqahZRn7+/p8xvqsi+pH2Kseaa9tXn1eYzxif6sjuQ2ZLJVj6Sh4Y5/bokxbv6dxf6v6v7l5toppru95K4xrXJyt3rupj4jXhVartcmZyg3VrJNuPz8/KBQK5OXlmczPy8tDUFCQ2dcEBQXVKx4AEhISTE5JLyoqQmho6C3rd88995icdu2I+vTpgz59+gAAvv/+ezvXxnCKs7nRrmUyGcaOHYuxY8faoVbNi1KphK+vr72rQWQVKpUKnTp1QqdOnexdlSYhk8mkU8VvdWcBIiKi5sp4TbejsN/P8U1ApVIhOjoaycnJ0jy9Xo/k5GTExsaafU1sbKxJPGAYtdlSPGA40uLp6WkyERERERERETXrI90AMH36dIwbNw79+vVD//79sWzZMpSWlmLChAkADLecatu2rXQN8QsvvIDBgwfjX//6F0aOHImkpCQcOHAAn3zyiT0/BhERERERETmhZp90jxo1CpcvX8bcuXORm5uLqKgobN26VRosLTs72+T6uzvuuANff/01XnvtNcyePRsRERHYtGlTne/RDdy8BqKuA6qRKY1Ggxs3bgC4uQ6rPuc9uamxqm9j1tqmbFUuEREREdWdMYew5ojojdHs79NtD2fOnGkx1w8SERERERE5otOnTyM8PNze1Wj+R7rtwTgIVXZ2tkNdwE/mGQe+O3/+PK/HdxJsM+fC9nI+bDPnwvZyPmwz58L2cj6FhYVo3769wwwOzKTbBoynq3t5eXHHdCIcBM/5sM2cC9vL+bDNnAvby/mwzZwL28v52PM2nlU5Ri2IiIiIiIiImiEm3UREREREREQ2wqTbBtRqNebNmwe1Wm3vqlAdsL2cD9vMubC9nA/bzLmwvZwP28y5sL2cj6O1GUcvJyIiIiIiIrIRHukmIiIiIiIishEm3UREREREREQ2wqSbiIiIiIiIyEaYdBMRERERERHZCJNuK1u+fDk6dOgAV1dXxMTEYN++ffauUoswf/58yGQyk6lbt27S8hs3bmDq1Klo06YNWrVqhX/84x/Iy8szKSM7OxsjR46Eu7s7AgICMHPmTFRWVprE7Ny5E3379oVarUbnzp2xZs2apvh4Tu+3337D3//+d4SEhEAmk2HTpk0my4UQmDt3LoKDg+Hm5oa4uDicPHnSJObatWsYPXo0PD094e3tjaeeegolJSUmMUeOHMHAgQPh6uqK0NBQvPXWWzXqsn79enTr1g2urq7o2bMnfvrpJ6t/3ubgVm02fvz4GvvcsGHDTGLYZk0nMTERt99+O1q3bo2AgAA88MADOH78uElMU/aD/C6sXV3a6+67766xjz333HMmMWyvpvPRRx+hV69e8PT0hKenJ2JjY7FlyxZpOfcvx3Kr9uL+5fiWLFkCmUyGF198UZrn1PuZIKtJSkoSKpVKrFq1Shw7dkxMmjRJeHt7i7y8PHtXrdmbN2+e6N69u8jJyZGmy5cvS8ufe+45ERoaKpKTk8WBAwfEgAEDxB133CEtr6ysFD169BBxcXHi0KFD4qeffhJ+fn4iISFBijlz5oxwd3cX06dPFxkZGeL9998XCoVCbN26tUk/qzP66aefxKuvvio2bNggAIiNGzeaLF+yZInw8vISmzZtEocPHxb33Xef6NixoygvL5dihg0bJnr37i327Nkjfv/9d9G5c2fx+OOPS8sLCwtFYGCgGD16tEhPTxfffPONcHNzEx9//LEU87///U8oFArx1ltviYyMDPHaa68JFxcXcfToUZuvA2dzqzYbN26cGDZsmMk+d+3aNZMYtlnTiY+PF6tXrxbp6ekiLS1NjBgxQrRv316UlJRIMU3VD/K78Nbq0l6DBw8WkyZNMtnHCgsLpeVsr6b1/fffix9//FGcOHFCHD9+XMyePVu4uLiI9PR0IQT3L0dzq/bi/uXY9u3bJzp06CB69eolXnjhBWm+M+9nTLqtqH///mLq1KnSc51OJ0JCQkRiYqIda9UyzJs3T/Tu3dvssoKCAuHi4iLWr18vzcvMzBQAREpKihDCkGDI5XKRm5srxXz00UfC09NTVFRUCCGEePnll0X37t1Nyh41apSIj4+38qdp3qoncHq9XgQFBYm3335bmldQUCDUarX45ptvhBBCZGRkCABi//79UsyWLVuETCYTFy9eFEII8eGHHwofHx+pvYQQ4pVXXhFdu3aVnj/66KNi5MiRJvWJiYkRzz77rFU/Y3NjKem+//77Lb6GbWZf+fn5AoDYtWuXEKJp+0F+F9Zf9fYSwpAUVP1jszq2l/35+PiITz/9lPuXkzC2lxDcvxxZcXGxiIiIENu2bTNpJ2ffz3h6uZVoNBqkpqYiLi5OmieXyxEXF4eUlBQ71qzlOHnyJEJCQhAeHo7Ro0cjOzsbAJCamgqtVmvSNt26dUP79u2ltklJSUHPnj0RGBgoxcTHx6OoqAjHjh2TYqqWYYxh+zZOVlYWcnNzTdatl5cXYmJiTNrH29sb/fr1k2Li4uIgl8uxd+9eKWbQoEFQqVRSTHx8PI4fP47r169LMWxD69m5cycCAgLQtWtXTJ48GVevXpWWsc3sq7CwEADg6+sLoOn6QX4XNkz19jL66quv4Ofnhx49eiAhIQFlZWXSMraX/eh0OiQlJaG0tBSxsbHcvxxc9fYy4v7lmKZOnYqRI0fWWLfOvp8pG/xKMnHlyhXodDqTRgaAwMBA/Pnnn3aqVcsRExODNWvWoGvXrsjJycGCBQswcOBApKenIzc3FyqVCt7e3iavCQwMRG5uLgAgNzfXbNsZl9UWU1RUhPLycri5udno0zVvxvVrbt1WXfcBAQEmy5VKJXx9fU1iOnbsWKMM4zIfHx+LbWgsg+pu2LBheOihh9CxY0ecPn0as2fPxvDhw5GSkgKFQsE2syO9Xo8XX3wRd955J3r06AEATdYPXr9+nd+F9WSuvQDgiSeeQFhYGEJCQnDkyBG88sorOH78ODZs2ACA7WUPR48eRWxsLG7cuIFWrVph48aNiIyMRFpaGvcvB2SpvQDuX44qKSkJBw8exP79+2ssc/bvMSbd1CwMHz5cetyrVy/ExMQgLCwM69atYzJMZAOPPfaY9Lhnz57o1asXOnXqhJ07d2LIkCF2rBlNnToV6enp2L17t72rQnVgqb2eeeYZ6XHPnj0RHByMIUOG4PTp0+jUqVNTV5MAdO3aFWlpaSgsLMS3336LcePGYdeuXfauFllgqb0iIyO5fzmg8+fP44UXXsC2bdvg6upq7+pYHU8vtxI/Pz8oFIoaI+jl5eUhKCjITrVquby9vdGlSxecOnUKQUFB0Gg0KCgoMImp2jZBQUFm2864rLYYT09PJvaNYFy/te07QUFByM/PN1leWVmJa9euWaUNuY82Xnh4OPz8/HDq1CkAbDN7mTZtGjZv3owdO3agXbt20vym6gf5XVg/ltrLnJiYGAAw2cfYXk1LpVKhc+fOiI6ORmJiInr37o13332X+5eDstRe5nD/sr/U1FTk5+ejb9++UCqVUCqV2LVrF9577z0olUoEBgY69X7GpNtKVCoVoqOjkZycLM3T6/VITk42uX6EmkZJSQlOnz6N4OBgREdHw8XFxaRtjh8/juzsbKltYmNjcfToUZMkYdu2bfD09JRORYqNjTUpwxjD9m2cjh07IigoyGTdFhUVYe/evSbtU1BQgNTUVClm+/bt0Ov10hdlbGwsfvvtN2i1Wilm27Zt6Nq1K3x8fKQYtqFtXLhwAVevXkVwcDAAtllTE0Jg2rRp2LhxI7Zv317jtP2m6gf5XVg3t2ovc9LS0gDAZB9je9mXXq9HRUUF9y8nYWwvc7h/2d+QIUNw9OhRpKWlSVO/fv0wevRo6bFT72cNHoKNakhKShJqtVqsWbNGZGRkiGeeeUZ4e3ubjKBHtjFjxgyxc+dOkZWVJf73v/+JuLg44efnJ/Lz84UQhlsMtG/fXmzfvl0cOHBAxMbGitjYWOn1xlsMDB06VKSlpYmtW7cKf39/s7cYmDlzpsjMzBTLly/nLcPqqLi4WBw6dEgcOnRIABDvvPOOOHTokDh37pwQwnDLMG9vb/Hdd9+JI0eOiPvvv9/sLcP69Okj9u7dK3bv3i0iIiJMbj9VUFAgAgMDxZgxY0R6erpISkoS7u7uNW4/pVQqxdKlS0VmZqaYN28ebz9lQW1tVlxcLF566SWRkpIisrKyxK+//ir69u0rIiIixI0bN6Qy2GZNZ/LkycLLy0vs3LnT5BY4ZWVlUkxT9YP8Lry1W7XXqVOnxMKFC8WBAwdEVlaW+O6770R4eLgYNGiQVAbbq2nNmjVL7Nq1S2RlZYkjR46IWbNmCZlMJn755RchBPcvR1Nbe3H/ch7VR5l35v2MSbeVvf/++6J9+/ZCpVKJ/v37iz179ti7Si3CqFGjRHBwsFCpVKJt27Zi1KhR4tSpU9Ly8vJyMWXKFOHj4yPc3d3Fgw8+KHJyckzKOHv2rBg+fLhwc3MTfn5+YsaMGUKr1ZrE7NixQ0RFRQmVSiXCw8PF6tWrm+LjOb0dO3YIADWmcePGCSEMtw2bM2eOCAwMFGq1WgwZMkQcP37cpIyrV6+Kxx9/XLRq1Up4enqKCRMmiOLiYpOYw4cPi7vuukuo1WrRtm1bsWTJkhp1WbdunejSpYtQqVSie/fu4scff7TZ53ZmtbVZWVmZGDp0qPD39xcuLi4iLCxMTJo0qcaXEdus6ZhrKwAmfVRT9oP8LqzdrdorOztbDBo0SPj6+gq1Wi06d+4sZs6caXIfYSHYXk1p4sSJIiwsTKhUKuHv7y+GDBkiJdxCcP9yNLW1F/cv51E96Xbm/UwmhBANP05ORERERERERJbwmm4iIiIiIiIiG2HSTURERERERGQjTLqJiIiIiIiIbIRJNxEREREREZGNMOkmIiIiIiIishEm3UREREREREQ2wqSbiIiIiIiIyEaYdBMRERERERHZCJNuIiIiIiIiIhth0k1ERERERERkI0y6iYiIiIiIiGyESTcRERERERGRjTDpJiIiIiIiIrIRJt1ERERERERENsKkm4iIiIiIiMhGmHQTERERERER2YjS3hVojvR6PS5duoTWrVtDJpPZuzpEREREREQthhACxcXFCAkJgVxu/+PMTLpt4NKlSwgNDbV3NYiIiIiIiFqs8+fPo127dvauBpNuW2jdujUAQyN7enrauTZE1iWEQGFhIQDAy8vL4tkcdY2zh9rq9uabwOLFwOzZwCuv1Hxtbcsd+TMTERERtRRFRUUIDQ2V8jJ7Y9JtA8Y/tD09PZl0U7Oj0WiwbNkyAEBCQgJUKlWj4uyhtrq98Qbg6grMnWv4f86cm69btMiQcC9caDq/LuUSERERUdNylAMgTLqJiKoxJtRz5958vmiR4bmlhJuIiIiIyBwm3UREZtxMvPdjwYJt0OlmYuFCFybcRERERFQv9h/KjYjIQb3wQhGAe6HTvQqF4lMm3ERERERUb0y6iYgsGDnyDQD5AACd7lMsWmTf+hARERGR82HSTURkxv/7f6exe/cyAMZBOA5i7tyDTLyJiIiIqF6YdBMRVbNoEbBs2UsANIiPj8ejjz4KAOjf/zPMnQsm3kRERERUZxxIjYjqRS6Xo1+/ftLjxsbZQ211M4xSvh3AJigUCrzzzjvIycnB2rVrcfz4V3jttbcxd647gJqjmDvyZyYiIiIi+5AJIYS9K9HcFBUVwcvLC4WFhbxPN5ETMSTclQgM7Iu8vKN4/vnn8d5770Gv16Nz587IysrCF198gbNnx/D2YUREREQOytHyMac/FLN8+XJ06NABrq6uiImJwb59+yzG3n333ZDJZDWmkSNHSjHjx4+vsXzYsGFN8VGIyI6M9+H++98/RV7eUfj6+mL+/PkADEetn3rqKQDAp58aRjFfuBA81ZyIiIiIbsmpk+61a9di+vTpmDdvHg4ePIjevXsjPj4e+fn5ZuM3bNiAnJwcaUpPT4dCocAjjzxiEjds2DCTuG+++aYpPg6RUxBCoLS0FKWlpajtRJm6xtmDubrpdEBCQgFSUgyHrhcsWABfX1/pNePHj4dcLsdvv/2GEydOSIm3Tld7uURERETUsjl10v3OO+9g0qRJmDBhAiIjI7FixQq4u7tj1apVZuN9fX0RFBQkTdu2bYO7u3uNpFutVpvE+fj4NMXHIXIKWq0WS5cuxdKlS6HVahsdZw/m6jZ/PnDjxkJcuXIFkZGReO6550xe07ZtW4wYMQIA8NlnnwEwnFr+18Fwi+USERERUcvmtEm3RqNBamoq4uLipHlyuRxxcXFISUmpUxmfffYZHnvsMXh4eJjM37lzJwICAtC1a1dMnjwZV69etWrdicjxXLx4Ee+//z4A4N///jeUyprjTD799NMAgDVr1jCpJiIiIqI6cdqk+8qVK9DpdAgMDDSZHxgYiNzc3Fu+ft++fUhPT5f+iDYaNmwYvvjiCyQnJ+PNN9/Erl27MHz4cOiqnkNaTUVFBYqKikwmInIue/bsQWVlJaKiojB06FCzMSNGjEBQUBDy8/OxefPmJq4hERERETkjp026G+uzzz5Dz5490b9/f5P5jz32GO677z707NkTDzzwADZv3oz9+/dj586dFstKTEyEl5eXNIWGhtq49kRkbceOHQMA9O7d22KMi4sLxo8fD8AwoBoRERER0a04bdLt5+cHhUKBvLw8k/l5eXkICgqq9bWlpaVISkqSRiOuTXh4OPz8/HDq1CmLMQkJCSgsLJSm8+fP1+1DEJHDMCbd3bt3rzVu4sSJAICtW7dyXyciIiKiW3LapFulUiE6OhrJycnSPL1ej+TkZMTGxtb62vXr16OiogJPPvnkLd/nwoULuHr1KoKDgy3GqNVqeHp6mkxE5FwyMjIA3DrpjoiIwN133w29Xo81a9Y0Qc2IiIiIyJk5bdINANOnT8fKlSvx+eefIzMzE5MnT0ZpaSkmTJgAABg7diwSEhJqvO6zzz7DAw88gDZt2pjMLykpwcyZM7Fnzx6cPXsWycnJuP/++9G5c2fEx8c3yWcioqan1Wpx/PhxALdOuoGbA6qtWrWKtwYjIiIiolrVHJ7XiYwaNQqXL1/G3LlzkZubi6ioKGzdulUaXC07OxtyuenvCsePH8fu3bvxyy+/1ChPoVDgyJEj+Pzzz1FQUICQkBAMHToUixYtglqtbpLPROTo5HK5dN1z9f2rIXH2UL1uJ0+ehFarRatWrdC+fftbvv6hhx6CUqnE2bNncf78eek1jvyZiYiIiMg+ZIKHaayuqKgIXl5eKCws5KnmRE7g22+/xSOPPIL+/ftj7969dXpNnz59kJaWho0bN+KBBx6wbQWJiIiIqM4cLR/joRgiavHqOohaVX379gUApKam2qRORERERNQ8MOkmonoRQkCj0UCj0dR6PXNd4+yhet0aknRHR0cDAA4ePGixXCIiIiIip76mm4ianlarRWJiIgDD7fJUKlWj4uyhet0ac6S7atLtyJ+ZiIiIiOyDR7qJqEXTaDQ4ceIEgPol3b169YJcLkdubi5ycnJsVT0iIiIicnJMuomoRTt16hQqKyvh6emJdu3a1fl17u7uuO222wDwum4iIiIisoxJNxG1aBkZGQCAyMhIyGSyer3W3HXdRERERERVMekmohbNmHTX59RyI3PXdRMRERERVcWkm4haNCbdRERERGRLTLqJqEVrTNIdFRUFmUyG8+fP4/Lly9auGhERERE1A7xlGBHVi1wuR2RkpPS4sXH2YKybVqvFqVOnADQs6W7dujW6dOmC48eP4+DBgxgyZIjDfmYiIiIisg8m3URUL0qlEo888ojV4uzBWLejR49Cp9PBy8sLISEhDSqrb9++UtIdHx/vsJ+ZiIiIiOyDh2KIqMU6duwYAMNR7vqOXG7E67qJiIiIqDZMuomoxaqadDeUMenmvbqJiIiIyByeXk5E9aLRaJCYmAgASEhIgEqlalScPRjr9u233wKwTtKdlZWFvLw8rFixAoDjfWYiIiIisg8e6SaiFss44nhjkm5vb2+Eh4cDANLS0qxRLSIiIiJqRph0E1GLpNVqce3aNQCQRhxvKOPR7kOHDjW6XkRERETUvDDpJqIW6erVqxBCwNvbG8HBwY0qi0k3EREREVnCpJuIWqT8/HwAhqPcDR253Cg6OhoAk24iIiIiqolJNxG1SMbruW+77bZGl9WnTx8AwMmTJ3Hjxo1Gl0dEREREzQeTbiJqkaoe6W4sf39/hIaGAgByc3MbXR4RERERNR+8ZRgR1YtcLkdERIT0uLFx9iCXy1FQUAAA6NGjh1XK7Nu3L86fP4/KykpEREQ43GcmIiIiIvtg0k1E9aJUKvHEE09YLc4etFqtdKS7V69eVikzOjoa3333HWQymcN+biIiIiJqek5/KGb58uXo0KEDXF1dERMTg3379lmMXbNmDWQymcnk6upqEiOEwNy5cxEcHAw3NzfExcXh5MmTtv4YRNSE/vzzTwgh4Ovri8DAQKuUaRzB/ODBg1Ypj4iIiIiaB6dOuteuXYvp06dj3rx5OHjwIHr37o34+HjpCJY5np6eyMnJkaZz586ZLH/rrbfw3nvvYcWKFdi7dy88PDwQHx/PwZGImpGMjAwAQPfu3Rs9crmRMenOzMxEaWmpVcokIiIiIufn1En3O++8g0mTJmHChAmIjIzEihUr4O7ujlWrVll8jUwmQ1BQkDRVPcolhMCyZcvw2muv4f7770evXr3wxRdf4NKlS9i0aVMTfCIix6fRaLB48WIsXrwYGo2m0XH2kJmZCQAoLy+3Wt2Cg4MRFBQEvV6PGTNmONxnJiIiIiL7cNqkW6PRIDU1FXFxcdI8uVyOuLg4pKSkWHxdSUkJwsLCEBoaivvvvx/Hjh2TlmVlZSE3N9ekTC8vL8TExNRaZkVFBYqKikwmouZMq9VCq9VaLa6pnTlzBgDg7e1t1XKNtw47f/68VcslIiIiIufltEn3lStXoNPpalyPGRgYaPGWPV27dsWqVavw3Xff4csvv4Rer8cdd9yBCxcuALh5q5/6lAkAiYmJ8PLykibjrYOIyDGdPn0aAODr62vVco1Jd05OjlXLJSIiIiLn5bRJd0PExsZi7NixiIqKwuDBg7Fhwwb4+/vj448/blS5CQkJKCwslCYe5SJybLZKuqOiogAAly5dsmq5REREROS8nDbp9vPzg0KhQF5ensn8vLw8BAUF1akMFxcX9OnTB6dOnQIA6XX1LVOtVsPT09NkIiLHVFBQgKtXrwIAfHx8rFq28Uj35cuXOfgiEREREQFw4qRbpVIhOjoaycnJ0jy9Xo/k5GTExsbWqQydToejR48iODgYANCxY0cEBQWZlFlUVIS9e/fWuUwicmzGo9weHh5Qq9VWLTs0NBTu7u7Q6/Um40UQERERUctlt6R7165d2LRpEzIyMqDX6xtUxvTp07Fy5Up8/vnnyMzMxOTJk1FaWooJEyYAAMaOHYuEhAQpfuHChfjll19w5swZHDx4EE8++STOnTuHp59+GoBhZPMXX3wRr7/+Or7//nscPXoUY8eORUhICB544IFGf2Yisj/jmS3WPrUcMPQhxh/xDh06ZPXyiYiIiMj5KO3xplOmTMEPP/yA/v374/vvv4ebmxu6dOmC3r1747PPPqtzOaNGjcLly5cxd+5c5ObmIioqClu3bpUGQsvOzoZcfvN3hevXr2PSpEnIzc2Fj48PoqOj8ccffyAyMlKKefnll1FaWopnnnkGBQUFuOuuu7B161a4urpabwUQOTGZTIawsDDpcWPjmprxSHf79u0RFhZm1brJZDJ07doVp0+fZtJNRERERAAAmRBCNPWb+vr64ujRo2jbti18fHzw559/YvTo0ejZsyf+/e9/N3V1rK6oqAheXl4oLCzk9d1EDmbixIlYvXo1Fi5ciDlz5li9/PXr1+PRRx9Fv379sH//fquXT0RERES1c7R8zC6nlyuVSukUTKVSiYCAAKxatQrp6en2qA4RtSDGI92dO3e2SfnR0dEAgCNHjjjkPcqJiIiIqGnZJemOjo5GSkoKACA8PBwZGRlo27Yt9u3bZ4/qEFELYrymu1OnTjYpv2PHjvDy8oJGo0FGRoZN3oOIiIiInIddku5PPvlEulXPtGnT8Mgjj+C+++5Dt27d7FEdIqoHjUaDt99+G2+//TY0Gk2j45pSWVmZdA/tLVu2WL1uGo0GS5cuhZ+fHwAgNTXVamUTERERkXOyy0BqoaGh0uMxY8YgMDAQR44cwejRo+1RHSKqp7KyMqvGNZUzZ84AuHl/blvUr6ysDAEBATh9+jQOHjyIiRMnWv09iIiIiMh52Dzp3rJlC7766iucP38eHh4e6NWrFx5++GH069dPihk6dCiGDh1q66oQUQtnPLU8PDzcpu8TEhICADh48KBN34eIiIiIHJ9NTy9ftmwZ7r33XmzcuBGlpaXIz8/He++9h5iYGIwcORK5ubm2fHsiIhPGQdRsdT23kXGgyLS0NFRWVtr0vYiIiIjIsdk06X733XcRFRWFc+fO4cCBAzhw4ACuX7+ODz74AOnp6ejfvz8uXrxoyyoQEUlsPYiaka+vL1q1aoXy8nIcP37cpu9FRERERI7Npkl3Xl4enn76aWlQIQBQq9WYPHkyDhw4AJlMhpdfftmW6D8JQwAAU2hJREFUVSAikjTV6eVyuRy9e/cGwFPMiYiIiFo6mybdXbt2RV5entll/v7+mDJlCn766SdbVoGISNJUp5cDQJ8+fQAw6SYiIiJq6Ww6kNrLL7+M559/HqNHj0ZERESN5e7u7pDJZLasAhFZmUwmkwYKq23/rWtcU9FoNDh37hwAQ9JtPOptzbpV/czGuzTwtmFERERELZtMCCFsVXi/fv1w/vx5aDQaJCQk4Mknn5T+ID19+jRGjhyJwYMH4+OPP7ZVFeyiqKgIXl5eKCwshKenp72rQ0QATpw4ga5du8Ld3R0lJSU2/yEgPT0dPXv2RKtWrVBYWAi53KYnFhERERHRXxwtH7PpX4EhISHw8PBAUVERZs2ahdDQUPj7+yMoKAhdunSBm5sbnnnmGWi1WltWg4hIOrW8c+fOTXLkvVu3bnBzc0NJSYl0VJ2IiIiIWh6bnl7+/fffAwBKSkpw7NgxHD16FOnp6dL/hw8fRv/+/aFQKBAeHo7bbrsNkZGReOONN2xZLSJqgZpq5HIjpVKJ3r17Y8+ePTh48CC6dOnSJO9LRERERI7Fpkm3UatWrRATE4OYmBiT+fn5+TUS8eTkZCbdRA5Mq9Vi+fLlAICpU6fCxcWlUXFNpeqRblvVrXq5ffv2xZ49e5CamorHHnvMKu9BRERERM6lSZJuSwICAjBkyBAMGTLEntUgonoQQqCwsFB63Ni4pmI80t25c2eb1a16uX379gXAEcyJiIiIWjKO7ENELUJTn14OwCTpdoQfHoiIiIio6THpJqJmT6fTISsrC4DhSHdT6d69O1QqFQoKCnD27Nkme18iIiIichxMuomo2btw4QI0Gg1UKhXatWvXZO+rUqnQs2dPALxfNxEREVFLxaSbiJo946nlHTt2hEKhaNL35nXdRERERC0bk24iavaqjlze1Jh0ExEREbVsdh29nIicj0wmg7+/v/S4sXFNofogaraqm7lyo6OjAdwcTM3e64KIiIiImpZMcEhdqysqKoKXlxcKCwvh6elp7+oQtXj/+Mc/sGHDBrz33nt4/vnnm/S9b9y4gVatWkGn0yE7OxuhoaFN+v5ERERELY2j5WNOf3r58uXL0aFDB7i6uiImJgb79u2zGLty5UoMHDgQPj4+8PHxQVxcXI348ePHQyaTmUzDhg2z9ccgIhuqeo/upubq6oru3bsD4CnmRERERC2RUyfda9euxfTp0zFv3jwcPHgQvXv3Rnx8PPLz883G79y5E48//jh27NiBlJQUhIaGYujQobh48aJJ3LBhw5CTkyNN33zzTVN8HCKyASGEdE13U96juype101ERETUcjl10v3OO+9g0qRJmDBhAiIjI7FixQq4u7tj1apVZuO/+uorTJkyBVFRUejWrRs+/fRT6PV6JCcnm8Sp1WoEBQVJk4+PT1N8HCKnoNVq8eGHH+LDDz+EVqttdJyt5eXlobS0FHK5HB06dLBp3SyVa7yum7cNIyIiImp5nHYgNY1Gg9TUVCQkJEjz5HI54uLikJKSUqcyysrKoNVq4evrazJ/586dCAgIgI+PD/72t7/h9ddfR5s2bSyWU1FRgYqKCul5UVFRPT8NkfMQQuDy5cvS48bG2Zrx1PKwsDCoVCqb1s1SuTzSTURERNRyOe2R7itXrkCn0yEwMNBkfmBgIHJzc+tUxiuvvIKQkBDExcVJ84YNG4YvvvgCycnJePPNN7Fr1y4MHz4cOp3OYjmJiYnw8vKSJg6UROQ4jh8/DsB+p5YDQO/evSGTyaRLVoiIiIio5XDapLuxlixZgqSkJGzcuBGurq7S/Mceewz33XcfevbsiQceeACbN2/G/v37sXPnTotlJSQkoLCwUJrOnz/fBJ+AiOpi//79AIA+ffrYrQ4eHh7o1asXAOCXX36xWz2IiIiIqOk5bdLt5+cHhUKBvLw8k/l5eXkICgqq9bVLly7FkiVL8Msvv0h/CFsSHh4OPz8/6RRVc9RqNTw9PU0mInIMe/bsAQAMGDDArvX4xz/+AQBISkqyaz2IiIiIqGk5bdKtUqkQHR1tMgiacVC02NhYi6976623sGjRImzduhX9+vW75ftcuHABV69eRXBwsFXqTURNp7S0FEePHgVg/6R71KhRAIBff/0VV65csWtdiIiIiKjpOG3SDQDTp0/HypUr8fnnnyMzMxOTJ09GaWkpJkyYAAAYO3asyUBrb775JubMmYNVq1ahQ4cOyM3NRW5uLkpKSgAAJSUlmDlzJvbs2YOzZ88iOTkZ999/Pzp37oz4+Hi7fEYiargDBw5Ar9cjNDQUISEhdq1Lly5d0KdPH1RWVmLDhg12rQsRERERNR2nTrpHjRqFpUuXYu7cuYiKikJaWhq2bt0qDa6WnZ1tMmjRRx99BI1Gg4cffhjBwcHStHTpUgCAQqHAkSNHcN9996FLly546qmnEB0djd9//x1qtdoun5HI0chkMmnQQJlM1ug4W7J0armt6narco1Hu9euXWu19yQiIiIixyYT9ryXTzNVVFQELy8vFBYW8vpuIjt68MEHsWnTJixduhQzZsywd3Vw9uxZdOzYEXK5HBcvXrzl+BNEREREVH+Olo859ZFuIiJLhBAOM4iaUYcOHRATEwO9Xo9vv/3W3tUhIiIioibApJuImqXs7Gzk5uZCqVSib9++9q6O5LHHHgPAUcyJiIiIWgom3URUL1qtFitXrsTKlSuh1WobHWcre/fuBQBERUXBzc2tSepWl3IfeeQRyGQy/O9//8P58+et9t5ERERE5JiYdBNRvQghcOnSJVy6dAm1DQlR1zhbqe3UclvVrS7ltm3bFgMHDgQArFu3zmrvTURERESOiUk3ETVLjnY9d1XGUcx5ijkRERFR88ekm4ianYqKChw8eBAAEBMTY+fa1PTwww9DLpfjwIEDOH36tL2rQ0REREQ2xKSbiJqdw4cPo6KiAm3atEGnTp3sXZ0aAgIC8Le//Q0A79lNRERE1Nwx6SaiZqfqqeUymczOtTHPOIo5k24iIiKi5o1JNxE1O8aRyx3xem6jBx98EEqlEkeOHEFmZqa9q0NERERENsKkm4jqzd3dHe7u7laLs7a6DKJmq7rVtVxfX1/Ex8cD4NFuIiIiouZMJuxxL59mrqioCF5eXigsLISnp6e9q0PUouTn5yMwMBAymQzXr1+Hl5eXvatk0X/+8x+MHTsWXbt2RWZmpsOeCk9ERETkTBwtH1PauwLNWammFAqNosZ8hVwBV6WrSZwlcpkcbi5uDYot05ZZvFewTCaDu4t7g2LLteXQC73FenioPBoUe6PyBnR6nVVi3V3cpQSmorIClfpKq8S6ubhBLjOcIKLRaaDVaa0S66p0hUKuqHesVqeFRqexGKtWqqGUK+sdW6mvREVlhcVYlUIFF4VLvWN1eh1uVN6wGOuicIFKoQIAlN8oR9K6JET3i0anzjUHQ6saqxd6lGvLAQC7du8CAHTt1hVKNyVKNaUWY81RypVQK9UADPfdLtOWWSXW3H4fNzwOarUax48fx97UvejZq6fFWEvYRzQsln2EgTP3EfWJvdV+76h9hDVi2Uc0LJZ9hAH7iPrHso8wsHcfUdvnsAce6bYB4y8rmAXAtebyEREj8OMTP0rPPRZ7WNzJBocNxs7xO6Xn/m/740rZFbOx/UL6Yf+k/dLzDss64FzhObOxkf6RODblmPS8+4fdkXE5w2xsmFcYzr54Vnp++8rbceDSAbOxfu5+uDzzsvT87jV3Y9e5XWZj3V3cUTr75g4x8uuR+OnkT2ZjAUDMu7mpPrL+EXyb8a3F2JKEEmmHHL9pPD4//LnF2PyX8uHv4Q8AmPrjVHx44EOLsVkvZKGDdwcAwMxfZmJpylKLsemT09E9oDsAYP7O+Viwa4HF2H1P78PtbW8HALz9v7fx8q8vW4zdMW4H7u5wNwBg+b7lmLZlmsXYzY9vxsguIwEAa9LWYMJ3EyzGrnt4HR7p/ggAYP2x9Xj020ctxq6+fzXObhoPhQLoO+pH3PvNvRZjPxj+Aab2nwoAmDg9C6sPfg7cY35dvBX3FmbeORMXLlzAiAdG4GjqUUAB4G8AYmFyQcy8wfMw/+75AIBj+cfQ46MehgXJAH4H0AfA/YZZL8W+hLeHvg0AOFtwFh3f7WixvlP6TcHykcsBAJdLLyNgaYDF2HG9x2HNA2sAGDr3VomtLMY+HPkw1j+yXnouW/DXUe0kAH8CuAPAUMMs9hEG7CNucsY+YnzUeADAjyfq3kfsPLsT93x+j8VYYx8BAPsv7kf/T/tbjLXYR5jh0H2EGewjDNhH3MQ+woB9hAH7CAA3ACyBwxzp5jXdRFQvSiiRuzsXR44cxNy5wDfLO1uMG4/xKNhbAK1Wi0WLgNX/7gjILR9ZAIDk5GT07dvXkHDLAegAbAOwCsDlWl9qcOGv/9vV/hnG//VPacUTfhpUbs+//k8BYP77hYiIiIicGI9024DxSPely5fM/rLCUz7Mx/K0MOc4LUyj0eC9f70HABDiVSxYoMRr8zSYNVt7y7j5C/R4aZb5U7KEEFi2dBnmzZ0HvV6PqKgofPH1F9j9+27MmjkLRUVFUKvVWLR4EaZMm2L2VC+dTod2ge1QXFyMPal70KOH4Vfr6rGFpYVS3f45459QqVRSPRpzWlhBaYHFci3t93q9Hs9PeR6frzYcRZk9ZzZem/Nag/d79hF1i2UfYcBTR+sfy1NHDdhHNCyWfYQB+4j6x7KPuKkufURRURFC/EMc5kg3r+m2IQ+Vh8lGUVtcfcqsq6obrzVjq+5s1oyt2jlYM1atVEMNtdVjVQqV1AHbK9ZF4SJ9EVkzVilXQqky3z244GYZs2froVAAc+ca6jxnTs24XbsGYccOJRYuBObMkQMwvw2/8cYbmPOaoYCJEyfigw8+gJubG3re1hP3Dr8XzzzzDLZu3YqXZ7wMTbkGr776qvRauUwOV4Urpjw/BcXFxfDy8kK/3v2gUNQcU0Euk5vsRx4qD5PkuCqZTFbnfa56bG3lGpcbrf5sNdq3a49FixZh8aLFuJJ3BR9++KFUf/YRBuwj6h9rjz6iMbEKuaLO23B9Yqvv99aKbUwfcSuOEMs+woB9RP1j2UcYsI9oWKw1+gidqvYzK5saTy8nokaZMwdYuBCYOxdYtMh0mSHhvgfz5lWaJOTV7dq1C3PnzgUALFu2DJ999hnc3G52oqGhofjpp5/w+uuvAwBee+01JCYmSsu1Wi2efPJJfPLJJ5DL5XjvvffMJtyOSiaTYeHChfjwww8hk8nwySef4OGHH0Z5ueVf0omIiIjIOTDpJqJGmzMHmDtXg7lzT2PixJ3Iy8vD4sVy7NhxD+65Zwdmz7Z8itDly5fxxBNPQK/XY9y4cXjhhRfMxslkMrz66qt44403AACzZ8/Gm2++ifLycjz44INISkqCi4sLkpKSMHbsWJt8TlubPHkyvv32W6jVamzatAlDhw7F9evX7V0tIiIiImoEnl5uS6WlgLmjbQoF4OpqGmeJXA5UOeJXr9iyMsDSJfsyGeDu3rDY8nJAbzmJgodHw2Jv3AB0tZwKUp9Yd3dDvQGgogKotHx9Vb1i3dwM6xkANBpAa/maqXrFurre3FbqE6vVGuItUasBpbL+sZWVhnVhTrUy1n3zDWbNno2z584BEFi9Gli92h3AYtx9d3cMHvw/AHcagnU6Q9v9Ra/XY8wTT+DSpUu4rWtXLP/3v28WXC3WaPYLL0BUVOC1hQsxa9YsfPrppzh16hRcXV2x4euvMXzo0Jr7iYsLYDzVW683XV5aarq+lUrDugAM+0SZ5eurasTWVm4d9/uH4uPxy+bNuO/hh7F7924MHDgQS19/HT0iI9E2JKTmvbzZRzQsln2EgS36CMCwv7m41D/Wwn4vqbov1ydWrzdsa9aIbUwfUVtsff424N8R5mPZR9Q/ln2E4TH7iIbFOnIfUdvnsAdBVldYWCgAiELDplVzGjHC9AXu7ubjACEGDzaN9fOzHNuvn2lsWJjl2MhI09jISMuxYWGmsf36WY718zONHTzYcqy7u2nsiBGWY6tvqg8/XHtsScnN2HHjao/Nz78ZO2VK7bFZWTdjX3qp9tj09Jux8+bVHrtv383Yt96qPXbHjpuxH3xQe+zmzTdjV6+uPXbdupux69ZZjKtwcRHz588X8+fPF++8846QyWQCgAAg3AABhEjP27VrJ6ZOnSoqKioM5e7YYVLW4iqvOwoYPrvRvn211nfRPfdI79Paw0Psqu2zvfTSzXKzskw+Q4WLi2nslCk3Y/Pza19n48bdjC0pqb3chx823YZrK3fECHHkyBEREnJzXQIQXoCIBcTTgPg3IH4BxOU77jAtl32EAfsIAzv0EQIwlGW0eXPtsR98cDO2Wh9RY6pHHyHmzbsZm55ee2y1PqLW2Eb0EbXG1rOPMMG/IwzYRxiwjzBgH3FTC+wjCmH426mwsFA4Ap5eTkT1poThOuzp06dDCIHnAeQBmIVXAZyHAu8DaI0LFy5gxYoVmD59OnJzc6XXXwQwDcBrfz3/AIDlu2Oa99qgQfj3v/+NgQMHYvtnn2FQPV/votHApbZf7BvIWuX27NkTKSkpePLJJ3GbTAYFgEIY7iz2KYD/B8Ntvf3/+APdunXD008/jTVr1uCUTgfR6HcnIiIiImvhLcNswHjLsMJL5m8ZxlM+LMTytLD6x9rhtDCdTodpM2dixSefAAAWLViAV6dPx+tvqjD3dRUWvqbBnFlavJSQi3+9/08APwEA3NzcMHXyZGhv3MCKzz5DxV/lPztxIj56913DadM8LcxirEajwYmTJ3EsM1Oa0jMzceLkyRovD/D3x12xsbjrjjswYuhQdO3SxbCgCfuISo0G6RkZSNm7Fyn79mHfgQO4dv06dHo99H9NOp3O7GMvLy/0iIxEz8hI9OzbFz169EDPnj3h4+bGPqK+sTx11PC4BfQRFvHviIbFso8wYB9R/1j2EQZ27iOKiorgFeI4twxz+qR7+fLlePvtt5Gbm4vevXvj/fffR//+/S3Gr1+/HnPmzMHZs2cRERGBN998EyNGjJCWCyEwb948rFy5EgUFBbjzzjvx0UcfISIios51kpJuB2lkImupqKjAmDFjsH79eshkMnz44Yd47rnnsGiRYfRyw23BbsYvXCgwb14y2rWbgwsX9piUddddd2HRokW4++67m/ZDNDPXrl3DH3/8gd27d2P37t3Yv38/NNX+KIqMjMRDDz2Ehx56CFFRUTWvC7eCK1euYM+ePUhJSUFKSgr27duHUitfT9W2bVv07NnTZOrWrRtcq/5hQURERC2eo+VjTp10r127FmPHjsWKFSsQExODZcuWYf369Th+/DgCAgJqxP/xxx8YNGgQEhMTce+99+Lrr7/Gm2++iYMHD6JHD8PJrW+++SYSExPx+eefo2PHjpgzZw6OHj2KjIyMOv9h52iNTFQXer0ecrnlK06Ki4vx0EMP4ddff4WLiwu+/PJLPProoxYTbiPDcoEnn9yCrKzFUCgUeO211xAXF2eT5K+lu3HjBlJTU7F7925s374dO3bsgLbKEY8OHTpICXhsbGytbW5JYWEh0tLSkJqaitTUVOzfvx8nzRxx9/T0RExMDGJjYxEbG4vQ0FDI5XLI5XIoFAqT/6s+zsvLw9GjR02m7Oxss3WRy+Xo2LEjbrvtNkRGRuK2226TJva/RERELZOj5WNOnXTHxMTg9ttvxwcffADAkDSEhobi+eefx6xZs2rEjxo1CqWlpdi8ebM0b8CAAYiKisKKFSsghEBISAhmzJiBl156CYDhj8vAwECsWbMGjz32WJ3q5WiN7KzKy8uRkZGBjIwMKJVK/N///R/8/PzsXS2r0uv1KCsrg6urK5RKyzcTKCkpQWlpKVq1agV3d3ezyWpZWRnOnj2LrKwsXL16Fb6+vvDz80OHDh0QGBho8poLFy5g165d+OOPP3Ds2DFkZGTg6tWraN++PcLDw9GlSxf06tULvXr1QkFBAX788Ud8//33uHjxIjw8PPDPf/4TPXr0wMmTozB/vsJswl1ZWYl169YBQK1x9lC1bo8++mit694Rym0MY/tt2LABW7ZsMbn3d2BgIHr06IHg4GAEBwcjKChIemycdDodDh06JCXYBw8eNJtgA0C3bt2kBDs2Nha33Xab1e6XXlhYiGPHjtVIxmu7pVpISIhJMt61a1d4enrC1dXV7HSr9tLpdCgtLUVpaam0T5p7XF5eDq1WC61Wi8rKSulxbVNlZSV0Oh3UarVJnao/NzfVJUalUjX5j1x6vR4VFRWoqKjAjRs3ajyu6/+VlZXSpQd6vR5CCJPndZmqvwYAlEolXFxcTKbq8+oSU9d5tcVYaz+xNyEEKisrpe3Zmo+Nl6AIIaSp6nNLj60dZ9x+jD8WVv/RsPrjWz1v6LKmeE/+MO48qm6f5vq8ui5r6Gur7kfVp1stt9VUVlaGZ5991mHyMfv/RdhAGo0GqampSEhIkObJ5XLExcUhJSXF7GtSUlIwffp0k3nx8fHYtGkTACArKwu5ubmIi4uTlnt5eSEmJgYpKSkWk27jHxJGRUVFdfoM+/fvx/z5880uq8tvIdaKsUWckUwmg1wuR2VlJTQaDSoqKkz+12g08PDwgKenJ65duwaFQoHWrVujsLAQp06dkr7cAMDFxQUxMTFwdXWVrgHV6XSQy+VQKpWQy+WoqKiAXq+HUqmU5ln6o1cmk8HT0xMeHh4mf+Cp1Wq0bt0aMpkMJSUl0h/UarVa+oO9oqIC5eXl0h/XrVq1gqenJ9zc3KTXFBcXo6SkBHK5HD4+PvDx8YGrqyuKiopQUFCAwsJCk23F3d0dbdu2RUBAAFQqFTQaDXJzc5Gbm2tymq6LiwtCQkIQHBwMmUwGrVaLCxcumAxUVl3r1q0REhICjUaD0tJS5Ofnm407e/Yszp49i+3bt5tdHhAQgA0bNuDXX3/Fp58GY8cOy4m0Xq+XkrOEBB3kcgXmzjUss3fiXbVuVbcxRy23Mby9vTF69GiMHj0aZWVl+Pnnn7Fhwwb88MMPyMvLQ15eXoPKbd++PaKjo9G3b19ER0cjJiYGvr6+Vq79TV5eXrjjjjtwxx13SPOEEMjLy0NmZiYyMzORkZEhPc7JycGlS5dw6dIlJCcn1+k9FApFjSS2srJSSqhv1HZtoBO4VXLu4uIi9a3GJKchk1arRUVFhckZFlQ7mUxW76ReoVDU+Y/a2pbX57XGNjYmxNUTZCc+jkMWNNUPBtUT/Orbki2f26LsqvtOUyS/5PicNum+cuUKdDodAgMDTeYHBgbizz//NPua3Nxcs/HGZMX4f20x5iQmJmLBggX1/gyXL1/GTz/9VO/XtSR+fn7o0aMHrl+/jsOHD2P37t32rlKD1HY0zqisrAwnT560eBTRSKvV4ty5czh37lyNZZ6enujYsSP8/f1RUFCA/Px8XLhwAcXFxTh+/LgUJ5fL0bdvXwwaNAhRUVHo3r07AgICcO7cOZw+fRqZmZk4cuQIjhw5AhcXF8THx2PkyJH429/+BqVSiV9//RV6vQzz5lVizpy6dSPGRLu2cWvIttzd3fHggw/iwQcfhEajwZ49e3Du3Dnk5OQgNzcXOTk5JlNxcTEAoGPHjlJyHR0djT59+sDf39/On8aQqAQFBSEoKAj33HOPybKCggL8+eefJgn56dOnUVZWhhs3bkhT1evfqx7Jro1cLoeHhwdatWoFDw+PGo/d3NxqJEi3SqBcXFwgl8uh0WhM6lf1qK+5qbZl1X8kMP5AXFhYaL1GqCOZTCYl/eb+r22Zi4uL9AOupelWy6vHGI/I1nZGQvV5t3pe1xidmU5QCCH9EN1cGX8MVygU0uPqz2tbVrUdjW15q8fWjqt69Ldq0mNpUMjaltU1zhbL6vPjiPGHFmqezPWfVZ/XZVnV/aj6dKvltpx0Oh127Nhh71Uscdqk25EkJCSYHEEvKipCaGjoLV/Xq1cvrF69ulHvfatTf2pb3pjX1mV51V/6lEolVCoV1Gq1yf8qlQoFBQUoLS2Fr68v9Ho9iouL4erqip49e5qcFv3nn38iLS1NOrqtUCikX/q1Wi30ej3UajXkcrnJkRpLRw2EECgqKkJZWZn0B55KpUJFRYWUbLRq1Uo6pbuiogJFRUUoLy+Hm5ubNLm4uKCkpASFhYUoLy+Hh4cHWrduLU06nQ7Xrl3D9evXcePGDXh5ecHb21v638PDAzdu3MD169dx8eJFXLlyBVqtFi4uLggMDJSSCnd3d5SVleHatWu4ePEi8vLypA4tODgY4eHh8PHxqdEuFRUVOHPmDPLy8uDq6go3Nzd07NjR7Kk27dq1w5133llruxr/KLznnl1ISLij1tjq7H2Em25SqVQYNKj2G62VlpaisrISXl5eTVQr6/H29saAAQMwYMCAWuOMp0CbS1jLy8uhVCprJNWurq5OcdqlsW+sa7Ku0WikfrUxk1KptJg4E26Z8Nc1ma+srKz3H7WNjW1MwkyOo/pRUkf5oaBqH1G9v6jteX1iG/Pa+sQ2JHltqmVV9+3mzHi5r6Nw2qTbz88PCoWixqmReXl5CAoKMvuaoKCgWuON/+fl5SE4ONgkJioqymJdjL/S11e7du0wfvz4er+uperWrRu6detm72rYhIeHB9q0aYPOnTvXGmf8EaB9+/Z1LlutVksDSxHVh0fVW3I0U3K5XPoBrbmRyWTSj5uOcD0bGchkN08lJ7IH4w8ozWUsASJn4LQ/PapUKkRHR5tcq6fX65GcnIzY2Fizr4mNja1xbd+2bduk+I4dOyIoKMgkpqioCHv37rVYJhEREREREZElTnukGwCmT5+OcePGoV+/fujfvz+WLVuG0tJSTJgwAQAwduxYtG3bFomJiQCAF154AYMHD8a//vUvjBw5EklJSThw4AA++eQTAIZf/l588UW8/vrriIiIkG4ZFhISggceeMBeH5OIiIiIiIiclFMn3aNGjcLly5cxd+5c5ObmIioqClu3bpUGQsvOzja5juiOO+7A119/jddeew2zZ89GREQENm3aJN2jGwBefvlllJaW4plnnkFBQQHuuusubN26tc736AZujmJY11HMiZyJcaAnwLCNq1SqRsXZg63q5sifmYiIiKilMOZhjnJXBae+T7ejOnPmDDp16mTvahAREREREbVYp0+fRnh4uL2r4dxHuh2V8V612dnZDjVqHplnHG3+/PnzHGzISbDNnAvby/mwzZwL28v5sM2cC9vL+RQWFqJ9+/ZSXmZvTLptwHhKu5eXF3dMJ+Lp6cn2cjJsM+fC9nI+bDPnwvZyPmwz58L2cj6OcstCx6gFERERERERUTPEpJuIiIiIiIjIRph024Barca8efOgVqvtXRWqA7aX82GbORe2l/NhmzkXtpfzYZs5F7aX83G0NuPo5UREREREREQ2wiPdRERERERERDbCpJuIiIiIiIjIRph0ExEREREREdkIk24iIiIiIiIiG2HSbWXLly9Hhw4d4OrqipiYGOzbt8/eVWoR5s+fD5lMZjJ169ZNWn7jxg1MnToVbdq0QatWrfCPf/wDeXl5JmVkZ2dj5MiRcHd3R0BAAGbOnInKykqTmJ07d6Jv375Qq9Xo3Lkz1qxZ0xQfz+n99ttv+Pvf/46QkBDIZDJs2rTJZLkQAnPnzkVwcDDc3NwQFxeHkydPmsRcu3YNo0ePhqenJ7y9vfHUU0+hpKTEJObIkSMYOHAgXF1dERoairfeeqtGXdavX49u3brB1dUVPXv2xE8//WT1z9sc3KrNxo8fX2OfGzZsmEkM26zpJCYm4vbbb0fr1q0REBCABx54AMePHzeJacp+kN+FtatLe91999019rHnnnvOJIbt1XQ++ugj9OrVC56envD09ERsbCy2bNkiLef+5Vhu1V7cvxzfkiVLIJPJ8OKLL0rznHo/E2Q1SUlJQqVSiVWrVoljx46JSZMmCW9vb5GXl2fvqjV78+bNE927dxc5OTnSdPnyZWn5c889J0JDQ0VycrI4cOCAGDBggLjjjjuk5ZWVlaJHjx4iLi5OHDp0SPz000/Cz89PJCQkSDFnzpwR7u7uYvr06SIjI0O8//77QqFQiK1btzbpZ3VGP/30k3j11VfFhg0bBACxceNGk+VLliwRXl5eYtOmTeLw4cPivvvuEx07dhTl5eVSzLBhw0Tv3r3Fnj17xO+//y46d+4sHn/8cWl5YWGhCAwMFKNHjxbp6enim2++EW5ubuLjjz+WYv73v/8JhUIh3nrrLZGRkSFee+014eLiIo4ePWrzdeBsbtVm48aNE8OGDTPZ565du2YSwzZrOvHx8WL16tUiPT1dpKWliREjRoj27duLkpISKaap+kF+F95aXdpr8ODBYtKkSSb7WGFhobSc7dW0vv/+e/Hjjz+KEydOiOPHj4vZs2cLFxcXkZ6eLoTg/uVobtVe3L8c2759+0SHDh1Er169xAsvvCDNd+b9jEm3FfXv319MnTpVeq7T6URISIhITEy0Y61ahnnz5onevXubXVZQUCBcXFzE+vXrpXmZmZkCgEhJSRFCGBIMuVwucnNzpZiPPvpIeHp6ioqKCiGEEC+//LLo3r27SdmjRo0S8fHxVv40zVv1BE6v14ugoCDx9ttvS/MKCgqEWq0W33zzjRBCiIyMDAFA7N+/X4rZsmWLkMlk4uLFi0IIIT788EPh4+MjtZcQQrzyyiuia9eu0vNHH31UjBw50qQ+MTEx4tlnn7XqZ2xuLCXd999/v8XXsM3sKz8/XwAQu3btEkI0bT/I78L6q95eQhiSgqp/bFbH9rI/Hx8f8emnn3L/chLG9hKC+5cjKy4uFhEREWLbtm0m7eTs+xlPL7cSjUaD1NRUxMXFSfPkcjni4uKQkpJix5q1HCdPnkRISAjCw8MxevRoZGdnAwBSU1Oh1WpN2qZbt25o37691DYpKSno2bMnAgMDpZj4+HgUFRXh2LFjUkzVMowxbN/GycrKQm5ursm69fLyQkxMjEn7eHt7o1+/flJMXFwc5HI59u7dK8UMGjQIKpVKiomPj8fx48dx/fp1KYZtaD07d+5EQEAAunbtismTJ+Pq1avSMraZfRUWFgIAfH19ATRdP8jvwoap3l5GX331Ffz8/NCjRw8kJCSgrKxMWsb2sh+dToekpCSUlpYiNjaW+5eDq95eRty/HNPUqVMxcuTIGuvW2fczZYNfSSauXLkCnU5n0sgAEBgYiD///NNOtWo5YmJisGbNGnTt2hU5OTlYsGABBg4ciPT0dOTm5kKlUsHb29vkNYGBgcjNzQUA5Obmmm0747LaYoqKilBeXg43Nzcbfbrmzbh+za3bqus+ICDAZLlSqYSvr69JTMeOHWuUYVzm4+NjsQ2NZVDdDRs2DA899BA6duyI06dPY/bs2Rg+fDhSUlKgUCjYZnak1+vx4osv4s4770SPHj0AoMn6wevXr/O7sJ7MtRcAPPHEEwgLC0NISAiOHDmCV155BcePH8eGDRsAsL3s4ejRo4iNjcWNGzfQqlUrbNy4EZGRkUhLS+P+5YAstRfA/ctRJSUl4eDBg9i/f3+NZc7+Pcakm5qF4cOHS4979eqFmJgYhIWFYd26dUyGiWzgsccekx737NkTvXr1QqdOnbBz504MGTLEjjWjqVOnIj09Hbt377Z3VagOLLXXM888Iz3u2bMngoODMWTIEJw+fRqdOnVq6moSgK5duyItLQ2FhYX49ttvMW7cOOzatcve1SILLLVXZGQk9y8HdP78ebzwwgvYtm0bXF1d7V0dq+Pp5Vbi5+cHhUJRYwS9vLw8BAUF2alWLZe3tze6dOmCU6dOISgoCBqNBgUFBSYxVdsmKCjIbNsZl9UW4+npycS+EYzrt7Z9JygoCPn5+SbLKysrce3aNau0IffRxgsPD4efnx9OnToFgG1mL9OmTcPmzZuxY8cOtGvXTprfVP0gvwvrx1J7mRMTEwMAJvsY26tpqVQqdO7cGdHR0UhMTETv3r3x7rvvcv9yUJbayxzuX/aXmpqK/Px89O3bF0qlEkqlErt27cJ7770HpVKJwMBAp97PmHRbiUqlQnR0NJKTk6V5er0eycnJJtePUNMoKSnB6dOnERwcjOjoaLi4uJi0zfHjx5GdnS21TWxsLI4ePWqSJGzbtg2enp7SqUixsbEmZRhj2L6N07FjRwQFBZms26KiIuzdu9ekfQoKCpCamirFbN++HXq9XvqijI2NxW+//QatVivFbNu2DV27doWPj48Uwza0jQsXLuDq1asIDg4GwDZrakIITJs2DRs3bsT27dtrnLbfVP0gvwvr5lbtZU5aWhoAmOxjbC/70uv1qKio4P7lJIztZQ73L/sbMmQIjh49irS0NGnq168fRo8eLT126v2swUOwUQ1JSUlCrVaLNWvWiIyMDPHMM88Ib29vkxH0yDZmzJghdu7cKbKyssT//vc/ERcXJ/z8/ER+fr4QwnCLgfbt24vt27eLAwcOiNjYWBEbGyu93niLgaFDh4q0tDSxdetW4e/vb/YWAzNnzhSZmZli+fLlvGVYHRUXF4tDhw6JQ4cOCQDinXfeEYcOHRLnzp0TQhhuGebt7S2+++47ceTIEXH//febvWVYnz59xN69e8Xu3btFRESEye2nCgoKRGBgoBgzZoxIT08XSUlJwt3dvcbtp5RKpVi6dKnIzMwU8+bN4+2nLKitzYqLi8VLL70kUlJSRFZWlvj1119F3759RUREhLhx44ZUBtus6UyePFl4eXmJnTt3mtwCp6ysTIppqn6Q34W3dqv2OnXqlFi4cKE4cOCAyMrKEt99950IDw8XgwYNkspgezWtWbNmiV27domsrCxx5MgRMWvWLCGTycQvv/wihOD+5Whqay/uX86j+ijzzryfMem2svfff1+0b99eqFQq0b9/f7Fnzx57V6lFGDVqlAgODhYqlUq0bdtWjBo1Spw6dUpaXl5eLqZMmSJ8fHyEu7u7ePDBB0VOTo5JGWfPnhXDhw8Xbm5uws/PT8yYMUNotVqTmB07doioqCihUqlEeHi4WL16dVN8PKe3Y8cOAaDGNG7cOCGE4bZhc+bMEYGBgUKtVoshQ4aI48ePm5Rx9epV8fjjj4tWrVoJT09PMWHCBFFcXGwSc/jwYXHXXXcJtVot2rZtK5YsWVKjLuvWrRNdunQRKpVKdO/eXfz44482+9zOrLY2KysrE0OHDhX+/v7CxcVFhIWFiUmTJtX4MmKbNR1zbQXApI9qyn6Q34W1u1V7ZWdni0GDBglfX1+hVqtF586dxcyZM03uIywE26spTZw4UYSFhQmVSiX8/f3FkCFDpIRbCO5fjqa29uL+5TyqJ93OvJ/JhBCi4cfJiYiIiIiIiMgSXtNNREREREREZCNMuomIiIiIiIhshEk3ERERERERkY0w6SYiIiIiIiKyESbdRERERERERDbCpJuIiIiIiIjIRph0ExEREREREdkIk24iIiIiIiIiG2HSTURERERERGQjTLqJiIiIiIiIbIRJNxEREREREZGNMOkmIiIiIiIishEm3UREREREREQ2wqSbiIiIiIiIyEaYdBMRERERERHZCJNuIiIiIiIiIhtR2rsCzZFer8elS5fQunVryGQye1eHiIiIiIioxRBCoLi4GCEhIZDL7X+cmUm3DVy6dAmhoaH2rgYREREREVGLdf78ebRr187e1WDSbQutW7cGYGhkT09PO9eGiIiIiIio5SgqKkJoaKiUl9kbk24bMJ5S7unpyaSbiIiIiIjIDhzlUl/7n+BORERERERE1EzxSHcLd6tff4QQTVQTIiIiIiKi5odJdwtT31MsqsczCSciIiIiIqo7nl7eQshkMshkskYnzY5yXQQREREREZEz4JHuFqBqolzfI9fmkmzjPB71JiIiIiIiqh2T7mbMXMJc30S5anz18ph8ExERERER1Y5JdzNkjWTbHGMZ5pJvJt5EREREREQ1MeluRmyVbFsq09xp60y+iYiIiIiIbuJAas1EUyXc1ctnkk1ERERERGQZj3Q7MXsk2uYIIaS68Ig3ERERERHRTTzS7aTMjUJuz0S3+vvz1mJERERERERMup2O8X7bVTnSUWUm3kRERERERDcx6XYS5pJtwLESbiMm3kRERERERAZMum3Iy8vLKuVYSrYdMeE2qp54M/kmIiIi+v/t3XtwVOX9x/FPEsgFMQkYyIUGAoJSUBC5pFH8MVMzRmS8VKvIoCC2Wi1aU7xBrcQZa0OROnihWK1KxxtgK9YLBmkELA4XBVEBRVQqiCYRNQkXDZA8vz+c3e4uu5vN7jm752zer5kzkHOefc5znj17zn73ec7zAOiMGEjNZr7BZqRBsmfea7e0bIcS6hgAAAAAoLMg6I6jjgSgTn5uuyMY2RwAAABAZ0b3chs1NTXFFGB6upC7PUgNLD+t3wAAAAA6C1q64yBc0BmsC7bbg+xg6GoOAAAAoDMi6E6AwKA6GYPsYOhqDgAAAKCzoXs54oqu5gAAAAA6E4JuxF3gc+oE3gAAAACSFUE3EobAGwAAAECyI+hGQgUG3gTfAAAAAJIJQTcSzi2DqQUOAscPBAAAAADaw+jlcASnjWyekpISdJqz9gJvt/yAAAAAACA+CLrhGJ6A1TegjXcQ6xtER9OSHTgHOwAAAIDOzfXdyxcsWKCSkhJlZmaqtLRUGzduDJn20Ucf1VlnnaUePXqoR48eKi8vPya9MUazZ89WYWGhsrKyVF5erp07d9p9GAghHs95e/Zh9X7ofg4AAADA1UH3kiVLNGPGDFVVVWnz5s0aPny4Kioq1NDQEDT96tWrNWnSJK1atUrr1q1TcXGxzjnnHO3du9ebZu7cuXrggQf08MMPa8OGDTruuONUUVGh77//Pl6H1ekFTikmWR8YR5qfpyztLeH2AwAAAKDzSjEu7gNbWlqq0aNH66GHHpIktbW1qbi4WDfeeKNmzpzZ7utbW1vVo0cPPfTQQ5oyZYqMMSoqKtLNN9+sW265RZLU1NSk/Px8LVq0SJdffnlE5WpublZOTo6ampqUnZ0d/QEioqDYyvyiyTPS/bj4owYAAAC4htPiMde2dB8+fFibNm1SeXm5d11qaqrKy8u1bt26iPI4dOiQjhw5op49e0qSdu3apbq6Or88c3JyVFpaGnGesFYkLcm+z4C3t8Syr46WO1hZAQAAAHQurh1Ibd++fWptbVV+fr7f+vz8fH344YcR5XH77berqKjIG2TX1dV58wjM07MtmJaWFrW0tHj/bm5ujmj/iJxnJPFgI4pL0QW0drc8Bw4M5/t/Wr0BAACAzsG1Ld2xmjNnjhYvXqxly5YpMzMzpryqq6uVk5PjXYqLiy0qJXx5AtVYWqQjeQ7barR6AwAAAJ2Xa4PuvLw8paWlqb6+3m99fX29CgoKwr523rx5mjNnjl577TUNGzbMu97zuo7mOWvWLDU1NXmXPXv2dPRwEIVwg5p1dMCzeJXVF4E3AAAAkPxcG3Snp6dr5MiRqq2t9a5ra2tTbW2tysrKQr5u7ty5uvvuu1VTU6NRo0b5bevfv78KCgr88mxubtaGDRvC5pmRkaHs7Gy/BYnj5K7bBN4AAABA5+LaZ7olacaMGZo6dapGjRqlMWPGaP78+Tp48KCmTZsmSZoyZYr69Omj6upqSdKf/vQnzZ49W88884xKSkq8z2l3795d3bt3V0pKiiorK/WHP/xBgwYNUv/+/XXnnXeqqKhIF110UaIOE0km8Ll0z7PqAAAAAJKPq4PuiRMn6quvvtLs2bNVV1en0047TTU1Nd6B0Hbv3q3U1P815i9cuFCHDx/Wz3/+c798qqqqdNddd0mSbrvtNh08eFDXXnutGhsbNXbsWNXU1MT83Dfgi8AbAAAA6BxcPU+3UzltXjg4V2D3cj6OAAAAQGycFo+59pluIBnwjDcAAACQ3Ai6gQRL9MjqAAAAAOxD0A04TEpKCi3eAAAAQJIg6AYcgtZuAAAAIPkQdAMO4ht40+INAAAAuB9BN+AwvoE3rd8ArOL5EY8f8wAAiC9Xz9MNJCtPsO35ckzwDaAjQgXW4QJvrjMAANiDoBtwKN8vxSkpKXwhBhCSFa3XvnlwvQEAwDoE3YBDGWMIvAGE1F6gHcn1or0Wca45AADEjqAbcLDAwBsAwl0TOhokB6YPzJvWbwAAYkfQDTicb+BNazfQeYUKtq28JgTOoBC4f64/AAB0HKOXAy4Q7oswgP/xTLUXOGCYmz83oaYPNMbYGgQHy9/N9QgAQKLQ0g24RGCLt2cd0Fn5fg6CBYPhAm/Pa5z8GYpHy3YkAmdT4PoDAEDHEHQDLsIz3ujswgXXHc0n2OfJCYGkU4LtUPsn+AYAoGPoXg64DF3N0RmF6mIdjO9nJFxAGCqA78i+rBJqv54u3k4KbOlyDgBAx9DSDbgQXc3RWUQ7LVYsgXewbXZ9vpzaqt2eYFMaetYDAAB/cQ+6W1patHnzZjU0NOjMM89UXl5evIsAJAXfL7180UWysXJarHAibbW1MgCP17HZLbC7ue//3XQcAADYLa7dyx944AEVFhZq7Nixuvjii/Xee+9Jkvbt26e8vDw9/vjj8SwOkDQS0R02Ur4t8onqugt3Cdf6a3cwF0l37sBzOVjQGS59uP26EaOcAwAQXtyC7ieeeEKVlZU699xz9dhjj/ndoPPy8vTTn/5UixcvjldxgKQQ7Ituor7sBgtEwk3XRACOQE57prkj+w483yM9v90cbAdy0vUIADqDcPcdrr/OErfu5X/+85914YUX6plnntHXX399zPaRI0fqgQceiFdxgKQRrIun52+7v8xbdUGnS2rn5obnmoOVJdrz30nHZbVQ1yMAQOwincEj1FSZSJy4tXR//PHHGj9+fMjtPXv2DBqMA4hM4Kjmdl5crWjBChXE0ALeuQR7n93S+uvbEu5b5mDrnTgKuZ0Cr0d8pgEgelZcQ7kOJ1bcWrpzc3O1b9++kNu3b9+ugoKCeBUHSErBRjX33RatWC7SnjJ19JnPUK9D8nDiHNmxSoZjsAoDrQFA9CL57tXetTRcKzjX4fiKW0v3eeedp0ceeUSNjY3HbNu2bZseffRRXXDBBfEqDpC0gl1EA6f3iURHW6fCteqFKlO4lj+eSUpeoZ7dRnKysms+ACQ7zz2yve9Okdw3w6Wn5Tu+Ukycvul88cUXKi0tlTFG559/vh555BFdccUVam1t1T//+U8VFhZq48aNSTGFWHNzs3JyctTU1KTs7OxEFwedlB0X0sDg3Y7LR7JMp4TgQnUnR+fgpPff86U22A9Avts4PwHEQzzHN3HStdguTovH4tbSXVRUpE2bNuncc8/VkiVLZIzRk08+qZdeekmTJk3S+vXrkyLgBpyivV9Bo7m4er6A2vlsaqi8o2mth7OEGpkcnUe41hY7W106OrNC4L/0vAFgp3iPb0LLd/zFraU70FdffaW2tjb16tVLqalxnS7cdk77ZQXwiOZimsigyA2jWtupI++Xk+ukM/yijuhYObZDqJZru3AOA4iVU+6PyfjIl9PisbgNpBaoV69eido10GmFm87Hd5tTLraJnA4tEWIJFnwHRnFS/STjjRzWaW+KsY62MFv1w2IkAbyTPmcA3MUpwXbgvgOvuVzjrJOwoBtA4ljd7dxuwb78JtMX3ljmew5WL8HyjGdddfYeCui4wB/9rG6t7ui5F2wQSEYBBmAFJ/8YHXj95RpnHYJuAK7geyPw/N/NgbcVwUVHXmv3AHiB+/Dl1vcI8RdqxoNQg50F/m3nuRYuAOeLKYD2OK11OxSme7QHQTcA1wh1I3DbTSCSLrPRDnTXkXRW1RsjzsNuoQZXbC+NXcI9+hLvsgBwPie3boeS7L0M4831I5gtWLBAJSUlyszMVGlpqTZu3Bgy7bZt23TJJZeopKREKSkpmj9//jFp7rrrrmNGOB08eLCNRwCgo9prBXOq9kYGjXVk+I7O3xnLiNGRvJYbM5JdqM+aW65JAOwVeJ9026wdjHJuHVcH3UuWLNGMGTNUVVWlzZs3a/jw4aqoqFBDQ0PQ9IcOHdKAAQM0Z84cFRQUhMx36NCh+vLLL73L2rVr7ToEAFFy200g1K/Ddk7BFm0AHskSan+++wU6CwJvAL6C3SvdfF900zXOU/c5OTmJLoofVwfd9913n6655hpNmzZNQ4YM0cMPP6xu3brp8ccfD5p+9OjRuvfee3X55ZcrIyMjZL5dunRRQUGBd2H+cMCZ3HITcMLgZvGYX933X6CzCdUiBCB2bv4sJcsP0U5t9Y6kUcAJXBt0Hz58WJs2bVJ5ebl3XWpqqsrLy7Vu3bqY8t65c6eKioo0YMAATZ48Wbt37w6bvqWlRc3NzX4LgPhw8o0s1A0g0TfgwADciu7sAH7gxC+lgBu017uqIz2vEiFYmZLx/uiE4NuJ7397XBt079u3T62trcrPz/dbn5+fr7q6uqjzLS0t1aJFi1RTU6OFCxdq165dOuuss7R///6Qr6murlZOTo53KS4ujnr/ADou0Rf/YJwYbAcT2CU8VBfxwOfFnXYcgJMkcpA3wG1ivWcnOhgP1ZU82T/34YJvO96DSPP1lKmpqcnS/cfKtUG3XcaPH69LL71Uw4YNU0VFhZYvX67GxkYtXbo05GtmzZqlpqYm77Jnz544lhiA5Jyu5uFat90iWLANoGN8PztubJUB7BKv4NjufXTWYDtQuGO2asDWSAJtK3rw2cm1U4bl5eUpLS1N9fX1fuvr6+vDDpLWUbm5uTrppJP08ccfh0yTkZER9hlxAPGR6Lkl3R5sA7Be4LQ7TLmDziyS4Kujnw/PZypc3oFdvjv6OWxvH3ymQ0+l6GHljx9urG/XtnSnp6dr5MiRqq2t9a5ra2tTbW2tysrKLNvPgQMH9Mknn6iwsNCyPAHYK1SrN792A0gEBlhDZ9fezBexPLoU6jGpcGXxLVMkz477vi5Y2fE/Vj+GFu7RNzdxbUu3JM2YMUNTp07VqFGjNGbMGM2fP18HDx7UtGnTJElTpkxRnz59VF1dLemHwde2b9/u/f/evXu1ZcsWde/eXQMHDpQk3XLLLTr//PPVr18/ffHFF6qqqlJaWpomTZqUmIMEEJVQv0hb2fLNL94AIhXYCkSLNzqDcD8w2Xn+R/tDV6Tp+OxGJtj70F6vhFB16/Y6d3XQPXHiRH311VeaPXu26urqdNppp6mmpsY7uNru3buVmvq/xvwvvvhCI0aM8P49b948zZs3T+PGjdPq1aslSZ9//rkmTZqkr7/+Wr169dLYsWO1fv169erVK67HBiB2vl9yrezimagvEQCSC4E3kpXTHreKddwXPqfWcPIz13ZLMZ3xqG3W3NysnJwcNTU1KTs7O9HFAaD2A+VIvvwSbAOwSrJPK4TOy2kBNzonp8Vjrm7pBoBIhevOFO55rUjzBoBo0eKNZBFsfBMABN0AOhHfm3+sAxnxRQJALBjVHMmGgBsIjaAbQKfU3tQW7b0OAGLF4GpIBnQnB9pH0A2gUwv3xSCec3wDgMR1B+5C6zYQGYJuAAiBLw8A4iHanjdAIhFwA5FLbT8JAAAA7BY47gRBOJyKgBvoGIJuAAAAh/ANXsLNugAkCgE30HEE3QAAAA4SbIA1wAkC55cn4AYiQ9ANAADgMIHBDIE3EsXzqENgwA0gcgTdAAAADhQs8Cb4RjwxHRhgDUYvBwAAcKhgI5szrRjigWe3AevQ0g0AAOBwwQIeWr1hFwJuwFoE3QAAAC7gCXyYWgx28T2fgp1vAKJD93IAAACXCDWNmJ2DXIV6rpeBtZJL4PuckpLC+wpYhKAbAADARQJbugOF6hocLIjyrAv2mnAt6MECtHDlhHPx3gH2I+gGAABwqWADrQUKNghbqO3h1nUUzwU7W6j3mPcJsB7PdAMAALicMcbxwRLPnjtDuHEAnH4OAW5FSzcAAECSaK/rebR5Raq9fTLdWfxFch7wfgD2IugGAABIQuECKbsGyYo06O+swbcVrf3tPW8fTX4A7EXQDQAA0MnEI9AKFoAHBozJOAK63d3ow3UNj3TfyVLXgFvwTDcAAABs5XnmvL0Wbjc/953oOdPD7dt3zm0CbiD+CLoBAAAQF4HBty/PukQHrx3hKWskAW84gWl8g+PAfyN5rW8e7b0egP3oXg4AAIC4iuTZb6c+993RHwQifX4+WJpYA28AzkDQDQAAgIRpb65xuwZ96yielwYQLYJuAAAAJFy44DuRrd4E2wBiRdANAAAAxwg3Cnc8g+/2gm2CbACRIugGAACAo7Q33ZhdwXckrdoE2wA6iqAbAAAAjhVJt3PfdNEg2AZgJ4JuAAAAOF4kA675pmsPz2oDiBfXz9O9YMEClZSUKDMzU6Wlpdq4cWPItNu2bdMll1yikpISpaSkaP78+THnCQAAgPjxnXs6GN+5s8MtkeyDgBuAFVwddC9ZskQzZsxQVVWVNm/erOHDh6uiokINDQ1B0x86dEgDBgzQnDlzVFBQYEmeAAAAiL9YAuJw810TaAOwWopx8ZWltLRUo0eP1kMPPSRJamtrU3FxsW688UbNnDkz7GtLSkpUWVmpyspKy/L0aG5uVk5OjpqampSdnd3xAwMAAECHeObzjrTbuIeLvwoDCMFp8ZhrW7oPHz6sTZs2qby83LsuNTVV5eXlWrdunWPyBAAAgP08wbNv1/BgAXV72wHAaq4dSG3fvn1qbW1Vfn6+3/r8/Hx9+OGHcc2zpaVFLS0t3r+bm5uj2j8AAACsRWANINFc29LtJNXV1crJyfEuxcXFiS4SAAAAAMABXBt05+XlKS0tTfX19X7r6+vrQw6SZlees2bNUlNTk3fZs2dPVPsHAAAAACQX1wbd6enpGjlypGpra73r2traVFtbq7KysrjmmZGRoezsbL8FAAAAAADXPtMtSTNmzNDUqVM1atQojRkzRvPnz9fBgwc1bdo0SdKUKVPUp08fVVdXS/phoLTt27d7/793715t2bJF3bt318CBAyPKMxKeZ4d4thsAAAAA4ssThzlmTAfjcg8++KDp27evSU9PN2PGjDHr16/3bhs3bpyZOnWq9+9du3YZSccs48aNizjPSHzyySdB98PCwsLCwsLCwsLCwsISn+WTTz6JJdS0jKvn6XaqxsZG9ejRQ7t371ZOTk7U+YwePVpvvfVWzOWxIh+n5NHc3Kzi4mLt2bMnpm78Tjkep5TFqnq1oixW5eGUsiRj3Trl/XHS9cCqfJySB3VrXx5Oqttken+41tqXj5POWavycUpZqFv78mhqalLfvn317bffKjc3N6a8rODq7uVOlZr6w6PyOTk5MX2A0tLSLHk+3Ip8nJKHR6zPzjvpeJxUFivGJHDS8TipLMlUt056fyRnXA+syscpeXhQt9bn4eGEuk2290fiWmtnPk44Z63Kx0llkahbO/Lw8MRlieaMUiCo6dOnOyYfp+RhFScdj5PKYgUnHY+TymIFpxyPk94fKzjpeJySh1WoW/s46XicVBYrOOV4nPT+WMFJx+OksljBScfjlDychu7lNmhublZOTo6ampoYydxi1K09qFf7ULf2oW7tQ93ah7q1B/VqH+rWPtStfZxWt7R02yAjI0NVVVXKyMhIdFGSDnVrD+rVPtStfahb+1C39qFu7UG92oe6tQ91ax+n1S0t3QAAAAAA2ISWbgAAAAAAbELQDQAAAACATQi6AQAAAACwCUE3AAAAAAA2Iei22IIFC1RSUqLMzEyVlpZq48aNiS5SQr3xxhs6//zzVVRUpJSUFL3wwgt+240xmj17tgoLC5WVlaXy8nLt3LnTL80333yjyZMnKzs7W7m5ufrFL36hAwcO+KV57733dNZZZykzM1PFxcWaO3fuMWV57rnnNHjwYGVmZurUU0/V8uXLLT/eeKqurtbo0aN1/PHHq3fv3rrooou0Y8cOvzTff/+9pk+frhNOOEHdu3fXJZdcovr6er80u3fv1oQJE9StWzf17t1bt956q44ePeqXZvXq1Tr99NOVkZGhgQMHatGiRceUJ1nO/YULF2rYsGHKzs5Wdna2ysrK9Oqrr3q3U6fWmTNnjlJSUlRZWeldR/1G56677lJKSorfMnjwYO926jU2e/fu1RVXXKETTjhBWVlZOvXUU/X22297t3Mvi05JSckx521KSop3jl7O2+i0trbqzjvvVP/+/ZWVlaUTTzxRd999t3zHTuacjd7+/ftVWVmpfv36KSsrS2eccYbeeust73bqNjJuihEiKUu7DCyzePFik56ebh5//HGzbds2c80115jc3FxTX1+f6KIlzPLly80dd9xhnn/+eSPJLFu2zG/7nDlzTE5OjnnhhRfMu+++ay644ALTv39/891333nTnHvuuWb48OFm/fr15j//+Y8ZOHCgmTRpknd7U1OTyc/PN5MnTzZbt241zz77rMnKyjJ//etfvWnefPNNk5aWZubOnWu2b99ufv/735uuXbua999/3/Y6sEtFRYV54oknzNatW82WLVvMeeedZ/r27WsOHDjgTXPdddeZ4uJiU1tba95++23zk5/8xJxxxhne7UePHjWnnHKKKS8vN++8845Zvny5ycvLM7NmzfKm+fTTT023bt3MjBkzzPbt282DDz5o0tLSTE1NjTdNMp37L774onnllVfMRx99ZHbs2GF+97vfma5du5qtW7caY6hTq2zcuNGUlJSYYcOGmZtuusm7nvqNTlVVlRk6dKj58ssvvctXX33l3U69Ru+bb74x/fr1M1dddZXZsGGD+fTTT82KFSvMxx9/7E3DvSw6DQ0NfufsypUrjSSzatUqYwznbbTuuecec8IJJ5iXX37Z7Nq1yzz33HOme/fu5v777/em4ZyN3mWXXWaGDBli1qxZY3bu3GmqqqpMdna2+fzzz40x1G2k3BQjRFKW9hB0W2jMmDFm+vTp3r9bW1tNUVGRqa6uTmCpnCPwA9XW1mYKCgrMvffe613X2NhoMjIyzLPPPmuMMWb79u1Gknnrrbe8aV599VWTkpJi9u7da4wx5i9/+Yvp0aOHaWlp8aa5/fbbzcknn+z9+7LLLjMTJkzwK09paan51a9+ZekxJlJDQ4ORZNasWWOM+aEuu3btap577jlvmg8++MBIMuvWrTPG/HDBS01NNXV1dd40CxcuNNnZ2d76vO2228zQoUP99jVx4kRTUVHh/TvZz/0ePXqYv/3tb9SpRfbv328GDRpkVq5cacaNG+cNuqnf6FVVVZnhw4cH3Ua9xub22283Y8eODbmde5l1brrpJnPiiSeatrY2ztsYTJgwwVx99dV+6y6++GIzefJkYwznbCwOHTpk0tLSzMsvv+y3/vTTTzd33HEHdRslJ8cIkZQlEnQvt8jhw4e1adMmlZeXe9elpqaqvLxc69atS2DJnGvXrl2qq6vzq7OcnByVlpZ662zdunXKzc3VqFGjvGnKy8uVmpqqDRs2eNP83//9n9LT071pKioqtGPHDn377bfeNL778aRJpvemqalJktSzZ09J0qZNm3TkyBG/4x48eLD69u3rV7+nnnqq8vPzvWkqKirU3Nysbdu2edOEq7tkPvdbW1u1ePFiHTx4UGVlZdSpRaZPn64JEyYcUwfUb2x27typoqIiDRgwQJMnT9bu3bslUa+xevHFFzVq1Chdeuml6t27t0aMGKFHH33Uu517mTUOHz6sp556SldffbVSUlI4b2NwxhlnqLa2Vh999JEk6d1339XatWs1fvx4SZyzsTh69KhaW1uVmZnptz4rK0tr166lbi3ipHqMpCyRIOi2yL59+9Ta2up34Zek/Px81dXVJahUzuapl3B1VldXp969e/tt79Kli3r27OmXJlgevvsIlSZZ3pu2tjZVVlbqzDPP1CmnnCLph2NOT09Xbm6uX9rA+o227pqbm/Xdd98l5bn//vvvq3v37srIyNB1112nZcuWaciQIdSpBRYvXqzNmzerurr6mG3Ub/RKS0u1aNEi1dTUaOHChdq1a5fOOuss7d+/n3qN0aeffqqFCxdq0KBBWrFiha6//nr95je/0d///ndJ3Mus8sILL6ixsVFXXXWVJK4HsZg5c6Yuv/xyDR48WF27dtWIESNUWVmpyZMnS+KcjcXxxx+vsrIy3X333friiy/U2tqqp556SuvWrdOXX35J3VrESfUYSVki0SXilAAca/r06dq6davWrl2b6KIkhZNPPllbtmxRU1OT/vGPf2jq1Klas2ZNoovlenv27NFNN92klStXHtNKgNh4WrAkadiwYSotLVW/fv20dOlSZWVlJbBk7tfW1qZRo0bpj3/8oyRpxIgR2rp1qx5++GFNnTo1waVLHo899pjGjx+voqKiRBfF9ZYuXaqnn35azzzzjIYOHaotW7aosrJSRUVFnLMWePLJJ3X11VerT58+SktL0+mnn65JkyZp06ZNiS4aHIyWbovk5eUpLS3tmFE16+vrVVBQkKBSOZunXsLVWUFBgRoaGvy2Hz16VN98841fmmB5+O4jVJpkeG9uuOEGvfzyy1q1apV+9KMfedcXFBTo8OHDamxs9EsfWL/R1l12draysrKS8txPT0/XwIEDNXLkSFVXV2v48OG6//77qdMYbdq0SQ0NDTr99NPVpUsXdenSRWvWrNEDDzygLl26KD8/n/q1SG5urk466SR9/PHHnLcxKiws1JAhQ/zW/fjHP/Z23+deFrvPPvtM//73v/XLX/7Su47zNnq33nqrt7X71FNP1ZVXXqnf/va33h5GnLOxOfHEE7VmzRodOHBAe/bs0caNG3XkyBENGDCAurWIk+oxkrJEgqDbIunp6Ro5cqRqa2u969ra2lRbW6uysrIElsy5+vfvr4KCAr86a25u1oYNG7x1VlZWpsbGRr9fD19//XW1tbWptLTUm+aNN97QkSNHvGlWrlypk08+WT169PCm8d2PJ42b3xtjjG644QYtW7ZMr7/+uvr37++3feTIkeratavfce/YsUO7d+/2q9/333/f76K1cuVKZWdne79ktld3neHcb2trU0tLC3Uao7PPPlvvv/++tmzZ4l1GjRqlyZMne/9P/VrjwIED+uSTT1RYWMh5G6MzzzzzmOkYP/roI/Xr108S9zIrPPHEE+rdu7cmTJjgXcd5G71Dhw4pNdX/K35aWpra2tokcc5a5bjjjlNhYaG+/fZbrVixQhdeeCF1axEn1WMkZYlIxEOuoV2LFy82GRkZZtGiRWb79u3m2muvNbm5uX6janY2+/fvN++884555513jCRz3333mXfeecd89tlnxpgfhuDPzc01//rXv8x7771nLrzwwqDTAYwYMcJs2LDBrF271gwaNMhvOoDGxkaTn59vrrzySrN161azePFi061bt2OmA+jSpYuZN2+e+eCDD0xVVZWrplUI5vrrrzc5OTlm9erVflOuHDp0yJvmuuuuM3379jWvv/66efvtt01ZWZkpKyvzbvdMt3LOOeeYLVu2mJqaGtOrV6+g063ceuut5oMPPjALFiwIOt1Kspz7M2fONGvWrDG7du0y7733npk5c6ZJSUkxr732mjGGOrWa7+jlxlC/0br55pvN6tWrza5du8ybb75pysvLTV5enmloaDDGUK+x2Lhxo+nSpYu55557zM6dO83TTz9tunXrZp566ilvGu5l0WttbTV9+/Y1t99++zHbOG+jM3XqVNOnTx/vlGHPP/+8ycvLM7fddps3Deds9Gpqasyrr75qPv30U/Paa6+Z4cOHm9LSUnP48GFjDHUbKTfFCJGUpT0E3RZ78MEHTd++fU16eroZM2aMWb9+faKLlFCrVq0yko5Zpk6daoz5YRj+O++80+Tn55uMjAxz9tlnmx07dvjl8fXXX5tJkyaZ7t27m+zsbDNt2jSzf/9+vzTvvvuuGTt2rMnIyDB9+vQxc+bMOaYsS5cuNSeddJJJT083Q4cONa+88optxx0PwepVknniiSe8ab777jvz61//2vTo0cN069bN/OxnPzNffvmlXz7//e9/zfjx401WVpbJy8szN998szly5IhfmlWrVpnTTjvNpKenmwEDBvjtwyNZzv2rr77a9OvXz6Snp5tevXqZs88+2xtwG0OdWi0w6KZ+ozNx4kRTWFho0tPTTZ8+fczEiRP95pGmXmPz0ksvmVNOOcVkZGSYwYMHm0ceecRvO/ey6K1YscJIOqa+jOG8jVZzc7O56aabTN++fU1mZqYZMGCAueOOO/ymTeKcjd6SJUvMgAEDTHp6uikoKDDTp083jY2N3u3UbWTcFCNEUpb2pBhjTOTt4gAAAAAAIFI80w0AAAAAgE0IugEAAAAAsAlBNwAAAAAANiHoBgAAAADAJgTdAAAAAADYhKAbAAAAAACbEHQDAAAAAGATgm4AAAAAAGxC0A0AAAAAgE0IugEAAAAAsAlBNwAAAAAANiHoBgAAAADAJv8PC/sokJx/7kMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "mmrs = TwoBodyMatrix.find_resonances(2.35, sigma=0.05, planets=None)\n", - "for mmr in mmrs:\n", - " print(mmr.to_short())" + "sim.run()" ] }, { @@ -412,31 +148,56 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The code above performs the following:\n", + "## Find only two-body MMRs near the semimajor axis\n", "\n", - "1. `find_resonances` finds resonances within the range $2.35\\pm 0.05 = [2.3, 2.4]$.\n", - "2. The option `planets` is set to `None`. Hence, the package will check all possible planets. One might specify conrete planets. For example:" + "In Quick Start, we have seen how to find all MMRs (two-body and three-body) for a given value of semi-major axis through the function `resonances.find_resonances`. However, one might want to find only two-body or three-body resonances. To perform this, there are special classes `ThreeBodyMatrix` and `TwoBodyMatrix` that can be used to find only three-body and two-body resonances, respectively." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "1M-2\n", + "1M+2\n", + "5M-9\n", + "6M-11\n", + "7J-2\n", + "7J+2\n", "10J-3\n", - "8S-1\n", - "8S+1\n" + "1M-3J-1\n", + "2M-3J-3\n", + "2M+4J-5\n", + "3M-2J-5\n", + "3M+1J-6\n", + "3M+4J-7\n", + "4M-2J-7\n", + "1M+1S-2\n", + "2M+1S-4\n", + "3M+1S-6\n", + "3M+2S-6\n", + "2J+3S-1\n", + "4J-2S-1\n", + "5J-4S-1\n", + "6J+1S-2\n", + "7J-1S-2\n" ] } ], "source": [ - "mmrs = TwoBodyMatrix.find_resonances(2.35, sigma=0.05, planets=['Jupiter', 'Saturn'])\n", + "from resonances import ThreeBodyMatrix, TwoBodyMatrix\n", + "\n", + "mmrs = TwoBodyMatrix.find_resonances(2.35, sigma=0.1, planets=['Mars', 'Jupiter'])\n", + "for mmr in mmrs:\n", + " print(mmr.to_short())\n", + "\n", + "mmrs = ThreeBodyMatrix.find_resonances(2.35, sigma=0.05, planets=['Mars', 'Jupiter', 'Saturn'])\n", "for mmr in mmrs:\n", - " print(mmr.to_short())" + " print(mmr.to_short()) " ] }, { @@ -444,33 +205,39 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That's it. Now, one can perform any further action with the list of MMRs got. For three-body resonances, the algorithm is the same. The only difference is in the name of the class: `ThreeBodyMatrix` should be used." + "The code above performs the following:\n", + "\n", + "1. The first `find_resonances` finds two-body MMRs resonances within the range $2.35\\pm 0.1 = [2.25, 2.45]$.\n", + "1. The second `find_resonances` finds three-body MMRs resonances within the range $2.35\\pm 0.05 = [2.3, 2.4]$." ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "## Find all asteroids in the resonance\n", + "## Find asteroids in a given resonance\n", "\n", - "One might want to examine a concrete resonance. In other words, one might want to find all asteroids that are trapped in this resonance.\n", + "One might want to find all asteroids in a given resonance. This can be done by the function `find_asteroids_in_resonance`. It has the following inputs:\n", "\n", - "Actually, we have two possible options here. We might want to find all asteroids that are close enough to the resonant value of semi-major axis. It does not confirm that they are trapped in the resonance. However, it shows that they **could** be. To confirm that, we have to integrate the orbits of these objects.\n", + "- `mmr` (Union[MMR, str]): The mean motion resonance to search for. Can be either an MMR object or a string representation (e.g., \"4J-2S-1\")\n", + "- `sigma` (float, default=0.1): Width parameter for resonance search around the resonant axis\n", + "- `per_iteration` (int, default=500): Number of asteroids to process in each batch/chunk for memory efficiency \n", "\n", - "Let's start with the first task. To perform this, we need `astdys` component. Let's work with the resonance `6J-3S-2`." + "The function returns a list of DataFrames containing simulation results for asteroids found in the specified resonance.\n", + "\n", + "This function is time-consuming because it integrates the orbits of all relevant asteroids. One might want to get a list of candidates first based on the closeness of the resonant axis. To do this, we can use `astdys` package." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of objects found: 4686\n" + "Number of objects found: 3619\n" ] }, { @@ -515,54 +282,54 @@ " \n", " \n", " \n", - " 22\n", - " 2.911063\n", - " 0.098799\n", - " 0.239143\n", - " 1.151473\n", - " 6.246673\n", - " 3.349287\n", - " 60400.0\n", + " 20\n", + " 2.407925\n", + " 0.143731\n", + " 0.012380\n", + " 3.595020\n", + " 4.493478\n", + " 4.962143\n", + " 60600.0\n", " \n", " \n", - " 191\n", - " 2.896114\n", - " 0.087409\n", - " 0.201090\n", - " 2.778376\n", - " 3.953197\n", - " 2.914869\n", - " 60400.0\n", + " 25\n", + " 2.400450\n", + " 0.254243\n", + " 0.377134\n", + " 3.736615\n", + " 1.574323\n", + " 5.989823\n", + " 60600.0\n", " \n", " \n", - " 238\n", - " 2.908355\n", - " 0.091706\n", - " 0.216576\n", - " 3.208909\n", - " 3.668466\n", - " 0.131904\n", - " 60400.0\n", + " 60\n", + " 2.392187\n", + " 0.184544\n", + " 0.062843\n", + " 3.342778\n", + " 4.725915\n", + " 0.377345\n", + " 60600.0\n", " \n", " \n", - " 307\n", - " 2.908449\n", - " 0.143681\n", - " 0.106940\n", - " 1.760447\n", - " 5.645693\n", - " 0.153178\n", - " 60400.0\n", + " 63\n", + " 2.394722\n", + " 0.128203\n", + " 0.100759\n", + " 5.893842\n", + " 5.161197\n", + " 5.439140\n", + " 60600.0\n", " \n", " \n", - " 311\n", - " 2.898233\n", - " 0.005958\n", - " 0.056271\n", - " 1.413041\n", - " 1.371173\n", - " 1.263999\n", - " 60400.0\n", + " 192\n", + " 2.402742\n", + " 0.245596\n", + " 0.118624\n", + " 5.988033\n", + " 0.533790\n", + " 2.924088\n", + " 60600.0\n", " \n", " \n", "\n", @@ -571,22 +338,22 @@ "text/plain": [ " a e inc Omega omega M epoch\n", "num \n", - "22 2.911063 0.098799 0.239143 1.151473 6.246673 3.349287 60400.0\n", - "191 2.896114 0.087409 0.201090 2.778376 3.953197 2.914869 60400.0\n", - "238 2.908355 0.091706 0.216576 3.208909 3.668466 0.131904 60400.0\n", - "307 2.908449 0.143681 0.106940 1.760447 5.645693 0.153178 60400.0\n", - "311 2.898233 0.005958 0.056271 1.413041 1.371173 1.263999 60400.0" + "20 2.407925 0.143731 0.012380 3.595020 4.493478 4.962143 60600.0\n", + "25 2.400450 0.254243 0.377134 3.736615 1.574323 5.989823 60600.0\n", + "60 2.392187 0.184544 0.062843 3.342778 4.725915 0.377345 60600.0\n", + "63 2.394722 0.128203 0.100759 5.893842 5.161197 5.439140 60600.0\n", + "192 2.402742 0.245596 0.118624 5.988033 0.533790 2.924088 60600.0" ] }, - "execution_count": 9, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "import astdys\n", + "import astdys, resonances\n", "\n", - "mmr = resonances.create_mmr('6J-3S-2')\n", + "mmr = resonances.create_mmr('4J-2S-1')\n", "df_asteroids = astdys.search_by_axis(mmr.resonant_axis, sigma=0.01)\n", "print('Number of objects found: {}'.format(len(df_asteroids)))\n", "df_asteroids.head(5)" @@ -597,9 +364,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "There are many candidates. Now let's find whether any of them are resonant. To perform this, we can use a method `find_asteroids_in_mmr`\n", + "The function `search_by_axis` is powerful and can be used to find asteroids by a given value of the semi-major axis for other purposes as well (i.e., to plot some of them).\n", "\n", - "The parameter `sigma` specifies the half-width of the resonance, `per_iteration` — how many asteroids to integrate simultaneously (depends on your device, `500` by default)." + "If one still wants to classify whether any of the asteroids found are really resonant, one can use the function `find_asteroids_in_mmr` described above." ] }, { @@ -622,7 +389,7 @@ ], "metadata": { "kernelspec": { - "display_name": "resonances-ToctA26j-py3.10", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -636,7 +403,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" + "version": "3.11.9" }, "orig_nbformat": 4 }, diff --git a/docs/examples/asteroids.json b/docs/examples/asteroids.json deleted file mode 100644 index fbbb63f..0000000 --- a/docs/examples/asteroids.json +++ /dev/null @@ -1,129 +0,0 @@ -{ - "integration.tmax": 628319, - "integration.Nout": 6283, - "integration.dt": 1.0, - "plot": true, - "save": true, - "save_path": "cache/asteroids", - "asteroids": [ - { - "elem": { - "m": 0.0, - "a": 2.398825840331548, - "e": 0.2194125828625336, - "inc": 0.23627318991620527, - "Omega": 0.6370508455573044, - "omega": 5.752902062786396, - "M": 2.4309844848211464, - "label": "Asteroid 463 (resonant)" - }, - "resonances": [ - { - "integers": [4, -2, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - ], - "plot": true - }, - { - "elem": { - "num": 490, - "label": "Asteroid 490 (transient)" - }, - "resonances": [ - { - "integers": [5, -2, -2, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - }, - { - "integers": [4, -2, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - ] - }, - { - "elem": { - "num": 441, - "label": "Asteroid 441 (chaotic)" - }, - "resonances": [ - { - "integers": [4, -1, -1, 0, 0, -2], - "bodies": ["Jupiter", "Saturn"] - } - ] - }, - { - "elem": { - "m": 0.0, - "a": 2.3977732087525987, - "e": 0.3724137931034488, - "inc": 0.23627318991620527, - "Omega": 0.6370508455573044, - "omega": 5.752902062786396, - "M": 2.4309844848211464, - "label": "Asteroid close to 463 (Transient, circulations)" - }, - "resonances": [ - { - "integers": [4, -2, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - ] - }, - { - "elem": { - "m": 0.0, - "a": 2.4007205771736526, - "e": 0.4758620689655175, - "inc": 0.23627318991620527, - "Omega": 0.6370508455573044, - "omega": 5.752902062786396, - "M": 2.4309844848211464, - "label": "Asteroid close to 463 (few librations)" - }, - "resonances": [ - { - "integers": [4, -2, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - ] - }, - { - "elem": { - "num": 947, - "label": "Asteroid 947 (Uncertain)" - }, - "resonances": [ - { - "integers": [3, -1, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - ] - }, - { - "elem": { - "num": 588, - "label": "Asteroid 588 (Trojan)" - }, - "resonances": [ - { - "integers": [1, -1, 0, 0], - "bodies": ["Jupiter"] - } - ] - }, - { - "elem": { - "num": 153, - "label": "Asteroid 153 (Hilda)" - }, - "resonances": [ - { - "integers": [3, -2, 0, -1], - "bodies": ["Jupiter"] - } - ] - } - ] - } \ No newline at end of file diff --git a/docs/examples/simulation-shape.json b/docs/examples/simulation-shape.json deleted file mode 100644 index 7e787e1..0000000 --- a/docs/examples/simulation-shape.json +++ /dev/null @@ -1,63 +0,0 @@ -{ - "integration.tmax": 628319, - "plot": true, - "save": true, - "save.summary": true, - "save_path": "cache/simulation-shape", - "save.only.undetermined": true, - "dump": 100, - "label": "A463 resonance shape", - "elem": { - "m": 0.0, - "a": 2.398825840331548, - "e": 0.2194125828625336, - "inc": 0.23627318991620527, - "Omega": 0.6370508455573044, - "omega": 5.752902062786396, - "M": 2.4309844848211464 - }, - "variations": [ - { - "a": { - "min": 2.388825840331548, - "max": 2.408825840331548, - "num": 2 - }, - "e": { - "min": 0.0, - "max": 0.3, - "num": 2 - } - }, - { - "a": { - "min": 2.388825840331548, - "max": 2.408825840331548, - "num": 3 - }, - "e": { - "min": 0.3, - "max": 0.6, - "num": 3 - } - }, - { - "a": { - "min": 2.388825840331548, - "max": 2.408825840331548, - "num": 2 - }, - "e": { - "min": 0.6, - "max": 0.9, - "num": 1 - } - } - ], - "resonance": { - "integers": [4, -2, -1, 0, 0, -1], - "bodies": ["Jupiter", "Saturn"] - } - - -} \ No newline at end of file diff --git a/docs/index.md b/docs/index.md index d9c8ed6..6bd8f98 100644 --- a/docs/index.md +++ b/docs/index.md @@ -2,8 +2,6 @@ `resonances` is an open-source package dedicated to the identification of mean-motion resonances of small bodies. Many examples are for the Solar system; however, you might use the package for any possible planetary system, including exoplanets. For now, the package supports only eccentricity-type resonances. However, it will be improved in the future. -**Note:** while this app has many functional and integration tests built in, it is still in the dev stage. Hence, it might include some inconsistencies. So, any community help is appreciated! - ## Features The package: @@ -11,6 +9,7 @@ The package: - can automatically identify two-body and three-body mean-motion resonance in the Solar system, - accurately differentiates different types of resonances (pure, transient, uncertain), - provides an interface for mass tasks (i.e. find resonant areas in a planetary system), +- has integration with NASA Horizon (through rebound) and AstDyS catalog, - can plot time series and periodograms, - and, yeah, it is well tested ;) @@ -41,6 +40,7 @@ For those who are not familiar with the mean-motion resonances, here is the list ### Books +1. Valerio Carruba, Evgeny Smirnov, Dagmara Oszkiewicz. Machine Learning for Small Bodies in the Solar System. (Elsevier, 2024). https://doi.org/10.1016/C2023-0-51021-3 1. Murray, C. D. & Dermott, S. F. Solar system dynamics. (Cambridge Univ. Press, 2012). 1. Morbidelli, A. Modern celestial mechanics: aspects of solar system dynamics. (2002). diff --git a/docs/install.md b/docs/install.md index ef0c7eb..57d53e8 100644 --- a/docs/install.md +++ b/docs/install.md @@ -1,8 +1,14 @@ # Installation +The fastest way: + +```bash +pip install resonances +``` + ## Poetry -The best way to install `resonances` package is through [poetry](https://python-poetry.org), which is the dependency manager for python. In this case, you only need to write: +The _best_ way to install `resonances` package is through [poetry](https://python-poetry.org), which is the dependency manager for python. In this case, you only need to write: ```bash poetry add resonances diff --git a/docs/libration.md b/docs/libration.md index f4bae62..e7c4cda 100644 --- a/docs/libration.md +++ b/docs/libration.md @@ -76,5 +76,3 @@ The filtering procedure uses [scipy.signal.filtfilt](https://docs.scipy.org/doc/ Another complication appears after applying the filter: the values of the first and the last points (in time) might be 'damaged' because the filter smooths the data based on the historical values, which are not presented for the beginning and the end. Thus, it is a good idea to cut some points off to improve the accuracy of the identification of oscillations frequencies. To calculate the number of points to cut, the app uses the parameter `libration.period.min` (by default, `500`), which represents the number of years to remove from the beginning and end. To adjust it to other parameters, it is multiplied by the sampling frequency. Hence, there are no very low frequencies in the resulting data. If you do not want to cut these points, just set the parameter to `0`. - -### The usage diff --git a/docs/matrix.md b/docs/matrix.md index dc5ca97..6a973b0 100644 --- a/docs/matrix.md +++ b/docs/matrix.md @@ -6,7 +6,7 @@ This app calculates the value of the resonant semi-major axis for three-body res ## Initialisation -When the app needs to know the value of the resonant semi-major axis for the first time, it calculates it and stores it in the file (the config items `matrix.3body.file` and `matrix.2body.file`). The files have the following structure: +When the app needs to know the value of the resonant semi-major axis for the first time, it calculates it and stores it in the file (the config items `MATRIX_3BODY_FILE` and `MATRIX_2BODY_FILE`). The files have the following structure: 1. The number of an item 1. The short notation of resonance (i.e. `4J-2S-1` or `1J-1`) diff --git a/docs/quick-start.ipynb b/docs/quick-start.ipynb index 491514d..0b1feca 100644 --- a/docs/quick-start.ipynb +++ b/docs/quick-start.ipynb @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -33,12 +33,50 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching NASA Horizons for 'Sun'... \n", + "Found: Sun (10) \n", + "Searching NASA Horizons for 'Mercury'... \n", + "Found: Mercury Barycenter (199) (chosen from query 'Mercury')\n", + "Searching NASA Horizons for 'Venus'... \n", + "Found: Venus Barycenter (299) (chosen from query 'Venus')\n", + "Searching NASA Horizons for 'Earth'... \n", + "Found: Earth-Moon Barycenter (3) (chosen from query 'Earth')\n", + "Searching NASA Horizons for 'Mars'... \n", + "Found: Mars Barycenter (4) (chosen from query 'Mars')\n", + "Searching NASA Horizons for 'Jupiter'... \n", + "Found: Jupiter Barycenter (5) (chosen from query 'Jupiter')\n", + "Searching NASA Horizons for 'Saturn'... \n", + "Found: Saturn Barycenter (6) (chosen from query 'Saturn')\n", + "Searching NASA Horizons for 'Uranus'... \n", + "Found: Uranus Barycenter (7) (chosen from query 'Uranus')\n", + "Searching NASA Horizons for 'Neptune'... \n", + "Found: Neptune Barycenter (8) (chosen from query 'Neptune')\n", + "Searching NASA Horizons for 'Pluto'... \n", + "Found: Pluto Barycenter (9) (chosen from query 'Pluto')\n", + "Searching NASA Horizons for '463;'... \n", + "Found: 463 Lola (A900 UK) \n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVfs38O8mIY00SiCUkNB7L6FIUSIBAxJUmggExAqP8FjBFsASsPBTEVH0kSCICEoTBIwQgiBFmhBAilTpLQk1QPa8f/DumE02ye5mZqd9P9eV64Ld2dlz7lNm7mlrEUIIEBEREREREZHsvNQuABEREREREZFRMekmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIyrcmTJ8NiscBisWDTpk2FLnfkyBE88cQTiIqKgp+fHypWrIh7770XCxYssFtu//79eOKJJ9C8eXOEh4fDz88P0dHR6NmzJ1avXq10dcjELl++jCpVqsBisaB79+4F3j969Gih7zly8uRJfPTRR+jWrRuqVasGX19fRERE4OGHH8bmzZsL/dzy5csRHx+PChUqoFSpUihfvjwaNWqE4cOHY8mSJS7VaerUqRg2bBiaNGkCHx8fWCwWrF271qV1yGH8+PGyfrfFYkGXLl1kWZeWXbt2DXPmzEG/fv1Qp04dBAQEICwsDJ07d8Z3332ndvGIiDzKR+0CEBGpISMjA0lJSShdujSuXbtW6HKpqalISEgAAPTq1Qs1atTA5cuXsWvXLvz666/o27evtOzu3buxcOFCtGvXDu3bt0dISAhOnjyJJUuWYPny5Xj77bfx2muvKV01MqFRo0YhKytLtvVNnToVkydPRs2aNdGtWzeEh4fj4MGDWLx4MRYvXoy5c+eif//+dp+ZMGECxo8fj8DAQPTs2RPR0dG4c+cO9uzZg++//x4HDhxA7969nS7Dc889BwCoVKkSwsPDcebMGdnqR8r77bffMHjwYJQrVw5du3bFww8/jHPnzmHhwoV49NFHsWHDBnz66adqF5OIyCOYdBOR6dy+fRtDhw5Fs2bNULt2bcyZM8fhcsePH8cjjzyCKlWq4Ndff0W1atXs3r9z547d/3v16oWHH34YFovF7vVTp06hefPmmDBhAkaOHImwsDBZ60Pm9uOPP2Lu3Ln49NNPMWrUKFnW2aZNG6xduxadO3e2e/23335D165d8cwzzyAhIQF+fn4A7p5JnzhxIiIjI7Fp0yZUrlzZ7nM3btwo8gy5I8uWLUPLli0RERGBp59+Gl988UXJKkUeFRERgdmzZ6Nfv37w9fWVXn/33XcRExODadOmYciQIWjTpo2KpSQi8gxeXk5EpvPOO+9gz549+Prrr+Ht7V3ocu+++y6ys7Px+eefF0i4AcDHx/64pZ+fX4GEGwAqV66MDh064Pbt2zh27FiJyt6lSxdYLBbcvHkTr7/+OmrWrIlSpUph/Pjx0jJHjhzBiBEjUK1aNfj5+aFSpUpITEx0+N3bt2/HI488Ii0bHh6O1q1b45133imwbEZGBvr164cKFSrAz88P1atXx5gxY3Dx4sUCy0ZHRyM6OhpXr17F6NGjUblyZfj5+aFJkyb44YcfCix/4MABvPzyy2jRogXKlSsHf39/1KlTB2PHjsXVq1cLjcPt27cxfvx4REdHw8/PD3Xq1MFnn33mMHZCCMycORMdO3ZEWFgYAgMDUbt2bTz11FM4fvy43bJXrlxBUlISGjZsKF0WGxcXh/Xr1ztct1rOnz+PZ555BoMHD0Z8fLxs633ooYcKJNwA0LFjR9x77724fPkydu/eLb2+ZcsWWK1WPPTQQwUSbgAICAhw+ZLq+Ph4REREuFx2Z2VlZeHNN99EgwYNEBQUhJCQENSqVQtDhw6VxkqXLl0wYcIEAMC9994r3Y4SHR0trSctLQ3Dhw9H3bp1ERQUhKCgILRq1QozZsyw+761a9dK80N6erq0LovFgpSUFABFX8qekpJit2ze7+/Ro4c0xipWrIiOHTsW+H5Pa9asGR577DG7hBsAKlasiKeeegoAsG7dOjWKRkTkcTzTTUSmsn37drzzzjuYOHEiGjRoUOhyQggsWLAA5cqVw3333Ydt27YhPT0dVqsVzZo1w3333QcvL+eOW168eBGbN29GYGAgatSoIUs9Hn74Yfz555/o3r07wsLCUL16dQDA5s2bERcXh2vXrqFnz56oXbs2jh49im+//RYrVqzAxo0bpTLs3LkT7du3h7e3N3r37o2oqChkZmZi7969mDFjht2l8OvXr0dcXBxu3bqFRx55BNHR0di4cSM+/vhjLFu2DJs2bUL58uXtynj79m1069YNly9fxsMPP4zr169j3rx56NevH1auXIlu3bpJyy5cuBD/+9//cO+996JLly6wWq3YtGkTJk+ejPT0dKxbtw6lSpUqEIeBAwdiy5Yt6NGjB7y9vTF//nyMHDkSpUqVwhNPPCEtZ7Va0b9/f/zwww+oUqUKBg4ciJCQEBw9ehTz589Hjx49pAMrly5dQqdOnbBnzx506NABTz/9NLKzs7FkyRLpXn7bLQdqe/rpp+Ht7Y2PP/5Y1svLi2Jrh7wHncqVKwcAOHjwoEfKUFJCCMTFxWHz5s3o0KEDunfvDi8vLxw7dgxLly7F4MGDERUVhcTERAB3k+ShQ4dKyXbeq1UmT56MQ4cOoW3btujTpw8yMzOxcuVKPPXUU9i/fz8+/PBDAHcPRCUlJWHChAl26wbuJqjuWL58OXr16oWwsDD07t0blSpVwvnz5/Hnn39i9uzZePLJJ91ar9Ic9SEiIiPjbEdEppGTk4MhQ4agWbNmePnll4tc9siRI7h06RJatWqFp556qsBZo+bNm2Pp0qWoWrVqgc8eOHAAc+fORW5uLk6dOoWlS5ciMzMTn3/+OYKDg2Wpy6lTp7Br1y6ULVtWeu327dsYMGAArFYrtmzZgubNm0vvrV+/Hl26dMHo0aPx008/AQBmz56NnJwcLF68uMC9tnnPXlutViQmJuL69etYuXIl4uLipPdefvllvP/++3jllVfwv//9r0AZW7dujbVr10pnux599FHExsZiypQpdkn34MGD8fzzzxc4KzZx4kQkJSVh/vz5GDRoUIE4/PPPP8jIyEBISAgAYPTo0WjUqBE+/PBDu6T7s88+ww8//ICuXbvip59+QkBAgPTejRs3cOPGDen///nPf7Bnzx58+eWXGDFihPR6cnIyWrVqhSeffBLdu3eHv79/gfLklZmZiY8++qjIZfIbM2aM07cfzJkzBwsXLsTixYtRpkwZjyTdx48fx6+//opKlSqhcePG0usxMTGoVq0afv75Z/Ts2RMDBgxAmzZtULt2bYdXf6gtIyMDmzdvRkJCAhYtWmT3Xk5ODm7fvg0ASExMxNGjR5Geno7ExESHZ+unT58uHfSyuXPnDh544AF8/PHHGD16NKpVq4bo6GiMHz8eEyZMkP5dUl9//TWEEEhLS0PTpk3t3nN0BYojO3fuxOLFi53+zrCwMIwZM8aFUtrLzc3FN998A4vFgtjYWLfXQ0SkK4KIyCRefvll4evrK3bv3i29NnToUAFAbNy40W7ZjRs3CgDC29tbBAUFiZkzZ4pLly6JI0eOiCeeeEIAEDExMQ6/56effhIApL+goCAxe/ZsWerQuXNnAUAsWbKkwHsLFy4UAMTEiRMdfvahhx4SXl5eIisrSwghxPPPPy8AiFWrVhX5nevWrRMARI8ePQq8d+XKFVG2bFnh7+8vcnJypNejoqIEAHH48OECn4mKihJly5Yt8jttLl68KACIxMREu9dtcVizZk2Bz9jey87Oll6rX7++8Pb2FgcOHCjy+86fPy+8vb3Ffffd5/D9Tz75RAAQP/30U7FlP3LkiF0/cObvyJEjxa5XCCFOnjwpypQpIwYOHFjg++Li4goti6P3nHXr1i3RqVMnAUB88803Bd7fvn27aNiwoV19QkNDRc+ePcXChQvd/l4hhHjqqacEAJGWllai9djs2rVLALCLX2GSkpLc+u4ff/xRABApKSl2rwMQnTt3dvm7Zs6cKQCImTNnSq899NBDAoDYv3+/S2VztF5n/6Kiotz+LiGEGDdunAAghg8fXqL1EBHpCc90E5EpbNy4ER988AHGjx+PRo0aFbu81WoFcPeszFtvvSVdClqmTBnMmDEDu3btwubNm7F+/Xrcc889dp/t2bMnhBC4desWjh49ii+//BJDhgzBli1b8Mknn8hSH0cPH7L97Nn+/fsdnkU7c+YMrFYrDhw4gFatWqFfv3746KOP0KdPH/Tv3x/3338/OnXqhCpVqth9bseOHQDg8Cyf7f7VX375Bfv377c7+5n3sve8qlatio0bN9q9Jv7//dYpKSnIyMhAVlaW1AbA3bPmjrRs2dLh+oG7Z5qDg4Nx9epV7Nu3D7Vq1ULt2rUdrsfmjz/+QG5uLnJychzG0Hb59F9//YWePXsWua7o6GgIIYpcxl0jRoxAqVKl3O5PhZ2FL+zsq+1qh3Xr1uGJJ57A4MGDCyzTvHlz7N69Gxs3bkRaWhq2bduG9evXY9myZVi2bBkGDRqE2bNnw2Kx4OjRowXuTS7pGVRX1K9fH02aNMF3332Hf/75BwkJCejSpQuaNWvm9G0jNleuXMEHH3yAxYsX4++//y7wawiF9V05DBgwAAsXLkTbtm3x6KOPomvXrujYsWOBWz2KkpiYaHepu5I+//xzJCcno3nz5vj444898p1ERFrApJuIDO/OnTsYOnQomjRpgrFjxzr1mdDQUOnfDz74YIH3e/Xqhc2bN2Pr1q0Fkm4bX19f1KlTB++//z6uX7+OqVOnokePHujRo4d7FcmjYsWKBV67dOkSAODbb78t8rO2pCAmJgZr167Fu+++i7lz52LmzJkAgNatW2Py5Mm49957AQDZ2dmFfidw9yed8i5nkzeGefn4+Ngl1MDdn4f69NNPERkZiQcffBCVKlWSnow9YcIE5OTkOFyX7bLy/OsH7h4wASBddp3/YIIjthhu2LABGzZsKHS5on5mTmmzZs3CihUrsGDBApeSq7wyMzOlB4Tl5SjptlqtGD58OObOnYvHHnsMn3/+eaHrtVgsaN++Pdq3bw/g7sGUJUuWYMiQIfj222/x8MMPo0+fPjh69GiB74+KivJY0u3j44M1a9Zg/Pjx+PHHH/HCCy8AAMLDwzFq1Ci89tprRT5k0ebWrVvo0qULtm/fjubNm0s/keXj44OjR49i1qxZhfZdOfTt2xeLFy/GlClT8Pnnn2PatGmwWCy499578eGHH7p9r7gSvvrqKzz77LNo3LgxUlNTERQUpHaRiIg8hkk3ERne1atXpTOU+e8ZtmnXrh0AYNGiRUhISEDNmjXh7e2N3Nxch/fY2l7Ley9wUbp164bPPvsMa9eulSXpdnSfrC0B/emnn4o9C2vTsWNHrFixQvpJp59++gmfffYZ4uPjkZGRgRo1akjrPXv2rMN12H4/2VEC7Ixz585h2rRpaNKkCTZu3IjAwEC7dTtKDl1hS/5PnjxZ7LK2Orzwwgv44IMPSvS9St3TbbvyIO9vxOe1atUqWCwWNG3aFDt37nS4jLNn4a1WK4YNG4ZvvvkGAwcOREpKiktngi0WCxISEvDf//4XEydOxJo1a9CnTx906dJFsasAnFWuXDlMnToVn3zyCf766y+sWbMGU6dORVJSEkqVKoVx48YVu44lS5Zg+/btePzxx/HVV1/ZvTdv3jzMmjXLpTLZYpv/5wgBFHrPfu/evdG7d29cuXIFGzZskB5K2L17d/z111/F9idP3NP95Zdf4qmnnkKDBg2wevVq6cF7RERmwaSbiAzPz88Pjz/+uMP31q1bh4MHD+LBBx9EeHi49HRif39/tG/fHr/99hv27t1b4Gz23r17AcDup4OKYrvE1NETuOUSExMD4O6l9M4m3Ta2n3Tq0qULwsLC8OabbyI1NRVPPfWU9EC2tWvXFngA3bVr17B161YEBASgbt26bpX78OHDEEIgNjbWLuEG7v4udEkFBQWhQYMG2L9/Pw4ePFjkJeatW7eGxWIpcPm7Owo7m1yUxMTEYpOkdu3aOfwZtatXr+L7779H1apVERcX5/Bn7lyRN+Hu378/Zs+e7dTZX0e0fFbTYrGgfv36qF+/Ph588EFUq1YNS5culZJuW51tV07k9ffffwNAgQcRAoX3XS8vL4frAu7evgI4PkBkO9hSmODgYHTv3h3du3dHbm4uvv76a+nXDIqyc+dOl/qpq1ck2BLu+vXrY82aNQgPD3f6s0REhqHi/eRERKor7EFqQggxd+5cAUB07dpV3Lx5U3p93759IjAwUAQHB4tLly5Jr2/dulVYrdYC6zl69KiIjIwUAMT69esdfn/ehyMVxfaQMEdu3rwpqlWrJvz9/UV6enqB92/duiV+++036f+///67uHHjRoHlRo4cafcAqNzcXFGzZk0BQKSmptotO3bsWIcPRYqKiir0gUv563Dq1CkBQLRt21bk5uZKr584cUL63vwPnioqDraY5n0o2bRp0wQAERsbK65fv263/I0bN8TFixel//fv318AEO+9957D9ty0aZO4du2aw+9Wk5wPUsvNzZXi2LdvX3H79u0il9+8ebOYNWuWw/507tw5UadOHQFAzJs3z7nK5OPMg9RsDyFLSkoqdn1Hjhxx+NC6P/74QwAQXbp0kV779NNPCx2jtjni5Zdftnt97dq1olSpUg7LU758eREdHe2wXLYHON533312Y+H3338XPj4+BcqRnp4u7ty5U2A9PXv2FADE2rVrHX6Pp3z55ZfCYrGI+vXrizNnzqhaFiIiNfFMNxFRIWwPKfrhhx/QtGlTxMXFISsrCz/++CNu3ryJb775RjozBdy9JPnQoUPSzyd5eXnh77//xooVK3Dr1i28+OKL6NChg9132O5tluP3av38/PDDDz+gR48e6Ny5M+677z40btwYFosFx44dw2+//YZy5crhr7/+AnD394XT0tLQqVMnVK9eHf7+/ti+fTtWr16NGjVqoE+fPgDunplLSUlBXFwcHnjgAfTt2xdRUVHYuHEj1q5di5o1a2LSpElul7tSpUp4+OGH8eOPP6JVq1bo2rUrzp49i2XLlqFr167S2cSSeOaZZ5Ceno758+ejdu3aePDBBxESEoLjx49j1apV+N///if99vZnn32G/fv34+WXX8bs2bPRrl07hIWF4cSJE9i6dSsOHjyI06dPFzgrbyQTJ07ErFmzEBQUhDp16uDtt98usExCQoJ0z/CpU6cwdOhQjBo1Cp06dUK9evXg4+ODY8eOYdmyZbh69Sri4+MLvSTekUmTJkl91XblwaRJk6QHsCUkJNj9XrorY2nnzp146KGH0KZNGzRo0AARERE4efIkFi9eDC8vL/z3v/+Vlr333nthsVjw6quvYs+ePQgNDUVYWBhGjRqFXr16ITo6Gu+99x4yMjLQqFEj7N+/H8uWLUOfPn3www8/FPju++67D/Pnz0dCQgKaN28Ob29vPPjgg2jSpAnatm2LDh06YM2aNWjXrh06deqEY8eOYcmSJejVq1eBnzd77rnncOrUKdxzzz2Ijo6GxWLB+vXrsWXLFrRt27bQ5014wpo1a/Dkk09CCIFOnTph+vTpBZZp1qyZZn7znohIUWpn/UREairqTLcQQty+fVtMmTJFNGzYUPj5+YmQkBDRrVs3h2eQFixYIPr27Stq1KghSpcuLUqVKiWqVKkiHnroIbFy5UqH62/evHmBM+ZFKeoMr80///wjRo8eLWrXri2VuX79+mLEiBFi9erV0nIrV64UQ4YMEXXr1hXBwcEiKChINGjQQLz66qvi/PnzBda7a9cu8cgjj4jy5cuLUqVKiaioKDF69GiHy7pypluIuz899sILL4jo6Gjh5+cnateuLd566y1x69YtWc50CyGE1WoVX331lWjbtq0oXbq0CAwMFLVr1xZPP/20OH78uN2y169fF++9955o2bKlKF26tAgICBDVq1cXCQkJ4ptvvin2zK8aijqbfejQIQFA9OrVy6l12WJY1F/eM67Z2dlizpw5YvDgwaJhw4YiLCxM+Pj4iPDwcNG1a1fxv//9z+EZ2aLY2riwv/xnkPv06SO8vLyc+vmsEydOiLFjx4q2bduKChUqCF9fX1GtWjXx0EMPOZwLUlJSROPGjYWfn1+Bn806fPiwePjhh0V4eLgIDAwUrVu3FvPmzRNpaWkOy3n69GnRr18/Ub58eeHl5VUglhcuXBBDhgwRZcuWFQEBAaJt27Zi1apVDn8ybN68eaJfv36iZs2aIjAwUISGhoqmTZuKyZMniytXrjgTZsU481NkQ4cOVbWMRESeYhFC5SeZEBGZVHZ2NsqUKYMXXngB7733ntrFIQPbtGkT2rVrh2HDhuHrr79WuziKqFChArp06YL58+erXRQiIiI7rv0YJRERyWbDhg0oVaoUnn/+ebWLQga3ZMkSAP8+bM9o9u3bh/Pnzzv1xHEiIiJP45luIiIiA7p58ybefvtt7N69G0uXLkWlSpWwb9++Qn8/nYiIiJTBpJuIiMiAMjMzUbZsWYSFhaFLly6YPHlykT+XRkRERMpg0k1ERERERESkEN7TTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERERERERECmHSTURERERERKQQJt1ERESkCykpKbBYLDh69KjaRSEiInIak24iIjI8W7Jm+/Px8UGVKlWQmJiIkydPql08Ve3duxfjx49nIktERKQQH7ULQERE5CkTJ05E9erVcfPmTWzatAkpKSlYv349MjIy4O/vr3bxVLF3715MmDABXbp0QXR0tNrFISIiMhwm3UREZBo9evRAq1atAAAjRoxA+fLlMXnyZCxduhT9+vVTuXRERERkRLy8nIiITKtjx44AgL///tvu9b/++guPPPIIypYtC39/f7Rq1QpLly61W+b27duYMGECateuDX9/f5QrVw733HMPUlNT7ZZbs2YNOnbsiNKlSyMsLAy9e/fGvn377JYZP348LBYLDh06hMTERISFhSE0NBTDhg3D9evX7ZadOXMm7rvvPlSoUAF+fn5o0KABpk+fXqBu0dHR6NmzJ9avX482bdrA398fNWrUwDfffCMtk5KSgr59+wIA7r33Xuny+7Vr1xYas127diExMRE1atSAv78/IiIiMHz4cFy8eNHtOt24cQPPPfccypcvj+DgYDz44IM4efIkLBYLxo8fX2hZbFasWCHFODg4GPHx8dizZ0+xnyMiIvIEJt1ERGRatvuYy5QpI722Z88etG3bFvv27cPYsWPx4YcfonTp0khISMCiRYuk5caPH48JEybg3nvvxaefforXXnsN1apVw/bt26Vlfv31V8TFxeHcuXMYP348nn/+efz+++/o0KGDw3uo+/XrhytXriA5ORn9+vVDSkoKJkyYYLfM9OnTERUVhVdffRUffvghIiMj8eyzz2LatGkF1nfo0CE88sgjuP/++/Hhhx+iTJkySExMlBLSTp064bnnngMAvPrqq5g9ezZmz56N+vXrFxqz1NRUHD58GMOGDcPUqVMxYMAAzJs3Dw888ACEEG7VKTExEVOnTsUDDzyAyZMnIyAgAPHx8YWWIa/Zs2cjPj4eQUFBmDx5Mt544w3s3bsX99xzD+9TJyIibRBEREQGN3PmTAFA/Prrr+L8+fPixIkT4ocffhDh4eHCz89PnDhxQlq2a9euonHjxuLmzZvSa1arVbRv317Url1beq1p06YiPj6+yO9t1qyZqFChgrh48aL02p9//im8vLzEkCFDpNeSkpIEADF8+HC7z/fp00eUK1fO7rXr168X+J64uDhRo0YNu9eioqIEALFu3TrptXPnzgk/Pz/xwgsvSK8tWLBAABBpaWlF1qWo7//uu+8KfJezddq2bZsAIMaMGWO3XGJiogAgkpKSpNds7XjkyBEhhBBXrlwRYWFh4oknnrD77JkzZ0RoaGiB14mIiNTAM91ERGQasbGxCA8PR2RkJB555BGULl0aS5cuRdWqVQEAly5dwpo1a6SzsxcuXMCFCxdw8eJFxMXF4eDBg9LTzsPCwrBnzx4cPHjQ4XedPn0aO3fuRGJiIsqWLSu93qRJE9x///34+eefC3zm6aeftvt/x44dcfHiRWRnZ0uvBQQESP/OysrChQsX0LlzZxw+fBhZWVl2n2/QoIF0CT0AhIeHo27dujh8+LCzISsg7/ffvHkTFy5cQNu2bQHA7iy/s3VauXIlAODZZ5+1W+4///lPsWVJTU1FZmYmBg4cKLXVhQsX4O3tjZiYGKSlpblWOSIiIgXwQWpERGQa06ZNQ506dZCVlYWvv/4a69atg5+fn/T+oUOHIITAG2+8gTfeeMPhOs6dO4cqVapg4sSJ6N27N+rUqYNGjRqhe/fuGDx4MJo0aQIAOHbsGACgbt26BdZRv359rFq1CteuXUPp0qWl16tVq2a3nO2y98uXLyMkJAQAsGHDBiQlJWHjxo0F7o3OyspCaGhooeuzrfPy5cuFB6kYly5dwoQJEzBv3jycO3euwPfnV1ydjh07Bi8vL1SvXt1uuVq1ahVbFtsBj/vuu8/h+7aYERERqYlJNxERmUabNm2kp5cnJCTgnnvuwaOPPor9+/cjKCgIVqsVAPDiiy8iLi7O4TpsyWCnTp3w999/Y8mSJfjll1/w1Vdf4f/+7//w+eefY8SIEW6Vz9vb2+Hr4v/fK/3333+ja9euqFevHqZMmYLIyEj4+vri559/xv/93/9J5Xd2fe7o168ffv/9d7z00kto1qyZFLfu3bsX+H6lymBj+77Zs2cjIiKiwPs+PtzNISIi9XFrREREpuTt7Y3k5GTpQWhjx45FjRo1AAClSpVCbGxssesoW7Yshg0bhmHDhuHq1avo1KkTxo8fjxEjRiAqKgoAsH///gKf++uvv1C+fHm7s9zO+Omnn5CTk4OlS5fanUEuyWXUFovF6WUvX76M1atXY8KECXjzzTel1wu7xN4ZUVFRsFqtOHLkCGrXri29fujQoWI/W7NmTQBAhQoVnGovIiIiNfCebiIiMq0uXbqgTZs2+Oijj3Dz5k1UqFABXbp0wRdffIHTp08XWP78+fPSv/P/RFZQUBBq1aqFnJwcAEClSpXQrFkzzJo1C5mZmdJyGRkZ+OWXX/DAAw+4XF7bWeO8Z4mzsrIwc+ZMl9dlY0v885bRle8HgI8++sjt77ddUfDZZ5/ZvT516lSnPhsSEoJ3330Xt2/fLvB+3vYiIiJSC890ExGRqb300kvo27cvUlJS8PTTT2PatGm455570LhxYzzxxBOoUaMGzp49i40bN+Kff/7Bn3/+CeDuQ8q6dOmCli1bomzZsti6dSt++OEHjBo1Slr3+++/jx49eqBdu3Z4/PHHcePGDUydOhWhoaFO/f50ft26dYOvry969eqFp556ClevXsWXX36JChUqODxI4IxmzZrB29sbkydPRlZWFvz8/KTfAc8vJCQEnTp1wnvvvYfbt2+jSpUq+OWXX3DkyBG3vhsAWrZsiYcffhgfffQRLl68iLZt2yI9PR0HDhwAUPSZ+JCQEEyfPh2DBw9GixYtMGDAAISHh+P48eNYvnw5OnTogE8//dTtshEREcmBSTcREZnaQw89hJo1a+KDDz7AE088gQYNGmDr1q2YMGECUlJScPHiRVSoUAHNmze3u6T6ueeew9KlS/HLL78gJycHUVFRePvtt/HSSy9Jy8TGxmLlypVISkrCm2++iVKlSqFz586YPHlygQeHOaNu3br44Ycf8Prrr+PFF19EREQEnnnmGYSHh2P48OFu1T8iIgKff/45kpOT8fjjjyM3NxdpaWkOk24AmDt3Lv7zn/9g2rRpEEKgW7duWLFiBSpXruzW9wPAN998g4iICHz33XdYtGgRYmNj8f3336Nu3brw9/cv8rOPPvooKleujEmTJuH9999HTk4OqlSpgo4dO2LYsGFul4mIiEguFiHHk0yIiIiIZLRz5040b94cc+bMwaBBg9QuDhERkdt4TzcRERGp6saNGwVe++ijj+Dl5YVOnTqpUCIiIiL58PJyIiIiUtV7772Hbdu24d5774WPjw9WrFiBFStW4Mknn0RkZKTaxSMiIioRXl5OREREqkpNTcWECROwd+9eXL16FdWqVcPgwYPx2muv8be2iYhI95h0ExERERERESmE93QTERERERERKYRJNxEREREREZFCTHOjlNVqxalTpxAcHAyLxaJ2cYiIiIiIiEgBQghcuXIFlStXhpeX+ueZTZN0nzp1ik9AJSIiIiIiMokTJ06gatWqahfDPEl3cHAwgLuBDwkJUbk0REREREREpITs7GxERkZKOaDaTJN02y4pDwkJYdJNRERERERkcFq5rVj9C9yJiIiIiIiIDIpJtwqixy5XuwguY5mVpaey5qXXctvovfyAMergCOulXUaoQ156r4/ey5+fkeoTPXa5oeoDGKt9bFgnfdD7eGLSrRI9dZrosctxdFK82sVwix7irIcyFubopHjdll+v5XbESHUB9D3nGJ3R+presT20z2hzmZ63+44YqS75GbFueh5PTLpVoOcOoyd6irOeyuqI3iZ2W3n1HnfAGHUwEyPssBqxz+m5Tdge2mSEOhTFSPUz4hgyWp2McDCeSTcVyQidXMuMsNHSa//Qa7mNzghjgvRFr3OBUceKXtvDESPVJS+j1ou0ySi5CJNuFRl1g6k1Wo+zESYSQPtxttFLOV1lhHoZ6QqE4uixvfRYZqMz8ljRc3/Tc9ldofd6GiWZK4oR2sgomHSrRA+D3AgdXQ9xNgK9xVlv5S2OkepjpLoURs911HPZi6K3y/71VFZ3GKGfGaEORbHVT699Ua/ldoVR+qBR6sGkW2VaH/RG6ehaZMQjrFrvz1ovX0npuX56LjuRGoy2/TAKM81leu+Dei+/0RltLDHpVpGWB7uROrrezmDolZb7c156Kaer9FwvM11Wnpee5iUjHiTMTy/bCj2UUQ56aQ9HjD5W8tNbO+mtvCWh53EEGGssMenWAK0OBiN1dK3RapsbmVlirtd6mm2+MVt9SR5mPECl1znNLPTWF804hkgbmHSrTIuD3qhnNLS24TZijLV+RNWIMc/L6PUjdRh1m+CI1ucwwFzjXG91NdNYyUsP4wYwd8Kth/bJy4hjiUm3RuhtMOiN0QYuUWH0svNjY8QNq7P00FZaL59StFhvLZbJU8xcd5KXGbc3en/onVEw6dYALU0ARh+QWqifGZIMLcQ5L62VxxPMWGe90mpbmfWskBbra9a20BMzbNuLo9W5DNB22TxBT33TqG3FpFtDtNLJ9DQwXWHUemmNVuOs1XIpQS9HtbVePk/Qer/UevmUpLX+ada20MN8puWyeYoe+qceyqgkPVxdZWPEtmLSrRFa6Fx6GYglpWY9zXQkXCv9SSvl8DS99DO9lFNJWtwR0lp5PE1LiZ4WyqA2PcwTeiijJ2ixv5pp36s4tu2NFtsJ0Gb/kYsqSff48eNhsVjs/urVq1fkZxYsWIB69erB398fjRs3xs8//+yh0nqW2p3N6JOSmjtSaretJ2mtH2mtPGSu8eAsrcSElzLfpaXE2+xtAWjz4BSgjf6hFeyn+qD1dtJ6+dyl2pnuhg0b4vTp09Lf+vXrC132999/x8CBA/H4449jx44dSEhIQEJCAjIyMjxYYuWp2cnMtNFQM85GnUgKo3a/Uvv71abVnVQbs42HomgpwQPYNjZqx0Er/UFLtBQTHqByTIttRAVpLTZaK4/cVEu6fXx8EBERIf2VL1++0GU//vhjdO/eHS+99BLq16+Pt956Cy1atMCnn37qwRJ7jlqdzmwbDU/G2YyXNqmdRHBniPRG7TGj9ndrmZpx4Rz2L8ZC+7TYRlosk9q0FhMz7LOplnQfPHgQlStXRo0aNTBo0CAcP3680GU3btyI2NhYu9fi4uKwceNGpYvpcWp0NjPuZHkyzmaMr43ak6fa368FWjzbrbXyaIkW+qwWyqAlasXDjAdrnaGVOc0MSUJJaKmNqHBaiJFZxpIqSXdMTAxSUlKwcuVKTJ8+HUeOHEHHjh1x5coVh8ufOXMGFStWtHutYsWKOHPmTKHfkZOTg+zsbLs/KpzRO7ojnthwm2UiKY6nryrgzqr2sX2KxudOaIunEz22RfG0ECPOY45p4aodG7ZR4bQQG9v+mhbKojRVku4ePXqgb9++aNKkCeLi4vDzzz8jMzMT8+fPl+07kpOTERoaKv1FRkbKtm6leXLjroUJUW1Kx8AME0lR1Nj4mj3mjmhlrGulHFrG505olyf6Lw/WFk/t2PDAbvHUTry5rXGemm1kpnGkiZ8MCwsLQ506dXDo0CGH70dERODs2bN2r509exYRERGFrnPcuHHIysqS/k6cOCFrmT3BU4PATB0+PyXrzgn/X57a+DLmjmlljDOZ0C6OneJ5ot9yjLiGV4RomxqJd96fw+I4Kp6at8+YjSaS7qtXr+Lvv/9GpUqVHL7frl07rF692u611NRUtGvXrtB1+vn5ISQkxO5PTzy5cSflYsEJ/19Kx4Ib2eJp4QFdbB/nqHHfKtvGOUq1C8eIa3hFiD54MvHOO4bYRq5RY//AbG2kStL94osvIj09HUePHsXvv/+OPn36wNvbGwMHDgQADBkyBOPGjZOWHz16NFauXIkPP/wQf/31F8aPH4+tW7di1KhRahTfo7hxV54SGwSzXTLjLKUTCca8cFr4SUK2j+s8uaNKxcu7vZB7m5F3/eQ8/hKJ9nki8eYYcp+nr0gw6zZHlaT7n3/+wcCBA1G3bl3069cP5cqVw6ZNmxAeHg4AOH78OE6fPi0t3759e8ydOxczZsxA06ZN8cMPP2Dx4sVo1KiRGsX3GKUGASemguSMhVknE1co1aepeJ6OFecb93ni6hC2j+vynkWTI/k204OE5KbGWVRyjydu5+MYcl/+OY3PO5KfRQgh1C6EJ2RnZyM0NBRZWVm6u9RczsmEE1Ph8k4w7saH8XWO3HHi2QfnydHPXf0utk3JKDFebNg2JVeS9uHcJQ+l5xrOZfJQKo4cR/JTsq2UWK8jWsv9mHTrhBydlBuN4uU/sudsrLgT6zq5NpLc2LrHE/MB20Y+7s5Nha2L7SIvV8cTt8fyUzpJUGLdZsSD7vohZ+6Rl6faS2u5H5NuHSnp0XR3P2tGzm5k5dwRNpuS7shwR6jklJwXOOcoQ45xwzZRRv62Ke7yTLaDMpS4OlCu9dFdcrURtzPKkyP3yMuTbaW13I9Jtw65utPESalkHMWPG2L5uHLgggc55MfL/fTJnfhyW6A8tXcy6a6S9nWOFeW5OlYKO6jFNlKeo+1NcfHXwj6A1nI/Jt065ErCx0lJHtyR8pyiDnIw5sqQe+PI9vKMonaEbPI/aIptQmbhbp/nWFFHYXEv6ooRtpHnuHLljhYSbkB7uR+Tbp1y5amCWuj4RK7gQQ7P4sMa9amw7UBhlzazTchseK+9vvBstrY5e2BEK+2ltdyPSbfOcUIio2Lf9qySXK6cH9vMszhWiArn6k8fcRypj7fw6ZNWznDbaC33Y9JNREQAXE+itbaBJSJyBZM7IuPSWu7HpJuIiCTO3FPPM6tERESkZVrL/Zh0ExFRsbR6zxYRERFRflrL/bzULgAREWlf3iSbCTcRERGR83zULgAREekDk20iIiIi1/FMNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKUSVpDs5ORmtW7dGcHAwKlSogISEBOzfv7/Iz6SkpMBisdj9+fv7e6jERERERERERK5TJelOT0/HyJEjsWnTJqSmpuL27dvo1q0brl27VuTnQkJCcPr0aenv2LFjHioxERERERERket81PjSlStX2v0/JSUFFSpUwLZt29CpU6dCP2exWBAREaF08YiIiIiIiIhkoYl7urOysgAAZcuWLXK5q1evIioqCpGRkejduzf27NlT6LI5OTnIzs62+yMiIiIiIiLyJNWTbqvVijFjxqBDhw5o1KhRocvVrVsXX3/9NZYsWYI5c+bAarWiffv2+Oeffxwun5ycjNDQUOkvMjJSqSoQEREREREROWQRQgg1C/DMM89gxYoVWL9+PapWrer0527fvo369etj4MCBeOuttwq8n5OTg5ycHOn/2dnZiIyMRFZWFkJCQuyWjR67XPr30UnxbtSCiIiIiIiItCA7OxuhoaEOcz81qHJPt82oUaOwbNkyrFu3zqWEGwBKlSqF5s2b49ChQw7f9/Pzg5+fX7HryZtw5/2/LfmOHruciTgRkYHxwCsREREpSZWkWwiB//znP1i0aBHWrl2L6tWru7yO3Nxc7N69Gw888IDb5cifYOd9Pe9OGHfIiIj0Lf8B1qOT4h3O7YVtF4iIiIjcpUrSPXLkSMydOxdLlixBcHAwzpw5AwAIDQ1FQEAAAGDIkCGoUqUKkpOTAQATJ05E27ZtUatWLWRmZuL999/HsWPHMGLECJe/v7gkurCdrfw7bUREpH15E2nbvwtLrvMn46QeHgDRFl75R0TkPlXu6bZYLA5fnzlzJhITEwEAXbp0QXR0NFJSUgAA//3vf7Fw4UKcOXMGZcqUQcuWLfH222+jefPmTn2n7br+yDHz4eUX6PaGgxsdeXBniozKUcLGfq4ed+Yazk/q4hjSlsIOQrFN1McrMfWF7eVZWrunW/UHqXmKXIHnzljJFHcGiXGVHyd5z3E0PxTV59keyirJfM1EwzMcXYVg+3/+ZfK/Tspw5qAH20Rd+ePPfSvt48FEz2PSrRI5A8/E2z1FxY2TkfyYNHiWq/MC5xFlKRFftpm8XJ33uZ1QljuJtKNnJZCyipuH8l+RyXnLs5x9VgjbRXlMulUid+A5WFzDhER5PDuhjpLElP1cGUrGlbcYyUOONuL4kQ/bQ/u4rdE+R7+AZOPsCafCliXXMelWiRKB5yRWPDku72R8i+fqxphnJ0pGzjNuTOLk44mDSpyXSk7OPs/2KDk5Y8j2kJec22q2jbLkvp2J7VRyTLpVolTgOYk5JtfOL+NbvJLGiDF2HZMG7fHkwQseKHEfL/vXFraHdrFt9EPuuLKd5KG1pNtL7QLonaNLSMxOzrNNjG/R5JiYj06K588kuUDuhIt9vOTUiB3by3VK7Uhyx9Q9SrcHx0jJKdk2bB95cb+AisOkWwYcHAXZEjm51gUwvvkpeRScHFMqPtwRcp8aZwQ4J7lPyXZiezhP6XHDAyElo2RfdvbXNcg5Su8XkHEw6ZYJB8ddSl12yZ1ce0rsMDHGzvHETirbwDVqzL+c812jdJ/m/OU6pfswr6ByjycOJOY9McI2ck/eg+Q8mKhNjZJWqV0EO0y6ZcbBoRzu5NpT8uAGFeSJ+3i5I6Q/bKeieWrHNO/62SaFs7WHJ+d6tofrPNU+HDPu8dQvwXCfzFiYdMvI7IPDU0mJ2TcOnoiz2WOsNrPPJc5S+4Fm3GF1jpy3GznzXQDbxBHeiqF9asSJbeS8vAetPDWvcb/XPVqMGZNuBWixoZXm6TqbMcaAZ+rNhK8gNZI7bmj1gQ8iLJxaB0WYRBSO7aFdaj6xmtt956kVKz7zxXUZE+LULoIdJt0yM/PExTMZyvLkBplJxL8YB23SWrtwzNhTOxZm3hY7opX2ULscWqWVn4hi+xROzdjw1jPXaDVGTLoVotUGV4Kal0OZhVobZDP146Ko1d+YyBVNi/MA2+tfarcPx489LbQHFaSVhFvt79cDtWPExNt5areVI0y6FaDFhlaampfbmIUalzcD5opxXmo8cIico9U+yb5yl9bGjVb7i6dorf5aK48WcLxom5ZiYvZ9s+JobfuTF5NuBZlhQKh9uY0ZqDmBmCXGWmeGucRZWjkrVBS2l3ZouZ94klbioJVyaIXW5gq2T+G0FBstlUVLtJxwA0y6FaPlRpeb2nXV2kZLTlqomxkv0cz7dFK1aaEMWqPlmGi5bJ6g1Z0es81hNlqstxm3KY5o+QAi20cf2E7/0kMsmHQrTA+dwF1a2LlS+/s9QSt1NHJfzsss9dQjtg25QytzqFrMXn8t02Lb8PJle1rY13VEi2VSi5YPYOXFpFtBWm/8ktDaZKy18hiNkfuyI1qrL88M6WejamPG9jJjnbVMy+1h9jlN63Vn4k16oad9AybdHmDUSUsrHVwr5ZCbFo+uGrUv22i9flovn9K0Nh4Ko5dyKkGrdTdrkqfV9iDtt43Wy+cJWp8zzDqv5aeXvsqkW2F66Qiu4AA3JyP2ZUe0Wk+tlssTtHgAiuxxu6AtehkzZuw3eqqzmZM6PZ1BJX1g0u0hRpu0tDYJGW3DYKS6kLzYN/TBaHOSM7S2XXDEDG2ilzrqob8oRW9110ufkoveEm6ztY+NXg4u2jDp9gA9dYjimHVgq0GL/cbIiYQeJm8z3mdnprrqlV7aSOvjWw56SxYA/fQfOeixrnrqS3LQ2xjSSzmJSbdH6XGydUSrA9woCaER6kDKMWPirdU5xxlGbyc97qAavU300haAvsoqF73W2ejjJi89tpGZ2gfQZ32ZdHuIHgcwqUfr/UWPk11R9FYfrfcPusssB0j02B+N2CZ6rpOey24Gehzj7tDDFW+O6LHMctBbvZl0e5ieNyx6mIz0fhZDD2XXeh9wlx7rpYf+UhJ6mHOKo/fyF0Wv/c/IbaLHuumxzO7Q63gh/WAf0zZVk+5p06YhOjoa/v7+iImJwZYtW4pcfsGCBahXrx78/f3RuHFj/Pzzzx4qqTzMsmGhktFLP+Hkri699BO6y2jjRW+XlTtipDbRe130fsDcWXoeL0ZvI73XzSxXVgH6PSCvWtL9/fff4/nnn0dSUhK2b9+Opk2bIi4uDufOnXO4/O+//46BAwfi8ccfx44dO5CQkICEhARkZGR4uOSkdXrdMOipzHqc7Aqj18mb9MOoO0N6Hjd6LnthjFgno+B2Rh/03kZG3dYYhWpJ95QpU/DEE09g2LBhaNCgAT7//HMEBgbi66+/drj8xx9/jO7du+Oll15C/fr18dZbb6FFixb49NNPPVzyktPjYOAGwzMYY3KVHucTZxhtzjFSXYxCrwdo8zNCHQDjtEd+RquT0eoDGKtORt/W6LmtVEm6b926hW3btiE2Nvbfgnh5ITY2Fhs3bnT4mY0bN9otDwBxcXGFLp+Tk4Ps7Gy7Py0w+mDQEj0NTD2V1cYIO0h6Lz/nE/3Re58DjHdAxAjYHtpmlPYxSj0cMVrdjLCtKYxe28oihBCe/tJTp06hSpUq+P3339GuXTvp9Zdffhnp6enYvHlzgc/4+vpi1qxZGDhwoPTaZ599hgkTJuDs2bMFlh8/fjwmTJhQ4PWsrCyEhITIVBMiIiIiIiLSkuzsbISGhmom9zPs08vHjRuHrKws6e/EiRNqF4mIiIiIiIhMxkeNLy1fvjy8vb0LnKE+e/YsIiIiHH4mIiLCpeX9/Pzg5+cnT4GJiIiIiIiI3KDKmW5fX1+0bNkSq1evll6zWq1YvXq13eXmebVr185ueQBITU0tdHkiIiIiIiIitalyphsAnn/+eQwdOhStWrVCmzZt8NFHH+HatWsYNmwYAGDIkCGoUqUKkpOTAQCjR49G586d8eGHHyI+Ph7z5s3D1q1bMWPGDKe+z3brulYeqEZERERERETys+V8Kjy+zCHVku7+/fvj/PnzePPNN3HmzBk0a9YMK1euRMWKFQEAx48fh5fXvyfi27dvj7lz5+L111/Hq6++itq1a2Px4sVo1KiRU9938eJFAEBkZKT8lSEiIiIiIiJNuXjxIkJDQ9UuhjpPL1dDZmYmypQpg+PHj5c48K1bt8Yff/xR4jIZcT3Z2dmIjIzEiRMnSvykQC3VS0tlMWqMtbYercVZS7GRaz1ai7FR1yNXnLVUJ62th31Z+XUwxp5Zj1HjrKWyGDXGWltPVlYWqlWrhsuXLyMsLKzEZSop1c50e5rtrHloaGiJO7i3t7csj5436noAICQkxFBx1lJZbIwWYy2uB9BOnLUWGyPG2MjrAUoeZ63VSWvrAdiXlS4LwBh7Yj2A8eKspbLYGC3GWlwPALsrp9WkjVLozMiRI7keD9BSvbRUFjlprV5aW49cjNgHjRhjI69HDlqrk9bWIxet1UtL85dctBQbLa5HLlqql5bKIiet1Utr69ES01xerrUfSDcqxll5jLFnMM7KY4w9g3FWHmOsPMbYMxhn5THGnqG1OJvmTLefnx+SkpL4290KY5yVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznQTEREREREReZppznQTEREREREReRqTbiIiIiIiIiKFMOkmIiIiIiIiUgiTbiIiIiIiIiKFmCbpnjZtGqKjo+Hv74+YmBhs2bJF7SJpwrp169CrVy9UrlwZFosFixcvtntfCIE333wTlSpVQkBAAGJjY3Hw4EG7ZS5duoRBgwYhJCQEYWFhePzxx3H16lW7ZXbt2oWOHTvC398fkZGReO+99wqUZcGCBahXrx78/f3RuHFj/Pzzz7LXVw3Jyclo3bo1goODUaFCBSQkJGD//v12y9y8eRMjR45EuXLlEBQUhIcffhhnz561W+b48eOIj49HYGAgKlSogJdeegl37tyxW2bt2rVo0aIF/Pz8UKtWLaSkpBQoj1HHwvTp09GkSROEhIQgJCQE7dq1w4oVK6T3GWP5TZo0CRaLBWPGjJFeY5xLbvz48bBYLHZ/9erVk95njOVx8uRJPPbYYyhXrhwCAgLQuHFjbN26VXqf27+Si46OLtCXLRaL9Bu87Msll5ubizfeeAPVq1dHQEAAatasibfeegt5n5PMvlxyV65cwZgxYxAVFYWAgAC0b98ef/zxh/Q+Y+w6PeUgzpSlWMIE5s2bJ3x9fcXXX38t9uzZI5544gkRFhYmzp49q3bRVPfzzz+L1157TSxcuFAAEIsWLbJ7f9KkSSI0NFQsXrxY/Pnnn+LBBx8U1atXFzdu3JCW6d69u2jatKnYtGmT+O2330StWrXEwIEDpfezsrJExYoVxaBBg0RGRob47rvvREBAgPjiiy+kZTZs2CC8vb3Fe++9J/bu3Stef/11UapUKbF7927FY6C0uLg4MXPmTJGRkSF27twpHnjgAVGtWjVx9epVaZmnn35aREZGitWrV4utW7eKtm3bivbt20vv37lzRzRq1EjExsaKHTt2iJ9//lmUL19ejBs3Tlrm8OHDIjAwUDz//PNi7969YurUqcLb21usXLlSWsbIY2Hp0qVi+fLl4sCBA2L//v3i1VdfFaVKlRIZGRlCCMZYblu2bBHR0dGiSZMmYvTo0dLrjHPJJSUliYYNG4rTp09Lf+fPn5feZ4xL7tKlSyIqKkokJiaKzZs3i8OHD4tVq1aJQ4cOSctw+1dy586ds+vHqampAoBIS0sTQrAvy+Gdd94R5cqVE8uWLRNHjhwRCxYsEEFBQeLjjz+WlmFfLrl+/fqJBg0aiPT0dHHw4EGRlJQkQkJCxD///COEYIzdoaccxJmyFMcUSXebNm3EyJEjpf/n5uaKypUri+TkZBVLpT35O7zVahURERHi/fffl17LzMwUfn5+4rvvvhNCCLF3714BQPzxxx/SMitWrBAWi0WcPHlSCCHEZ599JsqUKSNycnKkZV555RVRt25d6f/9+vUT8fHxduWJiYkRTz31lKx11IJz584JACI9PV0IcTempUqVEgsWLJCW2bdvnwAgNm7cKIS4OzF5eXmJM2fOSMtMnz5dhISESHF9+eWXRcOGDe2+q3///iIuLk76v9nGQpkyZcRXX33FGMvsypUronbt2iI1NVV07txZSroZZ3kkJSWJpk2bOnyPMZbHK6+8Iu65555C3+f2TxmjR48WNWvWFFarlX1ZJvHx8WL48OF2rz300ENi0KBBQgj2ZTlcv35deHt7i2XLltm93qJFC/Haa68xxjLQcg7iTFmcYfjLy2/duoVt27YhNjZWes3LywuxsbHYuHGjiiXTviNHjuDMmTN2sQsNDUVMTIwUu40bNyIsLAytWrWSlomNjYWXlxc2b94sLdOpUyf4+vpKy8TFxWH//v24fPmytEze77EtY8Q2ysrKAgCULVsWALBt2zbcvn3brv716tVDtWrV7OLcuHFjVKxYUVomLi4O2dnZ2LNnj7RMUTE001jIzc3FvHnzcO3aNbRr144xltnIkSMRHx9fIBaMs3wOHjyIypUro0aNGhg0aBCOHz8OgDGWy9KlS9GqVSv07dsXFSpUQPPmzfHll19K73P7J79bt25hzpw5GD58OCwWC/uyTNq3b4/Vq1fjwIEDAIA///wT69evR48ePQCwL8vhzp07yM3Nhb+/v93rAQEBWL9+PWOsAC3F1JmyOMPwSfeFCxeQm5trN2EDQMWKFXHmzBmVSqUPtvgUFbszZ86gQoUKdu/7+PigbNmydss4Wkfe7yhsGaO1kdVqxZgxY9ChQwc0atQIwN26+/r6IiwszG7Z/HF2N4bZ2dm4ceOGKcbC7t27ERQUBD8/Pzz99NNYtGgRGjRowBjLaN68edi+fTuSk5MLvMc4yyMmJgYpKSlYuXIlpk+fjiNHjqBjx464cuUKYyyTw4cPY/r06ahduzZWrVqFZ555Bs899xxmzZoFgNs/JSxevBiZmZlITEwEwPlCLmPHjsWAAQNQr149lCpVCs2bN8eYMWMwaNAgAOzLcggODka7du3w1ltv4dSpU8jNzcWcOXOwceNGnD59mjFWgJZi6kxZnOHj9JJEVGIjR45ERkYG1q9fr3ZRDKlu3brYuXMnsrKy8MMPP2Do0KFIT09Xu1iGceLECYwePRqpqakFjviTfGxnqACgSZMmiImJQVRUFObPn4+AgAAVS2YcVqsVrVq1wrvvvgsAaN68OTIyMvD5559j6NChKpfOmP73v/+hR48eqFy5stpFMZT58+fj22+/xdy5c9GwYUPs3LkTY8aMQeXKldmXZTR79mwMHz4cVapUgbe3N1q0aIGBAwdi27ZtaheNdMLwZ7rLly8Pb2/vAk/DPHv2LCIiIlQqlT7Y4lNU7CIiInDu3Dm79+/cuYNLly7ZLeNoHXm/o7BljNRGo0aNwrJly5CWloaqVatKr0dERODWrVvIzMy0Wz5/nN2NYUhICAICAkwxFnx9fVGrVi20bNkSycnJaNq0KT7++GPGWCbbtm3DuXPn0KJFC/j4+MDHxwfp6en45JNP4OPjg4oVKzLOCggLC0OdOnVw6NAh9mWZVKpUCQ0aNLB7rX79+tJl/Nz+yevYsWP49ddfMWLECOk19mV5vPTSS9LZ7saNG2Pw4MH473//K12NxL4sj5o1ayI9PR1Xr17FiRMnsGXLFty+fRs1atRgjBWgpZg6UxZnGD7p9vX1RcuWLbF69WrpNavVitWrV6Ndu3Yqlkz7qlevjoiICLvYZWdnY/PmzVLs2rVrh8zMTLsjfWvWrIHVakVMTIy0zLp163D79m1pmdTUVNStWxdlypSRlsn7PbZljNBGQgiMGjUKixYtwpo1a1C9enW791u2bIlSpUrZ1X///v04fvy4XZx3795tN7mkpqYiJCRE2nEsLoZmHAtWqxU5OTmMsUy6du2K3bt3Y+fOndJfq1atMGjQIOnfjLP8rl69ir///huVKlViX5ZJhw4dCvx044EDBxAVFQWA2z+5zZw5ExUqVEB8fLz0GvuyPK5fvw4vL/vdeW9vb1itVgDsy3IrXbo0KlWqhMuXL2PVqlXo3bs3Y6wALcXUmbI4xelHrunYvHnzhJ+fn0hJSRF79+4VTz75pAgLC7N7GqZZXblyRezYsUPs2LFDABBTpkwRO3bsEMeOHRNC3H1EflhYmFiyZInYtWuX6N27t8PH9Tdv3lxs3rxZrF+/XtSuXdvucf2ZmZmiYsWKYvDgwSIjI0PMmzdPBAYGFnhcv4+Pj/jggw/Evn37RFJSkm5/AiG/Z555RoSGhoq1a9fa/XTK9evXpWWefvppUa1aNbFmzRqxdetW0a5dO9GuXTvpfdvPpnTr1k3s3LlTrFy5UoSHhzv82ZSXXnpJ7Nu3T0ybNs3hz6YYdSyMHTtWpKeniyNHjohdu3aJsWPHCovFIn755RchBGOslLxPLxeCcZbDCy+8INauXSuOHDkiNmzYIGJjY0X58uXFuXPnhBCMsRy2bNkifHx8xDvvvCMOHjwovv32WxEYGCjmzJkjLcPtnzxyc3NFtWrVxCuvvFLgPfblkhs6dKioUqWK9JNhCxcuFOXLlxcvv/yytAz7csmtXLlSrFixQhw+fFj88ssvomnTpiImJkbcunVLCMEYu0NPOYgzZSmOKZJuIYSYOnWqqFatmvD19RVt2rQRmzZtUrtImpCWliYAFPgbOnSoEOLuY/LfeOMNUbFiReHn5ye6du0q9u/fb7eOixcvioEDB4qgoCAREhIihg0bJq5cuWK3zJ9//inuuece4efnJ6pUqSImTZpUoCzz588XderUEb6+vqJhw4Zi+fLlitXbkxzFF4CYOXOmtMyNGzfEs88+K8qUKSMCAwNFnz59xOnTp+3Wc/ToUdGjRw8REBAgypcvL1544QVx+/Ztu2XS0tJEs2bNhK+vr6hRo4bdd9gYdSwMHz5cREVFCV9fXxEeHi66du0qJdxCMMZKyZ90M84l179/f1GpUiXh6+srqlSpIvr372/3+9GMsTx++ukn0ahRI+Hn5yfq1asnZsyYYfc+t3/yWLVqlQBQIHZCsC/LITs7W4wePVpUq1ZN+Pv7ixo1aojXXnvN7ieS2JdL7vvvvxc1atQQvr6+IiIiQowcOVJkZmZK7zPGrtNTDuJMWYpjEUII58+LExEREREREZGzDH9PNxEREREREZFamHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTERERERERKYRJNxEREREREZFCmHQTEZEmHD16FBaLBSkpKdJr48ePh8ViUa9QLtJbeck1FosF48ePV7sYRESkM0y6iYjII1JSUmCxWBz+jR071un1vPvuu1i8eLFyBSWPYnsSEZHR+ahdACIiMpeJEyeievXqdq81atQIUVFRuHHjBkqVKlXk599991088sgjSEhIULCU5ClsTyIiMjom3URE5FE9evRAq1atHL7n7+/v4dLcdfPmTfj6+sLLS70LwK5fv47AwEDVvp+IiIiUwcvLiYhIExzd052fxWLBtWvXMGvWLOnS9MTEROn9kydPYvjw4ahYsSL8/PzQsGFDfP3113brWLt2LSwWC+bNm4fXX38dVapUQWBgILKzswEAmzdvRvfu3REaGorAwEB07twZGzZsKFCW9evXo3Xr1vD390fNmjXxxRdfOF3XLl26oFGjRti2bRs6deqEwMBAvPrqqwCAnJwcJCUloVatWvDz80NkZCRefvll5OTk2K0jNTUV99xzD8LCwhAUFIS6detK67A5d+4cHn/8cVSsWBH+/v5o2rQpZs2aZbeMLe4ffPABZsyYgZo1a8LPzw+tW7fGH3/8Ybfsrl27kJiYiBo1asDf3x8REREYPnw4Ll68aLec7d72Q4cOITExEWFhYQgNDcWwYcNw/fp1abni2jO/W7du4c0330TLli0RGhqK0qVLo2PHjkhLS3O7TgCwYMECNGjQAP7+/mjUqBEWLVqExMREREdHF1oWG2f6HBERmRvPdBMRkUdlZWXhwoULdq+VL1/eqc/Onj0bI0aMQJs2bfDkk08CAGrWrAkAOHv2LNq2bQuLxYJRo0YhPDwcK1aswOOPP47s7GyMGTPGbl1vvfUWfH198eKLLyInJwe+vr5Ys2YNevTogZYtWyIpKQleXl6YOXMm7rvvPvz2229o06YNAGD37t3o1q0bwsPDMX78eNy5cwdJSUmoWLGi03G4ePEievTogQEDBuCxxx5DxYoVYbVa8eCDD2L9+vV48sknUb9+fezevRv/93//hwMHDkj3Pu/Zswc9e/ZEkyZNMHHiRPj5+eHQoUN2Bwdu3LiBLl264NChQxg1ahSqV6+OBQsWIDExEZmZmRg9erRdeebOnYsrV67gqaeegsViwXvvvYeHHnoIhw8fli75T01NxeHDhzFs2DBERERgz549mDFjBvbs2YNNmzYVeIhcv379UL16dSQnJ2P79u346quvUKFCBUyePLnY9nQkOzsbX331FQYOHIgnnngCV65cwf/+9z/ExcVhy5YtaNasmct1Wr58Ofr374/GjRsjOTkZly9fxuOPP44qVaoU24au9jkiIjIpQURE5AEzZ84UABz+CSHEkSNHBAAxc+ZM6TNJSUki/6aqdOnSYujQoQXW//jjj4tKlSqJCxcu2L0+YMAAERoaKq5fvy6EECItLU0AEDVq1JBeE0IIq9UqateuLeLi4oTVapVev379uqhevbq4//77pdcSEhKEv7+/OHbsmPTa3r17hbe3d4HyOtK5c2cBQHz++ed2r8+ePVt4eXmJ3377ze71zz//XAAQGzZsEEII8X//938CgDh//nyh3/HRRx8JAGLOnDnSa7du3RLt2rUTQUFBIjs7Wwjxb9zLlSsnLl26JC27ZMkSAUD89NNPdrHI77vvvhMAxLp166TXbO02fPhwu2X79OkjypUrZ/daYe3pyJ07d0ROTo7da5cvXxYVK1a0+y5X6tS4cWNRtWpVceXKFem1tWvXCgAiKirK7rsAiKSkJOn/zvY5IiIyN15eTkREHjVt2jSkpqba/ZWUEAI//vgjevXqBSEELly4IP3FxcUhKysL27dvt/vM0KFDERAQIP1/586dOHjwIB599FFcvHhR+vy1a9fQtWtXrFu3DlarFbm5uVi1ahUSEhJQrVo16fP169dHXFyc02X28/PDsGHD7F5bsGAB6tevj3r16tnV4b777gMA6TLqsLAwAMCSJUtgtVodrv/nn39GREQEBg4cKL1WqlQpPPfcc7h69SrS09Ptlu/fvz/KlCkj/b9jx44AgMOHD0uv5Y3XzZs3ceHCBbRt2xYACsQXAJ5++mm7/3fs2BEXL16ULuV3lbe3N3x9fQEAVqsVly5dwp07d9CqVSuH319cnU6dOoXdu3djyJAhCAoKkpbr3LkzGjduXGRZ3OlzRERkTry8nIiIPKpNmzaFPkjNXefPn0dmZiZmzJiBGTNmOFzm3Llzdv/P/wT1gwcPAribjBcmKysLOTk5uHHjBmrXrl3g/bp16+Lnn392qsxVqlSREsi8Zdi3bx/Cw8OLrEP//v3x1VdfYcSIERg7diy6du2Khx56CI888oj0MLhjx46hdu3aBR4OV79+fen9vPIeQAAgJauXL1+WXrt06RImTJiAefPmFYhnVlZWgfIWtc6QkBCHdSzOrFmz8OGHH+Kvv/7C7du3pdfzt2dx3w/8G4NatWoV+GytWrWKTJrd6XNERGROTLqJiEj3bGd7H3vssUKT5iZNmtj9P+9Z27zreP/99wvcG2wTFBRU4IFm7sr//bYyNG7cGFOmTHH4mcjISOmz69atQ1paGpYvX46VK1fi+++/x3333YdffvkF3t7eLpensM8IIaR/9+vXD7///jteeuklNGvWDEFBQbBarejevbvDM+7OrNMVc+bMQWJiIhISEvDSSy+hQoUK8Pb2RnJyMv7++2/Fvz8vd/ocERGZE5NuIiLSlfwP6wKA8PBwBAcHIzc3F7GxsW6t1/YAr5CQkCLXER4ejoCAAOnMeF779+9367vzluHPP/9E165dHdYzLy8vL3Tt2hVdu3bFlClT8O677+K1115DWloaYmNjERUVhV27dsFqtdqd7f7rr78AAFFRUS6V7fLly1i9ejUmTJiAN998U3rdURxcUVw98/rhhx9Qo0YNLFy40O5zSUlJbn23LQaHDh0q8J6j1/KSo88REZE58J5uIiLSldKlSyMzM9PuNW9vbzz88MP48ccfkZGRUeAz58+fL3a9LVu2RM2aNfHBBx/g6tWrha7D29sbcXFxWLx4MY4fPy69v2/fPqxatcrF2tjr168fTp48iS+//LLAezdu3MC1a9cA3L3MOz/b2XnbmfgHHngAZ86cwffffy8tc+fOHUydOhVBQUHo3LmzS2WznTXOf5b4o48+cmk9+TlqT1fKsHnzZmzcuNGt765cuTIaNWqEb775xq7N09PTsXv37mLLUtI+R0RE5sAz3UREpCstW7bEr7/+iilTpqBy5cqoXr06YmJiMGnSJKSlpSEmJgZPPPEEGjRogEuXLmH79u349ddfHSaqeXl5eeGrr75Cjx490LBhQwwbNgxVqlTByZMnkZaWhpCQEPz0008AgAkTJmDlypXo2LEjnn32WSmZbdiwIXbt2uV23QYPHoz58+fj6aefRlpaGjp06IDc3Fz89ddfmD9/PlatWoVWrVph4sSJWLduHeLj4xEVFYVz587hs88+Q9WqVXHPPfcAAJ588kl88cUXSExMxLZt2xAdHY0ffvgBGzZswEcffYTg4GCXyhYSEoJOnTrhvffew+3bt1GlShX88ssvOHLkiNv1BQpvT0d69uyJhQsXok+fPoiPj8eRI0fw+eefo0GDBg4PlDjj3XffRe/evdGhQwcMGzYMly9fxqeffopGjRoVu86S9jkiIjIHJt1ERKQrU6ZMwZNPPonXX38dN27cwNChQxETE4OKFStiy5YtmDhxIhYuXIjPPvsM5cqVQ8OGDaXfhS5Oly5dsHHjRrz11lv49NNPcfXqVURERCAmJgZPPfWUtFyTJk2watUqPP/883jzzTdRtWpVTJgwAadPny5R0u3l5YXFixfj//7v//DNN99g0aJFCAwMRI0aNTB69GjUqVMHAPDggw/i6NGj+Prrr3HhwgWUL18enTt3xoQJExAaGgrg7n3fa9euxdixYzFr1ixkZ2ejbt26mDlzJhITE90q39y5c/Gf//wH06ZNgxAC3bp1w4oVK1C5cmW361xYezqSmJiIM2fO4IsvvsCqVavQoEEDzJkzBwsWLMDatWvd+v5evXrhu+++w/jx4zF27FjUrl0bKSkpmDVrFvbs2VPkZ+Xoc0REZHwWIcfTRIiIiIgMpFmzZggPD5flJ+2IiMjceE83ERERmdbt27dx584du9fWrl2LP//8E126dFGnUEREZCg8001ERESmdfToUcTGxuKxxx5D5cqV8ddff+Hzzz9HaGgoMjIyUK5cObWLSEREOsd7uomIiMi0ypQpg5YtW+Krr77C+fPnUbp0acTHx2PSpElMuImISBY8001ERERERESkEN7TTURERERERKQQJt1ERERERERECjHNPd1WqxWnTp1CcHAwLBaL2sUhIiIiIiIiBQghcOXKFVSuXBleXuqfZzZN0n3q1ClERkaqXQwiIiIiIiLygBMnTqBq1apqF8M8SXdwcDCAu4EPCQlRuTRERERERESkhOzsbERGRko5oNpMk3TbLikPCQlh0k1ERERERGRwWrmtWP0L3ImIiIiISNeixy5XuwiF0nLZ6F/RY5cbtq2YdBMRERFplG0n1Kg7omQMtv6pxX6q5bLRv/K2jxHbikk3EclOKzuI3FnVNrYNaVXeuUPNPmr77qOT4lUrg1ao3RaF0UI/UVv+fqqlWGi5bGrQen89OinesPMdk26SaHkQGoEZ46ulnVUzxl7LdY4eu9ywG1Z3aKm9tL5T5ila2fmzleHopHjTtolWz4DxoMi/8vZTrdFy2dSgxf2i/PsERpzvmHRriJo7OUbr2EVRY4dSqzsMSrBNnFqY1Lmh1WZ/y1smI25YXaWl+cHsB6scUauP8sCUPa0cBMmPB0UK0kostFAGLck7p2hxLBkdk26NUHOny0w7WWoclc77nWab5NSqr5H7sDO0dOCjMGYbC8XRUnuZfaeMya625B8PTOi0RetxyD+WtdJ/tEILsTDLnMukW0PU3Oky005W3jp6Ks5miGth1NrAcUN7l9b6nlk2ru5SMzZmHB/O8vT8UdQ4MWM7aXXO0Gq5PM1RHNTe5ppxnLhKD/3XSO3IpFuD1DgLawaOjpZ7+jtt32vUuDOh0i4t9zkjj4niFFZvteLBg1Xaxvn1LrX7ZVHfzfGiHRwv/9LqgbyiymW09mPSrQGFdTi1zsKqvTFTkhp1Ndqk4Q5P9imzJ/6O6q+VeBh1XikpLbQX26Z4nprH2Bb6UNjZXbKn1vMQyDnss57DpFuj1DoLS/JhfElrtNAnuYF3nlq3GZmZVg7aaaEMWlBce2hhTqPCqdmPOYZcw4MjymPSbXKclO5SauAzvvaUnmCdWb/ZJnkb9kV9YXtpk9Jnu806P7lDzQd1cnze5Wx/VevXYgpj5Cs63cGDI57BpFvDlJwUONn8S4kBz/gW5KmJtajvMdPkrjXcUXWPpy5nZttoB9vCNdzeqqu4/qpGf+YYco/WDo4YDZNulam5s2OmScmZOMs9ARSX/BltwnG2L/NAknq03O+0XDalFDdmtDJHm7FtiqNEPJxdJ9vjX54eI4w76ZEz+2daPThipPmOSbcOqPVzS0bp5M7Qys6t0SkdZ7O3o1bPWJppLtEbrfYZLVMyXmwL7XMmeeGcZ8+TDyHkGCoZPixSOUy6NU6pS585KTkmx0TA+BZP7gnXrBO4u7Twu+nkHO7Aa5Pc7eLqujie/sWnyhPJw5PzihnnMCbdOsHJXnlmnADUoFSc2X7O4eWYZMO2sefOAVO5DtQCro1NM7SdFg9ga608anMlHp54CCHbRx58WKQymHTrgJyTiJk7u7NKEiNO+s6Tqy+yT7vHk3HjmCgZJXdW2TbukzN2bIeS4VPl1aGVuGilHEbgibnI1e8wyvzIpFtH5JpUjNJ5lVCS2HDSd57cfVBLR9v1gHOAPql5OTMVrqQHakkfOG+WnJYOIHJfoGhqPixSrs9pDZNunZBjsjdKp3WVJy8Z5EbZNSXtk2ynkvHE76a7ekDELLQQGzPFWym2GLozlty5rNxMtJJEmXXfqTglubJPKwcQOfYcK8m85uy6zYhJt4rUuH/MzJ3dWe5MNu60i5GOsrrTl+Xqi+6sxyhxLwktzgVmahc1d1bdHa9Gbx9326Qk24ySfKfR20NLZ8W0OF/qlRK3TGoh+dcqdw+OyN3nefslk25dKemlz2a9h8Id7jzQxszxcldJdhzNsLF0hbsbNCV/N52JXeHcPVDn7mdL8r1mIccZs+LWET12ObcZClIiUXC3HEYfayWJtZzx4ThSjlztJMcJQyOMJybdOuRqxzP7DlpJzyQUFQPuPN1V0vq726fNHveSYvz0R47nTrDdlZE38c677cj//6OT4mVpA7Zj4dR6qnxeRm8ftZMxnjl1jpq3p8p5kNEIbc2kW2dcPdPBnSxlzl7INZEYpV08cYYo/3cZJXZaIPfBNe4MKcudo/6crzzDllDb/vIn2vw1EuXJeT8qH66qHHfbybb/xfnIOXKcZXbmJFRh3yvXvGeE8cSkW0VK3z/G5EQehZ29kGMiMcIkIof8MXaER0yLppWzMXzuhGe4shMk17gx+nyl1MPq2KfdI8cBopKcoWO7Kc+VhE6JWzPYxs5zZj8t//uMrz0ftQtgZiWZ1PNOUo7WwQ4vL8ZRec5M6HK1gxF3qOSYT+RKyjz9/Ak9kuvy4sJ2cPKPITPEtCTM0u/0Qo72KG4/qbDvtX2WiiZnjBwl3o6u6OHDvdTlbOLNmDqm26R70qRJGDduHEaPHo2PPvpI7eKoorijg7xnjDxF7o0vqUOuHV0qnlw7e0XtBLEtjI3tW7yiDkzlx7OorpE7Yc1/0JAHQOSh1BU8nmaEfmARQgi1C+GqP/74A/369UNISAjuvfdep5Lu7OxshIaGIisrCyEhIcoX0gl6OMKmhzKS+thPjMHdnRzuHLmOY0Zb9Ngeeiyzs5SomzOXmst9z71R2wcwfv2Mwijt5E49tJb76e6e7qtXr2LQoEH48ssvUaZMGbWLUyJGGARap/V7ELVePiMzWuzlfGiQuw9LkYPR2sURve4EGblt9NgeRqbk/fVF/ZHzjBIvI89rpC26S7pHjhyJ+Ph4xMbGFrlcTk4OsrOz7f60RC+D3CiTqla58xRiLWI/MY7CHhyYHy//c59e42WU+coRPdZLr/3IGXpsj/zYPqQFRumHRqiHrpLuefPmYfv27UhOTi522eTkZISGhkp/kZGRHiih8eh9YjXCINU6vfYRI/UNJe6ty3vmJ28CLvcT/B19t9HpdcwA5mgfPdFzXzI6to0+GHlOM1IfNEJddJN0nzhxAqNHj8a3334Lf3//YpcfN24csrKypL8TJ054oJTO08sg1/uZDT2UXS99wWj00DecpWQfUuNSTCO1jdEYtW04D2uLEdpD7/tPRTFC+9gYtY2MxgjjSTdJ97Zt23Du3Dm0aNECPj4+8PHxQXp6Oj755BP4+PggNzfXbnk/Pz+EhITY/WmJnjqOkSZXLdJTX3CE/UN9eu9DZsMxoz16HUNG7Ut6bY/82D6kJqP1P73XRzdJd9euXbF7927s3LlT+mvVqhUGDRqEnTt3wtvbW+0iGpaeJ1e9D1A90Gv/YN/QLqO3jV7HDGD8ttEbPfclM2D7aJ+R5zSj9T+910c3SXdwcDAaNWpk91e6dGmUK1cOjRo1Urt4LjPyINcSPQxQ9gV16KFvOMtofchIbWM0Rm0bvY4hvZa7OEatl1EYqX2MOqcZkd77nW6SbqPR0yDXeyfXOj31BUfYP9Sn9z5kNhwz2qLn8aPnshfGSHUy6lhnG+mD0eqm936n66R77dq1+Oijj9QuhuHpuZPrYcLRQxmLotf+ofe452WkugDGq09+eh0zgDHbxoh1Im3Q81gvipHGjFHbCDB23fRI10m3nhlpwtIyPUw4eiijERkp7kaqC2C8+hiJEdtGz3Uy4r6EkepkpLrkpecxQ/ql9/HEpFslepqw9NrJ5f7tYnJMrzHWa7lJ//Tc9/RcdiPS076Es4xUJyPVxaiMPKcZrW56H09MulWgt2RQr51cLzHWSzkLo9f+Aei77HnpvQ/lZ7T65KX3Pqf38jti5P6mR2wP7TNaGxlxXgOMVy+99zsm3SrQe6fRCz1NNnoqa37sz+rTc/9xxGj1yUvv4+XopHjDtY+e66P3/uSIntsjP7aPPhixnQDj1UvvfY9Jtwr01mn0Omj1Wm490Vtfzs8IfURvV844w2j1yUvvYwYwXvvovT5G6FNGZcS20ft4ccSI7WTEOukdk25yih4Hr57KbMSNmB7oqY8Uxqh9xwhtY1RGaxu918doc4CR6mOkutjofbyQful9PDHpVoEeO40ey6wnet2I6b1f6L38gH77jlkZoc8ZoQ5GYrQ5gPUhTzPinGbEOgH6Hk9MulWgxw6jxzLracLRU1nz0mO/yEvv5Qf023eKY9R6GaHPGaEOeRm1r+kV20PbjNg+RpvTAGPWCdB3/2PSrQI9dxg90dOEo6ey5sW+rD699p3iGLVeHDPao/e+ZrQ+pff2yI/to31GayPAmHUC9N3/mHSrQI8dxqiDl0pGj305L/Zr7TJq2+h9zADGaxu918cIfcrGiA+GNFL7APofL44YrY0AY9ZJ75h0k1P0OHj1tGHQU1mNRI/9Oj+j9h0jtI1RGaltjFAXI80BRqqLjdHqZIQxYwZG63c2eq4Xk24V6LHD6LHMetow6KmseemxX+Sl9/ID+u07ZmWEPmeEOhiJkeYAI9XFxoh1MhojzmlG7Xd6rheTbhXoscPoscx6mkT1VNa89Ngv8tJ7+QH99p3iGLVeRuhzRqiDjRH6mRHqYGOkuhiVEdvISHOa0em5/zHpVoGeO4xe6G0C1Vt5bfTel49Oitdt7G30Xv7CGLVeeh8zRmOEfmaEOtgYqS42RhvzbCN9MGKdAH33PybdHqbXzmLUwasVek3+9Fjm/Ni3yVOMMF4AY40ZI9WFtMko497GqGPGaO1ktPoYAZNucoreBq8eNwp6K7NRnjKrt76dnxHawBGj1sso9D5ubIxQDyONFSPVxcZIdTLCeDELI/W7vPRcLybdHqbXzqK3M7F6KquN3sqs176cn57robc+4yqj1U/PfS0/I9XFCIwyVoxSj7yMWCcjMtKcZuQ+p+e6Men2MD13Fj1NSHoqq43eyqznvpyXUephRHobE8UxUl8zSl2M0sdYD+3S20mLohixfWyM0kZGp+c+yKSbnKanCUlPZbXRY5lJXXre+DjDaGPC6O2lR0bpY6yHthll7Bu1fQDjtBFgrLo4otd+yKTbw4w+EMg8jNKX9VwPvW54zMpI7aXncUPkaUYZ+0Ye90ZpI8BYdTESixBCqF0IT8jOzkZoaCiysrIQEhKiWjmM8vApIqP0ZaPUg7TPSH3NSHUhIucYedwbuW5mpZXcz4Znuslpejpypqey2uixzKQuo/cZo9WPO3TaYqT+ZZS6GKUe+Rm1XkZipPnZ6P1Nr/Vj0u1hRhrUZG5G6ctGqQdpn153FBwxwrgxQh2MhGcatc/I7WOk+Zm0iUm3h+l5UOtpstVTWW30VmY99+W89FwPvfUZVxm9fnqm53FjY4Q62BhhrBihDoUxSt2MNGaMzCj9rTB6rR+TbtydRAr7k/t79NpRAP1MtnopZ356Lbfe6fnnXPRabmcZrX56nv9J24wwVoxQh8IYuW5GYaT52ej9Ta/181G7AGrJ32CFDTbbckYajKRNtuRPL31NL+V0hpHqQkVzZmOtRH/Q09h2hhHqYoQ6EHmS0ceM0eZp0hbdPL08OTkZCxcuxF9//YWAgAC0b98ekydPRt26dZ36vO0JdpFj5sPLLxCA85MHE28ie0bbMBmtPkYiV9vkTbaLWp+zy7nz/UbrY3qvk97LT+RJZhgvZqijmfDp5W5KT0/HyJEjsWnTJqSmpuL27dvo1q0brl275tJ6MibE4eikeJcGlW35kl7OoNfLIWz0Un69lNMRPZedPMssfUXOhNuZuT/vMnLGmDtypDS9zwl6L39RjFw3IzHCPG2GvqbXOurm8vKVK1fa/T8lJQUVKlTAtm3b0KlTJ4+Vw8xHweS+/FmpM0qkPLZX0QrbIDBurivpnOPulUq2+U7OM+1Ga3+561PcjpTR4qd1at2KYURK3j7m7O2SVDwjztNGpLfbMW10k3Tnl5WVBQAoW7asw/dzcnKQk5Mj/T87O7vE3yn3TphZ5U+28z60jnHVB6ONAbkPJDlaH/u555U03pzzi6bEQdiinq8i9/gxWpvKfTtEceuUe2wYrT2UVFiinf8hwHLGlO3jPk8eiGc7aZdu7unOy2q14sEHH0RmZibWr1/vcJnx48djwoQJBV6X47p+M++AlaTuzmwImJTIR8lJ3mhjQI76ONt32cdd427byBlnOdZltDEDeHbcuLt8cesyUpuo0R7ufqaw9RipPZTi6rbGmWWd/V62j2uKagM+P6RknKkn7+mWwciRI5GRkYF58+YVusy4ceOQlZUl/Z04cULWMrhzP4Fe70HIq6QJd3H3VMpxL6We4yxH2fOfEcr7l/99kocrO518RoTnyH0GriQxN8NOkKvcSdbkut/eLDumrijJrRh5P0+OybV9B1zb1sj13WYgV5zyXgVS2H4v98tKRo/zt+6S7lGjRmHZsmVIS0tD1apVC13Oz88PISEhdn9y0WNDy8UTO53cSLivuIMb3AjLr6T3DFPRSnKWW+1y5GXEtlbjXvu8n+FBEPnIcStGSb+fbVK0vEmcK7jN9yxXxxL3y9yjx1jpJukWQmDUqFFYtGgR1qxZg+rVq6taHld3mM28QXFnYJg1ViXh6hHwvJ9xldHax90EWK7LjqlwWuqjPFBir6SxKEkblXQOM2I7lrTPy/F5LY1XIynpPiQPVHmG2gcT3f1u8gzdJN0jR47EnDlzMHfuXAQHB+PMmTM4c+YMbty4oXbRqAglTUpcnXz0fnDDk8kfE0V7apzh4dFt+XliDjDbvCQ3ufo7x489rRyAMOvtd0rRyngxQxuV5MCRHAfhzX6LpdHpJumePn06srKy0KVLF1SqVEn6+/7771UrE896OEety9X0ytV6l/TIKhOIu9SKg7uXTxuxDRxxpY96Yj42S9yd4e78YfusXGUg97E9PEftB0KWZD1m2+a4Ss52MkuczUg3SbcQwuFfYmKi2kUzFU/vAJvxwIYal+ObLcYlpUS8XFknN8qF81Rs2F7uUyIenMPc317K3R5m3G47Q0uX3rN9CqeFdirJVY9m2d7ocZ7RTdKtZXprdE8yy+BXi1wHNsh1cm9gXcE5R11sL/coFQfOYe5hv/Qsd54FpFQ5SD5KjiOOUWNh0l1CnLwck3Oi0OPRLE+Sqw8yxs7hBlabzHSEX8+UbCOOH9cp1R7cbsuD7aNtcl/+n1dJHsZG2sSkWyacvAri4FeW3Ac2yHla2cCSerjT6hqlY+XK+OEBGu6zaJ2n2of9oOS09OBOtqe2MemWQXEDzmwbeKV+I5eTSUFy9yvGuGieiA/bwHVmm2P1yhNtxPHjPKXbw9ntNsevY55oH3IfH9xJrmLSTYpQY6Iw04ZbqQMbanyvVji7g6hkHzNL/3WVlg+6abVcZsTx4xz2WW3zdPuwP7hPiw/uJO1i0i0jswyKonaAlY6BGWKsdvJX3Hdzx1Z5RbWBmQ4uOUPNOcHZA1VGbi9n5iujx0CPPNkeZthuy81T7cM5rCBn5zRPMVPs3aGn+YVJt0w4KP6l5IM/SNkJhjEunKd2PNgGrlM7Znra6Budlq+K8ASt1V/tsak1xbWPltqOiubpvs2+UZDe5hcm3TLLPyjMNEj44A/P0dKDO4jUooV+qreNvqeZ7SyZ1qnVHloYq3rh6fbR2oEaKohXJBgDk24ZFdbZzTQI+OAP/TN7jB3tfHh6h4Q7QY45ionZ+ys5VtQtUOwznsV4k5FwDiF3MelWgBl2lvMnBWo/+MOIk2BhyZ9aD+4wYozzK6p+Rq+71uWPv5bmWR4kcUytmHCsOqbFOVyLZVKLmrEobA7jvKYd3M7oH5NumdkmzOixy003OLT04A+9U7uOan+/lqg5js144MMVWo+FmdqrsHGiZv3Ntg3WMiYM+mWWOSyvog5CmDEeWqanuYVJtwLyDkijD041Dy7Yvlcvg62k1JjszRLb/PLXW41xbPS5wx22jatW+6VWy6U0R31V7ViYefw42glVuz3oX4W1jxb6LPuJtukpwdSCRkmr1C6CHSbdCjk6KV4TE6iSbHVUo655ryjI+3+jUfPAQv6rNowa4/y0VO+8G1huaO9Sa84pjtbKowVaiEn+26C0UCa1qF13tW9L0yqtxCH/fpVWyqUVWp4/2Fb6eJA1k27SLa3ufMtFCwcWjBrb4tjqrZX6G/3gkpGYeYdVa3XPP4eajdbawyZvecw8p2kxDlrY79ASPYwhGzO3Vf6TJbYDJBkT4lQumT2LEEKoXQhPyM7ORmhoKLKyshASEqJ2cYiIyIC0uCPtKVqtu1bLpTSt1psJ3V1ajoOWz+p6kpbHUN7ysL0c01rux6SbiIiIiIhIJ2yJtpYP3qhNa7kfLy8nIiIiIiLSESbc+uKjdgGIiIiIiIjIOUy09YdnuomIiIiIiIgUwqSbiIiIiIiISCGmubzc9ry47OxslUtCRERERERESrHlfFp5Zrhpku6LFy8CACIjI1UuCRERERERESnt4sWLCA0NVbsY5km6y5YtCwA4fvx4iQPfunVr/PHHHyUukxHXk52djcjISJw4caLEj+fXUr20VBajxlhr69FanLUUG7nWo7UYG3U9csVZS3XS2nrYl5VfB2PsmfUYNc5aKotRY6y19WRlZaFatWpSDqg20yTdXl53b18PDQ0tcQf39vaW5ffejLoeAAgJCTFUnLVUFhujxViL6wG0E2etxcaIMTbyeoCSx1lrddLaegD2ZaXLAjDGnlgPYLw4a6ksNkaLsRbXA/ybA6pNG6XQmZEjR3I9HqClemmpLHLSWr20th65GLEPGjHGRl6PHLRWJ62tRy5aq5eW5i+5aCk2WlyPXLRULy2VRU5aq5fW1qMlFqGVu8sVlp2djdDQUGRlZcl25IQKYpyVxxh7BuOsPMbYMxhn5THGymOMPYNxVh5j7Blai7NpznT7+fkhKSkJfn5+ahfF0Bhn5THGnsE4K48x9gzGWXmMsfIYY89gnJXHGHuG1uJsmjPdRERERERERJ5mmjPdRERERERERJ7GpJuIiIiIiIhIIUy6iYiIiIiIiBTCpJuIiIiIiIhIIaZJuqdNm4bo6Gj4+/sjJiYGW7ZsUbtImrBu3Tr06tULlStXhsViweLFi+3eF0LgzTffRKVKlRAQEIDY2FgcPHjQbplLly5h0KBBCAkJQVhYGB5//HFcvXrVbpldu3ahY8eO8Pf3R2RkJN57770CZVmwYAHq1asHf39/NG7cGD///LPs9VVDcnIyWrdujeDgYFSoUAEJCQnYv3+/3TI3b97EyJEjUa5cOQQFBeHhhx/G2bNn7ZY5fvw44uPjERgYiAoVKuCll17CnTt37JZZu3YtWrRoAT8/P9SqVQspKSkFymPUsTB9+nQ0adIEISEhCAkJQbt27bBixQrpfcZYfpMmTYLFYsGYMWOk1xjnkhs/fjwsFovdX7169aT3GWN5nDx5Eo899hjKlSuHgIAANG7cGFu3bpXe5/av5KKjowv0ZYvFIv0GL/tyyeXm5uKNN95A9erVERAQgJo1a+Ktt95C3ucksy+X3JUrVzBmzBhERUUhICAA7du3xx9//CG9zxi7Tk85iDNlKZYwgXnz5glfX1/x9ddfiz179ognnnhChIWFibNnz6pdNNX9/PPP4rXXXhMLFy4UAMSiRYvs3p80aZIIDQ0VixcvFn/++ad48MEHRfXq1cWNGzekZbp37y6aNm0qNm3aJH777TdRq1YtMXDgQOn9rKwsUbFiRTFo0CCRkZEhvvvuOxEQECC++OILaZkNGzYIb29v8d5774m9e/eK119/XZQqVUrs3r1b8RgoLS4uTsycOVNkZGSInTt3igceeEBUq1ZNXL16VVrm6aefFpGRkWL16tVi69atom3btqJ9+/bS+3fu3BGNGjUSsbGxYseOHeLnn38W5cuXF+PGjZOWOXz4sAgMDBTPP/+82Lt3r5g6darw9vYWK1eulJYx8lhYunSpWL58uThw4IDYv3+/ePXVV0WpUqVERkaGEIIxltuWLVtEdHS0aNKkiRg9erT0OuNccklJSaJhw4bi9OnT0t/58+el9xnjkrt06ZKIiooSiYmJYvPmzeLw4cNi1apV4tChQ9Iy3P6V3Llz5+z6cWpqqgAg0tLShBDsy3J45513RLly5cSyZcvEkSNHxIIFC0RQUJD4+OOPpWXYl0uuX79+okGDBiI9PV0cPHhQJCUliZCQEPHPP/8IIRhjd+gpB3GmLMUxRdLdpk0bMXLkSOn/ubm5onLlyiI5OVnFUmlP/g5vtVpFRESEeP/996XXMjMzhZ+fn/juu++EEELs3btXABB//PGHtMyKFSuExWIRJ0+eFEII8dlnn4kyZcqInJwcaZlXXnlF1K1bV/p/v379RHx8vF15YmJixFNPPSVrHbXg3LlzAoBIT08XQtyNaalSpcSCBQukZfbt2ycAiI0bNwoh7k5MXl5e4syZM9Iy06dPFyEhIVJcX375ZdGwYUO77+rfv7+Ii4uT/m+2sVCmTBnx1VdfMcYyu3Lliqhdu7ZITU0VnTt3lpJuxlkeSUlJomnTpg7fY4zl8corr4h77rmn0Pe5/VPG6NGjRc2aNYXVamVflkl8fLwYPny43WsPPfSQGDRokBCCfVkO169fF97e3mLZsmV2r7do0UK89tprjLEMtJyDOFMWZxj+8vJbt25h27ZtiI2NlV7z8vJCbGwsNm7cqGLJtO/IkSM4c+aMXexCQ0MRExMjxW7jxo0ICwtDq1atpGViY2Ph5eWFzZs3S8t06tQJvr6+0jJxcXHYv38/Ll++LC2T93tsyxixjbKysgAAZcuWBQBs27YNt2/ftqt/vXr1UK1aNbs4N27cGBUrVpSWiYuLQ3Z2Nvbs2SMtU1QMzTQWcnNzMW/ePFy7dg3t2rVjjGU2cuRIxMfHF4gF4yyfgwcPonLlyqhRowYGDRqE48ePA2CM5bJ06VK0atUKffv2RYUKFdC8eXN8+eWX0vvc/snv1q1bmDNnDoYPHw6LxcK+LJP27dtj9erVOHDgAADgzz//xPr169GjRw8A7MtyuHPnDnJzc+Hv72/3ekBAANavX88YK0BLMXWmLM4wfNJ94cIF5Obm2k3YAFCxYkWcOXNGpVLpgy0+RcXuzJkzqFChgt37Pj4+KFu2rN0yjtaR9zsKW8ZobWS1WjFmzBh06NABjRo1AnC37r6+vggLC7NbNn+c3Y1hdnY2bty4YYqxsHv3bgQFBcHPzw9PP/00Fi1ahAYNGjDGMpo3bx62b9+O5OTkAu8xzvKIiYlBSkoKVq5cienTp+PIkSPo2LEjrly5whjL5PDhw5g+fTpq166NVatW4ZlnnsFzzz2HWbNmAeD2TwmLFy9GZmYmEhMTAXC+kMvYsWMxYMAA1KtXD6VKlULz5s0xZswYDBo0CAD7shyCg4PRrl07vPXWWzh16hRyc3MxZ84cbNy4EadPn2aMFaClmDpTFmf4OL0kEZXYyJEjkZGRgfXr16tdFEOqW7cudu7ciaysLPzwww8YOnQo0tPT1S6WYZw4cQKjR49GampqgSP+JB/bGSoAaNKkCWJiYhAVFYX58+cjICBAxZIZh9VqRatWrfDuu+8CAJo3b46MjAx8/vnnGDp0qMqlM6b//e9/6NGjBypXrqx2UQxl/vz5+PbbbzF37lw0bNgQO3fuxJgxY1C5cmX2ZRnNnj0bw4cPR5UqVeDt7Y0WLVpg4MCB2LZtm9pFI50w/Jnu8uXLw9vbu8DTMM+ePYuIiAiVSqUPtvgUFbuIiAicO3fO7v07d+7g0qVLdss4Wkfe7yhsGSO10ahRo7Bs2TKkpaWhatWq0usRERG4desWMjMz7ZbPH2d3YxgSEoKAgABTjAVfX1/UqlULLVu2RHJyMpo2bYqPP/6YMZbJtm3bcO7cObRo0QI+Pj7w8fFBeno6PvnkE/j4+KBixYqMswLCwsJQp04dHDp0iH1ZJpUqVUKDBg3sXqtfv750GT+3f/I6duwYfv31V4wYMUJ6jX1ZHi+99JJ0trtx48YYPHgw/vvf/0pXI7Evy6NmzZpIT0/H1atXceLECWzZsgW3b99GjRo1GGMFaCmmzpTFGYZPun19fdGyZUusXr1aes1qtWL16tVo166diiXTvurVqyMiIsIudtnZ2di8ebMUu3bt2iEzM9PuSN+aNWtgtVoRExMjLbNu3Trcvn1bWiY1NRV169ZFmTJlpGXyfo9tGSO0kRACo0aNwqJFi7BmzRpUr17d7v2WLVuiVKlSdvXfv38/jh8/bhfn3bt3200uqampCAkJkXYci4uhGceC1WpFTk4OYyyTrl27Yvfu3di5c6f016pVKwwaNEj6N+Msv6tXr+Lvv/9GpUqV2Jdl0qFDhwI/3XjgwAFERUUB4PZPbjNnzkSFChUQHx8vvca+LI/r16/Dy8t+d97b2xtWqxUA+7LcSpcujUqVKuHy5ctYtWoVevfuzRgrQEsxdaYsTnH6kWs6Nm/ePOHn5ydSUlLE3r17xZNPPinCwsLsnoZpVleuXBE7duwQO3bsEADElClTxI4dO8SxY8eEEHcfkR8WFiaWLFkidu3aJXr37u3wcf3NmzcXmzdvFuvXrxe1a9e2e1x/ZmamqFixohg8eLDIyMgQ8+bNE4GBgQUe1+/j4yM++OADsW/fPpGUlKTbn0DI75lnnhGhoaFi7dq1dj+dcv36dWmZp59+WlSrVk2sWbNGbN26VbRr1060a9dOet/2syndunUTO3fuFCtXrhTh4eEOfzblpZdeEvv27RPTpk1z+LMpRh0LY8eOFenp6eLIkSNi165dYuzYscJisYhffvlFCMEYKyXv08uFYJzl8MILL4i1a9eKI0eOiA0bNojY2FhRvnx5ce7cOSEEYyyHLVu2CB8fH/HOO++IgwcPim+//VYEBgaKOXPmSMtw+yeP3NxcUa1aNfHKK68UeI99ueSGDh0qqlSpIv1k2MKFC0X58uXFyy+/LC3DvlxyK1euFCtWrBCHDx8Wv/zyi2jatKmIiYkRt27dEkIwxu7QUw7iTFmKY4qkWwghpk6dKqpVqyZ8fX1FmzZtxKZNm9QukiakpaUJAAX+hg4dKoS4+5j8N954Q1SsWFH4+fmJrl27iv3799ut4+LFi2LgwIEiKChIhISEiGHDhokrV67YLfPnn3+Ke+65R/j5+YkqVaqISZMmFSjL/PnzRZ06dYSvr69o2LChWL58uWL19iRH8QUgZs6cKS1z48YN8eyzz4oyZcqIwMBA0adPH3H69Gm79Rw9elT06NFDBAQEiPLly4sXXnhB3L59226ZtLQ00axZM+Hr6ytq1Khh9x02Rh0Lw4cPF1FRUcLX11eEh4eLrl27Sgm3EIyxUvIn3YxzyfXv319UqlRJ+Pr6iipVqoj+/fvb/X40YyyPn376STRq1Ej4+fmJevXqiRkzZti9z+2fPFatWiUAFIidEOzLcsjOzhajR48W1apVE/7+/qJGjRritddes/uJJPblkvv+++9FjRo1hK+vr4iIiBAjR44UmZmZ0vuMsev0lIM4U5biWIQQwvnz4kRERERERETkLMPf001ERERERESkFibdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRERERERERAph0k1ERERERESkECbdRESkiqNHj8JisSAlJUV6bfz48bBYLOoVykV6Ky8ApKSkwGKx4OjRo2oXRaLHONokJiYiOjpa7WIQEZGGMekmIiJF2JI7R39jx451ej3vvvsuFi9erFxBiYiIiBTko3YBiIjI2CZOnIjq1avbvdaoUSNERUXhxo0bKFWqVJGff/fdd/HII48gISFBwVKax+DBgzFgwAD4+fmpXRTJ66+/7tKBGC358ssvYbVa1S4GERFpGJNuIiJSVI8ePdCqVSuH7/n7+3u4NHfdvHkTvr6+8PIy3wVf3t7e8Pb2VrsYdnx8fODjI88uiRACN2/eREBAgCzrK05xB42IiIjMt7dBRESa4Oie7vwsFguuXbuGWbNmSZemJyYmSu+fPHkSw4cPR8WKFeHn54eGDRvi66+/tlvH2rVrYbFYMG/ePLz++uuoUqUKAgMDkZ2dDQDYvHkzunfvjtDQUAQGBqJz587YsGFDgbKsX78erVu3hr+/P2rWrIkvvvjC6boePHgQDz/8MCIiIuDv74+qVatiwIAByMrKsltuzpw5aNmyJQICAlC2bFkMGDAAJ06csFumS5cuaNSoEXbt2oXOnTsjMDAQtWrVwg8//AAASE9PR0xMDAICAlC3bl38+uuvdp935Z5ui8WCUaNGYcGCBWjQoAECAgLQrl077N69GwDwxRdfoFatWvD390eXLl0KrPO3335D3759Ua1aNfj5+SEyMhL//e9/cePGDbvlHN3TfefOHbz11luoWbMm/Pz8EB0djVdffRU5OTl2y0VHR6Nnz55YtWoVWrVqhYCAgCLbxpkynTt3DuHh4ejSpQuEENLrhw4dQunSpdG/f3/pNUf3dM+bNw8tW7ZEcHAwQkJC0LhxY3z88ceFB5qIiAyNZ7qJiEhRWVlZuHDhgt1r5cuXd+qzs2fPxogRI9CmTRs8+eSTAICaNWsCAM6ePYu2bdtKiWF4eDhWrFiBxx9/HNnZ2RgzZozdut566y34+vrixRdfRE5ODnx9fbFmzRr06NEDLVu2RFJSEry8vDBz5kzcd999+O2339CmTRsAwO7du9GtWzeEh4dj/PjxuHPnDpKSklCxYsVi63Dr1i3ExcUhJycH//nPfxAREYGTJ09i2bJlyMzMRGhoKADgnXfewRtvvIF+/fphxIgROH/+PKZOnYpOnTphx44dCAsLk9Z5+fJl9OzZEwMGDEDfvn0xffp0DBgwAN9++y3GjBmDp59+Go8++ijef/99PPLIIzhx4gSCg4Odinl+v/32G5YuXYqRI0cCAJKTk9GzZ0+8/PLL+Oyzz/Dss8/i8uXLeO+99zB8+HCsWbNG+uyCBQtw/fp1PPPMMyhXrhy2bNmCqVOn4p9//sGCBQuK/N4RI0Zg1qxZeOSRR/DCCy9g8+bNSE5Oxr59+7Bo0SK7Zffv34+BAwfiqaeewhNPPIG6desWul5nylShQgVMnz4dffv2xdSpU/Hcc8/BarUiMTERwcHB+Oyzzwpdf2pqKgYOHIiuXbti8uTJAIB9+/Zhw4YNGD16dNHBJiIiYxJEREQKmDlzpgDg8E8IIY4cOSIAiJkzZ0qfSUpKEvk3TaVLlxZDhw4tsP7HH39cVKpUSVy4cMHu9QEDBojQ0FBx/fp1IYQQaWlpAoCoUaOG9JoQQlitVlG7dm0RFxcnrFar9Pr169dF9erVxf333y+9lpCQIPz9/cWxY8ek1/bu3Su8vb0LlDe/HTt2CABiwYIFhS5z9OhR4e3tLd555x2713fv3i18fHzsXu/cubMAIObOnSu99tdffwkAwsvLS2zatEl6fdWqVQVibGuXI0eOFFluIYQAIPz8/OyW/eKLLwQAERERIbKzs6XXx40bV2C9eeNtk5ycLCwWi10s87f7zp07BQAxYsQIu8+++OKLAoBYs2aN9FpUVJQAIFauXFlsfVwpkxBCDBw4UAQGBooDBw6I999/XwAQixcvtltm6NChIioqSvr/6NGjRUhIiLhz545T5SEiIuPj5eVERKSoadOmITU11e6vpIQQ+PHHH9GrVy8IIXDhwgXpLy4uDllZWdi+fbvdZ4YOHWp3n+/OnTtx8OBBPProo7h48aL0+WvXrqFr165Yt24drFYrcnNzsWrVKiQkJKBatWrS5+vXr4+4uLhiy2o7k71q1Spcv37d4TILFy6E1WpFv3797OoSERGB2rVrIy0tzW75oKAgDBgwQPp/3bp1ERYWhvr16yMmJkZ63fbvw4cPF1vOwnTt2tXu8mnbOh9++GG7s+eOvitvvK9du4YLFy6gffv2EEJgx44dhX7nzz//DAB4/vnn7V5/4YUXAADLly+3e7169epOtYWrZfr0008RGhqKRx55BG+88QYGDx6M3r17F7n+sLAwXLt2TZZ+TkRExsDLy4mISFFt2rQp9EFq7jp//jwyMzMxY8YMzJgxw+Ey586ds/t//ieoHzx4EMDdZLwwWVlZyMnJwY0bN1C7du0C79etW1dKEAtTvXp1PP/885gyZQq+/fZbdOzYEQ8++CAee+wxKSE/ePAghBAOvwMo+LCuqlWrFrgHOjQ0FJGRkQVeA+5ejl5UHfPez+zr64uyZctK/897oCHvOp35ruPHj+PNN9/E0qVLC5Qh//3seR07dgxeXl6oVauW3esREREICwvDsWPH7F7P37ZFcaVMZcuWxSeffIK+ffuiYsWK+OSTT4pd/7PPPov58+ejR48eqFKlCrp164Z+/fqhe/fuTpeRiIiMhUk3ERHpju0nmh577LFCk+YmTZrY/T//06xt63j//ffRrFkzh+sICgoq8OAud3z44YdITEzEkiVL8Msvv+C5555DcnIyNm3ahKpVq8JqtcJisWDFihUOnyweFBRk9//Cnj5e2Osiz8PA8hs9ejRmzZol/b9z585Yu3Ztib8rNzcX999/Py5duoRXXnkF9erVQ+nSpXHy5EkkJiY69TNb+Q8sFMbZJ5W7U6ZVq1YBuHsw4Z9//rG7t96RChUqYOfOnVi1ahVWrFiBFStWYObMmRgyZIhdnImIyDyYdBMRkaY5SrzCw8MRHByM3NxcxMbGurVe2wPZQkJCilxHeHg4AgICpDPjee3fv9/p72vcuDEaN26M119/Hb///js6dOiAzz//HG+//TZq1qwJIQSqV6+OOnXquF6ZEnj55Zfx2GOPSf8vU6aMLOvdvXs3Dhw4gFmzZmHIkCHS685cdh0VFQWr1YqDBw+ifv360utnz55FZmYmoqKiPFKmlStX4quvvsLLL7+Mb7/9FkOHDsXmzZuL/XkzX19f9OrVC7169YLVasWzzz6LL774Am+88UaBs/dERGR8vKebiIg0rXTp0sjMzLR7zdvbGw8//DB+/PFHZGRkFPjM+fPni11vy5YtUbNmTXzwwQe4evVqoevw9vZGXFwcFi9ejOPHj0vv79u3TzoLWpTs7GzcuXPH7rXGjRvDy8tLOov+0EMPwdvbGxMmTChwVloIgYsXLxb7Pe5q0KABYmNjpb+WLVvKsl7bmfC89RFCOPXTWQ888AAA4KOPPrJ7fcqUKQCA+Ph4xcuUmZkpPTn/3XffxVdffYXt27fj3XffLfI78reVl5eXdNWFHFdNEBGR/vBMNxERaVrLli3x66+/YsqUKahcuTKqV6+OmJgYTJo0CWlpaYiJicETTzyBBg0a4NKlS9i+fTt+/fVXXLp0qcj1enl54auvvkKPHj3QsGFDDBs2DFWqVMHJkyeRlpaGkJAQ/PTTTwCACRMmYOXKlejYsSOeffZZ3LlzB1OnTkXDhg2xa9euIr9nzZo1GDVqFPr27Ys6dergzp07mD17tnTgALh71v3tt9/GuHHjcPToUSQkJCA4OBhHjhzBokWL8OSTT+LFF1+UJ6AeUq9ePdSsWRMvvvgiTp48iZCQEPz4449F3l9u07RpUwwdOhQzZsxAZmYmOnfujC1btmDWrFlISEjAvffeq3iZRo8ejYsXL+LXX3+Ft7c3unfvjhEjRuDtt99G79690bRpU4ffMWLECFy6dAn33XcfqlatimPHjmHq1Klo1qyZ3Vl7IiIyDybdRESkaVOmTMGTTz6J119/HTdu3MDQoUMRExODihUrYsuWLZg4cSIWLlyIzz77DOXKlUPDhg2l30cuTpcuXbBx40a89dZb+PTTT3H16lVEREQgJiYGTz31lLRckyZNsGrVKjz//PN48803UbVqVUyYMAGnT58uNulu2rQp4uLi8NNPP+HkyZMIDAxE06ZNsWLFCrRt21ZabuzYsahTpw7+7//+DxMmTABw92Fl3bp1w4MPPuhG5NRVqlQp/PTTT9L96/7+/ujTpw9GjRpVaMKa11dffYUaNWogJSUFixYtQkREBMaNG4ekpCTFy7R06VJ88803+PDDD1GvXj3p9SlTpiA1NRVDhw7FH3/8UeABd8Dd5wzMmDEDn332GTIzMxEREYH+/ftj/Pjx8PLiBYZERGZkEUU9XYWIiIhIYW+88QaSk5MLXIZPRERkBDzkSkRERKo6ffo0ypcvr3YxiIiIFMHLy4mIiEgVhw8fxqJFi7BgwQL07NlT7eIQEREpgme6iYiISBXr1q3DhAkT0LlzZ+nJ5EREREbDe7qJiIiIiIiIFMIz3UREREREREQKYdJNREREREREpBDTPEjNarXi1KlTCA4OhsViUbs4REREREREpAAhBK5cuYLKlSvDy0v988ymSbpPnTqFyMhItYtBREREREREHnDixAlUrVpV7WKYJ+kODg4GcDfwISEhKpeGiIiIiIiIlJCdnY3IyEgpB1SbaZJu2yXlISEhTLqJiIiIiIgMTiu3Fat/gTsRERERERGRQZnmTDe5Lnrs8gKvHZ0Ur0JJiIiIiIiI9IlJNzlkS7jzJtnRY5cjeuxyJt4yy3twg7ElIiIiIjIWly4vT05ORuvWrREcHIwKFSogISEB+/fvL/IzCxcuRKtWrRAWFobSpUujWbNmmD17tt0yZ8+eRWJiIipXrozAwEB0794dBw8etFvm77//Rp8+fRAeHo6QkBD069cPZ8+edaX45KL8CaDt/47OgJPrbAcxAPvYMr5ERERERMbhUtKdnp6OkSNHYtOmTUhNTcXt27fRrVs3XLt2rdDPlC1bFq+99ho2btyIXbt2YdiwYRg2bBhWrVoF4O5vqCUkJODw4cNYsmQJduzYgaioKMTGxkrrvXbtGrp16waLxYI1a9Zgw4YNuHXrFnr16gWr1VqC6pMjRZ3NZuItj7zJti2mef/N+CrHdmCDBziIiIiIyBMsQgjh7ofPnz+PChUqID09HZ06dXL6cy1atEB8fDzeeustHDhwAHXr1kVGRgYaNmwIALBarYiIiMC7776LESNG4JdffkGPHj1w+fJl6cnjWVlZKFOmDH755RfExsYW+53Z2dkIDQ1FVlYWn15eBEeXlRe2HC+Fdl9x8WN8leHoygIbxlt9fI4EERERyUFruV+J7unOysoCcPdstjOEEFizZg3279+PyZMnAwBycnIAAP7+/tJyXl5e8PPzw/r16zFixAjk5OTAYrHAz89PWsbf3x9eXl5Yv369U0k3Oc+Zndyjk+KZGLrJmbOrjK/8HB1Qyn9ZP+OtnqKeI5H/dVJHYXMX20YdbA/t4gFEIsrP7Z8Ms1qtGDNmDDp06IBGjRoVuWxWVhaCgoLg6+uL+Ph4TJ06Fffffz8AoF69eqhWrRrGjRuHy5cv49atW5g8eTL++ecfnD59GgDQtm1blC5dGq+88gquX7+Oa9eu4cUXX0Rubq60TH45OTnIzs62+6OiuXOpLS/PdY2rCQTjK4/i4s7L+tVVWPvwlgvtyH9LDNtGXWwP7SqsbXhLE5G5uZ10jxw5EhkZGZg3b16xywYHB2Pnzp34448/8M477+D555/H2rVrAQClSpXCwoULceDAAZQtWxaBgYFIS0tDjx494OV1t3jh4eFYsGABfvrpJwQFBSE0NBSZmZlo0aKFtEx+ycnJCA0Nlf4iIyPdraqpuHIklkdt3eNs3BhfeTh7oIM7rOpwpn3YNuoqqo3yJhTkGcW1R95lyLPYNkTKMMLzeNy6p3vUqFFYsmQJ1q1bh+rVq7v8pSNGjMCJEyekh6nZZGVl4datWwgPD0dMTAxatWqFadOm2S1z4cIF+Pj4ICwsDBEREXjhhRfw0ksvFfiOnJwc6dJ14O51/ZGRkZq5rl9r3L2Ek5d+Os+dWDG+JefqZeOMuee4c+UH28WzXGkjto/yXHnuijPLkXyc7f9sG23g7Rn64OjZO84+j0dr93S7dKZbCIFRo0Zh0aJFWLNmjVsJN3D30vS8CbFNaGgowsPDcfDgQWzduhW9e/cusEz58uURFhaGNWvW4Ny5c3jwwQcdfoefnx9CQkLs/qho7kw0nJxc42q8GN+ScScJYMw9o6QH+shz3DloRfJzZczwrKpnubKtYduoK/+zQngbgHY5+qWf/P/XU1u5lHSPHDkSc+bMwdy5cxEcHIwzZ87gzJkzuHHjhrTMkCFDMG7cOOn/ycnJSE1NxeHDh7Fv3z58+OGHmD17Nh577DFpmQULFmDt2rXSz4bdf//9SEhIQLdu3aRlZs6ciU2bNuHvv//GnDlz0LdvX/z3v/9F3bp1S1J/gjwdVk+dXg0liQ8v3XRPSWPGmCuPB0S0zdWDVnrcCdILdw5SsT08w534sm3UUVgSlxfbRhuMeOuZS0n39OnTkZWVhS5duqBSpUrS3/fffy8tc/z4cbuHm127dg3PPvssGjZsiA4dOuDHH3/EnDlzMGLECGmZ06dPY/DgwahXrx6ee+45DB48GN99953dd+/fvx8JCQmoX78+Jk6ciNdeew0ffPCBu/WmfEqyM8sdYecwTp7nbszZVsriQSjtczfGHDvK4dVo2lOSS8XZNurglSLaZ9Srekr0O916orXr+rVCrnuLeI9S4eSMMePrHMZc20oaV843yitJG7F95MXxol1ybCO4nfEMd+LMtvE8OZ8xpbXcz+2nl5NxyDGhcFIqGuPjeXLFXA9HT/VEjp0YjidllbSN2D7ykWP+YXsoQ86EjNsZZZXkyh22jeeV5MoRLbcXk24iBck5+Dn5O0fumJN85O6/HA/ykyumnK/kI9eBcbaHfLid0Q85rvTg2PGMksZZ64k3k24Tk7tTcqPuGDeonid3zNmv5SNX23BcKUfO2HLsuE+J2LE95MPtjH7wyh3tk+s2mLyJd6OkVcUs7VlMuk2Ok4m+8MBG0ZSIDceIPJTqtxwP8lHiQCy5R4n7sNke8lByO8P5TF68ckdf5Dwor8X5jkm3SSk5eXBiuosP4FCHUjFnvy45uduG40t+SsSUY8c9nMu0S4m24XwmLyUOXHHsKEOpuGZMiFNkve5i0m1i3GjoFyf+gpSMCft1ySjdXzkeSk6pGHLsuI5zmXZ54mA65zP58EoR7TPTrysw6SZFmH2jwZ0mdXBnSLuUahuOB/koGUuOHddwLtMeT8SM85k8eDWnvpil3zPpNiGlJwyzDJ7icKfJc7gzpF2e6qccD+7jNkE7OJdpm6dix/ms5JS8mpPtIw+zxZFJt0lxo6sc7jSpgztD2qV023A8lJwnYsix4xzOZdrjyVhxPisZpW8BYPvIy0zxZNJtMp7acJj9SY/cafIc7gxpl6fbhuPBdZ7cJlDROJdpmydjxvnMPZ6MGdunZMwYPybdJsSNrTGwHf/l6ViYcWPhLvZT7fNkG3HsFI2JnfaoGSO2j+s8MYa4XSsZMz08LS8m3aQos20w+DNhnqVG/2L7OkettjHbnFMSno4Vx07hmNhpmxp9l+PFNWr0Y44d95mxfzPpNhHuYBkPkwz1+pnZ4+4Mto32qdFGbB/HmNhpjxYOpHO8OM/TV4qQ68zcn5l0mwx3sJRjlnoSN7bFUXNHlW3jHLXmK7ZPQUzstEkLMVG7X+iFmvOZFvqJ3pi1XzPpNgnuYHmGWmcqzDjpc0eVisK2KZ6aB0bYPtqh9jyqZVqJDcdL8dRsK7aPc8weJybdJsIJiUg+WtkZ0xotHAxR+/u1jvOxdmhhvNiwX/xLS7Hgb0MXTe0xpJXxqxdmjheTblKcGQaY2pO+rQxmoYV425gp7sXRWiy0Vh4tUXv88Gy3tqjdH7RISzHRUlm0REtziJbKokVa2m9TC5NuE+BEYHxmn8jUwrgXpJWYaKUcWqO17YHWyuNJWtsJ5YGQu7QcAy2XTS1aGENaKIOWsd/eZbqku1HSKrWLoAq1JwQjb8y1VC8tlUUpWttRBcwR9+JoMQZGnndKQivjRyvlUIOW+6WWy+YpWuybWiyTmrTWT7m9KRr7rwmTbkB7A1VJZqqrmrQwmWihDGbEuP9Lq7HgPHiXVuOg1XIpTYvjRYtl8iQtHtTNi4mdPS22FdvHHuPxL9Ml3RkT4gCYqxNoaVIyU9zVYuQYa3mHyMhxL46W667V/qIWrcVDa+XxBC2PFxs9lFFueqqznsqqBK3uC2ixTGqy9VPG5S6Xku7k5GS0bt0awcHBqFChAhISErB///4iP7Nw4UK0atUKYWFhKF26NJo1a4bZs2fbLXP27FkkJiaicuXKCAwMRPfu3XHw4EG7Zc6cOYPBgwcjIiICpUuXRosWLfDjjz+6UnwJnwSpDiMOOq1N/Foqi5kw7tqPgdnne63XX+vlk5uWx4uWy6Y0PdRdD2VUkh7mCj2U0VPM3l/zcinpTk9Px8iRI7Fp0yakpqbi9u3b6NatG65du1boZ8qWLYvXXnsNGzduxK5duzBs2DAMGzYMq1bdvbdaCIGEhAQcPnwYS5YswY4dOxAVFYXY2Fi79Q4ZMgT79+/H0qVLsXv3bjz00EPo168fduzY4VbFzZB4ay0htDFyzLXCiDHWan/Oy4hxL44e2kXr5fMUrcZBq+VSgp7mCD2VtaT0WFc9llkuWp4zzJBfOMPs9XfEpaR75cqVSExMRMOGDdG0aVOkpKTg+PHj2LZtW6Gf6dKlC/r06YP69eujZs2aGD16NJo0aYL169cDAA4ePIhNmzZh+vTpaN26NerWrYvp06fjxo0b+O6776T1/P777/jPf/6DNm3aoEaNGnj99dcRFhZW5HcXR8uD1qiMFHOtTihGirGemDHuWh0Djpj5Xkg91NtM7aOHuUIPZZSbnups1sROL/XVU19SAi8rd6xE93RnZWUBuHs22xlCCKxevRr79+9Hp06dAAA5OTkAAH9//38L5eUFPz8/KTEHgPbt2+P777/HpUuXYLVaMW/ePNy8eRNdunRx+F05OTnIzs62+yuMXgaxK7R+9skoMWeMPUPr/TkvI8XdGXppFxuztY+NXtrJyO2jt7qZ5UCInrYveemxzCWhx0TODOOnMHpqJ09xO+m2Wq0YM2YMOnTogEaNGhW5bFZWFoKCguDr64v4+HhMnToV999/PwCgXr16qFatGsaNG4fLly/j1q1bmDx5Mv755x+cPn1aWsf8+fNx+/ZtlCtXDn5+fnjqqaewaNEi1KpVy+F3JicnIzQ0VPqLjIx0uBw7hecZIeZan0iNEGM9MlPctT4GHDFT+9joKaHQSzlLQo911ONYd5YR6maEOjhLT+NHT2WVk5n6o6vcTrpHjhyJjIwMzJs3r9hlg4ODsXPnTvzxxx9455138Pzzz2Pt2rUAgFKlSmHhwoU4cOAAypYti8DAQKSlpaFHjx7w8vq3eG+88QYyMzPx66+/YuvWrXj++efRr18/7N692+F3jhs3DllZWdLfiRMnCi2f0Y7m6qUueilnYfQwoeo9xoC+kgbAePNJUfTULjZmah+9MmL76G0es9FjmV2l5zqa5TJzvdbPbNsbPV6N4EluJd2jRo3CsmXLkJaWhqpVqxb/JV5eqFWrFpo1a4YXXngBjzzyCJKTk6X3W7ZsiZ07dyIzMxOnT5/GypUrcfHiRdSoUQMA8Pfff+PTTz/F119/ja5du6Jp06ZISkpCq1atMG3aNIff6efnh5CQELu/4hhpYGi9w2u9fEbAGJNS9JpA5GWk+b4wemwnvZXXLIw4XoxSJ7OMGT3X0yh9zRl6bieluZR0CyEwatQoLFq0CGvWrEH16tXd+lKr1Srdy51XaGgowsPDcfDgQWzduhW9e/cGAFy/fv1uYb3si+vt7Q2r1epWGfIzSicx08BWi952ZPXcJ/QWaxsjH902Qr302Kdcped2Mtr40es8ZqPnshfGiGfkjDRm8uL40Qej9j85uZR0jxw5EnPmzMHcuXMRHByMM2fO4MyZM7hx44a0zJAhQzBu3Djp/8nJyUhNTcXhw4exb9//Y+++w6Oo9j6Af3c3W9J7hRASQpEOQWJAypXQFbAhilLsFJUXG9gAGwqoKAK2K3gvKgICehHpBEWa9CoESOhJIKS3TXbP+8eyQzabhJTt+X6eZ59kZ86eOXPOmdn9zZlyAh999BH++9//4tFHH5XSLF++HElJSdJjw/r27Ythw4ahX79+AAzXfcfGxuKZZ57Bnj17cObMGXz00UfYuHEjhg0bVs8qMOUKncZZNnBX+2HliJylL7gqV+3frtCvGsL+x9nbyRXaxxXWAXDN7cXZt4/yXPU0c1dZH1fcfspzxYNY1lCroHvhwoXIyclB7969ER4eLr1++uknKc358+dNboBWUFCA8ePHo02bNujevTt+/vlnLFmyBE8++aSU5sqVK3jsscfQqlUrPP/883jsscdMHhemVCqxdu1aBAcH45577kH79u3xn//8B9999x0GDRpUn/U34eydxZU3aEfhrHXsjOXm0W3H4+xtUhln3DZuxRXWyZX6mSutiyv0LVdYh8q4Uj8rz5XWy1X7HuBa7WQttT69vLLXmDFjpDRJSUlYvHix9P7dd99FcnIyioqKcP36dezYsQMPPfSQSb7PP/88Lly4AK1Wi3PnzuGdd96BSqUySdO8eXP8/PPPSE9PR0FBAQ4dOoTHHnus9mtcA868UThbp3fGo3/OWMdkP87Wv6viKutRnitvG66ybs7c75y57JVxlT4FuNa6VOQq/c5V1sPIVfucq7WTNdXrOd2uyFU3Cqo/Z9+xOFP5XWVE1RXWoTxXWx/AOQ/8VcdVth3ANfqbK6xDRc68vbjS9lEZVzvN3BXbylXaBuBp5bXFoLsKzrZROPsXibPUt7PWsbOW21U4S/+uirOXvyZcYR1dYR0q44zr5Yxlrgln/i5x1TapyJnbyMjZf9NWxdUOigCu0d9shUF3JdiBbIv1bTvOsKN3tS9bZ1+XhnAk25XWzZXWBXDu9XHmst+KM3yXVMaV26QiZ20jZy13TblKH3S132q2wKC7Cs50yqGzlPNWHHk9XGHn4uzld3aO3L9vpSH0HWfa51fGmcteE860fq7wfVEdZ1w3V2+Tipx9XZ29/DXhTPu0ipy57PbEoNtFOPsOytnL70wceWfpqj+MnHWdHLmvWIszr7Oz9rNbcdX1cmbOdJDKWcppac7URkbOVt66coV9miusg60x6K6GM+ywHL18teWI6+OIZaor7iTtxxn2J+U1hNPKK3LWdXWmflVXzrL9uOqBw6o4Q5sAzrttW4KztJFRQ2krZ9mnVeSMZXYUDLprwNE7mKvsoBx5PRy5bHXhiH3aEctkDc60nq7W72vCWX8INZS2cuS2ceSyWYMz9LmG1iYVOUMbGTXUtnKm9W6IB+MtiUH3LbBj2Z4j7YAcqSyW4sh92pHLZgnOsn6u2O9ry1nqoCGNrDrDejpDGS3N0beVhtgmFTl6GzXUYM4Z19cZy+woGHTXkCPusFzxx5Yjro8jlskSHKlPO1JZbMEZ1tdV+31NOMu6O0M/sgZHXG9HLJMtOPK24oq/kerCWR5T1ZDbytHbBnCOMjo6Bt010JB3BPbCjdu6HLFPO2KZrMHR15M/VA2c5TTzhtZWjry+jlw2a3LEbcXRymNvjtw3G3pbOXLbVORMZXVEDLprwZF2DI5UFktzlI26IQQfjtCPHKEM9uCI6+2IZbI3R60TRy2XrTjS+jtSWezJ0erB1b+/68LR2sioobeVIx64Kq8h/B62BQbdNeSInc0Ry0TOw5H6jyOVxRYceX0duWy25uh14ejlsxZHXG9HLJMtOdL6O3LwYk+O1EZGbCtTjlgfjlgmZ8Wgu5YcofM5Qhmszd5H/RpCHTuChl7PjrT+jlQWR+NodeNo5bEXR6gHRyiDI3GU+nDEANNROEobGbGtDBy5Hhy5bM6EQXctOFKnc6SyuKqGUMf2PrhhLEND5Ijr7YhlsjdHrRNHLZetONL6O1JZ7MkR6oGnwVbPkerG3r89HJUj1YsjlcUVMOiuA3ZC23CEgJCsh21r4Aj14AhlcGSOtC9ylHI4Cp4R5XjsVS9sj5pxpP2ZIx0EcASOVB8N9TFu1sSgu5bs3fl4FNf6Glod2/MLuCHVc2Ucaf0dqSyOij9UHYsj1IMjlMGR2Ls+7L18Z8IDVo7LUeqH25NlMegmh+coOx8ia+GPH8fnCD8+2Fbm7HXQkG1RPVvXD9ujdhxhf+YIZXBEjlAv3J6sg0F3HfBL3nZsvfNpiHVsZMt1b2hnE1THEerBEcrgLOy9j2BbOQ62ReXsVS9sj9qz129ZtlX1HOESALaR5THodjINdSOw5c6nIdZxQ1xnR8MDeY7PntsJ26pqtv6Byra4NVu2CdujbuyxP2Nb1Q5/F7gWBt115AhHoRoKBoS2Y4s+ze3GnD37OLev2uM9EIht4VjYHnVn6/0Z26pm+LvA9dQq6J45cyZuv/12eHt7IyQkBMOGDcPJkyer/czKlSvRpUsX+Pn5wdPTEx07dsR///tfkzTp6ekYM2YMIiIi4OHhgQEDBiA5OVman5qaCplMVulr+fLltVkFp8XTcayvoQeDtuxf7MuV4yn+jo+jQ47JVgfC2RY1Z4s2YXvUjy33Z2yruuHvAtdRq6B727ZtmDBhAnbt2oWNGzeitLQU/fr1Q0FBQZWfCQgIwOuvv46dO3fi8OHDGDt2LMaOHYv169cDAIQQGDZsGM6ePYtffvkFBw4cQFRUFBITE6V8IyMjceXKFZPXjBkz4OXlhYEDB9Zj9euPOxHbsUVdc2dj3Xrm9lI19j3nYY8zndg/HAfbonasva2wPerHlvsztlXt8KCIa6lV0L1u3TqMGTMGbdq0QYcOHbB48WKcP38e+/btq/IzvXv3xr333ovbbrsNzZo1wwsvvID27dtj+/btAIDk5GTs2rULCxcuxO23346WLVti4cKFKCoqwo8//ggAUCgUCAsLM3mtWrUKw4cPh5eXVz1Wv35stTFwQ7B+XbOODWzRp/mlWz1bjdaxHeqPI6uOxdrBA9ui9qy5n+F+zLK47TguHhRxDfW6pjsnJweAYTS7JoQQ2Lx5M06ePImePXsCAEpKSgAAGo3mZqHkcqjVaikwr2jfvn04ePAgnnjiifoU32I4Ams71qxr1rF18Uv31tgHnQcvx3Bc/J5wPJZuE36fWBYPuDsuW9QbtyfbqHPQrdfrMWnSJHTv3h1t27atNm1OTg68vLygUqkwePBgzJs3D3379gUAtGrVCk2aNMHUqVORlZUFrVaLDz/8EBcvXsSVK1cqze/f//43brvtNnTr1q3KZZaUlCA3N9fkZQ3cidgO69o2rDlaxDasGWuPOLAdLIdt5VisVV/8UVp31moTbhuWZ41+zv1Y/dniEgC2kfXVOeieMGECjh49iqVLl94yrbe3Nw4ePIi///4b7733HiZPnoykpCQAgFKpxMqVK3Hq1CkEBATAw8MDW7duxcCBAyGXmxevqKgIP/zwwy1HuWfOnAlfX1/pFRkZWaf1tDfurKyPP6bIkVj7dEyyHO6bHZc1+jrbu34s1Sbcj1mHNfo328qyrHVQhGyjTkH3xIkTsWbNGmzduhWNGze+9ULkcsTGxqJjx4548cUX8cADD2DmzJnS/Li4OBw8eBDZ2dm4cuUK1q1bh8zMTMTExJjltWLFChQWFmLUqFHVLnPq1KnIycmRXhcuXKj9itYQHx9mO9aqa/6YMmXpeubBo9rj2QbOg6NDjsXS9cbv9/oztoml6pLbhvVYur+zrSzDmgdF2Ea2UaugWwiBiRMnYtWqVdiyZQuio6PrtFC9Xi9dy12er68vgoODkZycjL1792Lo0KFmaf79739jyJAhCA4OrnYZarUaPj4+Ji9nwy9662MdkyPiiIPz4I8Vx2XJPs92rj9L1CEPRlmXJQ+O8DvHOnhQxHnVKuieMGEClixZgh9++AHe3t5IS0tDWloaioqKpDSjRo3C1KlTpfczZ87Exo0bcfbsWZw4cQIfffQR/vvf/+LRRx+V0ixfvhxJSUnSY8P69u2LYcOGoV+/fibLP336NP744w88+eSTdV1fq+IIrO3wx5Rt8IvXfqxxVgf7uvXwzBDHYqn64/7L8upap2wL27Dkvof7McuyZH1ye7K9WgXdCxcuRE5ODnr37o3w8HDp9dNPP0lpzp8/b3IDtIKCAowfPx5t2rRB9+7d8fPPP2PJkiUmgfOVK1fw2GOPoVWrVnj++efx2GOPSY8LK+/bb79F48aNzYJxR8Adi+2wrm2DX7yug1+u1sUfQo7LEvXJ/Zfl1HcklW1hO/XZdnjg0Lp4mYZzkgkhhL0LYQu5ubnw9fVFTk6O1U41t+S1EdxhVc8Sdc06vrX61jOvF6o/S/RT9nXbYFs5nvrUJ9vCempbt2wL26vr9ze/963PEr/NGkL72CL2q416PaebTDWEDuwoWNe2YYl6ZlvVX31HHMh22FaOpa6XabAtrKs27cK2sI+6fHcz4LaN+g44kX0w6LaC+nZobhA1x2vDbIM/Wu3HEl+u/AFkGzxI5bjqsj9iW1jfrdqF+zD7qsvBEbaVbdTlgCLbyL4YdFuYpToyN4hbq28dsY5rpj71xDq2HF4D6Tx4kMqx1PY6YraFbaR+MFgKHCrWeflp3IfZHw+OOK7a7q/YRvbDoNvB8Mu+9up6pI9qrrZHVBvK9UK2UpebD7Gf20d92orbjPXUtG7ZFrZXfpupGGyzHeyvuoMjALcZe6rN9w1/l9kfb6RmJXXt3Nwoao83ZLGNmn6x8gvYetgGzqOm+xm2lW1V1y5sC6LqVRXccZuxr+r2XQ15v+ZoN1Jj0G0ldenkDXnDqI/a1BvruH5uVX+sX+tjGziH2hwgYVvZVsW2KR9IsC2IyBlV3I9xv8ag227sUfEcgbWd2owqsY7rp6pggsGe7bANnANHHxxXxRE7tgMRuQIG2zcx6LYTewXdAEdgbaEm9ceA23KqGili/doOT/NzHmwrIiIi22LQbSf2qniOwNoOR5Vsi0dTiWqH+yEiIiLbYNBtJ/YMuoFbj8DeKg3VTGV1yfolIiIiImo4GHTbiT0rniOwtlXZqZysXyIiIiKihoFBt53Yu+I5AktERERERGR99o79KmLQbUMcgSUiIiIiIrIuR4j9ynOzdwEaEgbYREREREREDYvc3gUgIiIiIiIiclUMuomIiIiIiIishEE3ERERERERkZU0mGu6jfeLy83NtXNJiIiIiIiIyFqMMZ+j3DO8wQTdmZmZAIDIyEg7l4SIiIiIiIisLTMzE76+vvYuRsMJugMCAgAA58+fr3fF33777fj777/rXSZXzCc3NxeRkZG4cOFCvW/P70jr5UhlcdU6drR8HK2eHaluLJWPo9Wxq+ZjqXp2pHVytHzYl62fB+vYNvm4aj07UllctY4dLZ+cnBw0adJEigHtrcEE3XK54fJ1X1/fendwhUJhkee9uWo+AODj4+NS9exIZTFytTp2xHwAx6lnR6sbV6xjV84HqH89O9o6OVo+APuytcsCsI5tkQ/gevXsSGUxcrU6dsR8gJsxoL05RimczIQJE5iPDTjSejlSWSzJ0dbL0fKxFFfsg65Yx66cjyU42jo5Wj6W4mjr5Uj7L0txpLpxxHwsxZHWy5HKYkmOtl6Olo8jkQlHubrcynJzc+Hr64ucnByLHTkhc6xn62Md2wbr2fpYx7bBerY+1rH1sY5tg/Vsfaxj23C0em4wI91qtRrTpk2DWq22d1FcGuvZ+ljHtsF6tj7WsW2wnq2PdWx9rGPbYD1bH+vYNhytnhvMSDcRERERERGRrTWYkW4iIiIiIiIiW2PQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVNJige/78+WjatCk0Gg3i4+OxZ88eexfJIfzxxx+45557EBERAZlMhtWrV5vMF0LgrbfeQnh4ONzd3ZGYmIjk5GSTNNevX8fIkSPh4+MDPz8/PPHEE8jPzzdJc/jwYfTo0QMajQaRkZGYNWuWWVmWL1+OVq1aQaPRoF27dli7dq3F19ceZs6cidtvvx3e3t4ICQnBsGHDcPLkSZM0xcXFmDBhAgIDA+Hl5YX7778f6enpJmnOnz+PwYMHw8PDAyEhIXj55ZdRVlZmkiYpKQmdO3eGWq1GbGwsFi9ebFYeV90WFi5ciPbt28PHxwc+Pj5ISEjA77//Ls1nHVveBx98AJlMhkmTJknTWM/1N336dMhkMpNXq1atpPmsY8u4dOkSHn30UQQGBsLd3R3t2rXD3r17pfn8/qu/pk2bmvVlmUwmPYOXfbn+dDod3nzzTURHR8Pd3R3NmjXDO++8g/L3SWZfrr+8vDxMmjQJUVFRcHd3R7du3fD3339L81nHtedMMUhNynJLogFYunSpUKlU4ttvvxXHjh0TTz31lPDz8xPp6en2LprdrV27Vrz++uti5cqVAoBYtWqVyfwPPvhA+Pr6itWrV4tDhw6JIUOGiOjoaFFUVCSlGTBggOjQoYPYtWuX+PPPP0VsbKx4+OGHpfk5OTkiNDRUjBw5Uhw9elT8+OOPwt3dXXz55ZdSmr/++ksoFAoxa9Yscfz4cfHGG28IpVIpjhw5YvU6sLb+/fuLRYsWiaNHj4qDBw+KQYMGiSZNmoj8/HwpzbPPPisiIyPF5s2bxd69e8Udd9whunXrJs0vKysTbdu2FYmJieLAgQNi7dq1IigoSEydOlVKc/bsWeHh4SEmT54sjh8/LubNmycUCoVYt26dlMaVt4Vff/1V/Pbbb+LUqVPi5MmT4rXXXhNKpVIcPXpUCME6trQ9e/aIpk2bivbt24sXXnhBms56rr9p06aJNm3aiCtXrkivq1evSvNZx/V3/fp1ERUVJcaMGSN2794tzp49K9avXy9Onz4tpeH3X/1lZGSY9OONGzcKAGLr1q1CCPZlS3jvvfdEYGCgWLNmjUhJSRHLly8XXl5e4tNPP5XSsC/X3/Dhw0Xr1q3Ftm3bRHJyspg2bZrw8fERFy9eFEKwjuvCmWKQmpTlVhpE0N21a1cxYcIE6b1OpxMRERFi5syZdiyV46nY4fV6vQgLCxOzZ8+WpmVnZwu1Wi1+/PFHIYQQx48fFwDE33//LaX5/fffhUwmE5cuXRJCCLFgwQLh7+8vSkpKpDSvvvqqaNmypfR++PDhYvDgwSbliY+PF88884xF19ERZGRkCABi27ZtQghDnSqVSrF8+XIpzYkTJwQAsXPnTiGEYcckl8tFWlqalGbhwoXCx8dHqtdXXnlFtGnTxmRZDz30kOjfv7/0vqFtC/7+/uKbb75hHVtYXl6eaN68udi4caPo1auXFHSzni1j2rRpokOHDpXOYx1bxquvviruvPPOKufz+886XnjhBdGsWTOh1+vZly1k8ODB4vHHHzeZdt9994mRI0cKIdiXLaGwsFAoFAqxZs0ak+mdO3cWr7/+OuvYAhw5BqlJWWrC5U8v12q12LdvHxITE6VpcrkciYmJ2Llzpx1L5vhSUlKQlpZmUne+vr6Ij4+X6m7nzp3w8/NDly5dpDSJiYmQy+XYvXu3lKZnz55QqVRSmv79++PkyZPIysqS0pRfjjGNK7ZRTk4OACAgIAAAsG/fPpSWlpqsf6tWrdCkSROTem7Xrh1CQ0OlNP3790dubi6OHTsmpamuDhvStqDT6bB06VIUFBQgISGBdWxhEyZMwODBg83qgvVsOcnJyYiIiEBMTAxGjhyJ8+fPA2AdW8qvv/6KLl264MEHH0RISAg6deqEr7/+WprP7z/L02q1WLJkCR5//HHIZDL2ZQvp1q0bNm/ejFOnTgEADh06hO3bt2PgwIEA2JctoaysDDqdDhqNxmS6u7s7tm/fzjq2Akeq05qUpSZcPui+du0adDqdyQ4bAEJDQ5GWlmanUjkHY/1UV3dpaWkICQkxme/m5oaAgACTNJXlUX4ZVaVxtTbS6/WYNGkSunfvjrZt2wIwrLtKpYKfn59J2or1XNc6zM3NRVFRUYPYFo4cOQIvLy+o1Wo8++yzWLVqFVq3bs06tqClS5di//79mDlzptk81rNlxMfHY/HixVi3bh0WLlyIlJQU9OjRA3l5eaxjCzl79iwWLlyI5s2bY/369Rg3bhyef/55fPfddwD4/WcNq1evRnZ2NsaMGQOA+wtLmTJlCkaMGIFWrVpBqVSiU6dOmDRpEkaOHAmAfdkSvL29kZCQgHfeeQeXL1+GTqfDkiVLsHPnTly5coV1bAWOVKc1KUtNuNU4JRHV24QJE3D06FFs377d3kVxSS1btsTBgweRk5ODFStWYPTo0di2bZu9i+UyLly4gBdeeAEbN240O+JPlmMcoQKA9u3bIz4+HlFRUVi2bBnc3d3tWDLXodfr0aVLF7z//vsAgE6dOuHo0aP44osvMHr0aDuXzjX9+9//xsCBAxEREWHvoriUZcuW4fvvv8cPP/yANm3a4ODBg5g0aRIiIiLYly3ov//9Lx5//HE0atQICoUCnTt3xsMPP4x9+/bZu2jkJFx+pDsoKAgKhcLsbpjp6ekICwuzU6mcg7F+qqu7sLAwZGRkmMwvKyvD9evXTdJUlkf5ZVSVxpXaaOLEiVizZg22bt2Kxo0bS9PDwsKg1WqRnZ1tkr5iPde1Dn18fODu7t4gtgWVSoXY2FjExcVh5syZ6NChAz799FPWsYXs27cPGRkZ6Ny5M9zc3ODm5oZt27bhs88+g5ubG0JDQ1nPVuDn54cWLVrg9OnT7MsWEh4ejtatW5tMu+2226TT+Pn9Z1nnzp3Dpk2b8OSTT0rT2Jct4+WXX5ZGu9u1a4fHHnsM//d//yedjcS+bBnNmjXDtm3bkJ+fjwsXLmDPnj0oLS1FTEwM69gKHKlOa1KWmnD5oFulUiEuLg6bN2+Wpun1emzevBkJCQl2LJnji46ORlhYmEnd5ebmYvfu3VLdJSQkIDs72+RI35YtW6DX6xEfHy+l+eOPP1BaWiql2bhxI1q2bAl/f38pTfnlGNO4QhsJITBx4kSsWrUKW7ZsQXR0tMn8uLg4KJVKk/U/efIkzp8/b1LPR44cMdm5bNy4ET4+PtIPx1vVYUPcFvR6PUpKSljHFtKnTx8cOXIEBw8elF5dunTByJEjpf9Zz5aXn5+PM2fOIDw8nH3ZQrp372726MZTp04hKioKAL//LG3RokUICQnB4MGDpWnsy5ZRWFgIudz057xCoYBerwfAvmxpnp6eCA8PR1ZWFtavX4+hQ4eyjq3Akeq0JmWpkRrfcs2JLV26VKjVarF48WJx/Phx8fTTTws/Pz+Tu2E2VHl5eeLAgQPiwIEDAoD4+OOPxYEDB8S5c+eEEIZb5Pv5+YlffvlFHD58WAwdOrTS2/V36tRJ7N69W2zfvl00b97c5Hb92dnZIjQ0VDz22GPi6NGjYunSpcLDw8Psdv1ubm5izpw54sSJE2LatGlO+wiEisaNGyd8fX1FUlKSyaNTCgsLpTTPPvusaNKkidiyZYvYu3evSEhIEAkJCdJ842NT+vXrJw4ePCjWrVsngoODK31syssvvyxOnDgh5s+fX+ljU1x1W5gyZYrYtm2bSElJEYcPHxZTpkwRMplMbNiwQQjBOraW8ncvF4L1bAkvvviiSEpKEikpKeKvv/4SiYmJIigoSGRkZAghWMeWsGfPHuHm5ibee+89kZycLL7//nvh4eEhlixZIqXh959l6HQ60aRJE/Hqq6+azWNfrr/Ro0eLRo0aSY8MW7lypQgKChKvvPKKlIZ9uf7WrVsnfv/9d3H27FmxYcMG0aFDBxEfHy+0Wq0QgnVcF84Ug9SkLLfSIIJuIYSYN2+eaNKkiVCpVKJr165i165d9i6SQ9i6dasAYPYaPXq0EMJwm/w333xThIaGCrVaLfr06SNOnjxpkkdmZqZ4+OGHhZeXl/Dx8RFjx44VeXl5JmkOHTok7rzzTqFWq0WjRo3EBx98YFaWZcuWiRYtWgiVSiXatGkjfvvtN6utty1VVr8AxKJFi6Q0RUVFYvz48cLf3194eHiIe++9V1y5csUkn9TUVDFw4EDh7u4ugoKCxIsvvihKS0tN0mzdulV07NhRqFQqERMTY7IMI1fdFh5//HERFRUlVCqVCA4OFn369JECbiFYx9ZSMehmPdffQw89JMLDw4VKpRKNGjUSDz30kMnzo1nHlvG///1PtG3bVqjVatGqVSvx1Vdfmczn959lrF+/XgAwqzsh2JctITc3V7zwwguiSZMmQqPRiJiYGPH666+bPCKJfbn+fvrpJxETEyNUKpUICwsTEyZMENnZ2dJ81nHtOVMMUpOy3IpMCCFqPi5ORERERERERDXl8td0ExEREREREdkLg24iIiIiIiIiK2HQTURERERERGQlDLqJiIiIiIiIrIRBNxEREREREZGVMOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIisqjevXujd+/eFssvNTUVMpkMixcvtliezmjWrFlo1aoV9Hq9vYtSKUu3uyU0bdoUY8aMsXcx6kQmk2H69Om1+syIESMwfPhw6xSIiIjqjEE3EVEDsHjxYshkMuml0WjQokULTJw4Eenp6fYuHt1Cbm4uPvzwQ7z66quQy/nVTZV79dVX8fPPP+PQoUP2LgoREZXjZu8CEBGR7bz99tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YXsXpUqO2O4nT5502oMURUVFcHOr3c+0Tp06oUuXLvjoo4/wn//8x0olIyKi2nLObyIiIqqTgQMH4tFHH8WTTz6JxYsXY9KkSUhJScEvv/xS77wLCwsBACqVCiqVqt752Zter0dxcbG9iwEAWLRoEYYMGQKNRmPvolTJEdtdrVZDqVRaJK/i4mKbntqv0WhqHXQDwPDhw7Fy5Urk5+dboVRERFQXDLqJiBqwu+66CwCQkpIiTVuyZAni4uLg7u6OgIAAjBgxAhcuXDD5XO/evdG2bVvs27cPPXv2hIeHB1577TVpXsVrezMyMvDEE08gNDQUGo0GHTp0wHfffWdWnuzsbIwZMwa+vr7w8/PD6NGjkZ2dXWnZt2zZgh49esDT0xN+fn4YOnQoTpw4YZYuKSkJXbp0gUajQbNmzfDll19i+vTpkMlkJulkMhkmTpyI77//Hm3atIFarca6desAAHPmzEG3bt0QGBgId3d3xMXFYcWKFWbLMuaxfPlytG7dGu7u7khISMCRI0cAAF9++SViY2Oh0WjQu3dvpKamVrpu5aWkpODw4cNITEw0m7d06VLExcXB29sbPj4+aNeuHT799FOzOp00aRIiIyOhVqsRGxuLDz/80CSANF43P2fOHMyfPx8xMTHw8PBAv379cOHCBQgh8M4776Bx48Zwd3fH0KFDcf36dZPl1PSabuOlDtu3b8fzzz+P4OBg+Pn54ZlnnoFWq0V2djZGjRoFf39/+Pv745VXXoEQwiSPmrZHZdd0nz17Fg8++CACAgLg4eGBO+64A7/99ptJmqSkJMhkMixduhRvvPEGGjVqBA8PD+Tm5la5XjUp06JFiyCTyfDtt9+aTH///fchk8mwdu1aaVrFa7rz8vIwadIkNG3aFGq1GiEhIejbty/2799vklffvn1RUFCAjRs3VllWIiKyLZ5eTkTUgJ05cwYAEBgYCAB477338Oabb2L48OF48skncfXqVcybNw89e/bEgQMH4OfnJ302MzMTAwcOxIgRI/Doo48iNDS00mUUFRWhd+/eOH36NCZOnIjo6GgsX74cY8aMQXZ2Nl544QUAgBACQ4cOxfbt2/Hss8/itttuw6pVqzB69GizPDdt2oSBAwciJiYG06dPR1FREebNm4fu3btj//79aNq0KQDgwIEDGDBgAMLDwzFjxgzodDq8/fbbCA4OrrSsW7ZswbJlyzBx4kQEBQVJ+Xz66acYMmQIRo4cCa1Wi6VLl+LBBx/EmjVrMHjwYJM8/vzzT/z666+YMGECAGDmzJm4++678corr2DBggUYP348srKyMGvWLDz++OPYsmVLtW20Y8cOAEDnzp1Npm/cuBEPP/ww+vTpgw8//BAAcOLECfz1119SnRYWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckz++//x5arRbPPfccrl+/jlmzZmH48OG46667kJSUhFdffRWnT5/GvHnz8NJLL5kFj7Xx3HPPISwsDDNmzMCuXbvw1Vdfwc/PDzt27ECTJk3w/vvvY+3atZg9ezbatm2LUaNGSZ+tTXuUl56ejm7duqGwsBDPP/88AgMD8d1332HIkCFYsWIF7r33XpP077zzDlQqFV566SWUlJRUO5JfkzKNHTsWK1euxOTJk9G3b19ERkbiyJEjmDFjBp544gkMGjSoyvyfffZZrFixAhMnTkTr1q2RmZmJ7du348SJEyZ9w3iw56+//jJbHyIishNBREQub9GiRQKA2LRpk7h69aq4cOGCWLp0qQgMDBTu7u7i4sWLIjU1VSgUCvHee++ZfPbIkSPCzc3NZHqvXr0EAPHFF1+YLatXr16iV69e0vu5c+cKAGLJkiXSNK1WKxISEoSXl5fIzc0VQgixevVqAUDMmjVLSldWViZ69OghAIhFixZJ0zt27ChCQkJEZmamNO3QoUNCLpeLUaNGSdPuuece4eHhIS5duiRNS05OFm5ubqLiVyAAIZfLxbFjx8zWqbCw0OS9VqsVbdu2FXfddZdZHmq1WqSkpEjTvvzySwFAhIWFSesqhBBTp04VAEzSVuaNN94QAEReXp7J9BdeeEH4+PiIsrKyKj/7zjvvCE9PT3Hq1CmT6VOmTBEKhUKcP39eCCFESkqKACCCg4NFdna2WRk7dOggSktLpekPP/ywUKlUori4WJpWsd2rYuyL/fv3F3q9XpqekJAgZDKZePbZZ6VpZWVlonHjxmb51rQ9oqKixOjRo6X3kyZNEgDEn3/+KU3Ly8sT0dHRomnTpkKn0wkhhNi6dasAIGJiYsyWVZWalunKlSsiICBA9O3bV5SUlIhOnTqJJk2aiJycHJN0AMS0adOk976+vmLChAk1KkuLFi3EwIEDa5SWiIisj6eXExE1IImJiQgODkZkZCRGjBgBLy8vrFq1Co0aNcLKlSuh1+sxfPhwXLt2TXqFhYWhefPm2Lp1q0learUaY8eOveUy165di7CwMJObgCmVSjz//PPIz8/Htm3bpHRubm4YN26clE6hUOC5554zye/KlSs4ePAgxowZg4CAAGl6+/bt0bdvX+kUXZ1Oh02bNmHYsGGIiIiQ0sXGxmLgwIGVlrVXr15o3bq12XR3d3fp/6ysLOTk5KBHjx5mp/YCQJ8+faQRcgCIj48HANx///3w9vY2m3727NlKy2KUmZkJNzc3eHl5mUz38/O75WnEy5cvR48ePeDv72/SpomJidDpdPjjjz9M0j/44IPw9fU1K+Ojjz5qcn1xfHw8tFotLl26VG3Zq/PEE0+YnOIfHx8PIQSeeOIJaZpCoUCXLl3M6qg27VHe2rVr0bVrV9x5553SNC8vLzz99NNITU3F8ePHTdKPHj3aZFnVqWmZwsLCMH/+fGzcuBE9evTAwYMH8e2338LHx6fa/P38/LB7925cvnz5lmUxtjcRETkGnl5ORNSAzJ8/Hy1atICbmxtCQ0PRsmVL6e7OycnJEEKgefPmlX624g2pGjVqVKMbZ507dw7Nmzc3u4v0bbfdJs03/g0PDzcLLlu2bGmWX2XTjXmuX78eBQUFyM3NRVFREWJjY83SVTYNAKKjoyudvmbNGrz77rs4ePAgSkpKpOkVrwsHgCZNmpi8NwaxkZGRlU7PysqqdJm3Mn78eCxbtgwDBw5Eo0aN0K9fPwwfPhwDBgyQ0iQnJ+Pw4cNVnk6fkZFhtbKnpaWZfaZ8YFqbZVVcTm3ao7xz585JBxLKK98X27ZtK02vqj9UpjZlGjFiBJYsWYLffvsNTz/9NPr06XPL/GfNmoXRo0cjMjIScXFxGDRoEEaNGoWYmBiztEKIW9YFERHZDoNuIqIGpGvXrujSpUul8/R6PWQyGX7//XcoFAqz+RWD4ZqOADqTytbpzz//xJAhQ9CzZ08sWLAA4eHhUCqVWLRoEX744Qez9JXVXXXTRYWbhFUUGBiIsrIy5OXlmYyUh4SE4ODBg1i/fj1+//13/P7771i0aBFGjRol3aROr9ejb9++eOWVVyrNu0WLFlYre3h4uMn7RYsWmdzUrDbLKr+c2rZHfdS0j9e2TJmZmdi7dy8A4Pjx49Dr9bd8tNnw4cPRo0cPrFq1Chs2bMDs2bPx4YcfYuXKlWZnbmRlZVV58IyIiGyPQTcREQEAmjVrBiEEoqOjzYKx+oiKisLhw4fNAot//vlHmm/8u3nzZuTn55sE+CdPnjTLr7LpxjyDgoLg6ekJjUYDjUaD06dPm6WrbFpVfv75Z2g0Gqxfvx5qtVqavmjRohrnUR+tWrUCYLiLefv27U3mqVQq3HPPPbjnnnug1+sxfvx4fPnll3jzzTcRGxuLZs2aIT8/v9I7n1tbxdPe27RpY5F869MeUVFRVfYb43xblGnChAnIy8vDzJkzMXXqVMydOxeTJ0++5XLCw8Mxfvx4jB8/HhkZGejcuTPee+89k6C7rKwMFy5cwJAhQ+q0LkREZHm8ppuIiAAA9913HxQKBWbMmGE2gimEQGZmZp3yHTRoENLS0vDTTz9J08rKyjBv3jx4eXmhV69eUrqysjIsXLhQSqfT6TBv3jyT/MLDw9GxY0d89913Jo8TO3r0KDZs2CDdAVqhUCAxMRGrV682uQ729OnT+P3332tcfoVCAZlMBp1OJ01LTU3F6tWra5xHfSQkJACANDJqVLE95HK5FJQbT28ePnw4du7cifXr15vlm52djbKyMmsUGYDh/gHlXxVHvuuqPu0xaNAg7NmzBzt37pSmFRQU4KuvvkLTpk0rvZ7f0mVasWIFfvrpJ3zwwQeYMmUKRowYgTfeeAOnTp2qMn+dToecnByTaSEhIYiIiDA5lR0wjJwXFxejW7dudVoXIiKyPI50ExERAMNI97vvvoupU6ciNTUVw4YNg7e3N1JSUrBq1So8/fTTeOmll2qd79NPP40vv/wSY8aMwb59+9C0aVOsWLECf/31F+bOnSudMn3PPfege/fumDJlClJTU9G6dWusXLnSLNgAgNmzZ2PgwIFISEjAE088IT0yzNfX1+TZxtOnT8eGDRvQvXt3jBs3DjqdDp9//jnatm2LgwcP1qj8gwcPxscff4wBAwbgkUceQUZGBubPn4/Y2FgcPny41vVRWzExMWjbti02bdqExx9/XJr+5JNP4vr167jrrrvQuHFjnDt3DvPmzUPHjh2la5Rffvll/Prrr7j77rsxZswYxMXFoaCgAEeOHMGKFSuQmpqKoKAgq6+DJdWnPaZMmYIff/wRAwcOxPPPP4+AgAB89913SElJwc8//3zLU7zrW6aMjAyMGzcO//rXvzBx4kQAwOeff46tW7dizJgx2L59e6VlyMvLQ+PGjfHAAw+gQ4cO8PLywqZNm/D333/jo48+Mkm7ceNGeHh4oG/fvnVaFyIisjwG3UREJJkyZQpatGiBTz75BDNmzABguLFVv3796ny6qru7O5KSkjBlyhR89913yM3NRcuWLc2u8ZXL5fj1118xadIkLFmyBDKZDEOGDMFHH32ETp06meSZmJiIdevWYdq0aXjrrbegVCrRq1cvfPjhhyY3v4qLi8Pvv/+Ol156CW+++SYiIyPx9ttv48SJE9Ipxbdy11134d///jc++OADTJo0CdHR0fjwww+Rmppqk6AbAB5//HG89dZbKCoqkq4zfvTRR/HVV19hwYIFyM7ORlhYGB566CFMnz5dCtw8PDywbds2vP/++1i+fDn+85//wMfHBy1atMCMGTNM7lTuLOrTHqGhodixYwdeffVVzJs3D8XFxWjfvj3+97//Vft8b0uVady4cSgpKcGiRYukG50FBgbiq6++wtChQzFnzpxKr7/38PDA+PHjsWHDBukpA7GxsViwYIHJ3f4Bwx3r77vvPpPr/4mIyL5k4lZ3cCEiInIxw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLJNHalH1IiMj0b9/f3zzzTf2LopNHDx4EJ07d8b+/fvRsWNHexeHiIhu4DXdRETk0oqKikzeJycnY+3atejdu7d9ClQHvr6+eOWVVzB79mzo9Xp7F8cplJaWIjMz0+lOn6+PDz74AA888AADbiIiB8ORbiIicmnh4eEYM2YMYmJicO7cOSxcuBAlJSU4cOAAH6vkotavX4+lS5di8eLF2LBhA69vJiIiu2LQTURELm3s2LHYunUr0tLSoFarkZCQgPfffx+dO3e2d9HISv71r3/h9OnTGDduHF577TV7F4eIiBo4Bt1EREREREREVsJruomIiIiIiIishEE3ERERERERkZU0mOd06/V6XL58Gd7e3tKzMYmIiIiIiMi1CCGQl5eHiIgIyOX2H2duMEH35cuXERkZae9iEBERERERkQ1cuHABjRs3tncxGk7Q7e3tDcBQ8T4+PnYujXPTarX46KOPAAAvvvgiAJi8V6lUdisbuaaKfa7SPnbsQ+DY+0Cb14A2r956em3yJiIiIiKnkZubi8jISCkGtLcGE3QbTyn38fFh0F1PWq0WGo0GAKS6LP+eQQtZWsU+V2kfS3gP8NIAR94y/G33JnDkHSDlfSD+bcP7uuZNRERERE7HUS4rbjBBNxE1ADcC6x+T/sLfa1/COxHz4dmx6oCbiIiIiMjaGHQTkUs5FzEZb15qjzK4oak6Dc8z4CYiIiIiO7L/rdyIiCxo9rKVKLtxPPHrjHuQs/d9O5eIiIiIiBoyBt1E5DIOJ32ENecCIINAIz935Om98PUfJwzXdhMRERER2QGDbiJyCeLwO/hgewkA4N5OjfHm3a0BAIuuP4jMA3MYeBMRERGRXfCabqo1uVyO1q1bS/8DMHtPZEmV9bmK/rziiR35LaFSyPF/fVugsb872jbywdFLufhSfILXxPk6501EREREVFdW+4U5f/58NG3aFBqNBvHx8dizZ0+VaRcvXgyZTGbyMj7Cx0gIgbfeegvh4eFwd3dHYmIikpOTrVV8qoabmxsefPBBPPjgg3BzczN7T2Rpt+pjer3AB//cDgB4LCEKkQEekMlkmNy3BQDgP6fDkRE9pU55ExERERHVh1WC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGlZ/x8fHBlStXpNe5c+dM5s+aNQufffYZvvjiC+zevRuenp7o378/iouLrbEKRORE/nf4Mo5fyYW32g0T/hUrTf9XyxB0auKH4lI9Fmw9Y8cSEhEREVFDZZWg++OPP8ZTTz2FsWPHonXr1vjiiy/g4eGBb7/9tsrPyGQyhIWFSa/Q0FBpnhACc+fOxRtvvIGhQ4eiffv2+M9//oPLly9j9erV1lgFInISJWU6zF5/EgDwbO9mCPBUSfNkMhle7NsSAPDD7vO4nF1klzISERERUcNl8aBbq9Vi3759SExMvLkQuRyJiYnYuXNnlZ/Lz89HVFQUIiMjMXToUBw7dkyal5KSgrS0NJM8fX19ER8fX22eZB1arRYzZszAjBkzoNVqzd4TWVp1feyH3edxMasIId5qjO3e1Oyz3WMD0TU6AFqdHp9vPV2rvImIiIiI6sviQfe1a9eg0+lMRqoBIDQ0FGlpaZV+pmXLlvj222/xyy+/YMmSJdDr9ejWrRsuXrwIANLnapNnSUkJcnNzTV5E5Fryiksxb4shkJ6U2AIeKvNrsg2j3YZru5f9fQEXrhfatIxERERE1LA5xK16ExISMGrUKHTs2BG9evXCypUrERwcjC+//LLOec6cORO+vr7SKzIy0oIlJiJH8PO+i7heoEVMkCeGd2lcZbr4mED0aB6EMr3AZ5t5A0YiIiIish2LB91BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPm0YwTJ+rjZ5Tp06FTk5OdLrwoULtV0VInJw+85nAwDu69wIborqd2fGO5n/vP8iruWXWLtoREREREQArBB0q1QqxMXFYfPmzdI0vV6PzZs3IyEhoUZ56HQ6HDlyBOHh4QCA6OhohIWFmeSZm5uL3bt3V5mnWq2Gj4+PyYuIXMuhC9kAgI6R/rdM26mJP1qFeUMvgN1nr1u5ZEREREREBlY5vXzy5Mn4+uuv8d133+HEiRMYN24cCgoKMHbsWADAqFGjMHXqVCn922+/jQ0bNuDs2bPYv38/Hn30UZw7dw5PPvkkAMM1mZMmTcK7776LX3/9FUeOHMGoUaMQERGBYcOGWWMViMjBZeaX4PyN67PbNfat0WcSmgUCAHadzbRauYiIiIiIyjO/65AFPPTQQ7h69SreeustpKWloWPHjli3bp10I7Tz589DLr8Z72dlZeGpp55CWloa/P39ERcXhx07dqB169ZSmldeeQUFBQV4+umnkZ2djTvvvBPr1q2DRqOxxioQkYM7fDEHABAT7Alfd2WNPnNHTCAW/ZXKoJuIiIiIbMYqQTcATJw4ERMnTqx0XlJSksn7Tz75BJ988km1+clkMrz99tt4++23LVVEqiO5XI7mzZtL/wMwe09kSZX1uYPSqeV+Nc4nPjoAMhmQnJGPa/klCPJSV5o3EREREZGlWC3oJtfl5uaGRx55xGRaxfdEllRZnzt0MRtA7YJuPw8VWoX54MSVXOw+ex2D24dXmjcRERERkaVwWIeInI4QQrqJWofGfrX67B0xAQB4XTcRERER2QaDbiJyOuevFyKrsBQqhRytwr1r9dk7YngzNSIiIiKyHZ5eTrWm1WoxZ84cAMBLL70EACbvVSqV3cpGrqlinzNez906wgdqN0Wt8qp4XbePSsb+S0RERERWw5FuqpPS0lKUlpZW+Z7I0sr3sUMXDHcur8313EbG67qBm8/rZv8lIiIiImth0E1ETsd4E7UOkTV7PndFvK6biIiIiGyFQTcROZVSnR5HLxlHuv3rlAev6yYiIiIiW2HQTURO5VR6PkrK9PDRuKFpoEed8qh4XTcRERERkbUw6CYip3L4xih3h0g/yGSyOuVR/rruPalZFisbEREREVFFDLqJyKkcvpgLoG43USvPeF33nhQG3URERERkPXxkGNWaTCZDVFSU9D8As/dEllS+zy25WPc7l5d3R0wgFv2Vit2pWXiM/ZeIiIiIrEQmhBD2LoQt5ObmwtfXFzk5OfDx8bF3cYioDvKKS9F+xgYIAfz9eiKCvdV1ziu7UItO72y0SF5ERERE5DgcLfbj6eVE5DSOXMqBEEAjP/d6B8kmz+tO4V3MiYiIiMg6GHQTkdM4dMEyp5Yb8XndRERERGRtDLqp1rRaLWbPno3Zs2dDq9WavSeyNGMfW75lDwBLBt2G53X/9ncy+y8RERERWQVvpEZ1UlhYWO17IksrLCxEmlYDwPC4MEswPq87S6dGZgEDbiIiIiKyPI50E5FTKBBKFEIFuQxo28gyN8Tw81ChZagXACBN522RPImIiIiIymPQTURO4ZreEwDQPMQLHirLnaQT39RwXXeankE3EREREVkeg24icgrGoLtDY1+L5ts12h8AcIVBNxERERFZAYNuInIKV28E3e0bW/ZZi7dH+QMQyBHuuJZfYtG8iYiIiIgYdBORwxNCIFPvAQBoG2HZkW4/DyUCZEUAgF1nr1s0byIiIiIiBt1UazKZDBEREYiIiIBMJjN7T2Rpl3NKoIUbFBBoHuJl0bxlMhla+OoBAH+eYdBNRERERJbFR4ZRrSmVSjz11FMm0yq+J7KkkxkFAIDbGvnC011t0byVSiUm3t8Hu/69G3+dzoQQggePiIiIiMhiONJNRA7v2OVcAECbcMueWm7Upak/NEo5MvJKcDI9zyrLICIiIqKGiUE3ETk8Kei20PO5K9IoFbgjJhAA8Mepq1ZZBhERERE1TAy6qdZKS0sxd+5czJ07F6WlpWbviSzt6KUcw98/11m8jxn7r/7ycQDAn8nXLJo/ERERETVsvKabak0IgZycHOl/AGbviSzlal4JMvJKAAioCq9avI8Z+3OgvgRAMHanXEeRVgd3lcKiyyEiIiKihokj3UTk0I5dNhzQ8ZUVQynTW205vrJihPmooS3TY08q72JORERERJbBoJuIHJrxeu5AeaFVlyOTAXfG8rpuIiIiIrIsqwXd8+fPR9OmTaHRaBAfH489e/ZUmfbrr79Gjx494O/vD39/fyQmJpqlHzNmjPRMaONrwIAB1io+ETkI40h3gMy6QTdwM+j+M5lBNxERERFZhlWC7p9++gmTJ0/GtGnTsH//fnTo0AH9+/dHRkZGpemTkpLw8MMPY+vWrdi5cyciIyPRr18/XLp0ySTdgAEDcOXKFen1448/WqP4RORAbDXSDQDdYgIhkwGn0vNxJafI6ssjIiIiItdnlaD7448/xlNPPYWxY8eidevW+OKLL+Dh4YFvv/220vTff/89xo8fj44dO6JVq1b45ptvoNfrsXnzZpN0arUaYWFh0svf398axSciB5FbXIpzmYZg2xZBt5+HEu0b+wEA/jzFu5gTERERUf1ZPOjWarXYt28fEhMTby5ELkdiYiJ27txZozwKCwtRWlqKgIAAk+lJSUkICQlBy5YtMW7cOGRmZlaZR0lJCXJzc01eZBkymQzBwcEIDg6WTvUv/57IUo7fGOVu5KdB45AAq/Sxiv23V/MgAMAfPMWciIiIiCzA4o8Mu3btGnQ6HUJDQ02mh4aG4p9//qlRHq+++ioiIiJMAvcBAwbgvvvuQ3R0NM6cOYPXXnsNAwcOxM6dO6FQmD/aZ+bMmZgxY0b9VoYqpVQqMX78eJNpFd8TWYLx1PI2Eb4YP8o6faxif+7ZIhifbTmN7aevQacXUMh5IImIiIiI6s7hntP9wQcfYOnSpUhKSoJGo5GmjxgxQvq/Xbt2aN++PZo1a4akpCT06dPHLJ+pU6di8uTJ0vvc3FxERkZat/BEZFHGm6i1ifC12TI7RPrBW+2G7MJSHL2Ugw6RfjZbNhERERG5HoufXh4UFASFQoH09HST6enp6QgLC6v2s3PmzMEHH3yADRs2oH379tWmjYmJQVBQEE6fPl3pfLVaDR8fH5MXETmXY5eMI922236VCjm68dFhRERERGQhFg+6VSoV4uLiTG6CZrwpWkJCQpWfmzVrFt555x2sW7cOXbp0ueVyLl68iMzMTISHh1uk3FRzpaWlWLBgARYsWIDS0lKz90SWUFyqw+mr+QCAlqEeVutjlfXfHs2DAQB/JvNmakRERERUP1Y5vXzy5MkYPXo0unTpgq5du2Lu3LkoKCjA2LFjAQCjRo1Co0aNMHPmTADAhx9+iLfeegs//PADmjZtirS0NACAl5cXvLy8kJ+fjxkzZuD+++9HWFgYzpw5g1deeQWxsbHo37+/NVaBqiGEwNWrV6X/AZi9J6qvk2l50OkFAj1VCPFSWa2PVdafe7UwBN37z2chr7gU3hqlRZdJRERERA2HVYLuhx56CFevXsVbb72FtLQ0dOzYEevWrZNurnb+/HnI5TcH2RcuXAitVosHHnjAJJ9p06Zh+vTpUCgUOHz4ML777jtkZ2cjIiIC/fr1wzvvvAO1Wm2NVSAiOzPeRK11hI/N74ofGeCBpoEeSM0sxI4zmejfpvpLY4iIiIiIqmK1G6lNnDgREydOrHReUlKSyfvU1NRq83J3d8f69estVDIicgZH7XATtfJ6tghG6s5z+DP5KoNuIiIiIqozi1/TTURkCcaR7raN7HMTxJ43ruv+4xSv6yYiIiKiumPQTUQOp0ynxz9Xbj6j2x7uaBYIN7kM568X4lxmgV3KQERERETOj0E3ETmcM1cLUFKmh5faDVEBHnYpg5faDXFR/gD46DAiIiIiqjsG3VRrMpkMvr6+8PX1hUwmM3tPVF/HblzP3TrcB3K5dftYdXn3vHEX89+Ppll0mURERETUcMhEA3nGU25uLnx9fZGTkwMfH/tcI0pENfPOmuP49/YUjOnWFNOHtLFbOS5cL0Sv2VuhF8Da53ugdQT3HURERESOztFiP450E5HDOSbdudy+O8nIAA8MbBcOAPhm+1m7loWIiIiInBODbiJyKGU6PY5dsu9N1Mp7qkcMAOB/hy4jPbfYzqUhIiIiImfDoJtqrbS0FPsW34O9i4eitLQUpaWl+Prrr/H111+jtLQUOPIOcHi6vYtJTurghWzklZTB30OJlmHeAGDexyzoVnl3jPTD7U39UaoTWLwj1aLLJiIiIiLXx6Cbak0Igdy8AnRR/QrZsfcghMDly5dx+fJlyI69Bxx5C5Ap7F1MclLbbtwp/M7mwVDIDTc2K9/HLH0biprk/eSN0e7vd51DQUmZRZdPRERERK7Nzd4FIOf0x/VeAIB/HZ8BrQAAGXoGbIPb8a1Au7eBdm/atXzkvIxBd68bdw53BIm3haJpoAdSMwuxfO8FjOkebe8iEREREZGT4Eg31dkf13thevE3aPVTZ2Src/GvwK0oaz2NATfV2bX8Ehy+aLiJWs/mQXYuzU0KuQxP3GkItL/9KxU6fYN46AMRERERWQCDbqoznZBh8akw6KHAquy7UFimhr71a/YuFjmx7cnXABiezx3io7FzaUw9EBcJPw8lzl8vxIZjfG43EREREdUMg26qs+vC3eT9udJwyI+/b6fSkCv448ap5T0d6NRyI3eVAo/GRwEAvv6Tjw8jIiIiopph0E115qMxHe1beW0Q3I7PMNy9nKiW9HqBP5Id73ru8kZ1i4JKIcf+89nYdy7L3sUhIiIiIifAoJvqpE/oDpTJTe/ivLeoq+Ga7iNvMfCmWjt+JRfX8rXwVCkQF+VvNt/DwwMeHh5WWXZN8w7x1mBoxwgAwDcc7SYiIiKiGmhwdy8v0BZAoTV/nJVCroDGTWOSripymRzuSvc6pS0sLazysUQymQweSo86pS0qLYJe6Kssh6fKs05pi8uKodPrzNJ0jY/DnE3tAQBxUf7Ydy4LYbGtUdL6AeihA8qKUFqhXjyUHpDJDI+AKikrQZm+6kcv1Satu9Idcpnh+JFWp0WprurnONcmrcZNA4VcUeu0pbpSaHXaKtOq3dRwk7vVOm2ZvgwlZSVVplUpVFAqlLVOq9PrUFxWXGVapUIJlUJV67R6oUdRaVGN0248fgkA0DXGD6X6IpSWqxY3uRtefvllAIZHfFW3zbnJ3aB2U0tpC0sLq0yrkCugUWmkvAu0BSjVVt7Oxn3Ekz1isHzfRaw/loZ/0q4hMsDdLC33EXVLy32EAfcRtU9bm+2+1vuIGv424O+IytNyH8F9BPcRtU/LfUTd0lbc7h2JTFj6obcOKjc3F76+vsAUAJXcn2lQ80H47ZHfpPee73tWuZH1iuqFpDFJ0vvg2cG4Vnit0rRdIrrg76f+lt43ndsU53LOVZq2dXBrHBt/THrfZkEbHL96vNK0Ub5RSJ2UKr2//evbsffy3krTBnkE4erLV6X3vRf3xrZz2ypN66H0QMFrNzfswT8MxtrkteYJBRBZ/BPk8MQLfZrj083J8PJMxzH9E5XmCwD5U/OlDWfM6jH47tB3VabNeCkDwZ6GU4wn/DYBC/YuqDJtygspaOrXFADw8oaXMWfnnCrTHh13FG1C2gAApidNx4xtM6pMu+fJPbi90e0AgNl/zcYrm16pMu3W0VvRu2lvAMD8PfMx8feJVaZd8/AaDG4xGACw+OBijP1lbJVplz2wDA+2eRAAsPzYcgxfMbzKtIuGLsKYjmMAAL+d+g13/3h3lWk/H/g5JnSdAABISk3Cv777V5VpZyXOwsvdDUHp35f+RtdvulaZdlqvaZjeezoA4FjGMbRd2LbKtC8lvITZ/WYDAFKzU3HHrKXQ6NshUzkf+W6/m6Qd32U85g+eDwC4WnAVIXNCqsx3dIfRWDxsMQDDl5TXTK8q0z7Q+gEsf3C59F42Q1Zl2vL7iFHf7sEfp64iV/ErslRfmaXlPuImMe3mV8yDyx/EiuMrqkzLfYQB9xEGFfcR0Z9W/ag+R9tHAPwdYcR9BPcR3EcYcB9hYKt9xCM/PIIfR/6InJwc+Pj4VPkZW+Hp5VQnCgRCDk8o5DLcERMIANCWWufUX3J9+cU6qPW3AQCK5fvtXJpbe6qH4YvdS9cXcuF5i9RERERE1JA1uJHuy1cvV3q0g6d8VJ62stM4SktLMXvR//D9xQDEBHng29Fx6P3Rn1DIBPa+3h0qlarSfHlamAFPCzNP+/vRyxi35ACaBrrjtxfizdIKncCKnwxHNh955BGUouq2qO1pYQqhwPfffw8AGPbgMCiVyirTGvcRQgj0n7sNp9IL0KtFAD5+qA00ypuXrTT0fURd03IfYcB9RO3T8tRRA+4j6paW+wgD7iNqn5b7iJscbR9x9fpVhASGOMxId4O7pttT5WnSeNWlq02eNVW+81oybfmNzZJpy+8cjLTQIjk9H0AAmgV7Icjzxo5UyFBSqoS/163rQ+2mhhrqGpWhNmlVCpW0A7ZXWqVCKX0RWTKtm9wNbqqabbK1SauQK2rch2uTVi6T1zjtH6cyAQC9W4ZW+hmtVotz526eKlXTfGUy2S3Tls/bQ+lR5UGjivnOGNIOYxbtwbZT1zHh+2P4ZvTt8FJXXucNbR9hibTcR9Q+rSvvI2qTtibbfV3SAtb7bcB9RO3Tch9R+7TcRxhwH1G3tM64j3AkPL2c6iRHb+j0scGeULnJobkx8piW61g3LSDHJ4SQns/tqI8Kq0xCs0D85/Gu8FK7YdfZ6xj59S5kFVQ92kBEREREDRODbqqTbGE4ghUbYjjy5iEzBBvpuVWfMkRUmTNXC3ApuwgqNzniYwLsXZxaiY8JxA9PxcPfQ4lDF3Pw0Fc7uQ0QERERkQkG3VRrQghk6w1Bd7NgQ9DtKTOMdKfncaS7ISrT6bHjzDUsSDqNQxeya/XZbTdGueOjA+BRw1PZHEn7xn5Y9kwCQn3UOJWejwe/2IkL16u+/ouIiIiIGhbn+4VbXwUFgML8Od1QKACNxjRdVeRywN29bmkLC4Gq7l0nkwEeHnVLW1QE6Ku+YQE8PeuWtrgY0JnesOB6Vj5K4AZAIDqwwkj3tbyq68PDw1BuACgpAcqqvqlJrdK6uxvqGQC0WqC06huV1CqtRnOzr9QmbWmpIX1V1GrAza32acvKDHVRFZUKMN4ErDZpdTpDO1dFqTSkr5BWLwR2pGThtxNXseGfa8gsNNbPSQzpEIGX+zVHpKbqR2dAqYTOTYnfj1wBAPSM8q2675Tvr0JUv825uRnqzZi2sJoAWKG42R8AQ75VtXM1+4jmXnKsGNURI78/hPPXC/HAwr+w5Mk70DzU2yytGRfcR9Q5LfcRBi6yj7hlWr3e0NcskbY2231t9xE1/W3A3xGVp+U+ovZpuY8w/M99RN3Sch9h+L+6/msPooHIyckRAESOoWuZvwYNMv2Ah0fl6QAhevUyTRsUVHXaLl1M00ZFVZ22dWvTtK1bV502Kso0bZcuVacNCjJN26tX1Wk9PEzTDhpkluaP6I4i6tU1ou2UFaKkpESUlJSIYa9/KaJeXSNeHPRC1Xnn59/Md/ToqtMBQmRk3Ew7fnz1aVNSbqZ96aXq0x49ejPttGnVp92z52baWbOqT7t16820n39efdo1a26mXbSo+rTLlt1Mu2xZ9WkXLbqZds2a6tN+/vnNtFu3Vp921qybaffsEQIQGR5+YsSI90TUq2ukV4fnfxAjp34vmk4xvG8+dY14v/dYka32rDTfspdeEpOWHhBRr64RzaauEal+YVWWoWT8eDF9+nQxffp0UXLpUvXlHT36Znnz86tP+8ADoqSk5GbeSmXVaWuwj0jzChB9H58vol5dIzrOWC++/uOMSE7PE/oGto8weZX3wAPVp+U+wvBygX1Ela9p026mPXq0+rQvvXQzbUpK9WnHj7+ZNiOj+rS13EeYqC4tf0cYXtxH3HxxH2F4cR9heHEfYXjZaB+R8/DDAoDIyckRjoCnl1OtJQc2AQD4i5tH/rzdDEez0r0C7VImqpnTgY0xYcgrGJIWjp6ztqLd9PXonlSIRXH3oLiGdz/9u1FrDB7zKXZGdYCHtggPH1yH//70Bv7+/DEsUZ3C/ybeiW7NAqHVA1/G348+T32B31t0M8lDJ5PjZVkrrDpwCQq5DPMSIxGVnVbtcpVKZZWP86ovS+Udmn8dP/0wBe3zryCrsBTv/nYCiR9vQ4/hs/FG33HYGNsVBcqa33mTiIiIiJxfg3tOd87lyp/TzVM+zNOuPXIFV67lYUyXCCjkN08TfvGXE/j5cDqeuzMKL97dFoDhutzR3+5BqxBPrHvm9srz5WlhBnY4LUynF/h290XM3noWWl3lfSrcR43nekThwQ5hUCrKHY+7cfqWEAL//uMMZq47CZ0AYoM88MUDbRAb7Flp2q0n0vHub8dxNtNwutfg24IxY2Bz+Lsr8cr//sHPh9OhkMvw+cOdMLBNqEudFlZQpsePh68i6eRV7Em5Dq3u5vamlMtwexNf3Bnjjy6RvmjfyBcaH6+bH3aifQQAnjrqIvuIatPy1NGb73nqaO3Tch9R+7TcRxj+5z6ibmm5jwAA5F69Ct8Qx3lOd8MLuh2k4h3db4evYMIP+wEAM+9rh4e7NpHmJX68Dacz8vHv0V3Q57ZQAMDJtDz0n/sH/DyUOPhWP7uUmSp34XohXlx2CHtSrwMAercMxqPxUfD3VMLXXYk9KVmYtyUZV3IMX4JBXmrc37kRHuzSGLEh3riYVYhfDl7G6gOXkJyRDwAY0iECM+9rB88qnkttVFKmw7zNp7Fw2xno9AL+Hkp0iPRD0smrhhHuhzthULtw61aAnRWUlGHnmUxsO3UVSacycOG66Y8CN7kMbSJ80DnKH3E3XuG+NX++JRERERGZcrTYz2pB9/z58zF79mykpaWhQ4cOmDdvHrp27Vpl+uXLl+PNN99Eamoqmjdvjg8//BCDBg2S5gshMG3aNHz99dfIzs5G9+7dsXDhQjRv3rxG5XG0iq+vvanXEe7njkZ+lv1xfvRSDhb9lYqf91+UprVr5Iv/PXcnACCrQIvO726EEMDfryci2NtwJLCgpAxtp6+HEMDeNxIR5OVYD6RvqDYdT8fkZQeRW1wGT5UCb97dGg/dHgmZzPQGZ8WlOvy45zwWJJ3B1XJ3oG8S4IHz5e7ErXaT4/XBt+GxO6LM8qjO0Us5eHnFYZy4kgsAUMhl+GxEJwxu79oBd0VCCJy9VoBtN0bA953PMqlvo3BfjSEIb2IIwltH+JiefWBDer1AZoEW2YVayGSATCaDXCaDQiaDTAbI5TLIZYD8xnS5DPBxV9qtvERERESOFvtZJej+6aefMGrUKHzxxReIj4/H3LlzsXz5cpw8eRIhISFm6Xfs2IGePXti5syZuPvuu/HDDz/gww8/xP79+9G2reH05Q8//BAzZ87Ed999h+joaLz55ps4cuQIjh8/Do3m1tdIOlrF18cPu8/jtVVH4O+hxNaXesPPQ2WRfAtKynDnh1uQVWh++tN/Hu+K5fsuIrtQiz+TryFco8NzLfIxfPhwAMCyZcvw8T9euKZVYOHIzvjtyBUUlJRhbPdo9GwRbJHyUc2V6fT4eOMpLEg6AwDo1MQPn43ohMgAj2o/V6rTY+s/GVi29yK2nsyATi8gkwF3RAfi3k6N0L9tGHzd63bts7ZMjy+2ncGvhy5jct8WtRrhLisrw7JlywAAw4cPh5ub5R68YM28b0UIgYtZRdh/Pgv7zmVh//ksnLiSB53edLesUcrRvpGfNBreuYkfAi1wYEuvF8gq1OJKTjEuZxchLbcYl7OLcSWnCFdyDH/Tc0pMTo+vCbkMCPXRIMLP/cZLg0Z+7gj3vfm/r7uyVgduiIiIiGrK0WI/qwTd8fHxuP322/H5558DAPR6PSIjI/Hcc89hypQpZukfeughFBQUYM2aNdK0O+64Ax07dsQXX3wBIQQiIiLw4osv4qWXXgIA5OTkIDQ0FIsXL8aIESNuWSZHq/i6EkKg7yd/4PSN03yfvDMaI7pGIjbEu855ZuaX4LcjV7Dt5FVs/icDAHBHTAAe7x6Nz7Yk4+ilXLPPdHK7hI7KK5g6dSoAYObMmdiqjUGqLsAknUwGDG4XjvjoAPyrVQga+1cf9NGtacv00AsBjdL80XfZhVr8eugyftxzQRpVHtOtKV4bdBtUbrUbeczIK8b+c1noEOln99OdtVotZs6cCQCYOnUqVCrLHGiydt51UVBShkMXs7H/nDEQz0ZOkfmBsAhfDQK91PDzUMLfQwV/DyX8bvz191RJB+Ou5ZXgWr7hlZmvxdX8ElzL1+JafgmuF2jNAvzKyGSQDrbo9QJCGB4ZpxMCesOtRaG/Ma2m3ygeKgUi/NwR5qNBiI8aId4ahHirzf53hGe3CyFQqhMo1elRphPQ6vQo0+tRWiZQqtebTC8t00MAUCpkcJPL4Vbur9L4vrJpchkPQhAREVmIo8V+Fv81o9VqsW/fPikYAwC5XI7ExETs3Lmz0s/s3LkTkydPNpnWv39/rF69GgCQkpKCtLQ0JCYmSvN9fX0RHx+PnTt31ijoro303GKzUz6r+iEpcOtfmMYfqABg/H0rkwGXs4twNa8EOr1A81BveKkVhtM25TJczCrC0Us52HcuC6mZBWjXyA/dYwOReq1ACrgB4JvtKfhmewru79wY7Rr5IMhbDV93JdzkchRqy5ByrQCRAR4I9FShUKuDRqnAucwC5BWXIT2vGLlFpdj6z1Wk5d68qcWs+9tj+O2RAIDz1wvNgu72jXxwW+YBs/UMlBUiFTeD7raNfHD0Ui7WHL6CNYevQLXmBB5LiEL7xr44dCEHV/NL0MjPHTHBnvBQKeChUkCjVEBbpkdecRlyi0uRV1wGvRDwVLlB7SaXattDpYCX2g0yGVCk1aOoVIeiUh2KtTrohIBSIYfKTQ6VQgalQl7uvfzGexkEYFhOUSlyikqRW1yKUp0eajcF1G5yaJSGv2qlHBo3BdRKOdRuhkC3oKQMBdoyFJTobvyvQ+GNaXo94OepRICHCv6eKvi6K1Gk1SHnxnKyC0tv/K9FbnEZ1G5y+Lgr4e+hRLivO8J9NVAq5NDpBQq0ZTiXWYizVwtwMasQGXmGQAkwnOrt56GEp8oNKjfDD/dTafnSqKSnSoEP7m+PezpE3LKPVibEW4MBbRvW6d+OwFPthm7NgtCtWRAAQ5B79lpBuSA8C8kZ+bicU4zLOdXcjKaGZDLDdfwRvhqE+7ojzFeDCD8NwnzdEeGrQZivBqE+mhqfLq7XC1wrKMHlbMPoueF14/8cw/tr+VoUanU4nZFvsj+rjLfaDcE+akMQ7q2Bl8YNbnLDflIhk0FxI2BVyOVQyAwBrTTvRjptmR7FN/YRRaU6FJfeeK/Vobjsxt8b041pSkp1NwPtGhyYsASF3LAuKuP+ys1032WcpqpkmlIhh7rcfIX85un+5S8LkMkgXQ4AoFyam39lsnLTITM5wKLXC+gr/K+7cbBFZ5ynv3kQpqp5hukCej1u5G0+T6e/eVBHVy5Pffn35cojkwEKk/WUQS43vfTBMO/m/wq56foaPlPztDKZDAq5eVq5dOlFhbQ3ppulNZZRbqhz4/EXmUwGGW7eD8w47+a0cmkrpJfdaD/jTLP5N+YZ8xO48cwdiBt/DXUvYJgpTa8wT9xIcHO6YZEV80HF/KtbRiVlQbnllV92lfmXe4/y5RI1W0ZF5evZbGKF6eWPn8nKzaksD5O0VRx4K9/+lS+j5ss2zbcm5a8kbRXLvlV93Ko8NVXXj9Z1mbK6LtEu61i3T7riId/C/Dx7F8GExYPua9euQafTITQ01GR6aGgo/vnnn0o/k5aWVmn6tLQ0ab5xWlVpKiopKUFJubsu5uaaj9ZWZcmuc5i35XSN09tCem46Np1Il94PaheGHWcykX3jVPCf91/Ez/vrnr9MZrih079ahuC+zo2k6Q/dHol1R9NQqtNjzoMd0MjfHQqhwwcfbDHLo5lbJi64N0NGXgn+L7EFXkhsjoMXsrHhWBr2pFzH3nNZ+Pf2lLoXkkyUlOmRnlsCwPQAUetwHzwQ1xhDO0ZY5BRksi+5XIbYEC/EhnhJB8NyCktx+mo+sgu1yCosvfG33P8FpcgqNBycCfZWI8hLjSAvFYK81Ags93+wtxoBniqLXn8tl8tujFRr0DHSr9I0xaW6m6e05xQjI68EGXk3/uYa/5agqFSHvJIy5F0tw9mr1dy51Q5Uihsj1TcO4hkP7rkpDD/PyvQCZTqBMr1hFNwYvJfpDKPjlf2o1+kNwWRJmb7iZk1ERES1oC+p5q7zdmD/8/asZObMmZgxY0adPuuldkOYj/l14hUPHlU8KlTd0SXjLOPogl4IBHqqEOCpQnGpHtfyDddN6oWATicgl8sQHeSJAE+VdFqoj0aJUr0ePZsH49lezfBPWi42nUhH+8Z++HHPeWQXlqJIq4NMZvjBp1TI0cjPHVdyipBfUgaNmwIlZToEeaml01DVSsOP7Qn/ikWQl9rsFEdvjRIrxpk+Y1mrrfz6Tk9ZKX6bmIAzmcWIjzaMeHeM9EPHSD8IIZB06iq+33Ue1/JL0K6RL5oEeODM1Xyk5RajUGsYbSrUlkHtpoC3xg0+7kp4a9wgl8lQpNWhpEwH4/H4Qq0O+SVlkAFQKxVwN75UCshkMIxQlRlO+9Tqbvwt00sjV8bRYG+N4Q7ePho3+N64+VNJmR4lZTqUlN74W6aX/i8uvTGKrFbAU+0GD5Xhr6fK7cZfw/KzCkuRVaDF9UItsgtL4alWwNf9xrLclfBzN4yAe2vcoC3TI7e4FNcLtLicXYz03GKU6fWGES6FHJEBHmgW7IkmgZ4IvXHqrZtChpwbI+aFWh20ZXpodTo08vNAy7C6X2pAzsHXQ4m4KH97F6PONEoFooM8ER3kWWUaIQTyS8qQkVcinX2UkVuCQq0OOr0eOiFQpjfsL3U3Rj7L9IbR0rIbwavxpbpx5opGKZf2FRqlAhqV8X/5zWk35quVpmfGuN3YHi11Krhebwi+y3Q3A3Gd3rB/KtUJwzZ9Y7suKTOfZvzfZF656WV6cXMUURohvjlKqL8xomccSTamkf7i5mUDxtFY4+i5rNz/5eeVH/WtyTyFvNyN+SqMSN/8zM0ReEWFkWtFhRFpIcwvd5Be+pvrJ42sG9PqK6Yvl1ZfIa0Q0Olv/i99ziQP09H58mnLj/DrzcpZrm2E6SgsgCpGg4U0r6rR2spGlm9uZzfnG0e/KxtlLz/PMMBefsS8khH0cqPx0ueqy7/Ce5RbVsU8bsytYvT+5ntUKLN5PlXMQ9W/50zqzmR6uf8hqphuPg1Vpa0kv8ryqm7Zlf1bs/KXny7MpqEm61qL8tdUZQcqa/Apqy+jbutSy3LVaRl1+EydliMc9tIobVE+frJ3IcqxeNAdFBQEhUKB9PR0k+np6ekICwur9DNhYWHVpjf+TU9PR3h4uEmajh07Vprn1KlTTU5Zz83NRWRkZI3W4ZlezfBMr2Y1SmtPnZr4o1MTww/v/m0qr1tb83VX4o4Y8x/SMplhFP1fLc1vpEd146NRomY9msj5yGQyeGuU8NYo0SzY69YfcDJyuQxquQK3eOoeERER1UFubi5+mmjvUtxk8We6qFQqxMXFYfPmzdI0vV6PzZs3IyEhodLPJCQkmKQHgI0bN0rpo6OjERYWZpImNzcXu3fvrjJPtVoNHx8fkxcRERERERGRLVnlGPvkyZMxevRodOnSBV27dsXcuXNRUFCAsWPHAgBGjRqFRo0aSXcMfuGFF9CrVy989NFHGDx4MJYuXYq9e/fiq6++AmAY8Zg0aRLeffddNG/eXHpkWEREBIYNG1ajMhlP5ajNtd1UOa1Wi+Jiww2cjPVZ/r297/5Mrqdin7P03cvZf4mIiIhchzFGscKDuupGWMm8efNEkyZNhEqlEl27dhW7du2S5vXq1UuMHj3aJP2yZctEixYthEqlEm3atBG//fabyXy9Xi/efPNNERoaKtRqtejTp484efJkjctz5swZgRuXM/HFF1988cUXX3zxxRdffPHl2q8zZ87UK6a1FKs8p9sRZWdnw9/fH+fPn4evr6+9i0O1ZLwm/8KFC7xUwAmx/Zwb28+5sf2cF9vOubH9nBvbz7nl5OSgSZMmyMrKgp+fn72L47p3L69ILjdcvu7r68sNx4nx+nznxvZzbmw/58b2c15sO+fG9nNubD/nZowB7c0xSkFERERERETkghh0ExEREREREVlJgwm61Wo1pk2bBrVabe+iUB2w/Zwb28+5sf2cG9vPebHtnBvbz7mx/Zybo7Vfg7mRGhEREREREZGtNZiRbiIiIiIiIiJbY9BNREREREREZCUMuomIiIiIiIishEE3ERERERERkZU0mKB7/vz5aNq0KTQaDeLj47Fnzx57F6nBmT59OmQymcmrVatW0vzi4mJMmDABgYGB8PLywv3334/09HSTPM6fP4/BgwfDw8MDISEhePnll1FWVmaSJikpCZ07d4ZarUZsbCwWL15si9VzOX/88QfuueceREREQCaTYfXq1SbzhRB46623EB4eDnd3dyQmJiI5OdkkzfXr1zFy5Ej4+PjAz88PTzzxBPLz803SHD58GD169IBGo0FkZCRmzZplVpbly5ejVatW0Gg0aNeuHdauXWvx9XUlt2q7MWPGmG2LAwYMMEnDtrOfmTNn4vbbb4e3tzdCQkIwbNgwnDx50iSNLfeX/P6suZq0Xe/evc22v2effdYkDdvOPhYuXIj27dvDx8cHPj4+SEhIwO+//y7N53bn2G7Vftz2nMsHH3wAmUyGSZMmSdOcehsUDcDSpUuFSqUS3377rTh27Jh46qmnhJ+fn0hPT7d30RqUadOmiTZt2ogrV65Ir6tXr0rzn332WREZGSk2b94s9u7dK+644w7RrVs3aX5ZWZlo27atSExMFAcOHBBr164VQUFBYurUqVKas2fPCg8PDzF58mRx/PhxMW/ePKFQKMS6detsuq6uYO3ateL1118XK1euFADEqlWrTOZ/8MEHwtfXV6xevVocOnRIDBkyRERHR4uioiIpzYABA0SHDh3Erl27xJ9//iliY2PFww8/LM3PyckRoaGhYuTIkeLo0aPixx9/FO7u7uLLL7+U0vz1119CoVCIWbNmiePHj4s33nhDKJVKceTIEavXgbO6VduNHj1aDBgwwGRbvH79ukkatp399O/fXyxatEgcPXpUHDx4UAwaNEg0adJE5OfnS2lstb/k92ft1KTtevXqJZ566imT7S8nJ0eaz7azn19//VX89ttv4tSpU+LkyZPitddeE0qlUhw9elQIwe3O0d2q/bjtOY89e/aIpk2bivbt24sXXnhBmu7M22CDCLq7du0qJkyYIL3X6XQiIiJCzJw5046lanimTZsmOnToUOm87OxsoVQqxfLly6VpJ06cEADEzp07hRCGQEIul4u0tDQpzcKFC4WPj48oKSkRQgjxyiuviDZt2pjk/dBDD4n+/ftbeG0aloqBm16vF2FhYWL27NnStOzs/sCY1gAAeXhJREFUbKFWq8WPP/4ohBDi+PHjAoD4+++/pTS///67kMlk4tKlS0IIIRYsWCD8/f2l9hNCiFdffVW0bNlSej98+HAxePBgk/LEx8eLZ555xqLr6KqqCrqHDh1a5WfYdo4lIyNDABDbtm0TQth2f8nvz/qp2HZCGH74l/8RWRHbzrH4+/uLb775htudkzK2nxDc9pxFXl6eaN68udi4caNJmzn7Nujyp5drtVrs27cPiYmJ0jS5XI7ExETs3LnTjiVrmJKTkxEREYGYmBiMHDkS58+fBwDs27cPpaWlJu3UqlUrNGnSRGqnnTt3ol27dggNDZXS9O/fH7m5uTh27JiUpnwexjRsa8tKSUlBWlqaSV37+voiPj7epL38/PzQpUsXKU1iYiLkcjl2794tpenZsydUKpWUpn///jh58iSysrKkNGxTy0tKSkJISAhatmyJcePGITMzU5rHtnMsOTk5AICAgAAAtttf8vuz/iq2ndH333+PoKAgtG3bFlOnTkVhYaE0j23nGHQ6HZYuXYqCggIkJCRwu3MyFdvPiNue45swYQIGDx5sVs/Ovg261fmTTuLatWvQ6XQmlQ8AoaGh+Oeff+xUqoYpPj4eixcvRsuWLXHlyhXMmDEDPXr0wNGjR5GWlgaVSgU/Pz+Tz4SGhiItLQ0AkJaWVmk7GudVlyY3NxdFRUVwd3e30to1LMb6rqyuy7dFSEiIyXw3NzcEBASYpImOjjbLwzjP39+/yjY15kG1N2DAANx3332Ijo7GmTNn8Nprr2HgwIHYuXMnFAoF286B6PV6TJo0Cd27d0fbtm0BwGb7y6ysLH5/1kNlbQcAjzzyCKKiohAREYHDhw/j1VdfxcmTJ7Fy5UoAbDt7O3LkCBISElBcXAwvLy+sWrUKrVu3xsGDB7ndOYGq2g/gtucMli5div379+Pvv/82m+fs330uH3ST4xg4cKD0f/v27REfH4+oqCgsW7aMwTCRDY0YMUL6v127dmjfvj2aNWuGpKQk9OnTx44lo4omTJiAo0ePYvv27fYuCtVSVW339NNPS/+3a9cO4eHh6NOnD86cOYNmzZrZuphUQcuWLXHw4EHk5ORgxYoVGD16NLZt22bvYlENVdV+rVu35rbn4C5cuIAXXngBGzduhEajsXdxLM7lTy8PCgqCQqEwu7Ndeno6wsLC7FQqAgA/Pz+0aNECp0+fRlhYGLRaLbKzs03SlG+nsLCwStvROK+6ND4+PgzsLchY39VtV2FhYcjIyDCZX1ZWhuvXr1ukTbn9Wk5MTAyCgoJw+vRpAGw7RzFx4kSsWbMGW7duRePGjaXpttpf8vuz7qpqu8rEx8cDgMn2x7azH5VKhdjYWMTFxWHmzJno0KEDPv30U253TqKq9qsMtz3Hsm/fPmRkZKBz585wc3ODm5sbtm3bhs8++wxubm4IDQ116m3Q5YNulUqFuLg4bN68WZqm1+uxefNmk2s8yPby8/Nx5swZhIeHIy4uDkql0qSdTp48ifPnz0vtlJCQgCNHjpgEAxs3boSPj4906lBCQoJJHsY0bGvLio6ORlhYmEld5+bmYvfu3SbtlZ2djX379klptmzZAr1eL33RJSQk4I8//kBpaamUZuPGjWjZsiX8/f2lNGxT67p48SIyMzMRHh4OgG1nb0IITJw4EatWrcKWLVvMTuO31f6S35+1d6u2q8zBgwcBwGT7Y9s5Dr1ej5KSEm53TsrYfpXhtudY+vTpgyNHjuDgwYPSq0uXLhg5cqT0v1Nvg3W+BZsTWbp0qVCr1WLx4sXi+PHj4umnnxZ+fn4md7Yj63vxxRdFUlKSSElJEX/99ZdITEwUQUFBIiMjQwhheAxAkyZNxJYtW8TevXtFQkKCSEhIkD5vfAxAv379xMGDB8W6detEcHBwpY8BePnll8WJEyfE/Pnz+ciwOsrLyxMHDhwQBw4cEADExx9/LA4cOCDOnTsnhDA8MszPz0/88ssv4vDhw2Lo0KGVPjKsU6dOYvfu3WL79u2iefPmJo+dys7OFqGhoeKxxx4TR48eFUuXLhUeHh5mj51yc3MTc+bMESdOnBDTpk3jY6duobq2y8vLEy+99JLYuXOnSElJEZs2bRKdO3cWzZs3F8XFxVIebDv7GTdunPD19RVJSUkmj7YpLCyU0thqf8nvz9q5VdudPn1avP3222Lv3r0iJSVF/PLLLyImJkb07NlTyoNtZz9TpkwR27ZtEykpKeLw4cNiypQpQiaTiQ0bNgghuN05uuraj9uec6p4x3ln3gYbRNAthBDz5s0TTZo0ESqVSnTt2lXs2rXL3kVqcB566CERHh4uVCqVaNSokXjooYfE6dOnpflFRUVi/Pjxwt/fX3h4eIh7771XXLlyxSSP1NRUMXDgQOHu7i6CgoLEiy++KEpLS03SbN26VXTs2FGoVCoRExMjFi1aZIvVczlbt24VAMxeo0ePFkIYHhv25ptvitDQUKFWq0WfPn3EyZMnTfLIzMwUDz/8sPDy8hI+Pj5i7NixIi8vzyTNoUOHxJ133inUarVo1KiR+OCDD8zKsmzZMtGiRQuhUqlEmzZtxG+//Wa19XYF1bVdYWGh6NevnwgODhZKpVJERUWJp556yuyLhG1nP5W1HQCTfZkt95f8/qy5W7Xd+fPnRc+ePUVAQIBQq9UiNjZWvPzyyybPChaCbWcvjz/+uIiKihIqlUoEBweLPn36SAG3ENzuHF117cdtzzlVDLqdeRuUCSFE3cfJiYiIiIiIiKgqLn9NNxEREREREZG9MOgmIiIiIiIishIG3URERERERERWwqCbiIiIiIiIyEoYdBMRERERERFZCYNuIiIiIiIiIith0E1ERERERERkJQy6iYiIiIiIiKyEQTcRERERERGRlTDoJiIiIiIiIrISBt1EREREREREVsKgm4iIiIiIiMhKGHQTERERERERWQmDbiIiIiIiIiIrYdBNREREREREZCUMuomIiIiIiIishEE3ERERERERkZUw6CYiomr17t0bvXv3tlh+qampkMlkWLx4scXydEazZs1Cq1atoNfrb5l2zJgx8PLyskGpyBk1bdoUY8aMqfXnMjMz4enpibVr11q+UEREJGHQTUTkhBYvXgyZTCa9NBoNWrRogYkTJyI9Pd3exaNbyM3NxYcffohXX30Vcrnhq7iwsBDTp09HUlKSfQtHAIAFCxa4/IGhwMBAPPnkk3jzzTftXRQiIpfmZu8CEBFR3b399tuIjo5GcXExtm/fjoULF2Lt2rU4evQoPDw8LLKMDRs2WCQfuunbb79FWVkZHn74YWlaYWEhZsyYAQAWPbOA6mbBggUICgqq0wiyM3n22Wfx2WefYcuWLbjrrrvsXRwiIpfEkW4iIic2cOBAPProo3jyySexePFiTJo0CSkpKfjll1/qnXdhYSEAQKVSQaVS1Ts/e9Pr9SguLrZ3MQAAixYtwpAhQ6DRaOxdlFsqKCiwdxHIim677Ta0bdvW5Uf1iYjsiUE3EZELMY5UpaSkSNOWLFmCuLg4uLu7IyAgACNGjMCFCxdMPte7d2+0bdsW+/btQ8+ePeHh4YHXXntNmldx5DUjIwNPPPEEQkNDodFo0KFDB3z33Xdm5cnOzsaYMWPg6+sLPz8/jB49GtnZ2ZWWfcuWLejRowc8PT3h5+eHoUOH4sSJE2bpkpKS0KVLF2g0GjRr1gxffvklpk+fDplMZpJOJpNh4sSJ+P7779GmTRuo1WqsW7cOADBnzhx069YNgYGBcHd3R1xcHFasWGG2LGMey5cvR+vWreHu7o6EhAQcOXIEAPDll18iNjYWGo0GvXv3RmpqaqXrVl5KSgoOHz6MxMREaVpqaiqCg4MBADNmzJAuG5g+fbrJZy9duoRhw4bBy8sLwcHBeOmll6DT6UzS6PV6zJ07F23atIFGo0FoaCieeeYZZGVl3bJsxmvHz5w5g0GDBsHb2xsjR46sVb579+5F//79ERQUBHd3d0RHR+Pxxx83SVNQUIAXX3wRkZGRUKvVaNmyJebMmQMhhEk6Y/2vXr0abdu2hVqtRps2baR2NDp37hzGjx+Pli1bwt3dHYGBgXjwwQfN2sN4WcZff/2FyZMnIzg4GJ6enrj33ntx9epVKV3Tpk1x7NgxbNu2TWqLW519UNs+dat1Amre1yuTnZ2NSZMmSXUcGxuLDz/8sNJ7CPTt2xf/+9//zOqfiIgsg6eXExG5kDNnzgAwXKsJAO+99x7efPNNDB8+HE8++SSuXr2KefPmoWfPnjhw4AD8/Pykz2ZmZmLgwIEYMWIEHn30UYSGhla6jKKiIvTu3RunT5/GxIkTER0djeXLl2PMmDHIzs7GCy+8AAAQQmDo0KHYvn07nn32Wdx2221YtWoVRo8ebZbnpk2bMHDgQMTExGD69OkoKirCvHnz0L17d+zfvx9NmzYFABw4cAADBgxAeHg4ZsyYAZ1Oh7ffflsKWCvasmULli1bhokTJyIoKEjK59NPP8WQIUMwcuRIaLVaLF26FA8++CDWrFmDwYMHm+Tx559/4tdff8WECRMAADNnzsTdd9+NV155BQsWLMD48eORlZWFWbNm4fHHH8eWLVuqbaMdO3YAADp37ixNCw4OxsKFCzFu3Djce++9uO+++wAA7du3l9LodDr0798f8fHxmDNnDjZt2oSPPvoIzZo1w7hx46R0zzzzDBYvXoyxY8fi+eefR0pKCj7//HMcOHAAf/31F5RKZbXlKysrQ//+/XHnnXdizpw50mUKNck3IyMD/fr1Q3BwMKZMmQI/Pz+kpqZi5cqVUv5CCAwZMgRbt27FE088gY4dO2L9+vV4+eWXcenSJXzyyScm5dm+fTtWrlyJ8ePHw9vbG5999hnuv/9+nD9/Xurnf//9N3bs2IERI0agcePGSE1NxcKFC9G7d28cP37c7FKL5557Dv7+/pg2bRpSU1Mxd+5cTJw4ET/99BMAYO7cuXjuuefg5eWF119/HQCq3B6MatOnarJOte3r5RUWFqJXr164dOkSnnnmGTRp0gQ7duzA1KlTceXKFcydO9ckfVxcHD755BMcO3YMbdu2vWX+RERUS4KIiJzOokWLBACxadMmcfXqVXHhwgWxdOlSERgYKNzd3cXFixdFamqqUCgU4r333jP57JEjR4Sbm5vJ9F69egkA4osvvjBbVq9evUSvXr2k93PnzhUAxJIlS6RpWq1WJCQkCC8vL5GbmyuEEGL16tUCgJg1a5aUrqysTPTo0UMAEIsWLZKmd+zYUYSEhIjMzExp2qFDh4RcLhejRo2Spt1zzz3Cw8NDXLp0SZqWnJws3NzcRMWvNABCLpeLY8eOma1TYWGhyXutVivatm0r7rrrLrM81Gq1SElJkaZ9+eWXAoAICwuT1lUIIaZOnSoAmKStzBtvvCEAiLy8PJPpV69eFQDEtGnTzD4zevRoAUC8/fbbJtM7deok4uLipPd//vmnACC+//57k3Tr1q2rdHpVy5kyZYrJ9Jrmu2rVKgFA/P3331Uuw9gv3n33XZPpDzzwgJDJZOL06dPSNABCpVKZTDt06JAAIObNmydNq9ieQgixc+dOAUD85z//kaYZt5vExESh1+ul6f/3f/8nFAqFyM7Olqa1adPGpN/fSm36VE3WqTZ9PSoqSowePVp6/8477whPT09x6tQpk3RTpkwRCoVCnD9/3mT6jh07BADx008/1Xh9iYio5nh6ORGRE0tMTERwcDAiIyMxYsQIeHl5YdWqVWjUqBFWrlwJvV6P4cOH49q1a9IrLCwMzZs3x9atW03yUqvVGDt27C2XuXbtWoSFhZncBEypVOL5559Hfn4+tm3bJqVzc3MzGYVVKBR47rnnTPK7cuUKDh48iDFjxiAgIECa3r59e/Tt21d6nJFOp8OmTZswbNgwRERESOliY2MxcODASsvaq1cvtG7d2my6u7u79H9WVhZycnLQo0cP7N+/3yxtnz59pBFyAIiPjwcA3H///fD29jabfvbs2UrLYpSZmQk3N7c6PQLs2WefNXnfo0cPk+UtX74cvr6+6Nu3r0mbx8XFwcvLy6zNq1K+zWqTr/HMiTVr1qC0tLTSvNeuXQuFQoHnn3/eZPqLL74IIQR+//13k+mJiYlo1qyZ9L59+/bw8fExWe/y7VlaWorMzEzExsbCz8+v0jZ9+umnTU7R7tGjB3Q6Hc6dO1ddtVSrNn3qVutUl75e3vLly9GjRw/4+/ubtFdiYiJ0Oh3++OMPk/T+/v4AgGvXrtVupYmIqEZ4ejkRkRObP38+WrRoATc3N4SGhqJly5bSI6iSk5MhhEDz5s0r/WzF04wbNWpUoxumnTt3Ds2bN5eWY3TbbbdJ841/w8PDzYLLli1bmuVX2XRjnuvXr0dBQQFyc3NRVFSE2NhYs3SVTQOA6OjoSqevWbMG7777Lg4ePIiSkhJpemXXyjZp0sTkva+vLwAgMjKy0uk1uXa6LjQajdmpxf7+/ibLS05ORk5ODkJCQirNIyMj45bLcXNzQ+PGjU2m1TTfXr164f7778eMGTPwySefoHfv3hg2bBgeeeQRqNVqAIb2joiIMDlgAZj3H6OK9Q+Yr3dRURFmzpyJRYsW4dKlSybXJufk5Jh9vmKexqCzPm1Xnz5lLINx+RkZGbXu6+UlJyfj8OHDVZ6KXrEfGOurJteKExFR7THoJiJyYl27dkWXLl0qnafX6yGTyfD7779DoVCYza8YDJcfqXMVla3Tn3/+iSFDhqBnz55YsGABwsPDoVQqsWjRIvzwww9m6Suru+qmi1vcjCowMBBlZWXIy8szCzyrU9XyytPr9QgJCcH3339f6fyaXA+sVqvNDqjUNF+ZTIYVK1Zg165d+N///of169fj8ccfx0cffYRdu3bVaXS/JvX83HPPYdGiRZg0aRISEhLg6+sLmUyGESNGVHrjsLq2XVUs1afquvyK9Ho9+vbti1deeaXS+S1atDB5bwz2g4KCLLJ8IiIyxaCbiMhFNWvWDEIIREdHm/3Iro+oqCgcPnwYer3eJDj7559/pPnGv5s3b0Z+fr5JsHXy5Emz/CqbbswzKCgInp6e0Gg00Gg0OH36tFm6yqZV5eeff4ZGo8H69eul0VfA8BgvW2jVqhUAw13My98ozRKjjM2aNcOmTZvQvXt3ix5EqW2+d9xxB+644w689957+OGHHzBy5EgsXboUTz75JKKiorBp0yazgw4V+09trFixAqNHj8ZHH30kTSsuLq7yTvk1UZv2sHSfCgkJqVdfb9asGfLz803ukF8d49MOjGcbEBGRZfGabiIiF3XfffdBoVBgxowZZiNoQghkZmbWKd9BgwYhLS1NutMzYLjj9bx58+Dl5YVevXpJ6crKyrBw4UIpnU6nw7x580zyCw8PR8eOHfHdd9+ZBElHjx7Fhg0bMGjQIACG0cHExESsXr0aly9fltKdPn3a7Drg6igUCshkMpNHbaWmpmL16tU1zqM+EhISABgerVWe8Q7b9QkUhw8fDp1Oh3feecdsXllZWZ3zrmm+WVlZZn2tY8eOACCdcj1o0CDodDp8/vnnJuk++eQTyGSyGl2zXJFCoTBb7rx588wep1Ybnp6eNa4vS/ep+vb14cOHY+fOnVi/fr3ZvOzsbJSVlZlM27dvH3x9fdGmTZs6lZeIiKrHkW4iIhfVrFkzvPvuu5g6dSpSU1MxbNgweHt7IyUlBatWrcLTTz+Nl156qdb5Pv300/jyyy8xZswY7Nu3D02bNsWKFSvw119/Ye7cudLo5T333IPu3btjypQpSE1NRevWrbFy5cpKr7GdPXs2Bg4ciISEBDzxxBPSI8N8fX1NnlU9ffp0bNiwAd27d8e4ceOk4K1t27Y4ePBgjco/ePBgfPzxxxgwYAAeeeQRZGRkYP78+YiNjcXhw4drXR+1FRMTg7Zt22LTpk0mz692d3dH69at8dNPP6FFixYICAhA27Zta/UIp169euGZZ57BzJkzcfDgQfTr1w9KpRLJyclYvnw5Pv30UzzwwAO1LnNN8/3uu++wYMEC3HvvvWjWrBny8vLw9ddfw8fHRzp4cs899+Bf//oXXn/9daSmpqJDhw7YsGEDfvnlF0yaNMnkBmM1dffdd+O///0vfH190bp1a+zcuRObNm2SHr9VF3FxcVi4cCHeffddxMbGIiQkBHfddVelaa3Rp+rT119++WX8+uuvuPvuuzFmzBjExcWhoKAAR44cwYoVK5CammpyKvnGjRtxzz338JpuIiJrscs904mIqF6Mjz6q7tFMRj///LO48847haenp/D09BStWrUSEyZMECdPnpTS9OrVS7Rp06bSz1d8ZJgQQqSnp4uxY8eKoKAgoVKpRLt27UweAWaUmZkpHnvsMeHj4yN8fX3FY489Jg4cOGD2yDAhhNi0aZPo3r27cHd3Fz4+PuKee+4Rx48fN8tz8+bNolOnTkKlUolmzZqJb775Rrz44otCo9GYpAMgJkyYUOk6/fvf/xbNmzcXarVatGrVSixatEhMmzat0seOVcwjJSVFABCzZ882mb5161YBQCxfvrzSZZb38ccfCy8vL7PHTO3YsUPExcUJlUpl8viw0aNHC09PT7N8KiuzEEJ89dVXIi4uTri7uwtvb2/Rrl078corr4jLly9XW66qllPTfPfv3y8efvhh0aRJE6FWq0VISIi4++67xd69e03yycvLE//3f/8nIiIihFKpFM2bNxezZ882eYyXEFW3YcVHZGVlZUn90cvLS/Tv31/8888/Zumq2m6Mbbd161ZpWlpamhg8eLDw9vYWAG75+LD69KnK1kmImvf1yj6bl5cnpk6dKmJjY4VKpRJBQUGiW7duYs6cOUKr1UrpTpw4IT1+kIiIrEMmhIXu2kFERGQnw4YNw7Fjx5CcnGzvotRITk4OYmJiMGvWLDzxxBP2Lg45EUv39UmTJuGPP/7Avn37ONJNRGQlvKabiIicSlFRkcn75ORkrF27Fr1797ZPgerA19cXr7zyCmbPnl3p3bWJAOv39czMTHzzzTd49913GXATEVkRR7qJiMiphIeHY8yYMYiJicG5c+ewcOFClJSU4MCBA1U+k5zIGbGvExG5Bt5IjYiInMqAAQPw448/Ii0tDWq1GgkJCXj//fcZhJDLYV8nInINHOkmIiIiIiIishJe001ERERERERkJQy6iYiIiIiIiKykwVzTrdfrcfnyZXh7e/MOnURERERERC5KCIG8vDxERERALrf/OHODCbovX76MyMhIexeDiIiIiIiIbODChQto3LixvYvRcIJub29vAIaK9/HxsXNpiGxDCIHS0lIAgFKprPYsj9qktbUale3oTEAmB9q8aj7v2IeA0ANtp9YtbyIiIiJyGrm5uYiMjJRiQHtrMEG38Ye0j48Pg25qMLRaLebOnQsAmDp1KlQqlUXS2lqNyubtARx5C/DSAO3evDn9yDtAyvtAu7eBSrZ9R15vIiIiIqo7RxlMaTBBNxG5OGOgfeQt5GgVuNbkeTRL+8QQiLd72zQQJyIiIiKyEQbdROQ62r2J/FI57l0diHPaLVje7Ht0voMBNxERERHZj/1v5UZEZEFvJQ/GWW1j6KDA3IxHGXATERERkV0x6CYil7Fy/0WsPHAJcuiggA5/5HXCga0f2btYRERERNSAMegmIpeQcq0Ab6zcDwCY1D4d98VFAQA+3ZFvuJkaEREREZEdMOgmIqdXUqbDc9+uRWGZAvEheZgw4klMvCsWCrkMSXldcGj3fxl4ExEREZFd8EZqRC5MLpejdevW0v+WSmtrtyrb7HUncfS6B/xUZZj7xFAo5DJEBXpiaMcIrNx/CZ8VTce/xak65U1EREREVB8yIYSwdyFsITc3F76+vsjJyeFzuolcyNaTGRi76G8AwNejuqBv61Bp3tmr+Uj8eBv0Aljz3J1o28jXXsUkIiIiIhtxtNiPwzpE5LQy8orx0rJDAIDRCVEmATcAxAR7YUiHCADAp5uTbV4+IiIiIiIG3UTktJb9fQGZBVq0CvPG1EG3VZpm4l3NIZMBG4+n49jlHBuXkIiIiIgaOgbdRC5Mq9VixowZmDFjBrRarcXS2lpVZTtwPhsAMLxLJDRKRaWfjQ3xwj3tDaPd8zafrnHeRERERESWwKCbiJySEAKHLmYDADpE+lWb9rm7YiGTAeuOpeGftFzrF46IiIiI6AYG3UTklC5mFeFavhZuchnaRFR/g4zmod4Y1C4cQOWj3URERERE1sKgm4ic0sEL2QCA28J9qjy1vLzn72oOAFh79ArSc4utWTQiIiIiIgmDbiJySoduBN0db3FquVHLMG+0a+QLIYBdZzOtVzAiIiIionIYdBORUzKOdN/qeu7y7ogJAADsOnvdCiUiIiIiIjLHoJuInE6pTo+jNx7/VdORbgCIjw4EAOzmSDcRERER2YibvQtARNYjl8vRvHlz6X9LpbW1imX7Jy0PxaV6eGvcEBPkWeN8bo8OgEwGnL1WgIzcYoT4aBx6vYmIiIjI+THoJnJhbm5ueOSRRyye1tYqlk16VFhjP8jlshrn4+uuRJsIHxy9lItdKdcxpEOEQ683ERERETk/DusQkdM5eD4bQO1OLTcynmLOm6kRERERkS0w6CYipyONdNch6L4jhtd1ExEREZHt8PRyIhem1WoxZ84cAMBLL70ElUplkbS2Vr5sz06chOSMfABAh0jfWufVtanhuu4zVwuQkVcMP7XcYdebiIiIiJwfR7qJXFxpaSlKS0stntbWjGU7ejkXQgCN/NwR4q2pdT6+HkrcFuYDANh949FhjrzeREREROTcGHQTkVM5dLH2jwqrSDrFPIWnmBMRERGRdTHoJiKncvhSLoC6nVpudEdMAABg142RbiIiIiIia2HQTURO5eZIt3+d8+h643ndpzPycS2/xFJFIyIiIiIyw6CbiJxGgVAiI68ECrkMbRv51DkfPw8VWt24rntPapalikdEREREZIZBNxE5jat6TwBAi1BveKjq9/AF4ynmDLqJiIiIyJoYdBO5MJlMhqioKERFRUEmk1ksra0Zy6b1igAAdKzH9dxG8dGGm6ntScly2PUmIiIiIucnE0IIexfCFnJzc+Hr64ucnBz4+NT9tFQisp8RX+3ErrPX8eH97fDQ7U3qlVdWgRad3tkIANj7RiKCvNSWKCIRERER2ZmjxX4c6SYip6DTCxy5cRO1DvV4XJiRv6cKrcK8AQB7UngXcyIiIiKyDgbdROQUTmfko0Crg4dKgeYh3hbJ0/i87l1n+bxuIiIiIrIOuwbd8+fPR9OmTaHRaBAfH489e/ZUmXbx4sWQyWQmL41GY8PSEjkfrVaL2bNnY/bs2dBqtRZLa2tarRYffL0UANA2wgcKuWWuvTbeTG3NnpMOud5ERERE5PzsFnT/9NNPmDx5MqZNm4b9+/ejQ4cO6N+/PzIyMqr8jI+PD65cuSK9zp07Z8MSEzmnwsJCFBYWWjytrV0qVgIAOjSu/03UjLreuJnadZ0G1wsYcBMRERGR5dkt6P7444/x1FNPYezYsWjdujW++OILeHh44Ntvv63yMzKZDGFhYdIrNDTUhiUmInu6pvcAALSrx/O5KwrwVKFlqBcAIE3vZbF8iYiIiIiM7BJ0a7Va7Nu3D4mJiTcLIpcjMTERO3furPJz+fn5iIqKQmRkJIYOHYpjx47ZorhEZGdlOj1yhDsAoHW4Za7nNrq9qT8AIE1n2XyJiIiIiAA7Bd3Xrl2DTqczG6kODQ1FWlpapZ9p2bIlvv32W/zyyy9YsmQJ9Ho9unXrhosXL1aavqSkBLm5uSYvInJOqdcLoYMcbtChsZ+7RfOONwbdegbdRERERGR5TnP38oSEBIwaNQodO3ZEr169sHLlSgQHB+PLL7+sNP3MmTPh6+srvSIjI21cYiKylFPp+QAAP1kR5Ba6iZqRcaQ7S3jwum4iIiIisji7BN1BQUFQKBRIT083mZ6eno6wsLAa5aFUKtGpUyecPn260vlTp05FTk6O9Lpw4UK9y01E9mEMuv3lRRbPO8BTBT+ZId+/z2VZPH8iIiIiatjsEnSrVCrExcVh8+bN0jS9Xo/NmzcjISGhRnnodDocOXIE4eHhlc5Xq9Xw8fExeRE1NDKZDBEREYiIiIBMVv0IcW3S2pox6I72U1m8bDKZDM289QCAPanZFs2biIiIiMjNXguePHkyRo8ejS5duqBr166YO3cuCgoKMHbsWADAqFGj0KhRI8ycORMA8Pbbb+OOO+5AbGwssrOzMXv2bJw7dw5PPvmkvVaByOEplUo89dRTFk9rayczDEH3mPv6QalUWjRvpVKJJ+7pgX3f78ffqRzpJiIiIiLLslvQ/dBDD+Hq1at46623kJaWho4dO2LdunXSzdXOnz8PufzmQHxWVhaeeuoppKWlwd/fH3FxcdixYwdat25tr1UgIhvILynDheuG079bhVnnjJWu0QEAgH/S8pBVoIW/p8oqyyEiIiKihkcmhBD2LoQt5ObmwtfXFzk5OTzVnMiJ7D+fhfsW7ECwtxp/v5546w/UUd+PtyE5Ix9fPBqHAW1rdm8JIiIiInI8jhb7Oc3dy4mo9kpLSzF37lzMnTsXpaWlFktrSyfT8gAA7iXXrVI243q75xseP7g7JdOi+RMRERFRw2a308uJyPqEEMjJyZH+t1RaWzIG3d76POTk5Fi8bMb1DiiTA/DDrrPXLZo/ERERETVsHOkmIof2T1ouAMBfZvnHhZUXpsiTlpddyOd1ExEREZFlMOgmIoclhJBGuq3xjO7y3GVlaBbsCSGAPSkc7SYiIiIiy2DQTUQO62peCbIKSyGXAX5WHukGgK5N/QGAp5gTERERkcUw6CYih/XPjVHuqEAPuMmsf535zaCbN1MjIiIiIstg0E1EDst4PXfLUC+bLM8YdJ9Iy0VOoePcwZ2IiIiInBfvXk7kwmQyGYKDg6X/LZXWVowj3S1CvaHJs07Zyq93iI8GzYI9ceZqAfakXkff1qEWXRYRERERNTwMuolcmFKpxPjx4y2e1laMN1FrHeGHAf2sU7aK6x0fE4gzVwuw62wmg24iIiIiqjeeXk5EDqlMp0dyRj4AoFWYt82We0dMIABgdwqv6yYiIiKi+mPQTUQOKTWzENoyPdyVCjQJ8LDZcu+IDgAAHLuci5wiXtdNRERERPXDoJvIhZWWlmLBggVYsGABSkurDyBrk9YWjKeWtwjzhk5XZrWyVVzvEB8NYoIMz+v+m8/rJiIiIqJ64jXdRC5MCIGrV69K/1sqrS2cvHHn8lah3lYtW2V5x8cE4uw1w3Xdibyum4iIiIjqgSPdROSQjHcub2nD67mN7ogxnGK+myPdRERERFRPDLqJyCGdTDcE3ba8iZqR8WZqxy7n8LpuIiIiIqoXBt1E5HAKSspwLrMQgH1GukN9NIgO8oReAHtTOdpNRERERHXHoJuIHM6pG6PcQV5qBHqp7VIGnmJORERERJbAoJuIHI7xzuX2OLXcKD7acIr5rrN8XjcRERER1R3vXk7kwmQyGXx9faX/LZXW2ireRM2aZasq7/gbI91HL+Ugt7gUPhqlRZdLRERERA2DTDjCs4FsIDc3F76+vsjJyYGPj4+9i0NE1Xj4q13YeTYTsx9ojwe7RNqtHL1nb0VqZiEWjbkd/2oVYrdyEBEREVHNOVrsx9PLicih6PUCJ4zP6A6z707SeIr5Tp5iTkRERER1xKCbiBzK8Su5yC4shadKYZc7l5d3Z/MgAMD/Dl1GqU5v17IQERERkXNi0E3kwkpLS/H111/j66+/Rmlp9c+brk1aa9p26ioAIKFZIFRucquXrbq8+7UJRZCXCldyirH+WJpFl0tEREREDQODbiIXJoTA5cuXcfnyZdzq9g21SWtNfyYbgu6eLYKladYsW3V5q90UeCQ+CgCw6K9Uiy6XiIiIiBoGBt1E5DAKSsqw71wWAKBn8+BbpLaNR+9oAqVChn3nsnD4Yra9i0NEREREToZBNxE5jJ1nMlGqE4gMcEdUoIe9iwMACPHW4O72EQA42k1EREREtcegm4gchnRqefNguz8rvLyx3ZsCANYcvoyM3GL7FoaIiIiInAqDbiJyGH8kXwNgej23I2jf2A9xUf4o1Qks2X3e3sUhIiIiIifCoJuIHMKF64VIuVYAhVyGhGaB9i6OGeNo9w+7z6GkTGffwhARERGR02DQTeTiPDw84OFRs+uja5PW0v64cWp55yZ+8NEozeZbs2w1ybt/mzCE+2pw7f/bu/PwKMp0beB379nIgtlIyMImyC5bDIrokCNqnBFXZBiIy3FGBQVxAx0J6MwElPGgwMDozICfOiJ4BD0gMMjmFtkEWQKRHQTCEsge0kn38/3RdCWddIdO6E5Xd+7fdfWVdNVT1W+9VfV2P1VvVZWZ8X8/nfZKOYiIiIgo8GjEl88GakElJSWIiIhAcXExwsPDfV0cIqrnDx9sw5q9Z/Dcf12Lp4d18XVxnJq34SDeXJOPHgnhWPH0Taq67pyIiIiIbNSW+/FMNxH5XLXFiu8PFgIAhqjseu66fjsoGSa9FntPlWDb5UebERERERE1hkk3EfncTyeKUFpVg8gQA3olRvi6OC5FhRpxz/WJAICF3x3xcWmIiIiIyB8w6SYKYNXV1Vi0aBEWLVqE6upqj8V62tc/267nvqlzNHTahl22vVm2ps774cs3VFuz9wxOFlV6tCxEREREFHj0vi4AEXmPiODYsWPK/56K9bRNV3hUmDfL1tR5d4sPx+BO1+D7Q4X4f7lHMeWO6zxaHiIiIiIKLK0u6S43l0Nn1jUYrtPqEKQPcohzRavRItgQ3KzYiuoKlz/sNRoNQgwhzYqtrK6EVawuyxFqDG1W7KWaS7BYXT8eqSmxIYYQ5cZTVTVVqLHWeCQ22BAMrcbWacNsMaPa4vpsZVNig/RB0Gl1TY6ttlTDbDG7jDXpTdBr9U2OrbHWoKqmymWsUWeEQWdwiDWba+ddbi5HNaobxFqsFlyqueQy1qAzwKgzOsTWJyL4cvdZLN56GkO7xOKxIR0QYtSistr1mWD7fIsqzNj1SxEAoH9KiNP9yVpTu72KSKP7nF6rh0lvUmIrqitcxuq0OmjrdPipu9zOYu1txCM3dsD3hwrx8Zbj+O8hiQgxOrYpbCOaF8s2wqYl2wh3Yl3t93butBHOYq1idauNcCe2Kft9U9sId38b8HeE81i2EWwj2EY0PZZtRPNi6+/3atLqku6EvyYAQQ2H39nlTqz87UrlfeysWJc72dCUodj48EblferbqThfcd5p7ICEAdj6+Fblffd53XGs+JjT2O4x3bH3qb3K+4HvDUTeuTynsSkRKTg68ajy/uZFN2PbqW1OY6NDonHuhXPK+zs+ugObjm1yGhtiCEH5y7U79n1L7sOXB750GgsAkl27o45ZNgaf5n3qMrZsSpmy4/xhxR/w/k/vu4w9+/xZxITaznpOWjMJf9v2N5exRyYcQWpkKgDglXWvYFbuLJexe57cgx6xPQAAf/nmL5i+abrL2C3/vQUDEwcCAN7+4W28+NWLLmM3ZG3ALam3AADe3f4uxq8a7zJ2xagVyLw2EwDw0e6P8Mjnj7iMXXL/EjzQ4wEAwLJ9y/Dgpw+6jF1490I83PdhAMCag2tw18d3wQADXsErAIC4v8YpCeXcO+Zi3KBxAIBvjn+DW9+/1WXsGxlv4IUbXwAA/Hj6Rwz6xyCHz9VbE9G2+kkEW/vaYo4V4f3co7h3QCimbr4VonH+Y+D59Ofx5m1v4tuD5yECmDXH0PlvdzmNfer6pxCLWABAYUUhEt9JdFkPWX2ysGjEIgC2L5OwnDCXsfd3vx8f3f2R8r7uctdXt434VbdYWDQFKKmMR4+/vIFC49uwasqUWLYRtdhG2Ki1jXDFWRvhypXaiLqyh2Zj2i3TAAD7zu1Dz/k9Xcba2wgAOF58HB3e7uAy9qkBT2Fe5jwAwPmK84idFesytqltxNIHlirvG4vl7wgbthG12EbYsI2wYRth01JtxITVE1zG+QKv6SZqZbLbAgMurHI67ua2mzC07Qb3ZiQGRFT/DglVcxFs7QuBGdelnEHH6FBcKDfjH5suIuHSuwit+RXQSK/tTfm2RvqS7semLorP6LQalAV9BEENQqzpaHdpLkyWXr4uFhERERGpUKt7Tvepc6ecPquNXT6cx7JbmH93CzObzXjnr+8AAJ557hkYjUYY8mbAmPcnoNdrQK9Xla5e2t1/RnB+DjYU3oq+j/wvjEZbly1n3cIuVVvwxAe7sfVoEQBgSJe2eDmzCzrFhEMLPT778ST+56ufcbrY1oXs3n7x+GNmF5gMtd2wNdBh/sZjmLvhIESA98b2xuDObZ0um7XGirfefAsAMHnyZNRoXG8PTe5ebtUiJyfHoY5cxdZvI/aeKsWLS/NwtLASGg3wyI1JePpXHRBk0LONaEYs2wgbdh1teiy7jtqwjWheLNsIG7YRTY9lG1FLbW3EuQvnEHtNrGqe093qupeHGkMdVl5jcU2Zp7vqbryejK27s3kytm7j4MlYk94EE0wejzXqjEoD7KtYg86gfBF5Mlav1UNvdG+XtccaUDvvUGOoLaHs+zqgMwK7pwIAdL1eRWj+W8DlhPvrC0Nxoz22Hp1WB4M2GE8v3Y6tR4sQZtLjzft74/ae8UojBwAPDkzCb/om4L2vD+N/vvoZn/1YgINnKzH/d/2RGBmMMyWX8MzHO7D5yAUAwO9uSEbGde0d5lGXGbU/KDQajdv7nDuxda9lD3Wx3M6EGkMxKDUUX06Ixusr9uHjLcfxr29PYMuRYsweeT06xzrGuotthA3biKbHNqeNcIdOq3N7G25KrFaj9Uqsp9uIutQQyzbChm1E02PZRtiwjWherD+2EWrS6pJulJcDuoY3UoNOBwQFOca5otUCwcHNi62oAFx1LtBogJCQ5sVWVgJW10eUEBravNhLlwCL6yNKTYoNCbGVGwCqqoAa10edmxQbHGyrZwAwm4HGHvvUlNigoNptpSmx1dW2eFdMJkCvb3psTY2tLlwxGgGDwTHWbIbBPn15OcrKKvH/tp3E4Yt34dy5Tjj3v+cRsnwW/jt6FYb1n4LcI6Ew6G2xyvIaDLZ5A7BU1+DZj3/E+v3nEKTX4p8jeyItJdy2rdaLDdJp8PQNCegbG4RnPsvDrl+K8et3vsGTg5Ox4PvjKKyoRqhRh7/c2wt3925XOw9nrFYY7Msm0vg+p9fb6s0e29h8dTpAq62dd93ldhbrpI0IAZAzvCNuSWmDySvysedkCe565xv88a7uuL9/ewQZdGwj3I1lG2HTkm2EO7EWi23duVJnv29SrNVq29Y8EduU/b6pbYS7vw34O8J5LNuIpseyjbD9zzaiebFsI2z/N7b9+oK0EsXFxQJAim2bVsPXnXc6ThAS4jwOEBk61DE2Otp17IABjrEpKa5ju3d3jO3e3XVsSopj7IABrmOjox1jhw51HRsS4hh7552uY+tvPvff33hsWVltbFZW47Fnz9bGPvVU47FHjtTGPv9847F79tTGZmc3HrtlS23sG280HrthQ23s3LmNx65YURu7cGHjsUuW1MYuWdJ47MKFtbErVjQYvzO+iwx9/F1JeWmF01dm1mxZ33GAWOvP9403RETEYrHK83/7SlJeWiGdn18mGzv0a1iG7OzaMuzZoww/ER4jmVmzHT7v9hcXy6GzpbbYI0caX7annqqd79mzjcdmZdXGlpU1Hnv//Y7bcGOxbrQRBWFt5XcPvuawnIP+vFbuz/qrPHvns/I/N46S/+1xq2xNvE4Kg8Nt07GNqH2xjbC9fNRGOLzmzq2N3bCh8djLbYSI2OqksVgXbYTT1/PP18YGSBuhvPg7ovZVF9sIG7YRNmwjarGNsGlCG1E8apQAkOLiYlGD1nemm6iVsUKD9wbdgzdvHosanR6JxWcxKtmA2OuKEVOwEDsqeuCf5+/CnvjOeOSBaehRcBC/27kKv8nbhNDqS7gkGnz54y/48Idj+PH4JeisFsz54g0MPeL+jc/al5zDpx+9iKn/9QQ+7TkMo35ag1d7hyEoZqQXl7zlxZVdwPtLsvGvkc9iXvfhuFhRjTMlVTgT3xVb47s2jC8txHVVF3Dd6v3o3i4c17ULRweNBk764vhUtVaH86GRsGi0kJAQWAvLYRXAKgIxRcEanQwrNLBqtLBqNIiuKEZs2QVoG7uDHhEREVEr4dMbqc2bNw9vvvkmCgoK0KdPH8yZMweDBrl+jMDSpUvx6quv4ujRo+jSpQtmzpyJO++8063Pst9IrfiU8xupscuHi1h2C2t6rIq6hZ0trcJzX+zHN4cvAgAyr4vBXzKvRcTJ2cDe6babqXV/GYWb/4QF3x/H/7s4AlUWW/20MelwY4cofH+0CCWXbPVv0Gnwxl1dcU/veOdlcKOr16UaC4L0uoDvFiZBQSiqqMbxCxU4fvoijl+sxImiSzh+sRLHLlbiZLHzdRmk16JrbCj6JLRBemoU0lIi0Dbkcj15uY0QEZwuvoT84+exv6AM+WfLsP9sOQ6dr0C1tWlfFUF6LZKjgpAS0wYpbUOQck0IUtoYkBJhQmKkCXqtk4dnsI2wYdfRpsf6YRvB3xHNiGUbYcM2oumxbCNsWlEbUXLuHCJi1XMjNZ8l3Z988gnGjh2LBQsWIC0tDbNnz8bSpUuRn5+P2NiGz877/vvvcfPNNyMnJwd33XUX/v3vf2PmzJn48ccf0bOn62f42SlJt0oqnsjb1u8/g+eW/ISLFdUwaATT7u6J36alQLPnT7abqF2+e7md5afpKP7pLcy5+CzWm4fiWGHtl0xiZDBGDUrCAwOSEBfu/k0sPKWmpgZLliwBADz44IPQ6z3XSceb825MWVUN8gtKkHe6FPtOlyDvVAnyC0pRWd3wy6RbfBvc0PEapHe6Bjd0uAYRIe7dNMcVEUFhuRmHzpbhwNky5BeUIr+gFPsLSpQDLPXptRrodRpoNbaXBrbvNa3WPgzKjfAulJthaSRJ12s1SIwKRvLlZLx9VAiSokKQ1DYY7aNCEBVicHlTPSIiIqIrUVvu57OkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkBvEjR45EeXk5VqxYoQy74YYb0LdvXyxYsOCKn6e2ig8EIoLzZWYcv1ABnVaD69q1gUmvto6xLU9EGk0YqmosKKqoRlFFNYorqxFk0CI8yIC2YUaEBzVMps6VVmHvqWIcPFuGExcqcPxCBQS2RDgxypakJEYGo31UMC6Um7Ht6AV8f6gQq/YUAADaaiow1HgYM1951nZn7l3TAI3OIeEGbHfx/u7vt0MDK254fA22/1KK3EOFGJAahSFdYqDT+i4JMpvNymO9pkyZ4vYdxn0976ayWAXHCsuRd7oEW49cQO7hQvx8pswhRqMBrosPR7+USMSEBSEq1ICoECPahhoRGWJA21AjokKMCDLoUG2x4sSFChw6V45D58pw6GyZ7e+5chRXOj/jotNq0CkmFF3jw9Etvg26xrVB1/g2aB8V7HYiXG2x4uTFShy7UIFjheU4Vljn74UKmGsaOfoNINSoQ1LbELS/vH3b/0+KCkHbUCMMOg0Mei2MOttL24xt02oVVNVYcanagks1Flyqvvx/tQVVNVZU1VhhsVpRYxFYrIIaa92/1tr3FoFVxOE9ABj0Glv59FoYdPaXbZihznCjXlNnvBYmfW2sfRkNOq1P97/65PLy1lgEZosV1fZXjaDaWvu/fVyNRVBtsSrvrbaL9GwX4EFgtQIC2+UKsF+2cPm92GNhOxljH2a9/NNFiQGg02ig1Wqg12qgu/y37nud8r/W6Tidi1idRgOdrs44Z++1mlZ5oEhEYBVb22UV2z5gEYHVWvd/OBlm+2ux1hl/eV0Cteu0/voX2EbUfV8ba4tD3eH1xjmdf715QImztbeaywcV6x5c1ODye619/OVxqI3RKgclAaDuPDS2A5Z1/mrrfU7D8ZfnU++9ppFp6x4cbY3bJjknddrM+u2p0sbWGee0TXbYv+rtg1L3sxzHK58Px33R9p9jfP3pAdSJdbLfo+H+XVZagl/17qCa3M8n13SbzWZs374dU6ZMUYZptVpkZGQgNzfX6TS5ubmYNGmSw7Dhw4dj+fLlTuOrqqpQVadbTElJidvlW77jJFbsOuV2vL+zb5wWq+2HUY1VoNUAlWbbj0+TXqv8CNFe/nFxsaIaxwvLUW6uPSsXatShQ0yo8gPEHm//EgBqe3oBti8n5f/L/9ZYBDVWK6ottjLYf5hqNBqYayyotghqLFaY9DqYDLbuXZVmCyov/1g26LQINelh0mttP/Iu/3iuvjxNiFGHYKMtGamstqKq2jZtdY0VwUYdwkx6hJr0qLEKKsw1qDBbUFFlQbm5BlarICxIjzZBBrQJ0iPEqINOq0VVtQXFldW4WGFGUUU1zBYr2pj0CA82IDzIgDCTHmVVNSiqMKOoshoVZtfdYtqY9GgXGQS9VguzxYriymqcK23+3RezbkiGdecy6DV1WsHe01zGf31hKABgsFaDGztH48bO0c3+bGo6nVaDjjFh6BgThrt6JwAAzpdVYfPhC8g9fB65hwpx6JwtKc873XibFmzQKfuSMxoNkBQVgk4xobg2vs3lBDscnWJDr/rgmUGnRWp0KFKjQwHEOIyzWgVnSi8pifiJC5U4cbECv1ysxIkLFThbWoVyswX7C0qxv6DUrc/Tae3JrAZGvQ7GOgmrXqdFjcXqkFhXVdsSQH+i02psibiuNhG3J/YGh+TeFqPVaGC9nMhYraj9/3KCVD9ZEqlNfKxWUa7Zt1oF1Ze/G6prbNuTv9VdS6mbgOu1tsS87nvHAwJal0m/VqNx+aMW9X+Eon5SavunQUJZ70cv6o8H6iXC9v+hJNMO45W/LVvH1Dz1k3vloEHdRF1bO9zpgQZNw2kck33X45wdrKjP2SlAp8Oc3CukfpzTzbKZ83I2qbPzlXX3QWcHFR2G1T+YdLk9dthf6w2z1kkolSTYWnugqWFiXPuZ1jqf1ZpYqxq5LMAHfJJ0nz9/HhaLBXFxcQ7D4+LisH//fqfTFBQUOI0vKChwGp+Tk4Pp06c3q3yHzpXhq31nmzVta6PRAAkRwbhUbUFhuRl7Trp/cMMflZstOFNy5SS45FLN5W66zq8v0mqAiGADIoINqKqxJdcVZgtKq2pQ6uTMZsfoUHRrF47ktiFIbhsCrQY4ebESv1ysxC9FlTh5sRKniysRbNChX0oUBqS0xdCuMegeF4Kcn1pZKxtgosNMyOzdDpm92wEAzpZcQu7hQuQXlOJiRTUulptxscL2ulBejaIKM2qsonRTDzbo0Ck2FJ1iwmpfsaFIvSbU9jizFqbVatAuIhjtIoJxQ8drGoy/VG3BySJbAv7LxdqE/JcLFThxsRKll6obHEiwWAWVVgtsJ+8buW7TBYNOA5NehyCD1uGvQVc3QQL0Wq3D2VC9rvasad0zoCJATZ0zu+YaUc4Gmy8fBDRbpM4ZYlus+XJSaz/4WX8ZLVbBpWp1Jrz2ZL9u4l/3f/tBAXtSqdXaDrxqHH6M1/5Qh3LG8PLZw0bi7QdtRYCay8lhjdXq0EPB/r+1Xq+FurEWEVgsdaZx9r6RLNNiFVggQCOXG7ZG9n1Dq63tjVA7rG5Pgdr1bftbu65R733dONQf7mweLqavnW/d7av2pEBt0lSbKCkHpC5nMXXfS50z9nX/WsWx54bTaXA5iXI2DRzfN5X9oJrl8lIRXQ139ydnsfYYwPm+aZ8GDvuw8/kp7+3tQL393nIJOOHlumiKgL17+ZQpUxzOjJeUlCApKcmtaf+rexwSI91/qHsg9Nqxd48y6Gw/MC0iCDHoYNRrYa6xNugO1iZIj5RrQtE+KhgmvQ5WqyDvdAnOlVY5dB+ruXxE3BWHbiiQy2Ww/TCzCpQfpVaxnfU2Xh5ntlhRabbY7h1h0MFk0CFIbzuDXWG2oKrG0uAMkG2aGlRePiMepLed9Q4y2H5cV5gtKK+qQVlVDfRaLUJMOoQabWe0Q4w6aDUalFXVoORSNUoqa1BVY4HFKtDrtIgKsXXxjQg2wKTXXk66q1FSWY2yqhqEmvSIDLbFRIUY0SZI36BLbIW5BqeKLuF0caVteXVahBh16BwbhlDTlXfVGosVmss/XuzMjd1chfxSbHgQ7u6b6HK8iKC0qgYXy80w6LSIDw9qVvdrXwky6JSDA66I2LsuS20S65C41r6vtggMWo2tjTBoEWSw7fNBetv/Jr3tbLja2M4wOybi9mWzL7dD1+7Lyb29DgDUnmXSOnZt1Wqg9ETS1P9fia+dxlk3+PqJdWvpvirimIDXWG2Jed33tYm91c2k3xZrsQI1ViusIq4Tyno/RAEXCWWdH8G2KNfzweX3trPtUHq02f86/G9Pni//r3Ey3DG2dWwXLan+2Uv3kvuGBwLcnUbEsaeMuDMN6vawqTcNbO2bu02Gs7bF2aT1wzROopx9pjvzchbpal61Z/odz+4rBxA1UPY5x0sEbHNwGFbvQJC9t4Ht7+WltA+r8zlA/Z4LDQ9A1e2RUH+Ytk5CW3uZguO9W/xBSUkJIl69clxL8UnSHR0dDZ1OhzNnzjgMP3PmDOLjnd8VOT4+vknxJpMJJvudB5uod/tI9G4f2axpWyutVoOeiRG+LoZqxDbj0pEQox6dY8PQOdZ1stEYNSYO1PI0Gg3CgwxO7w8QKDQa25lpkx5A85p51dNqNTBpdbxPhspoNLYeDgF7xoJUT+nq7TRdJCK18smvdKPRiP79+2PdunXKMKvVinXr1iE9Pd3pNOnp6Q7xALB27VqX8URERERERES+5rODtZMmTUJWVhYGDBiAQYMGYfbs2SgvL8cjjzwCABg7diwSExOVuwpPmDABQ4cOxV//+ldkZmZi8eLF2LZtG9599123Ps9+04Om3FCNyN+ZzWZcuvw8zJKSkkbvzN2U2JbmzbKpebmJiIiIqOnsOZ+PHtTVkPjQnDlzJDk5WYxGowwaNEh++OEHZdzQoUMlKyvLIX7JkiVy7bXXitFolB49esjKlSvd/qxDhw4JLt/Mjy+++OKLL7744osvvvjii6/Afh06dMhTqetV8dlzultaUVERoqKicPz4cURERPi6ONRE9hvhnThxQhXP2qOm4frzb1x//o3rz39x3fk3rj//xvXn34qLi5GcnIyLFy8iMjLS18VpPfcC0V5+KGBERAR3HD8WHh7O9efHuP78G9eff+P6819cd/6N68+/cf35N62zB8P7gDpKQURERERERBSAmHQTEREREREReUmrSbpNJhOys7Ob/exu8i2uP//G9effuP78G9ef/+K6829cf/6N68+/qW39tZobqRERERERERG1tFZzppuIiIiIiIiopTHpJiIiIiIiIvISJt1EREREREREXsKkm4iIiIiIiMhLWk3SPW/ePKSmpiIoKAhpaWnYsmWLr4vU6kybNg0ajcbh1a1bN2X8pUuXMG7cOFxzzTUICwvDfffdhzNnzjjM4/jx48jMzERISAhiY2PxwgsvoKamxiFm48aN6NevH0wmEzp37oxFixa1xOIFnK+//hq//vWvkZCQAI1Gg+XLlzuMFxFMnToV7dq1Q3BwMDIyMnDgwAGHmAsXLmD06NEIDw9HZGQkHnvsMZSVlTnE7Nq1C0OGDEFQUBCSkpLwxhtvNCjL0qVL0a1bNwQFBaFXr1748ssvPb68geRK6+7hhx9usC/efvvtDjFcd76Tk5ODgQMHok2bNoiNjcWIESOQn5/vENOS7SW/P93nzrq75ZZbGux/TzzxhEMM151vzJ8/H71790Z4eDjCw8ORnp6OVatWKeO536nbldYf9z3/MmPGDGg0GkycOFEZ5tf7oLQCixcvFqPRKP/6179k79698vjjj0tkZKScOXPG10VrVbKzs6VHjx5y+vRp5XXu3Dll/BNPPCFJSUmybt062bZtm9xwww0yePBgZXxNTY307NlTMjIyZMeOHfLll19KdHS0TJkyRYk5fPiwhISEyKRJkyQvL0/mzJkjOp1OVq9e3aLLGgi+/PJLeeWVV+Szzz4TALJs2TKH8TNmzJCIiAhZvny5/PTTT/Kb3/xGOnToIJWVlUrM7bffLn369JEffvhBvvnmG+ncubOMGjVKGV9cXCxxcXEyevRo2bNnj3z88ccSHBwsf//735WY7777TnQ6nbzxxhuSl5cnf/zjH8VgMMju3bu9Xgf+6krrLisrS26//XaHffHChQsOMVx3vjN8+HBZuHCh7NmzR3bu3Cl33nmnJCcnS1lZmRLTUu0lvz+bxp11N3ToUHn88ccd9r/i4mJlPNed73zxxReycuVK+fnnnyU/P19efvllMRgMsmfPHhHhfqd2V1p/3Pf8x5YtWyQ1NVV69+4tEyZMUIb78z7YKpLuQYMGybhx45T3FotFEhISJCcnx4elan2ys7OlT58+TscVFRWJwWCQpUuXKsP27dsnACQ3N1dEbImEVquVgoICJWb+/PkSHh4uVVVVIiLy4osvSo8ePRzmPXLkSBk+fLiHl6Z1qZ+4Wa1WiY+PlzfffFMZVlRUJCaTST7++GMREcnLyxMAsnXrViVm1apVotFo5OTJkyIi8re//U2ioqKU9Sci8tJLL0nXrl2V9w8++KBkZmY6lCctLU3+8Ic/eHQZA5WrpPvuu+92OQ3XnbqcPXtWAMimTZtEpGXbS35/Xp36607E9sO/7o/I+rju1CUqKkr+8Y9/cL/zU/b1J8J9z1+UlpZKly5dZO3atQ7rzN/3wYDvXm42m7F9+3ZkZGQow7RaLTIyMpCbm+vDkrVOBw4cQEJCAjp27IjRo0fj+PHjAIDt27ejurraYT1169YNycnJynrKzc1Fr169EBcXp8QMHz4cJSUl2Lt3rxJTdx72GK5rzzpy5AgKCgoc6joiIgJpaWkO6ysyMhIDBgxQYjIyMqDVarF582Yl5uabb4bRaFRihg8fjvz8fFy8eFGJ4Tr1vI0bNyI2NhZdu3bFk08+icLCQmUc1526FBcXAwDatm0LoOXaS35/Xr36687uo48+QnR0NHr27IkpU6agoqJCGcd1pw4WiwWLFy9GeXk50tPTud/5mfrrz477nvqNGzcOmZmZDerZ3/dBfbOn9BPnz5+HxWJxqHwAiIuLw/79+31UqtYpLS0NixYtQteuXXH69GlMnz4dQ4YMwZ49e1BQUACj0YjIyEiHaeLi4lBQUAAAKCgocLoe7eMaiykpKUFlZSWCg4O9tHSti72+ndV13XURGxvrMF6v16Nt27YOMR06dGgwD/u4qKgol+vUPg9quttvvx333nsvOnTogEOHDuHll1/GHXfcgdzcXOh0Oq47FbFarZg4cSJuvPFG9OzZEwBarL28ePEivz+vgrN1BwC//e1vkZKSgoSEBOzatQsvvfQS8vPz8dlnnwHguvO13bt3Iz09HZcuXUJYWBiWLVuG7t27Y+fOndzv/ICr9Qdw3/MHixcvxo8//oitW7c2GOfv330Bn3STetxxxx3K/71790ZaWhpSUlKwZMkSJsNELeihhx5S/u/Vqxd69+6NTp06YePGjRg2bJgPS0b1jRs3Dnv27MG3337r66JQE7lad7///e+V/3v16oV27dph2LBhOHToEDp16tTSxaR6unbtip07d6K4uBiffvopsrKysGnTJl8Xi9zkav11796d+57KnThxAhMmTMDatWsRFBTk6+J4XMB3L4+OjoZOp2twZ7szZ84gPj7eR6UiAIiMjMS1116LgwcPIj4+HmazGUVFRQ4xdddTfHy80/VoH9dYTHh4OBN7D7LXd2P7VXx8PM6ePeswvqamBhcuXPDIOuX+6zkdO3ZEdHQ0Dh48CIDrTi3Gjx+PFStWYMOGDWjfvr0yvKXaS35/Np+rdedMWloaADjsf1x3vmM0GtG5c2f0798fOTk56NOnD95++23ud37C1fpzhvueumzfvh1nz55Fv379oNfrodfrsWnTJrzzzjvQ6/WIi4vz630w4JNuo9GI/v37Y926dcowq9WKdevWOVzjQS2vrKwMhw4dQrt27dC/f38YDAaH9ZSfn4/jx48r6yk9PR27d+92SAbWrl2L8PBwpetQenq6wzzsMVzXntWhQwfEx8c71HVJSQk2b97ssL6Kioqwfft2JWb9+vWwWq3KF116ejq+/vprVFdXKzFr165F165dERUVpcRwnXrXL7/8gsLCQrRr1w4A152viQjGjx+PZcuWYf369Q268bdUe8nvz6a70rpzZufOnQDgsP9x3amH1WpFVVUV9zs/ZV9/znDfU5dhw4Zh9+7d2Llzp/IaMGAARo8erfzv1/tgs2/B5kcWL14sJpNJFi1aJHl5efL73/9eIiMjHe5sR9733HPPycaNG+XIkSPy3XffSUZGhkRHR8vZs2dFxPYYgOTkZFm/fr1s27ZN0tPTJT09XZne/hiA2267TXbu3CmrV6+WmJgYp48BeOGFF2Tfvn0yb948PjKsmUpLS2XHjh2yY8cOASBvvfWW7NixQ44dOyYitkeGRUZGyueffy67du2Su+++2+kjw66//nrZvHmzfPvtt9KlSxeHx04VFRVJXFycjBkzRvbs2SOLFy+WkJCQBo+d0uv1MmvWLNm3b59kZ2fzsVNX0Ni6Ky0tleeff15yc3PlyJEj8tVXX0m/fv2kS5cucunSJWUeXHe+8+STT0pERIRs3LjR4dE2FRUVSkxLtZf8/myaK627gwcPymuvvSbbtm2TI0eOyOeffy4dO3aUm2++WZkH153vTJ48WTZt2iRHjhyRXbt2yeTJk0Wj0ch//vMfEeF+p3aNrT/ue/6p/h3n/XkfbBVJt4jInDlzJDk5WYxGowwaNEh++OEHXxep1Rk5cqS0a9dOjEajJCYmysiRI+XgwYPK+MrKSnnqqackKipKQkJC5J577pHTp087zOPo0aNyxx13SHBwsERHR8tzzz0n1dXVDjEbNmyQvn37itFolI4dO8rChQtbYvECzoYNGwRAg1dWVpaI2B4b9uqrr0pcXJyYTCYZNmyY5OfnO8yjsLBQRo0aJWFhYRIeHi6PPPKIlJaWOsT89NNPctNNN4nJZJLExESZMWNGg7IsWbJErr32WjEajdKjRw9ZuXKl15Y7EDS27ioqKuS2226TmJgYMRgMkpKSIo8//niDLxKuO99xtu4AOLRlLdle8vvTfVdad8ePH5ebb75Z2rZtKyaTSTp37iwvvPCCw7OCRbjufOXRRx+VlJQUMRqNEhMTI8OGDVMSbhHud2rX2Prjvuef6ifd/rwPakREmn+enIiIiIiIiIhcCfhruomIiIiIiIh8hUk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL2HSTUREREREROQlTLqJiIiIiIiIvIRJNxEREREREZGXMOkmIiIiIiIi8hIm3URERERERERewqSbiIiIiIiIyEuYdBMRERERERF5CZNuIiIiIiIiIi9h0k1ERERERETkJUy6iYiIiIiIiLyESTcRERE59fDDDyM1NbXJ06WmpuLhhx/2eHmIiIj8EZNuIiKiK1i0aBE0Go3L1w8//ODrIjaqoqIC06ZNw8aNG33y+Xl5eZg2bRqOHj3qk88nIiLyJb2vC0BEROQvXnvtNXTo0KHB8M6dO/ugNO6rqKjA9OnTAQC33HKL29O99957sFqtTf68/Px8aLW1x/Xz8vIwffp03HLLLc06c05EROTPmHQTERG56Y477sCAAQN8XQyvKy8vR2hoKAwGQ7OmN5lMHi4RERGR/2L3ciIiIg+xWq14++230atXLwQFBSEmJga33347tm3b5hD34YcfYtCgQQgJCUFUVBRuvvlm/Oc//3GIWbVqFYYMGYLQ0FC0adMGmZmZ2Lt3r0PMww8/jLCwMJw8eRIjRoxAWFgYYmJi8Pzzz8NisQAAjh49ipiYGADA9OnTlS7x06ZNc5jHoUOHcOedd6JNmzYYPXq0Mq7+mWl3lrHuNd2LFi3CAw88AAC49dZblc/fuHEjsrKyEB0djerq6gZ1edttt6Fr165NqH0iIiJ1YtJNRETkpuLiYpw/f97hVVhYqIx/7LHHMHHiRCQlJWHmzJmYPHkygoKCHK75nj59OsaMGQODwYDXXnsN06dPR1JSEtavX6/EfPDBB8jMzERYWBhmzpyJV199FXl5ebjpppsaXBdtsVgwfPhwXHPNNZg1axaGDh2Kv/71r3j33XcBADExMZg/fz4A4J577sEHH3yADz74APfee68yj5qaGgwfPhyxsbGYNWsW7rvvPpd14M4y1nXzzTfjmWeeAQC8/PLLyudfd911GDNmDAoLC7FmzRqHaQoKCrB+/Xr87ne/a2x1EBER+QchIiKiRi1cuFAAOH2ZTCYREVm/fr0AkGeeeabB9FarVUREDhw4IFqtVu655x6xWCxOY0pLSyUyMlIef/xxh/EFBQUSERHhMDwrK0sAyGuvveYQe/3110v//v2V9+fOnRMAkp2d3aBs9nlMnjzZ6biUlBTlvTvLKCKSkpIiWVlZyvulS5cKANmwYYPDNBaLRdq3by8jR450GP7WW2+JRqORw4cPN/gcIiIif8NruomIiNw0b948XHvttQ7DdDodAOB///d/odFokJ2d3WA6jUYDAFi+fDmsViumTp3qcKOxujFr165FUVERRo0ahfPnzzt8TlpaGjZs2NBg/k888YTD+yFDhuCDDz5o0rI9+eSTV4xxZxmbQqvVYvTo0XjnnXdQWlqKNm3aAAA++ugjDB482OlN64iIiPwNk24iIiI3DRo0yOWN1A4dOoSEhAS0bdvW5fSHDh2CVqtF9+7dXcYcOHAAAPCrX/3K6fjw8HCH9/brquuKiorCxYsXXX5GfXq9Hu3bt79inDvL2FRjx47FzJkzsWzZMowdOxb5+fnYvn07FixY4LHPICIi8iUm3URERCpif0TXBx98gPj4+Abj9XrHr277mfarYTKZGpx5byndu3dH//798eGHH2Ls2LH48MMPYTQa8eCDD/qkPERERJ7GpJuIiMgDOnXqhDVr1uDChQsuzwR36tQJVqsVeXl56Nu3r8sYAIiNjUVGRoZHytacrt/OuLOMzfn8sWPHYtKkSTh9+jT+/e9/IzMzE1FRUVdbXCIiIlXg3cuJiIg84L777oOIYPr06Q3GiQgAYMSIEdBqtXjttdeUM9r1Y4YPH47w8HD85S9/cfoorXPnzjW5bCEhIQCAoqKiJk9blzvL6ExoaGijnz9q1ChoNBpMmDABhw8f5l3LiYgooPBMNxERkZtWrVqF/fv3Nxg+ePBg3HrrrRgzZgzeeecdHDhwALfffjusViu++eYb3HrrrRg/fjw6d+6MV155Ba+//jqGDBmCe++9FyaTCVu3bkVCQgJycnIQHh6O+fPnY8yYMejXrx8eeughxMTE4Pjx41i5ciVuvPFGzJ07t0nlDg4ORvfu3fHJJ5/g2muvRdu2bdGzZ0/07NmzSfNxZxmd6du3L3Q6HWbOnIni4mKYTCb86le/QmxsLAAoz/peunQpIiMjkZmZ2aRyERERqRmTbiIiIjdNnTrV6fCFCxeiY8eOWLhwIXr37o1//vOfeOGFFxAREYEBAwZg8ODBSuxrr72GDh06YM6cOXjllVcQEhKC3r17Y8yYMUrMb3/7WyQkJGDGjBl48803UVVVhcTERAwZMgSPPPJIs8r+j3/8A08//TSeffZZmM1mZGdnNznpti/rlZaxvvj4eCxYsAA5OTl47LHHYLFYsGHDBiXpBmxdzFesWIEHH3wQJpOpWctIRESkRhpprD8YERERUQv4/PPPMWLECHz99dcYMmSIr4tDRETkMUy6iYiIyOfuuusu7Nu3DwcPHvTYjd+IiIjUgN3LiYiIyGcWL16MXbt2YeXKlXj77beZcBMRUcDhmW4iIiLyGY1Gg7CwMIwcORILFixo8BxyIiIif8dvNiIiIvIZHvsnIqJAx+d0ExEREREREXkJk24iIiIiIiIiL2k13cutVitOnTqFNm3a8CYtREREREREAUpEUFpaioSEBGi1vj/P3GqS7lOnTiEpKcnXxSAiIiIiIqIWcOLECbRv397XxWg9SXebNm0A2Co+PDzcx6UhIiIiIiIibygpKUFSUpKSA/paq0m67V3Kw8PDmXQTEREREREFOLVcVuz7Du7UqNTJK5W/9hcRERERERH5B420kgdklpSUICIiAsXFxao90506eSWOzshscmJtn+bojEwvlYyIiIiIiMg/qC33Y9LtQ81Nsq+EyTcREREREbVWasv9mHT7wJWS7KYmza7mx+SbiIiIiIhaGzXlfgCT7hbnzQSZyTcREREREbV2asn97Jh0txBnCbE3k+GW/jwiIiIiIiI18HXuVx+Tbi9Sw5nn+mVg4k1ERERERIGMSbePtHTFq+1MM5NvIiIiIiJqDZh0+0hLVbzaku26mHgTEREREVGgY9LtI96seDUn2s7ULa+ay0lERERERNRUTLp9xF7xSROXQGsK8drdwv0lieVZbyIiIiIiCkRMun2kftJd19EZmUidvNJl4nml52rb5+GPeNabiIiIiIgCCZNuH6lb8b3/8o1H5hkoSSoTbyIiIiIiChRMun3EVcW7cxa7rkBNStndnIiIiIiIAgGTbh9RW8WrFZNvIiIiIiLyZ2rL/bS+LgCpS/0ku6k9AYiIiIiIiKgWk25qgIk3ERERERGRZzDpJqeYeBMREREREV09Jt3k0tEZmQ7Jtz8k3vYy+kNZiYiIiIgo8PFGauQ2td1kzf5sdd6BnoiIiIiI7NSW+3ntTPe8efOQmpqKoKAgpKWlYcuWLS5j33vvPQwZMgRRUVGIiopCRkZGg3gRwdSpU9GuXTsEBwcjIyMDBw4c8FbxyQlnXc5b+oyy/TOv5oz21U5PRERERETkLq+c6f7kk08wduxYLFiwAGlpaZg9ezaWLl2K/Px8xMbGNogfPXo0brzxRgwePBhBQUGYOXMmli1bhr179yIxMREAMHPmTOTk5OD9999Hhw4d8Oqrr2L37t3Iy8tDUFDQFcuktqMd/s5VsurJs8jNOYNd9+x3U8+C8ww4EREREZH/U1vu55WkOy0tDQMHDsTcuXMBAFarFUlJSXj66acxefLkK05vsVgQFRWFuXPnYuzYsRARJCQk4LnnnsPzzz8PACguLkZcXBwWLVqEhx566IrzVFvFBwpPJ98t0VW8sc9g4k1ERERE5N/UlvvpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmujWPiooKVFdXo23btgCAI0eOoKCgABkZGUpMREQE0tLSkJub61bSTd7h6myyt7pteyIpbuzmcPb3TL6JiIiIiMgTPJ50nz9/HhaLBXFxcQ7D4+LisH//frfm8dJLLyEhIUFJsgsKCpR51J+nfVx9VVVVqKqqUt6XlJS4vQzUNPYEtbk3NnNn3t7iKgG3LwsREREREdHV8HjSfbVmzJiBxYsXY+PGjW5dq+1KTk4Opk+f7sGS0ZXYk9TmPmbM10lu/QMGPOtNRERERERXy+NJd3R0NHQ6Hc6cOeMw/MyZM4iPj2902lmzZmHGjBn46quv0Lt3b2W4fbozZ86gXbt2DvPs27ev03lNmTIFkyZNUt6XlJQgKSmpqYtDV8nfEta6Z+3teNabiIiIiIiay+OPDDMajejfvz/WrVunDLNarVi3bh3S09NdTvfGG2/g9ddfx+rVqzFgwACHcR06dEB8fLzDPEtKSrB582aX8zSZTAgPD3d4Ebmr/ll7PlqMiIiIiIiawyvP6Z40aRLee+89vP/++9i3bx+efPJJlJeX45FHHgEAjB071uFGazNnzsSrr76Kf/3rX0hNTUVBQQEKCgpQVlYGANBoNJg4cSL+9Kc/4YsvvsDu3bsxduxYJCQkYMSIEd5YBCKX3c2JiIiIiIjc5ZVrukeOHIlz585h6tSpKCgoQN++fbF69WrlRmjHjx+HVlub78+fPx9msxn333+/w3yys7Mxbdo0AMCLL76I8vJy/P73v0dRURFuuukmrF69+qqu+ya6kvpnunmdNxERERERNYVXntOtRmp7Vhv5n/pnupl4ExERERGpj9pyP690LycKRPWTbHY3JyIiIiKiK2HSTdQETLyJiIiIiKgp2L2cqJnY3ZyIiIiISH3Ulvt55UZqRK1B/bubExF5Q90bODo72Fd3GA/+ERERqQ/PdBNdJZ7xJiJPSZ280uMH9NgmERFRa6O23I9JN5EHMPEmoqvRnCS7qck52yUiImot1Jb7Mekm8hB28SSipmgsYfZEG+Jq/myfiIgo0Kkt92PSTeRhTL6JyJkrnZX2ZnvBBJyIiFoTteV+TLqJvKDudZn8UUvUuOZev+wv+5a3z2g3lbPy+EtdEhERuUNtuR+TbiIv4Rlvooa8fcd/Ne1raj+7zOSbiIgCldpyPybdRF7EG6wReT/RbkxL73NqT7SdYTtFRESBRm25H5NuIi/jD1pqrdy5htkTl2C4m9R765IPtXUfby62VUREFCjUlvsx6SZqAfYfs3Uf8cMftBSIrvSc6Zba7puSiDd1vu48qsuf928m30RE5O/Ulvsx6SZqQWr8MdvUrr9qKDOpT2NJtq9vKNgS3dsDcb9QY3tFREQ2PKHTOLXlfky6iVqYr25e5I3Eg407AYFxHXNTqXnZPI03hSQi8q2r+c5qre222nI/Jt1EPtASSYq73WA9pbU26q1ZIN/9mo/9cxTI65qISI14suTqqC33Y9JN5CPeuCbUm0dC3UnimaS0DkzAWi+ueyIi7/LUzTkD+d4j7lBb7sekm8jHmpMoX+0ZbE81tIFy12ZyDxMusnO1LajloFvdcrDXAhGpWUv9lvLHS8GuhtpyPybdRCrhrW7gvrxePFAb8taICTc546szKZ5qL5mME5Gv+PK3U2v4Tldb7sekm0iF1HAWuzlae/LdnOvo1V43reGLmTzDk49pa6l7UdTHbZuIvE1Nv5UC+Ttebbkfk24ilavfNbL+IyLU2DgGciNenz/3UGhMa1qH5Fm+SpjtGttOm3JgjNs7EXmSmh/DGIjf+WrL/Zh0E5HXBGIjbteSiUVL1pmajsBT4PDE/uLNbZD3pyAib1Jzwl2fP5W1MWrL/byWdM+bNw9vvvkmCgoK0KdPH8yZMweDBg1yGrt3715MnToV27dvx7Fjx/A///M/mDhxokPMtGnTMH36dIdhXbt2xf79+90qj9oqnqi1CKTEuyndZ93thdDcG+l5Smu/uylRXUy+ichT/P33j7+XX225n1eS7k8++QRjx47FggULkJaWhtmzZ2Pp0qXIz89HbGxsg/itW7diyZIl6N+/P5599lm89NJLTpPuTz/9FF999ZUyTK/XIzo62q0yqa3iiVobfz5y2tKJaVMT8aZ+PrvWEl2Zv//gJCLfCLS2w1+XR225n1eS7rS0NAwcOBBz584FAFitViQlJeHpp5/G5MmTG502NTUVEydOdJp0L1++HDt37mxWmdRW8UStkb813Go56xWoXdmJ1M7f2iwi8p1Aby/8Zfns5bRWVeDE7AdVk/vpPT1Ds9mM7du3Y8qUKcowrVaLjIwM5ObmXtW8Dxw4gISEBAQFBSE9PR05OTlITk6+2iITUQtxdgOjujeGUwu1dbmu/3meTsLVVPdEalJ337Dvd2pss4j8lTcu22pp/pKMXi37MtVdXl+3h76+cWdTePxM96lTp5CYmIjvv/8e6enpyvAXX3wRmzZtwubNmxud3tWZ7lWrVqGsrAxdu3bF6dOnMX36dJw8eRJ79uxBmzZtGsynqqoKVVVVyvuSkhIkJSWp5mgHUWun1i8ptZarMd7ujk5Etfz5UhkiX/NGkqSWR20Brac98MXJiaZuO2o70+03SXd9RUVFSElJwVtvvYXHHnuswXhnN14DoJqKJyIbNSS5aulGTkT+gYk3kft8cTaypZO+1twGuJOAN7WXgiduMqu2S4s9nnSbzWaEhITg008/xYgRI5ThWVlZKCoqwueff97o9O4m3QAwcOBAZGRkICcnp8E4nukm8h++PGKshqSfiPwP2w6ixl0pSW1ud/HmJvGevuko9/eGWuoAizt1r7ak2+PXdBuNRvTv3x/r1q1Tkm6r1Yp169Zh/PjxHvucsrIyHDp0CGPGjHE63mQywWQyeezziMh7nF0nVPf675Z6RBa/QInIXc7uUUHU2jUlUW3ud25j0zX2+Z7YX/k7oXHO6udq6z1Q6txrjwzLysrC3//+dwwaNAizZ8/GkiVLsH//fsTFxWHs2LFITExUzlCbzWbk5eUBAO68806MHj0ao0ePRlhYGDp37gwAeP755/HrX/8aKSkpOHXqFLKzs7Fz507k5eUhJibmimVS29EOInLNW2e+mXATkTewuzm1dmr9fmXCp072Xg7evDme2nI/ryTdADB37ly8+eabKCgoQN++ffHOO+8gLS0NAHDLLbcgNTUVixYtAgAcPXoUHTp0aDCPoUOHYuPGjQCAhx56CF9//TUKCwsRExODm266CX/+85/RqVMnt8qjtoonosZdbbeuptwRlYjoajHxptZIrcm2u1oi+SPfUFvu57WkW23UVvFE5B5vdd/klysReRqv86bWhAeaSM3Ulvsx6SYiv8BrsYjIXzAZoUDGg0vkD9SW+zHpJiK/0pTkmz8CiMhXmHhTIOJ2Tf5Cbbkfk24iIiIiL2GSQoGA2zH5G7Xlfky6iYiIiLyI3XHJXzHZJn+lttxP6+sCEBEREQUybzy7lsibUievZMJN5EE8001ERETUAlwl2kxmSE2YbFMgUFvup/d1AYiIiIhag7rJiz2xsT8juP54opbGyyCIvIdnuomIiIh8gGe+SU3qbo/cBsnfqS33Y9JNRERE5EM8w0i+wm2PApXacj8m3UREREQq0NjN1ZgIkafx2m0KZGrL/Zh0ExEREanIle5s3pzkKHXySofrx5uLiZn/amwb4HqlQKO23I9JNxEREZHKOLvRmhoxWVO/xu4dYE/EiQKN2nI/Jt1EREREKqXmhNsZJnDq4I3eEkT+RG25H5NuIiIiIj9yNYn41SRbTf1cJna16nbt9vRj4ppy6QDXCbUWasv9mHQTERERUbMw0fOP3giBvg6I6lNb7sekm4iIiIiuiruJZyAkf/6SZPN6bWrN1Jb7MekmIiIiIo9xp7uzPyWDak+y/akuiVqK2nI/Jt1ERERE5BV1E1ZnibhaE8bmJNpqXRai1khtuR+TbiIiIiLyOn+4ozavUScKDGrL/Zh0ExEREVGLUVPyzSSbKDCpLfdj0k1ERERELc6XCS+TbaLAprbcj0k3EREREfmUN5PgplyfzUSbKDCoLffTemvG8+bNQ2pqKoKCgpCWloYtW7a4jN27dy/uu+8+pKamQqPRYPbs2Vc9TyIiIiLyD0dnZF4x4U2dvNLhZR9W/6+zOE98PhFRc+m9MdNPPvkEkyZNwoIFC5CWlobZs2dj+PDhyM/PR2xsbIP4iooKdOzYEQ888ACeffZZj8yTiIiIiPxL3cT3Sgmzq8S7qZ9DRORtXulenpaWhoEDB2Lu3LkAAKvViqSkJDz99NOYPHlyo9OmpqZi4sSJmDhxosfmCaiviwERERERuedKz/zmNdpEVJfacj+Pn+k2m83Yvn07pkyZogzTarXIyMhAbm6uauZJRERERP6hfsJcN8n2l2d/E1Hr5fGk+/z587BYLIiLi3MYHhcXh/3797fYPKuqqlBVVaW8LykpadZnExEREZG6MLEmIn/itRup+VpOTg4iIiKUV1JSkq+LRERERERERK2Mx5Pu6Oho6HQ6nDlzxmH4mTNnEB8f32LznDJlCoqLi5XXiRMnmvXZRERERERERM3l8e7lRqMR/fv3x7p16zBixAgAtpuerVu3DuPHj2+xeZpMJphMJuW9/X5x7GZOREREREQUuOw5nxfuGd4sXnlk2KRJk5CVlYUBAwZg0KBBmD17NsrLy/HII48AAMaOHYvExETk5OQAsN0oLS8vT/n/5MmT2LlzJ8LCwtC5c2e35nklhYWFAMBu5kRERERERK1AYWEhIiIifF0M7yTdI0eOxLlz5zB16lQUFBSgb9++WL16tXIjtOPHj0Orre3ZfurUKVx//fXK+1mzZmHWrFkYOnQoNm7c6NY8r6Rt27bKZ19txQ8cOBBbt269qnkE6nxKSkqQlJSEEydOXPXt+dW0XGoqS6DWsdrmo7Z6VlPdeGo+aqvjQJ2Pp+pZTcuktvlwW/b+PFjHLTOfQK1nNZUlUOtYbfMpLi5GcnKykgP6mleSbgAYP368y67f9kTaLjU11a1T/43N80rsSX5ERMRVb+A6nc4jz3sL1PkAQHh4eEDVs5rKYhdodazG+QDqqWe11U0g1nEgzwe4+npW2zKpbT4At2VvlwVgHbfEfIDAq2c1lcUu0OpYjfMB4HCi15fUUQo/M27cOM6nBahpudRUFk9S23KpbT6eEojbYCDWcSDPxxPUtkxqm4+nqG251NR+eYqa6kaN8/EUNS2XmsriSWpbLrXNR000opary72spKQEERERKC4u9tiRE2qI9ex9rOOWwXr2PtZxy2A9ex/r2PtYxy2D9ex9rOOWobZ6bjVnuk0mE7Kzsx3uaE6ex3r2PtZxy2A9ex/ruGWwnr2Pdex9rOOWwXr2PtZxy1BbPbeaM91ERERERERELa3VnOkmIiIiIiIiamlMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyklaTdM+bNw+pqakICgpCWloatmzZ4usiqcLXX3+NX//610hISIBGo8Hy5csdxosIpk6dinbt2iE4OBgZGRk4cOCAQ8yFCxcwevRohIeHIzIyEo899hjKysocYnbt2oUhQ4YgKCgISUlJeOONNxqUZenSpejWrRuCgoLQq1cvfPnllx5fXl/IycnBwIED0aZNG8TGxmLEiBHIz893iLl06RLGjRuHa665BmFhYbjvvvtw5swZh5jjx48jMzMTISEhiI2NxQsvvICamhqHmI0bN6Jfv34wmUzo3LkzFi1a1KA8gbovzJ8/H71790Z4eDjCw8ORnp6OVatWKeNZx543Y8YMaDQaTJw4URnGer5606ZNg0ajcXh169ZNGc869oyTJ0/id7/7Ha655hoEBwejV69e2LZtmzKe339XLzU1tcG2rNFolGfwclu+ehaLBa+++io6dOiA4OBgdOrUCa+//jrq3ieZ2/LVKy0txcSJE5GSkoLg4GAMHjwYW7duVcazjpvOn3IQd8pyRdIKLF68WIxGo/zrX/+SvXv3yuOPPy6RkZFy5swZXxfN57788kt55ZVX5LPPPhMAsmzZMofxM2bMkIiICFm+fLn89NNP8pvf/EY6dOgglZWVSsztt98uffr0kR9++EG++eYb6dy5s4waNUoZX1xcLHFxcTJ69GjZs2ePfPzxxxIcHCx///vflZjvvvtOdDqdvPHGG5KXlyd//OMfxWAwyO7du71eB942fPhwWbhwoezZs0d27twpd955pyQnJ0tZWZkS88QTT0hSUpKsW7dOtm3bJjfccIMMHjxYGV9TUyM9e/aUjIwM2bFjh3z55ZcSHR0tU6ZMUWIOHz4sISEhMmnSJMnLy5M5c+aITqeT1atXKzGBvC988cUXsnLlSvn5558lPz9fXn75ZTEYDLJnzx4RYR172pYtWyQ1NVV69+4tEyZMUIaznq9edna29OjRQ06fPq28zp07p4xnHV+9CxcuSEpKijz88MOyefNmOXz4sKxZs0YOHjyoxPD77+qdPXvWYTteu3atAJANGzaICLdlT/jzn/8s11xzjaxYsUKOHDkiS5culbCwMHn77beVGG7LV+/BBx+U7t27y6ZNm+TAgQOSnZ0t4eHh8ssvv4gI67g5/CkHcacsV9Iqku5BgwbJuHHjlPcWi0USEhIkJyfHh6VSn/obvNVqlfj4eHnzzTeVYUVFRWIymeTjjz8WEZG8vDwBIFu3blViVq1aJRqNRk6ePCkiIn/7298kKipKqqqqlJiXXnpJunbtqrx/8MEHJTMz06E8aWlp8oc//MGjy6gGZ8+eFQCyadMmEbHVqcFgkKVLlyox+/btEwCSm5srIraGSavVSkFBgRIzf/58CQ8PV+r1xRdflB49ejh81siRI2X48OHK+9a2L0RFRck//vEP1rGHlZaWSpcuXWTt2rUydOhQJelmPXtGdna29OnTx+k41rFnvPTSS3LTTTe5HM/vP++YMGGCdOrUSaxWK7dlD8nMzJRHH33UYdi9994ro0ePFhFuy55QUVEhOp1OVqxY4TC8X79+8sorr7COPUDNOYg7ZXFHwHcvN5vN2L59OzIyMpRhWq0WGRkZyM3N9WHJ1O/IkSMoKChwqLuIiAikpaUpdZebm4vIyEgMGDBAicnIyIBWq8XmzZuVmJtvvhlGo1GJGT58OPLz83Hx4kUlpu7n2GMCcR0VFxcDANq2bQsA2L59O6qrqx2Wv1u3bkhOTnao5169eiEuLk6JGT58OEpKSrB3714lprE6bE37gsViweLFi1FeXo709HTWsYeNGzcOmZmZDeqC9ew5Bw4cQEJCAjp27IjRo0fj+PHjAFjHnvLFF19gwIABeOCBBxAbG4vrr78e7733njKe33+eZzab8eGHH+LRRx+FRqPhtuwhgwcPxrp16/Dzzz8DAH766Sd8++23uOOOOwBwW/aEmpoaWCwWBAUFOQwPDg7Gt99+yzr2AjXVqTtlcUfAJ93nz5+HxWJxaLABIC4uDgUFBT4qlX+w109jdVdQUIDY2FiH8Xq9Hm3btnWIcTaPup/hKibQ1pHVasXEiRNx4403omfPngBsy240GhEZGekQW7+em1uHJSUlqKysbBX7wu7duxEWFgaTyYQnnngCy5YtQ/fu3VnHHrR48WL8+OOPyMnJaTCO9ewZaWlpWLRoEVavXo358+fjyJEjGDJkCEpLS1nHHnL48GHMnz8fXbp0wZo1a/Dkk0/imWeewfvvvw+A33/esHz5chQVFeHhhx8GwPbCUyZPnoyHHnoI3bp1g8FgwPXXX4+JEydi9OjRALgte0KbNm2Qnp6O119/HadOnYLFYsGHH36I3NxcnD59mnXsBWqqU3fK4g6925FEdNXGjRuHPXv24Ntvv/V1UQJS165dsXPnThQXF+PTTz9FVlYWNm3a5OtiBYwTJ05gwoQJWLt2bYMj/uQ59jNUANC7d2+kpaUhJSUFS5YsQXBwsA9LFjisVisGDBiAv/zlLwCA66+/Hnv27MGCBQuQlZXl49IFpn/+85+44447kJCQ4OuiBJQlS5bgo48+wr///W/06NEDO3fuxMSJE5GQkMBt2YM++OADPProo0hMTIROp0O/fv0watQobN++3ddFIz8R8Ge6o6OjodPpGtwN88yZM4iPj/dRqfyDvX4aq7v4+HicPXvWYXxNTQ0uXLjgEONsHnU/w1VMIK2j8ePHY8WKFdiwYQPat2+vDI+Pj4fZbEZRUZFDfP16bm4dhoeHIzg4uFXsC0ajEZ07d0b//v2Rk5ODPn364O2332Yde8j27dtx9uxZ9OvXD3q9Hnq9Hps2bcI777wDvV6PuLg41rMXREZG4tprr8XBgwe5LXtIu3bt0L17d4dh1113ndKNn99/nnXs2DF89dVX+O///m9lGLdlz3jhhReUs929evXCmDFj8Oyzzyq9kbgte0anTp2wadMmlJWV4cSJE9iyZQuqq6vRsWNH1rEXqKlO3SmLOwI+6TYajejfvz/WrVunDLNarVi3bh3S09N9WDL169ChA+Lj4x3qrqSkBJs3b1bqLj09HUVFRQ5H+tavXw+r1Yq0tDQl5uuvv0Z1dbUSs3btWnTt2hVRUVFKTN3PsccEwjoSEYwfPx7Lli3D+vXr0aFDB4fx/fv3h8FgcFj+/Px8HD9+3KGed+/e7dC4rF27FuHh4coPxyvVYWvcF6xWK6qqqljHHjJs2DDs3r0bO3fuVF4DBgzA6NGjlf9Zz55XVlaGQ4cOoV27dtyWPeTGG29s8OjGn3/+GSkpKQD4/edpCxcuRGxsLDIzM5Vh3JY9o6KiAlqt4895nU4Hq9UKgNuyp4WGhqJdu3a4ePEi1qxZg7vvvpt17AVqqlN3yuIWt2+55scWL14sJpNJFi1aJHl5efL73/9eIiMjHe6G2VqVlpbKjh07ZMeOHQJA3nrrLdmxY4ccO3ZMRGy3yI+MjJTPP/9cdu3aJXfffbfT2/Vff/31snnzZvn222+lS5cuDrfrLyoqkri4OBkzZozs2bNHFi9eLCEhIQ1u16/X62XWrFmyb98+yc7O9ttHINT35JNPSkREhGzcuNHh0SkVFRVKzBNPPCHJycmyfv162bZtm6Snp0t6eroy3v7YlNtuu0127twpq1evlpiYGKePTXnhhRdk3759Mm/ePKePTQnUfWHy5MmyadMmOXLkiOzatUsmT54sGo1G/vOf/4gI69hb6t69XIT17AnPPfecbNy4UY4cOSLfffedZGRkSHR0tJw9e1ZEWMeesGXLFtHr9fLnP/9ZDhw4IB999JGEhITIhx9+qMTw+88zLBaLJCcny0svvdRgHLflq5eVlSWJiYnKI8M+++wziY6OlhdffFGJ4bZ89VavXi2rVq2Sw4cPy3/+8x/p06ePpKWlidlsFhHWcXP4Uw7iTlmupFUk3SIic+bMkeTkZDEajTJo0CD54YcffF0kVdiwYYMAaPDKysoSEdtt8l999VWJi4sTk8kkw4YNk/z8fId5FBYWyqhRoyQsLEzCw8PlkUcekdLSUoeYn376SW666SYxmUySmJgoM2bMaFCWJUuWyLXXXitGo1F69OghK1eu9NpytyRn9QtAFi5cqMRUVlbKU089JVFRURISEiL33HOPnD592mE+R48elTvuuEOCg4MlOjpannvuOamurnaI2bBhg/Tt21eMRqN07NjR4TPsAnVfePTRRyUlJUWMRqPExMTIsGHDlIRbhHXsLfWTbtbz1Rs5cqS0a9dOjEajJCYmysiRIx2eH8069oz/+7//k549e4rJZJJu3brJu+++6zCe33+esWbNGgHQoO5EuC17QklJiUyYMEGSk5MlKChIOnbsKK+88orDI5K4LV+9Tz75RDp27ChGo1Hi4+Nl3LhxUlRUpIxnHTedP+Ug7pTlSjQiIu6fFyciIiIiIiIidwX8Nd1EREREREREvsKkm4iIiIiIiMhLmHQTEREREREReQmTbiIiIiIiIiIvYdJNRERERERE5CVMuomIiIiIiIi8hEk3ERERERERkZcw6SYiIiIiIiLyEibdRERERERERF7CpJuIiIiIiIjIS5h0ExEREREREXkJk24iIiIiIiIiL/n/wlIC+f4bCIAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1fs28HvTE9IoIYGQQugQegkBKUJ+BKQFkSZCAtIUFCwgohBAJYKK+kWKiBIEEQHpAqEGBCnShNCR0HtJQg2QPe8fvLtmk02y2ezulL0/15XrgtnZmec858yZOdNWI4QQICIiIiIiIiKLc5A6ACIiIiIiIiK14qCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiK7NXnyZGg0Gmg0GuzevTvP+VJTUzFw4ECEhITA1dUV/v7+ePHFF7FkyRKD+U6ePImBAweibt268PPzg6urK0JDQ9GhQwds3rzZ2sUhO3b37l0EBgZCo9Ggbdu2uT4/d+5cnp8Zc/nyZXzzzTdo06YNgoOD4eLigoCAAHTt2hV79uzJ83t//PEH2rdvj9KlS8PZ2RmlSpVCeHg4+vfvj5UrVxaqTNOmTUO/fv1Qq1YtODk5QaPRIDk5uVDLsITx48dbdN0ajQYtW7a0yLLk7MGDB1iwYAG6d++OypUrw93dHb6+vmjRogV+/fVXqcMjIrIpJ6kDICKSQkpKCuLj41GsWDE8ePAgz/k2btyImJgYAEDHjh0RFhaGu3fv4vDhw9i0aRO6deumn/fIkSNYtmwZIiMj0aRJE3h7e+Py5ctYuXIl/vjjD3z66af46KOPrF00skPDhg1Denq6xZY3bdo0TJ48GRUqVECbNm3g5+eH06dPY8WKFVixYgUWLlyIHj16GHxnwoQJGD9+PDw8PNChQweEhobi2bNnOHr0KH777TecOnUKnTt3NjmGt99+GwBQpkwZ+Pn54dq1axYrH1nfn3/+iT59+qBkyZJo3bo1unbtihs3bmDZsmV49dVXsXPnTnz33XdSh0lEZBMcdBOR3Xn69CliY2NRp04dVKpUCQsWLDA634ULF/DKK68gMDAQmzZtQnBwsMHnz549M/h/x44d0bVrV2g0GoPpV65cQd26dTFhwgQMHToUvr6+Fi0P2bfff/8dCxcuxHfffYdhw4ZZZJmNGjVCcnIyWrRoYTD9zz//ROvWrfHGG28gJiYGrq6uAJ5fSZ84cSKCgoKwe/dulC1b1uB7jx49yvcKuTFr1qxB/fr1ERAQgCFDhuD7778vWqHIpgICAjB//nx0794dLi4u+umTJk1CREQEpk+fjr59+6JRo0YSRklEZBu8vZyI7M5nn32Go0eP4qeffoKjo2Oe802aNAkZGRmYNWtWrgE3ADg5GZ63dHV1zTXgBoCyZcuiadOmePr0Kc6fP1+k2Fu2bAmNRoPHjx/j448/RoUKFeDs7Izx48fr50lNTcWAAQMQHBwMV1dXlClTBnFxcUbXfeDAAbzyyiv6ef38/NCwYUN89tlnueZNSUlB9+7dUbp0abi6uqJ8+fIYMWIEbt++nWve0NBQhIaG4v79+xg+fDjKli0LV1dX1KpVC0uXLs01/6lTpzBq1CjUq1cPJUuWhJubGypXrozRo0fj/v37eebh6dOnGD9+PEJDQ+Hq6orKlStjxowZRnMnhMDcuXPRrFkz+Pr6wsPDA5UqVcLgwYNx4cIFg3nv3buH+Ph41KhRQ39bbHR0NHbs2GF02VK5efMm3njjDfTp0wft27e32HJffvnlXANuAGjWrBlefPFF3L17F0eOHNFP37t3L7RaLV5++eVcA24AcHd3L/Qt1e3bt0dAQEChYzdVeno6xo0bh+rVq8PT0xPe3t6oWLEiYmNj9dtKy5YtMWHCBADAiy++qH8cJTQ0VL+crVu3on///qhSpQo8PT3h6emJBg0aYPbs2QbrS05O1vcP27Zt0y9Lo9EgMTERQP63sicmJhrMm3397dq1029j/v7+aNasWa7121qdOnXw2muvGQy4AcDf3x+DBw8GAGzfvl2K0IiIbI5XuonIrhw4cACfffYZJk6ciOrVq+c5nxACS5YsQcmSJdGqVSvs378f27Ztg1arRZ06ddCqVSs4OJh23vL27dvYs2cPPDw8EBYWZpFydO3aFf/88w/atm0LX19flC9fHgCwZ88eREdH48GDB+jQoQMqVaqEc+fO4ZdffsG6deuwa9cufQyHDh1CkyZN4OjoiM6dOyMkJARpaWk4duwYZs+ebXAr/I4dOxAdHY0nT57glVdeQWhoKHbt2oVvv/0Wa9aswe7du1GqVCmDGJ8+fYo2bdrg7t276Nq1Kx4+fIhFixahe/fuWL9+Pdq0aaOfd9myZfjxxx/x4osvomXLltBqtdi9ezcmT56Mbdu2Yfv27XB2ds6Vh169emHv3r1o164dHB0dsXjxYgwdOhTOzs4YOHCgfj6tVosePXpg6dKlCAwMRK9eveDt7Y1z585h8eLFaNeunf7Eyp07d9C8eXMcPXoUTZs2xZAhQ5CRkYGVK1fqn+XXPXIgtSFDhsDR0RHffvutRW8vz4+uHrKfdCpZsiQA4PTp0zaJoaiEEIiOjsaePXvQtGlTtG3bFg4ODjh//jxWrVqFPn36ICQkBHFxcQCeD5JjY2P1g+3sd6tMnjwZZ86cQePGjdGlSxekpaVh/fr1GDx4ME6ePImvvvoKwPMTUfHx8ZgwYYLBsoHnA1Rz/PHHH+jYsSN8fX3RuXNnlClTBjdv3sQ///yD+fPnY9CgQWYt19qMtSEiIjVjb0dEdiMzMxN9+/ZFnTp1MGrUqHznTU1NxZ07d9CgQQMMHjw411WjunXrYtWqVShXrlyu7546dQoLFy5EVlYWrly5glWrViEtLQ2zZs2Cl5eXRcpy5coVHD58GCVKlNBPe/r0KXr27AmtVou9e/eibt26+s927NiBli1bYvjw4Vi9ejUAYP78+cjMzMSKFStyPWub/eq1VqtFXFwcHj58iPXr1yM6Olr/2ahRo/DFF1/ggw8+wI8//pgrxoYNGyI5OVl/tevVV19FVFQUpk6dajDo7tOnD959991cV8UmTpyI+Ph4LF68GL17986Vh0uXLiElJQXe3t4AgOHDhyM8PBxfffWVwaB7xowZWLp0KVq3bo3Vq1fD3d1d/9mjR4/w6NEj/f/feustHD16FD/88AMGDBign56QkIAGDRpg0KBBaNu2Ldzc3HLFk11aWhq++eabfOfJacSIESY/frBgwQIsW7YMK1asQPHixW0y6L5w4QI2bdqEMmXKoGbNmvrpERERCA4Oxtq1a9GhQwf07NkTjRo1QqVKlYze/SG1lJQU7NmzBzExMVi+fLnBZ5mZmXj69CkAIC4uDufOncO2bdsQFxdn9Gr9zJkz9Se9dJ49e4aXXnoJ3377LYYPH47g4GCEhoZi/PjxmDBhgv7fRfXTTz9BCIGtW7eidu3aBp8ZuwPFmEOHDmHFihUmr9PX1xcjRowoRJSGsrKy8PPPP0Oj0SAqKsrs5RARKYogIrITo0aNEi4uLuLIkSP6abGxsQKA2LVrl8G8u3btEgCEo6Oj8PT0FHPnzhV37twRqampYuDAgQKAiIiIMLqe1atXCwD6P09PTzF//nyLlKFFixYCgFi5cmWuz5YtWyYAiIkTJxr97ssvvywcHBxEenq6EEKId999VwAQSUlJ+a5z+/btAoBo165drs/u3bsnSpQoIdzc3ERmZqZ+ekhIiAAgzp49m+s7ISEhokSJEvmuU+f27dsCgIiLizOYrsvDli1bcn1H91lGRoZ+WrVq1YSjo6M4depUvuu7efOmcHR0FK1atTL6+f/+9z8BQKxevbrA2FNTUw3agSl/qampBS5XCCEuX74sihcvLnr16pVrfdHR0XnGYuwzUz158kQ0b95cABA///xzrs8PHDggatSoYVAeHx8f0aFDB7Fs2TKz1yuEEIMHDxYAxNatW4u0HJ3Dhw8LAAb5y0t8fLxZ6/79998FAJGYmGgwHYBo0aJFodc1d+5cAUDMnTtXP+3ll18WAMTJkycLFZux5Zr6FxISYva6hBDiww8/FABE//79i7QcIiIl4ZVuIrILu3btwpdffonx48cjPDy8wPm1Wi2A51dlPvnkE/2toMWLF8fs2bNx+PBh7NmzBzt27MALL7xg8N0OHTpACIEnT57g3Llz+OGHH9C3b1/s3bsX//vf/yxSHmMvH9L97NnJkyeNXkW7du0atFotTp06hQYNGqB79+745ptv0KVLF/To0QP/93//h+bNmyMwMNDgewcPHgQAo1f5dM+vbtiwASdPnjS4+pn9tvfsypUrh127dhlME///eevExESkpKQgPT1dXwfA86vmxtSvX9/o8oHnV5q9vLxw//59HD9+HBUrVkSlSpWMLkfn77//RlZWFjIzM43mUHf79IkTJ9ChQ4d8lxUaGgohRL7zmGvAgAFwdnY2uz3ldRU+r6uvursdtm/fjoEDB6JPnz655qlbty6OHDmCXbt2YevWrdi/fz927NiBNWvWYM2aNejduzfmz58PjUaDc+fO5Xo2uahXUAujWrVqqFWrFn799VdcunQJMTExaNmyJerUqWPyYyM69+7dw5dffokVK1bg33//zfVrCHm1XUvo2bMnli1bhsaNG+PVV19F69at0axZs1yPeuQnLi7O4FZ3a5o1axYSEhJQt25dfPvttzZZJxGRHHDQTUSq9+zZM8TGxqJWrVoYPXq0Sd/x8fHR/7tTp065Pu/YsSP27NmDffv25Rp067i4uKBy5cr44osv8PDhQ0ybNg3t2rVDu3btzCtINv7+/rmm3blzBwDwyy+/5Ptd3aAgIiICycnJmDRpEhYuXIi5c+cCABo2bIjJkyfjxRdfBABkZGTkuU7g+U86ZZ9PJ3sOs3NycjIYUAPPfx7qu+++Q1BQEDp16oQyZcro34w9YcIEZGZmGl2W7rbynMsHnp8wAaC/7TrnyQRjdDncuXMndu7cmed8+f3MnLXNmzcP69atw5IlSwo1uMouLS1N/4Kw7IwNurVaLfr374+FCxfitddew6xZs/JcrkajQZMmTdCkSRMAz0+mrFy5En379sUvv/yCrl27okuXLjh37lyu9YeEhNhs0O3k5IQtW7Zg/Pjx+P333/Hee+8BAPz8/DBs2DB89NFH+b5kUefJkydo2bIlDhw4gLp16+p/IsvJyQnnzp3DvHnz8my7ltCtWzesWLECU6dOxaxZszB9+nRoNBq8+OKL+Oqrr8x+Vtwa5syZgzfffBM1a9bExo0b4enpKXVIREQ2w0E3Eane/fv39Vcocz4zrBMZGQkAWL58OWJiYlChQgU4OjoiKyvL6DO2umnZnwXOT5s2bTBjxgwkJydbZNBt7DlZ3QB09erVBV6F1WnWrBnWrVun/0mn1atXY8aMGWjfvj1SUlIQFhamX+7169eNLkP3+8nGBsCmuHHjBqZPn45atWph165d8PDwMFi2scFhYegG/5cvXy5wXl0Z3nvvPXz55ZdFWq+1nunW3XmQ/Tfis0tKSoJGo0Ht2rVx6NAho/OYehVeq9WiX79++Pnnn9GrVy8kJiYW6kqwRqNBTEwM3nnnHUycOBFbtmxBly5d0LJlS6vdBWCqkiVLYtq0afjf//6HEydOYMuWLZg2bRri4+Ph7OyMDz/8sMBlrFy5EgcOHMDrr7+OOXPmGHy2aNEizJs3r1Ax6XKb8+cIAeT5zH7nzp3RuXNn3Lt3Dzt37tS/lLBt27Y4ceJEge3JFs90//DDDxg8eDCqV6+OzZs361+8R0RkLzjoJiLVc3V1xeuvv270s+3bt+P06dPo1KkT/Pz89G8ndnNzQ5MmTfDnn3/i2LFjua5mHzt2DAAMfjooP7pbTI29gdtSIiIiADy/ld7UQbeO7iedWrZsCV9fX4wbNw4bN27E4MGD9S9kS05OzvUCugcPHmDfvn1wd3dHlSpVzIr77NmzEEIgKirKYMANPP9d6KLy9PRE9erVcfLkSZw+fTrfW8wbNmwIjUaT6/Z3c+R1NTk/cXFxBQ6SIiMjjf6M2v379/Hbb7+hXLlyiI6ONvozd4WRfcDdo0cPzJ8/36Srv8bI+aqmRqNBtWrVUK1aNXTq1AnBwcFYtWqVftCtK7Puzons/v33XwDI9SJCIO+26+DgYHRZwPPHVwDjJ4h0J1vy4uXlhbZt26Jt27bIysrCTz/9pP81g/wcOnSoUO20sHck6Abc1apVw5YtW+Dn52fyd4mIVEPC58mJiCSX14vUhBBi4cKFAoBo3bq1ePz4sX768ePHhYeHh/Dy8hJ37tzRT9+3b5/QarW5lnPu3DkRFBQkAIgdO3YYXX/2lyPlR/eSMGMeP34sgoODhZubm9i2bVuuz588eSL+/PNP/f//+usv8ejRo1zzDR061OAFUFlZWaJChQoCgNi4caPBvKNHjzb6UqSQkJA8X7iUswxXrlwRAETjxo1FVlaWfvrFixf168354qn88qDLafaXkk2fPl0AEFFRUeLhw4cG8z969Ejcvn1b//8ePXoIAGLKlClG63P37t3iwYMHRtctJUu+SC0rK0ufx27duomnT5/mO/+ePXvEvHnzjLanGzduiMqVKwsAYtGiRaYVJgdTXqSmewlZfHx8gctLTU01+tK6v//+WwAQLVu21E/77rvv8txGdX3EqFGjDKYnJycLZ2dno/GUKlVKhIaGGo1L9wLHVq1aGWwLf/31l3BycsoVx7Zt28SzZ89yLadDhw4CgEhOTja6Hlv54YcfhEajEdWqVRPXrl2TNBYiIinxSjcRUR50LylaunQpateujejoaKSnp+P333/H48eP8fPPP+uvTAHPb0k+c+aM/ueTHBwc8O+//2LdunV48uQJ3n//fTRt2tRgHbpnmy3xe7Wurq5YunQp2rVrhxYtWqBVq1aoWbMmNBoNzp8/jz///BMlS5bEiRMnADz/feGtW7eiefPmKF++PNzc3HDgwAFs3rwZYWFh6NKlC4DnV+YSExMRHR2Nl156Cd26dUNISAh27dqF5ORkVKhQAZ9//rnZcZcpUwZdu3bF77//jgYNGqB169a4fv061qxZg9atW+uvJhbFG2+8gW3btmHx4sWoVKkSOnXqBG9vb1y4cAFJSUn48ccf9b+9PWPGDJw8eRKjRo3C/PnzERkZCV9fX1y8eBH79u3D6dOncfXq1VxX5dVk4sSJmDdvHjw9PVG5cmV8+umnueaJiYnRPzN85coVxMbGYtiwYWjevDmqVq0KJycnnD9/HmvWrMH9+/fRvn37PG+JN+bzzz/Xt1XdnQeff/65/gVsMTExBr+XXpht6dChQ3j55ZfRqFEjVK9eHQEBAbh8+TJWrFgBBwcHvPPOO/p5X3zxRWg0GowZMwZHjx6Fj48PfH19MWzYMHTs2BGhoaGYMmUKUlJSEB4ejpMnT2LNmjXo0qULli5dmmvdrVq1wuLFixETE4O6devC0dERnTp1Qq1atdC4cWM0bdoUW7ZsQWRkJJo3b47z589j5cqV6NixY66fN3v77bdx5coVvPDCCwgNDYVGo8GOHTuwd+9eNG7cOM/3TdjCli1bMGjQIAgh0Lx5c8ycOTPXPHXq1JHNb94TEVmV1KN+IiIp5XelWwghnj59KqZOnSpq1KghXF1dhbe3t2jTpo3RK0hLliwR3bp1E2FhYaJYsWLC2dlZBAYGipdfflmsX7/e6PLr1q2b64p5fvK7wqtz6dIlMXz4cFGpUiV9zNWqVRMDBgwQmzdv1s+3fv160bdvX1GlShXh5eUlPD09RfXq1cWYMWPEzZs3cy338OHD4pVXXhGlSpUSzs7OIiQkRAwfPtzovIW50i3E858ee++990RoaKhwdXUVlSpVEp988ol48uSJRa50CyGEVqsVc+bMEY0bNxbFihUTHh4eolKlSmLIkCHiwoULBvM+fPhQTJkyRdSvX18UK1ZMuLu7i/Lly4uYmBjx888/F3jlVwr5Xc0+c+aMACA6duxo0rJ0OczvL/sV14yMDLFgwQLRp08fUaNGDeHr6yucnJyEn5+faN26tfjxxx+NXpHNj66O8/rLeQW5S5cuwsHBwaSfz7p48aIYPXq0aNy4sShdurRwcXERwcHB4uWXXzbaFyQmJoqaNWsKV1fXXD+bdfbsWdG1a1fh5+cnPDw8RMOGDcWiRYvE1q1bjcZ59epV0b17d1GqVCnh4OCQK5e3bt0Sffv2FSVKlBDu7u6icePGIikpyehPhi1atEh0795dVKhQQXh4eAgfHx9Ru3ZtMXnyZHHv3j1T0mw1pvwUWWxsrKQxEhHZikYIid9kQkRkpzIyMlC8eHG89957mDJlitThkIrt3r0bkZGR6NevH3766Sepw7GK0qVLo2XLlli8eLHUoRARERko3I9REhGRxezcuRPOzs549913pQ6FVG7lypUA/nvZntocP34cN2/eNOmN40RERLbGK91EREQq9PjxY3z66ac4cuQIVq1ahTJlyuD48eN5/n46ERERWQcH3URERCqUlpaGEiVKwNfXFy1btsTkyZPz/bk0IiIisg4OuomIiIiIiIishM90ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERKRaiYmJ0Gg0OHfunNShEBGRneKgm4iIyAjdYE335+TkhMDAQMTFxeHy5ctShyepY8eOYfz48RzIEhERmcBJ6gCIiIjkbOLEiShfvjweP36M3bt3IzExETt27EBKSgrc3NykDk8Sx44dw4QJE9CyZUuEhoZKHQ4REZGscdBNRESUj3bt2qFBgwYAgAEDBqBUqVKYPHkyVq1ahe7du0scHREREckdby8nIiIqhGbNmgEA/v33X4PpJ06cwCuvvIISJUrAzc0NDRo0wKpVqwzmefr0KSZMmIBKlSrBzc0NJUuWxAsvvICNGzcazLdlyxY0a9YMxYoVg6+vLzp37ozjx48bzDN+/HhoNBqcOXMGcXFx8PX1hY+PD/r164eHDx8azDt37ly0atUKpUuXhqurK6pXr46ZM2fmKltoaCg6dOiAHTt2oFGjRnBzc0NYWBh+/vln/TyJiYno1q0bAODFF1/U336fnJycZ84OHz6MuLg4hIWFwc3NDQEBAejfvz9u375tdpkePXqEt99+G6VKlYKXlxc6deqEy5cvQ6PRYPz48XnGorNu3Tp9jr28vNC+fXscPXq0wO8REREVFgfdREREhaB7jrl48eL6aUePHkXjxo1x/PhxjB49Gl999RWKFSuGmJgYLF++XD/f+PHjMWHCBLz44ov47rvv8NFHHyE4OBgHDhzQz7Np0yZER0fjxo0bGD9+PN5991389ddfaNq0qdFnqLt374579+4hISEB3bt3R2JiIiZMmGAwz8yZMxESEoIxY8bgq6++QlBQEN58801Mnz491/LOnDmDV155Bf/3f/+Hr776CsWLF0dcXJx+QNq8eXO8/fbbAIAxY8Zg/vz5mD9/PqpVq5ZnzjZu3IizZ8+iX79+mDZtGnr27IlFixbhpZdeghDCrDLFxcVh2rRpeOmllzB58mS4u7ujffv2ecaQ3fz589G+fXt4enpi8uTJGDt2LI4dO4YXXniBz6kTEZHlCSIiIspl7ty5AoDYtGmTuHnzprh48aJYunSp8PPzE66uruLixYv6eVu3bi1q1qwpHj9+rJ+m1WpFkyZNRKVKlfTTateuLdq3b5/veuvUqSNKly4tbt++rZ/2zz//CAcHB9G3b1/9tPj4eAFA9O/f3+D7Xbp0ESVLljSY9vDhw1zriY6OFmFhYQbTQkJCBACxfft2/bQbN24IV1dX8d577+mnLVmyRAAQW7duzbcs+a3/119/zbUuU8u0f/9+AUCMGDHCYL64uDgBQMTHx+un6eoxNTVVCCHEvXv3hK+vrxg4cKDBd69duyZ8fHxyTSciIioqXukmIiLKR1RUFPz8/BAUFIRXXnkFxYoVw6pVq1CuXDkAwJ07d7Blyxb91dlbt27h1q1buH37NqKjo3H69Gn92859fX1x9OhRnD592ui6rl69ikOHDiEuLg4lSpTQT69Vqxb+7//+D2vXrs31nSFDhhj8v1mzZrh9+zYyMjL009zd3fX/Tk9Px61bt9CiRQucPXsW6enpBt+vXr26/hZ6APDz80OVKlVw9uxZU1OWS/b1P378GLdu3ULjxo0BwOAqv6llWr9+PQDgzTffNJjvrbfeKjCWjRs3Ii0tDb169dLX1a1bt+Do6IiIiAhs3bq1cIUjIiIqAF+kRkRElI/p06ejcuXKSE9Px08//YTt27fD1dVV//mZM2cghMDYsWMxduxYo8u4ceMGAgMDMXHiRHTu3BmVK1dGeHg42rZtiz59+qBWrVoAgPPnzwMAqlSpkmsZ1apVQ1JSEh48eIBixYrppwcHBxvMp7vt/e7du/D29gYA7Ny5E/Hx8di1a1euZ6PT09Ph4+OT5/J0y7x7927eSSrAnTt3MGHCBCxatAg3btzItf6cCirT+fPn4eDggPLlyxvMV7FixQJj0Z3waNWqldHPdTkjIiKyFA66iYiI8tGoUSP928tjYmLwwgsv4NVXX8XJkyfh6ekJrVYLAHj//fcRHR1tdBm6wWDz5s3x77//YuXKldiwYQPmzJmDr7/+GrNmzcKAAQPMis/R0dHodPH/n5X+999/0bp1a1StWhVTp05FUFAQXFxcsHbtWnz99df6+E1dnjm6d++Ov/76CyNHjkSdOnX0eWvbtm2u9VsrBh3d+ubPn4+AgIBcnzs58dCIiIgsi3sWIiIiEzk6OiIhIUH/IrTRo0cjLCwMAODs7IyoqKgCl1GiRAn069cP/fr1w/3799G8eXOMHz8eAwYMQEhICADg5MmTub534sQJlCpVyuAqtylWr16NzMxMrFq1yuAKclFuo9ZoNCbPe/fuXWzevBkTJkzAuHHj9NPzusXeFCEhIdBqtUhNTUWlSpX008+cOVPgdytUqAAAKF26tEn1RUREVFR8ppuIiKgQWrZsiUaNGuGbb77B48ePUbp0abRs2RLff/89rl69mmv+mzdv6v+d8yeyPD09UbFiRWRmZgIAypQpgzp16mDevHlIS0vTz5eSkoINGzbgpZdeKnS8uqvG2a8Sp6enY+7cuYVelo5u4J89xsKsHwC++eYbs9evu6NgxowZBtOnTZtm0ne9vb0xadIkPH36NNfn2euLiIjIEnilm4iIqJBGjhyJbt26ITExEUOGDMH06dPxwgsvoGbNmhg4cCDCwsJw/fp17Nq1C5cuXcI///wD4PlLylq2bIn69eujRIkS2LdvH5YuXYphw4bpl/3FF1+gXbt2iIyMxOuvv45Hjx5h2rRp8PHxMen3p3Nq06YNXFxc0LFjRwwePBj379/HDz/8gNKlSxs9SWCKOnXqwNHREZMnT0Z6ejpcXV31vwOek7e3N5o3b44pU6bg6dOnCAwMxIYNG5CammrWugGgfv366Nq1K7755hvcvn0bjRs3xrZt23Dq1CkA+V+J9/b2xsyZM9GnTx/Uq1cPPXv2hJ+fHy5cuIA//vgDTZs2xXfffWd2bERERDlx0E1ERFRIL7/8MipUqIAvv/wSAwcORPXq1bFv3z5MmDABiYmJuH37NkqXLo26desa3FL99ttvY9WqVdiwYQMyMzMREhKCTz/9FCNHjtTPExUVhfXr1yM+Ph7jxo2Ds7MzWrRogcmTJ+d6cZgpqlSpgqVLl+Ljjz/G+++/j4CAALzxxhvw8/ND//79zSp/QEAAZs2ahYSEBLz++uvIysrC1q1bjQ66AWDhwoV46623MH36dAgh0KZNG6xbtw5ly5Y1a/0A8PPPPyMgIAC//vorli9fjqioKPz222+oUqUK3Nzc8v3uq6++irJly+Lzzz/HF198gczMTAQGBqJZs2bo16+f2TEREREZoxGWeCsJERERkcQOHTqEunXrYsGCBejdu7fU4RAREQHgM91ERESkQI8ePco17ZtvvoGDgwOaN28uQURERETG8fZyIiIiUpwpU6Zg//79ePHFF+Hk5IR169Zh3bp1GDRoEIKCgqQOj4iISI+3lxMREZHibNy4ERMmTMCxY8dw//59BAcHo0+fPvjoo4/4W9tERCQrHHQTERERERERWQmf6SYiIiIiIiKyEg66iYiIiIiIiKyEDz1ZgVarxZUrV+Dl5QWNRiN1OERERERERHZDCIF79+6hbNmycHCQ/jozB91WcOXKFb45lYiIiIiISEIXL15EuXLlpA6Dg25r8PLyAvC8kr29vSWOhoiIiIiIyH5kZGQgKChIPy6TGgfdVqC7pdzb25uDbiIiIiIiIgnI5VFf6W9wJyIiIiIiIlIpDrpVTC5ndkyhpFgB5cSrlDh1NBqN4mLWUWrcgLLzboyayqKj9DIpPX4dpZZDTds4yyE/bF/yxfLIBwfdJDklb0ByptFoIISQOoxCUVq8OkrMdXZKjt2eKLWvVPr2oRZqqgOlbgtqpaa2pUZq2V6UXg4OukkWlNhhK33jlzMl5VZJsdoDtdaHEvtINRJCqLaNKYUatgW1nojitiE/amlnural5PJw0K1ycu8A5R5fXuS+0St5h67EuJUYszFK3R5zUkt9qIFa2pSSKXl/oEZq3SbU0Ma4rciTGgbcAAfdqqaUxqmUOI1R685TDpSQWyXEaColb4c6aqqPvCixjGpoWzkpsR7URsl1oMZtQkfJ9aJmSq8XNWwzHHSTZNgBWIcaztQqKX4lxWoP1Fwfai6bkiipHtSwPzBGjWVSA129KPH4Tq3bCqDs7UWJbSkvHHSrnNyfP1NyR0DWJ+e2K+fYzCX3/iI/aj5gUiqltiVSDqW1MXvop5RYPqW1I3ujxDZlDAfdJAk1dXByKoucYikqJXSySojRHqip3RdEaSdG1LqNKKEe1D7AU3PZ1EDu24eOWp4XNoVS6kStOOi2A3I9OFBDByfHMsgxpqKQY9uVY0yWpMTyqa3dK50S25Ca2FP+lVJWpcRpCUrrj5UWrzmUWEa1nTjkoNuOyKXDl0sclqTGMsmBnDtbOcdWFEp7Jk8pcVqaEsqt1m1ER64ntHXUnn9AeWVUWrxFJeftA5B/fNZgj2WWCw667YTcOnq5xVMUcimL2s4IknSU1o6UFm9Ryb289nZQJ7fy2uO+QG51kJPc47MGubdBe7qtXEdJZVXjNsNBt52RuhFLvX5rUnPZpCS3q0lyisXa7KmsSiTH+rG3A1m5lVOObcLa5FYHeVFKnJYm5zZpj3Uit2Oq/KitfjjotiNyabxyicOSpC6TUjpQtZC6vm1BCbeZ2+MVPR05l1vOsVmLnLYTe8w/IK86yE6ucdmCXNuiPdeJDnNgexx02yFuaNYjZW7lunOzFDm0WznEYEtqb1NKJ7crFnKKxZbkcoJK6vVLSe59ldzjs0f2XCdy6bPyotYT6qoedI8fPx4ajcbgr2rVqvl+Z8mSJahatSrc3NxQs2ZNrF271kbR2oaUjViuG7elSJVbtecVkNfOUU6x2Io9tDElk0P92Ntt5TnJpdxyiUMqctgWspNbPFLgyUF5kuvAW27xWJKqB90AUKNGDVy9elX/t2PHjjzn/euvv9CrVy+8/vrrOHjwIGJiYhATE4OUlBQbRmwbUjVqezggsGVu7e1AV8rOWM07gvzItW2p9Ux4YcnpwMne60PKwYUc6l9qctoWAPvbPysJ6+Q5ueZBrnEVleoH3U5OTggICND/lSpVKs95v/32W7Rt2xYjR45EtWrV8Mknn6BevXr47rvvbBix9UnRmOWyE7Q2KXb6au2ccpLDAZW95NoYe9mGlUjqdsm2YYgntaXDHMgX+wl5ksudCLo7ktW8Dat+0H369GmULVsWYWFh6N27Ny5cuJDnvLt27UJUVJTBtOjoaOzatcvaYdoFNW9I2dmqnHLoJG1Nylv47aX9GiO3sttj2zcFT0hJT6qT2sz/f+QwiOBVbkNyOGkuh/WTcfayvThJHYA1RUREIDExEVWqVMHVq1cxYcIENGvWDCkpKfDy8so1/7Vr1+Dv728wzd/fH9euXct3PZmZmcjMzNT/PyMjwzIFsDJb7ajttZOzZn7tpYPKiy0PMu21/cqdvbb9vEg10OD2YRz3r9KT+mQE+yhDuj5Kqnqx9+Om/OjqhvViXbK80v348WODQay52rVrh27duqFWrVqIjo7G2rVrkZaWhsWLF1sgyv8kJCTAx8dH/xcUFGTR5VuDrRu3PWxM2dmivPaWUx1bnjHX7YTsNdc5yeEAXw4xyJVUA29uH4a4f5We1C+NZZ0YJ/UVb9aLPNlLvchi0J2cnIx33nkHjRo1gqenJ4oVKwYPDw94eXmhUaNGGDFiBJKTk4u8Hl9fX1SuXBlnzpwx+nlAQACuX79uMO369esICAjId7kffvgh0tPT9X8XL14scqy2Yu2Oz94PkK1Rfu7QbbPjtve2m5Mc2pw9nRFXAm4jebPFCRDuCwpm6zbKbaJgth5428OzwpYgxUlbe9teJBt0P336FN999x3CwsLQqlUrzJ8/H76+vnjttdcwatQojBw5Eq+++ip8fX2xYMECtGrVCuXLl8d3332Hp0+fmrXO+/fv499//0WZMmWMfh4ZGYnNmzcbTNu4cSMiIyPzXa6rqyu8vb0N/pTA2h2QvR8gW2PHYm8dVH54N4E0pH47M+ukYHyRo3xY68QrBxEFkyo/rJeC2Wrgzf2G/NlT3Uj2THfFihXx5MkTxMbGonv37qhXr16+8+/fvx9LlizBpEmT8OWXX+LcuXMFruP9999Hx44dERISgitXriA+Ph6Ojo7o1asXAKBv374IDAxEQkICAGD48OFo0aIFvvrqK7Rv3x6LFi3Cvn37MHv27CKXV86ssfNmR/ecNc4c2ntOc7Jm+yVDUj83zLZfMFs9N8ltpGDWqAtuC4Vny+frWS+ms/b+hNtK4dny2W573F4kG3SPGTMGcXFxcHV1NWn++vXro379+pg4cSLmzp1r0ncuXbqEXr164fbt2/Dz88MLL7yA3bt3w8/PDwBw4cIFODj8d7G/SZMmWLhwIT7++GOMGTMGlSpVwooVKxAeHl74AioEDwpswxL55UFubtYcYLD95k2KF9mxPuQhez/EOilY9j5K939zcVsoPJ6Ekj9e+JEXYydDmEfL0Ahm0uIyMjLg4+OD9PR0xdxqbskOyh7PXhWkqPnlDiR/lj5pxDznz1YDL7Z781m6jjjYLrqi5JDbQtFYM3+sm6Kx1qCb9VF01ur3bVU/chuPyeJFaiQ93Ruai3q2lmd7jcv+/FJhcmSpKyRqZ6nb1Nh+TZP9je7WzhnbvXmy562w/Y6py6XCMWe74T7AMqzVX3GfYRmWfvcNtxXLsNSvt+j6MUvui5RIstvLHRwczEp8VlaWFaIhneyDF56JtyxjA++8csVbe8xj7s6WV/HMI/XvrlL+jA28i7J9sI4tI+d2Y8qxEHNfdJbur7jfsAxL1os9D+iszZz6MVYf9rytSDboHjduXK7KWL58OY4ePYro6GhUqVIFAHDixAls2LAB4eHhiImJkSBS+2NOB8iDMtPlHHznPDDOOR+ZJq8rGaae2MhvXsqbtV6Gw4MnyzL3wJZ9u3XkfNY7+3Synuz7iaI+7pV9eVQ0eW0Pus/ywv24beS1/zBlW2B9/EeyQff48eMN/j979mzcuHEDKSkp+gG3zvHjx9GqVSuULVvWhhHat8IcoPGgzDw86LIOU67usc1alqXfeMr6sY7CHjixHqyLeZWOuX0WtwnrMZbTgvbhpiyDLCO/EyNA7hNZvAMuN9k80/3FF19g2LBhuQbcAFCtWjUMGzYMU6ZMkSAyyvkshrFnM7hhmUf3vEz2P7Kc7O8qYJu1PktenWb9WEfOO22ybw85t5Xs8xOpTUGDiJy4TdhezjvYjPVZPH6ynZw5zpn77PsP1kdukl3pzunSpUtwdnbO83NnZ2dcunTJhhFRzs6OGxApVVHeVUCmMfc2c95Gbnv5bQ/cPsieFHbgze3D9nLWEetAWgXdRs4Bd95kc6U7PDwcM2bMwOXLl3N9dunSJcyYMQM1a9aUIDLiGURSA7Zj28jvjhhj8wK8YiEF5pnoOWP9j7Htg9uLdLhvUA7WUd5kc6X766+/RnR0NCpXrowuXbqgYsWKAIDTp09jxYoVEEJgwYIFEkdJRER5yevumPyeI+YOmojkiv0TEVmKbAbdL7zwAvbs2YOxY8di+fLlePToEQDA3d0d0dHRmDBhAq90ExEpgLErRHxpIBEREdkrjZDhUY9Wq8XNmzcBAH5+fnBwkM1d8CbJyMiAj48P0tPT4e3tLXU4RESywKvbREREZAtyG4/J5kp3dg4ODvD395c6DCIisiAOtomIiMgeyWrQ/fjxY/z+++84cOAA0tPTodVqDT7XaDT48ccfJYqOiIiIiIiIqHBkM+g+f/48XnzxRZw7dw6+vr5IT09HiRIlkJaWhqysLJQqVQqenp5Sh0lERERERERkMtk8LD1y5Eikp6dj9+7dOHXqFIQQ+O2333D//n1MnjwZ7u7uSEpKkjpMIiIiIiIiIpPJZtC9ZcsWvPnmm2jUqJH+xWlCCLi6umLkyJFo3bo1RowYIW2QRERERERERIUgm0H3w4cPERoaCgDw9vaGRqNBenq6/vPIyEjs2LFDouiIiIiIiIiICk82g+7g4GBcunQJAODk5ITAwEDs3r1b//mxY8fg5uYmVXhEREREREREhSabF6m1atUKK1euRHx8PAAgLi4OCQkJuHv3LrRaLebPn4++fftKHCURERERERGR6WQz6B49ejT+/vtvZGZmwtXVFWPGjMGVK1ewdOlSODo64tVXX8XUqVOlDpOIiIiIiIjIZBohhJA6CLXJyMiAj48P0tPT4e3tLXU4REREREREdkNu4zFZPNP98OFD1K9fH7NmzZI6FCIiIiIiIiKLkcWg28PDA6mpqdBoNFKHQkRERERERGQxshh0A0Dbtm2RlJQkdRhEREREREREFiObQffYsWNx6tQp9OnTBzt27MDly5dx586dXH9ERERERERESiGbF6k5OPw3/s/vNvOsrCxbhFMkcntwn4iIiIiIyF7IbTwmm58MGzdunMWf6U5ISMCyZctw4sQJuLu7o0mTJpg8eTKqVKmS53cSExPRr18/g2murq54/PixRWMjIiIiIiIi9ZPNoHv8+PEWX+a2bdswdOhQNGzYEM+ePcOYMWPQpk0bHDt2DMWKFcvze97e3jh58qT+/3zBGxEREREREZlDNoNua1i/fr3B/xMTE1G6dGns378fzZs3z/N7Go0GAQEB1g6PiIiIiIiIVE42L1KzhfT0dABAiRIl8p3v/v37CAkJQVBQEDp37oyjR4/mO39mZiYyMjIM/oiIiIiIiIgkG3RXr14dP//8M548eWLydzIzMzF37lxUr1690OvTarUYMWIEmjZtivDw8Dznq1KlCn766SesXLkSCxYsgFarRZMmTXDp0qU8v5OQkAAfHx/9X1BQUKHjIyIiIiIiIvWR7O3lU6ZMwZQpU5CVlYVOnTohKioK9erVQ/ny5eHh4QEAePDgAVJTU7Fv3z5s2rQJq1evhouLC0aOHIlRo0YVan1vvPEG1q1bhx07dqBcuXImf+/p06eoVq0aevXqhU8++cToPJmZmcjMzNT/PyMjA0FBQUbflqd7PlwmL40nIiIiIiJSFbm9vVzSnwy7d+8efvzxRyQmJuLw4cP6AamT0/NHzZ89ewbg+QA1PDwc/fv3R//+/QuduGHDhmHlypXYvn07ypcvX+g4u3XrBicnJ/z6668mzW+skvN6GRsH30REypW9b2d/TkREJA8cdOfh3Llz+Ouvv3DixAncvn0bAFCyZElUrVoVkZGRZg2WhRB46623sHz5ciQnJ6NSpUqFXkZWVhZq1KiBl156CVOnTjXpOzkrOa+r2/m9FV0m1UJEZPdy9tVCiFyDbd7FREREJB9yG3TL5u3loaGhCA0Ntegyhw4dioULF2LlypXw8vLCtWvXAAA+Pj5wd3cHAPTt2xeBgYFISEgAAEycOBGNGzdGxYoVkZaWhi+++ALnz5/HgAEDzIohvwOxvA7ONBoNNBoND96IiCSWsw/X9c/Zp+n+zb5bWjzxIT22fyIi42Qz6LaGmTNnAgBatmxpMH3u3LmIi4sDAFy4cAEODv+9T+7u3bsYOHAgrl27huLFi6N+/fr466+/zHp5m4+PD4DCHwDkvIpChcPbPUkNjPUBbM+2ldfgOi8ceEsj57bC/Nte9jrgPlh6rAP5Yx3ZH9ncXq4mlridgWfszcNb9m2D7dO6jOWXbdv2zB288YSJdenqJa+DVh7MWp8pbZz1YHt5PfZiDOtEOtn38Tyesh7eXk4m4RWTwsuv48p+S6gO81p4xq4oAcylJeWVUz6OYltFyamxwQfrqOiMXU3N79GtnP0+8190hdmPFvRIBllWfnfmGOt/WCfWZ6z/yZl3Hu/bDw66ZYwbomlMOajiQbD5CjrI4gGV5ZiTRz6OYnmWzif78qIzd9so6jLoP+bmj4Nv6zH1JEheJ6fYL1lPzqvZ+R2rGpvH2HykbA4Fz2IbFStWzPN3sO1ZzjNjZCh7p2bOwRjzmrecB0h55Tj7dN13mFfT5cyZOTtZDryLzhL1kB8ePJnPUnXCft98lqiDnPsKKpqcgzhz9x05l0VFZ+xqdn7HUdnnybkc1o16yOZK99mzZ7Fv3z7s378fp06dgre3N6pVq4awsDCpQ5Mcz0bmZolbBjlQyVtRrirpvsv2WjBLD/CYc/PY6uqbrs9hHZnO0nXDft98lq4DbgvmsVZ/xfqwLD6eRDnJ5kVqDg4OuToSjUaDGjVqYMyYMejZs6eU4RWKtR7c521Zz1kyD8xpbpbKCXObP2vkhzkvPFvnjHVUONY42GQdFI61Dvg5kDCPNbcJgNtFUVmrflgvhSe3F6nJ5vZyAHB2dsb48eORnJyMDRs24LPPPoOLiwt69+6NIUOGSB2e5Hgb0H8secYdYE51LHkwytwWzFq3MDPnhWPLgxkeOJnOWu2Y24nprJkj3nVQeNbcJvJ6ASGZzpp5Y50on6yudH/wwQdISEjI9dnXX3+N999/Hz/99BNiY2MliK5wrH1mxZ7PeFnzjDvAA2KeobUNa7c3XrUwnRTtk/1NwWyRI/ZN+bNVHVh7HWpiqzbLbaNwbLHPZZ0Unq5eeKU7B3d3d5QrV87oZ++88w569OiBadOm2Tgq+eIZL8vilQ+eobU1a+48+cIi00h1EMO6yZ8tB2KsA+Ns+Z6D7OujvNkyR7wLwXS2PMnNOlE22Qy6q1atij/++CPPz5s1a4Zjx47ZMCL5stczXdY+QLbXvALWPcCy57waY8uBHnMvXxxsGGfLATfrwDhbX31mP1Uwqe4I4LaRP3N/Qccc3E4KR45tVzaD7sGDB2P9+vV466238OjRo1yf79y5Ex4eHhJERnJgq43HHs/u2mpnbm95lRPmPjc55ISDPkNSDCxYB4akvN2bdWCcVHXCbSN/UvVXfObedOnp6VKHYEA2Pxk2aNAgHD9+HN9++y0WLVqEdu3aITw8HC4uLti0aRPWrVuHuLg4qcOUDXv86RlblpW5tfzy+bMX0rQrezyRZCo5tEXWz3NSDvbYPxliHciPVDlh/5Q/bivypMtNRkaG1KEYkM2L1HT+/PNPfP3119i0aRPu37+vnx4TE4PExERZPAhfEFu9ot5eNjgpDsbsKbfMq21IfQXJXvNujBxf3mTvdSSH8suxXdiSHMovhxjkRA75kEMMciOHnMghBrnKPuiW00+GyeZKt06zZs3QrFkzZGVl4dy5c7h37x6Cg4NRokQJqUOTJTkcqNgCByqWJ1X51J5XY+Swc7THvOeHuZAPuVxJ41U96bcL1sF/5LDf0K2fdZKbXOqF+3ZDcs6H7AbdOo6OjqhQoYLUYciaPXSEUpVP7bmVOq9y7hQtTQ4HTmpvz4Uh1zzY4yND2cmp3PZYD3Irs9zisTU57Ddysvc60ZFTHrhvNySnujFGNi9SI/OpfYOT+uqgWkn5jJi9kNuBk5rbsynkVh8kP2wb0mMdPCenPMgpFsrN3vftgDJywEG3wqm5I5R6A1JrbqXOK2BfZ2fl0o7kEodUlDDgtqftQkeuVybsqR5YB/Ii53LLOTZbkGP55bjt2poS9u8AB92qIceOoCjktAGpLbeAPPIKqDO3cmfPOZdLuyd5YzuRnr3XgRzLz58Qe06OdQOwXuRaL9lx0K0CSmho5pBDueQQgyXJqVNWW25zkuPVI7nFYytyrAuSV39kr7htyIvctwl7HnjLucz2vA3LuV5y4qBbRZTU8PKjlnLIlT13zvQctzH5srdbzOXcH6m9HuRePnvbFnTkvE0A8o/PGuR09yXlppR64aBbJZTS4Ewlp/LY647fFtSaWzmXSU7bli3IuS7smdzrxV62E3spJ1me3LdhS1HSgNte6kRHaeXloFtF1DqAIctg27AtOe+g7a2vkHNd5MUe6kcJ9aLWelBKueypr1LSrf5KidNSlFBeJcRoDUoqNwfdJCty3umoYcfP3FJ2zLs8yXU7tRSltDu11oOSrtyRvCllWzaXEsunxJjtBQfdKsQNzvKUfnAi5zah9NzmJOcTR9kpIcaiUkpd5EXO2625lDjgU2M9KCn/9nC1W4nlU1IbMocS+yolxVpUStxmOOhWGSVvcErYgJQQY16U3DbIOuzhYFap1PyWYCX1RWqrByWXQ8mxm0JJ24W9UGqdqH1b0VFa/djFoHv69OkIDQ2Fm5sbIiIisHfv3nznX7JkCapWrQo3NzfUrFkTa9eutVGkJOcNSM6x5Ucpna9S4syPGspA8qHUPicvSt0+1FYPSiyPEmM2lVK3C4AnbuVIbScK1UT1g+7ffvsN7777LuLj43HgwAHUrl0b0dHRuHHjhtH5//rrL/Tq1Quvv/46Dh48iJiYGMTExCAlJcXGkZuPnaD1KDW3cj9gkXt8haHEsiixTRdETWVSU1mUuH3oKL0elB4/oI4yGKPk7UKNlP5oktoH3kqtH41QYtSFEBERgYYNG+K7774DAGi1WgQFBeGtt97C6NGjc83fo0cPPHjwAGvWrNFPa9y4MerUqYNZs2aZtM6MjAz4+PggPT0d3t7elilIISmtQSrp2Rkl5VZpeQWUEWtelNQ2slNq3PlRU5nUUBZu39JTevyAOsqQnRq2C0Cd9aKG8qilHDmZWi45jMeyU/WV7idPnmD//v2IiorST3NwcEBUVBR27dpl9Du7du0ymB8AoqOj85wfADIzM5GRkWHwR4WnpI5BSWcPlZJXpcSZF7Xu3Eh6Sr3DJic1bB9qqAelU1sdqGG7IPlS2/ai5GMtVQ+6b926haysLPj7+xtM9/f3x7Vr14x+59q1a4WaHwASEhLg4+Oj/wsKCip68EWktAappHiFEIqJVylx6igt3uwYu7yorUxKL4/S4weU1fcbo+TYdZReBzmppSxqKYeOWsqjtu0FUHbdqHrQbSsffvgh0tPT9X8XL16UOiQiIiIiIiKSASepA7CmUqVKwdHREdevXzeYfv36dQQEBBj9TkBAQKHmBwBXV1e4uroWPWAiIiIiIiJSFVVf6XZxcUH9+vWxefNm/TStVovNmzcjMjLS6HciIyMN5geAjRs35jk/ERERERERUV5UfaUbAN59913ExsaiQYMGaNSoEb755hs8ePAA/fr1AwD07dsXgYGBSEhIAAAMHz4cLVq0wFdffYX27dtj0aJF2LdvH2bPnm3yOnXPG/CFakRERERERLalG4fJ5Tlw1Q+6e/TogZs3b2LcuHG4du0a6tSpg/Xr1+tflnbhwgU4OPx3wb9JkyZYuHAhPv74Y4wZMwaVKlXCihUrEB4ebvI6b9++DQCyeKEaERERERGRPbp9+zZ8fHykDkP9v9MthbS0NBQvXhwXLlwoUiU3bNgQf//9d5HjscRy5LKMjIwMBAUF4eLFi0X6zT25lEcusVgqr5aIxVLLkEssasytXOpHTv2BpZYjl2Uwt9Zbhpxyq6b6YV9rveXIqc1aajlyiYW5td4y0tPTERwcjLt378LX17dIy7IE1V/ploLuyrmPj0+RNiBHR0eL/Ji7JZYjl2XoeHt7S55btdUPUPS8WioW5tZ6schlGZZcjhz6A0stRy7L0GFuLb8MHTnkVm31A7CvteZy5NBmLbUcOcUCMLfWWIZO9juapSSPKMiooUOHymY5clmGpcipPHKKxRLkVB45xWIJcimPnOrHEuRUHrksw1KYW+uRU3nkFIslyKU8cqofS5BTeeQUiyXIqTxyWYbc8PZyK8jIyICPjw/S09MtdpaGnmNurYN5tR7m1nqYW+thbq2HubUO5tV6mFvrYW6tR2655ZVuK3B1dUV8fDx/u9sKmFvrYF6th7m1HubWephb62FurYN5tR7m1nqYW+uRW255pZuIiIiIiIjISnilm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoNvCpk+fjtDQULi5uSEiIgJ79+6VOiRJbd++HR07dkTZsmWh0WiwYsUKg8+FEBg3bhzKlCkDd3d3REVF4fTp0wbz3LlzB71794a3tzd8fX3x+uuv4/79+wbzHD58GM2aNYObmxuCgoIwZcqUXLEsWbIEVatWhZubG2rWrIm1a9davLy2lJCQgIYNG8LLywulS5dGTEwMTp48aTDP48ePMXToUJQsWRKenp7o2rUrrl+/bjDPhQsX0L59e3h4eKB06dIYOXIknj17ZjBPcnIy6tWrB1dXV1SsWBGJiYm54lFL2585cyZq1aoFb29veHt7IzIyEuvWrdN/zpxazueffw6NRoMRI0bopzG/5hk/fjw0Go3BX9WqVfWfM69Fc/nyZbz22msoWbIk3N3dUbNmTezbt0//Ofdl5gkNDc3VbjUajf43etluzZOVlYWxY8eifPnycHd3R4UKFfDJJ58g+7uT2WbNd+/ePYwYMQIhISFwd3dHkyZN8Pfff+s/Z25No6QxgimxFEiQxSxatEi4uLiIn376SRw9elQMHDhQ+Pr6iuvXr0sdmmTWrl0rPvroI7Fs2TIBQCxfvtzg888//1z4+PiIFStWiH/++Ud06tRJlC9fXjx69Eg/T9u2bUXt2rXF7t27xZ9//ikqVqwoevXqpf88PT1d+Pv7i969e4uUlBTx66+/Cnd3d/H999/r59m5c6dwdHQUU6ZMEceOHRMff/yxcHZ2FkeOHLF6DqwlOjpazJ07V6SkpIhDhw6Jl156SQQHB4v79+/r5xkyZIgICgoSmzdvFvv27RONGzcWTZo00X/+7NkzER4eLqKiosTBgwfF2rVrRalSpcSHH36on+fs2bPCw8NDvPvuu+LYsWNi2rRpwtHRUaxfv14/j5ra/qpVq8Qff/whTp06JU6ePCnGjBkjnJ2dRUpKihCCObWUvXv3itDQUFGrVi0xfPhw/XTm1zzx8fGiRo0a4urVq/q/mzdv6j9nXs13584dERISIuLi4sSePXvE2bNnRVJSkjhz5ox+Hu7LzHPjxg2DNrtx40YBQGzdulUIwXZrrs8++0yULFlSrFmzRqSmpoolS5YIT09P8e233+rnYZs1X/fu3UX16tXFtm3bxOnTp0V8fLzw9vYWly5dEkIwt6ZS0hjBlFgKwkG3BTVq1EgMHTpU//+srCxRtmxZkZCQIGFU8pFzg9JqtSIgIEB88cUX+mlpaWnC1dVV/Prrr0IIIY4dOyYAiL///ls/z7p164RGoxGXL18WQggxY8YMUbx4cZGZmamf54MPPhBVqlTR/7979+6iffv2BvFERESIwYMHW7SMUrpx44YAILZt2yaEeJ5LZ2dnsWTJEv08x48fFwDErl27hBDPOzwHBwdx7do1/TwzZ84U3t7e+nyOGjVK1KhRw2BdPXr0ENHR0fr/q73tFy9eXMyZM4c5tZB79+6JSpUqiY0bN4oWLVroB93Mr/ni4+NF7dq1jX7GvBbNBx98IF544YU8P+e+zHKGDx8uKlSoILRaLdttEbRv317079/fYNrLL78sevfuLYRgmy2Khw8fCkdHR7FmzRqD6fXq1RMfffQRc2smOY8RTInFFLy93EKePHmC/fv3IyoqSj/NwcEBUVFR2LVrl4SRyVdqaiquXbtmkDMfHx9EREToc7Zr1y74+vqiQYMG+nmioqLg4OCAPXv26Odp3rw5XFxc9PNER0fj5MmTuHv3rn6e7OvRzaOmuklPTwcAlChRAgCwf/9+PH361KDcVatWRXBwsEF+a9asCX9/f/080dHRyMjIwNGjR/Xz5Jc7Nbf9rKwsLFq0CA8ePEBkZCRzaiFDhw5F+/btc+WA+S2a06dPo2zZsggLC0Pv3r1x4cIFAMxrUa1atQoNGjRAt27dULp0adStWxc//PCD/nPuyyzjyZMnWLBgAfr37w+NRsN2WwRNmjTB5s2bcerUKQDAP//8gx07dqBdu3YA2GaL4tmzZ8jKyoKbm5vBdHd3d+zYsYO5tRA55dGUWEzBQbeF3Lp1C1lZWQYdPwD4+/vj2rVrEkUlb7q85Jeza9euoXTp0gafOzk5oUSJEgbzGFtG9nXkNY9a6kar1WLEiBFo2rQpwsPDATwvs4uLC3x9fQ3mzZlfc3OXkZGBR48eqbLtHzlyBJ6ennB1dcWQIUOwfPlyVK9enTm1gEWLFuHAgQNISEjI9Rnza76IiAgkJiZi/fr1mDlzJlJTU9GsWTPcu3ePeS2is2fPYubMmahUqRKSkpLwxhtv4O2338a8efMAcF9mKStWrEBaWhri4uIAsD8oitGjR6Nnz56oWrUqnJ2dUbduXYwYMQK9e/cGwDZbFF5eXoiMjMQnn3yCK1euICsrCwsWLMCuXbtw9epV5tZC5JRHU2IxhZPJcxKRbA0dOhQpKSnYsWOH1KGoQpUqVXDo0CGkp6dj6dKliI2NxbZt26QOS/EuXryI4cOHY+PGjbmuElDR6K5gAUCtWrUQERGBkJAQLF68GO7u7hJGpnxarRYNGjTApEmTAAB169ZFSkoKZs2ahdjYWImjU48ff/wR7dq1Q9myZaUORfEWL16MX375BQsXLkSNGjVw6NAhjBgxAmXLlmWbtYD58+ejf//+CAwMhKOjI+rVq4devXph//79UodGMsYr3RZSqlQpODo65nqr5vXr1xEQECBRVPKmy0t+OQsICMCNGzcMPn/27Bnu3LljMI+xZWRfR17zqKFuhg0bhjVr1mDr1q0oV66cfnpAQACePHmCtLQ0g/lz5tfc3Hl7e8Pd3V2Vbd/FxQUVK1ZE/fr1kZCQgNq1a+Pbb79lToto//79uHHjBurVqwcnJyc4OTlh27Zt+N///gcnJyf4+/szvxbi6+uLypUr48yZM2y3RVSmTBlUr17dYFq1atX0t+9zX1Z058+fx6ZNmzBgwAD9NLZb840cOVJ/tbtmzZro06cP3nnnHf0dRmyzRVOhQgVs27YN9+/fx8WLF7F37148ffoUYWFhzK2FyCmPpsRiCg66LcTFxQX169fH5s2b9dO0Wi02b96MyMhICSOTr/LlyyMgIMAgZxkZGdizZ48+Z5GRkUhLSzM4e7hlyxZotVpERETo59m+fTuePn2qn2fjxo2oUqUKihcvrp8n+3p08yi5boQQGDZsGJYvX44tW7agfPnyBp/Xr18fzs7OBuU+efIkLly4YJDfI0eOGHRaGzduhLe3t/4gs6Dc2UPb12q1yMzMZE6LqHXr1jhy5AgOHTqk/2vQoAF69+6t/zfzaxn379/Hv//+izJlyrDdFlHTpk1z/RzjqVOnEBISAoD7MkuYO3cuSpcujfbt2+unsd2a7+HDh3BwMDzEd3R0hFarBcA2aynFihVDmTJlcPfuXSQlJaFz587MrYXIKY+mxGISk1+5RgVatGiRcHV1FYmJieLYsWNi0KBBwtfX1+Ctmvbm3r174uDBg+LgwYMCgJg6dao4ePCgOH/+vBDi+Sv4fX19xcqVK8Xhw4dF586djf4cQN26dcWePXvEjh07RKVKlQx+DiAtLU34+/uLPn36iJSUFLFo0SLh4eGR6+cAnJycxJdffimOHz8u4uPjFfWzCsa88cYbwsfHRyQnJxv85MrDhw/18wwZMkQEBweLLVu2iH379onIyEgRGRmp/1z3cytt2rQRhw4dEuvXrxd+fn5Gf25l5MiR4vjx42L69OlGf25FLW1/9OjRYtu2bSI1NVUcPnxYjB49Wmg0GrFhwwYhBHNqadnfXi4E82uu9957TyQnJ4vU1FSxc+dOERUVJUqVKiVu3LghhGBei2Lv3r3CyclJfPbZZ+L06dPil19+ER4eHmLBggX6ebgvM19WVpYIDg4WH3zwQa7P2G7NExsbKwIDA/U/GbZs2TJRqlQpMWrUKP08bLPmW79+vVi3bp04e/as2LBhg6hdu7aIiIgQT548EUIwt6ZS0hjBlFgKwkG3hU2bNk0EBwcLFxcX0ahRI7F7926pQ5LU1q1bBYBcf7GxsUKI56/hHzt2rPD39xeurq6idevW4uTJkwbLuH37tujVq5fw9PQU3t7eol+/fuLevXsG8/zzzz/ihRdeEK6uriIwMFB8/vnnuWJZvHixqFy5snBxcRE1atQQf/zxh9XKbQvG8gpAzJ07Vz/Po0ePxJtvvimKFy8uPDw8RJcuXcTVq1cNlnPu3DnRrl074e7uLkqVKiXee+898fTpU4N5tm7dKurUqSNcXFxEWFiYwTp01NL2+/fvL0JCQoSLi4vw8/MTrVu31g+4hWBOLS3noJv5NU+PHj1EmTJlhIuLiwgMDBQ9evQw+B1p5rVoVq9eLcLDw4Wrq6uoWrWqmD17tsHn3JeZLykpSQDIlS8h2G7NlZGRIYYPHy6Cg4OFm5ubCAsLEx999JHBzyaxzZrvt99+E2FhYcLFxUUEBASIoUOHirS0NP3nzK1plDRGMCWWgmiEEML06+JEREREREREZCo+001ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRkWKdO3cOGo0GiYmJ+mnjx4+HRqORLqhCUlq8VDgajQbjx4+XOgwiIpIQB91ERCRbiYmJ0Gg0Rv9Gjx5t8nImTZqEFStWWC9QsinWJxERKYmT1AEQEREVZOLEiShfvrzBtPDwcISEhODRo0dwdnbO9/uTJk3CK6+8gpiYGCtGSbbC+iQiIiXhoJuIiGSvXbt2aNCggdHP3NzcbBzNc48fP4aLiwscHKS7aezhw4fw8PCQbP1ERERUMN5eTkREimXsme6cNBoNHjx4gHnz5ulvTY+Li9N/fvnyZfTv3x/+/v5wdXVFjRo18NNPPxksIzk5GRqNBosWLcLHH3+MwMBAeHh4ICMjAwCwZ88etG3bFj4+PvDw8ECLFi2wc+fOXLHs2LEDDRs2hJubGypUqIDvv//e5LK2bNkS4eHh2L9/P5o3bw4PDw+MGTMGAJCZmYn4+HhUrFgRrq6uCAoKwqhRo5CZmWmwjI0bN+KFF16Ar68vPD09UaVKFf0ydG7cuIHXX38d/v7+cHNzQ+3atTFv3jyDeXR5//LLLzF79mxUqFABrq6uaNiwIf7++2+DeQ8fPoy4uDiEhYXBzc0NAQEB6N+/P27fvm0wn+7Z9jNnziAuLg6+vr7w8fFBv3798PDhQ/18BdVnTk+ePMG4ceNQv359+Pj4oFixYmjWrBm2bt1qdpkAYMmSJahevTrc3NwQHh6O5cuXIy4uDqGhoXnGomNKmyMiIvXglW4iIpK99PR03Lp1y2BaqVKlTPru/PnzMWDAADRq1AiDBg0CAFSoUAEAcP36dTRu3BgajQbDhg2Dn58f1q1bh9dffx0ZGRkYMWKEwbI++eQTuLi44P3330dmZiZcXFywZcsWtGvXDvXr10d8fDwcHBwwd+5ctGrVCn/++ScaNWoEADhy5AjatGkDPz8/jB8/Hs+ePUN8fDz8/f1NzsPt27fRrl079OzZE6+99hr8/f2h1WrRqVMn7NixA4MGDUK1atVw5MgRfP311zh16pT+2eejR4+iQ4cOqFWrFiZOnAhXV1ecOXPG4OTAo0eP0LJlS5w5cwbDhg1D+fLlsWTJEsTFxSEtLQ3Dhw83iGfhwoW4d+8eBg8eDI1GgylTpuDll1/G2bNn9bf8b9y4EWfPnkW/fv0QEBCAo0ePYvbs2Th69Ch2796d6yVy3bt3R/ny5ZGQkIADBw5gzpw5KF26NCZPnlxgfRqTkZGBOXPmoFevXhg4cCDu3buHH3/8EdHR0di7dy/q1KlT6DL98ccf6NGjB2rWrImEhATcvXsXr7/+OgIDAwusw8K2OSIiUgFBREQkU3PnzhUAjP4JIURqaqoAIObOnav/Tnx8vMi5eytWrJiIjY3NtfzXX39dlClTRty6dctges+ePYWPj494+PChEEKIrVu3CgAiLCxMP00IIbRarahUqZKIjo4WWq1WP/3hw4eifPny4v/+7//002JiYoSbm5s4f/68ftqxY8eEo6NjrniNadGihQAgZs2aZTB9/vz5wsHBQfz5558G02fNmiUAiJ07dwohhPj6668FAHHz5s081/HNN98IAGLBggX6aU+ePBGRkZHC09NTZGRkCCH+y3vJkiXFnTt39POuXLlSABCrV682yEVOv/76qwAgtm/frp+mq7f+/fsbzNulSxdRsmRJg2l51acxz549E5mZmQbT7t69K/z9/Q3WVZgy1axZU5QrV07cu3dPPy05OVkAECEhIQbrAiDi4+P1/ze1zRERkXrw9nIiIpK96dOnY+PGjQZ/RSWEwO+//46OHTtCCIFbt27p/6Kjo5Geno4DBw4YfCc2Nhbu7u76/x86dAinT5/Gq6++itu3b+u//+DBA7Ru3Rrbt2+HVqtFVlYWkpKSEBMTg+DgYP33q1WrhujoaJNjdnV1Rb9+/QymLVmyBNWqVUPVqlUNytCqVSsA0N9G7evrCwBYuXIltFqt0eWvXbsWAQEB6NWrl36as7Mz3n77bdy/fx/btm0zmL9Hjx4oXry4/v/NmjUDAJw9e1Y/LXu+Hj9+jFu3bqFx48YAkCu/ADBkyBCD/zdr1gy3b9/W38pfWI6OjnBxcQEAaLVa3LlzB8+ePUODBg2Mrr+gMl25cgVHjhxB37594enpqZ+vRYsWqFmzZr6xmNPmiIhI+Xh7ORERyV6jRo3yfJGauW7evIm0tDTMnj0bs2fPNjrPjRs3DP6f8w3qp0+fBvB8MJ6X9PR0ZGZm4tGjR6hUqVKuz6tUqYK1a9eaFHNgYKB+AJk9huPHj8PPzy/fMvTo0QNz5szBgAEDMHr0aLRu3Rovv/wyXnnlFf3L4M6fP49KlSrlejlctWrV9J9nl/0EAgD9YPXu3bv6aXfu3MGECROwaNGiXPlMT0/PFW9+y/T29jZaxoLMmzcPX331FU6cOIGnT5/qp+esz4LWD/yXg4oVK+b6bsWKFfMdNJvT5oiISPk46CYiIruku9r72muv5TlorlWrlsH/s1+1zb6ML774ItezwTqenp65Xmhmrpzr18VQs2ZNTJ061eh3goKC9N/dvn07tm7dij/++APr16/Hb7/9hlatWmHDhg1wdHQsdDx5fUcIof939+7d8ddff2HkyJGoU6cOPD09odVq0bZtW6NX3E1ZZmEsWLAAcXFxiImJwciRI1G6dGk4OjoiISEB//77r9XXn505bY6IiJSPg24iIlK9nC/rAgA/Pz94eXkhKysLUVFRZi1X9wIvb2/vfJfh5+cHd3d3/ZXx7E6ePGnWurPH8M8//6B169ZGy5mdg4MDWrdujdatW2Pq1KmYNGkSPvroI2zduhVRUVEICQnB4cOHodVqDa52nzhxAgAQEhJSqNju3r2LzZs3Y8KECRg3bpx+urE8FEZB5cxu6dKlCAsLw7Jlywy+Fx8fb9a6dTk4c+ZMrs+MTcvOEm2OiIiUh890ExGR6hUrVgxpaWkG0xwdHdG1a1f8/vvvSElJyfWdmzdvFrjc+vXro0KFCvjyyy9x//79PJfh6OiI6OhorFixAhcuXNB/fvz4cSQlJRWyNIa6d++Oy5cv44cffsj12aNHj/DgwQMAz2/zzkl3dV53Jf6ll17CtWvX8Ntvv+nnefbsGaZNmwZPT0+0aNGiULHprhrnvEr8zTffFGo5ORmrz8LEsGfPHuzatcusdZctWxbh4eH4+eefDep827ZtOHLkSIGxFLXNERGR8vBKNxERqV79+vWxadMmTJ06FWXLlkX58uURERGBzz//HFu3bkVERAQGDhyI6tWr486dOzhw4AA2bdpkdKCanYODA+bMmYN27dqhRo0a6NevHwIDA3H58mVs3boV3t7eWL16NQBgwoQJWL9+PZo1a4Y333xTP5itUaMGDh8+bHbZ+vTpg8WLF2PIkCHYunUrmjZtiqysLJw4cQKLFy9GUlISGjRogIkTJ2L79u1o3749QkJCcOPGDcyYMQPlypXDCy+8AAAYNGgQvv/+e8TFxWH//v0IDQ3F0qVLsXPnTnzzzTfw8vIqVGze3t5o3rw5pkyZgqdPnyIwMBAbNmxAamqq2eUF8q5PYzp06IBly5ahS5cuaN++PVJTUzFr1ixUr17d6IkSU0yaNAmdO3dG06ZN0a9fP9y9exffffcdwsPDC1xmUdscEREpDwfdRESkelOnTsWgQYPw8ccf49GjR4iNjUVERAT8/f2xd+9eTJw4EcuWLcOMGTNQsmRJ1KhRQ/+70AVp2bIldu3ahU8++QTfffcd7t+/j4CAAERERGDw4MH6+WrVqoWkpCS8++67GDduHMqVK4cJEybg6tWrRRp0Ozg4YMWKFfj666/x888/Y/ny5fDw8EBYWBiGDx+OypUrAwA6deqEc+fO4aeffsKtW7dQqlQptGjRAhMmTICPjw+A5899JycnY/To0Zg3bx4yMjJQpUoVzJ07F3FxcWbFt3DhQrz11luYPn06hBBo06YN1q1bh7Jly5pd5rzq05i4uDhcu3YN33//PZKSklC9enUsWLAAS5YsQXJyslnr79ixI3799VeMHz8eo0ePRqVKlZCYmIh58+bh6NGj+X7XEm2OiIiURSMs8WYQIiIiIjtXp04d+Pn5WeQn7YiISD34TDcRERFRITx9+hTPnj0zmJacnIx//vkHLVu2lCYoIiKSLV7pJiIiIiqEc+fOISoqCq+99hrKli2LEydOYNasWfDx8UFKSgpKliwpdYhERCQjfKabiIiIqBCKFy+O+vXrY86cObh58yaKFSuG9u3b4/PPP+eAm4iIcuGVbiIiIiIiIiIr4TPdRERERERERFbCQTcRERERERGRlfCZbivQarW4cuUKvLy8oNFopA6HiIiIiIjIbgghcO/ePZQtWxYODtJfZ+ag2wquXLmCoKAgqcMgIiIiIiKyWxcvXkS5cuWkDoODbmvw8vIC8LySvb29JY6GiIiIiIjIfmRkZCAoKEg/LpMaB91WoLul3Nvbm4NuIiIiIiIiCcjlUV/pb3AnIiIiIiKyEbkMxCg3jUajyvrhoJuIiIhI4XQHqmo8WCVlkmub1MUjt7jIsE7UVj8cdBORIkjd+cr14MGesS5ILqTuG3TrFkJIFoPUpK4DY+x5v6HRaCCE0LdJueQgZ1z2So7tMns/psb64aCbbEaOG7jS2csOXS5npeV28GALci2rXNqEHMghB/bSFxmT/SBeyvJnP0i1t3qQ49Uxngj5j1xzIPU2KwdyK79c24olcNBtZ6Q6MJLjDtHSpMqtmjsoIPeBixTtJ/s61Z7v7OQ6sJVDm5ALOdQR68OQlPtXwL76qOzkeHXMnk+EGCN1DnQnyOydHO9CMBaD2k6KcNBth6TqcOS4Q7Q0W3ZgOQeCauqYctLlVcr2o/a2m5PcB1JyaBNSk9OBk73WR86DeCn3r/Qfqfsrez8RktcAiuRHTvUip1isgYNuO5L94MCWgzR7O7NoywNge8qrjq1PMBhrv2o/yaEjx4GUPeTdHFLVEevDOO5fbUcuJz5ykkscUsmr/FL1GdxWnpPjFWV72Y9w0E02J/XGbQ223unby85Dbe1E6eRSH/bQ9guSV11IUUesD0NyyIca97OFJeXgjoyTw7aRkz1uK3KtB7XjoNvOWbujsZfBoRyodcdhrP3YqqxqzKcp5HprYF71oda2XxBjd2DYEusjf7bYv5JxUvdXUu63KDfm3TRSvzNH7TjothNyPYhWM2vtYHkiw7bsNddyuzVQx17rQ67suT7y64ttlRd7zr8ppH6pHeUm1ckHbiv5k/M7c9SyXXHQbUdsfRCtlo2E5EvqNib1+m2NBy3yx6tp8sL9q3XJ4cSHXNZLxnFbKRy55UtN2xMH3XbO2o05v+XLbcM2V0FXni1ZTrXkzBKkfm5eTTsCJWDblxfWR8Gk3L8SScXUu/Fs2YdwW3lObsc19rYf4aCbANi+4dtLB2iNctpL7kiepLySyrZvGlvVEevDNJaui8Isz94OanOy9S+1kGls1XewTszDEyLWwUE3WaXB87ljQ+z4C8+UNmTN5+ZJPkypD3u6rVrq/pX1YTpr1ZMpy+U+2PaYc/kxdVthf/UcT4hYDwfdRFZmqQ5MykGoPeLBU/54d4z8WbOOWB+FY6m6KOxyWE/P8U3ytmNqm+PxirzxbinL46DbDth6sMZO1DjmxXr43LzlmNpfkLxZq47sffvQKczdBpaui8Isj/UlrzfJ28NAUy7lk/qOICWzxTtz7JEqBt2PHz9GZmam1GFQNuzoDBU1H9x55I3Pzasb237RWOPghvVhnqLWBbcFQ4XNh70e6MsZHxGTN7ncLaWWfk+Rg+7k5GS88847aNSoETw9PVGsWDF4eHjAy8sLjRo1wogRI5CcnCx1mIpkiYMCe2KLnb695dRclsgTc206e7hio3SWPlBhfZtPVxfm5pC5LxprHrTzZEjR8eSg/Mjtbik19IEaoZBW+fTpU3z//feYOnUqzp07hxIlSqBevXoICwtD8eLFIYTA3bt3kZqaigMHDuDOnTsICQnBe++9h8GDB8PZ2dlmsWZkZMDHxwfp6enw9va22XrzUpgdQlF3HuYMQhXSBI2yRXntLac6UpRbLbkrClv2F6YsH+DBU06FrSPAMjm0177IkszdBwDm1SHr4D/W6E/MWaaa68TcslkyJ9xvGGfrvsfSyzMnftmNx5Qy6A4JCcGTJ08QGxuL7t27o169evnOv3//fixZsgQ///wzXFxccO7cOdsEChlWso0O0Oxx52PulW5r1ofSc6pjixMUOb8LFL7tqyXfOlIN6Ioaiznz2wtL1JM990XG2KqvKWrdsQ6K/h25xyAnRRl0A5Z5FM/c5ai5XgDp66YoMZj7XdmNx5Qy6P7+++8RFxcHV1fXQn3vyZMnmDt3LgYPHmylyHKTXSXb6MBV7R2WMdY8c2jPg0Bb7xy4o/6PXAa6HOQZJ0X/zO0jN0vcFQbkn1NLnSxRY/4B6a/c2fM+2hqkbu+sl7xJXTfmfl924zGlDLqVRHaVbKNbmgHufExVUL54dcN8tribIOf31ZRruVy5kUsccqOkE1K676uxTiz1OEt2QuR+T4Iac2cpUl+5U2vbLgpbnIyyxnezL0OtdSpV3Uh5u7/cxmOKfJEamc4SVzdMnU+tHVV+TM1RTrpcGfu+JfKp9LowN69A4V5YZM9tNy/W7i+suSxjgxZ6rjDbhQ77IusSQuj/AMN8Z59eVNwmDMnhNlkyztx+ivty65NqH5JzWUrGQbfKmdvQTd242NGZL3uOs/9l/8xcauicisKU9mupXKup7Rf1JJIlFbXvotykOCGl1r7I0u3M0gNte1DUk0Hmts2itmmeHMxfzmOj/OQ8UWWpdZNxptYNT4QY5yR1AKZycHAwq5PKysqyQjTKUZSzsbodQ17L4AZVdMyd9WRvv/nNU1Rqvh2tsCx1yy1vD8ybJU4S5XdAlH17UXMei0rt7UwJLHmLv60eR1I7S+XF2OAur5OGlqwLbtcFy54fax9fqY1iBt3jxo3LVbnLly/H0aNHER0djSpVqgAATpw4gQ0bNiA8PBwxMTFFXu/nn3+ODz/8EMOHD8c333xT5OUpTUEDF3u/Sqj0+OXK0jtusr6CTtKZgld/CmaJg8KCrlZwu8mf0g7MlRSrqayxHeS3PEufjFJjnQCW3zaMDfDUmjtrk9MdaXJfl7UoZtA9fvx4g//Pnj0bN27cQEpKin7ArXP8+HG0atUKZcuWLdI6//77b3z//feoVatWkZajdNZs6Eo7eMlOzrHLNS5TyTm3OSklTlNY8iqqVC9bUVN9WJstcsX6kJ6S+lMpmHJXlG4+S2GdFB77q6JRQ5tTehkU+0z3F198gWHDhuUacANAtWrVMGzYMEyZMsXs5d+/fx+9e/fGDz/8gOLFixclVEkpuXGS+XjF0HbUlGtLlKWwL1ux9LNfaqoPNVBjfXC/Kj1rPlOf1x8VTOl5UmN/RfKh2EH3pUuX4OzsnOfnzs7OuHTpktnLHzp0KNq3b4+oqKgC583MzERGRobBn1zIvQNRegdN1qGkdsGX4uRWmJet6OZXUp1LiXmSntK2dzW2GaXVQU6sE7I1NbQ5pZdBsYPu8PBwzJgxA5cvX8712aVLlzBjxgzUrFnTrGUvWrQIBw4cQEJCgknzJyQkwMfHR/8XFBRk1nrtlVI7aqVv/HKmtDbBtpBb9oF0zjf0Z78F3RpXrNRKadsFoO76UAolthu1Y53Ik1r7K7W0N6WXQzHPdOf09ddfIzo6GpUrV0aXLl1QsWJFAMDp06exYsUKCCGwYMGCQi/34sWLGD58ODZu3Ag3NzeTvvPhhx/i3Xff1f8/IyNDNgNvtXYgciDnZ0vkGpdaybktFIbSX7QCqKcu1EKN9aG28igR60B+1FAnauyvSD40QsGtKyUlBWPHjsWGDRvw6NEjAIC7uzuio6MxYcIEs650r1ixAl26dIGjo6N+WlZWFjQaDRwcHJCZmWnwmTEZGRnw8fFBeno6vL29Cx2DJbEDsR6551bu8amJWnKthnKooQxqo7Y6UVt5lIh1ID9qqRO1lIPkNR4DFD7o1tFqtbh58yYAwM/PDw4O5t81f+/ePZw/f95gWr9+/VC1alV88MEHCA8PL3AZcqlkpXQcSolTaZSaV6XGrXTMu/yxjuRBifWgxJjzo/TyKD1+Y9RYJrVQS90UthxyGY/pKPb28uwcHBzg7+9vkWV5eXnlGlgXK1YMJUuWNGnALSdq2MDkTO6dmJxjUxu5twVTKD3+7NRQH2qitvpQU1mUSul1oHsBp9LLkZ1ayqK2elETpdeLogfdjx8/xu+//44DBw4gPT0dWq3W4HONRoMff/xRouikp5SOQwkxKpFS6j8nJcasBkptL/aE9SMPStxWlBZvQZRYBzkpPf6c1FAngPrqBVBPmZTexhQ76D5//jxefPFFnDt3Dr6+vkhPT0eJEiWQlpaGrKwslCpVCp6enhZZV3JyskWWQ8YpdSOSe8xyjy8vSmwPSovXGDWUQUdNZclOidsGoL76UGJ5lNp28qKGsrBO5Elt9QKos0xKpNifDBs5ciTS09Oxe/dunDp1CkII/Pbbb7h//z4mT54Md3d3JCUlSR2mpLiBWY8SfrZACTGqhRpyrYYy6KipLGqgpvpQalnUdjyg1HrIjnVCVDhK32YUO+jesmUL3nzzTTRq1Ej/4jQhBFxdXTFy5Ei0bt0aI0aMkDZIiSmlA1T6RkSWpcT2oMSYSXmU2s6UGreaKOV4wBRquWqnpjpREzW0rZzUVCYlbzeKHXQ/fPgQoaGhAABvb29oNBqkp6frP4+MjMSOHTskio4KQ4kbkBI6MCXEaIwS24MSY85Jqe3FGDWVJTultjOlxm2MWtuWkrAO5Ekt9aKm/kpHTWVScjtT7KA7ODgYly5dAgA4OTkhMDAQu3fv1n9+7NgxuLm5SRWeLCilYere4qkkSohXCTEao5R2m50S23BOSo8/OzWVJTslbhtqo9S2paa2o9Q6yElNdQKwXuRMTWVScjtT7IvUWrVqhZUrVyI+Ph4AEBcXh4SEBNy9exdarRbz589H3759JY5SWkq6BUspceooLV4lUVK7zU6JMauVGutCqdsFoK76UGpZlNx+1EptdaKWsqitXtRWHiVT7KB79OjR+Pvvv5GZmQlXV1eMGTMGV65cwdKlS+Ho6IhXX30VU6dOlTpMSSlpI1Nap6CEeOUen9oooU3kR8mx56T0ulAbNdWHUsuixJjzopayqKUcgHK3C1IeJbczjVBy9DKVkZEBHx8fpKenw9vbW7I42Alaj1Jyq5Q4SXpqaitqKgvJi1LbllLjNkYtZVFLOQB1lYXkrTBtTS7jMR1FPtP98OFD1K9fH7NmzZI6FLIQpT2joZSdi1Li1FFaO8hOybEDymsr+VFTWXSU3r6UHr+OUtuWGt47oaPUOlAzNdWJWrYTHbWVR8ltTZGDbg8PD6SmpqquIVmakhum3Cml7SklTh22WWkorZ2YQm1l4rYhD0puV2ppQ0qug+zUUh+AeuoEUFe9AOorj5LbmiIH3QDQtm1bJCUlSR2GbCmtUSqtU1BavEqhtHabHduEvKitPpS8bQDqqQ8ll0PpbUiN1FInSt4ujFFLvQDqKovSKXbQPXbsWJw6dQp9+vTBjh07cPnyZdy5cyfXHymD0joFpcSrth2hnCmlTRijxnai5PpQI7XUh5LLoZbtXC3lANRTFiVvF2qnljamo+TyKPZFag4O/50vyG9jz8rKskU4BuT24D5ZnlJeGqKUOElaamwnaiwTSUvpbUrp8euopRyAesqilnKokdrqRskvUlPsT4aNGzeOZ9byobSNTGnxKiVWpcSpo7R2kJ2SY1dq3PlRW5mU3L4A5ccPKL9NKT1+HbWUQ03UVidq6K/USsn1otgr3XImtzMrSqCkDo6xkjFKzrWSY8+LGsukZGqoD6WXQenxA+oogxqxXshWlHylW7HPdFP+lHYXADtrApTXbrNjGyZrUvK2Aahj+1BDGUhelL5d66ht21BLvQDqKgug7J8/VMygu3r16vj555/x5MkTk7+TmZmJuXPnonr16laMjCxFKRuRknYuSopVDZTShnNSYztRY5mUTKnbRnZKL4Matgk1lCE7tZRH6duGmqmljWWn1DIp5pnuuLg4vPvuuxg+fDg6deqEqKgo1KtXD+XLl4eHhwcA4MGDB0hNTcW+ffuwadMmrF69Gi4uLhg5cqTE0dueUhukEijpNiolxQoov90qNX6ltRNTqK1MaioLSUMN24QaypCdGsqjhjLkpJbyqLFuAOWWS1HPdN+7dw8//vgjEhMTcfjwYf2ZNSen5+cOnj17BuD5xhIeHo7+/fujf//+Nr+PXw7PECi1QZJ9U3q7VXr8JE9sV2QJbEfywzqRJ7XUi1rKkZOp5ZLDeCw7RQ26szt37hz++usvnDhxArdv3wYAlCxZElWrVkVkZCTKly8vWWxyqGQlbmhKiVkpcQKM1daUWgalxp0fNZZJ6ZReJ0qPXw1YB/LDOiG5ksN4LDvF3F6eU2hoKEJDQ6UOQ7bYARLw3wsnlNAelBBjQdRQBrVQUtsviFrKofQyKD1+QD1tSS3UUB9Kj98YNdQLoJ5y5KTUcinmRWpkOqW+0EIpG5BS4tRRSrxKbbfZKbUMSmkjhaXWcimVUrcPHaXHDyh/m1B6/Dkp+U3MOkqP3xg11Augvu1FR6nl4qCbZEMpHZxS4tRRWrxkW2puH2opm1IPMEh+lL5NKD1+Y7h9y5Ma6kWN2wug3HJx0K1CaugoyP6ood2qoQwkP0o9wMhJ6duH0uMneVL69q3W7ULp9ULyw0G3Cim1o1BKx62UOHWUEq9S2212SiyDUtqHOdRcNiVS4vaho+TYs1P6NqH0+I1RepnUsm2okdLbVl6UWi5VDLqnTp0qdQgm0Wg0+f7ZOyXkQAkx5qTEmMl21Nw+1FI2pR5gkPwoeZtQcuz5UWu5lE4N/a5a25ZSy6WKQfenn36q/3fXrl0ljMS47INqIYTRP9189kwtL64g86hhB6eGMlDeCjpxaq3+Sy39opK3DyXHTmRNat021NLvqpFSxwuqGHRXq1YNkydPxqlTp7Bx48YiLSshIQENGzaEl5cXSpcujZiYGJw8edKsZfn4+Ohfa599cG2M7nNLHLgpuQOUe+xyj88YpcSsxA40JyWWQSntQ0qmnDjNfvJUie3AFpScFyXHnp2St3clx65matk21IjbjLyoYtC9cOFCnDhxAlFRUXj48CHq1KmDPn364IsvvkBSUhKuXLli8rK2bduGoUOHYvfu3di4cSOePn2KNm3a4MGDB4WOKz09vdAN3hIbiJI7QLnHLvf4jFFizEqlxLOvSou3MCzZnxZ04jTnPJbMKw+cyFKUvL0rOfb8KHn7VurvJZtC6eVS6/aio8T60QglRp0PT09PbNq0CYcPH8bhw4dx5MgRHDlyBA4ODrh161ahl3fz5k2ULl0a27ZtQ/PmzU36TkZGBnx8fJCeng5vb+9CrxMoWkem5E7QkrFnP1i2FCXmVokxK5k12nBO9t6mTVXUshWlD7FU/6Pm+imqgg4qmbfcLN2eTDmwt2R/qMY6tVa5ctaNtdahxjoBlF82pcdfEFPKZ4nxmCU5SR2AuSpWrIjY2FiMHTvWYPq1a9fg6emJxo0bG0y/dOmSWetJT08HAJQoUSLPeTIzM5GZman/f0ZGhlnrysmcDUbtG1lBsu9kjF1xssfc6K6+yrnsco+vMCx9t0rO5eW81ZnyVpS2X9QcZ39ciPX0H0vkw5Q+3dLbiVrq0RoD7vyWacltQA35t7a8Bto5H3uxVC5ZJ4Vn7ESVNfLIupEfxQ66z549i3379mH//v04deoUvL29Ua1aNYSFhRmdv1y5coVeh1arxYgRI9C0aVOEh4fnOV9CQgImTJhQ6OXnx9zbVO15I8vrACDnTqcoOVJqfpV05VXprH111dhBlD22aVsoam448LY8U9u8Jft9NbHkSQ9TlmPJbUCt9WiLu/uyT7PkCSm11glg2QsW+d11YK0TImquG6VS7O3lDg4OuToNjUaDGjVqYMyYMejZs2eR1/HGG29g3bp12LFjR76DdmNXuoOCgop8O4M5naK9bmSm5qqoOxql5tdSA0HA+JVXY9MLu3wl5tWYoj4aAthum1dT3vMihzuG7CHPprL19lGU7+VchlrqUIo6KOp6LfF9ubL1iZCifMfYMtRYJ5ZUmDzz7hzL4u3lFuTs7IyPPvoILVq0wJMnT7Bv3z4sXboUvXv3RnJyMmbNmmX2socNG4Y1a9Zg+/btBV4ld3V1haurq9nryou5V7uVzNwDZMD2Z93thSlXXpnTojN3Z6uExwekZG5/YmlFuc1dTXVribsHzPlOUfsoNdVBUXGQZllF7cPN/S733QWz9XtBWCemU2KOFH2l+4MPPkBCQkKuz77++mu8//77+OmnnxAbG1uo5Qoh8NZbb2H58uVITk5GpUqVCh2bpc+sFKZhKbERZmerq1L2dheBrZ5rVXKOLMVW7dES37eH+ipsGa2VE9bRc1KefJDyKq2cKLUO1Eyqd09YahlqJeVdIeZ+116YUjdyu9Kt2J8Mc3d3z/MK9DvvvIMePXpg2rRphV7u0KFDsWDBAixcuBBeXl64du0arl27hkePHhU1ZDJBYa/um3tVih1ZwYp6K6e1vyNXUlxJY3u2DGu2Q9aR+SxVL3wM47miDAIste7CLk9N+whLsdTAzFKPntF/ilo35m4nxmJQKyXeDazYQXfVqlXxxx9/5Pl5s2bNcOzYsUIvd+bMmUhPT0fLli1RpkwZ/d9vv/1WlHCLRIkNy5a4wyiYrQaClthRKJ1UB5PsJyzD2oMr1pF5LP2MvT2T+mS1mk5gWIocHnuw9+3CUix9MoT1oh6KHXQPHjwY69evx1tvvWX0KvTOnTvh4eFR6OUKIYz+xcXFWSBqsqSiXn2wpx2/OQNBORwEKJE5g1+pDpzsva6ys8WBjbnPXdozS9eLvefTHNZ+5IJsu482xt4fuciL1MdBas+vvVHsi9QGDRqE48eP49tvv8WiRYvQrl07hIeHw8XFBZs2bcK6detUN1AuqIOzhw7QGpg3Q5Y6EGJeC2aNAUVhH89gHf3HVrkwNe+sn+esNeBjbqXDO3PMZ6288aWcuZnzThBLM6deWI/ypNgXqen8+eef+Prrr7Fp0ybcv39fPz0mJgaJiYmSPDhvrQf37WXQbUo5LFlWezkAtnU57SWvxkhZ9sLc2qbG3BtjSt8JcNBtK3Iovz29oDSnwpYdsN6JD1OXrbY6yEku7ZF1Ykgug12+WM24gvIttxepKfZKt06zZs3QrFkzZGVl4dy5c7h37x6Cg4NRokQJqUMjBbGHnYcUmNe8WftqhSnrZ938h7mwP/a6DRT2ypm1csSr3fLDOjFUmG3Fmv0J72JTB8UPunUcHR1RoUIFqcOwKt7685w1nmUqqDOzl7xbspzceRfMHtoUGWcvfYq5rN13sH8qGPNjO6Ye39mq32D/RGR5in2RGqkXD4bUhXWZmy1ywrybRoqDSx7MmsZWg4uCPrfn+rJ22bm/lx97bu/mskU/wW0lN6XlhINuBVJSA7M0qW/JVTNr7DTsdedtSnuyZm7sNe9KY+99Tl5slRduJ3mTU9u09xMfOswDkbJx0K0weXW49tQZ20s51UROB3D2hHn/j7FcSJkfU24jtWfs56Vnyzqw9/YuNwWdOGZ9/ceWx9+8QKRsHHQrlD1udLwlt2jy66ytWW57eON+YdiqzKa8rdte5JcLObc/OcdWVFL0RcbwIDY3KeqA8ifHNsp6kyc5thV6joNuBbKXjs5Yx8Fbcq3H3suvVnntgFnf0rPXAV9BbY9t0/oKanusA2nIrU7ssX8yRi4nCU1dL7dfeeKgW8F0G50aO8WcHYYty5hzXWq/GmuL3Nrr4MJYW7IlNbfbolL7dk2my6t/ssc+Syr2uo/ILr/HB6XA/vE5uZ0kZL0YUlLfwUG3QuXc6OxhI5T6llw1s1W5s3eMSukkzZVXTnm1QhrZd8xyy4fc4pGKHPNgb/sEudUBT449J2UOpD55LFdS50Hq9VPhcdCtYGr/3W5d+aQoo1wPzi1BqoGvsTpUa9s1Ri5XK9TYpgtDV365tD1jcdhLHdn6EaKC2EveCyJVHSjpipWtSJ0POZ08liMptxUqmI+Pj9QhGOCgW+HUvuEJISS7dUduB+eWIIeBr+5Eir3IXl65DCjU1KYLQ9efyLH8ObcJOcZoSXI7GaT2fBuTc5ArdR3oyCUOKRg78SCHtmnPdaIjx20lJ7nGZW3G+jI55oKDbiIj5HxwbglSdUjZ86nW3GaXvR1JWd6cJ5JIXuxhW8iPHE5K6WS/y0kO8diKXOog+/rtrQ5ykkt/nX3/IZeYbE0OFyyMrV9udwtJLedFjvT0dIkjMuQkdQBEZFtSd8hSr99eMe/yJ5eBj61kP2iUQ5mzP9JkT+RUBwBvM5fbdgHIMyYpyDEH9n5ySkcJOeCgm4iISGJKOGCwBrmVW27xWJtcyyvXuGxFjuWXY0y2JMfyy/kFoZQbby8nIiIiIiJSGN6FoBy80k1ERERERKRAHGwrA690ExEREREREVkJB91EREREREREVsLby61Ad5tHRkaGxJEQERERERHZF904TC6333PQbQW3b98GAAQFBUkcCRERERERkX26ffs2fHx8pA6Dg25rKFGiBADgwoULRarkhg0b4u+//y5yPJZYjlyWkZGRgaCgIFy8eBHe3t6SxqKm+rFUXi0Ri6WWIZdY1JhbudSPnPoDSy1HLstgbq23DDnlVk31w77WesuRU5u11HLkEgtza71lpKenIzg4WD8ukxoH3Vbg4PD8UXkfH58ibUCOjo5F3nFYajlyWYaOt7e35LlVW/0ARc+rpWJhbq0Xi1yWYcnlyKE/sNRy5LIMHebW8svQkUNu1VY/APtaay5HDm3WUsuRUywAc2uNZejoxmVSk0cUZNTQoUNlsxy5LMNS5FQeOcViCXIqj5xisQS5lEdO9WMJciqPXJZhKcyt9cipPHKKxRLkUh451Y8lyKk8corFEuRUHrksQ240Qi5Pl6tIRkYGfHx8kJ6ebrGzNPQcc2sdzKv1MLfWw9xaD3NrPcytdTCv1sPcWg9zaz1yyy2vdFuBq6sr4uPj4erqKnUoqsPcWgfzaj3MrfUwt9bD3FoPc2sdzKv1MLfWw9xaj9xyyyvdRERERERERFbCK91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdFjZ9+nSEhobCzc0NERER2Lt3r9QhSWr79u3o2LEjypYtC41GgxUrVhh8LoTAuHHjUKZMGbi7uyMqKgqnT582mOfOnTvo3bs3vL294evri9dffx337983mOfw4cNo1qwZ3NzcEBQUhClTpuSKZcmSJahatSrc3NxQs2ZNrF271uLltaWEhAQ0bNgQXl5eKF26NGJiYnDy5EmDeR4/foyhQ4eiZMmS8PT0RNeuXXH9+nWDeS5cuID27dvDw8MDpUuXxsiRI/Hs2TODeZKTk1GvXj24urqiYsWKSExMzBWPWtr+zJkzUatWLXh7e8Pb2xuRkZFYt26d/nPm1HI+//xzaDQajBgxQj+N+TXP+PHjodFoDP6qVq2q/5x5LZrLly/jtddeQ8mSJeHu7o6aNWti3759+s+5LzNPaGhornar0Wj0v9HLdmuerKwsjB07FuXLl4e7uzsqVKiATz75BNnfncw2a7579+5hxIgRCAkJgbu7O5o0aYK///5b/zlzaxoljRFMiaVAgixm0aJFwsXFRfz000/i6NGjYuDAgcLX11dcv35d6tAks3btWvHRRx+JZcuWCQBi+fLlBp9//vnnwsfHR6xYsUL8888/olOnTqJ8+fLi0aNH+nnatm0rateuLXbv3i3+/PNPUbFiRdGrVy/95+np6cLf31/07t1bpKSkiF9//VW4u7uL77//Xj/Pzp07haOjo5gyZYo4duyY+Pjjj4Wzs7M4cuSI1XNgLdHR0WLu3LkiJSVFHDp0SLz00ksiODhY3L9/Xz/PkCFDRFBQkNi8ebPYt2+faNy4sWjSpIn+82fPnonw8HARFRUlDh48KNauXStKlSolPvzwQ/08Z8+eFR4eHuLdd98Vx44dE9OmTROOjo5i/fr1+nnU1PZXrVol/vjjD3Hq1Clx8uRJMWbMGOHs7CxSUlKEEMyppezdu1eEhoaKWrVqieHDh+unM7/miY+PFzVq1BBXr17V/928eVP/OfNqvjt37oiQkBARFxcn9uzZI86ePSuSkpLEmTNn9PNwX2aeGzduGLTZjRs3CgBi69atQgi2W3N99tlnomTJkmLNmjUiNTVVLFmyRHh6eopvv/1WPw/brPm6d+8uqlevLrZt2yZOnz4t4uPjhbe3t7h06ZIQgrk1lZLGCKbEUhAOui2oUaNGYujQofr/Z2VlibJly4qEhAQJo5KPnBuUVqsVAQEB4osvvtBPS0tLE66uruLXX38VQghx7NgxAUD8/fff+nnWrVsnNBqNuHz5shBCiBkzZojixYuLzMxM/TwffPCBqFKliv7/3bt3F+3btzeIJyIiQgwePNiiZZTSjRs3BACxbds2IcTzXDo7O4slS5bo5zl+/LgAIHbt2iWEeN7hOTg4iGvXrunnmTlzpvD29tbnc9SoUaJGjRoG6+rRo4eIjo7W/1/tbb948eJizpw5zKmF3Lt3T1SqVEls3LhRtGjRQj/oZn7NFx8fL2rXrm30M+a1aD744APxwgsv5Pk592WWM3z4cFGhQgWh1WrZbougffv2on///gbTXn75ZdG7d28hBNtsUTx8+FA4OjqKNWvWGEyvV6+e+Oijj5hbM8l5jGBKLKbg7eUW8uTJE+zfvx9RUVH6aQ4ODoiKisKuXbskjEy+UlNTce3aNYOc+fj4ICIiQp+zXbt2wdfXFw0aNNDPExUVBQcHB+zZs0c/T/PmzeHi4qKfJzo6GidPnsTdu3f182Rfj24eNdVNeno6AKBEiRIAgP379+Pp06cG5a5atSqCg4MN8luzZk34+/vr54mOjkZGRgaOHj2qnye/3Km57WdlZWHRokV48OABIiMjmVMLGTp0KNq3b58rB8xv0Zw+fRply5ZFWFgYevfujQsXLgBgXotq1apVaNCgAbp164bSpUujbt26+OGHH/Sfc19mGU+ePMGCBQvQv39/aDQattsiaNKkCTZv3oxTp04BAP755x/s2LED7dq1A8A2WxTPnj1DVlYW3NzcDKa7u7tjx44dzK2FyCmPpsRiCg66LeTWrVvIysoy6PgBwN/fH9euXZMoKnnT5SW/nF27dg2lS5c2+NzJyQklSpQwmMfYMrKvI6951FI3Wq0WI0aMQNOmTREeHg7geZldXFzg6+trMG/O/Jqbu4yMDDx69EiVbf/IkSPw9PSEq6srhgwZguXLl6N69erMqQUsWrQIBw4cQEJCQq7PmF/zRUREIDExEevXr8fMmTORmpqKZs2a4d69e8xrEZ09exYzZ85EpUqVkJSUhDfeeANvv/025s2bB4D7MktZsWIF0tLSEBcXB4D9QVGMHj0aPXv2RNWqVeHs7Iy6detixIgR6N27NwC22aLw8vJCZGQkPvnkE1y5cgVZWVlYsGABdu3ahatXrzK3FiKnPJoSiymcTJ6TiGRr6NChSElJwY4dO6QORRWqVKmCQ4cOIT09HUuXLkVsbCy2bdsmdViKd/HiRQwfPhwbN27MdZWAikZ3BQsAatWqhYiICISEhGDx4sVwd3eXMDLl02q1aNCgASZNmgQAqFu3LlJSUjBr1izExsZKHJ16/Pjjj2jXrh3Kli0rdSiKt3jxYvzyyy9YuHAhatSogUOHDmHEiBEoW7Ys26wFzJ8/H/3790dgYCAcHR1Rr1499OrVC/v375c6NJIxXum2kFKlSsHR0THXWzWvX7+OgIAAiaKSN11e8stZQEAAbty4YfD5s2fPcOfOHYN5jC0j+zrymkcNdTNs2DCsWbMGW7duRbly5fTTAwIC8OTJE6SlpRnMnzO/5ubO29sb7u7uqmz7Li4uqFixIurXr4+EhATUrl0b3377LXNaRPv378eNGzdQr149ODk5wcnJCdu2bcP//vc/ODk5wd/fn/m1EF9fX1SuXBlnzpxhuy2iMmXKoHr16gbTqlWrpr99n/uyojt//jw2bdqEAQMG6Kex3Zpv5MiR+qvdNWvWRJ8+ffDOO+/o7zBimy2aChUqYNu2bbh//z4uXryIvXv34unTpwgLC2NuLUROeTQlFlNw0G0hLi4uqF+/PjZv3qyfptVqsXnzZkRGRkoYmXyVL18eAQEBBjnLyMjAnj179DmLjIxEWlqawdnDLVu2QKvVIiIiQj/P9u3b8fTpU/08GzduRJUqVVC8eHH9PNnXo5tHyXUjhMCwYcOwfPlybNmyBeXLlzf4vH79+nB2djYo98mTJ3HhwgWD/B45csSg09q4cSO8vb31B5kF5c4e2r5Wq0VmZiZzWkStW7fGkSNHcOjQIf1fgwYN0Lt3b/2/mV/LuH//Pv7991+UKVOG7baImjZtmuvnGE+dOoWQkBAA3JdZwty5c1G6dGm0b99eP43t1nwPHz6Eg4PhIb6joyO0Wi0AtllLKVasGMqUKYO7d+8iKSkJnTt3Zm4tRE55NCUWk5j8yjUq0KJFi4Srq6tITEwUx44dE4MGDRK+vr4Gb9W0N/fu3RMHDx4UBw8eFADE1KlTxcGDB8X58+eFEM9fwe/r6ytWrlwpDh8+LDp37mz05wDq1q0r9uzZI3bs2CEqVapk8HMAaWlpwt/fX/Tp00ekpKSIRYsWCQ8Pj1w/B+Dk5CS+/PJLcfz4cREfH6+on1Uw5o033hA+Pj4iOTnZ4CdXHj58qJ9nyJAhIjg4WGzZskXs27dPREZGisjISP3nup9badOmjTh06JBYv3698PPzM/pzKyNHjhTHjx8X06dPN/pzK2pp+6NHjxbbtm0Tqamp4vDhw2L06NFCo9GIDRs2CCGYU0vL/vZyIZhfc7333nsiOTlZpKamip07d4qoqChRqlQpcePGDSEE81oUe/fuFU5OTuKzzz4Tp0+fFr/88ovw8PAQCxYs0M/DfZn5srKyRHBwsPjggw9yfcZ2a57Y2FgRGBio/8mwZcuWiVKlSolRo0bp52GbNd/69evFunXrxNmzZ8WGDRtE7dq1RUREhHjy5IkQgrk1lZLGCKbEUhAOui1s2rRpIjg4WLi4uIhGjRqJ3bt3Sx2SpLZu3SoA5PqLjY0VQjx/Df/YsWOFv7+/cHV1Fa1btxYnT540WMbt27dFr169hKenp/D29hb9+vUT9+7dM5jnn3/+ES+88IJwdXUVgYGB4vPPP88Vy+LFi0XlypWFi4uLqFGjhvjjjz+sVm5bMJZXAGLu3Ln6eR49eiTefPNNUbx4ceHh4SG6dOkirl69arCcc+fOiXbt2gl3d3dRqlQp8d5774mnT58azLN161ZRp04d4eLiIsLCwgzWoaOWtt+/f38REhIiXFxchJ+fn2jdurV+wC0Ec2ppOQfdzK95evToIcqUKSNcXFxEYGCg6NGjh8HvSDOvRbN69WoRHh4uXF1dRdWqVcXs2bMNPue+zHxJSUkCQK58CcF2a66MjAwxfPhwERwcLNzc3ERYWJj46KOPDH42iW3WfL/99psICwsTLi4uIiAgQAwdOlSkpaXpP2duTaOkMYIpsRREI4QQpl8XJyIiIiIiIiJT8ZluIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIgU49y5c9BoNEhMTNRPGz9+PDQajXRBFZLS4gWAxMREaDQanDt3TupQ9JSYR524uDiEhoZKHQYREdkIB91ERCQbusGdsb/Ro0ebvJxJkyZhxYoV1guUiIiIyEROUgdARESU08SJE1G+fHmDaeHh4QgJCcGjR4/g7Oyc7/cnTZqEV155BTExMVaM0n706dMHPXv2hKurq9Sh6H388ceFOhEjJz/88AO0Wq3UYRARkY1w0E1ERLLTrl07NGjQwOhnbm5uNo7mucePH8PFxQUODvZ3k5ijoyMcHR2lDsOAk5MTnJwscxgjhMDjx4/h7u5ukeUVpKCTRkREpC72d+RARESKZeyZ7pw0Gg0ePHiAefPm6W9Nj4uL039++fJl9O/fH/7+/nB1dUWNGjXw008/GSwjOTkZGo0GixYtwscff4zAwEB4eHggIyMDALBnzx60bdsWPj4+8PDwQIsWLbBz585csezYsQMNGzaEm5sbKlSogO+//97ksp4+fRpdu3ZFQEAA3NzcUK5cOfTs2RPp6ekG8y1YsAD169eHu7s7SpQogZ49e+LixYsG87Rs2RLh4eE4fPgwWrRoAQ8PD1SsWBFLly4FAGzbtg0RERFwd3dHlSpVsGnTJoPvF+aZbo1Gg2HDhmHJkiWoXr063N3dERkZiSNHjgAAvv/+e1SsWBFubm5o2bJlrmX++eef6NatG4KDg+Hq6oqgoCC88847ePTokcF8xp7pfvbsGT755BNUqFABrq6uCA0NxZgxY5CZmWkwX2hoKDp06ICkpCQ0aNAA7u7u+daNKTHduHEDfn5+aNmyJYQQ+ulnzpxBsWLF0KNHD/00Y890L1q0CPXr14eXlxe8vb1Rs2ZNfPvtt3knmoiIFINXuomISHbS09Nx69Ytg2mlSpUy6bvz58/HgAED0KhRIwwaNAgAUKFCBQDA9evX0bhxY/3A0M/PD+vWrcPrr7+OjIwMjBgxwmBZn3zyCVxcXPD+++8jMzMTLi4u2LJlC9q1a4f69esjPj4eDg4OmDt3Llq1aoU///wTjRo1AgAcOXIEbdq0gZ+fH8aPH49nz54hPj4e/v7+BZbhyZMniI6ORmZmJt566y0EBATg8uXLWLNmDdLS0uDj4wMA+OyzzzB27Fh0794dAwYMwM2bNzFt2jQ0b94cBw8ehK+vr36Zd+/eRYcOHdCzZ09069YNM2fORM+ePfHLL79gxIgRGDJkCF599VV88cUXeOWVV3Dx4kV4eXmZlPOc/vzzT6xatQpDhw4FACQkJKBDhw4YNWoUZsyYgTfffBN3797FlClT0L9/f2zZskX/3SVLluDhw4d44403ULJkSezduxfTpk3DpUuXsGTJknzXO2DAAMybNw+vvPIK3nvvPezZswcJCQk4fvw4li9fbjDvyZMn0atXLwwePBgDBw5ElSpV8lyuKTGVLl0aM2fORLdu3TBt2jS8/fbb0Gq1iIuLg5eXF2bMmJHn8jdu3IhevXqhdevWmDx5MgDg+PHj2LlzJ4YPH55/somISP4EERGRTMydO1cAMPonhBCpqakCgJg7d67+O/Hx8SLn7qxYsWIiNjY21/Jff/11UaZMGXHr1i2D6T179hQ+Pj7i4cOHQgghtm7dKgCIsLAw/TQhhNBqtaJSpUoiOjpaaLVa/fSHDx+K8uXLi//7v//TT4uJiRFubm7i/Pnz+mnHjh0Tjo6OueLN6eDBgwKAWLJkSZ7znDt3Tjg6OorPPvvMYPqRI0eEk5OTwfQWLVoIAGLhwoX6aSdOnBAAhIODg9i9e7d+elJSUq4c6+olNTU137iFEAKAcHV1NZj3+++/FwBEQECAyMjI0E//8MMPcy03e751EhIShEajMchlzno/dOiQACAGDBhg8N33339fABBbtmzRTwsJCREAxPr16wssT2FiEkKIXr16CQ8PD3Hq1CnxxRdfCABixYoVBvPExsaKkJAQ/f+HDx8uvL29xbNnz0yKh4iIlIW3lxMRkexMnz4dGzduNPgrKiEEfv/9d3Ts2BFCCNy6dUv/Fx0djfT0dBw4cMDgO7GxsQbP+R46dAinT5/Gq6++itu3b+u//+DBA7Ru3Rrbt2+HVqtFVlYWkpKSEBMTg+DgYP33q1Wrhujo6AJj1V3JTkpKwsOHD43Os2zZMmi1WnTv3t2gLAEBAahUqRK2bt1qML+npyd69uyp/3+VKlXg6+uLatWqISIiQj9d9++zZ88WGGdeWrdubXD7tG6ZXbt2Nbh6bmxd2fP94MED3Lp1C02aNIEQAgcPHsxznWvXrgUAvPvuuwbT33vvPQDAH3/8YTC9fPnyJtVFYWP67rvv4OPjg1deeQVjx45Fnz590Llz53yX7+vriwcPHliknRMRkfzw9nIiIpKdRo0a5fkiNXPdvHkTaWlpmD17NmbPnm10nhs3bhj8P+cb1E+fPg3g+WA8L+np6cjMzMSjR49QqVKlXJ9XqVJFP0DMS/ny5fHuu+9i6tSp+OWXX9CsWTN06tQJr732mn5Afvr0aQghjK4DyP2yrnLlyuV6BtrHxwdBQUG5pgHPb0fPr4zZn2d2cXFBiRIl9P/PfqIh+zJNWdeFCxcwbtw4rFq1KlcMOZ9nz+78+fNwcHBAxYoVDaYHBATA19cX58+fN5ies27zU5iYSpQogf/973/o1q0b/P398b///a/A5b/55ptYvHgx2rVrh8DAQLRp0wbdu3dH27ZtTY6RiIjki4NuIiKyC7qfaHrttdfyHDTXqlXL4P8532atW8YXX3yBOnXqGF2Gp6dnrhd3meOrr75CXFwcVq5ciQ0bNuDtt99GQkICdu/ejXLlykGr1UKj0WDdunVG3yzu6elp8P+83j6e13SR7WVgOQ0fPhzz5s3T/79FixZITk4u8rqysrLwf//3f7hz5w4++OADVK1aFcWKFcPly5cRFxdn0s9s5TyxkBdT31RuTkxJSUkAnp9MuHTpksGz9caULl0ahw4dQlJSEtatW4d169Zh7ty56Nu3r0GeiYhImTjoJiIi1TE28PLz84OXlxeysrIQFRVl1nJ1L2Tz9vbOdxl+fn5wd3fXXxnP7uTJkyavr2bNmqhZsyY+/vhj/PXXX2jatClmzZqFTz/9FBUqVIAQAuXLl0flypULX5giGDVqFF577TX9/4sXL26R5R45cgSnTp3CvHnz0LdvX/10U267DgkJgVarxenTp1GtWjX99OvXryMtLQ0hISE2iWn9+vWYM2cORo0ahV9++QWxsbHYs2dPgT9v5uLigo4dO6Jjx47QarV488038f3332Ps2LG5rt4TEZGy8JluIiJSnWLFiiEtLc1gmqOjI7p27Yrff/8dKSkpub5z8+bNApdbv359VKhQAV9++SXu37+f5zIcHR0RHR2NFStW4MKFC/rPjx8/rr8Kmp+MjAw8e/bMYFrNmjXh4OCgv4r+8ssvw9HRERMmTMh1VVoIgdu3bxe4HnNVr14dUVFR+r/69etbZLm6K+HZyyOEMOmns1566SUAwDfffGMwferUqQCA9u3bWz2mtLQ0/ZvzJ02ahDlz5uDAgQOYNGlSvuvIWVcODg76uy4scdcEERFJi1e6iYhIderXr49NmzZh6tSpKFu2LMqXL4+IiAh8/vnn2Lp1KyIiIjBw4EBUr14dd+7cwYEDB7Bp0ybcuXMn3+U6ODhgzpw5aNeuHWrUqIF+/fohMDAQly9fxtatW+Ht7Y3Vq1cDACZMmID169ejWbNmePPNN/Hs2TNMmzYNNWrUwOHDh/Ndz5YtWzBs2DB069YNlStXxrNnzzB//nz9iQPg+VX3Tz/9FB9++CHOnTuHmJgYeHl5ITU1FcuXL8egQYPw/vvvWyahNlK1alVUqFAB77//Pi5fvgxvb2/8/vvv+T5frlO7dm3ExsZi9uzZSEtLQ4sWLbB3717MmzcPMTExePHFF60e0/Dhw3H79m1s2rQJjo6OaNu2LQYMGIBPP/0UnTt3Ru3atY2uY8CAAbhz5w5atWqFcuXK4fz585g2bRrq1KljcNWeiIiUiYNuIiJSnalTp2LQoEH4+OOP8ejRI8TGxiIiIgL+/v7Yu3cvJk6ciGXLlmHGjBkoWbIkatSoof995IK0bNkSu3btwieffILvvvsO9+/fR0BAACIiIjB48GD9fLVq1UJSUhLeffddjBs3DuXKlcOECRNw9erVAgfdtWvXRnR0NFavXo3Lly/Dw8MDtWvXxrp169C4cWP9fKNHj0blypXx9ddfY8KECQCev6ysTZs26NSpkxmZk5azszNWr16tf37dzc0NXbp0wbBhw/IcsGY3Z84chIWFITExEcuXL0dAQAA+/PBDxMfHWz2mVatW4eeff8ZXX32FqlWr6qdPnToVGzduRGxsLP7+++9cL7gDnr9nYPbs2ZgxYwbS0tIQEBCAHj16YPz48XBw4E2JRERKpxH5vSmFiIiISIbGjh2LhISEXLfhExERyQ1PnxIREZHiXL16FaVKlZI6DCIiogLx9nIiIiJSjLNnz2L58uVYsmQJOnToIHU4REREBeKVbiIiIlKM7du3Y8KECWjRooX+zeRERERyxme6iYiIiIiIiKyEV7qJiIiIiIiIrISDbiIiIiIiIiIr4YvUrECr1eLKlSvw8vKCRqOROhwiIiIiIiK7IYTAvXv3ULZsWTg4SH+dmYNuK7hy5QqCgoKkDoOIiIiIiMhuXbx4EeXKlZM6DA66rcHLywvA80r29vaWOBoiIiIiIiL7kZGRgaCgIP24TGocdFuB7pZyb29vDrqJiIiIiIgkIJdHfaW/wZ2IiIiIiIhIpXilmySV8+wTfzaeiIiIiIjUhINukoxuwJ19oG1sGpmHuSQiIiIikp5sby9PSEhAw4YN4eXlhdKlSyMmJgYnT57M9zvLli1DgwYN4Ovri2LFiqFOnTqYP3++wTzXr19HXFwcypYtCw8PD7Rt2xanT582mOfff/9Fly5d4OfnB29vb3Tv3h3Xr1+3eBntmUajgRAi14CQA8Si02g0BncQ5Pw/ERERERHZjmwH3du2bcPQoUOxe/dubNy4EU+fPkWbNm3w4MGDPL9TokQJfPTRR9i1axcOHz6Mfv36oV+/fkhKSgLwfEAXExODs2fPYuXKlTh48CBCQkIQFfX/2LvzsKiq/w/g72Eb9k12BURRUXE3CTdMcS+1TS1LcSlzKf2amlbuGblUlqnZhpaZpbll7gvu5ZK45xa4A4YCCsg25/cHv7kxMGyzMHfg/XqeeWDunDn33HPOPXc+d42U8s3IyEC3bt2gUCiwd+9eHD58GDk5OXjmmWegUqkqZdmruvIEgAwSdVP46HbhV+HPyHDUOzS4Y4OIiIiISqIQZnJo8d69e/Dy8sL+/fvRsWPHcn+vZcuW6N27N+bMmYPLly+jQYMGOHfuHBo3bgwAUKlU8PHxwYcffogRI0Zg586d6NmzJx48eCDdeTwtLQ1ubm7YuXMnIiMjy5xneno6XFxckJaWxruXa6E+yl1WGoBHviuirDpjnRpW0fosHHSzjk1D244PtgUREVH1I7d4TLZHuotKS0sDUHA0uzyEENizZw8uXbokBenZ2dkAAFtbWymdhYUFlEolDh06JKVRKBRQKpVSGltbW1hYWEhpSHflCbgB/lDWVWn1xiPehqNtBwbPKjAtbWd5FJ5OplH0bBCeFVL5WP/ywvYgqp7MIuhWqVQYP3482rVrh9DQ0FLTpqWlwdHRETY2NujduzcWL16Mrl27AgBCQkIQEBCAqVOn4sGDB8jJycG8efNw69Yt3L17FwDw5JNPwsHBAe+88w4yMzORkZGBiRMnIj8/X0pTVHZ2NtLT0zVeZBjcGJVPeeuJOzP0V9YZAwz2Kl9JbcK2MC1e7mJ6pe2MYhtUPrYHUfVlFkH3mDFjcO7cOaxZs6bMtE5OToiLi8Px48cxd+5cTJgwAbGxsQAAa2trrF+/HpcvX4a7uzvs7e2xb98+9OzZExYWBVXh6emJtWvX4rfffoOjoyNcXFyQmpqKli1bSmmKio6OhouLi/Ty9/c32LJXJeU9yq3GALFiKlJf3Ljrpryn6LPvVh7uBJGn0tqFbVI5SrthKdugcqmDarYHkW6qwtkhsr+me+zYsdi0aRMOHDiAoKCgCn9/xIgRuHnzpnQzNbW0tDTk5OTA09MTYWFhaN26NZYsWaKR5t9//4WVlRVcXV3h4+ODt99+G5MmTSo2j+zsbOnUdaDgGgJ/f3/ZXEMgFxUNutXfARjElEbXemWdVlxF6431bFwVGR84llSe8tY128R4yjv2cIwyPo5T8ldaEMe2MD1d76Ejt2u6ZfucbiEE3nzzTWzYsAGxsbE6BdxAwanphQNiNRcXFwDAlStXcOLECcyZM6dYGg8PDwDA3r17kZycjD59+midh1Kp1LgGnIrTda+UEMJs92hVBn3qhj+2KkbXumY9G0dFf5xyLKkcFWkXtolxVGTMUbcBxyjj4jglX6WNWYXPUKDKV55Lx8ypfWQbdI8ZMwarV6/Gpk2b4OTkhMTERAAFwbKdnR0AYPDgwahZsyaio6MBFJzm3bp1a9StWxfZ2dnYunUrfvjhByxbtkzKd+3atfD09ERAQADOnj2LcePGoV+/fujWrZuUJiYmBg0bNoSnpyeOHj2KcePG4X//+x8aNGhQiTVQ9eizUpjTSlXZdKkXbtgrRtejD6xn49K1PTiWGBfPvDEd7hyUF13rle1ROcpzeZK5BXZVTVk3CDan9pFt0K0OlDt16qQxPSYmBlFRUQCAGzduaFxnnZGRgdGjR+PWrVuws7NDSEgIVq1ahQEDBkhp7t69iwkTJiApKQm+vr4YPHgwpk2bpjGPS5cuYerUqbh//z5q166N9957D//73/+Ms6DVgL5BBwMX42AAUjHcaSQf+o4HbA/j0KVdzO1HkznQdWcU28Cw9D3Dj+1hXBW5Rwvbo/JV5GlH5tI+sr+m2xzJ7RoCUzPEisDrnIozVL2yTktniL7HejYsfeuT7WEc+tQr20R/XC/khe0hb7rcowXg79DKoEtda/uO3OIxs7h7OREHOePgWQTlo2//Yz0bjqF+iLI9DMuQO1ep4gxVd2wDwzDE+sDthvHo0j78HVo59Lmcr/D35YhBNxkV99Qah5wHlarE0PXMdtOPoeqPY5JhGaJd2Cb6M0SQB3Cc0he3G/KmT31yR0jl0HUsk/sYxqCbzAYHO02G/JHKei2ZoeqZQYVhsN/LkyHahWO8bgy5c5vjlGGwPeSNZ+XIkyF34MqxjRh0k9HIscNXBYauV27UtTNW/+V6oRv2e3lifzYtjlPyYqyz+9gehmGo0/7J8Ax5zbw6D/XjoeWCQTcZFTc+xsF6rRyGrmdurPVjjPZgv9efIduFbVJxHKeqNraHYRhyXOE4ZRyG3pakpaUZLD9DMFjQ/fjxY2RnZxsqOyKtuPExDtZr5eLGumJYX/LEdjEtY9c/27dijHkPGwZ5hmHo9mGbGEZ1qUedg+7Y2Fj873//Q5s2beDo6AgHBwfY29vDyckJbdq0wfjx4xEbG2vAopI5qS4rUGXjjekqh7F/PFHFGbPeOF7pzhjtwgCj/DhOyUNl9VeuF7oxRr1xHTGs6lCfFXpOd25uLpYvX45PPvkECQkJcHd3R8uWLVGnTh24ublBCIEHDx4gPj4ef/31F+7fv4/AwEC8/fbbGDlyJKytrY25LLIht+fCmYKxg8PqGnyyXitHZdQzUD02MvqqjLpiv684Y7cL15HSVdZ6Yex5VBWVNYZwrKo4Y/ZjriP6M2aflls8VqGgOzAwEDk5ORgyZAj69++Pli1blpr+5MmTWLt2Lb7//nvY2NggISFB3/KaBbk1cmXjj2TjYL1WDv54kpfKqCf+cKq4ymoXtol2HKfkozLHD45VFceDFfJl7P4st3isQkH38uXLERUVBaVSWaGZ5OTkICYmBiNHjqxwAc2R3Bq5svFHsnHwR1blqMx6BqpXH66oyv4xy7Yon8pqF64j2jHIk5fKHjs4VpUfzwiRN2P3ZbnFYxUKuql85NbIlY3BoXGwXo2PP57khe0hT5VZT2yT4rheyIcpAi4GeeXH303yVRn9WG7xGB8ZRgZV2Tf5qC43FTHFjyyqHKxr7Vgv8mSKdmFf+I+p6oJtULLKDrYY3JVPZfZZ3vxRN9WtLzPoJoOrrJWouq2slaW61qspNpjVta7LyxQ/ZvnDqWyV2S5cR4pjkCcPph4rTD1/c1DZfZdtUj7VtZ6sKvqFzp07l/iZQqGAra0tAgMD0atXLzz99NN6FY6ITHtko7r92KpuyytX1XWDLHembJfqOB4VZcr6V++Qqu5tUJSp6kPdHmwT7Uy1E53brrJV58sjKhx0Jycnl9qpMjMzsWvXLixfvhzdu3fHpk2bqs2jwqo7Uwz+1eWHAI/4GRd/zMqPqX/Msj20M0W9VLfxqDSm7pdcNwrIoR64XpTOVO0jh74hd9W1fiocdJ87d67MNFlZWVi+fDkmTJiA+fPn47333tOpcERkWtVp41FdllPu5PIjsjr1/fKQQ7tU5zaRQ/0zyCsgtzqozuuFNqasD64jpavudWOUa7rt7Owwfvx4DBw4EKtXrzbGLEhmTL0imXr+xmLqjUd1IIe+ww21JlP3PVPPX65MWS9sE/nUAccq+bSFXMohF3Lom9yel64691mj3kitXbt2iI+PN+YsSEYYHJK5Yh+SB7n9UJFbeUxFTvUgp7JUFjktc3UfK+XUFoXJtVymUN37qFyxjxo56M7MzISVVYXPYCfSSVVboeWwPFV9j62clq2q13V5yeUHk1zKIRdyqA85lMFU5Lbs1XmskltbyK08piKnPsntuXbVva8aLegWQmDz5s1o0qSJsWYhey4uLqYuQqWQw/VEpp6/sVTV5ZIT1rE8yPUHilzLVVnkuPxyLJOxyHFZq+uYKce2UGOQV0BufZNtUkAOcYIcVPgw9P3790v9PCsrC5cuXcKyZctw5MgRrFq1SufCVQXsaFQVVMV+LMeNYXW/c7bclps/ZAvIqV2qY5vIqf4Lq45jldyXtzq2CSDv7Xl1xzr4T4WPdHt4eMDT07PEV0BAALp27YrffvsNc+bMwUsvvaRTwaKjo/HEE0/AyckJXl5e6NevHy5dulTqd9avX4/WrVvD1dUVDg4OaN68OX744QeNNElJSYiKioKfnx/s7e3Ro0cPXLlyRSNNYmIiXn31Vfj4+MDBwQEtW7bEr7/+WuFlSEtLA1C1O5yclq0qDXBy2nDKpRzGUJWXzZzIqb8XVZXGlYqS83LLuWyGIvf1ojqRc1uoyb18xiL35z5Xh7GqLHJtm8pW4SPd06dPL7UD2draIjAwEF26dIGnp6fOBdu/fz/GjBmDJ554Anl5eXj33XfRrVs3XLhwAQ4ODlq/4+7ujvfeew8hISGwsbHBli1bMHToUHh5eaF79+4QQqBfv36wtrbGpk2b4OzsjE8++QSRkZEa+Q4ePBipqanYvHkzPDw8sHr1avTv3x8nTpxAixYtKrQc6h9s5jBg66qqLhdpqsp9WE6q29Fuc/lBUp3apDA5LnN13hEiJ9VlrDK3vlYd2qQouS5vdYgBSmNu646xKYSRe8GDBw/g5uamdz737t2Dl5cX9u/fj44dO5b7ey1btkTv3r0xZ84cXL58GQ0aNMC5c+fQuHFjAIBKpYKPjw8+/PBDjBgxAgDg6OiIZcuW4dVXX5XyqVGjBubNmyelKU16ejpcXFyQlpYGZ2dnAFVzEJTj3kU5lqmi5LoMVakPy31Z5F4+QzKXZTWXchqKXMehwqpym5hD/QPmU059mFs/M7fy6sNc+l91ahM1ObSNtnjMlIxyI7Xs7GysXbsW/fr1g6+vr0HyVJ+q7e7uXq70Qgjs2bMHly5dkoL07OxsAAVH49UsLCygVCpx6NAhaVrbtm3x888/4/79+1CpVFizZg0eP36MTp06aZ1XdnY20tPTNV7aylMV9/jIbRCRW3l0JdflqIp9WI6q6nhRlLkto7mVV19yHYcKq8ptYg71bw5l1Ic59q/qsv1QM5c+WJ3aRM1c2qayGCzoFkJg9+7dGDp0KLy9vTFgwAAcPXoUL7/8st55q1QqjB8/Hu3atUNoaGipadPS0uDo6AgbGxv07t0bixcvRteuXQEAISEhCAgIwNSpU/HgwQPk5ORg3rx5uHXrFu7evSvl8csvvyA3Nxc1atSAUqnEyJEjsWHDBgQHB2udZ3R0NFxcXKSXv79/ieWrjiudKbCeDa+qDJ7mtMe5OvRjc2kLdTmrQ5uYyzKaS9+pKHMao9TMpc/owtzaQq0qtwlgXstnrn1IV+bUNpVJ74donzx5Ej/++CPWrFmDxMREKBQKDBw4EGPHjsWTTz5pkIofM2YMzp07p3E0uiROTk6Ii4vDo0ePsGfPHkyYMAF16tRBp06dYG1tjfXr12P48OFwd3eHpaUlIiMj0bNnT40VYtq0aUhNTcXu3bvh4eGBjRs3on///jh48KDWR6BNnToVEyZMkN6np6drDbyr0t5HOf8oMOd6lnO9qplDGasCc+7H5WGOy1bV26Qwc1rHq9KYZI79q6quF+bcr6pqmxRlbu1jzn2qvORwWrlc6XRN9z///IMff/wRP/74I65cuYKaNWtiwIABaNOmDQYMGIB169bhueeeM0gBx44di02bNuHAgQMICgqq8PdHjBiBmzdvYseOHRrT09LSkJOTA09PT4SFhaF169ZYsmQJrl27huDgYI3rvgEgMjISwcHB+PLLL8ucZ1nXEFSFlU7uy2CuK73c6xUwjzKWxNzKbq79uCzmvFzmXPbyMMflM7f1ujTmuizm2G9KU1WWx1z7U1nMdbmqSr8qjZzaRm7XdFf4SHd4eDiOHTsGDw8PvPDCC/jmm2/Qvn17AMC1a9cMVjAhBN58801s2LABsbGxOgXcQMGp6epruQtzcXEBAFy5cgUnTpzAnDlzAACZmZkACq71LszS0hIqlUqnMmgjp05ZUeaw99Qc9/KaU3nNuf+aE3Psx+Vlrv2nKreJmjm2TVUYk8y5X1XF9cLc+5NaVVg3CjPnflYV15PCqvKyGUKFg+4///wTQUFB+OSTT9C7d29YWel9hrpWY8aMwerVq7Fp0yY4OTkhMTERQEGwbGdnB6Dg0V41a9ZEdHQ0gIJrq1u3bo26desiOzsbW7duxQ8//IBly5ZJ+a5du1Z6nvjZs2cxbtw49OvXD926dQNQcN13cHAwRo4ciYULF6JGjRrYuHEjdu3ahS1bthhk2arCSleVBnA5MYd6Ndf+a84/PMy57EWZY98pqqo+Kslcl8lcxyRtzLH+1arKelFV+hJQtdaNwqpCHzP3ZSiqOhzF11eFI+YvvvgCq1evxrPPPgt3d3c8//zzGDhwYIl39taVOlAumm9MTAyioqIAADdu3NA4Ip2RkYHRo0fj1q1bsLOzQ0hICFatWoUBAwZIae7evYsJEyYgKSkJvr6+GDx4MKZNmyZ9bm1tja1bt2LKlCl45pln8OjRIwQHB2PlypXo1auXQZfRHFc6cxq8q8oPALli3VaOqvijqar0G64D8mHu431VWsfNuR3UzL38hZn7ulFYVVhPquI2Xa0q9DFj0vk53fHx8fjxxx+xevVq/P333/Dx8cFTTz2FNWvWYN26dXj22WcNXVazUd5rCMxxEDS3MptLec2lnIWZU5nNfQ+suZdfzZz6THlUpeWpCstizutJVah/NXNeFnMue2nMed0orCq1T1VbFkB+/Utu13TrHHQXpr6D+c8//4y7d+/C29sbzzzzDPr06YPIyEiN52JXBxUJugH5ddLSmOMgYQ5lNocyFmVO/dcc67coc18Gc+ovFWHu7QJUrbYxx/aoSvUPmO/ymGu5y8sc143CzL38RVWV/ibn5aiSQbeaSqXC3r17sWrVKmzYsAEPHz6Evb09Hj16ZKhZmIWKNLI5DSLmVNbC5F5uOQ9YZZF73QLmXb+FmftymENf0YW5twtQtdrGHNujKtW/mjkukzmWuSLMcd1QM+eyl6Yq9Dk5L4Pcgm6LspNUIDMLC0RGRmLFihVISkrCTz/9hC5duhhyFlVSVb22Qy7M4foZuQ5Y5SH3ugXMu37VzHkZzKGP6Mqc2wWoem1jbu1R1eq/MHNaNnMqq67U64a5Lqu5rdvlZa7tAZh32U3BoEe6qUBF96zIeS+RmrnvZZRrHZt7vQLyrVugatRvUXKub22qYhsUZc7LaG79qTzMqT2qYv2rmdOymVNZ9WVuy2pO67MuzK09CpN72c36SHejRo3w/fffIycnp9zfyc7ORkxMDBo1alThwlUn5rC3SM4rVnnItY7NvV7ljvVrelW9Dcz1CJK5lbe8zKW/yf0Hq77M4SwzoOq3gzbm0C6FVeX2MZf1pKjquN7oq0KPDIuKisKECRMwbtw46SZpLVu2RFBQEOzt7QEUPLYrPj4eJ06cwO7du/Hbb7/BxsYGkyZNMsoCVAVyX+HkXLbyknsdmzO5Po6kqra3XOtbm6raBtqY6xhjDv1IV+aynlR1cm4Hc1xn9WVOY5Wc+46hmdOymkv/kZsKn17+8OFDfPvtt1ixYgXOnDkjVbyVVUH8npeXB6BgpQ4NDcWwYcMwbNgwWRzWryy6nM4g59NnzGkgKI3c6riq1Csgz2WRY5kMRW59uSRVuQ20MZd2AcyrrLqSc/+rDvWvJvd2kGvZjMlc+l91ah9zWlZzKavcTi/X65ruhIQEHDlyBH///TdSUlIAADVq1EBISAjCw8MRFBRksIKaE10bWa6dWK7l0oWclkVOZTEEOS2Pufyg0Iec6lsbuZfPWMyl71WX9pHrcsq1XMYg13VCruWqLHJf/uq0jgDybw81c2oXuQXdFTq9vKjatWujdu3aBioKAfLrzHIrjyHIYZl4ao7xmbqNK4Mc+rI21bl/m8Opm3LtN8Yit+WVW3mMTc7rRHVqh6Lk3C5yLZcxybk91ORePrkz6CPDSD/VefCvLHKqYzmVxVDkMCDLoQyVQe79R+7lMza59kO5lstYqns/lBM59T05lcXU5FoX1XHdNYfAuzq2i6Ew6JYhuaxwcikHmQc5DcRyKouxyW09lVt5TEHu/U/u5avKqttRbjU5LbO5nMZbGeRYB9yGyLMO5Fgmc8OgW2bkNgDKrTyGYOo9iVX9RxcH5soj134k13JVJlOPM9rIrTyVRY5tUV3JpR04Rv1HjutHdW4fOS+7nMtmDhh0y5TcBkCi8jD1gFzVd2iURC7jhVzKISdyq5PquH6ombotquv4pCaHZTd1H6DSsX3+I6e6kFNZzJnBgu5PPvnEUFlVe3LZMMmhHMZkikGkugxc1WU55UBu66ncymNKcqqL6r5OyqktqjtT90X2heLkdLSb7SOvOuDlGIZjsKD7gw8+kP5//vnnDZVttSaXAbAqMuXgUdUHLlMtX3XYUVQaU48X1b3+S2PqtlFj+5iuLbh+FDBlHchlPZQzXnonL3Lps2wXwzBY0N2wYUPMmzcPly9fxq5duwyVbbXFDVPlqE7LSlUXN4jyJYe24ThXQA5tQaY9qso+UDLWjbzIoT247TAsvZ7TXdjq1asxc+ZMREZGIjMzE82bN0eTJk3QtGlTNG3aFE2aNIGfn5+hZkdGJoeV3dgqe8Nf3fbiVubycsNQwFR9rLr1bV2Yuo7YPv+p7LYwddsTtxEVYYr+ynWkZKauG7aL4SiEEWrT0dERu3fvxpkzZ3DmzBmcPXsWZ8+ehYWFBf79919Dz0520tPT4eLigrS0NDg7O+uVFwc/46rswLC61CvAujUFU40XADfMZTHlDhGA7VMYg2554DZCnvi7U1647dCdIeMxQzDYke7CEhMT4ejoiCeffFJj+q1bt4wxOzKg6jbwqY92V6dlrkyVUbc8gqHJFP2Z60/ZTDnWsH2Kq6y24PbF9NgGFccdIvLBbUfVYZBrunNycpCZmSm9d3R01JquVq1ahphdtSKnO0qS7qrjRqUyl7e61W1JTHWUm+SJ7aMdxwt5qIzfN1wHKq6yzwKh8qnsyyHJ8PQKuhMTE9GtWzc4ODjAyckJ3t7e6Nq1KyZOnIjvv/8ep0+fRm5urk55R0dH44knnoCTkxO8vLzQr18/XLp0qdTvrF+/Hq1bt4arqyscHBzQvHlz/PDDDxppkpKSEBUVBT8/P9jb26NHjx64cuWK9HlCQgIUCoXW19q1a3VaFnNRnVey6rzsxsa6rXyVWecMYMrPFDtR2T4lY8AnD8auJ64Duqms/sv2KRuPclcNep1ePnHiRBw4cABTp06Fq6srJk6ciDt37iA2NhYqlapgBlZWyM7OrnDe+/fvx5gxY/DEE08gLy8P7777Lrp164YLFy7AwcFB63fc3d3x3nvvISQkBDY2NtiyZQuGDh0KLy8vdO/eHUII9OvXD9bW1ti0aROcnZ3xySefIDIyUsrX398fd+/e1cj3q6++woIFC9CzZ8+KV5KBVNaR0uq4khn7h3B1/uFVGXVbHftsaSorsKvO/VpfvOzC9CprPeH4VDpjtgPXAd3xLAR5qqxtB8ct49DrRmq+vr4YMGAAFi1ahJSUFHh6emL37t1o2LAhRowYgTt37uDZZ5/F9OnT9S7ovXv34OXlhf3796Njx47l/l7Lli3Ru3dvzJkzB5cvX0aDBg1w7tw5NG7cGACgUqng4+ODDz/8ECNGjNCaR4sWLdCyZUt8++235ZqnMS7c54pmXMZc9upcrwDr1hQ4Xsgb20cejHmjoKpwE6LKYqy64jqgP26/5cXYdVbVxi253UhNr9PL09PT0bRpUwAFR7SBguu7fX19sXHjRuTn56N27dp6FxIA0tLSABQczS4PIQT27NmDS5cuSUG6+oi7ra2tlM7CwgJKpRKHDh3Sms/JkycRFxeH4cOH61N82eMeR9aBsRhrjznbq2Q8e0P+2D6mZ+wfllXlh6uxGXOnB+mP22954eUY5kuvoNvf3x+JiYkAABcXF9jZ2UmPBLO2tsarr76KTz/9VO9CqlQqjB8/Hu3atUNoaGipadPS0uDo6AgbGxv07t0bixcvRteuXQEAISEhCAgIwNSpU/HgwQPk5ORg3rx5uHXrVrFTytW+/fZbNGzYEG3bti1xntnZ2UhPT9d4GVplnOpTnVc07sk1T6xb02Hd646XCsmLobetDCh0Y+h64zqgP2PWIdun4irjKDcZj15B91NPPYWDBw9K70NCQjTe29nZ4fLly/rMAgAwZswYnDt3DmvWrCkzrZOTE+Li4nD8+HHMnTsXEyZMQGxsLICCHQHr16/H5cuX4e7uDnt7e+zbtw89e/aEhUXxqsjKysLq1avLPModHR0NFxcX6eXv76/TcpoKV7T/sC6Mx5B1y3YqG88wkD+2j+kZ60csA4qKMWR9cR0wPG6/5cVYdchxy7j0uqb777//xnfffYfZs2fD1tYW3333HUaNGoWFCxeibt26eOutt6BUKnH+/HmdCzh27Fhs2rQJBw4cQFBQUIW/P2LECNy8eRM7duzQmJ6WloacnBx4enoiLCwMrVu3xpIlSzTS/PDDDxg+fDhu374NT0/PEueRnZ2tcbO49PR0+Pv7G/waAl73ZHyGrIuqdm2Mvgxdt6zXshmjD7LuDccYdcn2qThDricc93VnqLrjOmB43H7Li6HrsKqOW3K7pluvu5eHhIRg/vz50vuoqCjs2bMH48aNAwDY29vr/JgtIQTefPNNbNiwAbGxsToF3EDBqena7p7u4uICALhy5QpOnDiBOXPmFEvz7bffok+fPqUG3ACgVCqhVCp1Kl9F8Jnd5qeqDWD64sa2chl6zOD4Y3jG2NFHFWPo9YRjnG4M0Q7cxhiPIeqW7WMY6nXFkHXJdjE+vYLuoiwsLPDjjz/i/fffx61bt9C8efMyA9aSjBkzBqtXr8amTZvg5ORU7NpxABg8eDBq1qyJ6OhoAAWnebdu3Rp169ZFdnY2tm7dih9++AHLli2T8l27di08PT0REBCAs2fPYty4cejXrx+6deumMf+rV6/iwIED2Lp1q07lNybucTQeYwxkVMBQP2zZPhVnyDpj3RuOMXaksn10p+96wp0e+tNnG8z6Nx51u+izjrB9DI87QsyLQYNutYYNG6Jhw4Z65aEOlDt16qQxPSYmBlFRUQCAGzduaFyLnZGRgdGjR+PWrVuws7NDSEgIVq1ahQEDBkhp7t69iwkTJiApKQm+vr4YPHgwpk2bVmz+3333HWrVqlUsGDc1Hu02D2yjknGAr1yG3NlBxmGoH06kO0OtJxzbDEPXdYL1bzyGWEfYPoZjqDNDqPLodU03aWfsawgMFbRU1Ws49GWIemFgWTJ995SzXiuOfVreeLRCPvQ5ysr6N5yK1ifrv3Loui3h703j0Ldeq/p6I7druvW6ezmZhiGPdlfllU1XPOJkfKyjysU+LX/61DHbx7AqWp+sf8OryO8c1n/lUW9LKlLnDLiNR5f2UKvqAbccMegmKoE+G3IOZCXjHlnT0XXDDLBPG5M+P5yK5kH60bUeWf+GV57Am+NT5avIeMX2MT7e/8B8MOg2YzwyYjy8UYjx6bKnnHSnT2DHH0zGx51R8sKjrPJQ+AZehRWexv5f+cqzPWH7VK6Kjllsl8rHoNtMGWJl4QpXNgYoxsEb5JiGrtfhUeXhzijTK+8OKv54rRyF26NosM26N53S1hOuG5WLY5Z5YNBt5vQ5XZRKxwDFuMp7zR7r1fB4WqA88bRN+SirLVj/lUsdYBd+kelp2yHCdcM0OGbJn1EeGUaVQ58bqnGlK7+KnL7Jeq240uqXGwnDK8/zVlnvplOR5+GyfYyr6KnNRbe5rH8irgdyUtLlGIU/J9Phke4qgKcjGk95ByjWq254epppsN7lraz24XXclafwUVWe1kxEcqftrBCOWfLAI91mTpej3VzxKkZdxzzqZBzajuwx8DO+0vaIs95Nj+0jL6xzIiLSB4PuKqI8QSGPxuqnpDpmvepP25E9/sg1PtaxvHEnFBERUdXA08urgIr8EOOPNt2UdLonfwwbFk+DIiqO6wQREZF545HuKqKsU6B5DaD+tJ3uyTolIiIiIqLSMOiuYrQF1zz92XAYZBMRERERUUUw6K5CeOMdIiIiIiIieWHQXcUwuCYiIiIiIpIP3kiNiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiPhNd1GoL6uOj093cQlISIiIiIiql7UcZhc7nfFoNsIUlJSAAD+/v4mLgkREREREVH1lJKSAhcXF1MXg0G3Mbi7uwMAbty4oVcjP/HEEzh+/Lje5TFEPnLJIz09Hf7+/rh58yacnZ1NWpaq1D6GqldDlMVQecilLFWxbuXSPnIaDwyVj1zyYN0aLw851W1Vah+OtcbLR0591lD5yKUsrFvj5ZGWloaAgAApLjM1Bt1GYGFRcKm8i4uLXiuQpaWl3hsOQ+UjlzzUnJ2dTV63Va19AP3r1VBlYd0aryxyycOQ+chhPDBUPnLJQ411a/g81ORQt1WtfQCOtcbMRw591lD5yKksAOvWGHmoqeMyU5NHKUirMWPGyCYfueRhKHJaHjmVxRDktDxyKoshyGV55NQ+hiCn5ZFLHobCujUeOS2PnMpiCHJZHjm1jyHIaXnkVBZDkNPyyCUPuVEIuVxdXoWkp6fDxcUFaWlpBttLQwVYt8bBejUe1q3xsG6Nh3VrPKxb42C9Gg/r1nhYt8Yjt7rlkW4jUCqVmDFjBpRKpamLUuWwbo2D9Wo8rFvjYd0aD+vWeFi3xsF6NR7WrfGwbo1HbnXLI91ERERERERERsIj3URERERERERGwqCbiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiNh0G1gS5YsQe3atWFra4uwsDAcO3bM1EUyqQMHDuCZZ56Bn58fFAoFNm7cqPG5EALTp0+Hr68v7OzsEBkZiStXrmikuX//PgYNGgRnZ2e4urpi+PDhePTokUaaM2fOoEOHDrC1tYW/vz/mz59frCxr165FSEgIbG1t0aRJE2zdutXgy1uZoqOj8cQTT8DJyQleXl7o168fLl26pJHm8ePHGDNmDGrUqAFHR0c8//zzSEpK0khz48YN9O7dG/b29vDy8sKkSZOQl5enkSY2NhYtW7aEUqlEcHAwVqxYUaw8VaXvL1u2DE2bNoWzszOcnZ0RHh6Obdu2SZ+zTg3no48+gkKhwPjx46VprF/dzJw5EwqFQuMVEhIifc561c/t27fxyiuvoEaNGrCzs0OTJk1w4sQJ6XNuy3RTu3btYv1WoVBIz+hlv9VNfn4+pk2bhqCgINjZ2aFu3bqYM2cOCt87mX1Wdw8fPsT48eMRGBgIOzs7tG3bFsePH5c+Z92WjznFCOUpS5kEGcyaNWuEjY2N+O6778T58+fFa6+9JlxdXUVSUpKpi2YyW7duFe+9955Yv369ACA2bNig8flHH30kXFxcxMaNG8Xp06dFnz59RFBQkMjKypLS9OjRQzRr1kz88ccf4uDBgyI4OFi89NJL0udpaWnC29tbDBo0SJw7d0789NNPws7OTixfvlxKc/jwYWFpaSnmz58vLly4IN5//31hbW0tzp49a/Q6MJbu3buLmJgYce7cOREXFyd69eolAgICxKNHj6Q0b7zxhvD39xd79uwRJ06cEE8++aRo27at9HleXp4IDQ0VkZGR4tSpU2Lr1q3Cw8NDTJ06VUrzzz//CHt7ezFhwgRx4cIFsXjxYmFpaSm2b98upalKfX/z5s3i999/F5cvXxaXLl0S7777rrC2thbnzp0TQrBODeXYsWOidu3aomnTpmLcuHHSdNavbmbMmCEaN24s7t69K73u3bsnfc561d39+/dFYGCgiIqKEn/++af4559/xI4dO8TVq1elNNyW6SY5OVmjz+7atUsAEPv27RNCsN/qau7cuaJGjRpiy5YtIj4+Xqxdu1Y4OjqKzz77TErDPqu7/v37i0aNGon9+/eLK1euiBkzZghnZ2dx69YtIQTrtrzMKUYoT1nKwqDbgNq0aSPGjBkjvc/Pzxd+fn4iOjrahKWSj6IrlEqlEj4+PmLBggXStNTUVKFUKsVPP/0khBDiwoULAoA4fvy4lGbbtm1CoVCI27dvCyGEWLp0qXBzcxPZ2dlSmnfeeUc0aNBAet+/f3/Ru3dvjfKEhYWJkSNHGnQZTSk5OVkAEPv37xdCFNSltbW1WLt2rZTm4sWLAoA4evSoEKJgwLOwsBCJiYlSmmXLlglnZ2epPidPniwaN26sMa8BAwaI7t27S++ret93c3MT33zzDevUQB4+fCjq1asndu3aJSIiIqSgm/WruxkzZohmzZpp/Yz1qp933nlHtG/fvsTPuS0znHHjxom6desKlUrFfquH3r17i2HDhmlMe+6558SgQYOEEOyz+sjMzBSWlpZiy5YtGtNbtmwp3nvvPdatjuQcI5SnLOXB08sNJCcnBydPnkRkZKQ0zcLCApGRkTh69KgJSyZf8fHxSExM1KgzFxcXhIWFSXV29OhRuLq6onXr1lKayMhIWFhY4M8//5TSdOzYETY2NlKa7t2749KlS3jw4IGUpvB81GmqUtukpaUBANzd3QEAJ0+eRG5ursZyh4SEICAgQKN+mzRpAm9vbylN9+7dkZ6ejvPnz0tpSqu7qtz38/PzsWbNGmRkZCA8PJx1aiBjxoxB7969i9UB61c/V65cgZ+fH+rUqYNBgwbhxo0bAFiv+tq8eTNat26NF198EV5eXmjRogW+/vpr6XNuywwjJycHq1atwrBhw6BQKNhv9dC2bVvs2bMHly9fBgCcPn0ahw4dQs+ePQGwz+ojLy8P+fn5sLW11ZhuZ2eHQ4cOsW4NRE71WJ6ylAeDbgP5999/kZ+frzHwA4C3tzcSExNNVCp5U9dLaXWWmJgILy8vjc+trKzg7u6ukUZbHoXnUVKaqtI2KpUK48ePR7t27RAaGgqgYJltbGzg6uqqkbZo/epad+np6cjKyqqSff/s2bNwdHSEUqnEG2+8gQ0bNqBRo0asUwNYs2YN/vrrL0RHRxf7jPWru7CwMKxYsQLbt2/HsmXLEB8fjw4dOuDhw4esVz39888/WLZsGerVq4cdO3Zg1KhReOutt7By5UoA3JYZysaNG5GamoqoqCgAHA/0MWXKFAwcOBAhISGwtrZGixYtMH78eAwaNAgA+6w+nJycEB4ejjlz5uDOnTvIz8/HqlWrcPToUdy9e5d1ayByqsfylKU8rMqdkohka8yYMTh37hwOHTpk6qJUCQ0aNEBcXBzS0tKwbt06DBkyBPv37zd1sczezZs3MW7cOOzatavYUQLSj/oIFgA0bdoUYWFhCAwMxC+//AI7OzsTlsz8qVQqtG7dGh9++CEAoEWLFjh37hy+/PJLDBkyxMSlqzq+/fZb9OzZE35+fqYuitn75Zdf8OOPP2L16tVo3Lgx4uLiMH78ePj5+bHPGsAPP/yAYcOGoWbNmrC0tETLli3x0ksv4eTJk6YuGskYj3QbiIeHBywtLYvdVTMpKQk+Pj4mKpW8qeultDrz8fFBcnKyxud5eXm4f/++RhpteRSeR0lpqkLbjB07Flu2bMG+fftQq1YtabqPjw9ycnKQmpqqkb5o/epad87OzrCzs6uSfd/GxgbBwcFo1aoVoqOj0axZM3z22WesUz2dPHkSycnJaNmyJaysrGBlZYX9+/fj888/h5WVFby9vVm/BuLq6or69evj6tWr7Ld68vX1RaNGjTSmNWzYUDp9n9sy/V2/fh27d+/GiBEjpGnst7qbNGmSdLS7SZMmePXVV/G///1POsOIfVY/devWxf79+/Ho0SPcvHkTx44dQ25uLurUqcO6NRA51WN5ylIeDLoNxMbGBq1atcKePXukaSqVCnv27EF4eLgJSyZfQUFB8PHx0aiz9PR0/Pnnn1KdhYeHIzU1VWPv4d69e6FSqRAWFialOXDgAHJzc6U0u3btQoMGDeDm5ialKTwfdRpzbhshBMaOHYsNGzZg7969CAoK0vi8VatWsLa21ljuS5cu4caNGxr1e/bsWY1Ba9euXXB2dpZ+ZJZVd9Wh76tUKmRnZ7NO9dSlSxecPXsWcXFx0qt169YYNGiQ9D/r1zAePXqEa9euwdfXl/1WT+3atSv2OMbLly8jMDAQALdlhhATEwMvLy/07t1bmsZ+q7vMzExYWGj+xLe0tIRKpQLAPmsoDg4O8PX1xYMHD7Bjxw707duXdWsgcqrH8pSlXMp9yzUq05o1a4RSqRQrVqwQFy5cEK+//rpwdXXVuKtmdfPw4UNx6tQpcerUKQFAfPLJJ+LUqVPi+vXrQoiCW/C7urqKTZs2iTNnzoi+fftqfRxAixYtxJ9//ikOHTok6tWrp/E4gNTUVOHt7S1effVVce7cObFmzRphb29f7HEAVlZWYuHCheLixYtixowZZvVYBW1GjRolXFxcRGxsrMYjVzIzM6U0b7zxhggICBB79+4VJ06cEOHh4SI8PFz6XP24lW7duom4uDixfft24enpqfVxK5MmTRIXL14US5Ys0fq4larS96dMmSL2798v4uPjxZkzZ8SUKVOEQqEQO3fuFEKwTg2t8N3LhWD96urtt98WsbGxIj4+Xhw+fFhERkYKDw8PkZycLIRgverj2LFjwsrKSsydO1dcuXJF/Pjjj8Le3l6sWrVKSsNtme7y8/NFQECAeOedd4p9xn6rmyFDhoiaNWtKjwxbv3698PDwEJMnT5bSsM/qbvv27WLbtm3in3/+ETt37hTNmjUTYWFhIicnRwjBui0vc4oRylOWsjDoNrDFixeLgIAAYWNjI9q0aSP++OMPUxfJpPbt2ycAFHsNGTJECFFwG/5p06YJb29voVQqRZcuXcSlS5c08khJSREvvfSScHR0FM7OzmLo0KHi4cOHGmlOnz4t2rdvL5RKpahZs6b46KOPipXll19+EfXr1xc2NjaicePG4vfffzfaclcGbfUKQMTExEhpsrKyxOjRo4Wbm5uwt7cXzz77rLh7965GPgkJCaJnz57Czs5OeHh4iLffflvk5uZqpNm3b59o3ry5sLGxEXXq1NGYh1pV6fvDhg0TgYGBwsbGRnh6eoouXbpIAbcQrFNDKxp0s351M2DAAOHr6ytsbGxEzZo1xYABAzSeI8161c9vv/0mQkNDhVKpFCEhIeKrr77S+JzbMt3t2LFDAChWX0Kw3+oqPT1djBs3TgQEBAhbW1tRp04d8d5772k8Nol9Vnc///yzqFOnjrCxsRE+Pj5izJgxIjU1VfqcdVs+5hQjlKcsZVEIIUT5j4sTERERERERUXnxmm4iIiIiIiIiI2HQTURERERERGQkDLqJiIiIiIiIjIRBNxEREREREZGRMOgmIiIiIiIiMhIG3URERERERERGwqCbiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiNh0E1ERERERERkJAy6iYiIiIiIiIyEQTcRERERERGRkTDoJiIiIiIiIjISBt1ERERERERERsKgm4iIiIiIiMhIGHQTERERERERGQmDbiIiIiIiIiIjYdBNREQG16lTJ3Tq1Mlg+SUkJEChUGDFihUGy9MczZ8/HyEhIVCpVGWmjYqKgqOjYyWUisxR7dq1ERUVVeHvpaSkwMHBAVu3bjV8oYiIqigG3URE1cSKFSugUCikl62tLerXr4+xY8ciKSnJ1MWjMqSnp2PevHl45513YGFRsPnOzMzEzJkzERsba9rCEQBg6dKlVX7HUI0aNTBixAhMmzbN1EUhIjIbVqYuABERVa7Zs2cjKCgIjx8/xqFDh7Bs2TJs3boV586dg729vUHmsXPnToPkQ//57rvvkJeXh5deekmalpmZiVmzZgGAQc8sIN0sXboUHh4eOh1BNidvvPEGPv/8c+zduxedO3c2dXGIiGSPR7qJiKqZnj174pVXXsGIESOwYsUKjB8/HvHx8di0aZPeeWdmZgIAbGxsYGNjo3d+pqZSqfD48WNTFwMAEBMTgz59+sDW1tbURSlTRkaGqYtARtSwYUOEhoZW+aP6RESGwqCbiKiaUx+pio+Pl6atWrUKrVq1gp2dHdzd3TFw4EDcvHlT43udOnVCaGgoTp48iY4dO8Le3h7vvvuu9FnRI6/JyckYPnw4vL29YWtri2bNmmHlypXFypOamoqoqCi4uLjA1dUVQ4YMQWpqqtay7927Fx06dICDgwNcXV3Rt29fXLx4sVi62NhYtG7dGra2tqhbty6WL1+OmTNnQqFQaKRTKBQYO3YsfvzxRzRu3BhKpRLbt28HACxcuBBt27ZFjRo1YGdnh1atWmHdunXF5qXOY+3atWjUqBHs7OwQHh6Os2fPAgCWL1+O4OBg2NraolOnTkhISNC6bIXFx8fjzJkziIyMlKYlJCTA09MTADBr1izpsoGZM2dqfPf27dvo168fHB0d4enpiYkTJyI/P18jjUqlwqJFi9C4cWPY2trC29sbI0eOxIMHD8osm/ra8WvXrqFXr15wcnLCoEGDKpTviRMn0L17d3h4eMDOzg5BQUEYNmyYRpqMjAy8/fbb8Pf3h1KpRIMGDbBw4UIIITTSqet/48aNCA0NhVKpROPGjaV2VLt+/TpGjx6NBg0awM7ODjVq1MCLL75YrD3Ul2UcPnwYEyZMgKenJxwcHPDss8/i3r17UrratWvj/Pnz2L9/v9QWZZ19UNE+VdYyAeXv69qkpqZi/PjxUh0HBwdj3rx5Wu8h0LVrV/z222/F6p+IiIrj6eVERNXctWvXABRcqwkAc+fOxbRp09C/f3+MGDEC9+7dw+LFi9GxY0ecOnUKrq6u0ndTUlLQs2dPDBw4EK+88gq8vb21ziMrKwudOnXC1atXMXbsWAQFBWHt2rWIiopCamoqxo0bBwAQQqBv3744dOgQ3njjDTRs2BAbNmzAkCFDiuW5e/du9OzZE3Xq1MHMmTORlZWFxYsXo127dvjrr79Qu3ZtAMCpU6fQo0cP+Pr6YtasWcjPz8fs2bOlgLWovXv34pdffsHYsWPh4eEh5fPZZ5+hT58+GDRoEHJycrBmzRq8+OKL2LJlC3r37q2Rx8GDB7F582aMGTMGABAdHY2nn34akydPxtKlSzF69Gg8ePAA8+fPx7Bhw7B3795S2+jIkSMAgJYtW0rTPD09sWzZMowaNQrPPvssnnvuOQBA06ZNpTT5+fno3r07wsLCsHDhQuzevRsff/wx6tati1GjRknpRo4ciRUrVmDo0KF46623EB8fjy+++AKnTp3C4cOHYW1tXWr58vLy0L17d7Rv3x4LFy6ULlMoT77Jycno1q0bPD09MWXKFLi6uiIhIQHr16+X8hdCoE+fPti3bx+GDx+O5s2bY8eOHZg0aRJu376NTz/9VKM8hw4dwvr16zF69Gg4OTnh888/x/PPP48bN25I/fz48eM4cuQIBg4ciFq1aiEhIQHLli1Dp06dcOHChWKXWrz55ptwc3PDjBkzkJCQgEWLFmHs2LH4+eefAQCLFi3Cm2++CUdHR7z33nsAUOL6oFaRPlWeZapoXy8sMzMTERERuH37NkaOHImAgAAcOXIEU6dOxd27d7Fo0SKN9K1atcKnn36K8+fPIzQ0tMz8iYiqNUFERNVCTEyMACB2794t7t27J27evCnWrFkjatSoIezs7MStW7dEQkKCsLS0FHPnztX47tmzZ4WVlZXG9IiICAFAfPnll8XmFRERISIiIqT3ixYtEgDEqlWrpGk5OTkiPDxcODo6ivT0dCGEEBs3bhQAxPz586V0eXl5okOHDgKAiImJkaY3b95ceHl5iZSUFGna6dOnhYWFhRg8eLA07ZlnnhH29vbi9u3b0rQrV64IKysrUXQzCEBYWFiI8+fPF1umzMxMjfc5OTkiNDRUdO7cuVgeSqVSxMfHS9OWL18uAAgfHx9pWYUQYurUqQKARlpt3n//fQFAPHz4UGP6vXv3BAAxY8aMYt8ZMmSIACBmz56tMb1FixaiVatW0vuDBw8KAOLHH3/USLd9+3at00uaz5QpUzSmlzffDRs2CADi+PHjJc5D3S8++OADjekvvPCCUCgU4urVq9I0AMLGxkZj2unTpwUAsXjxYmla0fYUQoijR48KAOL777+XpqnXm8jISKFSqaTp//vf/4SlpaVITU2VpjVu3Fij35elIn2qPMtUkb4eGBgohgwZIr2fM2eOcHBwEJcvX9ZIN2XKFGFpaSlu3LihMf3IkSMCgPj555/LvbxERNUVTy8nIqpmIiMj4enpCX9/fwwcOBCOjo7YsGEDatasifXr10OlUqF///74999/pZePjw/q1auHffv2aeSlVCoxdOjQMue5detW+Pj4aNwEzNraGm+99RYePXqE/fv3S+msrKw0jsJaWlrizTff1Mjv7t27iIuLQ1RUFNzd3aXpTZs2RdeuXaXHGeXn52P37t3o168f/Pz8pHTBwcHo2bOn1rJGRESgUaNGxabb2dlJ/z948ABpaWno0KED/vrrr2Jpu3TpIh0hB4CwsDAAwPPPPw8nJ6di0//55x+tZVFLSUmBlZWVTo8Ae+ONNzTed+jQQWN+a9euhYuLC7p27arR5q1atYKjo2OxNi9J4TarSL7qMye2bNmC3NxcrXlv3boVlpaWeOuttzSmv/322xBCYNu2bRrTIyMjUbduXel906ZN4ezsrLHchdszNzcXKSkpCA4Ohqurq9Y2ff311zVO0e7QoQPy8/Nx/fr10qqlVBXpU2Utky59vbC1a9eiQ4cOcHNz02ivyMhI5Ofn48CBAxrp3dzcAAD//vtvxRaaiKga4unlRETVzJIlS1C/fn1YWVnB29sbDRo0kB5BdeXKFQghUK9ePa3fLXqacc2aNct1w7Tr16+jXr160nzUGjZsKH2u/uvr61ssuGzQoEGx/LRNV+e5Y8cOZGRkID09HVlZWQgODi6WTts0AAgKCtI6fcuWLfjggw8QFxeH7Oxsabq2a2UDAgI03ru4uAAA/P39tU4vz7XTurC1tS12arGbm5vG/K5cuYK0tDR4eXlpzSM5ObnM+VhZWaFWrVoa08qbb0REBJ5//nnMmjULn376KTp16oR+/frh5ZdfhlKpBFDQ3n5+fho7LIDi/UetaP0DxZc7KysL0dHRiImJwe3btzWuTU5LSyv2/aJ5qoNOfdpOnz6lLoN6/snJyRXu64VduXIFZ86cKfFU9KL9QF1f5blWnIioumPQTURUzbRp0watW7fW+plKpYJCocC2bdtgaWlZ7POiwXDhI3VVhbZlOnjwIPr06YOOHTti6dKl8PX1hbW1NWJiYrB69epi6bXVXWnTRRk3o6pRowby8vLw8OHDYoFnaUqaX2EqlQpeXl748ccftX5enuuBlUplsR0q5c1XoVBg3bp1+OOPP/Dbb79hx44dGDZsGD7++GP88ccfOh3dL089v/nmm4iJicH48eMRHh4OFxcXKBQKDBw4UOuNw3Rtu5IYqk/pOv+iVCoVunbtismTJ2v9vH79+hrv1cG+h4eHQeZPRFSVMegmIiJJ3bp1IYRAUFBQsR/Z+ggMDMSZM2egUqk0grO///5b+lz9d8+ePXj06JFGsHXp0qVi+Wmbrs7Tw8MDDg4OsLW1ha2tLa5evVosnbZpJfn1119ha2uLHTt2SEdfgYLHeFWGkJAQAAV3MS98ozRDHGWsW7cudu/ejXbt2hl0J0pF833yySfx5JNPYu7cuVi9ejUGDRqENWvWYMSIEQgMDMTu3buL7XQo2n8qYt26dRgyZAg+/vhjadrjx49LvFN+eVSkPQzdp7y8vPTq63Xr1sWjR4807pBfGvXTDtRnGxARUcl4TTcREUmee+45WFpaYtasWcWOoAkhkJKSolO+vXr1QmJionSnZ6DgjteLFy+Go6MjIiIipHR5eXlYtmyZlC4/Px+LFy/WyM/X1xfNmzfHypUrNYKkc+fOYefOnejVqxeAgqODkZGR2LhxI+7cuSOlu3r1arHrgEtjaWkJhUKh8aithIQEbNy4sdx56CM8PBxAwaO1ClPfYVufQLF///7Iz8/HnDlzin2Wl5enc97lzffBgwfF+lrz5s0BQDrlulevXsjPz8cXX3yhke7TTz+FQqEo1zXLRVlaWhab7+LFi4s9Tq0iHBwcyl1fhu5T+vb1/v374+jRo9ixY0exz1JTU5GXl6cx7eTJk3BxcUHjxo11Ki8RUXXCI91ERCSpW7cuPvjgA0ydOhUJCQno168fnJycEB8fjw0bNuD111/HxIkTK5zv66+/juXLlyMqKgonT55E7dq1sW7dOhw+fBiLFi2Sjl4+88wzaNeuHaZMmYKEhAQ0atQI69ev13qN7YIFC9CzZ0+Eh4dj+PDh0iPDXFxcNJ5VPXPmTOzcuRPt2rXDqFGjpOAtNDQUcXFx5Sp/79698cknn6BHjx54+eWXkZycjCVLliA4OBhnzpypcH1UVJ06dRAaGordu3drPL/azs4OjRo1ws8//4z69evD3d0doaGhFXqEU0REBEaOHIno6GjExcWhW7dusLa2xpUrV7B27Vp89tlneOGFFypc5vLmu3LlSixduhTPPvss6tati4cPH+Lrr7+Gs7OztPPkmWeewVNPPYX33nsPCQkJaNasGXbu3IlNmzZh/PjxGjcYK6+nn34aP/zwA1xcXNCoUSMcPXoUu3fvlh6/pYtWrVph2bJl+OCDDxAcHAwvLy907txZa1pj9Cl9+vqkSZOwefNmPP3004iKikKrVq2QkZGBs2fPYt26dUhISNA4lXzXrl145plneE03EVF5mOSe6UREVOnUjz4q7dFMar/++qto3769cHBwEA4ODiIkJESMGTNGXLp0SUoTEREhGjdurPX7RR8ZJoQQSUlJYujQocLDw0PY2NiIJk2aaDwCTC0lJUW8+uqrwtnZWbi4uIhXX31VnDp1qtgjw4QQYvfu3aJdu3bCzs5OODs7i2eeeUZcuHChWJ579uwRLVq0EDY2NqJu3brim2++EW+//bawtbXVSAdAjBkzRusyffvtt6JevXpCqVSKkJAQERMTI2bMmKH1sWNF84iPjxcAxIIFCzSm79u3TwAQa9eu1TrPwj755BPh6OhY7DFTR44cEa1atRI2NjYajw8bMmSIcHBwKJaPtjILIcRXX30lWrVqJezs7ISTk5No0qSJmDx5srhz506p5SppPuXN96+//hIvvfSSCAgIEEqlUnh5eYmnn35anDhxQiOfhw8fiv/973/Cz89PWFtbi3r16okFCxZoPMZLiJLbsOgjsh48eCD1R0dHR9G9e3fx999/F0tX0nqjbrt9+/ZJ0xITE0Xv3r2Fk5OTAFDm48P06VPalkmI8vd1bd99+PChmDp1qggODhY2NjbCw8NDtG3bVixcuFDk5ORI6S5evCg9fpCIiMqmEMJAd+AgIiIyI/369cP58+dx5coVUxelXNLS0lCnTh3Mnz8fw4cPN3VxyIwYuq+PHz8eBw4cwMmTJ3mkm4ioHHhNNxERVXlZWVka769cuYKtW7eiU6dOpimQDlxcXDB58mQsWLBA6921iQDj9/WUlBR88803+OCDDxhwExGVE490ExFRlefr64uoqCjUqVMH169fx7Jly5CdnY1Tp06V+ExyInPEvk5EJD+8kRoREVV5PXr0wE8//YTExEQolUqEh4fjww8/ZBBCVQ77OhGR/PBINxEREREREZGR8JpuIiIiIiIiIiNh0E1ERERERERkJLym2whUKhXu3LkDJycn3tmTiIiIiIioEgkh8PDhQ/j5+cHCwvTHmRl0G8GdO3fg7+9v6mIQERERERFVWzdv3kStWrVMXQwG3cbg5OQEoKCRnZ2dTVwa85OTk4OPP/4YAPD2228DgMZ7Gxsbk5WNqoaifaxon5o3D/jwQ+Ddd4F33il7ennzJSIiIiLjS09Ph7+/vxSXmRqDbiNQn1Lu7OzMoFsHOTk5sLW1BQCp/gq/ZyBD+irax4r2qblzAVtbYPr0gr/TpgFz5hQE3LNnF7zXJV8iIiIiqjxyudSXQTcRkRbqwHr69J8xc+YGqFRLMHt2jRIDbiIiIiIibUx/VTkRkUy98cY9ACOgUv0MC4u5DLiJiIiIqMIYdBMRlaBfv3kAHgEAVKplmDw50bQFIiIiIiKzw6CbiEiLiRNv4ciRLwAAPj4+AB5jwYL5mDPHtOUiIiIiIvPCoJuIqIg5c4CPP/4AQDY6dOiAmJgYAIC19ZeYPj2RgTcRERERlRtvpEayY2FhgUaNGkn/Ayj2nkgf2vqY2pw5wPTp12Bh8S1UKmDu3Llo3749nnzySfzxxx9o23YBpk8veCxY0Wu8S8uXiIiIiKonhRBCmLoQ+liyZAkWLFiAxMRENGvWDIsXL0abNm20pl2xYgWGDh2qMU2pVOLx48fSeyEEZsyYga+//hqpqalo164dli1bhnr16pW7TOnp6XBxcUFaWhofGUZkRgoCbqBZs1dx+vQq9OjRA9u2bQMAbN++HT179oSdnR3efDMe8+d7l/r4MCIiIiIyDbnFY2Z9KObnn3/GhAkTMGPGDPz1119o1qwZunfvjuTk5BK/4+zsjLt370qv69eva3w+f/58fP755/jyyy/x559/wsHBAd27d9cIzImo6lEH3GPGnMOZMz8CAD744APp8+7duyMsLAxZWVnIz1+A2bML0vNUcyIiIiIqjVkH3Z988glee+01DB06FI0aNcKXX34Je3t7fPfddyV+R6FQwMfHR3p5e3tLnwkhsGjRIrz//vvo27cvmjZtiu+//x537tzBxo0bK2GJiMhU8vOB2bOB27enQQiBF154Aa1atZI+VygUmDlzJgBg6dKleP31JMyeXfA9IiIiIqKSmG3QnZOTg5MnTyIyMlKaZmFhgcjISBw9erTE7z169AiBgYHw9/dH3759cf78eemz+Ph4JCYmauTp4uKCsLCwUvMkw8rJycGsWbMwa9Ys5OTkFHtPpC9tfWrmTKBHj+PYuHEjLCwsMHv27GLf6969O9q0aYOsrCwsXLgQ06YVfK+0fImIiIioejPboPvff/9Ffn6+xpFqAPD29kZiovZn6TZo0ADfffcdNm3ahFWrVkGlUqFt27a4desWAEjfq0ieAJCdnY309HSNFxGZn/feew8A8Oqrr6Jhw4bFPi98tHvJkiWlXspCRERERASYcdCti/DwcAwePBjNmzdHREQE1q9fD09PTyxfvlyvfKOjo+Hi4iK9/P39DVRiIqosZ8+exa5du2BtbY0ZM2aUmK5Hjx4aR7uJiIiIiEpjtkG3h4cHLC0tkZSUpDE9KSkJPj4+5crD2toaLVq0wNWrVwFA+l5F85w6dSrS0tKk182bNyuyKEQkA+pLSCIiIhAUFFRiuqLXdmdnZ1dG8YiIiIjITJlt0G1jY4NWrVphz5490jSVSoU9e/YgPDy8XHnk5+fj7Nmz8PX1BQAEBQXBx8dHI8/09HT8+eefpeapVCrh7Oys8SIi83L8+HEAwBNPPFFm2h49esDb2xsZGRnS94iIiIiItDHboBsAJkyYgK+//horV67ExYsXMWrUKGRkZEjP4h48eDCmTp0qpZ89ezZ27tyJf/75B3/99RdeeeUVXL9+HSNGjABQcARr/Pjx+OCDD7B582acPXsWgwcPhp+fH/r162eKRSSiSnLixAkAQOvWrctMq1Ao0LFjRwDAgQMHjFouIiIiIjJvVqYugD4GDBiAe/fuYfr06UhMTETz5s2xfft26UZoN27cgIXFf/sVHjx4gNdeew2JiYlwc3NDq1atcOTIETRq1EhKM3nyZGRkZOD1119Hamoq2rdvj+3bt8PW1rbSl4+IKkdWVhbOnj0LoHxHugGgY8eOWLt2Lfbv3493333XmMUjIiIiIjOmEEIIUxeiqklPT4eLiwvS0tJ4qrkO8vLy8MsvvwAA+vfvDwAa762szHpfEclA0T52/PhxtG3bFl5eXkhMTIRCoSgzjzNnzqBZs2ZwcHBAamoqrKysiuXLvkpERERU+eQWjzHoNgK5NTIRlW7x4sV466230Lt3b2zZsqVc31GpVKhRowZSU1Nx7Nixch8hJyIiIiLjkls8ZtbXdBMRGUJFbqKmZmFhgQ4dOgDgdd1EREREVDIG3URU7VXkJmqF8WZqRERERFQWXnBIspOTk4OFCxcCACZOnAgAGu9tbGxMVjaqGgr3sZEjR+Lvv/8GoHvQffDgQahUKuTl5bGvEhEREZEGHukmWcrNzUVubm6J74n0pe5Tp06dghAC/v7+0pMPyqtFixZwcHDAgwcPcP78eY18iYiIiIgABt1EVM2pTy3X5UZo1tbWaNu2LQCeYk5ERERE2jHoJqJq7eTJkwB0C7oBICIiAgCDbiIiIiLSjkE3EVVr6qC7otdzq6mv696/fz/4BEYiIiIiKopBNxFVW5mZmYiPjwcAtGrVSqc8nnjiCSiVSiQlJeHKlSuGLB4RERERVQEMuomo2rpz5w4AIDg4GG5ubjrlYWtri7CwMADAoUOHDFY2IiIiIqoaGHST7CgUCgQGBiIwMBAKhaLYeyJ9qftUZmYmAN2v51ZTn2J+6NAh9lUiIiIi0sDndJPsWFtbIyoqSmNa0fdE+lD3sY0bNwIwbNC9atUqfYtHRERERFUIj3QTUbWlflyYrjdRUwsPD4elpSWuX7+O69evG6JoRERERFRFMOgmomrp7t27uH37NiwsLNCiRQu98nJ0dJRuxHbw4EFDFI+IiIiIqggG3SQ7OTk5WLBgARYsWICcnJxi74n0lZOTg3fffRcAEBISAkdHR73zVJ9ivnjxYvZVIiIiIpIw6CZZyszMlG5ype09kb7++ecfAPqfWq6mDrqvXbvGvkpEREREEgbdRFQtqR8XpuvzuYtq3749FAoFUlJS8PDhQ4PkSURERETmj0E3EVU7QgiDB91ubm5o0qQJAODGjRsGyZOIiIiIzB+DbiKqdq5fv47MzExYWFigadOmBsu3ffv2Uv5ERERERACDbiKqhv766y8AgLe3N5RKpcHy7dChAwAgISHBYHkSERERkXlj0E1E1U5cXBwAwNfX16D5tmvXDgCQnJyMe/fuGTRvIiIiIjJPJgm6x48fj3///dcUsyYzoFAo4OfnBz8/PygUimLvifR15swZAAWPCzNkn/Lx8UHNmjUBALGxsQbLl4iIiIjMl0IIISp7phYWFpg2bRoeP34MLy8v9O7dGyEhIZVdDKNJT0+Hi4sL0tLS4OzsbOriEFERNWvWxJ07d3D48GG0bdvWoHm//fbb+OSTTzB8+HB88803Bs2biIiIiMomt3jMZKeX//TTT8jIyMCpU6cQERGBYcOGIScnx1TFIaJq4t69e7hz5w4UCoV0t3FDioyMBADs2rULJtinSUREREQyY5Kg28LCAkeOHMEXX3yBVatWIT4+Hjk5OZg+fbopikNE1cjp06cBAMHBwXBycjJ4/h07doS1tTVu3LiBq1evGjx/IiIiIjIvJgm6/fz8YGHx36zt7e2xdOlSrFmzxhTFIZnJzc3FokWLsGjRIuTm5hZ7T6QP9U3U7O3tDd6ncnNz8fXXXyMgIAAAsHv3boPlTURERETmySRB93PPPYdXXnlF42ZqycnJePz4sSmKQzIjhEBaWhrS0tIghCj2nkgf6qC7Ro0aBu9T6r4aGBgIoOAUcyIiIiKq3kwSdH/00UcICgpCQEAA2rZti969eyMsLAyvv/66KYpDRNWIOuj28fEx2jzq1KkDANi7dy/y8/ONNh8iIiIikj+TBN22trZYsmQJbt26hYkTJ+LZZ5/Fli1bMHv2bFMUh4iqiaysLPz9998AjBt0+/r6SnfMPHnypNHmQ0RERETyZ/Sge9u2bXjllVcQERGBXr16YcqUKTh+/DgAwN3dHc899xxGjBiB8PBwnfJfsmQJateuDVtbW4SFheHYsWMlpv3666/RoUMHuLm5wc3NDZGRkcXSR0VFSc+GVr969OihU9mISF7Onz+P/Px8eHh4GOUmamqWlpbo1KkTAJ5iTkRERFTdGTXoXrRoEZ5++mls2LABGRkZSE5Oxueff44nn3wSvXv3RmJiol75//zzz5gwYQJmzJiBv/76C82aNUP37t2RnJysNX1sbCxeeukl7Nu3D0ePHoW/vz+6deuG27dva6Tr0aMH7t69K71++uknvcpJRPKgvnN506ZNoVAojDqvzp07A+DN1IiIiIiqO6MG3Z999hmaN2+O69ev48SJEzhx4gQePHiAL774AufOnUObNm2KBbwV8cknn+C1117D0KFD0ahRI3z55Zewt7fHd999pzX9jz/+iNGjR6N58+YICQnBN998A5VKhT179mikUyqV8PHxkV5ubm46l5GI5EN9PXezZs2MPq8uXboAAA4fPoyMjAyjz4+IiIiI5MmoQXdSUhJGjBgBDw8PaZpSqcSoUaNw4sQJKBQKTJ48Wae8c3JycPLkSURGRkrTLCwsEBkZiaNHj5Yrj8zMTOTm5sLd3V1jemxsLLy8vNCgQQOMGjUKKSkppeaTnZ2N9PR0jRfpTqFQwNPTE56entIp/oXfE+mqcNBtjD5VuK/Wq1cPAQEByM3NxcGDBw02DyIiIiIyL1bGzLxBgwZISkrS+pmnpydGjx6Njz76SKe8//33X+Tn58Pb21tjure3t3SjpLK888478PPz0wjce/Togeeeew5BQUG4du0a3n33XfTs2RNHjx6FpaWl1nyio6Mxa9YsnZaDirO2tsbo0aM1phV9T1RRKpVKOr28VatWCA0NNfg8ivbdrl274ttvv8WuXbt4bwgiIiKiasqoR7onT56ML774AleuXNH6ub29vcmOXH700UdYs2YNNmzYAFtbW2n6wIED0adPHzRp0gT9+vXDli1bcPz4ccTGxpaY19SpU6XnSKelpeHmzZuVsAREVBHx8fF4+PAhlEolGjRoUCnzVO/Q43XdRERERNWXUYPujz/+GJaWlmjTpg3mz5+PO3fuSJ9du3YNS5YswYsvvqhT3h4eHrC0tCx2JD0pKanMRwEtXLgQH330EXbu3ImmTZuWmrZOnTrw8PDA1atXS0yjVCrh7Oys8SIieVGfWh4aGgpra+tKmaf6uu4zZ86UeNYPEREREVVtRg26/fz84ODggPT0dEyZMgX+/v7w9PSEj48P6tevDzs7O7z++uvIzc2tcN42NjZo1aqVxk3Q1DdFK+3xY/Pnz8ecOXOwfft2tG7dusz53Lp1CykpKfD19a1wGUk3ubm5WLp0KZYuXYrc3Nxi74l0oT61vHnz5kbrU0Xz9fT0RPPmzQGg2A0biYiIiKh6MOo13Zs3bwYAPHr0COfPn8fZs2dx7tw56e/p06fRpk0bWFpaok6dOmjYsCEaNWqEuXPnliv/CRMmYMiQIWjdujXatGmDRYsWISMjA0OHDgUADB48GDVr1kR0dDQAYN68eZg+fTpWr16N2rVrS48sc3R0hKOjIx49eoRZs2bh+eefh4+PD65du4bJkycjODgY3bt3N0INkTZCCNy7d0/6H0Cx90QVpT7S3bx5c619zBC05du1a1fExcVh165dePnllw02LyIiIiIyD0YNutUcHR0RFhaGsLAwjenJycnFAvE9e/aUO+geMGAA7t27h+nTpyMxMRHNmzfH9u3bpZur3bhxAxYW/x3MX7ZsGXJycvDCCy9o5DNjxgzMnDkTlpaWOHPmDFauXInU1FT4+fmhW7dumDNnDpRKpZ61QESmVDjorkyRkZFYsGABdu/eDSEE78BPREREVM1UStBdEi8vL3Tp0kW67lEXY8eOxdixY7V+VvTmZwkJCaXmZWdnhx07duhcFiKSp5SUFOkGh2Xdx8HQOnToAKVSiVu3buHSpUsICQmp1PkTERERkWkZ9ZpuIiI5UF/PXadOnUq/0aGdnR3atWsHgHcxJyIiIqqOGHQTUZVnqlPL1dSPDtu1a5dJ5k9EREREpsOgm4iqvMJ3LjeFrl27AgD27duHvLw8k5SBiIiIiEyDQTfJjkKhgIuLC1xcXKBQKIq9J6qooke6jdWnSsq3RYsWcHd3x8OHD7F3716DzY+IiIiI5E8h+Awmg0tPT4eLiwvS0tIq/fpRczZzJmBpCUybVv7vzJkD5OcXfJdIm+zsbDg6OiIvLw83btyAv7+/Scrx5ptv4osvvsDTTz+N3377zSRlICIiIqoO5BaP8Ug3yYalJTB9ekEgXR5z5hSkt7Q0brnIvF24cAF5eXlwc3NDrVq1TFaOt956CwCwZcsWXLlyxWTlICIiIqLKxaCbZGPaNGD27PIF3uqAe/bsih0Zp+rnxIkTAApOLTfl5Qn16tVD7969AQCLFy82WTmIiIiIqHIx6CZZmTYNmDEjH9OnA337nkBubi5yc3Px9ddf4+uvv0Zubi4DbqoQ9WO6OnbsKE0r2qcMpax8x48fDwCIiYlBWlqaweZLRERERPLFoJtk59138/HUU/uweXNrzJ2rgBACd+7cwZ07dzB3roIBN5Vbfn6+FHR369ZNml64TxnythZl5dulSxc0btwYjx49wnfffWew+RIRERGRfDHoJlmKiDiAp57ah1mzrDB3bsEpwfv3d8SsWVYMuKncTp06hfv378PZ2Rlt2rQxdXGgUCgwbtw4AMDnn3+O/Px8E5eIiIiIiIyNQTfJVkTEATz55HjMnm2HWbMSsG/fU5gxI48BN5Xbzp07AQCdO3eGlZWViUtTYNCgQXB3d0dCQgI2b95s6uIQERERkZEx6CbZys/Pxx9/fAYgH0KsgIXFY7z7rsrUxSIzog66C59abmr29vYYOXIkAOCzzz4zcWmIiIiIyNgYdJNsJScna7xXqeLx4YfsslQ+jx49wpEjRwAAXbt2NXFpNI0ePRqWlpbYv38/4uLiTF0cIiIiIjIiRjAkW/v22Wm8b9x4DWbNsir3c7ypetu/fz9yc3MRFBSEunXrmro4GmrVqoUXX3wRAI92ExEREVV1DLpJlo4c6YLLl7M1pvn4HMaMGXnleo43UeFTy7U9n9ve3h729vYGn29581XfUG316tVISkoyeDmIiIiISB7kcWehKiojJwOWOZbFpltaWMLWylYjXUksFBaws7bTKW1mbmaJj0NSKBSwt7bXKW1WbhZUouRrqx1sHHRK+zjvMfJV+fjoQ2vs3NkegbXfx/UEoH6D+rh86TJq1aqFmTOtYGlZ8JzunPwcTHlX+zOW7a3tpUArOy8beaq8EstQkbR21nawUBTsq8rJz0FufsnPeK5IWlsrW1haWFY4bW5+LnLyc0pMq7RSwsrCqsJp81R5yM7LLjGtjaUNrC2tK5w2X5WPx3mPS0xrbWkNG0ubCqdVCRWycrM0Pt++YzsAoGPnjsjJz9FIm4tcjB43GgCQi1zk5vxX31YWVlBaKQEUPAIsMzezxDIUTVtavkXX+yYtm+CJNk/g+LHjWLx0Maa+N7XEtBwjCqjHCEOk5RhRoDqPEbqm1WeMKC1tRdZ7jhHa03KM4BjBMaLiaavqGFHacpiCQhjyIbUEAEhPT4eLiwswBYBt8c971euF31/+XXrv8KFDiStZRGAEYqNipfeeCzzxb+a/WtO29muN468dl97XXlQb19Oua03byLMRzo8+L71vvLQxLty7oDVtoEsgEsYnSO+f+PoJnLhzQmtaD3sP3Jt0T3rfaUUn7L++X2tae2t7ZLz73wrRe3VvbP2mJbBvDvDUNOD4B8AjAE8AOF5wXa766GXjAWtw4ZeBBekiPiiW96Opj6QVMmpjFFaeXqm1DACQPDEZng6eAIAxv4/B0hNLS0wbPy4etV1rAwAm7ZyEhUcXlpj23KhzaOzVGAAwM3YmZu2fVWLaYyOO4YmaTwAAFhxegMm7J5eYdt+QfehUuxMAYMmxJRi7bWyJabe8tAW96/cGAKyIW4Ghm4aWmPaXF37Bi40LTnlee34t+q/rX2LamL4xiGoeBQD4/fLvePqnp0tM+0XPLzCmzRgAQGxCLJ5a+VSJaedHzsekdpMAAMdvH0ebb0p+zNeMiBmY2WkmAOB88nmELgv978M0AJ8CUACYDEzsPBELui0AACSkJiDos6AS8x3dejSW9F4CALiXcQ9eC71KTDuk2RCs6LcCQMHg7hjtWGLaFxq9gLUvrpXeK2YpgLMAfgXgAOB/kHaDcowooHWMuLJVa1oAEDP+25y9uPZFrLuwrsS0HCMKVNsxooiJ4TIdI0rAMaIAx4j/cIwowDGiAMcIAI8BfASkpaXB2dlZa16ViaeXk2xc2TDwv4C7zf8H3ADw/+PanTt3pLSNXvi1IN2+OcD+9yu/sCRv1/7/b00AdqUlNLFGAJwAZAA4X0ZaIiIiIjJLPNJtBOoj3Xfu3dG6Z4WnfGhP+/70PCgsVHh7Uibmfzgf0R9Gw8/PD79u+hXhT4TDwcEBDx48gLW1tcap6Pn5wHvTNE+j4mlhBarraWFDXhmCX9f+iinvTcH7098vljY9Mx2//vIrAOD5/s/D2tpa+q4+p4WlZaaVmG9J6/2CeQswa/osePt44/ftvyOkYQjHiBLS8tRRjhE8dbTiaTlG6JaWY0QBjhEVT8sxooCpx4j09HT4efrJ5kg3g24jUAfdcmlkc5OTk4P+/ftj06ZN6Ny5M3766Sd4e3sDAFJTUwtO3ScqgUqlgpeXF1JSUnDw4EG0b9++WJqcnBxER0cDAKZOnQobGxuDzFuXfNPT09G+fXucPXsWnp6e2L17N5o2bWqQ8hARERFVR3KLx3h6OcnSvXsF12o0aNAALi4usLIq2HN69+5dUxaLzMCpU6eQkpICJycnhIWFmbo4ZXJ2dsa+ffvQsmVL3Lt3D0899RROnjxp6mIRERERkYEw6CZZ+vffghs4hISEQKFQwMnJCYDmdd1E2qhvtte5c2eN07vlrEaNGtizZw/CwsJw//59dOnSBX/88Yepi0VEREREBsCgm2RJHXQ3aNAAAKTTQniku3oQQuDYsWOYP38+YmNjK/RdddDdtWtXI5TMeFxdXbFr1y506NABaWlp6Nq1Kw4cOGDqYhERERGRnvicbmPKyAAsiz+nG5aWgK2tZrqSWFgAdna6pc3MBEq6ZF+hAOztdUublQWoSr65ARwcdEv7+DGQn4/H6el48OABACAkIADIyCh+pPv/05bI3r6g3ACQnQ3klXxTkwqltbMrqGcAyMkBcku+UUmF0tra/tdXKpI2N7cgfUmUSuD/T82vUNq8vIK6KImNDaA+ilyRtPn5BW1XgjN//42f1q3Dzz//jPj4eGl636efxoIPPkC94OD/EltbF+QNFPSxrCwkJiXh8OHDAIBu7dv/t74UTVt4PcrI0KxvK6uCugAK1onMkm9qUixtafmWY713srDAtnXr0GfAAOyNjUWPHj2wefNmRIaHl1yGajhGGCQtx4gCZjZGaKzLFUn7/2OEQdLqM0aUlrYivw34O0J7Wo4RFU/LMaLgf44RuqWV8xhR2nKYgiCDS0tLEwBEWkHXKv7q1UvzC/b22tMBQkREaKb18Cg5bevWmmkDA0tO26iRZtpGjUpOGxiombZ165LTenhopo2IKDmtvb1m2l69hADEX1ZWAoBQKpXisZWVyLa2FuHh4QKA+N///leQ9oUXSs4XEOLRo//yHTKk9LTJyf+lHT269LTx8f+lnTix9LTnzv2XdsaM0tMeO/Zf2vnzS0+7b99/ab/4ovS0W7b8lzYmpvS0v/zyX9pffik9bUzMf2m3bCk97Rdf/Jd23z6taXIAMR4QKPSyt7UVXQBh+f/vrQExERCp6u/NmPFfvufOiXuAaPz/aZsAQlV4HhMn/pc2Pl5kW1uLmTNnipkzZ4psa2vN8owe/V/a5OTSl23IkP/SPnpUer4vvCA0lJJvZvfuokePHtJ6MNvaWsQVXSb1qxqOESW+CuMYUaCKjBHSa/78/9IeO1Z62iJjRKlpi4wRpabVY4woNW0Fxgj+jvj/F8eI/14cIwpeHCMKXhwjRBoKfhOmpaUJOeDp5SQ7F4UAAHjVqCE9gsP1//d+8fRy+dkdF4feAFoACEDBY6c7AIgt5/eTAHQFsOj/3/fr1w8///wzknfswG4AZwB0B5ALYCGAEAC/F8njQVoauqLgUdd+ADYAUJQxX+ucHFiXtsdeR4bI187SEhs3bkTfvn2RnZ2N6bm5aI6C+h0JYDMKHu1NRERERPLHR4YZgXSL+jvan9PNUz4KxJ05g827duGNN96Al5eXdKrXO9OmYf6nn+L1oUOxfPFiAMCatWvx0tChiIiIKLjGl6eFFfxvwtPCsvLyMHXqVHz22WclJuseGYkP585FyzZtCiYUOdXr2IkTeO7ll3H7zh04OTlh5bff4tkXX9SadtvOnRj/zju4fOUKAGBYVBQ+/f95R0ZG4vjx4/Dy9MT+7dsR8v/3ApCY6Wlhubm5WLlyJTatX489sbHIKlRupVKJTh06oFtkJNo/9RRatGhRcOO4KjRGFEvLU0crnpanjhb8z1NHdUvLMaLgf44RFU/LMaLgf44RuqU1wBiRnp4OFz8+p7tKk9tz4eQoKSkJgYGByM7ORv/+/fHzzz9Ln3Xp0gV79+7F119/jREjRgAADhw4gIiICAQHB+PK/wddZDqnT5/Gyy+/jAsXLgAA3njjDfTt2xc1atSAnZ0dvvzySyxfvhx5///Do2PHjhgxYgReeOEFWFhY4LfffsP333+PrVu3Ij8/Hw0aNMCGDRvQsGHDUueblZWF999/H59++imEEAgICIC3tzeOHz+OGjVqIDY2FqGhoUZfflPIyspCbGwsfv/9d/z+++9ISEjQ+NzOzg5hYWFo37492rVrh/DwcD7TnoiIiKolucVjZh90L1myBAsWLEBiYiKaNWuGxYsXo436qJoWa9euxbRp05CQkIB69eph3rx56NWrl/S5EAIzZszA119/jdTUVLRr1w7Lli1DvXr1yl0muTWyro4ePQo/Pz8EBgYaLM+MjAzMnj0bixYtQs7/7y21tLREcnIy3N3dkZubCw8PD6Snp+PUqVNo3rw5AODmzZsICAiAlZUVHj16BKV6ryBVrp86BAAAiZlJREFUulWrVuG1117D48eP4e3tje+++05jHVL7559/MH36dPz0009Q/f8eSFdXVwBAamqqlO65555DTExMhdaVgwcPIioqCv/884+U7549e9CyZUvdF8yMCCHw999/Y+vWrdi/fz8OHz6M+/fva6RRKBRo2rQp2rVrJwXiAQEBJilvdnY2bt++jcePH8PCwgIWFhawtLSU/i/63tHREfaF93gTERERVYDc4jGzDrp//vlnDB48GF9++SXCwsKwaNEirF27FpcuXSo4XbmII0eOoGPHjoiOjsbTTz+N1atXY968efjrr7+ko2Pz5s1DdHQ0Vq5ciaCgIEybNg1nz57FhQsXYFv4NI1SyK2RdbFq1Sq8+uqrcHNzw+XLl+Hh4WGQfN944w0sX7682PTPPvsMp06dQnJyMrZu3QpnZ2csWbIEAwcOBFDQ1iNHjkRGRgY2btyI5cuXw8HBATNmzKiyRzblJjc3F5MmTZJOJ+/ZsydWrlwJT0/PUr9369YtxMTE4Ntvv8X169cBALVq1cIrr7yCV199FY0aNdKpPI8ePcK7776LgwcPSmNAeeXl5eGXX34BAPTv3x9WVoZ5kIOx8i2LSqXCpUuXcOjQIRw+fBiHDh3CtWvXiqXz9/eXAvD27dsjNDQUltqesFAB+fn5SEpKwo0bN3Dz5k3cvHlT+l/9NykpqcL5enh4IDAwEAEBAQgMDJRe6vc1Ct3zgYiIiKgwucVjZh10h4WF4YknnsAXX3wBoOCHp7+/P958801MmTKlWPoBAwYgIyMDW7ZskaY9+eSTaN68Ob788ksIIeDn54e3334bEydOBACkpaXB29sbK1askALAssitkXURFhaGY8eOAQDeeustjBkzBvXr19cpLyEEtmzZgtOnT2PatGkAgJo1a2LQoEHIycnBokWLin2nZcuW6NOnD6ZOnQoAiI6OxooVK4qdUmtvb4+oqCiEh4ejX79+cHR01KmM1Z1KpUJWVhbs7e2LBTKpqan46aef8OWXX+LMmTMAgPfffx8zZ86sUMCmUqlw8OBBKBQKtGvXTu9gTx85OTmIjo4GAEydOhU26uu0ZJqvLhITE6UA/NChQzh16hTyi1y/6OTkJAWwHh4e0t/C/1tbWyMpKQlJSUlITEws9vfevXsoz2bEzs4ODg4OUKlUyM/Ph0qlkl5F35eHvb09AgMD4e/vDz8/P60vHx+fguvcTSg/Px85OTnIzc1FTk6O9NL2Pi8vD5aWlrC2tq7QizsfiIiINMktHjPb53Tn5OTg5MmTUlAGABYWFoiMjMTRo0e1fufo0aOYMGGCxrTu3btj48aNAID4+HgkJiYiMjJS+tzFxQVhYWE4evRouYPu8kpLSyt2NKqkH6/l+VGbn58PhUIBlUoFIQQUCgWysrLw999/IzMzE76+vggMDISFhQWsrKyQkpKCkydP4vDhwzh16hQaNmyIHj16IDk5WQq4AeDzzz/H559/jtdeew1NmjRBrVq14OjoKP0YT0xMRMOGDWFvb4/MzExYWlri3LlzUKlUuHDhAu7cuYOtW7dK+bVr1w6HDh0CAJw4caJY0F23bl107Nix2PJ5e3tLQbdCoZCu7166dCmWLl0KX19fTJ06FRYWFjh+/DgAoFmzZvDy8oKDgwMcHBxgaWmJtLQ0pKamIjU1FVlZWXBwcJBOZRVCwMHBAc7OzrCwsEBmZqb0ysjIgBACNjY2sLGxgVKp1Phb+P/Hjx/jwYMH0is9PR1WVlawtbWFnZ0d7Ozsiv2vPnX+4cOH0qvwe5VKBQ8PD3h6esLDwwOurq5IT0/H/fv3pdeDBw9w//59ZGRkwNnZGW5ubvD19YW/vz+8vLykAODmzZv4+++/ceXKFdy5cweJiYnIy8uDlZUV3N3d4eLiAqVSCaVSifPnz+Px/9+IxMnJCd9//z369etXZn8sysLCAhERERX+HunGx8cHzz//PJ5//nkABWcGHDt2TDoafuTIETx8+BDnzp3Te14WFhaoWbMmAgIC4O/vr/Wvu7t7uYJDIQRSU1Nx48YNXL9+HdevX9f4//r160hKSkJmZiYuXryIixcvlpqfl5eXRhCuVCphZWUFKysrWFpaSv8XfhWenpubqzEOlOeVlZUlBdLl3YmgD3Wgrh6DynrZ2tpqnW5jY6Nxyr9CoSj3+6L/q3ek6PJXn++W968QoszLHMpzKURlvC8pjUKhKPEFQK/PS0ojhJDtS/3bpzJeRRWur6LTjP25KeZp7DJXVGV+zxzKaIrvyVFWaTe7MwGzDbr//fdf5Ofnw9vbW2O6t7c3/v77b63fSUxM1Jo+MTFR+lw9raQ02mRnZyO70F0X09PTy7UMhw8fRu/evcuVtjIkJiZi37590vuuXbvixIkTePDgAQDg66+/1it/pVIJFxcX6cwEAGjdujWGDRuGQ4cO4dNPP0Xnzp2hUqmwYMGCYt9v1aoVLl26hNTUVKxYsQKvvvoqNm/ejL1792Lz5s1ISEjAW2+9pVcZq7u8vDwkJycjOTlZY3poaCiGDx+OV155xWCXGlDlcnR0ROfOndG5c2cABW39999/IzExESkpKfj333+lv4X/z8nJgbe3N7y9veHj46P1r4eHh8FOpVcoFHBzc4ObmxuaNWumNc3jx49x8+ZNXL9+Hbdv38adO3eKve7evYvc3FypP8fFxRmkfPqytLSUdtKpX+qA2crKCnl5ecjNzS3xVfRsBQBSoPq4tLv0EhERkcmYbdAtJ9HR0Zg1a1aFv2dra4uaNWsWm150L1NZ74tOVx9pEELA0tISQUFBsLCwwL1795CWlgYhhPTDzc/PD3Xq1MHdu3dx69YteHp6Ij8/H+3bt8e0adNw4cIFbNmyBU2bNsXXX3+NR48eIS0tDZaWlsjPz4ejoyM8PT2RkJCAnJwc2NnZISsrCyEhIdLR6OTkZPTq1QsvvfQS8vLyip3u+e2332q8zynhcRReXl44c+YMbt++jSeffBIA0LdvX/Tt2xfz5s3D4sWL8dtvv8HW1hZt27aFhYUFTp8+jfT0dGRkZODRo0fIz8+Hq6ur9LK1tZWOTqllZmYiLS0NKpVKOgqufllYWCAnJwfZ2dkaf4tOs7Ozg6urqxQ8ODs7Iz8/H1lZWXj8+LHWv3l5eXB0dISTkxOcnJw0/ndycgIAKSBSt6WLiwvc3d3h5uYGd3d36WVnZ4eHDx/iwYMHuHPnDm7cuIGUlBTpKJ6Pjw8aNmyI+vXrS6fnOjs7Iy0tDffv38fDhw+RnZ2Nx48fw9fXF82bN69Sez8JsLKyQmhoqFneE8HW1hb16tUr9QaXKpUKKSkpGoF4UlIScnJykJ+fj7y8POlV9L16Wm5uLqytraX1v+h4UNKr8JFjdUCt/t9C/fgfHalUqhIDc/X48/jxY2lncEkvbWlycnKko4XqU/11/d/S0lI6OqvLX32+W56/6rPCSrvMobT3FUlrzLy0HYEt6chsaUdtyzu9rKPj1emlVriuik4r6X9zSGvKMpaHsdNXxjyqUpkM+RvRUHnl5eVh9+7dBsnLEMw26Pbw8IClpWWxG/QkJSXBx8dH63d8fHxKTa/+m5SUBF9fX4006rtoazN16lSN09bT09Ph7+9f5jJ07twZt27dKjOdKT355JNSgNu/f3+989P3+kpvb2+tdWtra4tJkyZh0qRJeuVf3Tk5OaFWrVqmLgaR3iwsLODp6QlPT88Sj5ibIwsLCymIJyIiIu3U13TLhX673E3IxsYGrVq1wp49e6RpKpUKe/bsQXh4uNbvhIeHa6QHgF27dknpg4KC4OPjo5EmPT0df/75Z4l5AgWnTTs7O2u8iIiIiIiIiMz2SDcATJgwAUOGDEHr1q3Rpk0bLFq0CBkZGRg6dCgAYPDgwahZs6Z0N+Fx48YhIiICH3/8MXr37o01a9bgxIkT+OqrrwAUnM4wfvx4fPDBB6hXr570yDA/P78K3ThKfWpGea/tJk05OTnStYnqOiz8nkd4SF9F+5gh717OvkpERERkWuoYQpdT5o1CmLnFixeLgIAAYWNjI9q0aSP++OMP6bOIiAgxZMgQjfS//PKLqF+/vrCxsRGNGzcWv//+u8bnKpVKTJs2TXh7ewulUim6dOkiLl26VKEyXbt2TQDgiy+++OKLL7744osvvvjiy0Sva9eu6RxnGpJZP6dbrlJTU+Hm5oYbN27I6loC0k59Df7Nmzd5aYCZYJuZF7aX+WGbmRe2l/lhm5kXtpf5SUtLQ0BAAB48eABXV1dTF8e8Ty+XK/XdaV1cXLhimhFej29+2Gbmhe1lfthm5oXtZX7YZuaF7WV+9H1qiKHIoxREREREREREVRCDbiIiIiIiIiIjYdBtBEqlEjNmzIBSqTR1Uagc2F7mh21mXthe5odtZl7YXuaHbWZe2F7mR25txhupERERERERERkJj3QTERERERERGQmDbiIiIiIiIiIjYdBNREREREREZCQMuomIiIiIiIiMhEG3gS1ZsgS1a9eGra0twsLCcOzYMVMXqVqYOXMmFAqFxiskJET6/PHjxxgzZgxq1KgBR0dHPP/880hKStLI48aNG+jduzfs7e3h5eWFSZMmIS8vTyNNbGwsWrZsCaVSieDgYKxYsaIyFs/sHThwAM888wz8/PygUCiwceNGjc+FEJg+fTp8fX1hZ2eHyMhIXLlyRSPN/fv3MWjQIDg7O8PV1RXDhw/Ho0ePNNKcOXMGHTp0gK2tLfz9/TF//vxiZVm7di1CQkJga2uLJk2aYOvWrQZf3qqgrDaLiooqts716NFDIw3brPJER0fjiSeegJOTE7y8vNCvXz9cunRJI01ljoPcFpauPO3VqVOnYuvYG2+8oZGG7VV5li1bhqZNm8LZ2RnOzs4IDw/Htm3bpM+5fslLWe3F9Uv+PvroIygUCowfP16aZtbrmSCDWbNmjbCxsRHfffedOH/+vHjttdeEq6urSEpKMnXRqrwZM2aIxo0bi7t370qve/fuSZ+/8cYbwt/fX+zZs0ecOHFCPPnkk6Jt27bS53l5eSI0NFRERkaKU6dOia1btwoPDw8xdepUKc0///wj7O3txYQJE8SFCxfE4sWLhaWlpdi+fXulLqs52rp1q3jvvffE+vXrBQCxYcMGjc8/+ugj4eLiIjZu3ChOnz4t+vTpI4KCgkRWVpaUpkePHqJZs2bijz/+EAcPHhTBwcHipZdekj5PS0sT3t7eYtCgQeLcuXPip59+EnZ2dmL58uVSmsOHDwtLS0sxf/58ceHCBfH+++8La2trcfbsWaPXgbkpq82GDBkievToobHO3b9/XyMN26zydO/eXcTExIhz586JuLg40atXLxEQECAePXokpamscZDbwrKVp70iIiLEa6+9prGOpaWlSZ+zvSrX5s2bxe+//y4uX74sLl26JN59911hbW0tzp07J4Tg+iU3ZbUX1y95O3bsmKhdu7Zo2rSpGDdunDTdnNczBt0G1KZNGzFmzBjpfX5+vvDz8xPR0dEmLFX1MGPGDNGsWTOtn6Wmpgpra2uxdu1aadrFixcFAHH06FEhREGAYWFhIRITE6U0y5YtE87OziI7O1sIIcTkyZNF48aNNfIeMGCA6N69u4GXpmorGsCpVCrh4+MjFixYIE1LTU0VSqVS/PTTT0IIIS5cuCAAiOPHj0tptm3bJhQKhbh9+7YQQoilS5cKNzc3qb2EEOKdd94RDRo0kN73799f9O7dW6M8YWFhYuTIkQZdxqqmpKC7b9++JX6HbWZaycnJAoDYv3+/EKJyx0FuCyuuaHsJURAUFP6xWRTby/Tc3NzEN998w/XLTKjbSwiuX3L28OFDUa9ePbFr1y6NdjL39YynlxtITk4OTp48icjISGmahYUFIiMjcfToUROWrPq4cuUK/Pz8UKdOHQwaNAg3btwAAJw8eRK5ubkabRMSEoKAgACpbY4ePYomTZrA29tbStO9e3ekp6fj/PnzUprCeajTsH31Ex8fj8TERI26dXFxQVhYmEb7uLq6onXr1lKayMhIWFhY4M8//5TSdOzYETY2NlKa7t2749KlS3jw4IGUhm1oOLGxsfDy8kKDBg0watQopKSkSJ+xzUwrLS0NAODu7g6g8sZBbgt1U7S91H788Ud4eHggNDQUU6dORWZmpvQZ28t08vPzsWbNGmRkZCA8PJzrl8wVbS81rl/yNGbMGPTu3btY3Zr7emal8zdJw7///ov8/HyNRgYAb29v/P333yYqVfURFhaGFStWoEGDBrh79y5mzZqFDh064Ny5c0hMTISNjQ1cXV01vuPt7Y3ExEQAQGJiota2U39WWpr09HRkZWXBzs7OSEtXtanrV1vdFq57Ly8vjc+trKzg7u6ukSYoKKhYHurP3NzcSmxDdR5Ufj169MBzzz2HoKAgXLt2De+++y569uyJo0ePwtLSkm1mQiqVCuPHj0e7du0QGhoKAJU2Dj548IDbwgrS1l4A8PLLLyMwMBB+fn44c+YM3nnnHVy6dAnr168HwPYyhbNnzyI8PByPHz+Go6MjNmzYgEaNGiEuLo7rlwyV1F4A1y+5WrNmDf766y8cP3682Gfmvh1j0E1VQs+ePaX/mzZtirCwMAQGBuKXX35hMExkBAMHDpT+b9KkCZo2bYq6desiNjYWXbp0MWHJaMyYMTh37hwOHTpk6qJQOZTUXq+//rr0f5MmTeDr64suXbrg2rVrqFu3bmUXkwA0aNAAcXFxSEtLw7p16zBkyBDs37/f1MWiEpTUXo0aNeL6JUM3b97EuHHjsGvXLtja2pq6OAbH08sNxMPDA5aWlsXuoJeUlAQfHx8Tlar6cnV1Rf369XH16lX4+PggJycHqampGmkKt42Pj4/WtlN/VloaZ2dnBvZ6UNdvaeuOj48PkpOTNT7Py8vD/fv3DdKGXEf1V6dOHXh4eODq1asA2GamMnbsWGzZsgX79u1DrVq1pOmVNQ5yW1gxJbWXNmFhYQCgsY6xvSqXjY0NgoOD0apVK0RHR6NZs2b47LPPuH7JVEntpQ3XL9M7efIkkpOT0bJlS1hZWcHKygr79+/H559/DisrK3h7e5v1esag20BsbGzQqlUr7NmzR5qmUqmwZ88ejetHqHI8evQI165dg6+vL1q1agVra2uNtrl06RJu3LghtU14eDjOnj2rESTs2rULzs7O0qlI4eHhGnmo07B99RMUFAQfHx+Nuk1PT8eff/6p0T6pqak4efKklGbv3r1QqVTShjI8PBwHDhxAbm6ulGbXrl1o0KAB3NzcpDRsQ+O4desWUlJS4OvrC4BtVtmEEBg7diw2bNiAvXv3Fjttv7LGQW4Ly6es9tImLi4OADTWMbaXaalUKmRnZ3P9MhPq9tKG65fpdenSBWfPnkVcXJz0at26NQYNGiT9b9brmc63YKNi1qxZI5RKpVixYoW4cOGCeP3114Wrq6vGHfTION5++20RGxsr4uPjxeHDh0VkZKTw8PAQycnJQoiCRwwEBASIvXv3ihMnTojw8HARHh4ufV/9iIFu3bqJuLg4sX37duHp6an1EQOTJk0SFy9eFEuWLOEjw8rp4cOH4tSpU+LUqVMCgPjkk0/EqVOnxPXr14UQBY8Mc3V1FZs2bRJnzpwRffv21frIsBYtWog///xTHDp0SNSrV0/j8VOpqanC29tbvPrqq+LcuXNizZo1wt7evtjjp6ysrMTChQvFxYsXxYwZM/j4qRKU1mYPHz4UEydOFEePHhXx8fFi9+7domXLlqJevXri8ePHUh5ss8ozatQo4eLiImJjYzUegZOZmSmlqaxxkNvCspXVXlevXhWzZ88WJ06cEPHx8WLTpk2iTp06omPHjlIebK/KNWXKFLF//34RHx8vzpw5I6ZMmSIUCoXYuXOnEILrl9yU1l5cv8xH0bvMm/N6xqDbwBYvXiwCAgKEjY2NaNOmjfjjjz9MXaRqYcCAAcLX11fY2NiImjVrigEDBoirV69Kn2dlZYnRo0cLNzc3YW9vL5599llx9+5djTwSEhJEz549hZ2dnfDw8BBvv/22yM3N1Uizb98+0bx5c2FjYyPq1KkjYmJiKmPxzN6+ffsEgGKvIUOGCCEKHhs2bdo04e3tLZRKpejSpYu4dOmSRh4pKSnipZdeEo6OjsLZ2VkMHTpUPHz4UCPN6dOnRfv27YVSqRQ1a9YUH330UbGy/PLLL6J+/frCxsZGNG7cWPz+++9GW25zVlqbZWZmim7duglPT09hbW0tAgMDxWuvvVZsY8Q2qzza2gqAxhhVmeMgt4WlK6u9bty4ITp27Cjc3d2FUqkUwcHBYtKkSRrPERaC7VWZhg0bJgIDA4WNjY3w9PQUXbp0kQJuIbh+yU1p7cX1y3wUDbrNeT1TCCGE7sfJiYiIiIiIiKgkvKabiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiNh0E1ERERERERkJAy6iYiIiIiIiIyEQTcRERERERGRkTDoJiIiIiIiIjISBt1ERERERERERsKgm4iIiIiIiMhIGHQTERERERERGQmDbiIiIiIiIiIjYdBNREREREREZCQMuomIiIiIiIiMhEE3ERERERERkZEw6CYiIiIiIiIyEgbdREREREREREbCoJuIiIiIiIjISBh0ExGRLHTq1AmdOnUyWH4JCQlQKBRYsWKFwfI0R/Pnz0dISAhUKpWpi6KVodvdEGrXro2oqChTF0MnCoUCM2fOrNB3Bg4ciP79+xunQERExKCbiIhKtmLFCigUCulla2uL+vXrY+zYsUhKSjJ18agM6enpmDdvHt555x1YWHCTT9q98847+PXXX3H69GlTF4WIqEqyMnUBiIhI/mbPno2goCA8fvwYhw4dwrJly7B161acO3cO9vb2BpnHzp07DZIP/ee7775DXl4eXnrpJVMXpURybPdLly6Z7U6KrKwsWFlV7OddixYt0Lp1a3z88cf4/vvvjVQyIqLqyzy3KEREVKl69uyJV155BSNGjMCKFSswfvx4xMfHY9OmTXrnnZmZCQCwsbGBjY2N3vmZmkqlwuPHj01dDABATEwM+vTpA1tbW1MXpURybHelUglra2uD5PX48eNKPbXf1ta2wkE3APTv3x/r16/Ho0ePjFAqIqLqjUE3ERFVWOfOnQEA8fHx0rRVq1ahVatWsLOzg7u7OwYOHIibN29qfK9Tp04IDQ3FyZMn0bFjR9jb2+Pdd9+VPit6bW9ycjKGDx8Ob29v2NraolmzZli5cmWx8qSmpiIqKgouLi5wdXXFkCFDkJqaqrXse/fuRYcOHeDg4ABXV1f07dsXFy9eLJYuNjYWrVu3hq2tLerWrYvly5dj5syZUCgUGukUCgXGjh2LH3/8EY0bN4ZSqcT27dsBAAsXLkTbtm1Ro0YN2NnZoVWrVli3bl2xeanzWLt2LRo1agQ7OzuEh4fj7NmzAIDly5cjODgYtra26NSpExISErQuW2Hx8fE4c+YMIiMji322Zs0atGrVCk5OTnB2dkaTJk3w2WefFavT8ePHw9/fH0qlEsHBwZg3b55GAKm+bn7hwoVYsmQJ6tSpA3t7e3Tr1g03b96EEAJz5sxBrVq1YGdnh759++L+/fsa8ynvNd3qSx0OHTqEt956C56ennB1dcXIkSORk5OD1NRUDB48GG5ubnBzc8PkyZMhhNDIo7ztoe2a7n/++Qcvvvgi3N3dYW9vjyeffBK///67RprY2FgoFAqsWbMG77//PmrWrAl7e3ukp6eXuFzlKVNMTAwUCgW+++47jekffvghFAoFtm7dKk0rek33w4cPMX78eNSuXRtKpRJeXl7o2rUr/vrrL428unbtioyMDOzatavEshIRkW54ejkREVXYtWvXAAA1atQAAMydOxfTpk1D//79MWLECNy7dw+LFy9Gx44dcerUKbi6ukrfTUlJQc+ePTFw4EC88sor8Pb21jqPrKwsdOrUCVevXsXYsWMRFBSEtWvXIioqCqmpqRg3bhwAQAiBvn374tChQ3jjjTfQsGFDbNiwAUOGDCmW5+7du9GzZ0/UqVMHM2fORFZWFhYvXox27drhr7/+Qu3atQEAp06dQo8ePeDr64tZs2YhPz8fs2fPhqenp9ay7t27F7/88gvGjh0LDw8PKZ/PPvsMffr0waBBg5CTk4M1a9bgxRdfxJYtW9C7d2+NPA4ePIjNmzdjzJgxAIDo6Gg8/fTTmDx5MpYuXYrRo0fjwYMHmD9/PoYNG4a9e/eW2kZHjhwBALRs2VJj+q5du/DSSy+hS5cumDdvHgDg4sWLOHz4sFSnmZmZiIiIwO3btzFy5EgEBATgyJEjmDp1Ku7evYtFixZp5Pnjjz8iJycHb775Ju7fv4/58+ejf//+6Ny5M2JjY/HOO+/g6tWrWLx4MSZOnFgseKyIN998Ez4+Ppg1axb++OMPfPXVV3B1dcWRI0cQEBCADz/8EFu3bsWCBQsQGhqKwYMHS9+tSHsUlpSUhLZt2yIzMxNvvfUWatSogZUrV6JPnz5Yt24dnn32WY30c+bMgY2NDSZOnIjs7OxSj+SXp0xDhw7F+vXrMWHCBHTt2hX+/v44e/YsZs2aheHDh6NXr14l5v/GG29g3bp1GDt2LBo1aoSUlBQcOnQIFy9e1Ogb6p09hw8fLrY8RESkJ0FERFSCmJgYAUDs3r1b3Lt3T9y8eVOsWbNG1KhRQ9jZ2Ylbt26JhIQEYWlpKebOnavx3bNnzworKyuN6REREQKA+PLLL4vNKyIiQkREREjvFy1aJACIVatWSdNycnJEeHi4cHR0FOnp6UIIITZu3CgAiPnz50vp8vLyRIcOHQQAERMTI01v3ry58PLyEikpKdK006dPCwsLCzF48GBp2jPPPCPs7e3F7du3pWlXrlwRVlZWouimE4CwsLAQ58+fL7ZMmZmZGu9zcnJEaGio6Ny5c7E8lEqliI+Pl6YtX75cABA+Pj7SsgohxNSpUwUAjbTavP/++wKAePjwocb0cePGCWdnZ5GXl1fid+fMmSMcHBzE5cuXNaZPmTJFWFpaihs3bgghhIiPjxcAhKenp0hNTS1WxmbNmonc3Fxp+ksvvSRsbGzE48ePpWlF270k6r7YvXt3oVKppOnh4eFCoVCIN954Q5qWl5cnatWqVSzf8rZHYGCgGDJkiPR+/PjxAoA4ePCgNO3hw4ciKChI1K5dW+Tn5wshhNi3b58AIOrUqVNsXiUpb5nu3r0r3N3dRdeuXUV2drZo0aKFCAgIEGlpaRrpAIgZM2ZI711cXMSYMWPKVZb69euLnj17listERGVH08vJyKiMkVGRsLT0xP+/v4YOHAgHB0dsWHDBtSsWRPr16+HSqVC//798e+//0ovHx8f1KtXD/v27dPIS6lUYujQoWXOc+vWrfDx8dG4CZi1tTXeeustPHr0CPv375fSWVlZYdSoUVI6S0tLvPnmmxr53b17F3FxcYiKioK7u7s0vWnTpujatat0im5+fj52796Nfv36wc/PT0oXHByMnj17ai1rREQEGjVqVGy6nZ2d9P+DBw+QlpaGDh06FDu1FwC6dOkiHSEHgLCwMADA888/Dycnp2LT//nnH61lUUtJSYGVlRUcHR01pru6upZ5GvHatWvRoUMHuLm5abRpZGQk8vPzceDAAY30L774IlxcXIqV8ZVXXtG4vjgsLAw5OTm4fft2qWUvzfDhwzVO8Q8LC4MQAsOHD5emWVpaonXr1sXqqCLtUdjWrVvRpk0btG/fXprm6OiI119/HQkJCbhw4YJG+iFDhmjMqzTlLZOPjw+WLFmCXbt2oUOHDoiLi8N3330HZ2fnUvN3dXXFn3/+iTt37pRZFnV7ExGRYfH0ciIiKtOSJUtQv359WFlZwdvbGw0aNJDu7nzlyhUIIVCvXj2t3y16Q6qaNWuW68ZZ169fR7169YrdRbphw4bS5+q/vr6+xYLLBg0aFMtP23R1njt27EBGRgbS09ORlZWF4ODgYum0TQOAoKAgrdO3bNmCDz74AHFxccjOzpamF70uHAACAgI03quDWH9/f63THzx4oHWeZRk9ejR++eUX9OzZEzVr1kS3bt3Qv39/9OjRQ0pz5coVnDlzpsTT6ZOTk41W9sTExGLfKRyYVmReRedTkfYo7Pr169KOhMIK98XQ0FBpekn9QZuKlGngwIFYtWoVfv/9d7z++uvo0qVLmfnPnz8fQ4YMgb+/P1q1aoVevXph8ODBqFOnTrG0Qogy64KIiCqOQTcREZWpTZs2aN26tdbPVCoVFAoFtm3bBktLy2KfFw2Gy3sE0JxoW6aDBw+iT58+6NixI5YuXQpfX19YW1sjJiYGq1evLpZeW92VNl0UuUlYUTVq1EBeXh4ePnyocaTcy8sLcXFx2LFjB7Zt24Zt27YhJiYGgwcPlm5Sp1Kp0LVrV0yePFlr3vXr1zda2X19fTXex8TEaNzUrCLzKjyfiraHPsrbxytappSUFJw4cQIAcOHCBahUqjIfbda/f3906NABGzZswM6dO7FgwQLMmzcP69evL3bmxoMHD0rceUZERLpj0E1ERHqpW7cuhBAICgoqFozpIzAwEGfOnCkWWPz999/S5+q/e/bswaNHjzQC/EuXLhXLT9t0dZ4eHh5wcHCAra0tbG1tcfXq1WLptE0rya+//gpbW1vs2LEDSqVSmh4TE1PuPPQREhICoOAu5k2bNtX4zMbGBs888wyeeeYZqFQqjB49GsuXL8e0adMQHByMunXr4tGjR1rvfG5sRU97b9y4sUHy1ac9AgMDS+w36s8ro0xjxozBw4cPER0djalTp2LRokWYMGFCmfPx9fXF6NGjMXr0aCQnJ6Nly5aYO3euRtCdl5eHmzdvok+fPjotCxERlYzXdBMRkV6ee+45WFpaYtasWcWOYAohkJKSolO+vXr1QmJiIn7++WdpWl5eHhYvXgxHR0dERERI6fLy8rBs2TIpXX5+PhYvXqyRn6+vL5o3b46VK1dqPE7s3Llz2Llzp3QHaEtLS0RGRmLjxo0a18FevXoV27ZtK3f5LS0toVAokJ+fL01LSEjAxo0by52HPsLDwwFAOjKqVrQ9LCwspKBcfXpz//79cfToUezYsaNYvqmpqcjLyzNGkQEU3D+g8KvokW9d6dMevXr1wrFjx3D06FFpWkZGBr766ivUrl1b6/X8hi7TunXr8PPPP+Ojjz7ClClTMHDgQLz//vu4fPlyifnn5+cjLS1NY5qXlxf8/Pw0TmUHCo6cP378GG3bttVpWYiIqGQ80k1ERHqpW7cuPvjgA0ydOhUJCQno168fnJycEB8fjw0bNuD111/HxIkTK5zv66+/juXLlyMqKgonT55E7dq1sW7dOhw+fBiLFi2STpl+5pln0K5dO0yZMgUJCQlo1KgR1q9fXyzYAIAFCxagZ8+eCA8Px/Dhw6VHhrm4uGg823jmzJnYuXMn2rVrh1GjRiE/Px9ffPEFQkNDERcXV67y9+7dG5988gl69OiBl19+GcnJyViyZAmCg4Nx5syZCtdHRdWpUwehoaHYvXs3hg0bJk0fMWIE7t+/j86dO6NWrVq4fv06Fi9ejObNm0vXKE+aNAmbN2/G008/jaioKLRq1QoZGRk4e/Ys1q1bh4SEBHh4eBh9GQxJn/aYMmUKfvrpJ/Ts2RNvvfUW3N3dsXLlSsTHx+PXX38t8xRvfcuUnJyMUaNG4amnnsLYsWMBAF988QX27duHqKgoHDp0SGsZHj58iFq1auGFF15As2bN4OjoiN27d+P48eP4+OOPNdLu2rUL9vb26Nq1q07LQkREJWPQTUREepsyZQrq16+PTz/9FLNmzQJQcGOrbt266Xy6qp2dHWJjYzFlyhSsXLkS6enpaNCgQbFrfC0sLLB582aMHz8eq1atgkKhQJ8+ffDxxx+jRYsWGnlGRkZi+/btmDFjBqZPnw5ra2tERERg3rx5Gje/atWqFbZt24aJEydi2rRp8Pf3x+zZs3Hx4kXplOKydO7cGd9++y0++ugjjB8/HkFBQZg3bx4SEhIqJegGgGHDhmH69OnIysqSrjN+5ZVX8NVXX2Hp0qVITU2Fj48PBgwYgJkzZ0qBm729Pfbv348PP/wQa9euxffffw9nZ2fUr18fs2bN0rhTubnQpz28vb1x5MgRvPPOO1i8eDEeP36Mpk2b4rfffiv1+d6GKtOoUaOQnZ2NmJgY6UZnNWrUwFdffYW+ffti4cKFWq+/t7e3x+jRo7Fz507pKQPBwcFYunSpxt3+gYI71j/33HMa1/8TEZFhKERZd2IhIiIiAEC/fv1w/vx5XLlyxdRFKZe0tDTUqVMH8+fP13ikFpXO398f3bt3xzfffGPqolSKuLg4tGzZEn/99ReaN29u6uIQEVU5vKabiIhIi6ysLI33V65cwdatW9GpUyfTFEgHLi4umDx5MhYsWACVSmXq4piF3NxcpKSkmN3p8/r46KOP8MILLzDgJiIyEh7pJiIi0sLX1xdRUVGoU6cOrl+/jmXLliE7OxunTp3iY5WqqB07dmDNmjVYsWIFdu7cyeubiYjIIBh0ExERaTF06FDs27cPiYmJUCqVCA8Px4cffoiWLVuaumhkJE899RSuXr2KUaNG4d133zV1cYiIqIpg0E1ERERERET/196dxzdR5/8DfyVpkl6kLfSiUNpyW45ylNZy6tIVlfU+kGXlUHEVUPkiKOBKAVcLwvpDhAV1FXZBF8EVdUVRttxaua9SZDkKRaAtBZrSgyZNPr8/uhmaNmmTNndfz8djHpSZdz7zmflkJnnnM/MZchLe001ERERERETkJEy6iYiIiIiIiJyEz+l2AqPRiEuXLqFVq1bS8zSJiIiIiIjI+YQQuHHjBmJiYiCXu7+fmUm3E1y6dAmxsbHurgYREREREVGLdeHCBbRv397d1WDS7QytWrUCUNPIGo3GzbUhciwhBPR6PQBAqVRavZrD1jh3aKhuCxcCb70FzJ4NvPpq/dc2tNyTt5mIiIiopSgtLUVsbKyUl7kbk24nMH3R1mg0TLrJ5+h0OixZsgQAMGvWLKhUqmbFuUNDdXvzTcDfH5gzp+bf11+/9bo33qhJuOfPN59vS7lERERE5Fqe0gHCpJuIqA5TQj1nDqDTleOJJ87hiy96YM4c6wk3EREREZElTLqJiCx4/XWgulqH+fPvxJ//vA/Ad5g//24m3ERERERkF/cP5UZE5KF0ugwA+wAAMtlc/OlPwr0VIiIiIiKvw6SbiMiCHTt2YOHChf/7nx+E2IMJE7a6tU5ERERE5H2YdBMR1VFSUoIHHngSQgj07TsBL7zwPADg739/E2+84ebKEREREZFXYdJNRFTHsGGTodVeQOvWnbBjx7uYMWMGlEolgG2YMyebiTcRERER2YwDqRGRXeRyORITE6W/mxvnDg3V7bHHPsXRo59CLldg06a1aNWqFVq1aoWxY8fio48+Qteub2LOnG8A1B/F3JO3mYiIiIjcQyaE4MhADlZaWoqQkBBotVo+p5vIi7z88nm8805vAKWYO3cuMjIypGWnTp1C9+7dYTQa8fzzh7BiRR8+PoyIiIjIA3laPsauGCIiAPPmGfHOO2MBlCItLQ2vvfaa2fIuXbrg8ccfBwAUF7+F+fNrnuPNS82JiIiIqCFMuomIAJw/nw1gJ4KCgrBmzRr4+dW/+2b27NkAgM8//xyPPfYL5s8HDAYXV5SIiIiIvArv6SYiu+h0OmRmZgIAZs2aBZVK1aw4d7BUt5499wAAfvvb36JTp04WX9erVy/cf//9+Prrr7FgwQKsXr260XKJiIiIqGVjTzcREYB9+/YBAAYMGNBgnOmy87Vr1+LcuXPOrhYREREReTkm3UREuJV0JycnNxiXkpKC9PR0GAwGvP32266oGhERERF5MSbdRNTiXbt2DWfOnAHQeNIN3OrtXrVqFSorK51aNyIiIiLybky6iajF279/PwCgU6dOaN26daPxw4YNQ0xMDG7evIk9e/Y4u3pERERE5MWYdBNRi2fr/dwmMpkMQ4cOBQDs2rXLafUiIiIiIu/HpJuIWjx7k24AGDJkCABg586dTqkTEREREfkGPjKMiOwil8vRpUsX6e/mxrlD3bqZLi+3J+k29XT/9NNP0Ov1UCqVHr3NREREROQeMiGEcHclfE1paSlCQkKg1Wqh0WjcXR0iasDly5cRExMDuVyO0tJSBAUF2fQ6o9GIiIgIXLt2DT///DNSU1OdXFMiIiIisoWn5WPsiiGiFs10aXliYqLNCTdQ05PNS8yJiIiIqDFMuomoRWvK/dwmHEyNiIiIiBrDe7qJyC46nQ6LFy8GAEyfPh0qlapZce5Qu26mR341Jek29XTv2rULRqMR1dXVHrvNREREROQe7OkmIrvp9Xro9XqHxbmDXq+HTqfDgQMHAADJycl2l9G3b18EBQWhpKQEOTk5Urmeus1ERERE5HpMuomoxbp+/TquXbsGpVKJ3r172/16Pz8/DBo0CADv6yYiIiIiy5h0E1GLdenSJQBAUlIS1Gp1k8ow3dfNpJuIiIiILGHSTUQt1sWLFwE07X5uk9pJN5/ASERERER1MekmohbL1NPdnKR7wIABUKvVKCwsxOnTpx1VNSIiIiLyEUy6iahFMhqNuHz5MoDmJd3+/v5ISUkBAOzevdshdSMiIiIi38Gkm4jsIpPJEBcXh7i4OMhksmbHuYNMJoNKpYJOp0NQUBBuu+22ZpVnusR89+7dHrvNREREROQefE43EdlFqVRi/PjxDotzB6VSifbt2wMA+vXrB4VC0azyhg4dijfffBO7d+/GmjVrHFFFIiIiIvIR7OkmohZp3759AJp3ablJWloaFAoFzp07hwsXLjS7PCIiIiLyHUy6iahFMiXdycnJzS6rVatW6NevHwBg165dzS6PiIiIiHxHi0i6ly9fjvj4ePj7+yM1NRV79+61Grt69WrIZDKzyd/f34W1JfJsOp0OixYtwqJFi6DT6Zod5w5lZWU4cOAAgJpndDuC6b7upUuXeuQ2ExEREZF7+HzS/dlnn2HatGnIyMjAwYMHkZSUhBEjRqCoqMjqazQaDS5fvixN58+fd2GNiTxfRUUFKioqHBbnajk5OTAYDPD390enTp0cUuaQIUMAAGfOnPHIbSYiIiIi9/D5pPudd97BxIkTMWHCBCQmJmLlypUIDAzExx9/bPU1MpkM0dHR0hQVFeXCGhORsx08eBAAEBMT47BRxgcPHgwAKC4uRllZmUPKJCIiIiLv59NJt06nw4EDB5Ceni7Nk8vlSE9PR3Z2ttXXlZWVIS4uDrGxsXjggQdw/PhxV1SXiFzEdExHR0c7rMw2bdqgR48eAID8/HyHlUtERERE3s2nk+7i4mIYDIZ6PdVRUVEoKCiw+Jpu3brh448/xldffYW1a9fCaDRi4MCB+PXXX62up6qqCqWlpWYTEXmu3NxcAEBkZKRDyzX1djPpJiIiIiITn066myItLQ1jx45Fnz59MGzYMHzxxReIiIjA+++/b/U1mZmZCAkJkabY2FgX1piI7GXq6XZ00m26r5vjQBARERGRiU8n3eHh4VAoFCgsLDSbX1hYaPNlpUqlEn379sXp06etxsyaNQtarVaa+JxeIs9VVFSEK1euAKg5RzjSoEGDAAAFBQXQarUOLZuIiIiIvJNHJ907duzAl19+idzcXBiNRrtfr1Kp0L9/f2RlZUnzjEYjsrKykJaWZlMZBoMBx44dQ9u2ba3GqNVqaDQas4nIV8lkMsTExDQ6CJmtca5m6uWOiIhAfHy8Q+vWrl07REREQAiBn3/+2WHlEhEREZH38nN3BayZNGkS/v3vfyMlJQVff/01AgIC0LVrVyQlJeGjjz6yuZxp06Zh3LhxSE5ORkpKCpYsWYLy8nJMmDABADB27Fi0a9cOmZmZAID58+fj9ttvR+fOnVFSUoJFixbh/PnzeOaZZ5yynUTeRqlUYuLEiQ6Lc7WcnBwAwMCBAx1eP6VSid/97ndYtWoVfvrpJ9x3330OLZ+IiIiIvI/HJt3r1q3DsWPH0K5dO4SFheGXX37BmDFj7O5FHjVqFK5cuYI5c+agoKAAffr0webNm6XB1fLz8yGX3+rwv379OiZOnIiCggKEhYWhf//++Omnn5CYmOjQ7SMi9zAl3T179nRK+UOHDsWqVauwc+dOp5RPRERERN5FJoQQ7q6EJZGRkSgoKIBcLkdERASKiopw4cIFPP3009iyZYu7q9eg0tJShISEQKvV8lJzIg8zaNAg/PTTT/j0008xevRoh5d/9uxZdOrUCUqlElqtFgEBAQ5fBxERERFZ52n5mMfe092/f3/pWdodO3ZEbm4u2rVrh71797q5ZkQtm16vx5IlS7BkyRLo9fpmx7mSEELq6T506JDD66bX6/HVV18hJCQEer0ee/bscVjZREREROSdPDbp/uCDDxAWFgYAmDJlCh577DHcf//96N69u5trRtSyCSGkkfobulDG1jhXunjxIkpLS+Hn5we1Wu3wugkhUFpaKj02kJeYExEREZHH3tNd+1nXTz75JKKionD06FGMGTPGjbUiIm9m6uXu0qUL/Pycd/qLi4tDTk4Ok24iIiIi8oyk+7vvvsMnn3yCCxcuICgoCL1798ajjz6K5ORkKeauu+7CXXfd5cZaEpG3MyXdzh4YMS4uDgCQnZ0NvV4PpVLp1PURERERkedy++XlS5Yswe9+9zts3LgR5eXlKCoqwtKlS5GamoqRI0eioKDA3VUkIh9hSrp79Ojh1PWEh4ejTZs2qKiowMGDB526LiIiIiLybG5Put9991306dMH58+fx/79+7F//35cv34dy5YtQ05ODlJSUnDx4kV3V5OIfMDx48cBOD/plsvlGDRoEADe101ERETU0rk96S4sLMQzzzyD8PBwaZ5arcbzzz+P/fv3QyaT4ZVXXnFjDYnIFxiNRinpdvbl5QCYdBMRERERAA+4p7tbt24oLCy0uCwiIgKTJk3CggULXFwrIrJGJpMhIiJC+ru5ca6Sl5eHyspKqNVqdO7c2Sl1q73N/fr1AwDs2rULBoMBCoXCYeshIiIiIu/h9qT7lVdewQsvvIAxY8agS5cu9ZYHBgZ6xBd2IqqhVCoxadIkh8W5iul+7ttuuw3+/v5OqVvtba6urkZwcDC0Wi1ycnKQlJTk8PURERERkedz++Xlf/nLX6BQKJCSkoK3334bly5dkpadOXMGy5cvx2OPPebGGhKRLzAl3T179nTJ+vz8/KRLzHft2uWSdRIRERGR53F70h0TE4OgoCCUlpZi5syZiI2NRUREBKKjo9G1a1cEBATg2WefhV6vd3dViciLme7ndlXSDQBDhw4FwPu6iYiIiFoyt19e/vXXXwMAysrKcPz4cRw7dgw5OTnSv0eOHEFKSgoUCgU6duyI2267DYmJiXjzzTfdXHOilkmv1+PDDz8EAEycONHqM6htjXOV2j3dzqpb3XJrJ91CCN4qQ0RERNQCuT3pNgkODkZqaipSU1PN5hcVFdVLxLOysph0E7mJEAJXrlyR/m5unCvo9Xr88ssvAGoeF+asutUtd8CAAVCr1SgsLMSpU6fQtWtXh62LiIiIiLyDxyTd1kRGRmL48OEYPny4u6tCRF7q1KlT0Ov1CA4ORocOHVBdXe2S9arVaqSmpmLnzp3YuXMnk24iIiKiFsjt93QTETmb6X7uHj16QC537WmP93UTERERtWxMuonI57l65PLaTEk3RzAnIiIiapmYdBORzzMl3T169HD5utPS0qBQKHDu3Dnk5+e7fP1ERERE5F5MuonI57mzpzs4OBj9+vUDwN5uIiIiopaISTcR2UUmkyEkJAQhISENPgLL1jhnu3nzJk6fPg3gVtLtrLpZK5f3dRMRERG1XDLh7mf5+KDS0lKEhIRAq9VCo9G4uzpELdrhw4fRt29ftG7dGsXFxW75AeDrr7/GAw88gO7du+PEiRMuXz8RERFRS+Jp+Rh7uonIpx05cgRAzf3c7upxHzx4MADgl19+QVFRkVvqQERERETuwaSbiHza1q1bAQADBw50Wx1at24t3df96aefuq0eREREROR6TLqJyC56vR4ffvghPvzwQ+j1+mbHOZMQAv/5z38AAL/97W+dXreGyp04cSIA4K9//SuMRqPD1klEREREno1JNxHZRQiBS5cu4dKlS2hoSAhb45zpxIkTuHTpEvz9/TFo0CCn162hcv/whz9Ao9Hg1KlT2LJli8PWSURERESejUk3EfksUy/3kCFD4O/v79a6BAcHY/z48QCA5cuXu7UuREREROQ6TLqJyGeZepTT09PdXJMakyZNAgB88803yMvLc3NtiIiIiMgVmHQTkU/S6/XYvn07APP7ud2pW7duuOuuuyCEwIoVK9xdHSIiIiJyASbdROST9uzZg7KyMoSHhyMpKcnd1ZFMnjwZAPDRRx+hsrLSzbUhIiIiImdj0k1EPsl0afnw4cMhl3vOqW7kyJGIi4vDtWvXsG7dOndXh4iIiIiczHO+iRKR1wgMDERgYKDD4pzB0qPCanNW3RorV6FQ4PnnnwcALFu2zG0juxMRERGRa8gEv/E5XGlpKUJCQqDVaqHRaNxdHaIWR6vVok2bNjAYDDh37hzi4uLcXSUzxcXFaN++PaqqqpCdnY3bb7/d3VUiIiIi8hmelo+xp5uIfM727dthMBjQpUsXj0u4ASA8PBxPPPEEAD4+jIiIiMjXMekmIp9jurTcUx4VZsmUKVMAAOvXr0dhYaGba0NEREREzsKkm4jsotfrsXr1aqxevRp6vb7Zcc5gGkTN2v3czqqbPeUmJycjNTUVOp0Of/vb3xxWByIiIiLyLEy6icguQgicP38eq1fH4803ZY3GnT9/Xhos7I03gLlznVu/Cxcu4OTJk5DL5bjzzjttrpsj2Fuu6fFhK1euRHV1tcPqQURERESew8/dFfBl5bpyKHSKevMVcgX8/fzN4qyRy+QIUAY0KbZCX2H1i79MJkOgMrBJsZX6ShiF0Wo9glRBTYq9WX0TBqPBIbGBykDIZDUJYVV1FaqN1hMae2IDlAGQy2p+q9IZdNAbrPdm2hPr7+cPhVxhd6zeoIfOoLMaq/ZTw0/uZ3dstbEaVdVVFuN0upoy5HKBefP8IJMbMH3mTatxJm+8AcyZA/wpQ4dyneXtUyqUUClUAIAt/9mCt956C8kDkjH15akIDQ21GmsURlTqa555vWnzJgBA/+T+UAYqUa4rrxdb+zgq15VDj1v18ZP7Qe2nBlCTRFfoKyzW1VJsQ+VaOu7vfeBehEeE49dff8X6L9bjgQcfsBprDc8RTYvlOaKGM84RAKBSqKBUKO2ONRgNuFld/3xiUvtYtie29jmiubHNOUc0FGvPcc9zhOVYniN4juA5wv5YXz1HNLQd7sDRy53ANFoeZgLwr7/83i73YtPvN0n/D3oryOpBNixuGLaP3y79P2JRBIorii3GJsckY9/EfdL/45fE47z2vMXYxIhEHJ90XPp/j7/2QO6VXIuxcSFxODf1nPT/AR8OwP5L+y3GhgeG48qMK9L/71h9B3ac32ExNlAZiPLZtw6IkZ+OxLenvrUYCwAi49Zb9bENj+Hz3M+txpbNKpMOyPFfjsffj/zdamzR9CJEBEUAACZvmoy/7v+r1di8l/IQHxoPAJjxwwwszl5sNTbn+Rz0iOwBAJi7fS7m7ZhnNXbvM3sxoN0AAMCiHxfhlf+8YjV227htuCP+DgDA8r3LMeW7KVZjvxn9DUZ2HQkAWH14NSZ8NcFq7PpH1+OxHo8BADYc34DHP3/cYpwSSryG1wAAQryGefP8gDtfB4b9udG4Cf+Xh1UhHa3W4e30tzGh2wS8/PLL+Mc//nFrQQCAIQAGAKj53EXGsAzMvWMuAOB40XH0XNGzZsG/ABwDMBTAb2pmTU+bjkV3LQIAnCs5h67vdpXq9ibeNEuOJyVPwvKRNYObXSm/gsjFkVbrOy5pHFY/uBpAzck9LDPMarmPJj6KDY9tkP4vm/e/qwT+A2A3gBAAjwFoz3OECc8Rt3jTOQIAVj2wCuP7jAcAbPrvJvzun7+zGrvsnmWYnFJz1cf2c9tx598tX6EC1JwjZgyaAQDYd3EfUv6WYjXW6jnCgrrniIR3E6zGNuccEZwZbDXW6jnCAp4javAccQvPETV4jqjBcwSAmwAWgKOXE5H3mz3biDEvngS2vQHs+JPFmB07hmLePD/Mnw+MfdHyiRkAIID93+5H9+7d8Y9//KOm16APgAgAlQB+ALAMwHHrRcAI4Oz//rae23uW2wGEAdAC+BjAj4Aw8rdQIiIiIl/Bnm4nMPV0X7pyyeIvK7zkw3IsLwvzjsvCdDodlv5lKQBg1qxZkPvJMW++EX+ep8KfMnSYOVsvxT1y/2Fs23YnMjKqMXeuX4OXes15bQ7eWfwOAKB3795YsXIFkvonwWAw4NO1n+LP8/+Mi79eBAC88NILWLBwAQLVNe9LozDiUtElTJwwEZu/24zg4GDkX86HSlVzKVjdy8K05VppG158+UUpDmjeZWEl5SVWy23ouNdqtXhh0gv44vMvAAB3jbgLa/6xBpGRkfVi6+I5ommxPEfU4KWj9sfy0tEaPEc0LZbniBo8R9gfy3PELbacI0pLSxETEeMxPd1Mup3A0x7GTuRIOp0OmZmZAGqSblNiabpne/584PXXgblzqzFvnh/uvHMbNm8eZJaA1rV48WLMmDHjf+W8gVdffRVKpdIsprKyEm+88Ya07t/+9rdYt24dWrdujYMHD+LRRx9FXl4e1Go1Vq9eLT0H255taK7mlCuEwEcffYQXX3wRlZWViI6Oxtq1azF8+HCH1I2IiIiopfC0fIwDqTlTeTmgqD+QGhQKwN/fPM4auRwICGhabEUFYO03FZkMCAxsWmxlJWC0/usTgoKaFnvzJmCw/quzXbGBgTX1BoCqKqChkaHtiQ0IqNnPAKDTAQ09FsqeWH//W+8Ve2L1+pp4a9RqwM/P/tjq6pp9YYlOZ5YQX8jLw4fvv4/zFy6gY0IB5swpwty5STAa52D48Mv4zW+yAQyqCTYYatqullVr1kgJ98I338Qrs2dbjA0A8NZrr6FfYiLG/fGP2LJlC1JSUvDUU09h/vz5qKqqQseEBHy+di36JiWZHytKJWBKgI1GoLwcStO2lpeb728/v5p9AdQcExXWf3WuF9tQuY0c9zIAz4wejbSkJIwaPx7Hc3Px29/+FrNnz8Yrkydb/8DgOaJpsTxH1HDGOQKoOd5M5wl7Yi2cI8zUPpbtiTUaa95rjohtzjmioVh7vhvwe4TlWJ4j7I/lOaLmb54jmhbryeeIhrbDHQQ5nFarFQCEtuatVX+6917zFwQGWo4DhBg2zDw2PNx6bHKyeWxcnPXYxETz2MRE67FxceaxycnWY8PDzWOHDbMeGxhoHnvvvdZj675VH3204diyslux48Y1HFtUdCt20qSGY/PybsVOn95wbE7OrdiMjIZj9+69Ffv22w3Hbtt2K3bZsoZjv/nmVuyqVQ3Hrl9/K3b9+oZjV60SQgjx1VdfibDgYAHAwqQQzwLi1z//+Va527aZlbMREPL/xc8AarbdZO9eq+s/Aoj40FCz9d0HiGvW6jt9+q1y8/Ia3rZJk27FFhU1HDtu3K3YsrKGYx991Pw93EBs+YgR4tlnnzXbvghApAHiD4CYC4g1gMgGxPVBg8zL5TmiBs8RNdx8jhBC1Kyjodhly27F1jlH1JtsPEcIoGafmuTkNBzrZecIfo/438RzxK2J54iaieeImonnCKFFzfcnrVYrPAF7uonIbrrqasycNg3/7//9PwBAf9QMvL0X9+MLPA0Z3ofAt/gAwD/mzcPoM2cwefJk9P/f6/cBWAHgE9SMffYUgIV2rL83gH0TJ2L0oUPYvn073pgyBa8sWeIzI0MGKhR4//33kZ6ejunTpyM/Px9XAFwBkF03+McfkdCxI/r06YO+ffuir06HvgBiUNN77im0AEoBGA0GGPPyYDQaa6aKChgBs6kVgA7gpVhERETkG1rEPd3Lly/HokWLUFBQgKSkJLz33ntISbH+CIENGzbg9ddfx7lz59ClSxcsXLgQ9957r83rk+4huGR5IDVe8mEllpeF2R/rhsvC8s6dwxMTJmDvvppHRkx98UUsnDsXC98Jwpw/qzD/Tzq8PlOPZybtxUf/mIOa52HVSE1JQbVejwOHDknzHnvoIXy6ahX8/PzsvixMKJWorKxEoL+/T18WVnr5Ms7k5eHM2bM4ffYszuTl4fSZMzh99ix+vXjRYhER4eHom5SEIQMHYvgdd2BA//7wU6mcfo4wGAw4dewYjh49iiPHjuHo8eM4cuwYLvz6q/XttcDPzw8J8fHo0rUrOnfujC5duqBzhw7okpCAuA4dat4vdfEcUT+Wl47W/M1LR5sWy+8RNX/zHGF/LM8RNX/zHNG0WAecI0pLSxESw4HUXOazzz7D2LFjsXLlSqSmpmLJkiXYsGEDTp48KY0MXNtPP/2EoUOHIjMzE7/73e/w6aefYuHChTh48CB69rT+/L7aPO3GfSJH2bhxIyZMmACtVougoCCsWbMGDz30UL1B1ACguroaTzxxHP/6Vzl69VqGX375HPr/fQlQqVR4/PHH8fzzzyMtLU0a9dVVqqursX79egDA448/bjmB86ByG3L9+nUcPnwYhw4dwqFDh3D48GGcOHEChjpfJlu1aoWhQ4di+PDhGD58OHr27Am5vOnXBgghcPnyZZw4cQLHjx/HkSNHcPToUeTk5OCmlS85arUacrm8wUkmk6GkpMRqGcD/EvKEBHTu3BmdOnVCx44dkZCQIP3bqlWrJm8XEREReT9Py8d8PulOTU3FgAEDsGzZMgCA0WhEbGwsXnjhBcycObNe/KhRo1BeXo5vvvlGmnf77bejT58+WLlypU3r9LRG9lZCCFy5cgVnzpyBn58fkpKSHDbKtLcxHabWklMhBCoqKnD16lVcvXoVFRUVCAkJQVhYGCIjIy2OBH706FEcPnwYZ86cwdmzZ1FSUoIOHTogISEB8fHxSEhIQEJCArRaLXbt2oUtW7bgX//6FwCgffv2ePTRR7Fw4UIsXKiql3ADt0by3rFjKLZtuxOvvFKE6OhPIJfL8fvf/x4RERHO2Vk28MTRyx2psrISOTk52LdvH7Zu3Ypt27bh2rVrZjERERG488470blzZ4SHh1ucgoODYTQace7cOZw4cQInTpxAbm4uTpw4gV9++QVardbi+gMDA9GrVy/07t0bSUlJ6N27N3r16oXQ0FCb6m80GnHx4kWcPn0ap06dMvv39OnTDSbkABAeHm6WhJv+jYuLQ1BQENRqNdRqNVQqFZRKpd0/+hiNRty8eROVlZUWp6qqKlRXV9ebDAaDxfmmyWg0QqlUQqVSSfWr+3dDy+rGNWXbnMVoNEKn0zVpqq6uhhACRqPR7F9L82yNkclkUCgU8PPzszg5elnt+aYfl1oKo9EIg8Fg92Q6ZkxT7Tat27aOnGwpE6j5PG7sB8TGfmR0dxy1XI2dQ+1dZukYaej4cdRrGlpWXl6Ou+++22PyMZ++ZU6n0+HAgQOYNWuWNE8ulyM9PR3Z2fXujAQAZGdnY9q0aWbzRowYgS+//NLqeqqqqlBV67KY0tJSm+q3f/9+zJ8/36ZYb2c6MPV6PXQ6HWQyGaqqqlBeXg6VSmX2xUShUKCkpASnT58225cajQZdunSRYkxT7dfJ5fIGP0j1ej30ej2MRqP0JVWhUECv16Oqqgo6nQ4qlQqBgTXP3KyoqEBFRQUqKyuhUqkQHBwMtVoNnU4ntXt1dTUCAgKkZabXmCaFQgGNRoNWrVpBpVKhvLwcN27cQFlZGcrKynDz5k0EBwcjNDQUoaGhCA4OhlKphE6nk5Loq1evQqfTISQkBKGhoQgLC0NQUBBKSkqk5VVWLs2Sy+Vo164dIiIioNPpUFlZifPnz6O6ocvfGvDyyy8jMDAQCoUCb70lx7x59RPu2oYN24mhQ4dg3rxIzJ//f1bjyHECAgIwYMAADBgwAJMmTYLRaMSRI0eQlZWFrKws7Ny5E1euXJF65a1RqVTSsWqJXC5Hp06dkJiYaJZgd+rUqVm96HK5HLGxsYiNjcWdd95ptsxoNOLSpUtSIn727FmcPXsWeXl5OHv2LK5evYri4mIUFxdj3/9ugWiMKVmtnYyb/q6urraYVHsLexJ3Pz8/6V57U5JT+19L8ywtMxgM9RLnuldetHSOSPAb+rxz1tSU5NnH+3a8mi0Juqt+FKj7I4Cl901T57njdQ0lp45KdJuTIJPr+XTSXVxcDIPBgKioKLP5UVFR+OWXXyy+pqCgwGJ8QUGB1fVkZmZi3rx5dtevqKgI//73v+1+XUsik8nQvn17qRf3wIED7q6SU1RUVKCoqKjRuOvXr+P69evIy8uzuFypVKJNmzYICgqCVqvF9evXYTAYcOHCBVy4cMEsNiIiAv369UO3bt3QqVMnhIaGIj8/H3l5ecjLy8O5c+eQn58PlUqF22+/HUOGDMHIkSPRp0+fWj3Yfg0m3CazZxuhUNRcgg40Hk+OJZfLawZZ69sX06dPh06nw969e7Fr1y4UFBTgypUrUqJaXFyMK1eu4ObNm9D97949tVqNbt264bbbbsNtt92GxMRE3HbbbejSpQvUpnvRXLgt7du3R/v27XHHHXfUW15aWiq9h+sm5BcuXEBlZSWMde79Mv2AduPGDbvr4+fnh4CAAAQGBiIgIAABAQFQq9VQKpU2JU61J5lMhurqaukHQNOPe5b+trSsqqqq3pcp0/KysjK7t82Z/Pz8zH4EsDaZ9qPpi7qlf5syr3YCae3Kg+Yua+iHBlMsod4P6ZZ+UDf9qG5qx7rt6ajJnvJMSUxjkyPjGouxV+3jgMhejR0vAOxe1pTXWFtmNBpx9uxZN+wZy3w66XaVWbNmmfWOl5aWIjY2ttHX9erVCx9++KHd6/PWS4JMH5ymL+lKpRLBwcHS5YO1v6gEBgaiS5cu6NixI/z9/WE0GnHw4EEUFRU1evmZtYNRLpdDqVRCqVRCLpebXbpY+0ueTqdDRUUFhBAICgpCYGAg/P39odPpUF5ejqqqKqhUKvj7+0s95ZWVlSgrK0NVVZX0BTwoKAgBAQEwGo0oLS3FjRs3UFVVheDgYGlq1aoV1Go1ysrKUFJSAq1Wixs3bsBgMEChUKBNmzbSpFarpUS6pKQE5eXlCA0NRZs2bdC6dWu0adMGwcHBZu8Po9GIwsJC5Ofno7i4WKpzXFwc2rdv3+h7yfSlsPa9yaZEzGiUISOjGq+/bttpxJRo87Pd/VQqFQYPHozBgwdbXC5Eze0Kph8u4+LioDANuuPhNBoNkpKSkJSUZDXGYDBISWrthLX236bJlFRbm1xx3749TL3MTUnc9Xo95HK5lOBY+rehZbVjrPWwmxLp5lwJ4S1MCY0tyXpTEnyDweCUZLKhyVqC3NBUN3mum0iT49Tt1XTlDwKOiLP0ncTR85xRprV5tvwY6I3Lan+39mSm2309hWd9W3Cw8PBwKBQKFBYWms0vLCxEdHS0xddER0fbFQ9AugzRXrGxsXjmmWfsfl1LJJfLkZyc7O5quF1MTIxd8XK5HG3btkXbtm2btL6GEoo779yBWbMG2lUee7i9g0wmQ1BQEIJqjw7qQxQKBQIDAxFYe6RUH6FQKKQfBMi9ZDKZdBUDkSuYfhghIs/j0z8xqlQq9O/fH1lZWdI8o9GIrKwspKWlWXxNWlqaWTwAbNmyxWo8ERERERERkTU+//PrtGnTMG7cOCQnJyMlJQVLlixBeXk5JkyYAAAYO3Ys2rVrJ404/NJLL2HYsGH4y1/+gpEjR2LdunXYv38/PvjgA5vXabqnztYB1Yi8iU6nk0aPLi0ttTpCt61x7uCsunnyNhMRERG1FKY8zGMGjhMtwHvvvSc6dOggVCqVSElJET///LO0bNiwYWLcuHFm8evXrxddu3YVKpVK9OjRQ2zatMmu9Z05c0YA4MSJEydOnDhx4sSJEydObprOnDnjiHSy2Xz+Od3uUFJSgrCwMOTn53vUDfxkmWnguwsXLnjEc/yocWwz78L28j5sM+/C9vI+bDPvwvbyPlqtFh06dMD169cRGhrq7ur4/uXl7mAajTMkJIQHphfRaDRsLy/DNvMubC/vwzbzLmwv78M28y5sL+/jKU9J8IxaEBEREREREfkgJt1ERERERERETsKk2wnUajUyMjKa9Oxucj22l/dhm3kXtpf3YZt5F7aX92GbeRe2l/fxtDbjQGpERERERERETsKebiIiIiIiIiInYdJNRERERERE5CRMuomIiIiIiIichEk3ERERERERkZMw6Xaw5cuXIz4+Hv7+/khNTcXevXvdXaUWYe7cuZDJZGZT9+7dpeU3b97E5MmT0aZNGwQHB+ORRx5BYWGhWRn5+fkYOXIkAgMDERkZiRkzZqC6utosZvv27ejXrx/UajU6d+6M1atXu2LzvN7OnTtx3333ISYmBjKZDF9++aXZciEE5syZg7Zt2yIgIADp6ek4deqUWcy1a9cwZswYaDQahIaG4umnn0ZZWZlZzNGjRzFkyBD4+/sjNjYWb7/9dr26bNiwAd27d4e/vz969eqFb7/91uHb6wsaa7Px48fXO+buvvtusxi2metkZmZiwIABaNWqFSIjI/Hggw/i5MmTZjGuPA/ys7BhtrTXHXfcUe8Ye+6558xi2F6us2LFCvTu3RsajQYajQZpaWn47rvvpOU8vjxLY+3F48vzLViwADKZDFOnTpXmefVxJshh1q1bJ1Qqlfj444/F8ePHxcSJE0VoaKgoLCx0d9V8XkZGhujRo4e4fPmyNF25ckVa/txzz4nY2FiRlZUl9u/fL26//XYxcOBAaXl1dbXo2bOnSE9PF4cOHRLffvutCA8PF7NmzZJizp49KwIDA8W0adNEbm6ueO+994RCoRCbN2926bZ6o2+//Va89tpr4osvvhAAxMaNG82WL1iwQISEhIgvv/xSHDlyRNx///0iISFBVFZWSjF33323SEpKEj///LPYtWuX6Ny5sxg9erS0XKvViqioKDFmzBiRk5Mj/vnPf4qAgADx/vvvSzE//vijUCgU4u233xa5ubniT3/6k1AqleLYsWNO3wfeprE2GzdunLj77rvNjrlr166ZxbDNXGfEiBFi1apVIicnRxw+fFjce++9okOHDqKsrEyKcdV5kJ+FjbOlvYYNGyYmTpxodoxptVppOdvLtb7++muxadMm8d///lecPHlSzJ49WyiVSpGTkyOE4PHlaRprLx5fnm3v3r0iPj5e9O7dW7z00kvSfG8+zph0O1BKSoqYPHmy9H+DwSBiYmJEZmamG2vVMmRkZIikpCSLy0pKSoRSqRQbNmyQ5p04cUIAENnZ2UKImgRDLpeLgoICKWbFihVCo9GIqqoqIYQQr7zyiujRo4dZ2aNGjRIjRoxw8Nb4troJnNFoFNHR0WLRokXSvJKSEqFWq8U///lPIYQQubm5AoDYt2+fFPPdd98JmUwmLl68KIQQ4q9//asICwuT2ksIIV599VXRrVs36f+PP/64GDlypFl9UlNTxR//+EeHbqOvsZZ0P/DAA1ZfwzZzr6KiIgFA7NixQwjh2vMgPwvtV7e9hKhJCmp/2ayL7eV+YWFh4m9/+xuPLy9hai8heHx5shs3boguXbqILVu2mLWTtx9nvLzcQXQ6HQ4cOID09HRpnlwuR3p6OrKzs91Ys5bj1KlTiImJQceOHTFmzBjk5+cDAA4cOAC9Xm/WNt27d0eHDh2ktsnOzkavXr0QFRUlxYwYMQKlpaU4fvy4FFO7DFMM27d58vLyUFBQYLZvQ0JCkJqaatY+oaGhSE5OlmLS09Mhl8uxZ88eKWbo0KFQqVRSzIgRI3Dy5Elcv35dimEbOs727dsRGRmJbt264fnnn8fVq1elZWwz99JqtQCA1q1bA3DdeZCfhU1Tt71MPvnkE4SHh6Nnz56YNWsWKioqpGVsL/cxGAxYt24dysvLkZaWxuPLw9VtLxMeX55p8uTJGDlyZL196+3HmV+TX0lmiouLYTAYzBoZAKKiovDLL7+4qVYtR2pqKlavXo1u3brh8uXLmDdvHoYMGYKcnBwUFBRApVIhNDTU7DVRUVEoKCgAABQUFFhsO9OyhmJKS0tRWVmJgIAAJ22dbzPtX0v7tva+j4yMNFvu5+eH1q1bm8UkJCTUK8O0LCwszGobmsog29199914+OGHkZCQgDNnzmD27Nm45557kJ2dDYVCwTZzI6PRiKlTp2LQoEHo2bMnALjsPHj9+nV+FtrJUnsBwO9//3vExcUhJiYGR48exauvvoqTJ0/iiy++AMD2codjx44hLS0NN2/eRHBwMDZu3IjExEQcPnyYx5cHstZeAI8vT7Vu3TocPHgQ+/btq7fM2z/HmHSTT7jnnnukv3v37o3U1FTExcVh/fr1TIaJnOCJJ56Q/u7Vqxd69+6NTp06Yfv27Rg+fLgba0aTJ09GTk4Odu/e7e6qkA2stdezzz4r/d2rVy+0bdsWw4cPx5kzZ9CpUydXV5MAdOvWDYcPH4ZWq8Xnn3+OcePGYceOHe6uFllhrb0SExN5fHmgCxcu4KWXXsKWLVvg7+/v7uo4HC8vd5Dw8HAoFIp6I+gVFhYiOjraTbVquUJDQ9G1a1ecPn0a0dHR0Ol0KCkpMYup3TbR0dEW2860rKEYjUbDxL4ZTPu3oWMnOjoaRUVFZsurq6tx7do1h7Qhj9Hm69ixI8LDw3H69GkAbDN3mTJlCr755hts27YN7du3l+a76jzIz0L7WGsvS1JTUwHA7Bhje7mWSqVC586d0b9/f2RmZiIpKQnvvvsujy8PZa29LOHx5X4HDhxAUVER+vXrBz8/P/j5+WHHjh1YunQp/Pz8EBUV5dXHGZNuB1GpVOjfvz+ysrKkeUajEVlZWWb3j5BrlJWV4cyZM2jbti369+8PpVJp1jYnT55Efn6+1DZpaWk4duyYWZKwZcsWaDQa6VKktLQ0szJMMWzf5klISEB0dLTZvi0tLcWePXvM2qekpAQHDhyQYrZu3Qqj0Sh9UKalpWHnzp3Q6/VSzJYtW9CtWzeEhYVJMWxD5/j1119x9epVtG3bFgDbzNWEEJgyZQo2btyIrVu31rts31XnQX4W2qax9rLk8OHDAGB2jLG93MtoNKKqqorHl5cwtZclPL7cb/jw4Th27BgOHz4sTcnJyRgzZoz0t1cfZ00ego3qWbdunVCr1WL16tUiNzdXPPvssyI0NNRsBD1yjpdfflls375d5OXliR9//FGkp6eL8PBwUVRUJISoecRAhw4dxNatW8X+/ftFWlqaSEtLk15vesTAXXfdJQ4fPiw2b94sIiIiLD5iYMaMGeLEiRNi+fLlfGSYjW7cuCEOHTokDh06JACId955Rxw6dEicP39eCFHzyLDQ0FDx1VdfiaNHj4oHHnjA4iPD+vbtK/bs2SN2794tunTpYvb4qZKSEhEVFSWefPJJkZOTI9atWycCAwPrPX7Kz89PLF68WJw4cUJkZGTw8VNWNNRmN27cENOnTxfZ2dkiLy9P/Oc//xH9+vUTXbp0ETdv3pTKYJu5zvPPPy9CQkLE9u3bzR6BU1FRIcW46jzIz8LGNdZep0+fFvPnzxf79+8XeXl54quvvhIdO3YUQ4cOlcpge7nWzJkzxY4dO0ReXp44evSomDlzppDJZOKHH34QQvD48jQNtRePL+9Rd5R5bz7OmHQ72HvvvSc6dOggVCqVSElJET///LO7q9QijBo1SrRt21aoVCrRrl07MWrUKHH69GlpeWVlpZg0aZIICwsTgYGB4qGHHhKXL182K+PcuXPinnvuEQEBASI8PFy8/PLLQq/Xm8Vs27ZN9OnTR6hUKtGxY0exatUqV2ye19u2bZsAUG8aN26cEKLmsWGvv/66iIqKEmq1WgwfPlycPHnSrIyrV6+K0aNHi+DgYKHRaMSECRPEjRs3zGKOHDkiBg8eLNRqtWjXrp1YsGBBvbqsX79edO3aVahUKtGjRw+xadMmp223N2uozSoqKsRdd90lIiIihFKpFHFxcWLixIn1PozYZq5jqa0AmJ2jXHke5Gdhwxprr/z8fDF06FDRunVroVarRefOncWMGTPMniMsBNvLlZ566ikRFxcnVCqViIiIEMOHD5cSbiF4fHmahtqLx5f3qJt0e/NxJhNCiKb3kxMRERERERGRNbynm4iIiIiIiMhJmHQTEREREREROQmTbiIiIiIiIiInYdJNRERERERE5CRMuomIiIiIiIichEk3ERERERERkZMw6SYiIiIiIiJyEibdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24iIiIiIiIiJ2HSTUREREREROQkTLqJiIiIiIiInIRJNxEREREREZGTMOkmIiIiIiIichIm3UREREREREROwqSbiIiIiIiIyEmYdBMREZFDjR8/HvHx8Xa/Lj4+HuPHj3d4fYiIiNyJSTcREZGTrF69GjKZzOr0888/u7uKDaqoqMDcuXOxfft2t6w/NzcXc+fOxblz59yyfiIiIkfwc3cFiIiIfN38+fORkJBQb37nzp3dUBvbVVRUYN68eQCAO+64w+bXffjhhzAajXav7+TJk5DLb/UH5ObmYt68ebjjjjua1HNORETkCZh0ExEROdk999yD5ORkd1fD6crLyxEUFASlUtmk16vVagfXiIiIyP14eTkREZGbGY1GvPvuu+jVqxf8/f0RERGBu+++G/v37zeLW7t2LVJSUhAYGIiwsDAMHToUP/zwg1nMd999hyFDhiAoKAitWrXCyJEjcfz4cbOY8ePHIzg4GBcvXsSDDz6I4OBgREREYPr06TAYDACAc+fOISIiAgAwb9486ZL4uXPnmpVx5swZ3HvvvWjVqhXGjBkjLavbM23LNta+p3v16tV47LHHAAB33nmntP7t27dj3LhxCA8Ph16vr7cv77rrLnTr1s2OvU9ERORcTLqJiIicTKvVori42Gy6evWqtPzpp5/G1KlTERsbi4ULF2LmzJnw9/c3u+d73rx5ePLJJ6FUKjF//nzMmzcPsbGx2Lp1qxSzZs0ajBw5EsHBwVi4cCFef/115ObmYvDgwfXuizYYDBgxYgTatGmDxYsXY9iwYfjLX/6CDz74AAAQERGBFStWAAAeeughrFmzBmvWrMHDDz8slVFdXY0RI0YgMjISixcvxiOPPGJ1H9iyjbUNHToUL774IgBg9uzZ0vpvu+02PPnkk7h69Sq+//57s9cUFBRg69at+MMf/tBQcxAREbmWICIiIqdYtWqVAGBxUqvVQgghtm7dKgCIF198sd7rjUajEEKIU6dOCblcLh566CFhMBgsxty4cUOEhoaKiRMnmi0vKCgQISEhZvPHjRsnAIj58+ebxfbt21f0799f+v+VK1cEAJGRkVGvbqYyZs6caXFZXFyc9H9btlEIIeLi4sS4ceOk/2/YsEEAENu2bTN7jcFgEO3btxejRo0ym//OO+8ImUwmzp49W289RERE7sJ7uomIiJxs+fLl6Nq1q9k8hUIBAPjXv/4FmUyGjIyMeq+TyWQAgC+//BJGoxFz5swxG2isdsyWLVtQUlKC0aNHo7i42Gw9qamp2LZtW73yn3vuObP/DxkyBGvWrLFr255//vlGY2zZRnvI5XKMGTMGS5cuxY0bN9CqVSsAwCeffIKBAwdaHLSOiIjIXZh0ExEROVlKSorVgdTOnDmDmJgYtG7d2urrz5w5A7lcjsTERKsxp06dAgD85je/sbhco9GY/d90X3VtYWFhuH79utV11OXn54f27ds3GmfLNtpr7NixWLhwITZu3IixY8fi5MmTOHDgAFauXOmwdRARETkCk24iIiIfYHpE15o1axAdHV1vuZ+f+Ue+qae9OdRqdb2ed1dJTExE//79sXbtWowdOxZr166FSqXC448/7pb6EBERWcOkm4iIyI06deqE77//HteuXbPaE9ypUycYjUbk5uaiT58+VmMAIDIyEunp6Q6pW1Mu/bbElm1syvrHjh2LadOm4fLly/j0008xcuRIhIWFNbe6REREDsXRy4mIiNzokUcegRAC8+bNq7dMCAEAePDBByGXyzF//nypR7tuzIgRI6DRaPDWW29ZfJTWlStX7K5bYGAgAKCkpMTu19ZmyzZaEhQU1OD6R48eDZlMhpdeeglnz57lqOVEROSR2NNNRETkZN999x1++eWXevMHDhyIO++8E08++SSWLl2KU6dO4e6774bRaMSuXbtw5513YsqUKejcuTNee+01vPHGGxgyZAgefvhhqNVq7Nu3DzExMcjMzIRGo8GKFSvw5JNPol+/fnjiiScQERGB/Px8bNq0CYMGDcKyZcvsqndAQAASExPx2WefoWvXrmjdujV69uyJnj172lWOLdtoSZ8+faBQKLBw4UJotVqo1Wr85je/QWRkJABIz/resGEDQkNDMXLkSLvqRURE5ApMuomIiJxszpw5FuevWrUKHTt2xKpVq9C7d2989NFHmDFjBkJCQpCcnIyBAwdKsfPnz0dCQgLee+89vPbaawgMDETv3r3x5JNPSjG///3vERMTgwULFmDRokWoqqpCu3btMGTIEEyYMKFJdf/b3/6GF154Af/3f/8HnU6HjIwMu5Nu07Y2to11RUdHY+XKlcjMzMTTTz8Ng8GAbdu2SUk3UHOJ+TfffIPHH38carW6SdtIRETkTDLR0HVdRERERB7sq6++woMPPoidO3diyJAh7q4OERFRPUy6iYiIyGv97ne/w4kTJ3D69GmHDfxGRETkSLy8nIiIiLzOunXrcPToUWzatAnvvvsuE24iIvJY7OkmIiIiryOTyRAcHIxRo0Zh5cqV9Z5DTkRE5Cn4CUVEREReh30GRETkLficbiIiIiIiIiInYdJNRERERERE5CS8vNwJjEYjLl26hFatWnFgFyIiIiIiIhcSQuDGjRuIiYmBXO7+fmYm3U5w6dIlxMbGursaRERERERELdaFCxfQvn17d1eDSbcztGrVCkBNI2s0GjfXhoiIiIiIqOUoLS1FbGyslJe5G5NuJzBdUq7RaJh0ExERERERuYGn3OrLpJsA1H9DCiEgk8n4SBYiIiIiIqJmYNLdwpgS6cZ+9TEtt5SMExERERERkW2YdLcAdRPn5lxmwd5vIiIiIiIi2zHp9mENJdf2Js61y6r9NxNwIiIiIiIi65h0+yBryXZzEmTTa631mjP5JiIiIiIiqo9Jtw9xRrLdUFmWer+ZfBMREREREd3CpNsHuCLZbqh8TxmKn4iIiIiIyNMw6fZilpJdd/Q0106+2eNNRERERER0C5NuL+QpybalOtR91Jgn1IuIiIiIiMhdmHR7CXddQm6vus8A5yPGiIiIiIioJZO7uwK+LCQkxCHlWOvZ9tRktm7dal92TkRERERE1JKwp9vJ6iabpp7ghhJmRz5f253Y601ERERERC0dk24Xq3vPs628NVll4k1ERERERC0ZLy93Iq1WK11q3ZREszmv9SSWLjcnIiIiIiJqCdjT7ULenjw3F0c3JyIiIiKiloY93eRSdZNs9noTEREREZEvY9JNLsfRzYmIiIiIqKVg0k1uw15vIiIiIiLydUy6ya28eZA1b6orERERERG5BwdSI4/gaYOs2ZpQW4rj4HBERERERGTi9T3dy5cvR3x8PPz9/ZGamoq9e/dajf3www8xZMgQhIWFISwsDOnp6fXihRCYM2cO2rZti4CAAKSnp+PUqVPO3gyC9V5vV/Uom+4tb+76eI86ERERERGZeHXS/dlnn2HatGnIyMjAwYMHkZSUhBEjRqCoqMhi/Pbt2zF69Ghs27YN2dnZiI2NxV133YWLFy9KMW+//TaWLl2KlStXYs+ePQgKCsKIESNw8+ZNV21Wi2ct8XZ0Ils7ybalbHufmc7km4iIiIiIZMKLr4VNTU3FgAEDsGzZMgCA0WhEbGwsXnjhBcycObPR1xsMBoSFhWHZsmUYO3YshBCIiYnByy+/jOnTpwMAtFotoqKisHr1ajzxxBM21au0tBQhISHQarXQaDRN30BqMGltylvX1iS4qYeFo+tLRERERET28bR8zGt7unU6HQ4cOID09HRpnlwuR3p6OrKzs20qo6KiAnq9Hq1btwYA5OXloaCgwKzMkJAQpKam2lwmOVZDvct1e6nr9lxbmmxZV3OS44bKYK83EREREVHL47UDqRUXF8NgMCAqKspsflRUFH755Rebynj11VcRExMjJdkFBQVSGXXLNC2zpKqqClVVVdL/S0tLbVo/2c400FrtAddqszehdUWvs2kdtevmCYPEERERERGR63htT3dzLViwAOvWrcPGjRvh7+/frLIyMzMREhIiTbGxsQ6qJdVmSlRr9ybbmrzWfa0rWVon7/cmIiIiImoZvDbpDg8Ph0KhQGFhodn8wsJCREdHN/jaxYsXY8GCBfjhhx/Qu3dvab7pdfaWOWvWLGi1Wmm6cOGCvZtDzVA3Cbc0meLcXc+6mHgTEREREfk2r026VSoV+vfvj6ysLGme0WhEVlYW0tLSrL7u7bffxhtvvIHNmzcjOTnZbFlCQgKio6PNyiwtLcWePXsaLFOtVkOj0ZhNRJZY6/UmIiIiIiLf5LX3dAPAtGnTMG7cOCQnJyMlJQVLlixBeXk5JkyYAAAYO3Ys2rVrh8zMTADAwoULMWfOHHz66aeIj4+X7tMODg5GcHAwZDIZpk6dij//+c/o0qULEhIS8PrrryMmJgYPPviguzaTfFDde9NN96sTEREREZFv8eqke9SoUbhy5QrmzJmDgoIC9OnTB5s3b5YGQsvPz4dcfqszf8WKFdDpdHj00UfNysnIyMDcuXMBAK+88grKy8vx7LPPoqSkBIMHD8bmzZubfd83UV1MvImIiIiIfJ9XP6fbU3nac+HI89VOvnlIEhERERE1naflY157TzeRL6mdaHNkcyIiIiIi38Gkm8hDsIebiIiIiMj3MOkm8iDs8SYiIiIi8i1ePZAakS/iAGtE5Ci2/HDH8wsREZFzMekm8kBMvInIHs25KsbSa3m+ISIichxeXk7koep+6eWl5kRUm+kWFFvPDaZzihCi0aSat7cQERE5Dnu6iTwYe7yJqK6GkuHGzg+1l1uKrVs2H2dIRETUfEy6iTwcE28iAlxzGXhDV9iY/ub5h4iIyD5Muom8gOlLrulLLxNvohqmY8HeS6G94fhpTo+2o9Q999T+2xv2IRERkSdg0k3kRWonF0y8qaVq6BLoppZh4gnHlCfWjck3ERFR0zHpJvIydRNv0zwiX2ZPYl37GLG3F7xurKuOLU/o1baFteTbk+pIRETkaVyedFdVVeHgwYMoKirCoEGDEB4e7uoqEHk93udNLUFznjHd2IBhtq6jbvLu6OPME3u1bWHplpfa84mIiOgWlz4ybOnSpWjbti0GDx6Mhx9+GEePHgUAFBcXIzw8HB9//LErq0Pk1fhIMfJVDT2uyvS4K1see2WLuuVZK7N2cll3slVjr3XkdrlK3fryUWNERET1uSzpXrVqFaZOnYq7774bH330kdmHdHh4OH7zm99g3bp1rqoOkU/wxMTbUmLR2EQE2JZsu4K9yW9z3ufemGhbwuSbiMj1rP0gTJ7HZZeX/+Uvf8EDDzyATz/9FFevXq23vH///li6dKmrqkPkM6yNbO6KS84ddWLnpaktmydfYm3Ls6wdVa4v4K0vRETOY+nzx9Z5PBe7l8t6uk+fPo177rnH6vLWrVtbTMaJyDZ1e5lq/+sozv4llb/UtizW2tnTe34tXZJu7+TLrPV685gmIrKfo86hPBe7l8t6ukNDQ1FcXGx1eW5uLqKjo11VHSKfZGmk5tr/b8qX/aaenG1Zlz2DWJFv4a/wvo+PGSMisl/tKxbrauqVjI7+bkj2c1lP97333osPPvgAJSUl9ZYdP34cH374Ie6//35XVYfIZzU2GJQz7rduak+era/hr7K+o6EBxMg3WWpfT+hxaeheSJ5ziMjVGjoH1T6PNuXzsqHvW+4+F7cUMuGibzqXLl1CamoqhBC477778MEHH+APf/gDDAYD/vWvf6Ft27bYu3evTzxCrLS0FCEhIdBqtdBoNO6uDrVwDd0v25STrCtOGQ3Vi8mZ92LvNpm4+hh31H34vEediJzBXZ+Pvvy57Gn5mMuSbgAoKirC7Nmz8cUXX0g93q1atcIjjzyCBQsWIDIy0lVVcSpPa2QiE09Nsq3x5AG2nMnb2qkxvvyhTs3T2Hu9dqJbO+G19Lere2r4Hiai5vKUz0dPqYcjeVo+5tKku7YrV67AaDQiIiICcrlLHxfudJ7WyETWeEuvjS9+GNTl6ITB3b1yLfUHE2oad1za6IhxJ+wpi4jIxFO/11i6rN1beVo+5rKB1OqKiIhw16qJ6H+85WTqywMyOSvZsHRfmDtvDfD2diLncuSj2Rz5g5Ot9fKWHzCJyL08Pam19Bjausuoaby+i3n58uWIj4+Hv78/UlNTsXfvXquxx48fxyOPPIL4+HjIZDIsWbKkXszcuXPrDarSvXt3J24BEdnKWc9MdjVbB5Fy9OOnnPVItobK5CBp1FTNeRybM99zjQ1G5I3nJCJyrrrnBk//bOSAa47n1Un3Z599hmnTpiEjIwMHDx5EUlISRowYgaKiIovxFRUV6NixIxYsWNDg48l69OiBy5cvS9Pu3budtQlEZCdrHwTeoLEPrKYm001Nxi2N2GzrvrQlwfDkLxREjmDtWPOWcxIROZe3Jdt1Mfl2HK9Out955x1MnDgREyZMQGJiIlauXInAwEB8/PHHFuMHDBiARYsW4YknnoBarbZarp+fH6Kjo6XJF0ZUJ/I13vQh0FDdmpJk28qeJLzupftNeZRc7V5Gb/pSQdRc1hJvTz0nEZFzWXs8prfyhuS7bgdCSEiIm2tkzmuTbp1OhwMHDiA9PV2aJ5fLkZ6ejuzs7GaVferUKcTExKBjx44YM2YM8vPzm1tdInICT+9hsiXZdiVnJfiuuqyXyJOx15vIMWz54ddTb+ewlmz7ymdjQz8wuqMtLF2x56m8NukuLi6GwWBAVFSU2fyoqCgUFBQ0udzU1FSsXr0amzdvxooVK5CXl4chQ4bgxo0bVl9TVVWF0tJSs4mIXMNTf331pGS7oXo0NRF3Zg89kTfz5ltgiNyhuUm0uxNxa+v11c/IhrbLme1gbztrtVqHrr+53DZ6uae65557pL979+6N1NRUxMXFYf369Xj66actviYzMxPz5s1zVRWJyALTiMW1uWNEYW8evdsb6kjkLayNAszjjFo6VyTFrri029rgoS2FLT8u2jv6uel7W1PeI3XL97ROUK/t6Q4PD4dCoUBhYaHZ/MLCwgYHSbNXaGgounbtitOnT1uNmTVrFrRarTRduHDBYesnItu5a0Thhi5r8tVfuonINuz1JqrhyKd22PvEgub2hjf2en7WN74PbL1VwJa2ae7Veu7gtUm3SqVC//79kZWVJc0zGo3IyspCWlqaw9ZTVlaGM2fOoG3btlZj1Go1NBqN2URE7tPQvZWO/MLb0IeEt3wIEJHz1T0fMPGmlsSWJ1005zOz7iCe9gwg2pz7xr0p4XMlRyfE3phgW+LVl5dPmzYN48aNQ3JyMlJSUrBkyRKUl5djwoQJAICxY8eiXbt2yMzMBFAz+Fpubq7098WLF3H48GEEBwejc+fOAIDp06fjvvvuQ1xcHC5duoSMjAwoFAqMHj3aPRtJRE1m7RIlR1x27s2XkRORe9Q+J/Fyc/JltvRou4IjBzfksdp03HdennSPGjUKV65cwZw5c1BQUIA+ffpg8+bN0uBq+fn5kMtvdeZfunQJffv2lf6/ePFiLF68GMOGDcP27dsBAL/++itGjx6Nq1evIiIiAoMHD8bPP/+MiIgIl24bETlG3fsqTey9z8hSGZbWQ0TUkLo/Brpj7AkiZ/L0H6U9pR7UssgE33kOV1paipCQEGi1Wl5qTuRBnHVJJ0+jRGSvlj4IE/kevqfJk3haPubVPd1ERPZw5D2V/CJBRM3hKU9cIHIEV4wWTuTNmHQTUYvUlAScXyKIyJEs3f7CxJu8DRNuosYx6SaiFo9fEIjInXifN3kjJttEtvPaR4YRERER+QpLz/Pmo8XIUzHhJrIPk24iIiIiD2DpGbRMvMmTWPoxiAk3UeN4eTkRERGRB7F0ublpPpE7cGRyouZh0k1ERETkYawNslZ7GZGzMdkmcgxeXk5ERETkoSwlOLzfm1yBCTeR47Cnm4iIiMiDWer1rv1/JkLkSEy2iRyPSTcRERGRF2gs+a4dQ2QvJttEzsOkm4iIiMiLWEu+686zJ2GyNCJ1cy5hZ7LmPay1M9uQyHGYdBMRERF5oYaS74bm21Juc+8Z52OlPF9Dbcz2InIsJt1EREREXqyx5NtezhikjZfAe4bG2pZtQ+QcTLqJiIiIfIC1kc4dVZatGltnS0/AZTKZ2XbXHhDPtMwRVwrY2vYtsQ2IXI1JNxEREZGPckdCVXedDSV/vjwCuy3bbWleY/fqO4ov7nMiT8Wkm4iIiIicxlKvbl11e3+9kTc8O93b9zGRt2LSTUREREQuYevI67VjPZktibYjRoJvbNCzupfs+8KPGES+hEk3EREREbmUrb3fdWPdrSnJsyMS4MZeX3e5J+0zImLSTURERERuZM+jz9yVTNrao01EZAmTbiIiIiJyO1sefebK3m8m2kTkKEy6iYiIiMhj2DL6ubOSbybaROQMTLqJiIiIyGPZOvhaU5NhPs+aiJxN7u4KNNfy5csRHx8Pf39/pKamYu/evVZjjx8/jkceeQTx8fGQyWRYsmRJs8skIiIiIucTQjSY+MpkMotTQ8saS7hN62TCTUTN4dVJ92effYZp06YhIyMDBw8eRFJSEkaMGIGioiKL8RUVFejYsSMWLFiA6Ohoh5RJRERERK5jbxJs74jjTLSJyNFkwovPKKmpqRgwYACWLVsGADAajYiNjcULL7yAmTNnNvja+Ph4TJ06FVOnTnVYmSalpaUICQmBVquFRqOxf8OIiIiIyC7NfRY2EfkOT8vHvLanW6fT4cCBA0hPT5fmyeVypKenIzs726VlVlVVobS01GwiIiIiItep3UPdUG+1LTFERI7ktUl3cXExDAYDoqKizOZHRUWhoKDApWVmZmYiJCREmmJjY5u0fiIiIiJyLCbYRORuXpt0e5JZs2ZBq9VK04ULF9xdJSIiIiIiIvIAXvvIsPDwcCgUChQWFprNLywstDpImrPKVKvVUKvVTVonERERERER+S6vTbpVKhX69++PrKwsPPjggwBqBj3LysrClClT3Fqm6dIl3ttNRERERETkWqY8zFNuKfHapBsApk2bhnHjxiE5ORkpKSlYsmQJysvLMWHCBADA2LFj0a5dO2RmZgKoGSgtNzdX+vvixYs4fPgwgoOD0blzZ5vKtMXVq1cBgPd2ExERERERucnVq1cREhLi7mp4d9I9atQoXLlyBXPmzEFBQQH69OmDzZs3SwOh5efnQy6/ddv6pUuX0LdvX+n/ixcvxuLFizFs2DBs377dpjJt0bp1a2n9zWnkAQMGYN++fU1+vSPL8ZQySktLERsbiwsXLjRr+H9P2R5PqYuj9qsj6uKoMjylLr64bz2lfTzpfOCocjylDO5b55XhSfvWl9qH51rnleNJ71lHleMpdeG+dV4ZWq0WHTp0kPIyd/PqpBsApkyZYvXSb1MibRIfH2/TJQYNlWkLU6IfEhLSrANIoVA45LlyjijHU8ow0Wg0bt+3vtY+QPP3q6Pqwn3rvLp4ShmOLMcTzgeOKsdTyjDhvnV8GSaesG99rX0AnmudWY4nvGcdVY4n1QXgvnVGGSa1O2DdyTNqQRZNnjzZY8rxlDIcxZO2x5Pq4gietD2eVBdH8JTt8aT2cQRP2h5PKcNRuG+dx5O2x5Pq4giesj2e1D6O4Enb40l1cQRP2h5PKcPTyISn3F3uQ0pLSxESEgKtVuuwX2moBvetc3C/Og/3rfNw3zoP963zcN86B/er83DfOg/3rfN42r5lT7cTqNVqZGRk8DFiTsB96xzcr87Dfes83LfOw33rPNy3zsH96jzct87Dfes8nrZv2dNNRERERERE5CTs6SYiIiIiIiJyEibdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24HW758OeLj4+Hv74/U1FTs3bvX3VVyq507d+K+++5DTEwMZDIZvvzyS7PlQgjMmTMHbdu2RUBAANLT03Hq1CmzmGvXrmHMmDHQaDQIDQ3F008/jbKyMrOYo0ePYsiQIfD390dsbCzefvvtenXZsGEDunfvDn9/f/Tq1Qvffvutw7fXlTIzMzFgwAC0atUKkZGRePDBB3Hy5EmzmJs3b2Ly5Mlo06YNgoOD8cgjj6CwsNAsJj8/HyNHjkRgYCAiIyMxY8YMVFdXm8Vs374d/fr1g1qtRufOnbF69ep69fGV9/6KFSvQu3dvaDQaaDQapKWl4bvvvpOWc586zoIFCyCTyTB16lRpHvdv08ydOxcymcxs6t69u7Sc+7V5Ll68iD/84Q9o06YNAgIC0KtXL+zfv19azs+ypomPj6/3vpXJZNIzevm+bRqDwYDXX38dCQkJCAgIQKdOnfDGG2+g9tjJfM823Y0bNzB16lTExcUhICAAAwcOxL59+6Tl3Le28aYcwZa6NEqQw6xbt06oVCrx8ccfi+PHj4uJEyeK0NBQUVhY6O6quc23334rXnvtNfHFF18IAGLjxo1myxcsWCBCQkLEl19+KY4cOSLuv/9+kZCQICorK6WYu+++WyQlJYmff/5Z7Nq1S3Tu3FmMHj1aWq7VakVUVJQYM2aMyMnJEf/85z9FQECAeP/996WYH3/8USgUCvH222+L3Nxc8ac//UkolUpx7Ngxp+8DZxkxYoRYtWqVyMnJEYcPHxb33nuv6NChgygrK5NinnvuOREbGyuysrLE/v37xe233y4GDhwoLa+urhY9e/YU6enp4tChQ+Lbb78V4eHhYtasWVLM2bNnRWBgoJg2bZrIzc0V7733nlAoFGLz5s1SjC+997/++muxadMm8d///lecPHlSzJ49WyiVSpGTkyOE4D51lL1794r4+HjRu3dv8dJLL0nzuX+bJiMjQ/To0UNcvnxZmq5cuSIt535tumvXrom4uDgxfvx4sWfPHnH27Fnx/fffi9OnT0sx/CxrmqKiIrP37JYtWwQAsW3bNiEE37dN9eabb4o2bdqIb775RuTl5YkNGzaI4OBg8e6770oxfM823eOPPy4SExPFjh07xKlTp0RGRobQaDTi119/FUJw39rKm3IEW+rSGCbdDpSSkiImT54s/d9gMIiYmBiRmZnpxlp5jroHlNFoFNHR0WLRokXSvJKSEqFWq8U///lPIYQQubm5AoDYt2+fFPPdd98JmUwmLl68KIQQ4q9//asICwsTVVVVUsyrr74qunXrJv3/8ccfFyNHjjSrT2pqqvjjH//o0G10p6KiIgFA7NixQwhRsy+VSqXYsGGDFHPixAkBQGRnZwshak54crlcFBQUSDErVqwQGo1G2p+vvPKK6NGjh9m6Ro0aJUaMGCH939ff+2FhYeJvf/sb96mD3LhxQ3Tp0kVs2bJFDBs2TEq6uX+bLiMjQyQlJVlcxv3aPK+++qoYPHiw1eX8LHOcl156SXTq1EkYjUa+b5th5MiR4qmnnjKb9/DDD4sxY8YIIfiebY6KigqhUCjEN998Yza/X79+4rXXXuO+bSJPzhFsqYsteHm5g+h0Ohw4cADp6enSPLlcjvT0dGRnZ7uxZp4rLy8PBQUFZvssJCQEqamp0j7Lzs5GaGgokpOTpZj09HTI5XLs2bNHihk6dChUKpUUM2LECJw8eRLXr1+XYmqvxxTjS22j1WoBAK1btwYAHDhwAHq93my7u3fvjg4dOpjt3169eiEqKkqKGTFiBEpLS3H8+HEppqF958vvfYPBgHXr1qG8vBxpaWncpw4yefJkjBw5st4+4P5tnlOnTiEmJgYdO3bEmDFjkJ+fD4D7tbm+/vprJCcn47HHHkNkZCT69u2LDz/8UFrOzzLH0Ol0WLt2LZ566inIZDK+b5th4MCByMrKwn//+18AwJEjR7B7927cc889APiebY7q6moYDAb4+/ubzQ8ICMDu3bu5bx3Ek/ajLXWxBZNuBykuLobBYDA78QNAVFQUCgoK3FQrz2baLw3ts4KCAkRGRpot9/PzQ+vWrc1iLJVRex3WYnylbYxGI6ZOnYpBgwahZ8+eAGq2WaVSITQ01Cy27v5t6r4rLS1FZWWlT773jx07huDgYKjVajz33HPYuHEjEhMTuU8dYN26dTh48CAyMzPrLeP+bbrU1FSsXr0amzdvxooVK5CXl4chQ4bgxo0b3K/NdPbsWaxYsQJdunTB999/j+effx4vvvgi/v73vwPgZ5mjfPnllygpKcH48eMB8HzQHDNnzsQTTzyB7t27Q6lUom/fvpg6dSrGjBkDgO/Z5mjVqhXS0tLwxhtv4NKlSzAYDFi7di2ys7Nx+fJl7lsH8aT9aEtdbOFncyQReazJkycjJycHu3fvdndVfEK3bt1w+PBhaLVafP755xg3bhx27Njh7mp5vQsXLuCll17Cli1b6vUSUPOYerAAoHfv3khNTUVcXBzWr1+PgIAAN9bM+xmNRiQnJ+Ott94CAPTt2xc5OTlYuXIlxo0b5+ba+Y6PPvoI99xzD2JiYtxdFa+3fv16fPLJJ/j000/Ro0cPHD58GFOnTkVMTAzfsw6wZs0aPPXUU2jXrh0UCgX69euH0aNH48CBA+6uGnkw9nQ7SHh4OBQKRb1RNQsLCxEdHe2mWnk2035paJ9FR0ejqKjIbHl1dTWuXbtmFmOpjNrrsBbjC20zZcoUfPPNN9i2bRvat28vzY+OjoZOp0NJSYlZfN3929R9p9FoEBAQ4JPvfZVKhc6dO6N///7IzMxEUlIS3n33Xe7TZjpw4ACKiorQr18/+Pn5wc/PDzt27MDSpUvh5+eHqKgo7l8HCQ0NRdeuXXH69Gm+b5upbdu2SExMNJt32223SZfv87Os+c6fP4///Oc/eOaZZ6R5fN823YwZM6Te7l69euHJJ5/E//3f/0lXGPE92zydOnXCjh07UFZWhgsXLmDv3r3Q6/Xo2LEj962DeNJ+tKUutmDS7SAqlQr9+/dHVlaWNM9oNCIrKwtpaWlurJnnSkhIQHR0tNk+Ky0txZ49e6R9lpaWhpKSErNfD7du3Qqj0YjU1FQpZufOndDr9VLMli1b0K1bN4SFhUkxtddjivHmthFCYMqUKdi4cSO2bt2KhIQEs+X9+/eHUqk02+6TJ08iPz/fbP8eO3bM7KS1ZcsWaDQa6UtmY/uuJbz3jUYjqqqquE+bafjw4Th27BgOHz4sTcnJyRgzZoz0N/evY5SVleHMmTNo27Yt37fNNGjQoHqPY/zvf/+LuLg4APwsc4RVq1YhMjISI0eOlObxfdt0FRUVkMvNv+IrFAoYjUYAfM86SlBQENq2bYvr16/j+++/xwMPPMB96yCetB9tqYtNbB5yjRq1bt06oVarxerVq0Vubq549tlnRWhoqNmomi3NjRs3xKFDh8ShQ4cEAPHOO++IQ4cOifPnzwshaobgDw0NFV999ZU4evSoeOCBByw+DqBv375iz549Yvfu3aJLly5mjwMoKSkRUVFR4sknnxQ5OTli3bp1IjAwsN7jAPz8/MTixYvFiRMnREZGhlc9VsGS559/XoSEhIjt27ebPXKloqJCinnuuedEhw4dxNatW8X+/ftFWlqaSEtLk5abHrdy1113icOHD4vNmzeLiIgIi49bmTFjhjhx4oRYvny5xcet+Mp7f+bMmWLHjh0iLy9PHD16VMycOVPIZDLxww8/CCG4Tx2t9ujlQnD/NtXLL78stm/fLvLy8sSPP/4o0tPTRXh4uCgqKhJCcL82x969e4Wfn5948803xalTp8Qnn3wiAgMDxdq1a6UYfpY1ncFgEB06dBCvvvpqvWV83zbNuHHjRLt27aRHhn3xxRciPDxcvPLKK1IM37NNt3nzZvHdd9+Js2fPih9++EEkJSWJ1NRUodPphBDct7byphzBlro0hkm3g7333nuiQ4cOQqVSiZSUFPHzzz+7u0putW3bNgGg3jRu3DghRM0w/K+//rqIiooSarVaDB8+XJw8edKsjKtXr4rRo0eL4OBgodFoxIQJE8SNGzfMYo4cOSIGDx4s1Gq1aNeunViwYEG9uqxfv1507dpVqFQq0aNHD7Fp0yanbbcrWNqvAMSqVaukmMrKSjFp0iQRFhYmAgMDxUMPPSQuX75sVs65c+fEPffcIwICAkR4eLh4+eWXhV6vN4vZtm2b6NOnj1CpVKJjx45m6zDxlff+U089JeLi4oRKpRIRERFi+PDhUsItBPepo9VNurl/m2bUqFGibdu2QqVSiXbt2olRo0aZPUea+7V5/v3vf4uePXsKtVotunfvLj744AOz5fwsa7rvv/9eAKi3v4Tg+7apSktLxUsvvSQ6dOgg/P39RceOHcVrr71m9tgkvmeb7rPPPhMdO3YUKpVKREdHi8mTJ4uSkhJpOfetbbwpR7ClLo2RCSGE7f3iRERERERERGQr3tNNRERERERE5CRMuomIiIiIiIichEk3ERERERERkZMw6SYiIiIiIiJyEibdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24iIiIiIiIiJ2HSTUREREREROQkTLqJiIiIiIiInIRJNxEREREREZGTMOkmIiIiIiIicpL/DwHN0Sz5ptRLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -72,16 +110,585 @@ "- The vertical gray dashed lines highlights the peaks related to the frequencies of oscillations. In other words, if there is a libration with the period of `10,000` years, the gray lines will be near `10,000`. The first line represents the start of the peak (which corresponds to the minimum value of libration's period), whereas the second line represents the end of the peak (the maximum value). If there are several possible frequencies, there will be multiple gray lines: two per peak.\n", "- The red and green horizontal lines represents the critical values for the frequency to be identified. If the maximum value (the peak value, which is marked with a cross) is greater than the green line, then one might consider the frequency to be reliably determined. If the value is below the red line, then this is a false positive. For the peaks between the green and the red lines, it is up to the researcher to decide.\n", "\n", - " Note that you might change the critical values (which are set by default to `0.05` and `0.1`) related to the green and red lines, depending on your model and simulation. The corresponding config values are provided in the [Config section](../config) of the documentation. \n" + " Note that you might change the critical values (which are set by default to `0.05` and `0.1`) related to the green and red lines, depending on your model and simulation. The corresponding config values are provided in the [Config section](../config) of the documentation. \n", + "\n", + "Now you can check other asteroids (just change their titles) or resonances. If you need a better precision , do not hesitate to change integrator's data, such as the integrator itself, its parameters, or the integration time, see [Config](../config)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Find asteroid's resonances\n", + "\n", + "Let one wants to identify all three-body and two-body resonances of an asteroid. One has to perform the following steps:\n", + "\n", + "1. set up the model, including planets and their initial conditions;\n", + "2. add an object (or objects), which is examined;\n", + "3. find possible resonances, in which the object can be trapped in;\n", + "4. integrate the differential equations of motion for a long period of time (usually, $\\approx 10^5$ yrs);\n", + "5. identify the resonant status of the object based on the analysis of the resonant angle, semi-major axis, and other variables.\n", + "\n", + "Without loss of generality, let's examine the following case:\n", + "\n", + "1. The target object is the asteroid 463 Lola.\n", + "2. The planets are Jupiter and Saturn for both, three-body and two-body cases.\n", + "\n", + "To perform this, there is a function `find`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching NASA Horizons for '463;'... \n", + "Found: 463 Lola (A900 UK) \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1fs28HvTE9IoIYGQSofQSwhIEfIjIC2INBESEAQFBQuIKARQiaCifpEiogRBREC6QAglIEiRJr1J6NJJQg2QPe8fvLtmk02y2ezulL0/15XrgtnZmec858yZOdNWI4QQICIiIiIiIiKLc5A6ACIiIiIiIiK14qCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiK7NXnyZGg0Gmg0GuzatSvf+dLS0jBo0CCEhITA1dUV/v7+eP7557FkyRKD+U6ePIlBgwahXr168PPzg6urK0JDQ9GxY0ds2rTJ2sUhO3bnzh0EBgZCo9GgXbt2eT4/d+5cvp8Zc/nyZXz99ddo27YtgoOD4eLigoCAAHTr1g27d+/O93u///47OnTogLJly8LZ2RllypRBREQEBgwYgJUrVxapTNOmTUP//v1Ru3ZtODk5QaPRIDU1tUjLsITx48dbdN0ajQatWrWyyLLk7P79+1iwYAF69OiBKlWqwN3dHb6+vmjZsiV++eUXqcMjIrIpJ6kDICKSwpEjR5CQkIASJUrg/v37+c6XkpKC2NhYAECnTp0QHh6OO3fu4NChQ9i4cSO6d++un/fw4cNYtmwZoqKi0LRpU3h7e+Py5ctYuXIlfv/9d3zyySf48MMPrV00skPDhg1DRkaGxZY3bdo0TJ48GRUrVkTbtm3h5+eH06dPY8WKFVixYgUWLlyInj17GnxnwoQJGD9+PDw8PNCxY0eEhobi6dOnOHr0KH799VecOnUKXbp0MTmGt956CwBQrlw5+Pn54erVqxYrH1nfH3/8gb59+6J06dJo06YNunXrhuvXr2PZsmV4+eWXsWPHDnz77bdSh0lEZBMcdBOR3Xny5Ani4uJQt25dVK5cGQsWLDA634ULF/DSSy8hMDAQGzduRHBwsMHnT58+Nfh/p06d0K1bN2g0GoPpV65cQb169TBhwgQMHToUvr6+Fi0P2bfffvsNCxcuxLfffothw4ZZZJmNGzdGamoqWrZsaTD9jz/+QJs2bfD6668jNjYWrq6uAJ5dSZ84cSKCgoKwa9culC9f3uB7Dx8+LPAKuTFr1qxBgwYNEBAQgCFDhuC7774rXqHIpgICAjB//nz06NEDLi4u+umTJk1CZGQkpk+fjn79+qFx48YSRklEZBu8vZyI7M6nn36Ko0eP4scff4Sjo2O+802aNAmZmZmYNWtWngE3ADg5GZ63dHV1zTPgBoDy5cujWbNmePLkCc6fP1+s2Fu1agWNRoNHjx7ho48+QsWKFeHs7Izx48fr50lLS8PAgQMRHBwMV1dXlCtXDvHx8UbXvX//frz00kv6ef38/NCoUSN8+umneeY9cuQIevTogbJly8LV1RVhYWEYMWIEbt26lWfe0NBQhIaG4t69exg+fDjKly8PV1dX1K5dG0uXLs0z/6lTpzBq1CjUr18fpUuXhpubG6pUqYLRo0fj3r17+ebhyZMnGD9+PEJDQ+Hq6ooqVapgxowZRnMnhMDcuXPRvHlz+Pr6wsPDA5UrV8bgwYNx4cIFg3nv3r2LhIQE1KxZU39bbExMDLZv32502VK5ceMGXn/9dfTt2xcdOnSw2HJffPHFPANuAGjevDmef/553LlzB4cPH9ZP37NnD7RaLV588cU8A24AcHd3L/It1R06dEBAQECRYzdVRkYGxo0bhxo1asDT0xPe3t6oVKkS4uLi9NtKq1atMGHCBADA888/r38cJTQ0VL+cLVu2YMCAAahatSo8PT3h6emJhg0bYvbs2QbrS01N1fcPW7du1S9Lo9EgKSkJQMG3siclJRnMm3P97du3129j/v7+aN68eZ7121rdunXxyiuvGAy4AcDf3x+DBw8GAGzbtk2K0IiIbI5XuonIruzfvx+ffvopJk6ciBo1auQ7nxACS5YsQenSpdG6dWvs27cPW7duhVarRd26ddG6dWs4OJh23vLWrVvYvXs3PDw8EB4ebpFydOvWDX///TfatWsHX19fhIWFAQB2796NmJgY3L9/Hx07dkTlypVx7tw5/Pzzz1i3bh127typj+HgwYNo2rQpHB0d0aVLF4SEhCA9PR3Hjh3D7NmzDW6F3759O2JiYvD48WO89NJLCA0Nxc6dO/HNN99gzZo12LVrF8qUKWMQ45MnT9C2bVvcuXMH3bp1w4MHD7Bo0SL06NED69evR9u2bfXzLlu2DD/88AOef/55tGrVClqtFrt27cLkyZOxdetWbNu2Dc7Oznny0Lt3b+zZswft27eHo6MjFi9ejKFDh8LZ2RmDBg3Sz6fVatGzZ08sXboUgYGB6N27N7y9vXHu3DksXrwY7du3159YuX37Nlq0aIGjR4+iWbNmGDJkCDIzM7Fy5Ur9s/y6Rw6kNmTIEDg6OuKbb76x6O3lBdHVQ86TTqVLlwYAnD592iYxFJcQAjExMdi9ezeaNWuGdu3awcHBAefPn8eqVavQt29fhISEID4+HsCzQXJcXJx+sJ3zbpXJkyfjzJkzaNKkCbp27Yr09HSsX78egwcPxsmTJ/Hll18CeHYiKiEhARMmTDBYNvBsgGqO33//HZ06dYKvry+6dOmCcuXK4caNG/j7778xf/58vPbaa2Yt19qMtSEiIjVjb0dEdiMrKwv9+vVD3bp1MWrUqALnTUtLw+3bt9GwYUMMHjw4z1WjevXqYdWqVahQoUKe7546dQoLFy5EdnY2rly5glWrViE9PR2zZs2Cl5eXRcpy5coVHDp0CKVKldJPe/LkCXr16gWtVos9e/agXr16+s+2b9+OVq1aYfjw4Vi9ejUAYP78+cjKysKKFSvyPGub8+q1VqtFfHw8Hjx4gPXr1yMmJkb/2ahRo/D555/j/fffxw8//JAnxkaNGiE1NVV/tevll19GdHQ0pk6dajDo7tu3L9555508V8UmTpyIhIQELF68GH369MmTh0uXLuHIkSPw9vYGAAwfPhwRERH48ssvDQbdM2bMwNKlS9GmTRusXr0a7u7u+s8ePnyIhw8f6v//5ptv4ujRo/j+++8xcOBA/fTExEQ0bNgQr732Gtq1awc3N7c88eSUnp6Or7/+usB5chsxYoTJjx8sWLAAy5Ytw4oVK1CyZEmbDLovXLiAjRs3oly5cqhVq5Z+emRkJIKDg7F27Vp07NgRvXr1QuPGjVG5cmWjd39I7ciRI9i9ezdiY2OxfPlyg8+ysrLw5MkTAEB8fDzOnTuHrVu3Ij4+3ujV+pkzZ+pPeuk8ffoUL7zwAr755hsMHz4cwcHBCA0Nxfjx4zFhwgT9v4vrxx9/hBACW7ZsQZ06dQw+M3YHijEHDx7EihUrTF6nr68vRowYUYQoDWVnZ+Onn36CRqNBdHS02cshIlIUQURkJ0aNGiVcXFzE4cOH9dPi4uIEALFz506DeXfu3CkACEdHR+Hp6Snmzp0rbt++LdLS0sSgQYMEABEZGWl0PatXrxYA9H+enp5i/vz5FilDy5YtBQCxcuXKPJ8tW7ZMABATJ040+t0XX3xRODg4iIyMDCGEEO+8844AIJKTkwtc57Zt2wQA0b59+zyf3b17V5QqVUq4ubmJrKws/fSQkBABQJw9ezbPd0JCQkSpUqUKXKfOrVu3BAARHx9vMF2Xh82bN+f5ju6zzMxM/bTq1asLR0dHcerUqQLXd+PGDeHo6Chat25t9PP//e9/AoBYvXp1obGnpaUZtANT/tLS0gpdrhBCXL58WZQsWVL07t07z/piYmLyjcXYZ6Z6/PixaNGihQAgfvrppzyf79+/X9SsWdOgPD4+PqJjx45i2bJlZq9XCCEGDx4sAIgtW7YUazk6hw4dEgAM8pefhIQEs9b922+/CQAiKSnJYDoA0bJlyyKva+7cuQKAmDt3rn7aiy++KACIkydPFik2Y8s19S8kJMTsdQkhxAcffCAAiAEDBhRrOURESsIr3URkF3bu3IkvvvgC48ePR0RERKHza7VaAM+uynz88cf6W0FLliyJ2bNn49ChQ9i9eze2b9+O5557zuC7HTt2hBACjx8/xrlz5/D999+jX79+2LNnD/73v/9ZpDzGXj6k+9mzkydPGr2KdvXqVWi1Wpw6dQoNGzZEjx498PXXX6Nr167o2bMn/u///g8tWrRAYGCgwfcOHDgAAEav8umeX92wYQNOnjxpcPUz523vOVWoUAE7d+40mCb+//PWSUlJOHLkCDIyMvR1ADy7am5MgwYNjC4feHal2cvLC/fu3cPx48dRqVIlVK5c2ehydP766y9kZ2cjKyvLaA51t0+fOHECHTt2LHBZoaGhEEIUOI+5Bg4cCGdnZ7PbU35X4fO7+qq722Hbtm0YNGgQ+vbtm2eeevXq4fDhw9i5cye2bNmCffv2Yfv27VizZg3WrFmDPn36YP78+dBoNDh37lyeZ5OLewW1KKpXr47atWvjl19+waVLlxAbG4tWrVqhbt26Jj82onP37l188cUXWLFiBf755588v4aQX9u1hF69emHZsmVo0qQJXn75ZbRp0wbNmzfP86hHQeLj4w1udbemWbNmITExEfXq1cM333xjk3USEckBB91EpHpPnz5FXFwcateujdGjR5v0HR8fH/2/O3funOfzTp06Yffu3di7d2+eQbeOi4sLqlSpgs8//xwPHjzAtGnT0L59e7Rv3968guTg7++fZ9rt27cBAD///HOB39UNCiIjI5GamopJkyZh4cKFmDt3LgCgUaNGmDx5Mp5//nkAQGZmZr7rBJ79pFPO+XRy5jAnJycngwE18Oznob799lsEBQWhc+fOKFeunP7N2BMmTEBWVpbRZeluK8+9fODZCRMA+tuuc59MMEaXwx07dmDHjh35zlfQz8xZ27x587Bu3TosWbKkSIOrnNLT0/UvCMvJ2KBbq9ViwIABWLhwIV555RXMmjUr3+VqNBo0bdoUTZs2BfDsZMrKlSvRr18//Pzzz+jWrRu6du2Kc+fO5Vl/SEiIzQbdTk5O2Lx5M8aPH4/ffvsN7777LgDAz88Pw4YNw4cffljgSxZ1Hj9+jFatWmH//v2oV6+e/ieynJyccO7cOcybNy/ftmsJ3bt3x4oVKzB16lTMmjUL06dPh0ajwfPPP48vv/zS7GfFrWHOnDl44403UKtWLaSkpMDT01PqkIiIbIaDbiJSvXv37umvUOZ+ZlgnKioKALB8+XLExsaiYsWKcHR0RHZ2ttFnbHXTcj4LXJC2bdtixowZSE1Ntcig29hzsroB6OrVqwu9CqvTvHlzrFu3Tv+TTqtXr8aMGTPQoUMHHDlyBOHh4frlXrt2zegydL+fbGwAbIrr169j+vTpqF27Nnbu3AkPDw+DZRsbHBaFbvB/+fLlQufVleHdd9/FF198Uaz1WuuZbt2dBzl/Iz6n5ORkaDQa1KlTBwcPHjQ6j6lX4bVaLfr374+ffvoJvXv3RlJSUpGuBGs0GsTGxuLtt9/GxIkTsXnzZnTt2hWtWrWy2l0ApipdujSmTZuG//3vfzhx4gQ2b96MadOmISEhAc7Ozvjggw8KXcbKlSuxf/9+vPrqq5gzZ47BZ4sWLcK8efOKFJMut7l/jhBAvs/sd+nSBV26dMHdu3exY8cO/UsJ27VrhxMnThTanmzxTPf333+PwYMHo0aNGti0aZP+xXtERPaCg24iUj1XV1e8+uqrRj/btm0bTp8+jc6dO8PPz0//dmI3Nzc0bdoUf/zxB44dO5bnavaxY8cAwOCngwqiu8XU2Bu4LSUyMhLAs1vpTR106+h+0qlVq1bw9fXFuHHjkJKSgsGDB+tfyJaamprnBXT379/H3r174e7ujqpVq5oV99mzZyGEQHR0tMGAG3j2u9DF5enpiRo1auDkyZM4ffp0gbeYN2rUCBqNJs/t7+bI72pyQeLj4wsdJEVFRRn9GbV79+7h119/RYUKFRATE2P0Z+6KIueAu2fPnpg/f75JV3+NkfNVTY1Gg+rVq6N69ero3LkzgoODsWrVKv2gW1dm3Z0TOf3zzz8AkOdFhED+bdfBwcHosoBnj68Axk8Q6U625MfLywvt2rVDu3btkJ2djR9//FH/awYFOXjwYJHaaVHvSNANuKtXr47NmzfDz8/P5O8SEamGhM+TExFJLr8XqQkhxMKFCwUA0aZNG/Ho0SP99OPHjwsPDw/h5eUlbt++rZ++d+9eodVq8yzn3LlzIigoSAAQ27dvN7r+nC9HKojuJWHGPHr0SAQHBws3NzexdevWPJ8/fvxY/PHHH/r///nnn+Lhw4d55hs6dKjBC6Cys7NFxYoVBQCRkpJiMO/o0aONvhQpJCQk3xcu5S7DlStXBADRpEkTkZ2drZ9+8eJF/Xpzv3iqoDzocprzpWTTp08XAER0dLR48OCBwfwPHz4Ut27d0v+/Z8+eAoCYMmWK0frctWuXuH//vtF1S8mSL1LLzs7W57F79+7iyZMnBc6/e/duMW/ePKPt6fr166JKlSoCgFi0aJFphcnFlBep6V5ClpCQUOjy0tLSjL607q+//hIARKtWrfTTvv3223y3UV0fMWrUKIPpqampwtnZ2Wg8ZcqUEaGhoUbj0r3AsXXr1gbbwp9//imcnJzyxLF161bx9OnTPMvp2LGjACBSU1ONrsdWvv/+e6HRaET16tXF1atXJY2FiEhKvNJNRJQP3UuKli5dijp16iAmJgYZGRn47bff8OjRI/z000/6K1PAs1uSz5w5o//5JAcHB/zzzz9Yt24dHj9+jPfeew/NmjUzWIfu2WZL/F6tq6srli5divbt26Nly5Zo3bo1atWqBY1Gg/Pnz+OPP/5A6dKlceLECQDPfl94y5YtaNGiBcLCwuDm5ob9+/dj06ZNCA8PR9euXQE8uzKXlJSEmJgYvPDCC+jevTtCQkKwc+dOpKamomLFivjss8/MjrtcuXLo1q0bfvvtNzRs2BBt2rTBtWvXsGbNGrRp00Z/NbE4Xn/9dWzduhWLFy9G5cqV0blzZ3h7e+PChQtITk7GDz/8oP/t7RkzZuDkyZMYNWoU5s+fj6ioKPj6+uLixYvYu3cvTp8+jX///TfPVXk1mThxIubNmwdPT09UqVIFn3zySZ55YmNj9c8MX7lyBXFxcRg2bBhatGiBatWqwcnJCefPn8eaNWtw7949dOjQId9b4o357LPP9G1Vd+fBZ599pn8BW2xsrMHvpRdlWzp48CBefPFFNG7cGDVq1EBAQAAuX76MFStWwMHBAW+//bZ+3ueffx4ajQZjxozB0aNH4ePjA19fXwwbNgydOnVCaGgopkyZgiNHjiAiIgInT57EmjVr0LVrVyxdujTPulu3bo3FixcjNjYW9erVg6OjIzp37ozatWujSZMmaNasGTZv3oyoqCi0aNEC58+fx8qVK9GpU6c8P2/21ltv4cqVK3juuecQGhoKjUaD7du3Y8+ePWjSpEm+75uwhc2bN+O1116DEAItWrTAzJkz88xTt25d2fzmPRGRVUk96iciklJBV7qFEOLJkydi6tSpombNmsLV1VV4e3uLtm3bGr2CtGTJEtG9e3cRHh4uSpQoIZydnUVgYKB48cUXxfr1640uv169enmumBekoCu8OpcuXRLDhw8XlStX1sdcvXp1MXDgQLFp0yb9fOvXrxf9+vUTVatWFV5eXsLT01PUqFFDjBkzRty4cSPPcg8dOiReeuklUaZMGeHs7CxCQkLE8OHDjc5blCvdQjz76bF3331XhIaGCldXV1G5cmXx8ccfi8ePH1vkSrcQQmi1WjFnzhzRpEkTUaJECeHh4SEqV64shgwZIi5cuGAw74MHD8SUKVNEgwYNRIkSJYS7u7sICwsTsbGx4qeffir0yq8UCrqafebMGQFAdOrUyaRl6XJY0F/OK66ZmZliwYIFom/fvqJmzZrC19dXODk5CT8/P9GmTRvxww8/GL0iWxBdHef3l/sKcteuXYWDg4NJP5918eJFMXr0aNGkSRNRtmxZ4eLiIoKDg8WLL75otC9ISkoStWrVEq6urnl+Nuvs2bOiW7duws/PT3h4eIhGjRqJRYsWiS1bthiN899//xU9evQQZcqUEQ4ODnlyefPmTdGvXz9RqlQp4e7uLpo0aSKSk5ON/mTYokWLRI8ePUTFihWFh4eH8PHxEXXq1BGTJ08Wd+/eNSXNVmPKT5HFxcVJGiMRka1ohJD4TSZERHYqMzMTJUuWxLvvvospU6ZIHQ6p2K5duxAVFYX+/fvjxx9/lDocqyhbtixatWqFxYsXSx0KERGRgaL9GCUREVnMjh074OzsjHfeeUfqUEjlVq5cCeC/l+2pzfHjx3Hjxg2T3jhORERka7zSTUREpEKPHj3CJ598gsOHD2PVqlUoV64cjh8/nu/vpxMREZF1cNBNRESkQunp6ShVqhR8fX3RqlUrTJ48ucCfSyMiIiLr4KCbiIiIiIiIyEr4TDcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREqpWUlASNRoNz585JHQoREdkpDrqJiIiM0A3WdH9OTk4IDAxEfHw8Ll++LHV4kjp27BjGjx/PgSwREZEJnKQOgIiISM4mTpyIsLAwPHr0CLt27UJSUhK2b9+OI0eOwM3NTerwJHHs2DFMmDABrVq1QmhoqNThEBERyRoH3URERAVo3749GjZsCAAYOHAgypQpg8mTJ2PVqlXo0aOHxNERERGR3PH2ciIioiJo3rw5AOCff/4xmH7ixAm89NJLKFWqFNzc3NCwYUOsWrXKYJ4nT55gwoQJqFy5Mtzc3FC6dGk899xzSElJMZhv8+bNaN68OUqUKAFfX1906dIFx48fN5hn/Pjx0Gg0OHPmDOLj4+Hr6wsfHx/0798fDx48MJh37ty5aN26NcqWLQtXV1fUqFEDM2fOzFO20NBQdOzYEdu3b0fjxo3h5uaG8PBw/PTTT/p5kpKS0L17dwDA888/r7/9PjU1Nd+cHTp0CPHx8QgPD4ebmxsCAgIwYMAA3Lp1y+wyPXz4EG+99RbKlCkDLy8vdO7cGZcvX4ZGo8H48ePzjUVn3bp1+hx7eXmhQ4cOOHr0aKHfIyIiKioOuomIiIpA9xxzyZIl9dOOHj2KJk2a4Pjx4xg9ejS+/PJLlChRArGxsVi+fLl+vvHjx2PChAl4/vnn8e233+LDDz9EcHAw9u/fr59n48aNiImJwfXr1zF+/Hi88847+PPPP9GsWTOjz1D36NEDd+/eRWJiInr06IGkpCRMmDDBYJ6ZM2ciJCQEY8aMwZdffomgoCC88cYbmD59ep7lnTlzBi+99BL+7//+D19++SVKliyJ+Ph4/YC0RYsWeOuttwAAY8aMwfz58zF//nxUr14935ylpKTg7Nmz6N+/P6ZNm4ZevXph0aJFeOGFFyCEMKtM8fHxmDZtGl544QVMnjwZ7u7u6NChQ74x5DR//nx06NABnp6emDx5MsaOHYtjx47hueee43PqRERkeYKIiIjymDt3rgAgNm7cKG7cuCEuXrwoli5dKvz8/ISrq6u4ePGift42bdqIWrVqiUePHumnabVa0bRpU1G5cmX9tDp16ogOHToUuN66deuKsmXLilu3bumn/f3338LBwUH069dPPy0hIUEAEAMGDDD4fteuXUXp0qUNpj148CDPemJiYkR4eLjBtJCQEAFAbNu2TT/t+vXrwtXVVbz77rv6aUuWLBEAxJYtWwosS0Hr/+WXX/Ksy9Qy7du3TwAQI0aMMJgvPj5eABAJCQn6abp6TEtLE0IIcffuXeHr6ysGDRpk8N2rV68KHx+fPNOJiIiKi1e6iYiIChAdHQ0/Pz8EBQXhpZdeQokSJbBq1SpUqFABAHD79m1s3rxZf3X25s2buHnzJm7duoWYmBicPn1a/7ZzX19fHD16FKdPnza6rn///RcHDx5EfHw8SpUqpZ9eu3Zt/N///R/Wrl2b5ztDhgwx+H/z5s1x69YtZGZm6qe5u7vr/52RkYGbN2+iZcuWOHv2LDIyMgy+X6NGDf0t9ADg5+eHqlWr4uzZs6amLI+c63/06BFu3ryJJk2aAIDBVX5Ty7R+/XoAwBtvvGEw35tvvlloLCkpKUhPT0fv3r31dXXz5k04OjoiMjISW7ZsKVrhiIiICsEXqRERERVg+vTpqFKlCjIyMvDjjz9i27ZtcHV11X9+5swZCCEwduxYjB071ugyrl+/jsDAQEycOBFdunRBlSpVEBERgXbt2qFv376oXbs2AOD8+fMAgKpVq+ZZRvXq1ZGcnIz79++jRIkS+unBwcEG8+lue79z5w68vb0BADt27EBCQgJ27tyZ59nojIwM+Pj45Ls83TLv3LmTf5IKcfv2bUyYMAGLFi3C9evX86w/t8LKdP78eTg4OCAsLMxgvkqVKhUai+6ER+vWrY1+rssZERGRpXDQTUREVIDGjRvr314eGxuL5557Di+//DJOnjwJT09PaLVaAMB7772HmJgYo8vQDQZbtGiBf/75BytXrsSGDRswZ84cfPXVV5g1axYGDhxoVnyOjo5Gp4v//6z0P//8gzZt2qBatWqYOnUqgoKC4OLigrVr1+Krr77Sx2/q8szRo0cP/Pnnnxg5ciTq1q2rz1u7du3yrN9aMejo1jd//nwEBATk+dzJiYdGRERkWdyzEBERmcjR0RGJiYn6F6GNHj0a4eHhAABnZ2dER0cXuoxSpUqhf//+6N+/P+7du4cWLVpg/PjxGDhwIEJCQgAAJ0+ezPO9EydOoEyZMgZXuU2xevVqZGVlYdWqVQZXkItzG7VGozF53jt37mDTpk2YMGECxo0bp5+e3y32pggJCYFWq0VaWhoqV66sn37mzJlCv1uxYkUAQNmyZU2qLyIiouLiM91ERERF0KpVKzRu3Bhff/01Hj16hLJly6JVq1b47rvv8O+//+aZ/8aNG/p/5/6JLE9PT1SqVAlZWVkAgHLlyqFu3bqYN28e0tPT9fMdOXIEGzZswAsvvFDkeHVXjXNeJc7IyMDcuXOLvCwd3cA/Z4xFWT8AfP3112avX3dHwYwZMwymT5s2zaTvent7Y9KkSXjy5Emez3PWFxERkSXwSjcREVERjRw5Et27d0dSUhKGDBmC6dOn47nnnkOtWrUwaNAghIeH49q1a9i5cycuXbqEv//+G8Czl5S1atUKDRo0QKlSpbB3714sXboUw4YN0y/7888/R/v27REVFYVXX30VDx8+xLRp0+Dj42PS70/n1rZtW7i4uKBTp04YPHgw7t27h++//x5ly5Y1epLAFHXr1oWjoyMmT56MjIwMuLq66n8HPDdvb2+0aNECU6ZMwZMnTxAYGIgNGzYgLS3NrHUDQIMGDdCtWzd8/fXXuHXrFpo0aYKtW7fi1KlTAAq+Eu/t7Y2ZM2eib9++qF+/Pnr16gU/Pz9cuHABv//+O5o1a4Zvv/3W7NiIiIhy46CbiIioiF588UVUrFgRX3zxBQYNGoQaNWpg7969mDBhApKSknDr1i2ULVsW9erVM7il+q233sKqVauwYcMGZGVlISQkBJ988glGjhypnyc6Ohrr169HQkICxo0bB2dnZ7Rs2RKTJ0/O8+IwU1StWhVLly7FRx99hPfeew8BAQF4/fXX4efnhwEDBphV/oCAAMyaNQuJiYl49dVXkZ2djS1bthgddAPAwoUL8eabb2L69OkQQqBt27ZYt24dypcvb9b6AeCnn35CQEAAfvnlFyxfvhzR0dH49ddfUbVqVbi5uRX43Zdffhnly5fHZ599hs8//xxZWVkIDAxE8+bN0b9/f7NjIiIiMkYjLPFWEiIiIiKJHTx4EPXq1cOCBQvQp08fqcMhIiICwGe6iYiISIEePnyYZ9rXX38NBwcHtGjRQoKIiIiIjOPt5URERKQ4U6ZMwb59+/D888/DyckJ69atw7p16/Daa68hKChI6vCIiIj0eHs5ERERKU5KSgomTJiAY8eO4d69ewgODkbfvn3x4Ycf8re2iYhIVjjoJiIiIiIiIrISPtNNREREREREZCUcdBMRERERERFZCR96sgKtVosrV67Ay8sLGo1G6nCIiIiIiIjshhACd+/eRfny5eHgIP11Zg66reDKlSt8cyoREREREZGELl68iAoVKkgdBgfd1uDl5QXgWSV7e3tLHA0REREREZH9yMzMRFBQkH5cJjUOuq1Ad0u5t7c3B91EREREREQSkMujvtLf4E5ERERERESkUhx0q5RczuqYQkmxAsqJVylx6mg0GsXFDCgvz7kpPX4dpbaf/KihLGqoEyWXQalx58ZyyI8ayqKGMuiopSxK7m9NwUG3SgkhVN1wpaSE3Go0GgghpA6jSJQWL6DMPBsj9/ZsKjXUhY4S+hlTKL1OlBq/GtoOyRvbmLwovT508Su1zzUFB90kKaV3EmR5bBO2pYYdnJrbjFLLptS486PE8qhh2wbUcQJK6fHnpvS2pZYT5jpKL4s9DLgBDrpJBpS6kcl1JyrXuEyhpLagtp220qmxLnRlUuo2rZY6UVo5lNpe1E5p7cgUbGtkKWrcPnLjoFvF5H52WM6xFUbunYPc4yuMktsG2ZbaT34osWxq3X6VVC4ltpuCyP14piBKjbswSm1jaq0PQJllU2LM5uKgmySl1E5brtTQeSmhTaghzzkp+YDWXiitfpSwHReFUsqjtHZSVEotn1Laj71QY30ouUxKjr0oOOi2A3LcSckxpqKS60BFLZ2XHHObk1ryTPKnpLam5jsP5Nrn56bm/CuNEtpLcShlm7AnSqoPJcVqCRx0q5ycd1Jyjo2kxbYhDaXtANU8wDNG7vUj9/jUzl62B6W1M3uoE6VQWtspKiW2NSXGbC4Ouu2EnDoaOcViCXIpj1zisCQ5lkmOMVmCPe34lEgp9aOUOM3FK3vSUlL7sqd2oqSyKqkNmYN9lHxx0G0H5NjByDEmc8itHHKLpzjkXBY5x0YkBR7kScve8i/38trLTyAByimj3NuMpcm9vHKPzxo46LYjcmjgcojBGqQul9TrtyY5lU1OsViDks6Q28uttLnJuX7spT7kup3YU/6VQClxWooct4nc7KVOlPJzk/ZSHzocdNsJOTVsOcViCXIpj1zisCQ5lkmOMZF9kGvbk/uBndrZa/7lWm65xmVNcu2bgGf1YY8naeU88JZjTLbAQbedsdeGrmasU9uwpzzLvaxyj8/a5Fh+ezugBeRVD/aWf7mXV+7xWYuctgnAvm7zN0bO5ZZzbNbCQbcdkbqBy60ztiSpbzeUum6tSerc5qTmPOvI+ex4TvZQF8bYa7nlRi71IPft1NrkVn65xWNLct13yGVblYqcjqEA+bUPW1L1oHv8+PH620p0f9WqVSvwO0uWLEG1atXg5uaGWrVqYe3atTaK1jak3vjU3vnZOrf23HnZkr3lWa4HT4A8Y7Jn9njbZk5yaI/2mn+5lluucdmCnPYdcoiBjLPXbUTVg24AqFmzJv7991/93/bt2/Od988//0Tv3r3x6quv4sCBA4iNjUVsbCyOHDliw4jVyR46P1t3IvZ225RUbcje8qwj5/LKOTZbkPrkKT0j9QDD3k946MhlW5BLHFKTU5uUUyxSk7p96i5+2jPVD7qdnJwQEBCg/ytTpky+837zzTdo164dRo4cierVq+Pjjz9G/fr18e2339owYtuQouHbS+dny9zaS06lKqe9Drh15Da4k1MsxPoApBt4M/fPyK1vlls8UpF638ETUoakzkXOYympY5GS6gfdp0+fRvny5REeHo4+ffrgwoUL+c67c+dOREdHG0yLiYnBzp07rR2mTdlzg7c2Wx2A2esBF08W2S97PwGSm9QHtTnjsHe8y0l6Um8LUq9frpgXeZGiPthf/UfVg+7IyEgkJSVh/fr1mDlzJtLS0tC8eXPcvXvX6PxXr16Fv7+/wTR/f39cvXq1wPVkZWUhMzPT4E8JbLXx2dsZR1uV1Z5yCtj+ihIPFp6Rw+COO+388dZmebDVdsJtIS+pb/PPHQc9I/UdamRIyvbJbeMZWQ66Hz16hKysrGIvp3379ujevTtq166NmJgYrF27Funp6Vi8eLEFovxPYmIifHx89H9BQUEWXb412GoDsNfOz5oHYPZ8sGvrOwnsNc9ywrrIn+5WPVs/K2ev/boprJkbbgv5k3Lgze2hYLxDTV5sva9gXfxHFoPu1NRUvP3222jcuDE8PT1RokQJeHh4wMvLC40bN8aIESOQmppa7PX4+vqiSpUqOHPmjNHPAwICcO3aNYNp165dQ0BAQIHL/eCDD5CRkaH/u3jxYrFjtRVbbHzc4CyHO3fbHVyx3f5H6qvdrIuC2TI/HPjlz5p9E/NeOClyw3opmBSPXrAu8pezj+JjkLYn2aD7yZMn+PbbbxEeHo7WrVtj/vz58PX1xSuvvIJRo0Zh5MiRePnll+Hr64sFCxagdevWCAsLw7fffosnT56Ytc579+7hn3/+Qbly5Yx+HhUVhU2bNhlMS0lJQVRUVIHLdXV1hbe3t8GfEli7Y7L3zs9aAxV7zqmOXG4nJOti/RYN7wCRnjX7Jua9cLY8QcjtwXTsy+Uj58vMrD345rZhyEmqFVeqVAmPHz9GXFwcevTogfr16xc4/759+7BkyRJMmjQJX3zxBc6dO1foOt577z106tQJISEhuHLlChISEuDo6IjevXsDAPr164fAwEAkJiYCAIYPH46WLVviyy+/RIcOHbBo0SLs3bsXs2fPLnZ55cwag2N2sP+xVH6ZU0PWOriy95NFBZEiN6wL01h7sMEBhuksXRfs+4tGl39rtlVuD6azxYkQ1kfR5R54WzJ37LOMk2zQPWbMGMTHx8PV1dWk+Rs0aIAGDRpg4sSJmDt3rknfuXTpEnr37o1bt27Bz88Pzz33HHbt2gU/Pz8AwIULF+Dg8N/F/qZNm2LhwoX46KOPMGbMGFSuXBkrVqxARERE0QuoEDmfB7TUBsfO7z+W2tkwp/mzRtulvKS+xZwKZ63BBvuforNUXTD35rPWwJt1Yh5rX+BhfZjHWicJWR95aQSzYnGZmZnw8fFBRkaGYm41t9RGwo0tr+LmhDktmCXzw6vcBbNlW2S7N4818sbtwjzmDghyHwAz9+axVh/C7cE8lh4gcx9hOcXJpbEBu1zqRG7jMcmudJO8WOKKNztA43K/XdjU/PAMrmmKc5aWB7dFY407YwpbHxWNNa5asB7MU9Bzk8Zyyv7Isqxxdw63B/MZ2x54vCkP5u7bWQ9FI9mg28HBwazOMDs72wrREJD3BTDmbETc8Iwrys6Gg+2iM+dWTubZPOaeRCoKHtgWnyVvbabiyVkPupzmrB/2RdbF96rIS3GfJeZAzzpyn6Qq7CQg66HoJBt0jxs3Lk+FLl++HEePHkVMTAyqVq0KADhx4gQ2bNiAiIgIxMbGShApmYI7I9MYO/jigZdl5HdVo6ArSsyzefgCFnnLfWIk92f5MTYQ5DZiWfld/WaercNSJwm5PVieOVdXWQ/Wlfs4Kr99PevBPJINusePH2/w/9mzZ+P69es4cuSIfsCtc/z4cbRu3Rrly5e3YYT2y9SdFA8Yiie/A2Pm0nzGzsTmd3KDeS6+nDktTj65DVhefiebjNVVflc3WA/Ww9zajjknOuT8nKqaGBt455d77rttw1h+eXHIMiT7ne7cPv/8cwwbNizPgBsAqlevjmHDhmHKlCkSRGafcl+RNfZnbF4qGiFEnj+ynJw5zbljZ54tz5wr1LnrhHVjXcYOnHIeyLIeSM1yt21jfVZ+J8K5PVhPfo/f5fzjgFseuH8oHtm8SO3SpUtwdnbO93NnZ2dcunTJhhERrwySWrDtWldxXrDGurEtY3fYsA7I3pj7CAZZR2E5Z52QGsjmSndERARmzJiBy5cv5/ns0qVLmDFjBmrVqiVBZMSzWkRUmIJuZ87vihJJg1e0iYzf3cHtgYisRTZXur/66ivExMSgSpUq6Nq1KypVqgQAOH36NFasWAEhBBYsWCBxlEREVBBjt2bmvm2Qd88QERGRPZHNoPu5557D7t27MXbsWCxfvhwPHz4EALi7uyMmJgYTJkzglW4iIhnLbxCd3zN7RERERPZAI2R45KPVanHjxg0AgJ+fHxwcZHMXvEkyMzPh4+ODjIwMeHt7Sx0OERERERGR3ZDbeEw2V7pzcnBwgL+/v9RhEBERERERERWLrAbdjx49wm+//Yb9+/cjIyMDWq3W4HONRoMffvhBouiIiIiIiIiIikY2g+7z58/j+eefx7lz5+Dr64uMjAyUKlUK6enpyM7ORpkyZeDp6Sl1mEREREREREQmk83D0iNHjkRGRgZ27dqFU6dOQQiBX3/9Fffu3cPkyZPh7u6O5ORkqcMkIiIiIiIiMplsBt2bN2/GG2+8gcaNG+tfnCaEgKurK0aOHIk2bdpgxIgR0gZJREREREREVASyGXQ/ePAAoaGhAABvb29oNBpkZGToP4+KisL27dslio6IiIiIiIio6GQz6A4ODsalS5cAAE5OTggMDMSuXbv0nx87dgxubm5ShUdERERERERUZLJ5kVrr1q2xcuVKJCQkAADi4+ORmJiIO3fuQKvVYv78+ejXr5/EURIRERERERGZTjaD7tGjR+Ovv/5CVlYWXF1dMWbMGFy5cgVLly6Fo6MjXn75ZUydOlXqMImIiIiIiIhMphFCCKmDUJvMzEz4+PggIyMD3t7eUodDRERERERkN+Q2HpPFM90PHjxAgwYNMGvWLKlDISIiIiIiIrIYWQy6PTw8kJaWBo1GI3UoRERERERERBYji0E3ALRr1w7JyclSh0FERERERERkMbIZdI8dOxanTp1C3759sX37dly+fBm3b9/O80dERERERESkFLJ5kZqDw3/j/4JuM8/OzrZFOMUitwf3iYiIiIiI7IXcxmOy+cmwcePGWfyZ7sTERCxbtgwnTpyAu7s7mjZtismTJ6Nq1ar5ficpKQn9+/c3mObq6opHjx5ZNDYiIiIiIiJSP9kMusePH2/xZW7duhVDhw5Fo0aN8PTpU4wZMwZt27bFsWPHUKJEiXy/5+3tjZMnT+r/zxe8ERERERERkTlkM+i2hvXr1xv8PykpCWXLlsW+ffvQokWLfL+n0WgQEBBg7fCIiIiIiIhI5WTzIjVbyMjIAACUKlWqwPnu3buHkJAQBAUFoUuXLjh69GiB82dlZSEzM9Pgj4iIiIiIiEiyQXeNGjXw008/4fHjxyZ/JysrC3PnzkWNGjWKvD6tVosRI0agWbNmiIiIyHe+qlWr4scff8TKlSuxYMECaLVaNG3aFJcuXcr3O4mJifDx8dH/BQUFFTk+IiIiIiIiUh/J3l4+ZcoUTJkyBdnZ2ejcuTOio6NRv359hIWFwcPDAwBw//59pKWlYe/evdi4cSNWr14NFxcXjBw5EqNGjSrS+l5//XWsW7cO27dvR4UKFUz+3pMnT1C9enX07t0bH3/8sdF5srKykJWVpf9/ZmYmgoKCjL4tT6PRQCYvjCciIiIiIlIdub29XNKfDLt79y5++OEHJCUl4dChQ/oXljk5PXvU/OnTpwAAIQQiIiIwYMAADBgwoMiJGzZsGFauXIlt27YhLCysyHF2794dTk5O+OWXX0ya31gl5/cyNg7AiYjkTdd/s78mIiJSBg6683Hu3Dn8+eefOHHiBG7dugUAKF26NKpVq4aoqCizBstCCLz55ptYvnw5UlNTUbly5SIvIzs7GzVr1sQLL7yAqVOnmvSd3JWc3wEbB+JERPKWs//O3Zfn7sPZdxMREcmD3Abdsnl7eWhoKEJDQy26zKFDh2LhwoVYuXIlvLy8cPXqVQCAj48P3N3dAQD9+vVDYGAgEhMTAQATJ05EkyZNUKlSJaSnp+Pzzz/H+fPnMXDgQLNiKOgKibFpGo2Gt6ATEclA7v5bN/DOOdjOOQBn301ERETGyGbQbQ0zZ84EALRq1cpg+ty5cxEfHw8AuHDhAhwc/nuf3J07dzBo0CBcvXoVJUuWRIMGDfDnn3+a9fI2Hx8fAEW7+pHzAI4Hb+bhraCkBryKKq38+pH86iHngJx1ZR3GTnbknp77M7I87mPlLb/thIikJZvby9XEErczcKdWdPndrg8wj6Qs+d3GzHZsG8XJNwfd1mHsNv+cuK1YX0H7WGNYB9Zlan2wHqTBkx/S4+3lZBJeNSmagjq33LeDGpuHTFPQwS5ZhrFBg7HbmnN+RsVj6byy37YsY7f554f7TusoyskM3bysA+soygUGbgvSMHbinHVge7o7juWCg24Zy++MPhkq7Gwid0LmM2UwwitLxWPqgI/vgLAuS+Uw9wkS1k3xmJNHDrwtq6h1wPccWI85dcH+yLb48mR5kOP4yaHwWWyjUqVK+f4Otj0r6AqXvcu9IzHngICMy3mwlPsvN+bTfLnbb1Hase57OZdDRWeNQUHOemT/bb7iDBSYf8uwVB1Q8ZlbF8b6I9aJZeTMZ0EnN3Lv23Pu71kXlqfLaUZGhsSRGJLNle6zZ89i79692LdvH06dOgVvb29Ur14d4eHhUocmOZ61z6u4Z22Z0/wV98pSUb9rryyVK+605YtX/Mxnie3D2MCbdWAaSz2Pyn2tZVliewDYJ1mCucdK+S2LdWG+/O4YzMzMlCCa/MnmRWoODg5Gn4GoWbMmxowZg169ekkZXpFY68F9HjQ8Y8k8MKeGLJEPvjykcNZod9xpF50tc8a+xjTWzBPrwDTW6p90mP+isVa75fZgPkvnjvvv4smvPuT2IjXZ3F4OAM7Ozhg/fjxSU1OxYcMGfPrpp3BxcUGfPn0wZMgQqcOTHDdI7iSUoKi3SNsraw4qSH64TRTO2v0766Bw1qqD3Lc4k2msmStuD8VjyfzxjjXzKWlcIKsr3e+//z4SExPzfPbVV1/hvffew48//oi4uDgJoisaa55ZUVLjsgZrnA2095zq8OqrbVj7Sh7zbRopcsX6yZ+t+mH29/mzZR0w/4VjfciTtfLFvqnoCssZr3Tnw93dHRUqVDD62dtvv42ePXti2rRpNo5Kfux5Y7TWWUCefbfNLZ30H2teyWO+CydVjlg/BbPF/s2e96GmsFUdcDsomK0HYKwP6fFY1DxK6tNlM+iuVq0afv/993w/b968OY4dO2bDiOTN3jZKW912aG95BaybWyV1hrZgq/bFt9MWjm1TPmx9pY2DvrykuvOD8rL1gJt9oemsvZ3wVxfUTTaD7sGDB2P9+vV488038fDhwzyf79ixAx4eHhJEJj/22kFau9z2mFdb7Nx5gPuMrQ6k+OxkwaTOCbcH+WA9PCNFHuxxf1sUUuSH20PBbHViivtw0yjxsQjZ/GTYa6+9huPHj+Obb77BokWL0L59e0RERMDFxQUbN27EunXrEB8fL3WYsqLEBmcOW3Y6ugNie8qrPZRValLkmoO7vNjm5Ueq/pbbhyGptgl72d+aSupHX1gfeUm132Cd5E+pfbdsXqSm88cff+Crr77Cxo0bce/ePf302NhYJCUlyeJB+MLY6sF9e9kQbV1OezkwlyKvas+pMVK3J3vNe25S10NOcopFalK2T9aD9Dlg/2RI6nxI3R7kRg75kLpNyJGpOZHbi9RkN+jWyc7Oxrlz53D37l0EBwejVKlSUodkMg66LUeqDk/tuZUir3LYedmaHMqs9rZsCjnUQ25yjMnW5JADOcQgFTmUXQ4xyIVcciGXOKQmlzzIJQ65KEo+5Dbols3t5bk5OjqiYsWKUocha/ZyKzTPwFsHb5WyDanLai/9RGHkVn573R5yk7rs9n6buVzyb+/bgY4ccmDv20ROrA95UfoJCNm8SI0oNyk7GaVu0KZgXm2DO0l5kHM92PPLcuQ0yLLHg1o5lVcu7UBKcqoPwD63iZzkWHY5xmRLSh9wAxx0q4KaN0SpNy615pZ5tQ2p85yTveTcGDnVQ25yjs1a5NoW5RqXpcn14NVe8p8fudUHYN91Iqf6kFMsUpBrn1VUHHQrnNIbYH7kcBVE6vVbgxx2oGrMa25yyHNO9pBzpZNbm7EWuR48yS0ea5Nbee39rg85klsbIfsk132GOTjoVgG13QakprLIkRw6LrW1WWPkkGd7J4eTd6ZQQoyWJOfyqr1fkvM2Ide4rEkJAwq1bxO5yXUbsYfjpvzIsT7MwUE3yZJcNjB77uRIfdiW5U3t9SP38sllv2Pv5N5OLE3O7U7OsREpDQfdKsHBIRVGbmdv1dpm5ZZnHTnGRP+xl/pRQjnV2C8ByiiXEtqHpSihPuyN3OtErcdN+VFbWTnoVhmlN1C5xi/XuIiKyl7aslxPftgrpdSHEmIsDqWUz176KSXUh70N9JRQJ6wPZeKgW0XU0jDlVg65xWMOuR7wqm1nLveyyLEN0H/Utj0omdrqQUnlsYd+Sq77ZHumlG3EXl46qMbycdBNsiH3DUzu8ZE8KOFASu1tWe3lUxql1YcStmFzqLVcSqO07UFHqXEXhVK2EXsZeCulPkzFQbfKKP1KiVw3MLnGZQolnFFXcptVGrm3BUuxl3IqBetDOkrsX5V+LFMYpW0PSou3qJRwnJSb0uIlOxl0T58+HaGhoXBzc0NkZCT27NlT4PxLlixBtWrV4Obmhlq1amHt2rU2ipTkTmkHAUqIVy07DiXttNV+QKtkrBv5UFM9KKVvInlT0zaho+QyqXV/ocYyAXYw6P7111/xzjvvICEhAfv370edOnUQExOD69evG53/zz//RO/evfHqq6/iwIEDiI2NRWxsLI4cOWLjyItHaQ1WCfEq9aBFqXEriRLarzFKjbsgSjr5YQ+UWh9KjNkYpW/jSo8/N6VuD4A6b2lWwu+k2ys11olGqLFUOURGRqJRo0b49ttvAQBarRZBQUF48803MXr06Dzz9+zZE/fv38eaNWv005o0aYK6deti1qxZJq0zMzMTPj4+yMjIgLe3t2UKUkRK69iVEq+SOmjGahtKj12JcedHyXWRk1rKASi7jamhHpScf0D58eemhvKooQw6aiiLGvqpnCxZHjmMx3JS9ZXux48fY9++fYiOjtZPc3BwQHR0NHbu3Gn0Ozt37jSYHwBiYmLynR8AsrKykJmZafBHplPSWVOldWpKiVcpceZHqfGr8dY0pdZFTmoogxqwHuRBLX2UWsqhlv2GGsoAqLOfUmOZAJUPum/evIns7Gz4+/sbTPf398fVq1eNfufq1atFmh8AEhMT4ePjo/8LCgoqfvDFpKQGK4RQXLxKoJQ4dZQWr45S49ZRevw5sSzyo/RyMH5pKe34oCBqK4vSsT7kSU1lyU3Vg25b+eCDD5CRkaH/u3jxotQhERERERERkQw4SR2ANZUpUwaOjo64du2awfRr164hICDA6HcCAgKKND8AuLq6wtXVtfgBExERERERkaqo+kq3i4sLGjRogE2bNumnabVabNq0CVFRUUa/ExUVZTA/AKSkpOQ7PxEREREREVF+VH2lGwDeeecdxMXFoWHDhmjcuDG+/vpr3L9/H/379wcA9OvXD4GBgUhMTAQADB8+HC1btsSXX36JDh06YNGiRdi7dy9mz55t8jp1zyPwhWpERERERES2pRuHyeU5cdUPunv27IkbN25g3LhxuHr1KurWrYv169frX5Z24cIFODj8d8G/adOmWLhwIT766COMGTMGlStXxooVKxAREWHyOm/dugUAsnihGhERERERkT26desWfHx8pA5D/b/TLYX09HSULFkSFy5cKFYlN2rUCH/99Vex47HEcuSyjMzMTAQFBeHixYvF+s09uZRHLrFYKq+WiMVSy5BLLGrMrVzqR079gaWWI5dlMLfWW4accqum+mFfa73lyKnNWmo5comFubXeMjIyMhAcHIw7d+7A19e3WMuyBNVf6ZaC7sq5j49PsTYgR0dHi/yYuyWWI5dl6Hh7e0ueW7XVD1D8vFoqFubWerHIZRmWXI4c+gNLLUcuy9Bhbi2/DB055FZt9QOwr7XmcuTQZi21HDnFAjC31liGTs47mqUkjyjIqKFDh8pmOXJZhqXIqTxyisUS5FQeOcViCXIpj5zqxxLkVB65LMNSmFvrkVN55BSLJcilPHKqH0uQU3nkFIslyKk8clmG3PD2civIzMyEj48PMjIyLHaWhp5hbq2DebUe5tZ6mFvrYW6th7m1DubVephb62FurUduueWVbitwdXVFQkICf7vbCphb62BerYe5tR7m1nqYW+thbq2DebUe5tZ6mFvrkVtueaWbiIiIiIiIyEp4pZuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aDbwqZPn47Q0FC4ubkhMjISe/bskTokSW3btg2dOnVC+fLlodFosGLFCoPPhRAYN24cypUrB3d3d0RHR+P06dMG89y+fRt9+vSBt7c3fH198eqrr+LevXsG8xw6dAjNmzeHm5sbgoKCMGXKlDyxLFmyBNWqVYObmxtq1aqFtWvXWry8tpSYmIhGjRrBy8sLZcuWRWxsLE6ePGkwz6NHjzB06FCULl0anp6e6NatG65du2Ywz4ULF9ChQwd4eHigbNmyGDlyJJ4+fWowT2pqKurXrw9XV1dUqlQJSUlJeeJRS9ufOXMmateuDW9vb3h7eyMqKgrr1q3Tf86cWs5nn30GjUaDESNG6Kcxv+YZP348NBqNwV+1atX0nzOvxXP58mW88sorKF26NNzd3VGrVi3s3btX/zn3ZeYJDQ3N0241Go3+N3rZbs2TnZ2NsWPHIiwsDO7u7qhYsSI+/vhj5Hx3Mtus+e7evYsRI0YgJCQE7u7uaNq0Kf766y/958ytaZQ0RjAllkIJsphFixYJFxcX8eOPP4qjR4+KQYMGCV9fX3Ht2jWpQ5PM2rVrxYcffiiWLVsmAIjly5cbfP7ZZ58JHx8fsWLFCvH333+Lzp07i7CwMPHw4UP9PO3atRN16tQRu3btEn/88YeoVKmS6N27t/7zjIwM4e/vL/r06SOOHDkifvnlF+Hu7i6+++47/Tw7duwQjo6OYsqUKeLYsWPio48+Es7OzuLw4cNWz4G1xMTEiLlz54ojR46IgwcPihdeeEEEBweLe/fu6ecZMmSICAoKEps2bRJ79+4VTZo0EU2bNtV//vTpUxERESGio6PFgQMHxNq1a0WZMmXEBx98oJ/n7NmzwsPDQ7zzzjvi2LFjYtq0acLR0VGsX79eP4+a2v6qVavE77//Lk6dOiVOnjwpxowZI5ydncWRI0eEEMyppezZs0eEhoaK2rVri+HDh+unM7/mSUhIEDVr1hT//vuv/u/GjRv6z5lX892+fVuEhISI+Ph4sXv3bnH27FmRnJwszpw5o5+H+zLzXL9+3aDNpqSkCABiy5YtQgi2W3N9+umnonTp0mLNmjUiLS1NLFmyRHh6eopvvvlGPw/brPl69OghatSoIbZu3SpOnz4tEhIShLe3t7h06ZIQgrk1lZLGCKbEUhgOui2ocePGYujQofr/Z2dni/Lly4vExEQJo5KP3BuUVqsVAQEB4vPPP9dPS09PF66uruKXX34RQghx7NgxAUD89ddf+nnWrVsnNBqNuHz5shBCiBkzZoiSJUuKrKws/Tzvv/++qFq1qv7/PXr0EB06dDCIJzIyUgwePNiiZZTS9evXBQCxdetWIcSzXDo7O4slS5bo5zl+/LgAIHbu3CmEeNbhOTg4iKtXr+rnmTlzpvD29tbnc9SoUaJmzZoG6+rZs6eIiYnR/1/tbb9kyZJizpw5zKmF3L17V1SuXFmkpKSIli1b6gfdzK/5EhISRJ06dYx+xrwWz/vvvy+ee+65fD/nvsxyhg8fLipWrCi0Wi3bbTF06NBBDBgwwGDaiy++KPr06SOEYJstjgcPHghHR0exZs0ag+n169cXH374IXNrJjmPEUyJxRS8vdxCHj9+jH379iE6Olo/zcHBAdHR0di5c6eEkclXWloarl69apAzHx8fREZG6nO2c+dO+Pr6omHDhvp5oqOj4eDggN27d+vnadGiBVxcXPTzxMTE4OTJk7hz545+npzr0c2jprrJyMgAAJQqVQoAsG/fPjx58sSg3NWqVUNwcLBBfmvVqgV/f3/9PDExMcjMzMTRo0f18xSUOzW3/ezsbCxatAj3799HVFQUc2ohQ4cORYcOHfLkgPktntOnT6N8+fIIDw9Hnz59cOHCBQDMa3GtWrUKDRs2RPfu3VG2bFnUq1cP33//vf5z7sss4/Hjx1iwYAEGDBgAjUbDdlsMTZs2xaZNm3Dq1CkAwN9//43t27ejffv2ANhmi+Pp06fIzs6Gm5ubwXR3d3ds376dubUQOeXRlFhMwUG3hdy8eRPZ2dkGHT8A+Pv74+rVqxJFJW+6vBSUs6tXr6Js2bIGnzs5OaFUqVIG8xhbRs515DePWupGq9VixIgRaNasGSIiIgA8K7OLiwt8fX0N5s2dX3Nzl5mZiYcPH6qy7R8+fBienp5wdXXFkCFDsHz5ctSoUYM5tYBFixZh//79SExMzPMZ82u+yMhIJCUlYf369Zg5cybS0tLQvHlz3L17l3ktprNnz2LmzJmoXLkykpOT8frrr+Ott97CvHnzAHBfZikrVqxAeno64uPjAbA/KI7Ro0ejV69eqFatGpydnVGvXj2MGDECffr0AcA2WxxeXl6IiorCxx9/jCtXriA7OxsLFizAzp078e+//zK3FiKnPJoSiymcTJ6TiGRr6NChOHLkCLZv3y51KKpQtWpVHDx4EBkZGVi6dCni4uKwdetWqcNSvIsXL2L48OFISUnJc5WAikd3BQsAateujcjISISEhGDx4sVwd3eXMDLl02q1aNiwISZNmgQAqFevHo4cOYJZs2YhLi5O4ujU44cffkD79u1Rvnx5qUNRvMWLF+Pnn3/GwoULUbNmTRw8eBAjRoxA+fLl2WYtYP78+RgwYAACAwPh6OiI+vXro3fv3ti3b5/UoZGM8Uq3hZQpUwaOjo553qp57do1BAQESBSVvOnyUlDOAgICcP36dYPPnz59itu3bxvMY2wZOdeR3zxqqJthw4ZhzZo12LJlCypUqKCfHhAQgMePHyM9Pd1g/tz5NTd33t7ecHd3V2Xbd3FxQaVKldCgQQMkJiaiTp06+Oabb5jTYtq3bx+uX7+O+vXrw8nJCU5OTti6dSv+97//wcnJCf7+/syvhfj6+qJKlSo4c+YM220xlStXDjVq1DCYVr16df3t+9yXFd/58+exceNGDBw4UD+N7dZ8I0eO1F/trlWrFvr27Yu3335bf4cR22zxVKxYEVu3bsW9e/dw8eJF7NmzB0+ePEF4eDhzayFyyqMpsZiCg24LcXFxQYMGDbBp0yb9NK1Wi02bNiEqKkrCyOQrLCwMAQEBBjnLzMzE7t279TmLiopCenq6wdnDzZs3Q6vVIjIyUj/Ptm3b8OTJE/08KSkpqFq1KkqWLKmfJ+d6dPMouW6EEBg2bBiWL1+OzZs3IywszODzBg0awNnZ2aDcJ0+exIULFwzye/jwYYNOKyUlBd7e3vqDzMJyZw9tX6vVIisrizktpjZt2uDw4cM4ePCg/q9hw4bo06eP/t/Mr2Xcu3cP//zzD8qVK8d2W0zNmjXL83OMp06dQkhICADuyyxh7ty5KFu2LDp06KCfxnZrvgcPHsDBwfAQ39HREVqtFgDbrKWUKFEC5cqVw507d5CcnIwuXbowtxYipzyaEotJTH7lGhVq0aJFwtXVVSQlJYljx46J1157Tfj6+hq8VdPe3L17Vxw4cEAcOHBAABBTp04VBw4cEOfPnxdCPHsFv6+vr1i5cqU4dOiQ6NKli9GfA6hXr57YvXu32L59u6hcubLBzwGkp6cLf39/0bdvX3HkyBGxaNEi4eHhkefnAJycnMQXX3whjh8/LhISEhT1swrGvP7668LHx0ekpqYa/OTKgwcP9PMMGTJEBAcHi82bN4u9e/eKqKgoERUVpf9c93Mrbdu2FQcPHhTr168Xfn5+Rn9uZeTIkeL48eNi+vTpRn9uRS1tf/To0WLr1q0iLS1NHDp0SIwePVpoNBqxYcMGIQRzamk5314uBPNrrnfffVekpqaKtLQ0sWPHDhEdHS3KlCkjrl+/LoRgXotjz549wsnJSXz66afi9OnT4ueffxYeHh5iwYIF+nm4LzNfdna2CA4OFu+//36ez9huzRMXFycCAwP1Pxm2bNkyUaZMGTFq1Cj9PGyz5lu/fr1Yt26dOHv2rNiwYYOoU6eOiIyMFI8fPxZCMLemUtIYwZRYCsNBt4VNmzZNBAcHCxcXF9G4cWOxa9cuqUOS1JYtWwSAPH9xcXFCiGev4R87dqzw9/cXrq6uok2bNuLkyZMGy7h165bo3bu38PT0FN7e3qJ///7i7t27BvP8/fff4rnnnhOurq4iMDBQfPbZZ3liWbx4sahSpYpwcXERNWvWFL///rvVym0LxvIKQMydO1c/z8OHD8Ubb7whSpYsKTw8PETXrl3Fv//+a7Ccc+fOifbt2wt3d3dRpkwZ8e6774onT54YzLNlyxZRt25d4eLiIsLDww3WoaOWtj9gwAAREhIiXFxchJ+fn2jTpo1+wC0Ec2ppuQfdzK95evbsKcqVKydcXFxEYGCg6Nmzp8HvSDOvxbN69WoREREhXF1dRbVq1cTs2bMNPue+zHzJyckCQJ58CcF2a67MzEwxfPhwERwcLNzc3ER4eLj48MMPDX42iW3WfL/++qsIDw8XLi4uIiAgQAwdOlSkp6frP2duTaOkMYIpsRRGI4QQpl8XJyIiIiIiIiJT8ZluIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIgU69y5c9BoNEhKStJPGz9+PDQajXRBFZHS4qWi0Wg0GD9+vNRhEBGRhDjoJiIi2UpKSoJGozH6N3r0aJOXM2nSJKxYscJ6gZJNsT6JiEhJnKQOgIiIqDATJ05EWFiYwbSIiAiEhITg4cOHcHZ2LvD7kyZNwksvvYTY2FgrRkm2wvokIiIl4aCbiIhkr3379mjYsKHRz9zc3GwczTOPHj2Ci4sLHByku2nswYMH8PDwkGz9REREVDjeXk5ERIpl7Jnu3DQaDe7fv4958+bpb02Pj4/Xf3758mUMGDAA/v7+cHV1Rc2aNfHjjz8aLCM1NRUajQaLFi3CRx99hMDAQHh4eCAzMxMAsHv3brRr1w4+Pj7w8PBAy5YtsWPHjjyxbN++HY0aNYKbmxsqVqyI7777zuSytmrVChEREdi3bx9atGgBDw8PjBkzBgCQlZWFhIQEVKpUCa6urggKCsKoUaOQlZVlsIyUlBQ899xz8PX1haenJ6pWrapfhs7169fx6quvwt/fH25ubqhTpw7mzZtnMI8u71988QVmz56NihUrwtXVFY0aNcJff/1lMO+hQ4cQHx+P8PBwuLm5ISAgAAMGDMCtW7cM5tM9237mzBnEx8fD19cXPj4+6N+/Px48eKCfr7D6zO3x48cYN24cGjRoAB8fH5QoUQLNmzfHli1bzC4TACxZsgQ1atSAm5sbIiIisHz5csTHxyM0NDTfWHRMaXNERKQevNJNRESyl5GRgZs3bxpMK1OmjEnfnT9/PgYOHIjGjRvjtddeAwBUrFgRAHDt2jU0adIEGo0Gw4YNg5+fH9atW4dXX30VmZmZGDFihMGyPv74Y7i4uOC9995DVlYWXFxcsHnzZrRv3x4NGjRAQkICHBwcMHfuXLRu3Rp//PEHGjduDAA4fPgw2rZtCz8/P4wfPx5Pnz5FQkIC/P39Tc7DrVu30L59e/Tq1QuvvPIK/P39odVq0blzZ2zfvh2vvfYaqlevjsOHD+Orr77CqVOn9M8+Hz16FB07dkTt2rUxceJEuLq64syZMwYnBx4+fIhWrVrhzJkzGDZsGMLCwrBkyRLEx8cjPT0dw4cPN4hn4cKFuHv3LgYPHgyNRoMpU6bgxRdfxNmzZ/W3/KekpODs2bPo378/AgICcPToUcyePRtHjx7Frl278rxErkePHggLC0NiYiL279+POXPmoGzZspg8eXKh9WlMZmYm5syZg969e2PQoEG4e/cufvjhB8TExGDPnj2oW7dukcv0+++/o2fPnqhVqxYSExNx584dvPrqqwgMDCy0Dova5oiISAUEERGRTM2dO1cAMPonhBBpaWkCgJg7d67+OwkJCSL37q1EiRIiLi4uz/JfffVVUa5cOXHz5k2D6b169RI+Pj7iwYMHQgghtmzZIgCI8PBw/TQhhNBqtaJy5coiJiZGaLVa/fQHDx6IsLAw8X//93/6abGxscLNzU2cP39eP+3YsWPC0dExT7zGtGzZUgAQs2bNMpg+f/584eDgIP744w+D6bNmzRIAxI4dO4QQQnz11VcCgLhx40a+6/j6668FALFgwQL9tMePH4uoqCjh6ekpMjMzhRD/5b106dLi9u3b+nlXrlwpAIjVq1cb5CK3X375RQAQ27Zt00/T1duAAQMM5u3atasoXbq0wbT86tOYp0+fiqysLINpd+7cEf7+/gbrKkqZatWqJSpUqCDu3r2rn5aamioAiJCQEIN1ARAJCQn6/5va5oiISD14ezkREcne9OnTkZKSYvBXXEII/Pbbb+jUqROEELh586b+LyYmBhkZGdi/f7/Bd+Li4uDu7q7//8GDB3H69Gm8/PLLuHXrlv779+/fR5s2bbBt2zZotVpkZ2cjOTkZsbGxCA4O1n+/evXqiImJMTlmV1dX9O/f32DakiVLUL16dVSrVs2gDK1btwYA/W3Uvr6+AICVK1dCq9UaXf7atWsREBCA3r1766c5Ozvjrbfewr1797B161aD+Xv27ImSJUvq/9+8eXMAwNmzZ/XTcubr0aNHuHnzJpo0aQIAefILAEOGDDH4f/PmzXHr1i39rfxF5ejoCBcXFwCAVqvF7du38fTpUzRs2NDo+gsr05UrV3D48GH069cPnp6e+vlatmyJWrVqFRiLOW2OiIiUj7eXExGR7DVu3DjfF6mZ68aNG0hPT8fs2bMxe/Zso/Ncv37d4P+536B++vRpAM8G4/nJyMhAVlYWHj58iMqVK+f5vGrVqli7dq1JMQcGBuoHkDljOH78OPz8/AosQ8+ePTFnzhwMHDgQo0ePRps2bfDiiy/ipZde0r8M7vz586hcuXKel8NVr15d/3lOOU8gANAPVu/cuaOfdvv2bUyYMAGLFi3Kk8+MjIw88Ra0TG9vb6NlLMy8efPw5Zdf4sSJE3jy5Il+eu76LGz9wH85qFSpUp7vVqpUqcBBszltjoiIlI+DbiIisku6q72vvPJKvoPm2rVrG/w/51XbnMv4/PPP8zwbrOPp6ZnnhWbmyr1+XQy1atXC1KlTjX4nKChI/91t27Zhy5Yt+P3337F+/Xr8+uuvaN26NTZs2ABHR8cix5Pfd4QQ+n/36NEDf/75J0aOHIm6devC09MTWq0W7dq1M3rF3ZRlFsWCBQsQHx+P2NhYjBw5EmXLloWjoyMSExPxzz//WH39OZnT5oiISPk46CYiItXL/bIuAPDz84OXlxeys7MRHR1t1nJ1L/Dy9vYucBl+fn5wd3fXXxnP6eTJk2atO2cMf//9N9q0aWO0nDk5ODigTZs2aNOmDaZOnYpJkybhww8/xJYtWxAdHY2QkBAcOnQIWq3W4Gr3iRMnAAAhISFFiu3OnTvYtGkTJkyYgHHjxumnG8tDURRWzpyWLl2K8PBwLFu2zOB7CQkJZq1bl4MzZ87k+czYtJws0eaIiEh5+Ew3ERGpXokSJZCenm4wzdHREd26dcNvv/2GI0eO5PnOjRs3Cl1ugwYNULFiRXzxxRe4d+9evstwdHRETEwMVqxYgQsXLug/P378OJKTk4tYGkM9evTA5cuX8f333+f57OHDh7h//z6AZ7d556a7Oq+7Ev/CCy/g6tWr+PXXX/XzPH36FNOmTYOnpydatmxZpNh0V41zXyX++uuvi7Sc3IzVZ1Fi2L17N3bu3GnWusuXL4+IiAj89NNPBnW+detWHD58uNBYitvmiIhIeXilm4iIVK9BgwbYuHEjpk6divLlyyMsLAyRkZH47LPPsGXLFkRGRmLQoEGoUaMGbt++jf3792Pjxo1GB6o5OTg4YM6cOWjfvj1q1qyJ/v37IzAwEJcvX8aWLVvg7e2N1atXAwAmTJiA9evXo3nz5njjjTf0g9maNWvi0KFDZpetb9++WLx4MYYMGYItW7agWbNmyM7OxokTJ7B48WIkJyejYcOGmDhxIrZt24YOHTogJCQE169fx4wZM1ChQgU899xzAIDXXnsN3333HeLj47Fv3z6EhoZi6dKl2LFjB77++mt4eXkVKTZvb2+0aNECU6ZMwZMnTxAYGIgNGzYgLS3N7PIC+denMR07dsSyZcvQtWtXdOjQAWlpaZg1axZq1Khh9ESJKSZNmoQuXbqgWbNm6N+/P+7cuYNvv/0WERERhS6zuG2OiIiUh4NuIiJSvalTp+K1117DRx99hIcPHyIuLg6RkZHw9/fHnj17MHHiRCxbtgwzZsxA6dKlUbNmTf3vQhemVatW2LlzJz7++GN8++23uHfvHgICAhAZGYnBgwfr56tduzaSk5PxzjvvYNy4cahQoQImTJiAf//9t1iDbgcHB6xYsQJfffUVfvrpJyxfvhweHh4IDw/H8OHDUaVKFQBA586dce7cOfz444+4efMmypQpg5YtW2LChAnw8fEB8Oy579TUVIwePRrz5s1DZmYmqlatirlz5yI+Pt6s+BYuXIg333wT06dPhxACbdu2xbp161C+fHmzy5xffRoTHx+Pq1ev4rvvvkNycjJq1KiBBQsWYMmSJUhNTTVr/Z06dcIvv/yC8ePHY/To0ahcuTKSkpIwb948HD16tMDvWqLNERGRsmiEJd4MQkRERGTn6tatCz8/P4v8pB0REakHn+kmIiIiKoInT57g6dOnBtNSU1Px999/o1WrVtIERUREssUr3URERERFcO7cOURHR+OVV15B+fLlceLECcyaNQs+Pj44cuQISpcuLXWIREQkI3ymm4iIiKgISpYsiQYNGmDOnDm4ceMGSpQogQ4dOuCzzz7jgJuIiPLglW4iIiIiIiIiK+Ez3URERERERERWwkE3ERERERERkZXwmW4r0Gq1uHLlCry8vKDRaKQOh4iIiIiIyG4IIXD37l2UL18eDg7SX2fmoNsKrly5gqCgIKnDICIiIiIislsXL15EhQoVpA6Dg25r8PLyAvCskr29vSWOhoiIiIiIyH5kZmYiKChIPy6TGgfdVqC7pdzb25uDbiIiIiIiIgnI5VFf6W9wJyIiIiIiItXTaDSyGQjbEgfdRERERApkrwevRKRMGo0GQgipw5AEby8nIiJSiJwDLDkcuOjikUMstiSHesgZgz0eyNpr2yMylRz6qZxyx2Nv/RavdBORrOmu5PBqDtk73QGK3A5SdAdP9iL3YE/KssuxPdhCzoN1ObU9e99fyan8copFCnLqp3Ku3x77Kx0OuokUTO07FDl00va+45Yb1sN/pM5F7qsUUsdjS7pyy+Eqty4Oe8q/jpwO4OV6UsxW5LC/zk0uA06pSN1P5SaXOKTCQbcdkqLzsYeBi63LmPvWQrXKudOQqpz2uOOW4/aqi0ducdmCsUGWnMgtHluTok3aa85zn+yRwwkHY+uXOiYpyGF/Dcjvtmq5kFublLqd2BoH3XZGioNWOZ79tDRbn+HOmVO15lUOHXHOgzu15tkYOZ7Qyd3m5RKXLRlrg1Llwd6exSuIrfPA3MtT7hMBJK3cdWBP+wxjZZX6jkFuExx025XcA0NbdkD2dAuirQYE9tCB5S6jvQ62pCBVX1EQe2jzRSHHfMilrVhLQQePai+7nEm5b2C9579dSHVnpbFjB3vDfkp+OOi2U7a8Iqv2s7/5dWDW6thsvT57xTOzz8ghB2zbBbN1fvLbNuTQVqQi1T41dwzcVqRhz20/P8yJ/EhRJzyW+g8H3XaOO2jLsPVZVXs+iyv1s91q32bkdMUiJ971YJw9bftKwDZpXYUdwMst/3KLRwpSPM5IBWOepMFBt52Q4nYbbtSWx5zaBs/MGpL6WTB7J6ccyCkWueE+VVpyu4rHfYg0OWDeC2bL/LDPMsRBN1lVfrcg2suGaI1y2sMOxZRBr720IbKPNl+YgnJg6z6V9VEwa9YFc09yI5f9dWHrsKdjT1PYKheFtQ17qhcOuu2ctRq7vWxABeHBkfVYM7dsu/ljbuybvde/KYMLa/VN9p57U9nyAJ51YhpbHgvxuEvafip3HGSIg26yGnvo/Gx5hrewddnT2UJrs4e2a4zcbpVkey4a/mqCfPAuJ/vAOiHKH7cPQxx0EwAe3FoLOxzrscZJBlOWx5MbtsUTTaaRS1/DOrF8Xdh7Ps3BnMmLtfsFvoel6KxZJ9z+jOOg2w6YcoXUluuzR8XtgJhT22Ge88cBlfxZ8yCK20bRWLIuTM29mrdRU9ugrW6d5fYgD2pt77Zirfxx+8hLFYPuR48eISsrS+owFM/WL+Kxl46SHY/1WLId2Ut7VAoe1BYd8yUflqoL9kvmk0Pu7OlYxxQc4MmLNfLG9p4/RQ66U1NT8fbbb6Nx48bw9PREiRIl4OHhAS8vLzRu3BgjRoxAamqq1GEqCg8QrM/c3HDwYTvMs2m4nduOOdu/NR674LZhnuLUhe67zH3RWftlm0VZPuvvGTkM8OzhJIg5ebb0xQu2eeM0QiGZefLkCb777jtMnToV586dQ6lSpVC/fn2Eh4ejZMmSEELgzp07SEtLw/79+3H79m2EhITg3XffxeDBg+Hs7GyzWDMzM+Hj44OMjAx4e3vbbL35MXUHYYmNpSg7IzUcyFm7vEWtEzXkFCh6OYpbbnvNs7msXf6i1Ie914Uxls6JrbdHubJFH17c9RXne3JnTjsELDsAMGeZaq0PwPxtwpIXeqRcvxzZup8q7rot8d38yG48ppRBd0hICB4/foy4uDj06NED9evXL3D+ffv2YcmSJfjpp5/g4uKCc+fO2SZQyLCSbTQQtseBS1FzC1h3Z21vOc35HcD8HYY95tkYW56gs0QcRZ1XiaQ8gCrO+tVWJ7bcN1pifWrLPyCPtiiHGORE6gGeJZajJrbupyy1bkt83xjZjceUMuj+7rvvEB8fD1dX1yJ97/Hjx5g7dy4GDx5spcjykl0lW3lgaM561MDaOxueUS+a4lwVAphnuZx44IGUISmvdppbF9w+jH8fKDyXtr7jTO0sfQLKnGWpuT5sud+11PdZH5b9vpz32bIbjyll0K0ksqtkGxxM2+PAxZo7G3veodh68FzU7+T8rpLznJscbt00Nw411UNuUh3UFmfdZFzO5yZz57Wgz+gZKbeF4q6fdZqXlAN2tdaHrU+2Sn1XVWHkNh5T5IvUqGiK2oiFKNqLJuR8lkuOdHnKL8fMp3kKy2tuzHPxWPMqd1HjMOd7alfU7SE3S13ZVQtLlEcIYVAvOf9yf14cast9cRV3Wyjud9WsuHkp6ve53y6YJfKSu48yJne/RabhoFvlrL2T4UZnHmOdGjux4jNlZ6H7POf8xVmXPbPGgJd5NWSJNmrugS1Zh25wnfvPkstXWx0W9yRQcQbexd1fsE8zztT9tQ6Pjwpnqe2+oBOElj5JaE+cpA7AVA4ODmY1puzsbCtEo366nbYpO7ri7IiUfJtPceM2tsOx5FlKe5VfXnP3H1LdaqhGlrqljfnMyxKDDVP7GB7UklxZat9o6nGNDh/TsK7c+2tjebL0oxesC9PZMlf2UC+KGXSPGzcuz0Hz8uXLcfToUcTExKBq1aoAgBMnTmDDhg2IiIhAbGxssdf72Wef4YMPPsDw4cPx9ddfF3t5SlLQwZqlDs6UvJFZakcq9TOxcmOp2K11UkOtinvyrDjtrrhn51mvBStoW7D0yShLL0culFYepcVbGEvub03ZJ1hyoKf0CwwFscb+2prr0a1DjXWhdPZQL4oZdI8fP97g/7Nnz8b169dx5MgR/YBb5/jx42jdujXKly9frHX+9ddf+O6771C7du1iLUfJCrr9R64vTiBls3SbYPsyTXHyXpzbWXklqWDW2BZy9+fWej5fTXWitPIoLV5bMvW2ZuavcNxfywvzJ2+Kfab7888/x7Bhw/IMuAGgevXqGDZsGKZMmWL28u/du4c+ffrg+++/R8mSJYsTqqQseRbSWs+fESkRtwFDua8gmYJ3IBTMWs/lsi8nyv/ZemtsF2rczpR6YkeN7zzQUXK5lNiWikqxg+5Lly7B2dk538+dnZ1x6dIls5c/dOhQdOjQAdHR0WYvQw6UvAHKnVw7CLnGZSqlxK+mbcvSj0oUlhve8q9+aqtXpZVHafEWRunlUdP+Qg2U3p6MUepJkJzUvp0o5vby3CIiIjBjxgy8/PLLCAwMNPjs0qVLmDFjBmrVqmXWshctWoT9+/fjr7/+Mmn+rKwsZGVl6f+fmZlp1nrtkVI7CDl3bnKOrTBKjl3JLH17oClXvHlLYuGUXC61bctKK4/S4i2M2sqjBkquDzW2J7WVR40UO+j+6quvEBMTgypVqqBr166oVKkSAOD06dNYsWIFhBBYsGBBkZd78eJFDB8+HCkpKXBzczPpO4mJiZgwYUKR10Xq7PikpuaXtsiJmvKr9Ofy1Nre1VoupWE9UHGpsf1wu5AXNdSH0uMvjEYouIRHjhzB2LFjsWHDBjx8+BAA4O7ujpiYGEyYMMGsK90rVqxA165d4ejoqJ+WnZ0NjUYDBwcHZGVlGXwGGL/SHRQUhIyMDHh7e5tZOvughk6C7Jda2q8ayqGGMuSmxjIR2SM1bstqLJOSqaE+LF2GzMxM+Pj4yGY8puhBt45Wq8WNGzcAAH5+fnBwMP9R9bt37+L8+fMG0/r3749q1arh/fffR0RERKHLkEslq2EDlCu551bu8eVHaXErLV4iW1LL9qHEcigx5oIovTxKj19tWB/2QS7jMR3F3l6ek4ODA/z9/S2yLC8vrzwD6xIlSqB06dImDbipaNjxkZKppe2qYTtUQxlyU2OZyDbU9piR0suh9PiNUVP7UgM11IcaylAQRQ+6Hz16hN9++w379+9HRkYGtFqtwecajQY//PCDRNFJT80NV2pyz63c48uP0uJW+w6CqDjUsm0otRxKjdsYpfe1So/fGCWXR8mxk3IpdtB9/vx5PP/88zh37hx8fX2RkZGBUqVKIT09HdnZ2ShTpgw8PT0tsq7U1FSLLMfWlNDJyz2+/Mg9t3KPLz9KjVvp1JBzNZQhN6WXSS3bs1LLodS4c1NDOZQevzFKrhclx54fNZRHDWUoiGJ/p3vkyJHIyMjArl27cOrUKQgh8Ouvv+LevXuYPHky3N3dkZycLHWYZAK1/y4fqZdadhBq2AbVUIbc1FgmJVLqdq7UuHNTSzm4PcuHWtpUTmpoX2ooQ0EUO+jevHkz3njjDTRu3Fj/4jQhBFxdXTFy5Ei0adMGI0aMkDZIiamxU5ELuedW7vHlR2lxq30HoSRKazuFUcOVGKXHr6PU7VypceemlnKojZK3bzW2KSXXh71Q7KD7wYMHCA0NBQB4e3tDo9EgIyND/3lUVBS2b98uUXTyoJRORYkdhdxzK/f48qPUuJVOidtgbmprO6wTInVRwzadk5K3b92LBtVEDeVR2zaSm2IH3cHBwbh06RIAwMnJCYGBgdi1a5f+82PHjsHNzU2q8KgI1NBRkGUorcNVWrz54TYoP2qoE7VsH0oth1Ljzk0t5VDDNq3DO3HIWtS0neSm2BeptW7dGitXrkRCQgIAID4+HomJibhz5w60Wi3mz5+Pfv36SRyltNihWI/ccyv3+IxR4k5ciTHnpoYyAMps8wVRQ3nU0raUWg6lxp2bWsqhJmqoD7W1K7WURS3lMEaxg+7Ro0fjr7/+QlZWFlxdXTFmzBhcuXIFS5cuhaOjI15++WVMnTpV6jAlpZQORQkx5qSUvColTiVTQ37VUAZAfe1dbeVRMqXWg1Ljzo3lkB819E9Kjz8nNdSHjprKkptGqLVkEsrMzISPjw8yMjLg7e0tdTiyp+YNjNRNDW1XDWXQYVnI0pRcD0qOPSeWg6xBTfWhprJYktzGY4p8pvvBgwdo0KABZs2aJXUosqaU5yKU1lEoJa9KiVNHafEC6ngZi9K2v4KwLPKj9O2DyFLUsk0D3K7lhm1LGRQ56Pbw8EBaWpqqK6a4lHTWi/VIgHJ3GkqNW0dN2x/LIj9K3z6UHL+SY89JLeVQyzatFmppVwDbllIoctANAO3atUNycrLUYciWmjoTuVFKbpUSp45SdxpKjVuNlNbmC6KWsih9+2D80lNDGdRGDf2TmtqVGupDR01lyU2xg+6xY8fi1KlT6Nu3L7Zv347Lly/j9u3bef7slZI6E6VtYErJrVLiJGkpbfsriJravJrKomRK3z6UHj+gjjIA6ikHoI7+ifUhT2oqS26KfZGag8N/5wsKqqDs7GxbhGNADg/uK+n2ckBZ8SopVqLCqKk9syxkaUqvB8YvL2orj5KxLtRPDuOxnBT7k2Hjxo1T9dmQ4mJHYj1Kya3SdihKi1dHqXHrKDn23FgW+VH69kFkSWrZFrhdy4ua6kNNZclNsVe65UwOZ1bU3GilppTcKiVOHaXFqxZqyjvLQkRyppbtWi3lUAs11YclyyKH8VhOin2mmwqmtI1PSXctKCW3SolTR2nx6iip7aqdUttQbmo7gFIyxi8tpcevVuyf5EUt9QGoqyy5KWbQXaNGDfz00094/Pixyd/JysrC3LlzUaNGDStGJk9K60iUtJEpJbdKiRNQVqxqo6RtrzBqaUdqqhOSltLbktLjz00N5VFLPwuooz4AddWJmsqSm2Ke6Y6Pj8c777yD4cOHo3PnzoiOjkb9+vURFhYGDw8PAMD9+/eRlpaGvXv3YuPGjVi9ejVcXFwwcuRIiaOnwijlyo5S4gSUtTNRUqy5KTl2JbVne6KmelF6OZQev9LbktLjz00N5VF6/DmpoT4AddWJmsqSm6Ke6b579y5++OEHJCUl4dChQ/qzIU5Oz84dPH36FMCzCouIiMCAAQMwYMAAm9/HL7dnCJRALR2f3Cglr0qJ0xjGTpQ/JbcxJceuo/QyKD1+NVJTnaihLGooQ26WKpPcxmOKGnTndO7cOfz55584ceIEbt26BQAoXbo0qlWrhqioKISFhUkWmxwqWY0boRwoLa9KiVcpcZK8qaUdqaUcgLrKQlRcatge1FAGNVFjfah10K2Y28tzCw0NRWhoqNRhyJISN0AlxqwESsmpUuLMj1Lbr1Ljzo8QQnVlUjol14Ua2pLSy6D0+NVITfWhhval9PiNUWOZAAW9SI1Mp9bGKgdKy61SXkihlDjVRmnt2RRqKJMaypATt2+iZ9Swbatpe2Z9yJMaywRw0K1KSmysSun4lJhbsj6ltN/c1Nie1VAmNZRBDZS6Xeek9DIoPf7c1LBtq6lO1FAfpBwcdJNssPOzPKXsHJUSZ37Ydonyp9TtWy3btVLLodS41Y71Ii9K7V8LosYyARx0q5JaG6scKC23Stk5KiVOtVFaezaFGsqkhjLkxO2b6Bm1bdtKp4b6UGP/qsYyASoZdE+dOlXqEIpEo9Ho/6y1fCVSQuen1NySdSmh7RqjxvashjKpoQxqoNTtOjellkOpcRdG6du3mupF6XVByqKKQfcnn3yi/3e3bt0kjCR/uQfaQgj9m3atOQBXEubA8pSyc1RKnPlh27UPtuiv1fA23dyUWh61bNdKLYdS41Y7NdWL7jhcyZTavxZEjWUCVDLorl69OiZPnoxTp04hJSWlWMtKTExEo0aN4OXlhbJlyyI2NhYnT540a1k+Pj5GB9o5G1PO/3PwLX9K6wiU0p6UEqfaKK09m8LSZTJ2wjT3dLbfgjE/RP9Rcr/Lk4Lyo8b+VY1lAlQy6F64cCFOnDiB6OhoPHjwAHXr1kXfvn3x+eefIzk5GVeuXDF5WVu3bsXQoUOxa9cupKSk4MmTJ2jbti3u379f5LgyMjKMDrSNyT34Lg6ldyBypdZOQGpq2IkrMX61tmdLlaugE6Y5/2+pfltHiW1JrdRSF0oth1LjLoyS+1411omS60MNx0/GqOEOBGM0QmW15enpiY0bN+LQoUM4dOgQDh8+jMOHD8PBwQE3b94s8vJu3LiBsmXLYuvWrWjRooVJ38nMzISPjw8yMjLg7e1d5HXmvqJizvdVVq2yoNS8yj1uucdnCiWWQYkxm8IS5TKnDy5uv51zOWqrF0uXKb+DMUuvQy31oNSyKDXuwii5XEqOPT9qLBM9U9zxmKU5SR2AuSpVqoS4uDiMHTvWYPrVq1fh6emJJk2aGEy/dOmSWevJyMgAAJQqVcq8QM1QnDM8Su48LBW7sdwpNSeWIPeyyz0+U+i2WUuVpaDtXw35sqbi1oW5g+ecV7xZR4assV0YW6alTnxQwQo7PmH+bYv7i+JRco7UvL9RY9kUO+g+e/Ys9u7di3379uHUqVPw9vZG9erVER4ebnT+ChUqFHkdWq0WI0aMQLNmzRAREZHvfFlZWcjKytL/PzMzs8jrMkaNDc6aCjogs8TBmFLrwlpXmSx5IK3U3FqaKYMKS+VfzTmXMjeWPgGjFsXNiSntPvet/qyDZyx90qOg5Vmyj1IrW56EYl0Uzlr9de6TIawDUuzt5Q4ODkZfbFOzZk2MGTMGvXr1KvY6Xn/9daxbtw7bt28vcNA+fvx4TJgwIc/04t7OYE5HoPSDPXPjN/VgoLB5rBGb1Cx5u21+inswrcS8WlpR2qclDqTUnPfi9COWvNtGrfk1h63vPmAd/EeKRy6Y//zZuj4KG5zbO2s+/pLfOz9YD4WzRL3I7fZyRQ+6XVxc8OGHH6Jly5Z4/Pgx9u7di6VLl+LAgQMYNGgQZs2aZfbyhw0bhpUrV2Lbtm0ICwsrcF5jV7qDgoIsUslqPjA2xtwTDYD1BytKrQtrX2Gy15MZuSltUKGWvBtj7X7EmstTa71Y84SqpddZ3O/KkRSPXNjj/tYUtrjrw5Lfy70MtdWLNR5tNOUCUGHzmbpOtdWHjiVPTnHQXUwODg54//33kZiYmOezr776Cu+99x5+/PFHxMXFFWm5Qgi8+eabWL58OVJTU1G5cuUix2bJMytFbXRK3wBtcXWfB8OmMzVXPLiSblBRnO+qIe/GyOUuIbnEIQdSnQiR+q4HuZCifyruetWU/9ykrI/ifl/N9WIuqe7GYX0Yl/vOArkMuhX7k2Hu7u753vL99ttvo2fPnpg2bVqRlzt06FAsWLAACxcuhJeXF65evYqrV6/i4cOHxQ3ZLLrnA+2FLQ5Q7a2DMrf96HJrSr7yu4WKTGNumyzus8f0jDUPXIqyTaj5AEqKNq7Dfsk8lnoXCvNvGfb8bhprKm77NLdeeNxUsOIcuwLP8qt7GbZcKHbQXa1aNfz+++/5ft68eXMcO3asyMudOXMmMjIy0KpVK5QrV07/9+uvvxYnXDJRUQ9Qbbkue9pZmZNbXs0oOkvtbM1ZDnf01mfPbTu3orY3S/UNrIPisfTjFvSMlCehzD0RYu/7a2OKeyKEA2/Lkvu7JBQ76B48eDDWr1+PN9980+hV6B07dsDDw6PIy9Vd2cv9Fx8fb4GozcMzxfmTcselVpa6fc0UaqoHqZ4h5smO4rFFLth/F42l88V9qPn9kxTrtgdSnYQqTgxqrcfinITQfb+46zeH2vfj5taLnHOi2J8Me+2113D8+HF88803WLRoEdq3b4+IiAi4uLhg48aNWLdunaQDZSmofQPMyRIHBLoNWu05M6ecxTmZodFoTF6fmvIv5aMO9tKWTSWnfHDAZx5r1J099ks6RSmTta4WqTGvtmCN/sOcfon1l5cl82Gr4zS1UkL7VOyL1HT++OMPfPXVV9i4cSPu3bunnx4bG4ukpCRJHpy3xivqTdkJKqHBFcbWB0X2chBWlHICtnujptLzmput82zOuos6r1KZUkZb3YpWlBcSqrlepK4Te+2XAHn0D3KIQS7kkIuibmtqrpOilk0OL95Uc33oFPeYSm4/GabYK906zZs3R/PmzZGdnY1z587h7t27CA4ORqlSpaQOzaLs5WqJKVeoLH3bmz10XEVhyWf4mNf8WTo3bMvmsUW+7KX/thRr1gm3EWkx/0VjzX6D/dJ/ijrYtVYM3D7Mp4S8KX7QrePo6IiKFStKHQbZiBI2LqWxxskMyot5kQfWg/2x537J1AN6ax70m5p/DjwM2eJOHHvPt5xu7WZ9FI2S+nTFvkjNHtnzAYOOXJ5tUiupX9RiL6Q+qKVnbHlgU1jd8ECLObAX7KPk01dzeysaa9cZ68M8SskbB92kOErZuJTEWiczClsn65KIbEkugx05skWfzD7fdLbcR3KbMJ0t6oT18R815YKDbgUy1gA5gCm+/DZsteS2sI5LDWWUO1vtPAq7omov5LhN21P+jSmoTuRALnGoHfMsH/b6csHcCmuTtmqzas9zUajt4g0H3QqjpMZVHLY+saD2vEpVPl5VyksOV5LU3t4BeZZRjjHZUmHlt2V+CuqX7LGebNlP22N+i0ppgwmlMzXXcqkTtg9l4qBbodQ8kJGyI1FzXvPDzttyCjrJYI9tS47kUA+5Y5BDTFKydfnttb8r7CSoHPJi79uCVHiCXF5YH4VT4rErB90KpLRGZgl81ky5jO087HVnYqs2xh12waTc1vNbt733P1KUn9vIM1LkoaA+yl62hfxywHYpP0oc4JH8cNCtYLqOWa2dQc7ySbFe3b/VlFs5DX7VlNfC8CBKOrm3Z7mQUyxSkioPxvofe64Te+qPlUCK+uDJWvlhfTwjp2PX4uCgW6F0HbJSG15hcu9wbHmFUK2kvMLGnbnt21Z+dxiouY3nZqyscih/zv7b3rYLY+1STo8UyaF92JLUJ17trf0XRo75kGNM1iKnFxXbW1+UHzXdHcZBt4IJIfR/aqTbIUt126HaByhS7EjtIa+5DyTt6YBFruQ4uM25Dah5e8iPHOokZ96ljsWW5HaiQe137RVGTvWR34kQe6gXuZbR3k+e56bk8jtJHQBRQXh20fJyduC2LKva81oQqd8eb89XlOTc7uQcmzXJqdw5tw05xWUtOcsrhz5BF48cYpGC3OpDR8kDG0uSuk7sed+dk1rywEE3kR3hTtR25HQgL6dYiOTG3rYLuZ1okEMMUpNbfdjz3Qe5yyx1+Xny/Bmp68ESOOgmIrIwOe0c5BQLEckD+wX5kGtd2OMAT84nHOR0YobMw0E3EREREREB4MBObicc7L0+1IKDbiIiIiIisnsc4JK18O3lRERERERERFbCQTcRERERERGRlfD2civQ3ZqSmZkpcSRERERERET2RTcOk8sjAxx0W8GtW7cAAEFBQRJHQkREREREZJ9u3boFHx8fqcPgoNsaSpUqBQC4cOFCsSq5UaNG+Ouvv4odjyWWI5dlZGZmIigoCBcvXoS3t7eksaipfiyVV0vEYqllyCUWNeZWLvUjp/7AUsuRyzKYW+stQ065VVP9sK+13nLk1GYttRy5xMLcWm8ZGRkZCA4O1o/LpMZBtxU4ODx7VN7Hx6dYG5Cjo2OxdxyWWo5clqHj7e0teW7VVj9A8fNqqViYW+vFIpdlWHI5cugPLLUcuSxDh7m1/DJ05JBbtdUPwL7WmsuRQ5u11HLkFAvA3FpjGTq6cZnU5BEFGTV06FDZLEcuy7AUOZVHTrFYgpzKI6dYLEEu5ZFT/ViCnMojl2VYCnNrPXIqj5xisQS5lEdO9WMJciqPnGKxBDmVRy7LkBuNkMvT5SqSmZkJHx8fZGRkWOwsDT3D3FoH82o9zK31MLfWw9xaD3NrHcyr9TC31sPcWo/ccssr3Vbg6uqKhIQEuLq6Sh2K6jC31sG8Wg9zaz3MrfUwt9bD3FoH82o9zK31MLfWI7fc8ko3ERERERERkZXwSjcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkG3hU2fPh2hoaFwc3NDZGQk9uzZI3VIktq2bRs6deqE8uXLQ6PRYMWKFQafCyEwbtw4lCtXDu7u7oiOjsbp06cN5rl9+zb69OkDb29v+Pr64tVXX8W9e/cM5jl06BCaN28ONzc3BAUFYcqUKXliWbJkCapVqwY3NzfUqlULa9eutXh5bSkxMRGNGjWCl5cXypYti9jYWJw8edJgnkePHmHo0KEoXbo0PD090a1bN1y7ds1gngsXLqBDhw7w8PBA2bJlMXLkSDx9+tRgntTUVNSvXx+urq6oVKkSkpKS8sSjlrY/c+ZM1K5dG97e3vD29kZUVBTWrVun/5w5tZzPPvsMGo0GI0aM0E9jfs0zfvx4aDQag79q1arpP2dei+fy5ct45ZVXULp0abi7u6NWrVrYu3ev/nPuy8wTGhqap91qNBr9b/Sy3ZonOzsbY8eORVhYGNzd3VGxYkV8/PHHyPnuZLZZ8929excjRoxASEgI3N3d0bRpU/z111/6z5lb0yhpjGBKLIUSZDGLFi0SLi4u4scffxRHjx4VgwYNEr6+vuLatWtShyaZtWvXig8//FAsW7ZMABDLly83+Pyzzz4TPj4+YsWKFeLvv/8WnTt3FmFhYeLhw4f6edq1ayfq1Kkjdu3aJf744w9RqVIl0bt3b/3nGRkZwt/fX/Tp00ccOXJE/PLLL8Ld3V189913+nl27NghHB0dxZQpU8SxY8fERx99JJydncXhw4etngNriYmJEXPnzhVHjhwRBw8eFC+88IIIDg4W9+7d088zZMgQERQUJDZt2iT27t0rmjRpIpo2bar//OnTpyIiIkJER0eLAwcOiLVr14oyZcqIDz74QD/P2bNnhYeHh3jnnXfEsWPHxLRp04Sjo6NYv369fh41tf1Vq1aJ33//XZw6dUqcPHlSjBkzRjg7O4sjR44IIZhTS9mzZ48IDQ0VtWvXFsOHD9dPZ37Nk5CQIGrWrCn+/fdf/d+NGzf0nzOv5rt9+7YICQkR8fHxYvfu3eLs2bMiOTlZnDlzRj8P92XmuX79ukGbTUlJEQDEli1bhBBst+b69NNPRenSpcWaNWtEWlqaWLJkifD09BTffPONfh62WfP16NFD1KhRQ2zdulWcPn1aJCQkCG9vb3Hp0iUhBHNrKiWNEUyJpTAcdFtQ48aNxdChQ/X/z87OFuXLlxeJiYkSRiUfuTcorVYrAgICxOeff66flp6eLlxdXcUvv/wihBDi2LFjAoD466+/9POsW7dOaDQacfnyZSGEEDNmzBAlS5YUWVlZ+nnef/99UbVqVf3/e/ToITp06GAQT2RkpBg8eLBFyyil69evCwBi69atQohnuXR2dhZLlizRz3P8+HEBQOzcuVMI8azDc3BwEFevXtXPM3PmTOHt7a3P56hRo0TNmjUN1tWzZ08RExOj/7/a237JkiXFnDlzmFMLuXv3rqhcubJISUkRLVu21A+6mV/zJSQkiDp16hj9jHktnvfff18899xz+X7OfZnlDB8+XFSsWFFotVq222Lo0KGDGDBggMG0F198UfTp00cIwTZbHA8ePBCOjo5izZo1BtPr168vPvzwQ+bWTHIeI5gSiyl4e7mFPH78GPv27UN0dLR+moODA6Kjo7Fz504JI5OvtLQ0XL161SBnPj4+iIyM1Ods586d8PX1RcOGDfXzREdHw8HBAbt379bP06JFC7i4uOjniYmJwcmTJ3Hnzh39PDnXo5tHTXWTkZEBAChVqhQAYN++fXjy5IlBuatVq4bg4GCD/NaqVQv+/v76eWJiYpCZmYmjR4/q5ykod2pu+9nZ2Vi0aBHu37+PqKgo5tRChg4dig4dOuTJAfNbPKdPn0b58uURHh6OPn364MKFCwCY1+JatWoVGjZsiO7du6Ns2bKoV68evv/+e/3n3JdZxuPHj7FgwQIMGDAAGo2G7bYYmjZtik2bNuHUqVMAgL///hvbt29H+/btAbDNFsfTp0+RnZ0NNzc3g+nu7u7Yvn07c2shcsqjKbGYgoNuC7l58yays7MNOn4A8Pf3x9WrVyWKSt50eSkoZ1evXkXZsmUNPndyckKpUqUM5jG2jJzryG8etdSNVqvFiBEj0KxZM0RERAB4VmYXFxf4+voazJs7v+bmLjMzEw8fPlRl2z98+DA8PT3h6uqKIUOGYPny5ahRowZzagGLFi3C/v37kZiYmOcz5td8kZGRSEpKwvr16zFz5kykpaWhefPmuHv3LvNaTGfPnsXMmTNRuXJlJCcn4/XXX8dbb72FefPmAeC+zFJWrFiB9PR0xMfHA2B/UByjR49Gr169UK1aNTg7O6NevXoYMWIE+vTpA4Bttji8vLwQFRWFjz/+GFeuXEF2djYWLFiAnTt34t9//2VuLUROeTQlFlM4mTwnEcnW0KFDceTIEWzfvl3qUFShatWqOHjwIDIyMrB06VLExcVh69atUoeleBcvXsTw4cORkpKS5yoBFY/uChYA1K5dG5GRkQgJCcHixYvh7u4uYWTKp9Vq0bBhQ0yaNAkAUK9ePRw5cgSzZs1CXFycxNGpxw8//ID27dujfPnyUoeieIsXL8bPP/+MhQsXombNmjh48CBGjBiB8uXLs81awPz58zFgwAAEBgbC0dER9evXR+/evbFv3z6pQyMZ45VuCylTpgwcHR3zvFXz2rVrCAgIkCgqedPlpaCcBQQE4Pr16wafP336FLdv3zaYx9gycq4jv3nUUDfDhg3DmjVrsGXLFlSoUEE/PSAgAI8fP0Z6errB/Lnza27uvL294e7ursq27+LigkqVKqFBgwZITExEnTp18M033zCnxbRv3z5cv34d9evXh5OTE5ycnLB161b873//g5OTE/z9/ZlfC/H19UWVKlVw5swZtttiKleuHGrUqGEwrXr16vrb97kvK77z589j48aNGDhwoH4a2635Ro4cqb/aXatWLfTt2xdvv/22/g4jttniqVixIrZu3Yp79+7h4sWL2LNnD548eYLw8HDm1kLklEdTYjEFB90W4uLiggYNGmDTpk36aVqtFps2bUJUVJSEkclXWFgYAgICDHKWmZmJ3bt363MWFRWF9PR0g7OHmzdvhlarRWRkpH6ebdu24cmTJ/p5UlJSULVqVZQsWVI/T8716OZRct0IITBs2DAsX74cmzdvRlhYmMHnDRo0gLOzs0G5T548iQsXLhjk9/DhwwadVkpKCry9vfUHmYXlzh7avlarRVZWFnNaTG3atMHhw4dx8OBB/V/Dhg3Rp08f/b+ZX8u4d+8e/vnnH5QrV47ttpiaNWuW5+cYT506hZCQEADcl1nC3LlzUbZsWXTo0EE/je3WfA8ePICDg+EhvqOjI7RaLQC2WUspUaIEypUrhzt37iA5ORldunRhbi1ETnk0JRaTmPzKNSrUokWLhKurq0hKShLHjh0Tr732mvD19TV4q6a9uXv3rjhw4IA4cOCAACCmTp0qDhw4IM6fPy+EePYKfl9fX7Fy5Upx6NAh0aVLF6M/B1CvXj2xe/dusX37dlG5cmWDnwNIT08X/v7+om/fvuLIkSNi0aJFwsPDI8/PATg5OYkvvvhCHD9+XCQkJCjqZxWMef3114WPj49ITU01+MmVBw8e6OcZMmSICA4OFps3bxZ79+4VUVFRIioqSv+57udW2rZtKw4ePCjWr18v/Pz8jP7cysiRI8Xx48fF9OnTjf7cilra/ujRo8XWrVtFWlqaOHTokBg9erTQaDRiw4YNQgjm1NJyvr1cCObXXO+++65ITU0VaWlpYseOHSI6OlqUKVNGXL9+XQjBvBbHnj17hJOTk/j000/F6dOnxc8//yw8PDzEggUL9PNwX2a+7OxsERwcLN5///08n7HdmicuLk4EBgbqfzJs2bJlokyZMmLUqFH6edhmzbd+/Xqxbt06cfbsWbFhwwZRp04dERkZKR4/fiyEYG5NpaQxgimxFIaDbgubNm2aCA4OFi4uLqJx48Zi165dUockqS1btggAef7i4uKEEM9ewz927Fjh7+8vXF1dRZs2bcTJkycNlnHr1i3Ru3dv4enpKby9vUX//v3F3bt3Deb5+++/xXPPPSdcXV1FYGCg+Oyzz/LEsnjxYlGlShXh4uIiatasKX7//XerldsWjOUVgJg7d65+nocPH4o33nhDlCxZUnh4eIiuXbuKf//912A5586dE+3btxfu7u6iTJky4t133xVPnjwxmGfLli2ibt26wsXFRYSHhxusQ0ctbX/AgAEiJCREuLi4CD8/P9GmTRv9gFsI5tTScg+6mV/z9OzZU5QrV064uLiIwMBA0bNnT4PfkWZei2f16tUiIiJCuLq6imrVqonZs2cbfM59mfmSk5MFgDz5EoLt1lyZmZli+PDhIjg4WLi5uYnw8HDx4YcfGvxsEtus+X799VcRHh4uXFxcREBAgBg6dKhIT0/Xf87cmkZJYwRTYimMRgghTL8uTkRERERERESm4jPdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREREREZCUcdBMRERERERFZCQfdRERERERERFbCQTcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3EREpxrlz56DRaJCUlKSfNn78eGg0GumCKiKlxQsASUlJ0Gg0OHfunNSh6Ckxjzrx8fEIDQ2VOgwiIrIRDrqJiEg2dIM7Y3+jR482eTmTJk3CihUrrBcoERERkYmcpA6AiIgot4kTJyIsLMxgWkREBEJCQvDw4UM4OzsX+P1JkybhpZdeQmxsrBWjtB99+/ZFr1694OrqKnUoeh999FGRTsTIyffffw+tVit1GEREZCMcdBMRkey0b98eDRs2NPqZm5ubjaN55tGjR3BxcYGDg/3dJObo6AhHR0epwzDg5OQEJyfLHMYIIfDo0SO4u7tbZHmFKeykERERqYv9HTkQEZFiGXumOzeNRoP79+9j3rx5+lvT4+Pj9Z9fvnwZAwYMgL+/P1xdXVGzZk38+OOPBstITU2FRqPBokWL8NFHHyEwMBAeHh7IzMwEAOzevRvt2rWDj48PPDw80LJlS+zYsSNPLNu3b0ejRo3g5uaGihUr4rvvvjO5rKdPn0a3bt0QEBAANzc3VKhQAb169UJGRobBfAsWLECDBg3g7u6OUqVKoVevXrh48aLBPK1atUJERAQOHTqEli1bwsPDA5UqVcLSpUsBAFu3bkVkZCTc3d1RtWpVbNy40eD7RXmmW6PRYNiwYViyZAlq1KgBd3d3REVF4fDhwwCA7777DpUqVYKbmxtatWqVZ5l//PEHunfvjuDgYLi6uiIoKAhvv/02Hj58aDCfsWe6nz59io8//hgVK1aEq6srQkNDMWbMGGRlZRnMFxoaio4dOyI5ORkNGzaEu7t7gXVjSkzXr1+Hn58fWrVqBSGEfvqZM2dQokQJ9OzZUz/N2DPdixYtQoMGDeDl5QVvb2/UqlUL33zzTf6JJiIixeCVbiIikp2MjAzcvHnTYFqZMmVM+u78+fMxcOBANG7cGK+99hoAoGLFigCAa9euoUmTJvqBoZ+fH9atW4dXX30VmZmZGDFihMGyPv74Y7i4uOC9995DVlYWXFxcsHnzZrRv3x4NGjRAQkICHBwcMHfuXLRu3Rp//PEHGjduDAA4fPgw2rZtCz8/P4wfPx5Pnz5FQkIC/P39Cy3D48ePERMTg6ysLLz55psICAjA5cuXsWbNGqSnp8PHxwcA8Omnn2Ls2LHo0aMHBg4ciBs3bmDatGlo0aIFDhw4AF9fX/0y79y5g44dO6JXr17o3r07Zs6ciV69euHnn3/GiBEjMGTIELz88sv4/PPP8dJLL+HixYvw8vIyKee5/fHHH1i1ahWGDh0KAEhMTETHjh0xatQozJgxA2+88Qbu3LmDKVOmYMCAAdi8ebP+u0uWLMGDBw/w+uuvo3Tp0tizZw+mTZuGS5cuYcmSJQWud+DAgZg3bx5eeuklvPvuu9i9ezcSExNx/PhxLF++3GDekydPonfv3hg8eDAGDRqEqlWr5rtcU2IqW7YsZs6cie7du2PatGl46623oNVqER8fDy8vL8yYMSPf5aekpKB3795o06YNJk+eDAA4fvw4duzYgeHDhxecbCIikj9BREQkE3PnzhUAjP4JIURaWpoAIObOnav/TkJCgsi9OytRooSIi4vLs/xXX31VlCtXTty8edNgeq9evYSPj4948OCBEEKILVu2CAAiPDxcP00IIbRarahcubKIiYkRWq1WP/3BgwciLCxM/N///Z9+WmxsrHBzcxPnz5/XTzt27JhwdHTME29uBw4cEADEkiVL8p3n3LlzwtHRUXz66acG0w8fPiycnJwMprds2VIAEAsXLtRPO3HihAAgHBwcxK5du/TTk5OT8+RYVy9paWkFxi2EEACEq6urwbzfffedACACAgJEZmamfvoHH3yQZ7k5862TmJgoNBqNQS5z1/vBgwcFADFw4ECD77733nsCgNi8ebN+WkhIiAAg1q9fX2h5ihKTEEL07t1beHh4iFOnTonPP/9cABArVqwwmCcuLk6EhITo/z98+HDh7e0tnj59alI8RESkLLy9nIiIZGf69OlISUkx+CsuIQR+++03dOrUCUII3Lx5U/8XExODjIwM7N+/3+A7cXFxBs/5Hjx4EKdPn8bLL7+MW7du6b9///59tGnTBtu2bYNWq0V2djaSk5MRGxuL4OBg/ferV6+OmJiYQmPVXclOTk7GgwcPjM6zbNkyaLVa9OjRw6AsAQEBqFy5MrZs2WIwv6enJ3r16qX/f9WqVeHr64vq1asjMjJSP13377NnzxYaZ37atGljcPu0bpndunUzuHpubF05833//n3cvHkTTZs2hRACBw4cyHeda9euBQC88847BtPfffddAMDvv/9uMD0sLMykuihqTN9++y18fHzw0ksvYezYsejbty+6dOlS4PJ9fX1x//59i7RzIiKSH95eTkREstO4ceN8X6Rmrhs3biA9PR2zZ8/G7Nmzjc5z/fp1g//nfoP66dOnATwbjOcnIyMDWVlZePjwISpXrpzn86pVq+oHiPkJCwvDO++8g6lTp+Lnn39G8+bN0blzZ7zyyiv6Afnp06chhDC6DiDvy7oqVKiQ5xloHx8fBAUF5ZkGPLsdvaAy5nye2cXFBaVKldL/P+eJhpzLNGVdFy5cwLhx47Bq1ao8MeR+nj2n8+fPw8HBAZUqVTKYHhAQAF9fX5w/f95geu66LUhRYipVqhT+97//oXv37vD398f//ve/Qpf/xhtvYPHixWjfvj0CAwPRtm1b9OjRA+3atTM5RiIiki8OuomIyC7ofqLplVdeyXfQXLt2bYP/536btW4Zn3/+OerWrWt0GZ6ennle3GWOL7/8EvHx8Vi5ciU2bNiAt956C4mJidi1axcqVKgArVYLjUaDdevWGX2zuKenp8H/83v7eH7TRY6XgeU2fPhwzJs3T///li1bIjU1tdjrys7Oxv/93//h9u3beP/991GtWjWUKFECly9fRnx8vEk/s5X7xEJ+TH1TuTkxJScnA3h2MuHSpUsGz9YbU7ZsWRw8eBDJyclYt24d1q1bh7lz56Jfv34GeSYiImXioJuIiFTH2MDLz88PXl5eyM7ORnR0tFnL1b2Qzdvbu8Bl+Pn5wd3dXX9lPKeTJ0+avL5atWqhVq1a+Oijj/Dnn3+iWbNmmDVrFj755BNUrFgRQgiEhYWhSpUqRS9MMYwaNQqvvPKK/v8lS5a0yHIPHz6MU6dOYd68eejXr59+uim3XYeEhECr1eL06dOoXr26fvq1a9eQnp6OkJAQm8S0fv16zJkzB6NGjcLPP/+MuLg47N69u9CfN3NxcUGnTp3QqVMnaLVavPHGG/juu+8wduzYPFfviYhIWfhMNxERqU6JEiWQnp5uMM3R0RHdunXDb7/9hiNHjuT5zo0bNwpdboMGDVCxYkV88cUXuHfvXr7LcHR0RExMDFasWIELFy7oPz9+/Lj+KmhBMjMz8fTpU4NptWrVgoODg/4q+osvvghHR0dMmDAhz1VpIQRu3bpV6HrMVaNGDURHR+v/GjRoYJHl6q6E5yyPEMKkn8564YUXAABff/21wfSpU6cCADp06GD1mNLT0/Vvzp80aRLmzJmD/fv3Y9KkSQWuI3ddOTg46O+6sMRdE0REJC1e6SYiItVp0KABNm7ciKlTp6J8+fIICwtDZGQkPvvsM2zZsgWRkZEYNGgQatSogdu3b2P//v3YuHEjbt++XeByHRwcMGfOHLRv3x41a9ZE//79ERgYiMuXL2PLli3w9vbG6tWrAQATJkzA+vXr0bx5c7zxxht4+vQppk2bhpo1a+LQoUMFrmfz5s0YNmwYunfvjipVquDp06eYP3++/sQB8Oyq+yeffIIPPvgA586dQ2xsLLy8vJCWlobly5fjtddew3vvvWeZhNpItWrVULFiRbz33nu4fPkyvL298dtvvxX4fLlOnTp1EBcXh9mzZyM9PR0tW7bEnj17MG/ePMTGxuL555+3ekzDhw/HrVu3sHHjRjg6OqJdu3YYOHAgPvnkE3Tp0gV16tQxuo6BAwfi9u3baN26NSpUqIDz589j2rRpqFu3rsFVeyIiUiYOuomISHWmTp2K1157DR999BEePnyIuLg4REZGwt/fH3v27MHEiROxbNkyzJgxA6VLl0bNmjX1v49cmFatWmHnzp34+OOP8e233+LevXsICAhAZGQkBg8erJ+vdu3aSE5OxjvvvINx48ahQoUKmDBhAv79999CB9116tRBTEwMVq9ejcuXL8PDwwN16tTBunXr0KRJE/18o0ePRpUqVfDVV19hwoQJAJ69rKxt27bo3LmzGZmTlrOzM1avXq1/ft3NzQ1du3bFsGHD8h2w5jRnzhyEh4cjKSkJy5cvR0BAAD744AMkJCRYPaZVq1bhp59+wpdffolq1arpp0+dOhUpKSmIi4vDX3/9lecFd8Cz9wzMnj0bM2bMQHp6OgICAtCzZ0+MHz8eDg68KZGISOk0oqA3pRARERHJ0NixY5GYmJjnNnwiIiK54elTIiIiUpx///0XZcqUkToMIiKiQvH2ciIiIlKMs2fPYvny5ViyZAk6duwodThERESF4pVuIiIiUoxt27ZhwoQJaNmypf7N5ERERHLGZ7qJiIiIiIiIrIRXuomIiIiIiIishINuIiIiIiIiIivhi9SsQKvV4sqVK/Dy8oJGo5E6HCIiIiIiIrshhMDdu3dRvnx5ODhIf52Zg24ruHLlCoKCgqQOg4iIiIiIyG5dvHgRFSpUkDoMDrqtwcvLC8CzSvb29pY4GiIiIiIiIvuRmZmJoKAg/bhMahx0W4HulnJvb28OuomIiIiIiCQgl0d9pb/BnYiIiIiIiEileKWbJGPszBN/Np6IiIiIiNSEg26ShG7AnXOQrdFooNFoOPC2gJwnNJhPIiIiIiLpyPb28sTERDRq1AheXl4oW7YsYmNjcfLkyQK/s2zZMjRs2BC+vr4oUaIE6tati/nz5xvMc+3aNcTHx6N8+fLw8PBAu3btcPr0aYN5/vnnH3Tt2hV+fn7w9vZGjx49cO3aNYuX0V4ZG3Dn/L9cnr1QIt2JC4D5JCIiIiKSA9kOurdu3YqhQ4di165dSElJwZMnT9C2bVvcv38/3++UKlUKH374IXbu3IlDhw6hf//+6N+/P5KTkwE8G4TExsbi7NmzWLlyJQ4cOICQkBBER0frl3v//n20bdsWGo0Gmzdvxo4dO/D48WN06tQJWq3WJmW3B/ldfeVA0Xw5B9u6PDKf1pXzJAcRERERkTEaoZB7T2/cuIGyZcti69ataNGihcnfq1+/Pjp06ICPP/4Yp06dQtWqVXHkyJH/x96dx0VV9X8A/wz7DiK7IoKoqLhCEppiiXsubWo/S3HJckuzMq3cc7cee0zNNrXMTM0tc99zyz1xSVHBHXBh32HO7w+euTEw4AzMMHfg83695gVz75lzzz3n3HPnO3dDkyZNAABKpRJeXl6YPXs2hg0bht27d6Nbt25ISkqS7jyekpKCGjVqYPfu3YiMjHzqMlNTU+Hs7IyUlBTevbyY0o5ya0pnIl1TNsqqM23rnbRTWqDN+jWO4u3BdiAiIqre5BaPyfZId3EpKSkACo9ma0MIgX379uHq1atSkJ6TkwMAsLGxkdKZmZnB2toaR44ckdIoFApYW1tLaWxsbGBmZialoYrR9gsxjyBq72l1xSPe+lH0vgPFX6r5VHmKX06hevEMBONS1X/xF1Ue1r98sC2ICDCRoFupVGLcuHFo27YtgoODy0ybkpICBwcHWFlZoUePHli8eDE6deoEAAgKCkKdOnUwadIkJCUlITc3F/PmzcPdu3fx4MEDAMCzzz4Le3t7fPTRR8jMzERGRgY++OADFBQUSGmKy8nJQWpqqtqLStJlR8MjVdrT9ig261Q/eGmEPGi6nEKFbWE8mn4EYXtUntJ+iFLNo8rDtiCiokwi6B41ahQuXryItWvXPjWto6Mjzp8/j1OnTmHWrFkYP348Dh48CACwtLTExo0bce3aNbi6usLOzg4HDhxAt27dYGZWWBXu7u5Yv349fv/9dzg4OMDZ2RnJyclo1aqVlKa4OXPmwNnZWXr5+vrqbd2rGl0DP+6YtKNLvbJOy0ebeuMXqspVVr9nW1S+sn4AZHsYHn+Ikg+2BREVJ/trukePHo0tW7bg8OHD8Pf31/nzw4YNw507d6SbqamkpKQgNzcX7u7uCAsLQ2hoKJYsWaKW5tGjR7CwsICLiwu8vLzw/vvv48MPPyyxjJycHOnUdaDwGgJfX1/ZXEMgB+W9ppjXdpetPPXKOtWdrvXMa+gNS5c+zP5eOXS5X4c26Ug3rH/5YFvIm6YfO9gGVZPcrumW7XO6hRAYM2YMNm3ahIMHD5Yr4AYKT00vGhCrODs7AwBiYmJw+vRpzJw5s0QaNzc3AMD+/fuRmJiIXr16aVyGtbW12jXgpFl5BzV+aS6brnWjuuaVdaobXepLVcekf+WpV/b3yqFNHXPbMBxd6p/bhGHoEkizLSqfpvbR9KhVqlxl7ROqUpvINugeNWoU1qxZgy1btsDR0RHx8fEACoNlW1tbAMDAgQNRq1YtzJkzB0Dhad6hoaGoV68ecnJysH37dvz0009YtmyZlO/69evh7u6OOnXqIDo6GmPHjkWfPn3QuXNnKc2KFSvQqFEjuLu74/jx4xg7dizee+89NGzYsBJroOqoyBcsfkErXUXrhTt67VSknljHhlGeH0DYFoaja93yhz/9Km/9k2FwfJKn0gLroqf7sx0qV9FxSFO9V7U2kW3QrQqUO3TooDZ9xYoViIqKAgDcvn1b7TrrjIwMjBw5Enfv3oWtrS2CgoKwevVq9OvXT0rz4MEDjB8/HgkJCfD29sbAgQMxefJktWVcvXoVkyZNwpMnT1C3bl188skneO+99wyzotVERTeYqrTR6VN564RfurTDH4zkpbzjANvCcCpSrxzXK471Lx/lbQuOT4anTV/nDyCVS5uzC6pam8j+mm5TJLdrCIxJX6fsVJUNTl/0Ua88nerp9NHv2Hf1o6L9lf3dMHgmiHFVtP4BbhP6wPFJvnTdRtgWhldZ98mRWzxmEncvJ9Omr4GLvwSrq2i9codSedh39aMifZb9Xf/00a+5bZRfReuO24R+6WN84vagX+WpT7ZF5dD1MgzA9NuEQTeZBH45oMqmr6Nw7LsVp88dranvtOWGP4QYhz6PxnGbqBh91R+3B/2qyDbCtjCcilwmZuoYdJPBcEduGPo8JZPXkmlmiDphPVcMfwCRF/4QYnzcJuRDn/XI7UF/KvqjINtCv6r72VEMusmg9Lkj4gBIlUnffZfKhz+AyBeDPuPgNiEf+r4vAbcH/eCPgvJVnS/DYNBNZEIMNdCY6gBmaljP5cMvtfKi737MH1R1x22iauP2UH76vPSC24b+8JI9PQbd2dnZyMnJ0Vd2ZOIMeVfa6r4z0ne9mvIAZgiG6rusZ90Zcluv7uNIRbE/G4eh+i1/+NAd9xXype865LZRMTw7p1C5g+6DBw/ivffeQ+vWreHg4AB7e3vY2dnB0dERrVu3xrhx43Dw4EE9FpWIOyNDMsUBzBSxnnXDL7XyYshAg9uGdgzZf9kG2jF0PXF7KB9D1Jmpn9IsFzw7R8fndOfl5WH58uX44osvEBcXB1dXV7Rq1QoBAQGoUaMGhBBISkpCbGwszp49iydPnsDPzw/vv/8+3n77bVhaWhpyXWRDbs+Fq2yGfsZhdX22q6HXu7rWa1GVUQesZ+1UxjhiyPyrqso4i4ltolll1A/HJ+1U1r4C4PagC0OPT2wL3Rmq3rTZPuQWj+kUdPv5+SE3NxeDBg1C37590apVqzLTnzlzBuvXr8ePP/4IKysrxMXFVbS8JkFujVzZGLgYRmUE3UD13sHzi5R8cByRH7aJcXF8kofKrCNuD9rjD7XyY+w2kVs8plPQvXz5ckRFRcHa2lqnheTm5mLFihV4++23dS6gKZJbI1c2fjHTv8oa7KtbvRbFL1LyUZn9vTKWU1VwbDcejk/yUZn1wzFKexyf5MfYbSK3eEynoJu0I7dGrkyVNSBVtx1RZdZrdanT4vhFSj4quy3YDk/HoM+4OD7JgzHqhtvD03GfIT9y+PFcbvEYHxlGJqk6DXiVefOO6nrzlspe5+rUf3VljC801bHPlwf7rXFwfJIXY9QPx6jSsW7kqzK2FVMarxh0k0mrLoOtKQ0qpopfpKonbltPZ4ygj9uGOo5Pxmes+uAY9XSVWUccn57OGPVjCm1ioesHXnjhhVLnKRQK2NjYwM/PD927d8eLL75YocKRaansI1Qc+AynOp0+ZcwvUuy/6ozZ76pTny8PYwV91b1NOD7JizH7I7eHkozZR9kemhnjEgxTGa90DroTExPLXLHMzEzs2bMHy5cvR5cuXbBly5Zq86gwIn0zxiBiKoOXPvGLVPVWHfu8thj0GR/HJ+Mzdj1weyidMdqF7VE2Y7aJnMcrnYPuixcvPjVNVlYWli9fjvHjx2P+/Pn45JNPylU4Mh3G/mIm542sonjkz3CMvdPkjvtfxu5v1WEsKS8GfcZh7HXn+FRILnXAMUqdHNqF7aGObVI2g1zTbWtri3HjxqF///5Ys2aNIRZBMiTXTk66q05tWZ3WlZ5ODl8a5MLYdcFt0/gYeBeSU19ke/zL2D9KUUlyaBO5biMGvZFa27ZtERsba8hFEAGQ7wZWEXL4ta4q1quKXNaNX2rl0dcBfonSRA51Uh23j+q4znIkt3aQw/YoB3JqFzmVxZjkUg9yDrwNGnRnZmbCwkLnM9jJxBj7CzN3QoZRHeq1Oqyj3MlxxyjHMlU2udRBdd5G5bLu1f2HQbm0Q1HVuT1U5NAuciiDnMilPlTlcHZ2NnJJ1Bks6BZCYOvWrWjatKmhFkFUZclphyqnslRV/FIrjx01IK+yGJuc6qI6bR9yXVe5lstQ5Lq+ctoujcHYB3o0kWtfqSxyXH+59RGgHDdSe/LkSZnzs7KycPXqVSxbtgzHjh3D6tWry104U6f6hUWODa8vctnQquINRuSwLlU1GKxqfcVUyblvVec+Ird2qarjUFnk1veqYxsA8msHlar4nUcbcuyD1XXbKE6OfTElJUVWR7t1PtLt5uYGd3f3Ul916tRBp06d8Pvvv2PmzJl4/fXXy1WwOXPm4JlnnoGjoyM8PDzQp08fXL16tczPbNy4EaGhoXBxcYG9vT1atGiBn376SS1NQkICoqKi4OPjAzs7O3Tt2hUxMTFqaeLj4/Hmm2/Cy8sL9vb2aNWqFX777Ted1yElJQWAPAcJfZLjhkZkaqrrjluO44ccy1TZ5FgH1WH7kHsgVR3aAJB/O6hUl/YoSo7tUl3334DpbCtyoPOR7ilTppTZsWxsbODn54eOHTvC3d293AU7dOgQRo0ahWeeeQb5+fn4+OOP0blzZ1y+fBn29vYaP+Pq6opPPvkEQUFBsLKywrZt2zB48GB4eHigS5cuEEKgT58+sLS0xJYtW+Dk5IQvvvgCkZGRavkOHDgQycnJ2Lp1K9zc3LBmzRr07dsXp0+fRsuWLXVaD9WGyE5peFXll1+5rUNVqVeV6rpjlBu5t0NV6/fakmu7VOcvtXJRXdrAVNaxurSHiimsa3XbZ5hCm8iJQhi4dyQlJaFGjRoVzufhw4fw8PDAoUOH0L59e60/16pVK/To0QMzZ87EtWvX0LBhQ1y8eBFNmjQBACiVSnh5eWH27NkYNmwYAMDBwQHLli3Dm2++KeVTs2ZNzJs3T0pTltTUVDg7OyMlJQVOTk4AquaGKMd1kmOZdCXHdZBjmcpL7usi9/Lpiymsp+oLhdzLqU9ybxe5l68iTGXdTKWc5WVq62dq5S0vU1hPUyijPsl9fTXFY8ZkkBup5eTkYP369ejTpw+8vb31kqfqVG1XV1et0gshsG/fPly9elUK0nNycgAUHo1XMTMzg7W1NY4cOSJNa9OmDX799Vc8efIESqUSa9euRXZ2Njp06KBxWTk5OUhNTVV7acJfhCqHKdeznMsu57JpqyqsQ1VgKu0g5y8ThiD3L1AqptJ/yPSYat8y1XJry5TWz5TKWhHVZT31SW9BtxACe/fuxeDBg+Hp6Yl+/frh+PHj+L//+78K561UKjFu3Di0bdsWwcHBZaZNSUmBg4MDrKys0KNHDyxevBidOnUCAAQFBaFOnTqYNGkSkpKSkJubi3nz5uHu3bt48OCBlMe6deuQl5eHmjVrwtraGm+//TY2bdqEwMBAjcucM2cOnJ2dpZevr2+JNHJ+blx5yHU9TOEL49PIcR3kWKbykvu6VPVTBk3x6HFVbg9TY0r9Rhem8oMHUHXHKFMcmwDTK295mcJ6mkIZ9am6rW9FVfgh2mfOnMHPP/+MtWvXIj4+HgqFAv3798fo0aPx7LPP6mVgHjVqFC5evKh2NLo0jo6OOH/+PNLT07Fv3z6MHz8eAQEB6NChAywtLbFx40YMHToUrq6uMDc3R2RkJLp166bWcSZPnozk5GTs3bsXbm5u2Lx5M/r27Ys///xT4yPQJk2ahPHjx0vvU1NTSw28q9KOSs4bmyl9gVExhb5hivWqYgr1W12YUh+qLvflMLX1M7XylsVUx6aq1AYqprw+VbE9ANPbPqrD/UCq+voZSrmu6b558yZ+/vln/Pzzz4iJiUGtWrXQr18/tG7dGv369cOGDRvw8ssv66WAo0ePxpYtW3D48GH4+/vr/Plhw4bhzp072LVrl9r0lJQU5Obmwt3dHWFhYQgNDcWSJUtw48YNBAYGql33DQCRkZEIDAzE119//dRllnUNgan+klqUKayDKQ4IplBmUyhjaUyt7KZWXm2YwthRmqrYHiqm2C5VqT1MdV1MtdyamOI2UFxVWAdNTLGfVdW2AExr3eR2TbfOR7rDw8Nx8uRJuLm54dVXX8V3332H5557DgBw48YNvRVMCIExY8Zg06ZNOHjwYLkCbqDw1HTVtdxFqZ7bFhMTg9OnT2PmzJkAgMzMTACF13oXZW5uDqVSWa4yFFVVjnabwsZmigO1KTDFejXVbc4U6/ppTHl9qmJ7qJjielWF9jDVsUmlKrSBiqmvR1X5flmUqfavqtgWRZlim8iBzkH3X3/9BX9/f3zxxRfo0aMHLCwqfIa6RqNGjcKaNWuwZcsWODo6Ij4+HkBhsGxrawug8NFetWrVwpw5cwAUXlsdGhqKevXqIScnB9u3b8dPP/2EZcuWSfmuX79eep54dHQ0xo4diz59+qBz584ACq/7DgwMxNtvv42FCxeiZs2a2Lx5M/bs2YNt27bpZd1M+dQTUxlETG3AM5Wymlq9FmVq25sp17UmpjrmqVTV08xNtY9VpfYw1fJXlTGqKqxDUVVhm6gqqlpbVLVtpbLpHDF/9dVXWLNmDV566SW4urrilVdeQf/+/Uu9s3d5qQLl4vmuWLECUVFRAIDbt2+rHZHOyMjAyJEjcffuXdja2iIoKAirV69Gv379pDQPHjzA+PHjkZCQAG9vbwwcOBCTJ0+W5ltaWmL79u2YOHEievbsifT0dAQGBmLVqlXo3r27XtfRVFWlAUROTKleTWlHYuo7CVOq69KYehuoVJUgozhT7V+m3h6mXHYVUz6IAJjWqbLaMPVtoihT7ldA1WqLoky5TYyt3M/pjo2Nxc8//4w1a9bgn3/+gZeXF55//nmsXbsWGzZswEsvvaTvspoMba4hMNWB3tQGQVMoryn2BVOoVxVTKqsmpl5+oGqsg4opbq+lqQrtYsrtURXqHzDt9TDlspfF1NfLlLfr4ky9LVRMcT3kdk13uYPuolR3MP/111/x4MEDeHp6omfPnujVqxciIyPVnotdHWjbyKbWgU1xEDSFOjaFMhZnKn3BVMpZFlNfB1MvvyamuM1qwvUwnqq2XbAN5MXU180U+1NpTL0tANNdhyoZdKsolUrs378fq1evxqZNm5CWlgY7Ozukp6fraxEmQZdGNqWBxZTKWpTcyy338pXGFMptCmXUhqmuh6nuqJ+mKqyXqfYpTUyxPapS/QNsAzky1fUzxb70NKbaFiqmWn65Bd1mT0+iQ2ZmZoiMjMTKlSuRkJCAX375BR07dtTnIqokU7jmwxTKaIpMdSBTkXO/kHPZysNU18eU+3dpVOtkqm1iquUujan1sapW/wDbQK5MdT1NrT9pw1TbwlTLLUd6PdJNhXT9ZcUUAi9TKGNp5PyrqSnXKyDv8su5bOVhausj5+1OX0ytTVRMtdxlMaX+VhXrHzCdNjCVcuqDqa1rVd02ANNcN1PrP8WZ9JHuxo0b48cff0Rubq7Wn8nJycGKFSvQuHFjnQtXncj5lyQ5l00bch0sTL1eVarKepgCU6truW57+mRqbWJq5dWWqfQ1U/zirS1TWi9TKmtFmNJ6VtWxScVU72ZuSn1I7nR6ZFhUVBTGjx+PsWPHSjdJa9WqFfz9/WFnZweg8LFdsbGxOH36NPbu3Yvff/8dVlZW+PDDDw2yAlWBKWyIVWGjk+OXHbmVR1dy7btyLFNFybWuNTGVclaUqT4r2pTKqgtTf3xVVSHnNqguY1Nxcm6TokyhjBVlKm1RXbcVQ9L59PK0tDR8//33WLlyJS5cuCA1ioVFYfyen58PoHDDCQ4OxpAhQzBkyBBZHNavLOU5nUHOp3CYygDxNHJbD7mVp7zkuB5yLJM+yHmcUDGFMuqbqfS36tA2cl5HU+knFSXn9ZRz2QxJ7ust5+1W3+TeFiqmUs6yyO308gpd0x0XF4djx47hn3/+wePHjwEANWvWRFBQEMLDw+Hv76+3gpqS8jayHDu4HMtUXnIa1KtSvQLyWh85tbMhyKmuNZF7+QzBVPpcdWkbua6nXMulb3LdHqpL/Wsi1zZRqU5tI/e2AEyjjNqQW9Ct0+nlxdWtWxd169bVU1EIqF4DT2UzpdNzqWKq+jYk13Gium5fpjC2yL18+ia3bURu5TEkU9geqhs5XwpT3fqKqWwfcusnVYFeHxlGFSO3Dm4Kg4Ipqor1KpediBzKYGhyGyeKk3v5DEUu20BZqkvbVJf1lDO5bQ9yDDYrm5zXX85lMwS5bR9FcVsxHAbdMiSnDbGqbXhyGeiqWr3KSXWoW7n046LkVh5jkWM9yLFMlUEu680vscYll34gF3KqDzmVxRjktv5yK09Vw6BbZrhjJlNmzAGbOwvjq+7jl5zXX85lM4Tqtr5yJKcfB9kfCsmxHuRYpsog1/WWa7mqAgbdpJFcdpSGYMwvAlX5iIcc1ksOZagscvpCK5dyyIWc6qMqjznaMHZbVPf6B/hjrNzIZd/BbaOQHNoCkE85qjK9Bd1ffPGFvrKq9uQyIHIwpPKQQ9+lysfxohDrQT7YFsYnhzaQQxmINJFb35RbeaoavQXdn332mfT/K6+8oq9syQiqS9BU2etZHerVWAN2df3FXA4/0FXXun8aY7eLqgxsG+O1Bev/X8ZoAzlsg3Jl7H0Htw11xu6rxl5+daG3oLtRo0aYN28erl27hj179ugr22rNmBtBVR8MjbV+Vb1eVTiAVw9sZ83ksJ2zbQrJoS2qO2O2Adu/bPwxxPjk0kflUo6qrELP6S5qzZo1mDZtGiIjI5GZmYkWLVqgadOmaNasGZo1a4amTZvCx8dHX4ur8oz9KyRReVV2363u24mqvvlDkrwYu11UZaBCld0W1X1c0qQy24D1/3TG/J7JsakkY+0vjL2fqk4UwgA17eDggL179+LChQu4cOECoqOjER0dDTMzMzx69Ejfi5Od1NRUODs7IyUlBU5OTuXORzUYVvYXheq08VXW+hqjLY2psr9cVZd6LY0x6qC69enyMGYdcbtQZ4ygm/WvjvsF+ansMYr7jdJxP65/+orH9EVvR7qLio+Ph4ODA5599lm16Xfv3jXE4qosHu2uWqrqoFaaytiBcPv4lzF22NWtT+vKWGM4Aw7NKvtHViqJ+wV5McYYxbFJM2OdHcX2qDx6uaY7NzcXmZmZ0nsHBweN6WrXrq2PxVU7lTUgVtcdVXVdb0OqzEGcOwzWgdxxjDE+fpE1Pu4X5KsyxiiOg/LC9qh8FQq64+Pj0blzZ9jb28PR0RGenp7o1KkTPvjgA/z444/4+++/kZeXV66858yZg2eeeQaOjo7w8PBAnz59cPXq1TI/s3HjRoSGhsLFxQX29vZo0aIFfvrpJ7U0CQkJiIqKgo+PD+zs7NC1a1fExMRI8+Pi4qBQKDS+1q9fX651qQh+UTCsyjrqUd3qVYWDeuWqzB/oqmuf1pUxThdk25TO0NsIx7ynM2Qdsf51xx9D5KOyzzxge1SuCp1e/sEHH+Dw4cOYNGkSXFxc8MEHH+D+/fs4ePAglEpl4QIsLJCTk6Nz3ocOHcKoUaPwzDPPID8/Hx9//DE6d+6My5cvw97eXuNnXF1d8cknnyAoKAhWVlbYtm0bBg8eDA8PD3Tp0gVCCPTp0weWlpbYsmULnJyc8MUXXyAyMlLK19fXFw8ePFDL95tvvsGCBQvQrVs33SuJqJoy9M6DwYW6ytpZ80tt+fC0WuOrrG2E41LpKqMNWP/lY8gximOTbgy9v2B7GEeFbqTm7e2Nfv36YdGiRXj8+DHc3d2xd+9eNGrUCMOGDcP9+/fx0ksvYcqUKRUu6MOHD+Hh4YFDhw6hffv2Wn+uVatW6NGjB2bOnIlr166hYcOGuHjxIpo0aQIAUCqV8PLywuzZszFs2DCNebRs2RKtWrXC999/r9UyDXHhfmVtgNV1Z2Wo+mW9Gm79GXSXVBn9jfVePpUVdLNtymboMclQeVc1huir7P8VY+igm22jvcr4zl8d2kNuN1Kr0OnlqampaNasGYDCI9pA4fXd3t7e2Lx5MwoKClC3bt0KFxIAUlJSABQezdaGEAL79u3D1atXpSBddcTdxsZGSmdmZgZra2scOXJEYz5nzpzB+fPnMXTo0IoU3yRUhw3QGKpzvfJX88rFI6nyxtNqjc/Q20h1Hu/JtBnqLASOTeVjqHpjexhPhYJuX19fxMfHAwCcnZ1ha2srPRLM0tISb775Jv7zn/9UuJBKpRLjxo1D27ZtERwcXGbalJQUODg4wMrKCj169MDixYvRqVMnAEBQUBDq1KmDSZMmISkpCbm5uZg3bx7u3r1b4pRyle+//x6NGjVCmzZtSl1mTk4OUlNT1V6GwA3FsFi/poVfbktnyL7Mei+fyqg3to329L2NcP+hG30HeNXlyF1lMERfZtvohj8OVk0VCrqff/55/Pnnn9L7oKAgtfe2tra4du1aRRYBABg1ahQuXryItWvXPjWto6Mjzp8/j1OnTmHWrFkYP348Dh48CKDwh4CNGzfi2rVrcHV1hZ2dHQ4cOIBu3brBzKxkVWRlZWHNmjVPPco9Z84cODs7Sy9fX99yrWdZeJqJYfH0Z8MxxJcrKh3PLpA31qPxGWob4XivO31sD9ym9Ien/MuLIX4cZHsYT4Wu6f7nn3/www8/YMaMGbCxscEPP/yAESNGYOHChahXrx7effddWFtb49KlS+Uu4OjRo7FlyxYcPnwY/v7+On9+2LBhuHPnDnbt2qU2PSUlBbm5uXB3d0dYWBhCQ0OxZMkStTQ//fQThg4dinv37sHd3b3UZeTk5KjdLC41NRW+vr56v4bAkNcdcyPUfz2wXv+lz7pgvT6dIa4tZb3rB69llQd9biO8lrv89NF32f/1S1/9mdtFxen7uxNQvdpDbtd0V+ju5UFBQZg/f770PioqCvv27cPYsWMBAHZ2duV+zJYQAmPGjMGmTZtw8ODBcgXcQOGp6Zrunu7s7AwAiImJwenTpzFz5swSab7//nv06tWrzIAbAKytrWFtbV2u8ulCdcRQ31+kqZAh6pf+xbqtPDy7QL70Pc6wbcpH39sIx7byq8j2wP6vf/rcNrhdVIy+9xdsD+OqUNBdnJmZGX7++Wd8+umnuHv3Llq0aPHUgLU0o0aNwpo1a7BlyxY4OjqWuHYcAAYOHIhatWphzpw5AApP8w4NDUW9evWQk5OD7du346effsKyZcukfNevXw93d3fUqVMH0dHRGDt2LPr06YPOnTurLf/69es4fPgwtm/fXq7ymxJuhPrHAFOdvnbirFfdcGddPbBtyq+i2wiDvopR7RvK0w7V8chdZalosMftQr84TlUNeg26VRo1aoRGjRpVKA9VoNyhQwe16StWrEBUVBQA4Pbt22rXYmdkZGDkyJG4e/cubG1tERQUhNWrV6Nfv35SmgcPHmD8+PFISEiAt7c3Bg4ciMmTJ5dY/g8//IDatWuXCMblgIGHYbF+DYd1W3n0+UMH6Z++Tqul8tPXNsIxrWIq0g6se8PijyHGx3Gq6qjQNd2kmaGvIdBX4MIASDN9/aLIui2por+cs051o4++yHo3DLaNfJS3Hln/+qPr9sD9bOUoTz1zuzAMjlO6k9s13RW6ezkZD49wGFZF67e6DnDaKE/dsr+Xj6oflrf+WO+Gw6Pc8qJrfbL+9UuXsYoBd+Upz1FutovhcJwybQy6TZA+77ZKJfG6GcOpSN1yR14+Fb0mj/VuWBUZM9g2+lHeemT965c2gTfHpcqn7enN/P5jWLr+iM5tRX4YdFdj3BDLxmvMDEPX65O4I9eP8tQj+7Jh8SZF8qLrl1nSv7ICCwYRxqW64V1p8wC2jaFpG3izPeSJQbeJqsiNFfiF4enKe90MaU+X+uKOo2LKeyMcMrzy/gjFbUK/+GVWPoq2RdGXEIL1biRF6754u3CbqFxPG6vYHvLFoLua4saoHV2DD9ardnS9WQ5VnK6nCLIvVy7+CGV8/DIrH6ogr+iLjK94W7B9jEPTWMUfQOSPQbcJK8/RbgYx2tP1bp2kO167V/lY5/Kjy1FWto1hFT+aV/x/1j9RyeCbKp+qDYqPT2wX+WLQXQ1xg9SNtgE161U3vHav8mkKKFRY58alzVFWtk3lKH4qbfFpRERywbMNTIeFsQtAFaP6lUubjY1HY3VX9FfE0uqY9Vp+xX+lLT6P9K+swJt1blzcHuSFdU5ERPrCoLuK0Dbw5pcI3ZV1Gj+PDlYc6844WO/yxHYhIiKqenh6eRXAo9yVo/gRKAbcRERERET0NAy6qxAejTUcTY/LUE0nIiIiIiIqDU8vryJKu/aYwaF+sR6JiIiIiEgXDLqrkNJuwsNAkYiIiIiIyDgYdFcxDLCJiIiIiIjkg9d0ExERERERERkIg24iIiIiIiIiA2HQTURERERERGQgvKbbAFTXVaemphq5JERERERERNWLKg6Ty/2uGHQbwOPHjwEAvr6+Ri4JERERERFR9fT48WM4OzsbuxgMug3B1dUVAHD79u0KNfIzzzyDU6dOVbg8+shHLnmkpqbC19cXd+7cgZOTk1HLUpXaR1/1qo+y6CsPuZSlKtatXNpHTuOBvvKRSx6sW8PlIae6rUrtw7HWcPnIqc/qKx+5lIV1a7g8UlJSUKdOHSkuMzYG3QZgZlZ4qbyzs3OFNiBzc/MK7zj0lY9c8lBxcnIyet1WtfYBKl6v+ioL69ZwZZFLHvrMRw7jgb7ykUseKqxb/eehIoe6rWrtA3CsNWQ+cuiz+spHTmUBWLeGyENFFZcZmzxKQRqNGjVKNvnIJQ99kdP6yKks+iCn9ZFTWfRBLusjp/bRBzmtj1zy0BfWreHIaX3kVBZ9kMv6yKl99EFO6yOnsuiDnNZHLnnIjULI5eryKiQ1NRXOzs5ISUnR2680VIh1axisV8Nh3RoO69ZwWLeGw7o1DNar4bBuDYd1azhyq1se6TYAa2trTJ06FdbW1sYuSpXDujUM1qvhsG4Nh3VrOKxbw2HdGgbr1XBYt4bDujUcudUtj3QTERERERERGQiPdBMREREREREZCINuIiIiIiIiIgNh0E1ERERERERkIAy6iYiIiIiIiAyEQbeeLVmyBHXr1oWNjQ3CwsJw8uRJYxfJqA4fPoyePXvCx8cHCoUCmzdvVpsvhMCUKVPg7e0NW1tbREZGIiYmRi3NkydPMGDAADg5OcHFxQVDhw5Fenq6WpoLFy6gXbt2sLGxga+vL+bPn1+iLOvXr0dQUBBsbGzQtGlTbN++Xe/rW5nmzJmDZ555Bo6OjvDw8ECfPn1w9epVtTTZ2dkYNWoUatasCQcHB7zyyitISEhQS3P79m306NEDdnZ28PDwwIcffoj8/Hy1NAcPHkSrVq1gbW2NwMBArFy5skR5qkrfX7ZsGZo1awYnJyc4OTkhPDwcO3bskOazTvVn7ty5UCgUGDdunDSN9Vs+06ZNg0KhUHsFBQVJ81mvFXPv3j288cYbqFmzJmxtbdG0aVOcPn1ams99WfnUrVu3RL9VKBTSM3rZb8unoKAAkydPhr+/P2xtbVGvXj3MnDkTRe+dzD5bfmlpaRg3bhz8/Pxga2uLNm3a4NSpU9J81q12TClG0KYsTyVIb9auXSusrKzEDz/8IC5duiTeeust4eLiIhISEoxdNKPZvn27+OSTT8TGjRsFALFp0ya1+XPnzhXOzs5i8+bN4u+//xa9evUS/v7+IisrS0rTtWtX0bx5c3HixAnx559/isDAQPH6669L81NSUoSnp6cYMGCAuHjxovjll1+Era2tWL58uZTm6NGjwtzcXMyfP19cvnxZfPrpp8LS0lJER0cbvA4MpUuXLmLFihXi4sWL4vz586J79+6iTp06Ij09XUrzzjvvCF9fX7Fv3z5x+vRp8eyzz4o2bdpI8/Pz80VwcLCIjIwU586dE9u3bxdubm5i0qRJUpqbN28KOzs7MX78eHH58mWxePFiYW5uLnbu3CmlqUp9f+vWreKPP/4Q165dE1evXhUff/yxsLS0FBcvXhRCsE715eTJk6Ju3bqiWbNmYuzYsdJ01m/5TJ06VTRp0kQ8ePBAej18+FCaz3otvydPngg/Pz8RFRUl/vrrL3Hz5k2xa9cucf36dSkN92Xlk5iYqNZn9+zZIwCIAwcOCCHYb8tr1qxZombNmmLbtm0iNjZWrF+/Xjg4OIgvv/xSSsM+W359+/YVjRs3FocOHRIxMTFi6tSpwsnJSdy9e1cIwbrVlinFCNqU5WkYdOtR69atxahRo6T3BQUFwsfHR8yZM8eIpZKP4huUUqkUXl5eYsGCBdK05ORkYW1tLX755RchhBCXL18WAMSpU6ekNDt27BAKhULcu3dPCCHE0qVLRY0aNUROTo6U5qOPPhINGzaU3vft21f06NFDrTxhYWHi7bff1us6GlNiYqIAIA4dOiSEKKxLS0tLsX79einNlStXBABx/PhxIUThgGdmZibi4+OlNMuWLRNOTk5SfU6YMEE0adJEbVn9+vUTXbp0kd5X9b5fo0YN8d1337FO9SQtLU3Ur19f7NmzR0REREhBN+u3/KZOnSqaN2+ucR7rtWI++ugj8dxzz5U6n/sy/Rk7dqyoV6+eUCqV7LcV0KNHDzFkyBC1aS+//LIYMGCAEIJ9tiIyMzOFubm52LZtm9r0Vq1aiU8++YR1W05yjhG0KYs2eHq5nuTm5uLMmTOIjIyUppmZmSEyMhLHjx83YsnkKzY2FvHx8Wp15uzsjLCwMKnOjh8/DhcXF4SGhkppIiMjYWZmhr/++ktK0759e1hZWUlpunTpgqtXryIpKUlKU3Q5qjRVqW1SUlIAAK6urgCAM2fOIC8vT229g4KCUKdOHbX6bdq0KTw9PaU0Xbp0QWpqKi5duiSlKavuqnLfLygowNq1a5GRkYHw8HDWqZ6MGjUKPXr0KFEHrN+KiYmJgY+PDwICAjBgwADcvn0bAOu1orZu3YrQ0FC89tpr8PDwQMuWLfHtt99K87kv04/c3FysXr0aQ4YMgUKhYL+tgDZt2mDfvn24du0aAODvv//GkSNH0K1bNwDssxWRn5+PgoIC2NjYqE23tbXFkSNHWLd6Iqd61KYs2mDQrSePHj1CQUGB2sAPAJ6enoiPjzdSqeRNVS9l1Vl8fDw8PDzU5ltYWMDV1VUtjaY8ii6jtDRVpW2USiXGjRuHtm3bIjg4GEDhOltZWcHFxUUtbfH6LW/dpaamIisrq0r2/ejoaDg4OMDa2hrvvPMONm3ahMaNG7NO9WDt2rU4e/Ys5syZU2Ie67f8wsLCsHLlSuzcuRPLli1DbGws2rVrh7S0NNZrBd28eRPLli1D/fr1sWvXLowYMQLvvvsuVq1aBYD7Mn3ZvHkzkpOTERUVBYDjQUVMnDgR/fv3R1BQECwtLdGyZUuMGzcOAwYMAMA+WxGOjo4IDw/HzJkzcf/+fRQUFGD16tU4fvw4Hjx4wLrVEznVozZl0YaF1imJSLZGjRqFixcv4siRI8YuSpXQsGFDnD9/HikpKdiwYQMGDRqEQ4cOGbtYJu/OnTsYO3Ys9uzZU+IoAVWM6ggWADRr1gxhYWHw8/PDunXrYGtra8SSmT6lUonQ0FDMnj0bANCyZUtcvHgRX3/9NQYNGmTk0lUd33//Pbp16wYfHx9jF8XkrVu3Dj///DPWrFmDJk2a4Pz58xg3bhx8fHzYZ/Xgp59+wpAhQ1CrVi2Ym5ujVatWeP3113HmzBljF41kjEe69cTNzQ3m5uYl7qqZkJAALy8vI5VK3lT1UladeXl5ITExUW1+fn4+njx5opZGUx5Fl1FamqrQNqNHj8a2bdtw4MAB1K5dW5ru5eWF3NxcJCcnq6UvXr/lrTsnJyfY2tpWyb5vZWWFwMBAhISEYM6cOWjevDm+/PJL1mkFnTlzBomJiWjVqhUsLCxgYWGBQ4cO4b///S8sLCzg6enJ+tUTFxcXNGjQANevX2e/rSBvb280btxYbVqjRo2k0/e5L6u4W7duYe/evRg2bJg0jf22/D788EPpaHfTpk3x5ptv4r333pPOMGKfrZh69erh0KFDSE9Px507d3Dy5Enk5eUhICCAdasncqpHbcqiDQbdemJlZYWQkBDs27dPmqZUKrFv3z6Eh4cbsWTy5e/vDy8vL7U6S01NxV9//SXVWXh4OJKTk9V+Pdy/fz+USiXCwsKkNIcPH0ZeXp6UZs+ePWjYsCFq1KghpSm6HFUaU24bIQRGjx6NTZs2Yf/+/fD391ebHxISAktLS7X1vnr1Km7fvq1Wv9HR0WqD1p49e+Dk5CR9yXxa3VWHvq9UKpGTk8M6raCOHTsiOjoa58+fl16hoaEYMGCA9D/rVz/S09Nx48YNeHt7s99WUNu2bUs8jvHatWvw8/MDwH2ZPqxYsQIeHh7o0aOHNI39tvwyMzNhZqb+Fd/c3BxKpRIA+6y+2Nvbw9vbG0lJSdi1axd69+7NutUTOdWjNmXRita3XKOnWrt2rbC2thYrV64Uly9fFsOHDxcuLi5qd9WsbtLS0sS5c+fEuXPnBADxxRdfiHPnzolbt24JIQpvwe/i4iK2bNkiLly4IHr37q3xcQAtW7YUf/31lzhy5IioX7++2uMAkpOThaenp3jzzTfFxYsXxdq1a4WdnV2JxwFYWFiIhQsXiitXroipU6ea1GMVNBkxYoRwdnYWBw8eVHvkSmZmppTmnXfeEXXq1BH79+8Xp0+fFuHh4SI8PFyar3rcSufOncX58+fFzp07hbu7u8bHrXz44YfiypUrYsmSJRoft1JV+v7EiRPFoUOHRGxsrLhw4YKYOHGiUCgUYvfu3UII1qm+Fb17uRCs3/J6//33xcGDB0VsbKw4evSoiIyMFG5ubiIxMVEIwXqtiJMnTwoLCwsxa9YsERMTI37++WdhZ2cnVq9eLaXhvqz8CgoKRJ06dcRHH31UYh77bfkMGjRI1KpVS3pk2MaNG4Wbm5uYMGGClIZ9tvx27twpduzYIW7evCl2794tmjdvLsLCwkRubq4QgnWrLVOKEbQpy9Mw6NazxYsXizp16ggrKyvRunVrceLECWMXyagOHDggAJR4DRo0SAhReBv+yZMnC09PT2FtbS06duworl69qpbH48ePxeuvvy4cHByEk5OTGDx4sEhLS1NL8/fff4vnnntOWFtbi1q1aom5c+eWKMu6detEgwYNhJWVlWjSpIn4448/DLbelUFTvQIQK1askNJkZWWJkSNHiho1agg7Ozvx0ksviQcPHqjlExcXJ7p16yZsbW2Fm5ubeP/990VeXp5amgMHDogWLVoIKysrERAQoLYMlarS94cMGSL8/PyElZWVcHd3Fx07dpQCbiFYp/pWPOhm/ZZPv379hLe3t7CyshK1atUS/fr1U3uONOu1Yn7//XcRHBwsrK2tRVBQkPjmm2/U5nNfVn67du0SAErUlxDst+WVmpoqxo4dK+rUqSNsbGxEQECA+OSTT9Qem8Q+W36//vqrCAgIEFZWVsLLy0uMGjVKJCcnS/NZt9oxpRhBm7I8jUIIIbQ/Lk5ERERERERE2uI13UREREREREQGwqCbiIiIiIiIyEAYdBMREREREREZCINuIiIiIiIiIgNh0E1ERERERERkIAy6iYiIiIiIiAyEQTcRERERERGRgTDoJiIiIiIiIjIQBt1EREREREREBsKgm4iIiIiIiMhAGHQTERERERERGQiDbiIiIiIiIiIDYdBNREREREREZCAMuomIiIiIiIgMhEE3ERERERERkYEw6CYiIiIiIiIyEAbdRERERERERAbCoJuIiPSuQ4cO6NChg97yi4uLg0KhwMqVK/WWpymaP38+goKCoFQqn5o2KioKDg4OlVAqMkV169ZFVFSUzp97/Pgx7O3tsX37dv0XioioimLQTURUTaxcuRIKhUJ62djYoEGDBhg9ejQSEhKMXTx6itTUVMybNw8fffQRzMwKd9+ZmZmYNm0aDh48aNzCEQBg6dKlVf6HoZo1a2LYsGGYPHmysYtCRGQyLIxdACIiqlwzZsyAv78/srOzceTIESxbtgzbt2/HxYsXYWdnp5dl7N69Wy/50L9++OEH5Ofn4/XXX5emZWZmYvr06QCg1zMLqHyWLl0KNze3ch1BNiXvvPMO/vvf/2L//v144YUXjF0cIiLZ45FuIqJqplu3bnjjjTcwbNgwrFy5EuPGjUNsbCy2bNlS4bwzMzMBAFZWVrCysqpwfsamVCqRnZ1t7GIAAFasWIFevXrBxsbG2EV5qoyMDGMXgQyoUaNGCA4OrvJH9YmI9IVBNxFRNac6UhUbGytNW716NUJCQmBrawtXV1f0798fd+7cUftchw4dEBwcjDNnzqB9+/aws7PDxx9/LM0rfuQ1MTERQ4cOhaenJ2xsbNC8eXOsWrWqRHmSk5MRFRUFZ2dnuLi4YNCgQUhOTtZY9v3796Ndu3awt7eHi4sLevfujStXrpRId/DgQYSGhsLGxgb16tXD8uXLMW3aNCgUCrV0CoUCo0ePxs8//4wmTZrA2toaO3fuBAAsXLgQbdq0Qc2aNWFra4uQkBBs2LChxLJUeaxfvx6NGzeGra0twsPDER0dDQBYvnw5AgMDYWNjgw4dOiAuLk7juhUVGxuLCxcuIDIyUpoWFxcHd3d3AMD06dOlywamTZum9tl79+6hT58+cHBwgLu7Oz744AMUFBSopVEqlVi0aBGaNGkCGxsbeHp64u2330ZSUtJTy6a6dvzGjRvo3r07HB0dMWDAAJ3yPX36NLp06QI3NzfY2trC398fQ4YMUUuTkZGB999/H76+vrC2tkbDhg2xcOFCCCHU0qnqf/PmzQgODoa1tTWaNGkitaPKrVu3MHLkSDRs2BC2traoWbMmXnvttRLtobos4+jRoxg/fjzc3d1hb2+Pl156CQ8fPpTS1a1bF5cuXcKhQ4ektnja2Qe69qmnrROgfV/XJDk5GePGjZPqODAwEPPmzdN4D4FOnTrh999/L1H/RERUEk8vJyKq5m7cuAGg8FpNAJg1axYmT56Mvn37YtiwYXj48CEWL16M9u3b49y5c3BxcZE++/jxY3Tr1g39+/fHG2+8AU9PT43LyMrKQocOHXD9+nWMHj0a/v7+WL9+PaKiopCcnIyxY8cCAIQQ6N27N44cOYJ33nkHjRo1wqZNmzBo0KASee7duxfdunVDQEAApk2bhqysLCxevBht27bF2bNnUbduXQDAuXPn0LVrV3h7e2P69OkoKCjAjBkzpIC1uP3792PdunUYPXo03NzcpHy+/PJL9OrVCwMGDEBubi7Wrl2L1157Ddu2bUOPHj3U8vjzzz+xdetWjBo1CgAwZ84cvPjii5gwYQKWLl2KkSNHIikpCfPnz8eQIUOwf//+Mtvo2LFjAIBWrVpJ09zd3bFs2TKMGDECL730El5++WUAQLNmzaQ0BQUF6NKlC8LCwrBw4ULs3bsXn3/+OerVq4cRI0ZI6d5++22sXLkSgwcPxrvvvovY2Fh89dVXOHfuHI4ePQpLS8syy5efn48uXbrgueeew8KFC6XLFLTJNzExEZ07d4a7uzsmTpwIFxcXxMXFYePGjVL+Qgj06tULBw4cwNChQ9GiRQvs2rULH374Ie7du4f//Oc/auU5cuQINm7ciJEjR8LR0RH//e9/8corr+D27dtSPz916hSOHTuG/v37o3bt2oiLi8OyZcvQoUMHXL58ucSlFmPGjEGNGjUwdepUxMXFYdGiRRg9ejR+/fVXAMCiRYswZswYODg44JNPPgGAUrcHFV36lDbrpGtfLyozMxMRERG4d+8e3n77bdSpUwfHjh3DpEmT8ODBAyxatEgtfUhICP7zn//g0qVLCA4Ofmr+RETVmiAiomphxYoVAoDYu3evePjwobhz545Yu3atqFmzprC1tRV3794VcXFxwtzcXMyaNUvts9HR0cLCwkJtekREhAAgvv766xLLioiIEBEREdL7RYsWCQBi9erV0rTc3FwRHh4uHBwcRGpqqhBCiM2bNwsAYv78+VK6/Px80a5dOwFArFixQpreokUL4eHhIR4/fixN+/vvv4WZmZkYOHCgNK1nz57Czs5O3Lt3T5oWExMjLCwsRPHdIABhZmYmLl26VGKdMjMz1d7n5uaK4OBg8cILL5TIw9raWsTGxkrTli9fLgAILy8vaV2FEGLSpEkCgFpaTT799FMBQKSlpalNf/jwoQAgpk6dWuIzgwYNEgDEjBkz1Ka3bNlShISESO///PNPAUD8/PPPaul27typcXppy5k4caLadG3z3bRpkwAgTp06VeoyVP3is88+U5v+6quvCoVCIa5fvy5NAyCsrKzUpv39998CgFi8eLE0rXh7CiHE8ePHBQDx448/StNU201kZKRQKpXS9Pfee0+Ym5uL5ORkaVqTJk3U+v3T6NKntFknXfq6n5+fGDRokPR+5syZwt7eXly7dk0t3cSJE4W5ubm4ffu22vRjx44JAOLXX3/Ven2JiKornl5ORFTNREZGwt3dHb6+vujfvz8cHBywadMm1KpVCxs3boRSqUTfvn3x6NEj6eXl5YX69evjwIEDanlZW1tj8ODBT13m9u3b4eXlpXYTMEtLS7z77rtIT0/HoUOHpHQWFhZqR2HNzc0xZswYtfwePHiA8+fPIyoqCq6urtL0Zs2aoVOnTtLjjAoKCrB371706dMHPj4+UrrAwEB069ZNY1kjIiLQuHHjEtNtbW2l/5OSkpCSkoJ27drh7NmzJdJ27NhROkIOAGFhYQCAV155BY6OjiWm37x5U2NZVB4/fgwLC4tyPQLsnXfeUXvfrl07teWtX78ezs7O6NSpk1qbh4SEwMHBoUSbl6Zom+mSr+rMiW3btiEvL09j3tu3b4e5uTneffddtenvv/8+hBDYsWOH2vTIyEjUq1dPet+sWTM4OTmprXfR9szLy8Pjx48RGBgIFxcXjW06fPhwtVO027Vrh4KCAty6dausaimTLn3qaetUnr5e1Pr169GuXTvUqFFDrb0iIyNRUFCAw4cPq6WvUaMGAODRo0e6rTQRUTXE08uJiKqZJUuWoEGDBrCwsICnpycaNmwoPYIqJiYGQgjUr19f42eLn2Zcq1YtrW6YduvWLdSvX19ajkqjRo2k+aq/3t7eJYLLhg0blshP03RVnrt27UJGRgZSU1ORlZWFwMDAEuk0TQMAf39/jdO3bduGzz77DOfPn0dOTo40XdO1snXq1FF77+zsDADw9fXVOF2ba6fLw8bGpsSpxTVq1FBbXkxMDFJSUuDh4aExj8TExKcux8LCArVr11abpm2+EREReOWVVzB9+nT85z//QYcOHdCnTx/83//9H6ytrQEUtrePj4/aDxZAyf6jUrz+gZLrnZWVhTlz5mDFihW4d++e2rXJKSkpJT5fPE9V0FmRtqtIn1KVQbX8xMREnft6UTExMbhw4UKpp6IX7weq+tLmWnEiouqOQTcRUTXTunVrhIaGapynVCqhUCiwY8cOmJubl5hfPBgueqSuqtC0Tn/++Sd69eqF9u3bY+nSpfD29oalpSVWrFiBNWvWlEivqe7Kmi6ecjOqmjVrIj8/H2lpaSUCz7KUtryilEolPDw88PPPP2ucr831wNbW1iV+UNE2X4VCgQ0bNuDEiRP4/fffsWvXLgwZMgSff/45Tpw4Ua6j+9rU85gxY7BixQqMGzcO4eHhcHZ2hkKhQP/+/TXeOKy8bVcaffWp8i6/OKVSiU6dOmHChAka5zdo0EDtvSrYd3Nz08vyiYiqMgbdREQkqVevHoQQ8Pf3L/EluyL8/Pxw4cIFKJVKteDsn3/+kear/u7btw/p6elqwdbVq1dL5KdpuipPNzc32Nvbw8bGBjY2Nrh+/XqJdJqmlea3336DjY0Ndu3aJR19BQof41UZgoKCABTexbzojdL0cZSxXr162Lt3L9q2bavXH1F0zffZZ5/Fs88+i1mzZmHNmjUYMGAA1q5di2HDhsHPzw979+4t8aND8f6jiw0bNmDQoEH4/PPPpWnZ2dml3ilfG7q0h777lIeHR4X6er169ZCenq52h/yyqJ52oDrbgIiISsdruomISPLyyy/D3Nwc06dPL3EETQiBx48flyvf7t27Iz4+XrrTM1B4x+vFixfDwcEBERERUrr8/HwsW7ZMSldQUIDFixer5eft7Y0WLVpg1apVakHSxYsXsXv3bnTv3h1A4dHByMhIbN68Gffv35fSXb9+vcR1wGUxNzeHQqFQe9RWXFwcNm/erHUeFREeHg6g8NFaRanusF2RQLFv374oKCjAzJkzS8zLz88vd97a5puUlFSir7Vo0QIApFOuu3fvjoKCAnz11Vdq6f7zn/9AoVBodc1ycebm5iWWu3jx4hKPU9OFvb291vWl7z5V0b7et29fHD9+HLt27SoxLzk5Gfn5+WrTzpw5A2dnZzRp0qRc5SUiqk54pJuIiCT16tXDZ599hkmTJiEuLg59+vSBo6MjYmNjsWnTJgwfPhwffPCBzvkOHz4cy5cvR1RUFM6cOYO6detiw4YNOHr0KBYtWiQdvezZsyfatm2LiRMnIi4uDo0bN8bGjRs1XmO7YMECdOvWDeHh4Rg6dKj0yDBnZ2e1Z1VPmzYNu3fvRtu2bTFixAgpeAsODsb58+e1Kn+PHj3wxRdfoGvXrvi///s/JCYmYsmSJQgMDMSFCxd0rg9dBQQEIDg4GHv37lV7frWtrS0aN26MX3/9FQ0aNICrqyuCg4N1eoRTREQE3n77bcyZMwfnz59H586dYWlpiZiYGKxfvx5ffvklXn31VZ3LrG2+q1atwtKlS/HSSy+hXr16SEtLw7fffgsnJyfpx5OePXvi+eefxyeffIK4uDg0b94cu3fvxpYtWzBu3Di1G4xp68UXX8RPP/0EZ2dnNG7cGMePH8fevXulx2+VR0hICJYtW4bPPvsMgYGB8PDwwAsvvKAxrSH6VEX6+ocffoitW7fixRdfRFRUFEJCQpCRkYHo6Ghs2LABcXFxaqeS79mzBz179uQ13URE2jDKPdOJiKjSqR59VNajmVR+++038dxzzwl7e3thb28vgoKCxKhRo8TVq1elNBEREaJJkyYaP1/8kWFCCJGQkCAGDx4s3NzchJWVlWjatKnaI8BUHj9+LN58803h5OQknJ2dxZtvvinOnTtX4pFhQgixd+9e0bZtW2FrayucnJxEz549xeXLl0vkuW/fPtGyZUthZWUl6tWrJ7777jvx/vvvCxsbG7V0AMSoUaM0rtP3338v6tevL6ytrUVQUJBYsWKFmDp1qsbHjhXPIzY2VgAQCxYsUJt+4MABAUCsX79e4zKL+uKLL4SDg0OJx0wdO3ZMhISECCsrK7XHhw0aNEjY29uXyEdTmYUQ4ptvvhEhISHC1tZWODo6iqZNm4oJEyaI+/fvl1mu0pajbb5nz54Vr7/+uqhTp46wtrYWHh4e4sUXXxSnT59WyyctLU289957wsfHR1haWor69euLBQsWqD3GS4jS27D4I7KSkpKk/ujg4CC6dOki/vnnnxLpSttuVG134MABaVp8fLzo0aOHcHR0FACe+viwivQpTeskhPZ9XdNn09LSxKRJk0RgYKCwsrISbm5uok2bNmLhwoUiNzdXSnflyhXp8YNERPR0CiH0dAcOIiIiE9KnTx9cunQJMTExxi6KVlJSUhAQEID58+dj6NChxi4OmRB99/Vx48bh8OHDOHPmDI90ExFpgdd0ExFRlZeVlaX2PiYmBtu3b0eHDh2MU6BycHZ2xoQJE7BgwQKNd9cmAgzf1x8/fozvvvsOn332GQNuIiIt8Ug3ERFVed7e3oiKikJAQABu3bqFZcuWIScnB+fOnSv1meREpoh9nYhIfngjNSIiqvK6du2KX375BfHx8bC2tkZ4eDhmz57NIISqHPZ1IiL54ZFuIiIiIiIiIgPhNd1EREREREREBsKgm4iIiIiIiMhAeE23ASiVSty/fx+Ojo68sycREREREVElEkIgLS0NPj4+MDMz/nFmBt0GcP/+ffj6+hq7GERERERERNXWnTt3ULt2bWMXg0G3ITg6OgIobGQnJycjl8b05Obm4vPPPwcAvP/++wCg9t7KyspoZSPTU7w/adN/5s0DZs8GPv4Y+Oijp0+vyLKIiIiISL9SU1Ph6+srxWXGxqDbAFSnlDs5OTHoLofc3FzY2NgAgFR/Rd8zkCFdFO9P2vSfWbMAGxtgypTCv5MnAzNnFgbcM2YUvtfXsoiIiIjIMORyqS+DbiIiDSZPBlJT72HKlMWYNu0ulMqlmDHDqdSAm4iIiIhIEwbdRETFXLhwAZ9//jnWrFkDIB9KJWBuHorJk8cZu2hEREREZGKMfys3IiKZ+PPPP9GlSxc0b94cP/74I/Lz8wEU3nyjoGAzZs40bvmIiIiIyPQw6CYiAhATE4PIyEjs3r0bZmZmCA7uC+AvvPfeYQCAQvEnpkx5zMCbiIiIiHTCoJuICMCuXbuQm5uLFi1aYOzY67h48VfMmNEaX3zhj2bNmkEIJV56aRumTAEDbyIiIiLSGq/pJtkxMzND48aNpf8BlHhPpC1N/UmTP//8EwDg6voy/vMff7W7lPfp0wcXLlwAsAUzZgzClCmF04vfVE3bZRERERFR9aEQQghjF6KqSU1NhbOzM1JSUvjIMCITIIRArVq18ODBAwAHMGNGB7WA+uzZswgJCYGdnR0ePXqEhQttMWVK2Y8PIyIiIiLjkFs8ZvKHYpYsWYK6devCxsYGYWFhOHnyZKlpV65cCYVCofZSPVNXRQiBKVOmwNvbG7a2toiMjERMTIyhV4OIjCg2NvZ/AbclJk8OKxFIt2zZEr6+vsjMzMTevXsxeXJhwM1TzYmIiIjoaUw66P71118xfvx4TJ06FWfPnkXz5s3RpUsXJCYmlvoZJycnPHjwQHrdunVLbf78+fPx3//+F19//TX++usv2Nvbo0uXLsjOzjb06hCRkahOLff1DcWMGbYl5isUCvTu3RsAsGXLFgCQAu+CgsorJxERERGZHpMOur/44gu89dZbGDx4MBo3boyvv/4adnZ2+OGHH0r9jEKhgJeXl/Ty9PSU5gkhsGjRInz66afo3bs3mjVrhh9//BH379/H5s2bK2GNCAByc3Mxffp0TJ8+Hbm5uSXeE+lCm/6jCrpff71dqfn06dMHALB161YU/C/SnjwZmDZNt2URERERUfViskF3bm4uzpw5g8jISGmamZkZIiMjcfz48VI/l56eDj8/P/j6+qJ37964dOmSNC82Nhbx8fFqeTo7OyMsLKzMPInItKmC7ueee67UNO3bt4eLiwsePnyIEydOVFbRiIiIiMjEmWzQ/ejRIxQUFKgdqQYAT09PxMfHa/xMw4YN8cMPP2DLli1YvXo1lEol2rRpg7t37wKA9Dld8gSAnJwcpKamqr2IyDQkJCTg2rVrAIC2bduWms7S0hI9evQAAJ75QkRERERaM9mguzzCw8MxcOBAtGjRAhEREdi4cSPc3d2xfPnyCuU7Z84cODs7Sy9fX189lZiIDO3o0aMAgODgYLi6upaZVnVd9+bNm8EHPxARERGRNkw26HZzc4O5uTkSEhLUpickJMDLy0urPCwtLdGyZUtcv34dAKTP6ZrnpEmTkJKSIr3u3Lmjy6oQkRGpTi1v167067lVunbtCisrK1y/fh1XrlwxdNGIiIiIqAow2aDbysoKISEh2LdvnzRNqVRi3759CA8P1yqPgoICREdHw9vbGwDg7+8PLy8vtTxTU1Px119/lZmntbU1nJyc1F5EZBp0CbodHR3RsWNHAP/exZyIiIiIqCwmG3QDwPjx4/Htt99i1apVuHLlCkaMGIGMjAwMHjwYADBw4EBMmjRJSj9jxgzs3r0bN2/exNmzZ/HGG2/g1q1bGDZsGIDCO5uPGzcOn332GbZu3Yro6GgMHDgQPj4+0p2LiajqSEtLw7lz5wBoF3QD/97FnNd1ExEREZE2LIxdgIro168fHj58iClTpiA+Ph4tWrTAzp07pRuh3b59G2Zm//6ukJSUhLfeegvx8fGoUaMGQkJCcOzYMTRu3FhKM2HCBGRkZGD48OFITk7Gc889h507d8LGxqbS16+6MjMzQ/369aX/AZR4T6QtTf1J5fjx41Aqlahbty5q166tVX49e/bE22+/jZMnT+L+/fvw8fHRallEREREVD0pBO8GpHepqalwdnZGSkoKTzUnkrHJkyfjs88+wxtvvIGffvpJ68+Fh4fjxIkT+Prrr/H2228bsIREREREpCu5xWM8FENE1daRI0cAaH9quUrRu5gTEREREZWFQTcRVUu5ubk4ceIEAN2DbtV13fv370dWVpa+i0ZEREREVQiDbpKd3NxczJ49G7Nnz0Zubm6J90S6KK3/nDlzBtnZ2XBzc0NQUJBOeTZs2BDe3t7Izc3FmTNnnrosIiIiIqq+GHSTLOXl5SEvL6/U90S60NR/VI8Ke+6556BQKHTKT6FQSI8RPHbs2FOXRURERETVF4NuIqqWdHk+tyZt2rQBUDLoJiIiIiIqikE3EVU7SqUSR48eBVB4pLs8VEH38ePHwYdAEBEREVFpGHQTUbVz+fJlJCUlwc7ODi1btixXHq1atYKVlRUSExNx8+ZNPZeQiIiIiKoKBt1EVO2oTgl/9tlnYWlpWa48rK2tERISopYfEREREVFxDLqJqNqJjo4GUHi0uiJ4XTcRERERPY2FsQtAVJxCoYCfn5/0P4AS74m0pak/Xbp0CQAQHBxcobzbtGmDzz//XAq6NS2LiIiIiKo3heAdgPQuNTUVzs7OSElJgZOTk7GLQ0TFeHh44OHDhzh16hRCQ0PLnc+DBw/g4+MDMzMzJCUlcXsnIiIikgG5xWM8vZyIqpXExEQ8fPgQCoUCjRo1qlBe3t7eqFu3LpRKJU6ePKmnEhIRERFRVcKgm4iqFdWp5f7+/rC3t69wfryum4iIiIjKwqCbZCc3NxcLFizAggULkJubW+I9kS6K9x99Xc+tUjToZl8lIiIiouJ4IzWSpczMzDLfE+miaP+5ePEiAP0H3SdOnIBSqWRfJSIiIiI1PNJNRNWK6kh3kyZN9JJf06ZNYW9vj5SUFPzzzz96yZOIiIiIqg4G3URUbQgh9H6k28LCAq1btwYAHD9+XC95EhEREVHVwaCbiKqN+/fvIzk5Gebm5mjYsKHe8i16ijkRERERUVEMuomo2rh8+TIAoH79+rC2ttZbvqqgm0e6iYiIiKg4Bt1EVG3o+3pulWeffRYAEBMTg4yMDL3mTURERESmzShB97hx4/Do0SNjLJpMgEKhgI+PD3x8fKBQKEq8J9JF0f5z5coVAPq7nlvF1dUVQUFBAICsrCz2VSIiIiKSGOWRYf/973/h7OyM7OxseHh4oEePHtIXViJLS0u89dZbatOKvyfSVtH+9N133wHQ/5FuoPAU83/++QeOjo7sr0REREQkMdrp5b/88gsyMjJw7tw5REREYMiQIcjNzTVWcYioilMqldI13fo+0g38e133sWPH9J43EREREZkuowTdZmZmOHbsGL766iusXr0asbGxyM3NxZQpU4xRHCKqBm7fvo309HRYWloiMDBQ7/mHh4cDAE6ePIm8vDy9509EREREpskoQbePjw/MzP5dtJ2dHZYuXYq1a9caozgkM3l5eVi0aBEWLVqEvLy8Eu+JdKHqP7NmzQIABAUFwdLSUu/LCQoKgouLC7KysjBx4kT2VSIiIiICYKSg++WXX8Ybb7yhdjO1xMREZGdnG6M4JDNCCKSkpCAlJQVCiBLviXSh6j9xcXEADHNqOVB4Bk9YWBgA4MqVK+yrRERERATASEH33Llz4e/vjzp16qBNmzbo0aMHwsLCMHz4cGMUh4iqgcTERACGuYmaiuoU8zt37hhsGURERERkWoxy93IbGxssWbIEM2fOxMGDB/HkyRN8+umn0hdWIiJ9UwXdhjrSDUA60n379m0e6SYiIiIiAJVwpHvHjh144403EBERge7du2PixIk4deoUgMJn27788ssYNmxYuQPuJUuWoG7durCxsUFYWBhOnjxZatpvv/0W7dq1Q40aNVCjRg1ERkaWSB8VFSU9G1r16tq1a7nKRkTyoFQqpctZDHmku3Xr1jA3N0dqaiquXr1qsOUQERERkekwaNC9aNEivPjii9i0aRMyMjKQmJiI//73v3j22WfRo0cPxMfHVyj/X3/9FePHj8fUqVNx9uxZNG/eHF26dJGOaBV38OBBvP766zhw4ACOHz8OX19fdO7cGffu3VNL17VrVzx48EB6/fLLLxUqJxEZV1JSEvLz82Frawt/f3+DLcfBwQF+fn4ACn9wJCIiIiIyaND95ZdfokWLFrh16xZOnz6N06dPIykpCV999RUuXryI1q1blwh4dfHFF1/grbfewuDBg9G4cWN8/fXXsLOzww8//KAx/c8//4yRI0eiRYsWCAoKwnfffQelUol9+/appbO2toaXl5f0qlGjRrnLSETGp/ohLigoCObm5gZdVoMGDQAAO3fuNOhyiIiIiMg0GDToTkhIwLBhw+Dm5iZNs7a2xogRI3D69GkoFApMmDChXHnn5ubizJkziIyMlKaZmZkhMjISx48f1yqPzMxM5OXlwdXVVW36wYMH4eHhgYYNG2LEiBF4/PhxucpI5aNQKODu7g53d3fpFP+i74l0oVAokJGRAcCwp5arlqW6rvvIkSNITU016PKIiIiISP4MeiO1hg0bIiEhQeM8d3d3jBw5EnPnzi1X3o8ePUJBQQE8PT3Vpnt6euKff/7RKo+PPvoIPj4+aoF7165d8fLLL8Pf3x83btzAxx9/jG7duuH48eOlHiHLyclBTk6O9J5ftCvG0tISI0eOVJtW/D2RtiwtLWFvbw8AaNq0qcGXNW3aNKxZswYxMTHYs2cPXnnlFYMuk4iIiIjkzaBHuidMmICvvvoKMTExGufb2dkZ7cjl3LlzsXbtWmzatAk2NjbS9P79+6NXr15o2rQp+vTpg23btuHUqVM4ePBgqXnNmTMHzs7O0svX17cS1oCItHXp0iUAhr1zeVE9evQAAPzxxx+VsjwiIiIiki+DBt2ff/45zM3N0bp1a8yfPx/379+X5t24cQNLlizBa6+9Vq683dzcYG5uXuJIekJCAry8vMr87MKFCzF37lzs3r0bzZo1KzNtQEAA3NzccP369VLTTJo0CSkpKdKLz+glko+8vDzpTuKVHXRv374dSqWyUpZJRERERPJk0KDbx8cH9vb2SE1NxcSJE+Hr6wt3d3d4eXmhQYMGsLW1xfDhw5GXl6dz3lZWVggJCVG7CZrqpmhlPX5s/vz5mDlzJnbu3InQ0NCnLufu3bt4/PgxvL29S01jbW0NJycntReVX15eHpYuXYqlS5ciLy+vxHsiXVy+fBl5eXmwsbF56g9yFaXqq5cuXYKDgwMSEhJw7tw5gy6TiIiIiOTNoNd0b926FQCQnp6OS5cuITo6GhcvXpT+/v3339JzbQMCAtCoUSM0btwYs2bN0ir/8ePHY9CgQQgNDUXr1q2xaNEiZGRkYPDgwQCAgQMHolatWpgzZw4AYN68eZgyZQrWrFmDunXrSo8sc3BwgIODA9LT0zF9+nS88sor8PLywo0bNzBhwgQEBgaiS5cuBqgh0kQIgYcPH0r/AyjxnkhbqlPLi97Q0VCK9t0XXngBW7duxR9//IGQkBCDL5uIiIiI5MmgQbeKg4MDwsLCpLv6qiQmJpYIxPft26d10N2vXz88fPgQU6ZMQXx8PFq0aIGdO3dKN1e7ffs2zMz+PZi/bNky5Obm4tVXX1XLZ+rUqZg2bRrMzc1x4cIFrFq1CsnJyfDx8UHnzp0xc+ZMWFtbV7AWiMgYzp49CwAlbrpoaN26dZOC7ilTplTqsomIiIhIPiol6C6Nh4cHOnbsiI4dO5Y7j9GjR2P06NEa5xW/+VlcXFyZedna2mLXrl3lLgsRyc+ZM2cAALVq1arU5Xbt2hUAcOrUKSQmJsLDw6NSl09ERERE8mDQa7qJiIxJqVRKR7p9fHwqddk+Pj5o2bIlhBDYuXNnpS6biIiIiOSDQTcRVVnXr19HamoqLCws4O7uXunL56PDiIiIiIhBNxFVWadOnQIAeHl5wdzcvNKX3717dwDArl27eOd9IiIiomqKQTfJwrRpwMyZhf8rFAo4OzvD2dkZCoWixHuVmTMLP0dUGlXQ7e/vX6L/GELxvtq6dWu4ubkhJSUFx44dM+iyiYiIiEiejHojNSIVc3NAdYPnyZMtMW7cOLX5xd/PnFmYfsaMyikfmabTp08DAN566y28+eabBl+epWXJvtu1a1esXr0af/zxByIiIgxeBiIiIiKSFx7pJlmYPLkwgJ4y5d8j3qUpGnBPnlw55SPTk5+fL91E7ZlnnjFaOVTXdW/fvt1oZSAiIiIi4+GRbpINVQD97xHvkmkYcJO2rly5gqysLDg6OqJBgwZGK0eXLl1gZmaGS5cu4datW/Dz8zNaWYiIiIio8vFIN8nK5MnA1KkFmDIF6N37NPLy8pCXl4dvv/0WvXufZsBNWlNdz92qVSt8//33+Pbbbw1+MzNVXy26rBo1aqBNmzYAeBdzIiIiouqIQTfJzscfF+D55w9g69ZQzJqlgBACv/wSiK1bQzF1aj4DbtKK6nrukJAQ3L9/H/fv34cQwqDLFEJoXBYfHUZERERUfTHoJlmKiDiMsLDVmD79Zdjavo8DB9rh+ecP4OOPlcYuGpkI1ZHukJAQI5fk36B7//79yMzMNHJpiIiIiKgyMegmGfsKwO9QKr+Cmdk+REQcNnaByETk5OTg77//BiCPoDs4OBh+fn7Izs7GypUrjV0cIiIiIqpEDLpJtq5cSZP+Vyr/waFD7Y1YGjIl0dHRyMvLQ82aNVG3bl1jFwcKhQITJkwAAEyfPh1paWlP+QQRERERVRUMukmWDhwIR2rqDem9j89eHDjwPGbPZpelp1OdWh4aGgqFQmHk0hR66623UL9+fSQmJuLzzz83dnGIiIiIqJIwgiHZmT3bDIcOeQPIkaZZWFzA888fwPTpFk99jjeR6iZqoaGhRi7JvywtLTF79mwAwMKFCxEfH2/kEhERERFRZWDQTbIycyYwfboFmjffCgCwsCh8lPyTJ0/QrdtpTJ2ajylTwMCbyqQ60v3MM88AAOzs7GBnZ1cpyy5rWa+88grCwsKQkZGBGTNmVEp5iIiIiMi4FMLQz9CphlJTU+Hs7Iz7D+/DycmpxHxzM3PYWNhI7zNyM0rNy0xhBltL23KlzczLLPURSQqFAnaWduVKm5WXBaUo/S7i9lb25Uo7dXoeZkyzxKdTc2FpORdTP52K5194Hgf2H4BCoUBubi4sLAqPdE+ZAnw6NRcTP9b83GU7SzvptOKc/BzkK/NLLYMuaW0tbWGmKPytKrcgF3kFpT/3WZe0NhY2MDcz1zltXkEecgtyS01rbWENCzMLndPmK/ORk59TalorcytYmlvqnLZAWYDs/OxS01qaW8LK3ErntEqhRFZeFgAgMzMTXjW9oFQqce3mNfjU8ik1rSYWZhawtrAGUPgIsMy80u82rkta1XZ/+PBhREREwNzcHKfPn0b9BvVLTavCMaJQdn42CpQFeknLMaJQdRwjKprW0GOESlnbMscIzWk5RnCM4Bihe9qqOkakpqbCx90HKSkpGuOxysag2wBUQTcmArApOb97/e744//+fV6v/Wz7UjeyCL8IHIw6KL13X+COR5mPNKYN9QnFqbdOSe/rLqqLWym3NKZt7N4Yl0Zekt43WdoElx9e1pjWz9kPcePipPfPfPsMTt8/rTGtm50bHn74UHrfYWUHHLp1SGNaO0s7ZHxcuGGrAmk8PxmI+AzYAuAcgAgAhwEI4N69e/Dx8Sksb7+1uLyu/7/pi0mflC5tkFGbo7Dq71UaywAAiR8kwt3eHQAw6o9RWHp6aalpY8fGoq5LXQDAh7s/xMLjC0tNe3HERTTxaAIAmHZwGqYfml5q2pPDTuKZWoVHZRccXYAJeyeUmvbAoAPoULcDAGDJySUYvWN0qWm3vb4NPRoUPq5q5fmVGLxlcKlp1726Dq81eQ0AsP7SevTd0LfUtCt6r0BUiygAwB/X/sCLv7xYatqvun2FUa1HAQAOxh3E86ueLzXt/Mj5+LDthwCAU/dOofV3rUtNOzViKqZ1mAYAuJR4CcHLggtn3AbwAwAHAB8UTvog/AMs6LwAABCXHAf/L/1LzXdk6Egs6bEEAPAw4yE8FnqUmnZQ80FY2WclgMKdlMMch1LTvtr4Vax/bT0AoGfPnti2bRvQCEC/kmk5RhQqOkYAQI81PbA9ZrvGtAAgpv67O3tt/WvYcHlDqWk5RhSqlmOEBnIbIwBAMb30+1FwjCjEMeJfHCMKcYwoxDECQDaAuZBN0M3Ty0kWCgqA+q/+9G8A/fh/M9xQGDwBuH//vpS+8au/FQbcSvNKLSeZgHv/++tj1FKUae7cuYACwBUAd4xdGiIiIiIyJB7pNgCeXl6x08Ly8vJQx6cO0lLTcODPAxg/djzOnT2HsWPHYsGCBbC0tORpYTwtrNRTvYZGDcWvv/yKT6d+iokfT0ReXh42rdsEhUKBAQMGwNzC3GCnhaVkpuC3db8BAF7p+wosLS2ltMW3+0GDB+HHlT+izXNtsGvvLrW7rHOM0JyWp45yjOCpo7qn5RhRvrQcIwpxjNA9LceIQsYeI3h6eTWgCrrl0sim5uHDh/Dw8JD+j4qKwh9//IEXX3wRv/32G6ysrIxcQpKzhg0b4tq1a9ixYwe6du2K3NxczJkzBwAwadIkg/YfXZZ19+5d1K9fH9nZ2di6dSt69uxpsHIRERERVSdyi8d4ejnJzvXr1wEA9vb2cHJygpeXFwAgLS3NmMWiSpCQkIBr164hLi4ODx48QEpKik6fT0pKwrVr1wDI63FhmtSuXRtjx44FAEycOBH5+aUfGSEiIiIi08Wgm2RHFXTXrFkTAODt7Q0ASE9PN1qZyPAWL14MHx8fNGzYEP7+/vDx8YGLiwuGDRsGpbL0U4yK5wEAwcHBcHNzM2Rx9WLixIlwdXXF5cuX8e233xq7OERERERkAAy6SXZiYmIAlAy6eaS76vrpp5/w7rvvQqlUwsnJCba2tjAzKxyevv/+e3zyySdPzePx48f4/PPPAQCTJ082aHn1xcXFRVq3kSNHYsyYMcjIKP1aKiIiIiIyPRbGLkCVlpEBmGu4u7a5OWBjo56uNGZmgK1t+dJmZgKlXbKvUAB2duVLm5UFlHXk0d6+fGmzs4GCAlz/5x8AgKurK5CRAa8aNQAUC7r/l7ZUdnaF5QaAnBygrFN3dUlra1tYzwCQmwvklX6jEp3S2tj821d0SZuXV5i+NNbWgIWF7mnz8wvrojRWVoDqJmG6pC0oKGy7In7fvh2DBxc+guS9d9/F54sWFd6QpqAAP61YgYFvvYW5c+fC38cHw4cM+feDlpaFeQOAUon5s2YhNTUVzZs2xavduv27rRRfZ6WysF+WxsKisC6Awm0is/SbmpRIW3T7zMhQb8dStvt3hw7F9StXsOy77/DVV19h544dWPXtt2jz/PMl0mpUDccIvaTlGFHIBMYINUW3e13SPm271yVtRcaIstLq8t2A3yM0p+UYoXtajhGF/3OMKF9aOY8RcjuIIUjvUlJSBACRUti1Sr66d1f/gJ2d5nSAEBER6mnd3EpPGxqqntbPr/S0jRurp23cuPS0fn7qaUNDS0/r5qaeNiKi9LR2duppu3cXAhChCoUAIPr27StyLC3FMXNzAUA4OjqKnJycwrSvvlp6voAQ6en/5jtoUNlpExP/TTtyZNlpY2P/TfvBB2WnvXjx37RTp5ad9uTJf9POn1922gMH/k371Vdlp9227d+0K1aUnXbdun/TrltXdtoVK6Sk+2fPFh8CYhMg8jSl/eqrf/M9cEBt3iFA2AACgBgEiIK5c/9Ne/KkEICY9r/55oDYUTTfqVOlpPcPHBC2/0v3e7Hl51haimnTpolp06YV9p/Y2LLXbeTIf8uQmFh22kGD/k2bnq6+LEtL9bSvvirUFMtrFyBq/28dFID48MMPRVZWVmFajhGF/jdGlPoqimNEIRmMEWLbtrLTljFGlHjNn/9v2v+NEaW+iowR4uLFstN+8MG/aQ04RpSZ9iljhNqL3yMKXxwj/n1xjCh8cYwofHGMECko/E6VkpIi5ICnl5OsCAAxQgAAPP93p0Hv//16nJGRgYKyfpWmSvXXX38hMjISL3z8MRYAeAmAH4ApAO6X/VEAwCkAPQFkA+gF4DtAOqW8qCkABgIoAPAagL815DXrm2+QBSAcQA8N8y2FUHt8lyFZ5ubCsqwjAaXoDCAawCAUbgcLFixASEgITp8+recSEhEREVFl4iPDDEC6Rf19zc/p5ikfhf6OjoajhwcCAgIKJ2Rn486tW6gTFAQLCwukJyTA2toa+fn5sKpRA0IIPHjwoPBu5jwtrPB/I5wWplQqMfL997H8fzf+srS0RM9u3fDnsWN4+OgRAKBGjRpY88MP6Nqpk8bTwk6ePo3OvXsjJSUFEc89hx2bNsHW1rbU08Jyc3PRtU8fHDh8GK6urlj+5Zd4tW9fwMoKcXFxaNCgAfLy8rD/jz/wfEREyUKb2GlhW7Zvx/DRo5GYmAhzc3N079IFEc89h4jnnkOLZs1gYVHkyqAqPEaUSMtTR3VPy1NHC//nqaPlS8sxovB/jhG6p+UYUfg/x4jypdXDGJGamgpnH/k8pxtGPtJeJUmnl8vkdAY5Wrx4sQAgnJycxKNHj6Tpv//+uwAggoOD1dJ7enoKAOLMmTOVXVQqoqCgQAwbNkwAEGZmZmLw4MEi9n+nymVnZ4u1a9eKli1bCgBCoVCIWbNmiYKCArU8Tpw4IZycnAQA0a5dO5GWlqbVspOSkkRoaKjA/04XeuONN0RSUpKIiooSAERkZKS+V9eoHj58KPr27Sutr+rl6OgounbtKubMmSOOHj367yUXRERERCSEkF88ZvKnly9ZsgR169aFjY0NwsLCcPLkyTLTr1+/HkFBQbCxsUHTpk2xfft2tflCCEyZMgXe3t6wtbVFZGSkdDft6iQ5ORkHDhzQ+lFNunj8+LF0d+nU1FSsWrVKmvf334UnDzdr1kztM4GBgQCAq1ev6r08pB0hBEaPHo3vvvsOZmZmWLNmDX744QfUrVsXAGBtbY1+/frh+PHjGD58OIQQ+OSTT9CzZ0989dVXWLduHdauXYvOnTsjNTUV7du3x/bt2+Hg4KDV8l1cXHD06FF8/PHHMDMzw+rVqxEcHIwff/wRADBr1ixDrbpRuLm54ddff8Xp06cxf/58vPjii3B2dkZaWhp27tyJSZMmoW3btnBxcUHHjh0xY8YMHDx4EFll/fpORERERJXOpE8v//XXXzFw4EB8/fXXRBy9nwAAiLhJREFUCAsLw6JFi7B+/XpcvXoVHh4eJdIfO3YM7du3x5w5c/Diiy9izZo1mDdvHs6ePYvg4GAAwLx58zBnzhysWrUK/v7+mDx5MqKjo3H58mXYFD1NowzS6eVyOZ1BR0IIPPvsszh58iRGjx4tPftYH8aOHYv//ve/atNCQkIQFhaGO3fu4Pbt2/j777/x5ptvomvXrujbty8AoEuXLti/fz8mTpyIAQMG4N69e3juuedgX/T0EjKYnJwcjBs3Dl9//TUUCgV+/PFHvPHGG2V+5rvvvsOoUaOQq+FUtPbt2+OPP/7QOuAu7tixYxg4cCBu3LgBAOjduzc2b96sMW1+fj7WrVsHAOjbt6/6qdl6ZuhlFRQUIDo6GocPH8ahQ4dw+PBhPPrfKf0qVlZWaN26Ndq3b4/27dujZcuWGsdDfRNCICsrC8nJyUhJSVH7q/rfwsICTk5OcHZ2hrOzs9r/zs7OsLe3L7xzPREREVEFyC0eM+mgOywsDM888wy++uorAIXXmvr6+mLMmDGYOHFiifT9+vVDRkYGtm3bJk179tln0aJFC3z99dcQQsDHxwfvv/8+PvjgAwBASkoKPD09sXLlSvTv31+rcsmtkXV1+vRpPPPMM9L72NhY+Pn5lfvL8LFjx/Dee+/h0aNHuHnzJgDAwcEBX375JYYOHarxM6NGjYK7uzsmTZoEAOjTpw927NgBR0dHZGdnIy8vD35+fhg7dixeffVV+Pr6lqts1ZUQAjExMTh//jyEELCwsICLiwueeeaZEn323LlzePPNN3Hp0iUAhc/NHlL00V1lOHfuHL7//nvEx8cjMTERiYmJaN26NZYtW1bhH0zS09MxadIkHD9+HL/88gvq16+vMV1ubi7mzJkDAJg0aRKsVNdkGUBlLgsobMcrV67g8OHDUiB+/37J29i5ubmhSZMm0qtx48Zo0qQJ3N3dtVpGSkoK7t69W+J179493L17F/Hx8UhOTkZ+WdcxasHMzAxOTk6oWbMmvL294ePjU+pfZ2dnBuhERESkkdziMZN9Tndubi7OnDkjBWVA4Re2yMhIHD9+XONnjh8/jvHjx6tN69Kli3SELDY2FvHx8YiMjJTmOzs7IywsDMePH9c66NZWSkqKdKSuKG1+B9H2t5Lbt2/jyZMn8PDwgJOTE/Ly8pCfn4+8vDzk5eXh0aNHOHfuHJRKJWrWrImmTZti69atann4+/sjODgYw4cPR25uLtzd3eHi4gIHBwcoFAoolUo4ODigoKAAWVlZePDgAdLS0nDv3j2cO3euxCn8o0aNwhdffAErKyv8+OOPOHTokNr84OBguLm5qU1THakr+qzuW7duYfz48Rg/fjxefPFF9O/fH8eOHcOJEyfg4eGBDh06wNraGunp6VAqlQgICICbmxsSEhLw+PFjKBQK+Pn5wd3dHY8ePcKjR49gZ2cHFxcXuLi4IDc3F3fv3sXDhw/h6OiIGjVqwNXVFRYWFoiLi0NsbCySkpIAAL6+vvD394enpyeePHmCq1evIiYmBmlpabC3t0dgYCDq1asHb29v5OTk4P79+4iNjUVKSgry8vLg7u6OWrVqwcfHB3Z2dkhISMD169dx/vx53LlzB+np6TA3N0dgYCAaNGiAhg0bws/PDzk5OUhKSkJMTAwuX76MxMREZGRkQAgBPz8/1KtXD15eXqhZsyYUCgUuX76M6OhonDhxAgkJCSX6i5mZGVq2bIng4GDpyOWmTZuQn58PDw8PfPvtt+jVq5dWfQ8AWrZsKf0opm8ODg56PQvDFCkUCjRu3BiNGzfGO++8AyEEbt68KR0FP3r0KG7cuIFHjx7h0KFDJbY1Nzc32NnZQQgBIQSUSmWJ/zMyMpBZ1o1dijEzM4OzszNcXFzU/jo7O6OgoAApKSlISUlBamqq2t+CggIolUrpyLimsbEoGxsb+Pj4oGbNmnBwcICDgwMcHR3V/hafplrX/Px8rV85OTnSKzs7u8T/mqYV//Gh+I8DRd8X/9/KygqWlpawsrJSe2kzzcLCAubm5uX+a25uXmo/0PX/goICrV9KpbLM+aq8Aejtr6q+zczMjP63vJ9VvcrDUJ/jfM6vyHyVotupIf6vjGVUtfLpkq60z1T2fLldbmeyQfejR49QUFAAT09Ptemenp74559/NH4mPj5eY/r4+HhpvmpaaWk0UX3hUklNTdVqHY4ePYoePTQ94Egeevbsid9//x0AcPHiRbz77rsVys/DwwPNmjXD7NmzpSOAX3/9NSZMmICXXnoJDRo0wG+//YYxY8ZI1+mq+Pr6wt3dHQ8fPkTTpk2xb98+rF27FuvXr8eRI0ewbds2tTMYAGDnzp0VKq8cnTt3Tuu0J06cKHO+lZUVWrZsCVtbW+Tn5+PevXuIjY3FmTNncObMGbW0r7zyCpYtW6bVkVEyHoVCgXr16qFevXrS2QiZmZn4559/cOnSJbVXbGxsiVPTy1KzZk3Url0btWrVQu3atdX+9/b2ln6sUv0YpwshBDIzM6UA/NGjR7h//z4ePHig8W9ycjKys7Nx8+ZN6ewZIiIiIrky2aBbTubMmYPp06fr/DkbGxvUqlVL47zSvrSW9WVW0zwrKys4ODggPz8fBQUFsLS0VHvZ29ujcePGyMrKglKpRHR0NJKSktC/f39MnDgR77//PuLj4+Hh4YHjx4/D1tYWeXl5yM3NlY6WW1hYICsrCwqFAra2tvDw8IAQAnZ2dggKCkJ2djY+/vhj1K5du0T5goKC1I6st23bVuM1wBYWFhg0aBDc3NzwxhtvwN3dHWPGjMGYMWNw7do1LFy4EOfOnUOjRo3Qs2dP3LlzB3/99RfMzc3h4OAApVKJGzdu4MmTJ/D09ISbmxsKCgpw69YtPHr0CO7u7nBzc0N2djaSk5ORlJQECwsL1K5dG+7u7khPT0dSUhKSkpKQm5uLOnXqwN/fHx4eHlI+sbGxePjwIVxdXREQEIDGjRvDxcVFOmp3/fp1JCYmwsbGBu7u7qhXr5505DwxMRH37t3D/fv3kZmZCU9PT/j5+aFFixaoX78+HBwckJ2djZiYGFy7dg3Xrl3DnTt3YGdnB0dHRwQEBKBJkyaoXbs27O3toVQqERcXh5s3byIxMRGPHj1Cfn4+goKC0KRJE4SEhCA0NLTEfQru3r2LQ4cO4c6dO9KRryZNmqBz5848lddE2dnZoVWrVmjVqpXa9IyMDMTExCA3N1fjETTV/7a2tvDx8Sl8pJuBKBQK2Nvbw97eHt7e3k9Nrzqj5sGDB0hKSkJ6ejrS0tLK/Jueno6MjAyYmZnBwsJCq5e5uTmsra1hbW0NGxubEv+X9tfCwkLaXjQdYS3tf6VSqTa+5ubmSq+i7zXNy8nJQUFBgTTWl/dv8aOomvqENvNU44c+XmZm/97zVVWv5f2r+l919Lzo0Xlj/K1oHpXJmEesOL96zC/rLCB9/18Zy6gKZSpP+Yoz1hkUeXl5sjoAZ7JBt5ubG8zNzUucIpuQkFD4HGcNvLy8ykyv+puQkKD2xS8hIQEtWrQotSyTJk1SO209NTVVq2uMX3jhBdy9e/ep6YxJTqfvOjg44L333itxnWyDBg3wzTffGKlUVUvt2rUxYMAAYxeDKoG9vX2Z45qc2draIiAgAAEBAcYuChEREcmQ6ppuuTDZR4ZZWVkhJCQE+/btk6YplUrs27cP4eHhGj8THh6ulh4A9uzZI6X39/eHl5eXWprU1FT89ddfpeYJFD4qycnJSe1FREREREREZLJHugFg/PjxGDRoEEJDQ9G6dWssWrQIGRkZGDx4MABg4MCBqFWrlnQ34bFjxyIiIgKff/45evTogbVr1+L06dPSUVKFQoFx48bhs88+Q/369aVHhvn4+KBPnz5al0t1Co2213aTutzcXGRnZwP4tw6Lvjf0HaGpainenwx993L2VSIiIiLjUsUQlX0pTqmEiVu8eLGoU6eOsLKyEq1btxYnTpyQ5kVERIhBgwappV+3bp1o0KCBsLKyEk2aNBF//PGH2nylUikmT54sPD09hbW1tejYsaO4evWqTmW6ceOGAMAXX3zxxRdffPHFF1988cWXkV43btwod5ypTyb9nG65Sk5ORo0aNXD79m1ZXUtAmqmuwb9z5w4vDTARbDPTwvYyPWwz08L2Mj1sM9PC9jI9KSkpqFOnDpKSkuDi4mLs4pj26eVypbrTqrOzMzdME8Lr8U0P28y0sL1MD9vMtLC9TA/bzLSwvUxP0SdgGJM8SkFERERERERUBTHoJiIiIiIiIjIQBt0GYG1tjalTp8La2trYRSEtsL1MD9vMtLC9TA/bzLSwvUwP28y0sL1Mj9zajDdSIyIiIiIiIjIQHukmIiIiIiIiMhAG3UREREREREQGwqCbiIiIiIiIyEAYdBMREREREREZCINuPVuyZAnq1q0LGxsbhIWF4eTJk8YuUrUwbdo0KBQKtVdQUJA0Pzs7G6NGjULNmjXh4OCAV155BQkJCWp53L59Gz169ICdnR08PDzw4YcfIj8/Xy3NwYMH0apVK1hbWyMwMBArV66sjNUzeYcPH0bPnj3h4+MDhUKBzZs3q80XQmDKlCnw9vaGra0tIiMjERMTo5bmyZMnGDBgAJycnODi4oKhQ4ciPT1dLc2FCxfQrl072NjYwNfXF/Pnzy9RlvXr1yMoKAg2NjZo2rQptm/frvf1rQqe1mZRUVEltrmuXbuqpWGbVZ45c+bgmWeegaOjIzw8PNCnTx9cvXpVLU1ljoPcF5ZNm/bq0KFDiW3snXfeUUvD9qo8y5YtQ7NmzeDk5AQnJyeEh4djx44d0nxuX/LytPbi9iV/c+fOhUKhwLhx46RpJr2dCdKbtWvXCisrK/HDDz+IS5cuibfeeku4uLiIhIQEYxetyps6dapo0qSJePDggfR6+PChNP+dd94Rvr6+Yt++feL06dPi2WefFW3atJHm5+fni+DgYBEZGSnOnTsntm/fLtzc3MSkSZOkNDdv3hR2dnZi/Pjx4vLly2Lx4sXC3Nxc7Ny5s1LX1RRt375dfPLJJ2Ljxo0CgNi0aZPa/Llz5wpnZ2exefNm8ffff4tevXoJf39/kZWVJaXp2rWraN68uThx4oT4888/RWBgoHj99del+SkpKcLT01MMGDBAXLx4Ufzyyy/C1tZWLF++XEpz9OhRYW5uLubPny8uX74sPv30U2FpaSmio6MNXgem5mltNmjQING1a1e1be7JkydqadhmladLly5ixYoV4uLFi+L8+fOie/fuok6dOiI9PV1KU1njIPeFT6dNe0VERIi33npLbRtLSUmR5rO9KtfWrVvFH3/8Ia5duyauXr0qPv74Y2FpaSkuXrwohOD2JTdPay9uX/J28uRJUbduXdGsWTMxduxYabopb2cMuvWodevWYtSoUdL7goIC4ePjI+bMmWPEUlUPU6dOFc2bN9c4Lzk5WVhaWor169dL065cuSIAiOPHjwshCgMMMzMzER8fL6VZtmyZcHJyEjk5OUIIISZMmCCaNGmilne/fv1Ely5d9Lw2VVvxAE6pVAovLy+xYMECaVpycrKwtrYWv/zyixBCiMuXLwsA4tSpU1KaHTt2CIVCIe7duyeEEGLp0qWiRo0aUnsJIcRHH30kGjZsKL3v27ev6NGjh1p5wsLCxNtvv63XdaxqSgu6e/fuXepn2GbGlZiYKACIQ4cOCSEqdxzkvlB3xdtLiMKgoOiXzeLYXsZXo0YN8d1333H7MhGq9hKC25ecpaWlifr164s9e/aotZOpb2c8vVxPcnNzcebMGURGRkrTzMzMEBkZiePHjxuxZNVHTEwMfHx8EBAQgAEDBuD27dsAgDNnziAvL0+tbYKCglCnTh2pbY4fP46mTZvC09NTStOlSxekpqbi0qVLUpqieajSsH0rJjY2FvHx8Wp16+zsjLCwMLX2cXFxQWhoqJQmMjISZmZm+Ouvv6Q07du3h5WVlZSmS5cuuHr1KpKSkqQ0bEP9OXjwIDw8PNCwYUOMGDECjx8/luaxzYwrJSUFAODq6gqg8sZB7gvLp3h7qfz8889wc3NDcHAwJk2ahMzMTGke28t4CgoKsHbtWmRkZCA8PJzbl8wVby8Vbl/yNGrUKPTo0aNE3Zr6dmZR7k+SmkePHqGgoECtkQHA09MT//zzj5FKVX2EhYVh5cqVaNiwIR48eIDp06ejXbt2uHjxIuLj42FlZQUXFxe1z3h6eiI+Ph4AEB8fr7HtVPPKSpOamoqsrCzY2toaaO2qNlX9aqrbonXv4eGhNt/CwgKurq5qafz9/UvkoZpXo0aNUttQlQdpr2vXrnj55Zfh7++PGzdu4OOPP0a3bt1w/PhxmJubs82MSKlUYty4cWjbti2Cg4MBoNLGwaSkJO4LdaSpvQDg//7v/+Dn5wcfHx9cuHABH330Ea5evYqNGzcCYHsZQ3R0NMLDw5GdnQ0HBwds2rQJjRs3xvnz57l9yVBp7QVw+5KrtWvX4uzZszh16lSJeaa+H2PQTVVCt27dpP+bNWuGsLAw+Pn5Yd26dQyGiQygf//+0v9NmzZFs2bNUK9ePRw8eBAdO3Y0Yslo1KhRuHjxIo4cOWLsopAWSmuv4cOHS/83bdoU3t7e6NixI27cuIF69epVdjEJQMOGDXH+/HmkpKRgw4YNGDRoEA4dOmTsYlEpSmuvxo0bc/uSoTt37mDs2LHYs2cPbGxsjF0cvePp5Xri5uYGc3PzEnfQS0hIgJeXl5FKVX25uLigQYMGuH79Ory8vJCbm4vk5GS1NEXbxsvLS2PbqeaVlcbJyYmBfQWo6resbcfLywuJiYlq8/Pz8/HkyRO9tCG30YoLCAiAm5sbrl+/DoBtZiyjR4/Gtm3bcODAAdSuXVuaXlnjIPeFuimtvTQJCwsDALVtjO1VuaysrBAYGIiQkBDMmTMHzZs3x5dffsntS6ZKay9NuH0Z35kzZ5CYmIhWrVrBwsICFhYWOHToEP773//CwsICnp6eJr2dMejWEysrK4SEhGDfvn3SNKVSiX379qldP0KVIz09HTdu3IC3tzdCQkJgaWmp1jZXr17F7du3pbYJDw9HdHS0WpCwZ88eODk5SacihYeHq+WhSsP2rRh/f394eXmp1W1qair++usvtfZJTk7GmTNnpDT79++HUqmUdpTh4eE4fPgw8vLypDR79uxBw4YNUaNGDSkN29Aw7t69i8ePH8Pb2xsA26yyCSEwevRobNq0Cfv37y9x2n5ljYPcF2rnae2lyfnz5wFAbRtjexmXUqlETk4Oty8ToWovTbh9GV/Hjh0RHR2N8+fPS6/Q0FAMGDBA+t+kt7Ny34KNSli7dq2wtrYWK1euFJcvXxbDhw8XLi4uanfQI8N4//33xcGDB0VsbKw4evSoiIyMFG5ubiIxMVEIUfiIgTp16oj9+/eL06dPi/DwcBEeHi59XvWIgc6dO4vz58+LnTt3Cnd3d42PGPjwww/FlStXxJIlS/jIMC2lpaWJc+fOiXPnzgkA4osvvhDnzp0Tt27dEkIUPjLMxcVFbNmyRVy4cEH07t1b4yPDWrZsKf766y9x5MgRUb9+fbXHTyUnJwtPT0/x5ptviosXL4q1a9cKOzu7Eo+fsrCwEAsXLhRXrlwRU6dO5eOnSlFWm6WlpYkPPvhAHD9+XMTGxoq9e/eKVq1aifr164vs7GwpD7ZZ5RkxYoRwdnYWBw8eVHsETmZmppSmssZB7guf7mntdf36dTFjxgxx+vRpERsbK7Zs2SICAgJE+/btpTzYXpVr4sSJ4tChQyI2NlZcuHBBTJw4USgUCrF7924hBLcvuSmrvbh9mY7id5k35e2MQbeeLV68WNSpU0dYWVmJ1q1bixMnThi7SNVCv379hLe3t7CyshK1atUS/fr1E9evX5fmZ2VliZEjR4oaNWoIOzs78dJLL4kHDx6o5REXFye6desmbG1thZubm3j//fdFXl6eWpoDBw6IFi1aCCsrKxEQECBWrFhRGatn8g4cOCAAlHgNGjRICFH42LDJkycLT09PYW1tLTp27CiuXr2qlsfjx4/F66+/LhwcHISTk5MYPHiwSEtLU0vz999/i+eee05YW1uLWrVqiblz55Yoy7p160SDBg2ElZWVaNKkifjjjz8Mtt6mrKw2y8zMFJ07dxbu7u7C0tJS+Pn5ibfeeqvEzohtVnk0tRUAtTGqMsdB7gvL9rT2un37tmjfvr1wdXUV1tbWIjAwUHz44YdqzxEWgu1VmYYMGSL8/PyElZWVcHd3Fx07dpQCbiG4fclNWe3F7ct0FA+6TXk7UwghRPmPkxMRERERERFRaXhNNxEREREREZGBMOgmIiIiIiIiMhAG3UREREREREQGwqCbiIiIiIiIyEAYdBMREREREREZCINuIiIiIiIiIgNh0E1ERERERERkIAy6iYiIiIiIiAyEQTcRERERERGRgTDoJiIiIiIiIjIQBt1EREREREREBsKgm4iIiIiIiMhAGHQTERERERERGQiDbiIiIiIiIiIDYdBNREREREREZCAMuomIiIiIiIgMhEE3ERERERERkYEw6CYiIlno0KEDOnTooLf84uLioFAosHLlSr3laYrmz5+PoKAgKJVKYxdFI323uz7UrVsXUVFRxi5GuSgUCkybNk2nz/Tv3x99+/Y1TIGIiIhBNxERlW7lypVQKBTSy8bGBg0aNMDo0aORkJBg7OLRU6SmpmLevHn46KOPYGbGXT5p9tFHH+G3337D33//beyiEBFVSRbGLgAREcnfjBkz4O/vj+zsbBw5cgTLli3D9u3bcfHiRdjZ2ellGbt379ZLPvSvH374Afn5+Xj99deNXZRSybHdr169arI/UmRlZcHCQrevdy1btkRoaCg+//xz/PjjjwYqGRFR9WWaexQiIqpU3bp1wxtvvIFhw4Zh5cqVGDduHGJjY7Fly5YK552ZmQkAsLKygpWVVYXzMzalUons7GxjFwMAsGLFCvTq1Qs2NjbGLkqp5Nju1tbWsLS01Ete2dnZlXpqv42Njc5BNwD07dsXGzduRHp6ugFKRURUvTHoJiIinb3wwgsAgNjYWGna6tWrERISAltbW7i6uqJ///64c+eO2uc6dOiA4OBgnDlzBu3bt4ednR0+/vhjaV7xa3sTExMxdOhQeHp6wsbGBs2bN8eqVatKlCc5ORlRUVFwdnaGi4sLBg0ahOTkZI1l379/P9q1awd7e3u4uLigd+/euHLlSol0Bw8eRGhoKGxsbFCvXj0sX74c06ZNg0KhUEunUCgwevRo/Pzzz2jSpAmsra2xc+dOAMDChQvRpk0b1KxZE7a2tggJCcGGDRtKLEuVx/r169G4cWPY2toiPDwc0dHRAIDly5cjMDAQNjY26NChA+Li4jSuW1GxsbG4cOECIiMjS8xbu3YtQkJC4OjoCCcnJzRt2hRffvlliTodN24cfH19YW1tjcDAQMybN08tgFRdN79w4UIsWbIEAQEBsLOzQ+fOnXHnzh0IITBz5kzUrl0btra26N27N548eaK2HG2v6VZd6nDkyBG8++67cHd3h4uLC95++23k5uYiOTkZAwcORI0aNVCjRg1MmDABQgi1PLRtD03XdN+8eROvvfYaXF1dYWdnh2effRZ//PGHWpqDBw9CoVBg7dq1+PTTT1GrVi3Y2dkhNTW11PXSpkwrVqyAQqHADz/8oDZ99uzZUCgU2L59uzSt+DXdaWlpGDduHOrWrQtra2t4eHigU6dOOHv2rFpenTp1QkZGBvbs2VNqWYmIqHx4ejkREensxo0bAICaNWsCAGbNmoXJkyejb9++GDZsGB4+fIjFixejffv2OHfuHFxcXKTPPn78GN26dUP//v3xxhtvwNPTU+MysrKy0KFDB1y/fh2jR4+Gv78/1q9fj6ioKCQnJ2Ps2LEAACEEevfujSNHjuCdd95Bo0aNsGnTJgwaNKhEnnv37kW3bt0QEBCAadOmISsrC4sXL0bbtm1x9uxZ1K1bFwBw7tw5dO3aFd7e3pg+fToKCgowY8YMuLu7ayzr/v37sW7dOowePRpubm5SPl9++SV69eqFAQMGIDc3F2vXrsVrr72Gbdu2oUePHmp5/Pnnn9i6dStGjRoFAJgzZw5efPFFTJgwAUuXLsXIkSORlJSE+fPnY8iQIdi/f3+ZbXTs2DEAQKtWrdSm79mzB6+//jo6duyIefPmAQCuXLmCo0ePSnWamZmJiIgI3Lt3D2+//Tbq1KmDY8eOYdKkSXjw4AEWLVqklufPP/+M3NxcjBkzBk+ePMH8+fPRt29fvPDCCzh48CA++ugjXL9+HYsXL8YHH3xQInjUxZgxY+Dl5YXp06fjxIkT+Oabb+Di4oJjx46hTp06mD17NrZv344FCxYgODgYAwcOlD6rS3sUlZCQgDZt2iAzMxPvvvsuatasiVWrVqFXr17YsGEDXnrpJbX0M2fOhJWVFT744APk5OSUeSRfmzINHjwYGzduxPjx49GpUyf4+voiOjoa06dPx9ChQ9G9e/dS83/nnXewYcMGjB49Go0bN8bjx49x5MgRXLlyRa1vqH7sOXr0aIn1ISKiChJERESlWLFihQAg9u7dKx4+fCju3Lkj1q5dK2rWrClsbW3F3bt3RVxcnDA3NxezZs1S+2x0dLSwsLBQmx4RESEAiK+//rrEsiIiIkRERIT0ftGiRQKAWL16tTQtNzdXhIeHCwcHB5GamiqEEGLz5s0CgJg/f76ULj8/X7Rr104AECtWrJCmt2jRQnh4eIjHjx9L0/7++29hZmYmBg4cKE3r2bOnsLOzE/fu3ZOmxcTECAsLC1F81wlAmJmZiUuXLpVYp8zMTLX3ubm5Ijg4WLzwwgsl8rC2thaxsbHStOXLlwsAwsvLS1pXIYSYNGmSAKCWVpNPP/1UABBpaWlq08eOHSucnJxEfn5+qZ+dOXOmsLe3F9euXVObPnHiRGFubi5u374thBAiNjZWABDu7u4iOTm5RBmbN28u8vLypOmvv/66sLKyEtnZ2dK04u1eGlVf7NKli1AqldL08PBwoVAoxDvvvCNNy8/PF7Vr1y6Rr7bt4efnJwYNGiS9HzdunAAg/vzzT2laWlqa8Pf3F3Xr1hUFBQVCCCEOHDggAIiAgIASyyqNtmV68OCBcHV1FZ06dRI5OTmiZcuWok6dOiIlJUUtHQAxdepU6b2zs7MYNWqUVmVp0KCB6Natm1ZpiYhIezy9nIiInioyMhLu7u7w9fVF//794eDggE2bNqFWrVrYuHEjlEol+vbti0ePHkkvLy8v1K9fHwcOHFDLy9raGoMHD37qMrdv3w4vLy+1m4BZWlri3XffRXp6Og4dOiSls7CwwIgRI6R05ubmGDNmjFp+Dx48wPnz5xEVFQVXV1dperNmzdCpUyfpFN2CggLs3bsXffr0gY+Pj5QuMDAQ3bp101jWiIgING7cuMR0W1tb6f+kpCSkpKSgXbt2JU7tBYCOHTtKR8gBICwsDADwyiuvwNHRscT0mzdvaiyLyuPHj2FhYQEHBwe16S4uLk89jXj9+vVo164datSoodamkZGRKCgowOHDh9XSv/baa3B2di5RxjfeeEPt+uKwsDDk5ubi3r17ZZa9LEOHDlU7xT8sLAxCCAwdOlSaZm5ujtDQ0BJ1pEt7FLV9+3a0bt0azz33nDTNwcEBw4cPR1xcHC5fvqyWftCgQWrLKou2ZfLy8sKSJUuwZ88etGvXDufPn8cPP/wAJyenMvN3cXHBX3/9hfv37z+1LKr2JiIi/eLp5URE9FRLlixBgwYNYGFhAU9PTzRs2FC6u3NMTAyEEKhfv77Gzxa/IVWtWrW0unHWrVu3UL9+/RJ3kW7UqJE0X/XX29u7RHDZsGHDEvlpmq7Kc9euXcjIyEBqaiqysrIQGBhYIp2maQDg7++vcfq2bdvw2Wef4fz588jJyZGmF78uHADq1Kmj9l4VxPr6+mqcnpSUpHGZTzNy5EisW7cO3bp1Q61atdC5c2f07dsXXbt2ldLExMTgwoULpZ5On5iYaLCyx8fHl/hM0cBUl2UVX44u7VHUrVu3pB8SiiraF4ODg6XppfUHTXQpU//+/bF69Wr88ccfGD58ODp27PjU/OfPn49BgwbB19cXISEh6N69OwYOHIiAgIASaYUQT60LIiLSHYNuIiJ6qtatWyM0NFTjPKVSCYVCgR07dsDc3LzE/OLBsLZHAE2JpnX6888/0atXL7Rv3x5Lly6Ft7c3LC0tsWLFCqxZs6ZEek11V9Z0UewmYcXVrFkT+fn5SEtLUztS7uHhgfPnz2PXrl3YsWMHduzYgRUrVmDgwIHSTeqUSiU6deqECRMmaMy7QYMGBiu7t7e32vsVK1ao3dRMl2UVXY6u7VER2vZxXcv0+PFjnD59GgBw+fJlKJXKpz7arG/fvmjXrh02bdqE3bt3Y8GCBZg3bx42btxY4syNpKSkUn88IyKi8mPQTUREFVKvXj0IIeDv718iGKsIPz8/XLhwoURg8c8//0jzVX/37duH9PR0tQD/6tWrJfLTNF2Vp5ubG+zt7WFjYwMbGxtcv369RDpN00rz22+/wcbGBrt27YK1tbU0fcWKFVrnURFBQUEACu9i3qxZM7V5VlZW6NmzJ3r27AmlUomRI0di+fLlmDx5MgIDA1GvXj2kp6drvPO5oRU/7b1JkyZ6ybci7eHn51dqv1HNr4wyjRo1CmlpaZgzZw4mTZqERYsWYfz48U9djre3N0aOHImRI0ciMTERrVq1wqxZs9SC7vz8fNy5cwe9evUq17oQEVHpeE03ERFVyMsvvwxzc3NMnz69xBFMIQQeP35crny7d++O+Ph4/Prrr9K0/Px8LF68GA4ODoiIiJDS5efnY9myZVK6goICLF68WC0/b29vtGjRAqtWrVJ7nNjFixexe/du6Q7Q5ubmiIyMxObNm9Wug71+/Tp27NihdfnNzc2hUChQUFAgTYuLi8PmzZu1zqMiwsPDAUA6MqpSvD3MzMykoFx1enPfvn1x/Phx7Nq1q0S+ycnJyM/PN0SRARTeP6Doq/iR7/KqSHt0794dJ0+exPHjx6VpGRkZ+Oabb1C3bl2N1/Pru0wbNmzAr7/+irlz52LixIno378/Pv30U1y7dq3U/AsKCpCSkqI2zcPDAz4+PmqnsgOFR86zs7PRpk2bcq0LERGVjke6iYioQurVq4fPPvsMkyZNQlxcHPr06QNHR0fExsZi06ZNGD58OD744AOd8x0+fDiWL1+OqKgonDlzBnXr1sWGDRtw9OhRLFq0SDplumfPnmjbti0mTpyIuLg4NG7cGBs3biwRbADAggUL0K1bN4SHh2Po0KHSI8OcnZ3Vnm08bdo07N69G23btsWIESNQUFCAr776CsHBwTh//rxW5e/Rowe++OILdO3aFf/3f/+HxMRELFmyBIGBgbhw4YLO9aGrgIAABAcHY+/evRgyZIg0fdiwYXjy5AleeOEF1K5dG7du3cLixYvRokUL6RrlDz/8EFu3bsWLL76IqKgohISEICMjA9HR0diwYQPi4uLg5uZm8HXQp4q0x8SJE/HLL7+gW7duePfdd+Hq6opVq1YhNjYWv/3221NP8a5omRITEzFixAg8//zzGD16NADgq6++woEDBxAVFYUjR45oLENaWhpq166NV199Fc2bN4eDgwP27t2LU6dO4fPPP1dLu2fPHtjZ2aFTp07lWhciIiodg24iIqqwiRMnokGDBvjPf/6D6dOnAyi8sVXnzp3Lfbqqra0tDh48iIkTJ2LVqlVITU1Fw4YNS1zja2Zmhq1bt2LcuHFYvXo1FAoFevXqhc8//xwtW7ZUyzMyMhI7d+7E1KlTMWXKFFhaWiIiIgLz5s1Tu/lVSEgIduzYgQ8++ACTJ0+Gr68vZsyYgStXrkinFD/NCy+8gO+//x5z587FuHHj4O/vj3nz5iEuLq5Sgm4AGDJkCKZMmYKsrCzpOuM33ngD33zzDZYuXYrk5GR4eXmhX79+mDZtmhS42dnZ4dChQ5g9ezbWr1+PH3/8EU5OTmjQoAGmT5+udqdyU1GR9vD09MSxY8fw0UcfYfHixcjOzkazZs3w+++/l/l8b32VacSIEcjJycGKFSukG53VrFkT33zzDXr37o2FCxdqvP7ezs4OI0eOxO7du6WnDAQGBmLp0qVqd/sHCu9Y//LLL6td/09ERPqhEE+7EwsREREBAPr06YNLly4hJibG2EXRSkpKCgICAjB//ny1R2pR2Xx9fdGlSxd89913xi5KpTh//jxatWqFs2fPokWLFsYuDhFRlcNruomIiDTIyspSex8TE4Pt27ejQ4cOxilQOTg7O2PChAlYsGABlEqlsYtjEvLy8vD48WOTO32+IubOnYtXX32VATcRkYHwSDcREZEG3t7eiIqKQkBAAG7duoVly5YhJycH586d42OV/r+9O49vqsr7B/5J2iZtKWmL3WspZbdlb2ktq0gfQNEBRUWGAUTFDUZ5UBR0oCyjRUEfRBgYHYX5uVWYEXREESwFRNmlshRqWWQrXVjadKFbcn5/dHJp2qQkbZab9PN+ve6rTe439557bu5Nvjnnnuumvv/+e6Snp2PdunXYunUrr28mIiKbYNJNRERkwtSpU5GZmYn8/Hyo1WokJyfjjTfeQL9+/ZxdNLKTYcOG4dSpU3j22Wfx6quvOrs4RETkJph0ExEREREREdkJr+kmIiIiIiIishMm3URERERERER2wvt024Fer0deXh7atm0r3U+TiIiIiIiI7E8IgdLSUkRERECpdH47M5NuO8jLy0NUVJSzi0FERERERNRqXbhwAbfffruzi8Gk2x7atm0LoG4nazQaJ5eGyLaEEKipqQEAeHl5GfXmaGqes1hbpjffBN54A3j1VeCVV6ybL8ftJyIiImpttFotoqKipLzM2Zh024Hhi7ZGo2HSTW6nuroay5cvBwDMnTsXKpXKonnOYm2ZXn8d8PYG5s+v+ztv3s15ixfXJdyLFhk/39x1EREREZH9yKUBhEk3EVEDhoR6/nwdiopy8dRTtdi4sQfmzzefcBMRERERmcKkm4jov06ePImdO3ciKysLWVlZ8PI6gvfeq8B77wHATixaNIQJNxERERFZhUk3ERGA06dPo0ePHtDpdCbnK5WfYN68IQ4uFRERERG5OuePn05EJANbt26FTqdDVFQUXnnlFXz++ef4859PANgCANDrv8LChaYTciIiIiIic5h0ExEB2LVrFwDgySefxJIlS5Cb+yjee687UlPvRmBgIIBCLFjwMxYvdm45iYiIiMi1MOkmolZPCCEl3UOGDMHixZAGTVuwwAv3338/ACA5+UvMnw8m3kRERERkMV7TTURWUSqViI2Nlf63dJ6zWFKmM2fOIC8vD15eXti+PQmLFxuPUv7AAw/g//2//4e8vI1YuPAdzJ9fd/uJhoOqyXH7iYiIiMi5FEII4exCuButVgt/f3+UlJTwPt1ELmDt2rV4/PHH0b79QJw/v7vRbcEqKioQHByMiooKHDp0CJs39+Ptw4iIiIhkSm75GJtiiKjVM3QtP39+iMlE2tfXF6NGjQIAbNy4EfPm1SXc7GpORERERLfCpJuIWj1D0j1pkvn7cD/44IMAgC+//BIApMTbzB3GiIiIiIgAsHu5XcitOwORLVVXVyMtLQ0AMHfuXKhUKovmOcutynTx4kVERUVBqVTi+vXrZo/Z4uJiBAcHo7a2FidPnkS3bt2sXhcRERER2Z/c8jG2dBNRq/bjjz8CAPr27dvkSTkgIADDhw8HUNfFnIiIiIjIEky6iahVq3+rsFtp2MWciIiIiOhWmHQTUatmTdI9ZswYKBQKHDhwABcuXLB30YiIiIjIDTDpJqJWq6ioCNnZ2QCAQYMG3TI+NDQUAwcOBABs2rTJnkUjIiIiIjfBpJuIWq3du3cDAOLi4hAUFGTRax544AEA7GJORERERJZh0k1ErZZhEDVLupYbGJLuXbt24cqVK3YpFxERERG5D09nF4CIXItSqUSXLl2k/y2d5yxNlcma67kNYmJi0KdPH2RlZeHrr7/G448/btG6iIiIiKh14n267UBu94Ujosa0Wi0CAwOh1+tx8eJFREZGWvzaxYsXY/78+bjvvvvwn//8x46lJCIiIiJryS0fY1MMEbVKP//8M/R6PTp16mRVwg3c7GK+bds2VFZW2qN4REREROQmmHQTUavUnK7lBnFxcQgJCUFVVRUOHz5s66IRERERkRth0k1EVqmursYbb7yBN954A9XV1RbPcxZzZWpJ0q1QKHDnnXcCAPbu3XvLdRERERFR68Wkm4isVlNTg5qaGqvnOUvDMt24cQP79+8HAAwePLhZyzSVdJtaFxERERG1bky6iajV2bdvH2pqahAREYGOHTs2axnmkm4iIiIiovqYdBNRq3PgwAEAwMCBA6FQKJq1jP79+0OpVOL8+fPIy8uzZfGIiIiIyI0w6SaiVic7OxsA0KNHj2Yvw8/PDz179gTA1m4iIiIiMo9JNxG1OoakOzY2tkXLYRdzIiIiIroVJt1E1KoIIXDixAkATLqJiIiIyP48nV0AInItCoUC0dHR0v+WznOWhmW6dOkSSktL4enpic6dO7do2Yak++DBg6ipqZHl9hMRERGRcymEEMLZhXA3Wq0W/v7+KCkpgUajcXZxiKierVu3YuTIkbjjjjukbubNpdfrcdttt6G4uBgHDx5EfHy8jUpJRERERM0lt3yM3cuJqFUxJNp33HFHi5elVCrZxZyIiIiImsSkm4haFVsNombApJuIiIiImtIqku5Vq1ahQ4cO8Pb2RlJSEvbv3282dt26dVAoFEaTt7e3A0tLJG/V1dVYunQpli5diurqaovnOUvDMtlqEDWD+km3HLefiIiIiJzL7QdS++KLLzBr1iysWbMGSUlJWL58OUaOHImcnByEhISYfI1Go0FOTo70mAMiERmrqKho1jxnMZRJCIHjx48DsF3SnZiYCAA4deoUioqKZLn9REREROQ8bt/S/c4772DatGmYOnUqYmNjsWbNGvj6+uKjjz4y+xqFQoGwsDBpCg0NdWCJicheCgsLcf36dSiVSnTt2tUmywwMDET37t0BoMleNERERETUOrl10l1dXY1Dhw4hJSVFek6pVCIlJQV79uwx+7qysjJER0cjKioKY8aMkVrGzKmqqoJWqzWaiEh+DF3LY2Ji4OPjY7PlJicnA2DSTURERESNuXXSfeXKFeh0ukYt1aGhocjPzzf5mm7duuGjjz7CV199hU8++QR6vR4DBgzAxYsXza4nLS0N/v7+0hQVFWXT7SAi27D19dwGhuu69+3bZ9PlEhEREZHrc+ukuzmSk5MxefJk9OnTB0OHDsWXX36J4OBg/P3vfzf7mrlz56KkpESaLly44MASE5GlTp48CcB+SfeBAweg1+ttumwiIiIicm1uPZBaUFAQPDw8UFBQYPR8QUEBwsLCLFqGl5cX+vbti1OnTpmNUavVUKvVLSorEdmfvZLuuLg4tGnTBmVlZSgqKuI4EEREREQkkXVL986dO7Fp0yZkZ2c3q/VIpVIhPj4eGRkZ0nN6vR4ZGRnSNZi3otPpcPToUYSHh1u9fiJ3pFAoEBERgYiIiEYj+zc1z1nql8nQvfyOO+6w6To8PDykUczLyspktf1ERERE5Fyybel+7rnn8J///AeJiYn4+uuv4ePjg65du6J379748MMPLV7OrFmzMGXKFCQkJCAxMRHLly9HeXk5pk6dCgCYPHkyIiMjkZaWBgBYtGgR7rzzTnTu3BnFxcVYunQpzp07hyeffNIu20nkary8vDBt2jSr5zmLoUzXrl3DU089BQDSaOO2lJycjMzMTFnWARERERE5j2yT7vT0dBw9ehSRkZEIDAzEyZMnMXHiRGg0GquWM378eBQVFWH+/PnIz89Hnz59sGXLFqn75/nz56FU3mzwv379OqZNm4b8/HwEBgYiPj4eP//8s827oxKRYxlaudu3b4+2bdvafPmG67r37t1r82UTERERketSCCGEswthSkhICPLz86FUKhEcHIzCwkJcuHABTzzxBLZt2+bs4jVJq9XC398fJSUlVv9IQET28cEHH+Cpp57CqFGj8N1339l8+YWFhdKPedevX0dAQIDN10FEREREtya3fEy213THx8dL99Lu2LEjsrOzERkZyfvgEjlZTU0Nli9fjuXLl6Ompsbiec5iKNMnn3wCwPaDqBmEhISgY8eOAIA5c+bIZvuJiIiIyLlk2738/fffR2lpKQBgxowZePjhhxETE2OXazGJyHJCCJSUlEj/WzrPWQxlunTpEgDbD6JWX2JiIs6cOYOcnBzZbD8REREROZdsk+6oqCjp/0mTJiE0NBRHjhzBxIkTnVgqInJVRUVFAOzX0g0ASUlJSE9Px8WLF+22DiIiIiJyLbJIur/77jt8+umnuHDhAtq0aYNevXrhoYceQkJCghQzYsQIjBgxwomlJCJXVVlZCa1WC8C+Ld1JSUkAgIsXLzbrNodERERE5H6cfk338uXLcd9992Hjxo0oLy9HYWEhVqxYgaSkJIwePRr5+fnOLiIRubgrV64AAMLDwxEYGGi39fTq1QsqlQqVlZX49ddf7bYeIiIiInIdTk+63333XfTp0wfnzp3DwYMHcfDgQVy/fh0rV67EsWPHkJiYKF2LSUTUHIau5fYeE8LLywsdOnQAAGRkZNh1XURERETkGpyedBcUFODJJ59EUFCQ9Jxarcazzz6LgwcPQqFQ4OWXX3ZiCYnI1Tkq6QYgjWC+fft2u6+LiIiIiOTP6Ul3t27dUFBQYHJecHAwnnvuOXz77bcOLhURmaNQKBAcHIzg4GAoFAqL5zmLQqGQrue25yBqhnXFx8cDAH7++WdUVlbadX1EREREJH9OT7pffvllrFy5Erm5uSbn+/r6yubLOxHVdaF+7rnn8Nxzz8HLy8viec7i5eWFiooKAEDPnj3tvq7FixcjLCwMN27cwJ49e+y6PiIiIiKSP6cn3W+//TY8PDyQmJiIt956C3l5edK806dPY9WqVXj44YedWEIicmUVFRU4e/YsAPu3dAN1rd3Dhw8HAPzwww92Xx8RERERyZvTk+6IiAi0adMGWq0Wc+bMQVRUFIKDgxEWFoauXbvCx8cHTz31FGpqapxdVCJyQTk5ORBCICgoCMHBwQ5ZZ0pKCgAOpkZEREREMrhP99dffw0AKCsrw/Hjx3H06FEcO3ZM+vvrr78iMTERHh4e6NixI+644w7Exsbi9ddfd3LJiVqnmpoafPDBBwCAadOmGXUjb2qesxhu3eXv74+amhq7lsmw/devXwcAHDhwAMXFxQgICLDbOomIiIhI3pyedBv4+fkhKSkJSUlJRs8XFhY2SsQzMjKYdBM5iRBCGg1cCGHxPGc5dOgQACAoKMjuZaq//V26dEFubi527NiBsWPH2nW9RERERCRfskm6zQkJCcHw4cOlaySJiKxx8OBBAEBkZKRD13v33XcjNzcXP/zwA5NuIiIiolbM6dd0ExHZS01NDQ4fPgzA8Um34YdCXtdNRERE1Lox6SYit3X06FFUVVXB29sb7dq1c+i6hwwZAqVSiZMnT+LixYsOXTcRERERyQeTbiJyW/v37wdQ18qtUCgcuu7AwEDEx8cDYGs3ERERUWvGpJuI3Fb9pNsZDLcO4/26iYiIiFovJt1EZBWFQgF/f3/4+/s3aj1uap4zGJLuLl26OKRMDbe//v265TKaOxERERE5lkLwm6DNabVa+Pv7o6SkBBqNxtnFIWqVSktL4e/vDyEELl++jLCwMIeXobKyEoGBgaisrMTx48cRGxvr8DIQERERtTZyy8fY0k1EbunQoUMQQqB9+/ZOSbgBwNvbG4MGDQLALuZERERErRWTbiJyS4au5YmJiU4tB6/rJiIiImrdPJ1dACJyLTU1NVi3bh0A4LHHHoOXl5dF8xzNkHTHx8fjgw8+cEiZTG2/IenesWMHamtr4enJ0y4RERFRa8Jvf0RkFSEE8vLypP8tnedo+/btAwD0798fu3fvBmD/Mpna/j59+iAwMBDXr1/HgQMHkJycbNcyEBEREZG8sHs5EbmdvLw8XLx4EUqlEn379nVqWTw8PHD33XcDYBdzIiIiotaISTcRuZ0DBw4AAOLi4uDn5+fk0sDo1mFERERE1Low6SYityOXQdQMDEn3zz//jPLycieXhoiIiIgciUk3EbkduSXdnTp1QkxMDGpqarB27VpnF4eIiIiIHIhJNxG5Fb1eL3Uvl0vSrVAoMHv2bADAokWLoNVqnVwiIiIiInIUJt1EZDVfX1/4+vpaPc8RcnNzUVJSAh8fH8TFxTm8TObW9eSTT6Jr164oKirC0qVLHVIWIiIiInI+hXD2fX3ckFarhb+/P0pKSqDRaJxdHKJW5eOPP8bkyZMxcOBA6VZhcvHll19i3Lhx8PX1RW5uLiIiIpxdJCIiIiK3I7d8jC3dRORW5HY9d30PPPAAkpOTUVFRgQULFji7OERERETkAEy6icityDnpVigUUtfyDz/8ENnZ2U4uERERERHZG5NuIrJKTU0N1q1bh3Xr1qGmpsbieY5QVVWFrKwsADeTbkeWyZJ1DRw4EA888AD0ej3mzp1r1/IQERERkfMx6SYiiyxYACxeDAghcO7cOZw7dw4Nh4RoOG/x4rrXOcq6detQXV2N0NBQxMTEmCyTPVm6rrS0NHh4eODrr7/Gjz/+aNcyEREREZFzeTq7AO6svLocHtUejZ73UHrA29PbKM4cpUIJHy+fZsVW1FSY/eKvUCjg6+XbrNgbNTegF3qz5WijatOs2MraSuj0OpvE+nr5QqFQAACqaqtQq6+1SayPlw+Uirrfqqp11ajRmW85tSbW29MbHkoPq2NrdDWo1lWbjVV7quGp9LQ6tlZfi6raKqP5Onhh4XwVblTroK535qgfW119c/kLFuuQ9lcgdYEOQF15dXodKmsrzZbBy8MLFaUV+Pnnn7Hrx104ePAgxj44FlOfmGoyVuWhAgDohR55hXl49bVXAQCzZs9CRU1FozIZYm/U3DBbBk+lJ9SeagB1SbRhOZbE1j8+y6vLUYOb+7H+cd+tWzc89vhj+PCDD/HiSy9i+67t0nuwYaxhWebwHNG8WJ4j6tjyHFGfykMFLw8vq2MtOUcYjntrYm913FsT25JzRFOx1hz3PEeYjuU5gucIniOsj3XXc0RT2+EMHL3cDgyj5WEOAO/G8+/tci82/3Gz9LjNG23MHmRDo4dix2M7pMfBS4NxpeKKydiEiAQcmHZAetxheQecKzlnMjY2OBbHnzsuPY77Wxyyi0xfXxrtH43fZ/4uPe7/QX8czDtoMjbINwhFs4ukx3etuws7z+00Gevr5YvyV28eEKM/G41vc781GQsAIvXmW/XhDQ/jX9n/MhtbNrdMOiAf2/QY/vnrP83GFr5UiOA2wQCA6Zun428H/2Y29uwLZ9EhoAMAYPbW2Vi2Z5nZ2GPPHkNcSN0tqxbsWICFOxeajd3/5H70j+wPAFj601K8/MPLZmMzp2Tirg53AQBW7V+FGd/NMBv7zYRvMLrraADAuqx1mPpV4+TVYP1D6/Fw3MMAgA3HN+CRfz3SOGjnX4DMxRg2LBNDh+7C3Llzse33bbjv8/sAAF7wwmt4DTt3DkFm5jBg2DysXBKG6YnTAQA7ft+BYf8cZroABcDtmbfjUs6lxiflZAD/A6O+OalDU7HgrgUAgOOFx9HjDz2AfQCCATwDQ54vlQkA5s6di7yKPMS8G2O2Hp5LeA6rRq8CABSVFyFkWYjZ2Cm9p2Dd2HUA6k7ugWmB0rpex+tGSfdDsQ9hw8MbpMeKlxTACgA1AB4GEHdzuTxH1OE54iaXOUf819oxa/FYn8cAAJt/2yydI0xZec9Ky84RAN5KeQuzB9bd8/7ApQNI/If5sRsanSNW9zAb+1LyS1g6om68hd+Lf7fbOcIvzc9sbKNzxEKF2VieI+rwHHETzxF1eI6ow3MEgEoAS8DRy4nIBQ39K5TDFiAzcxh27hxiMsSQcCuHLQCG/tWy5V4F8P+AiycvQgiBLl264P7x9wOGz8o9ADYAMPMD+6mTp4D9/30wClLCLWttAQz47/8ZAMw3uBARERGRC2NLtx0YWrrzivJM/rLCLh+mY9ktzDW6hVVXV2PcH7KQmTkMqam1+Mt8SLGvL1Yi7a8+GDYsE//+ug9UKtUtu4VdzruMlLtScO7cOfTq3Qvfbv4WkZGRUuz6L9bjmSefQXV1NRL6J2D9l+sREhIidfUSQuB/RvwPMn7IwH3334f0f6U3Ku+Kt1cAqGvp9vTytFu3sOLyYmldz7/4PFQqlRRr6rgvLS1F77jeKCwoxEuvvIS5r82FWq3mOcJMLM8RrnGOANh1tDmx7Dp6E88R1sfyHFGH5wjrY931HKHVahERHCGblm4m3XYgt5uxE9lSdXU10tLSpBbtRYuAefPqBlmbPx9GXc/rJ52mXLt2DUOGDMHx48fRqVMn7N69G2FhYY3ifvzxR4wZMwbXr19HSEgI/vKXv+Cpp56CWq3Gpk2b8MADD0ClUiE7OxudOnUyWV4AFpWpJZqzrjVr1uDZZ58FAISEhGD69Ol49tlnERwcbLdyEhEREbkzueVjHEjNnsrLAQ8T/Vw9PABvb+M4c5RKwMenebEVFYC531QUCsDXt3mxN24AevO/PqFNm+bFVlYCuib62FoT6+tbV24AqKoCas3/6mxVrI9PXT0DQHU10NQtqKyJ9fa++V6xJrampi7eHLUa8PS0Pra2tq4uTKmuhpeXF1JS9mDIkMGYP383FixIh14fjofGdkJE1H4oFUF179WaGkClArzqfqGGTle371CXcN87bhyOHz+OiPBwbPvqK4S1a3dzPfViB/frhz0ZGRgzfjxycnPx/PPPY9myZZg3b56U5L74/PPoFBbW+Bj5b3klen3d+9IcT8+6ugDqjokK8786N4otL4eXoQ4N229g5rh/+k9/QpVWi2UrVuDipUtITU3FG2+8gUmTJmHmzJmIi4vjOcKA5wjrY51xjgCMj3trYusd9yZ5edXFWxt7q+PemtiWnCOairXmuwG/R5iO5TnC+lieI+r+5zmiebFyPkc0tR3OIMjmSkpKBABRUvfWajzde6/xC3x9TccBQgwdahwbFGQ+NiHBODY62nxsbKxxbGys+djoaOPYhATzsUFBxrFDh5qP9fU1jr33XvOxDd+qDz3UdGxZ2c3YKVOaji0svBn73HNNx549ezP2pZeajj127GZsamrTsfv334x9662mYzMzb8auXNl07Dff3Ixdu7bp2PXrb8auX9907Nq1Ijs7W9x///0CQKMpBhDpgNADdWU0yMwUAhB7ARH939hAQBw1LPett27G7t/faL1VgFgNiIgG64sICRGlTZX3pZduLvfs2aa37bnnbsYWFjYdO2XKzdiysqZjH3rI+D3cYH41ID4HRP8G2zZixAjxupeX+CcgfgDEScB4W3mOuDnVx3NEHSeeIyTffNN0rIlzhNnpFucIoyk19WbssWNNx7rAOcJo4veIuonniJsTzxF1E88RdRPPEaIEdd+jSkpKhBywpZuIrFID4LX16/HOk09Cp6u7HZgSE6GHJ27H9yjGJZwF8CiA/wPwRk4OEsvK4OfnByEE3gXw8n+X0xHAvwGYHy/UmAp1A5NPAfC3//kfpP3yC65evYp3Zs+G3+zZtt5Uh/JCXZ2NB/DznXfinYgIbNq0CVu3bsVWE/H+ACIB3HH8OAYtX45Bgwahd+/e8DIR6yx6ABcB/AbgFOrGitNUVkLz1VfQaDRo27YtNBUV0ADQAPABYH4sViIiIiLX1Cqu6V61ahWWLl2K/Px89O7dG++99x4SE83fQmDDhg2YN28efv/9d3Tp0gVvvvkm7r33XovXJ11DkGd6IDV2+TATy25h1sc6uFtYfkEBxk+ejF0//fTfZ8bi+Rmv490l0Vi8xAvz/6rCX16+DpXqHbz5f/+H8nrvV41Gg8DAQJw7V3driXFjxuDDv/2t7vZ6BlZ2CyurrkZeXh66du7slt3Czp49i48//hhnc3Nx8dIlXMrLw6XLl6HVak2+zNfXF3f2749ByckYNGAA7uzfH23btr0ZYIdzhBACBYWFyL10Cb/99htyc3Px24kTyD11CqfOnEFlU/uwAaVSCY1Gg7CQEMTdcQd6xMYirm9fxMXFoUuXLvDS6XiOsDaWXUfr/mfX0ebF8ntE3f88R1gfy3NE3f88RzQv1gbnCK1WC/8IDqTmMF988QUmT56MNWvWICkpCcuXL8eGDRuQk5ODkJDG9837+eefMWTIEKSlpeG+++7DZ599hjfffBO//PILevSwrD1ObhfuE7WUEAIZGRmYPHkyLl++DE/PNqit/RgLFvwBqak3xy1YuFCHBQs88NBDR/B//9cOf/3rX5Geno6SkhIpxsvLC2+//TZmzJghjfZqT7W1tVi/fj0A4JFHHoGnp/06+DhqXaWlpbh06RIuXLiAX375Bbt378ZPP/2E69evG8UplUr06dMHAwcOxKBBgzBo0CBERES0aN0FBQU4ePAgDhw4IE1FRUVm4z09PdGpUyd06dIFarUaWq0WpaWl0Gq10lRaWopbfRR5eXmhW7duiIuLQ1xcHHr06IG4uDh07NjRrvuUiIiIXI/c8jG3T7qTkpLQv39/rFy5EgCg1+sRFRWFP//5z5gzZ06j+PHjx6O8vBzffPON9Nydd96JPn36YM2aNRatU2472ZWVlJTgxo0bCA0NdUiC5soqKipQXFyMGzduQK/X47bbbkNAQACUhl/J/0un0+G3335DVlYWsrOzodVqUfHfX1Y7d+6Mbt26oX379vDx8YFarUZmZiZWrlyJrKwsAEBwcByKir7EsGGXsGXLQKMRuqurqzFq1E/S7cQWLKhLhgxJ4qVLl9C5c2dER0c7plIg/9HLbUWv1+PEiRPYvXu3NP3++++N4mJiYjBo0CAMHDgQAwYMQGBgIHQ6HfR6vTTVf5yfn2+UZF+4cKHRMhUKBaKjo9G1a1d06dLF6G90dPQtk2K9Xo+KigopCT9//jyOHz+OY8eO4fjx4zh+/DjKyspMvlahUCA0NBSRkZEmp9tvvx2RkZHNPhcLIVBVVYWysjKUl5ejvLzc6P+Gj8vKylDVoMXG1MesqecUCgW8vb3h6+sLX19f+Pj4mPxr6jm1Wu3wc6QQArW1taiurjY5VVVVmZ1nTZz+vy0Yhu2zxV+lUll3S0MTk1qtNjvP0qnhededCCGg1+tRW1sLnU5n8q+18yyJ19Vrla5//Jj739K45rweqPtR08PDQ/rbcDL1vL1iTT2vVCqhUCj43cnFGY43vV5v9n9rH9vjtYbjo6m/jp5348YNPP3007LJx9y6eaC6uhqHDh3C3LlzpeeUSiVSUlKwZ88ek6/Zs2cPZs2aZfTcyJEjsWnTJrPrqaqqMvqSZa7rZ0MHDx7EokWLLIq9FVv+dmLr32EMX+LrT0IIow8Jw5e3mpoa1NTUoKqqChcvXsS1a9cAAG3btkX37t2h0WhQU1NjVMb6HyqG/xs+NmyX4XX11w1A+tLn4eEBT09PeHl5SYlAZWUlPDw84OXlBS8vLyiVSmmfCyGMvqgpFArpy/eNGzek13l6ekpfTmtqaoz+6nQ6+Pn5oU2bNkZ1YIgxTAqFAgEBAdLk5+eHGzduQKvV4tKlS1Jd1adUKnHbbbchODgY3t7eyM/PR0FBgdGXF0t5e3ujZ8+pOHDgLQwbdgBDh+4CMLBRXN3zwMKFw+DhUXc7McP+6969u9XrJcsolUqpFfjpp58GAFy8eBE//fST1BL+66+/4uzZs1K39eZQKBTo3r07+vfvj4SEBPTv3x+9e/eGT/3uZs0ou5+fH/z8/BAREYHu3btjxIgR0nwhhJSIG6Zjx44hOzsbN27cQH5+PvLz83Ho0CGz6/Dz80NYWBiUSqX0o4IlfysrK6WkT84UCoV0jvL09JSm+o/N/W94rFQqLUqS6yfKZJ6pxMgweXp6NjnfktdY81629P3e1GvrT+RalEqlNBl+dJLbcwqFQvqe1jCZMjfJfb4tkl9yH26ddF+5cgU6nQ6hoaFGz4eGhuLkyZMmX5Ofn28yPj8/3+x60tLSsHDhQqvLV1hYiP/85z9Wv661USgUKC0txYEDB5xdFLu5evWqRXGG5MIcDw8P+Pj4SHWm1+tRVFTUqPtvmzZt0Lt3b/Ts2RPt2rWTEv7ffvsNJ0+exOXLl1FVVYXKykpERETg6aefxtWrU7FkyW1ITa2FQrGryXIOHbrrv7cTqzvFzJtn0eaRjd1+++0YP348xo8fD6DuB8G9e/dKLeEHDhxAVVWV9AW+fsuN4X+NRoP4+Hgpwe7bt6/DfzE2tKRHR0cbja9heH8belE0nC5evIhLly6hpKQEZWVlOHXqVIvK4e3tjTZt2qBNmzbSD2UN/2/Tpg28vb0btS6Zam1q+Jxer0dlZSUqKipQUVGBGzduNPq//nMVFRVSAiSEkBJiZzLVSmxpy7GpOC8vL+mHWcN2Gv62pGVFp9NJP27aYqo1cQ1va0xQlUql9OOAqb/Wzqv/vyExM2jqGLP3PENyVP8HivqTqefsEWspQxJHrUPDHzga/rjR1I8hzXmtucYuS/42p6eSpbE6nQ7bt2+3ce02n1sn3Y4yd+5co9ZxrVaLqKioW76uZ8+e+Mc//mGzctiyC5Gtl9XwF3uFQmH0gQVAankx/I2IiEBMTAxUKhVOnz6NkydPorKyUvrwNWjqV8f6j+t/YNf/4BJCwNvbGyqVSurOZmhZbtOmDdRqtfQFraamBnq9Ht7e3lLLdv0vXjqdTvoS7u3tLb2utrZWaoWq/2XS0A2xtLQUFRUV8PT0lObVnwxlKykpQXFxMYqLi1FeXg4fHx/4+fkhPDwcUVFR8Pf3l7axuroaV69elZLuyspKhIaGIjw8HGFhYVIrv6UWLAAWLQJeeUWP//agbtKrr+rh4dH0ODXkWBqNBiNGjDBqRXZlSqUSoaGhCA0NRb9+/czGlZeX49KlSygoKJBe17A7prnn6ifa1h4zjlBTUyMl4IZzjWFq+NjUc/Uf63Q6qxLlhjGGc3trpNfrpSS+qqrKZBJVv5u0ucmaGL1eb/b9a6+/t0qUW+v+d5amEn9zLa1yfq5+b8WGE4Am59syxhbLam4C25Lkt+EPU62d4XJfuXDrpDsoKAgeHh7SFy2DgoIChIWFmXxNWFiYVfFA3S/7asPIg1aIiorCE088YfXrWqPY2FjExsY6uxguRaVSITw8HOHh4TZZ3oIFdX+taUhjCzfJQZs2bdC1a1d07drV2UWxOS8vL/j7+8vqi0VrpFQqpe8CRncMILIjQ6JFRPLn1keqSqVCfHw8MjIypOf0ej0yMjKQnJxs8jXJyclG8QCwbds2s/FERERERERE5rh1SzcAzJo1C1OmTEFCQgISExOxfPlylJeXY+rUqQCAyZMnIzIyUhpx+IUXXsDQoUPx9ttvY/To0UhPT8fBgwfx/vvvW7xOQ7dmSwdUI3Il1dXV0r2XtVpto9HLzc1zFkeWSY7bT0RERNTaGPIw2QxIJ1qB9957T7Rv316oVCqRmJgo9u7dK80bOnSomDJlilH8+vXrRdeuXYVKpRJxcXFi8+bNVq3v9OnTAgAnTpw4ceLEiRMnTpw4cXLSdPr0aVukky3m9vfpdobi4mIEBgbi/PnzvM7OBRgGvrtw4YIs7uNHt8Z95lq4v1wP95lr4f5yPdxnroX7y/WUlJSgffv2uH79OgICApxdHPfvXu4MhkEt/P39eWC6EI1Gw/3lYrjPXAv3l+vhPnMt3F+uh/vMtXB/uR65DDYoj1IQERERERERuSEm3URERERERER2wqTbDtRqNVJTU5t1725yPO4v18N95lq4v1wP95lr4f5yPdxnroX7y/XIbZ9xIDUiIiIiIiIiO2FLNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdNvYqlWr0KFDB3h7eyMpKQn79+93dpFahQULFkChUBhN3bt3l+ZXVlZi+vTpuO222+Dn54dx48ahoKDAaBnnz5/H6NGj4evri5CQEMyePRu1tbVGMTt27EC/fv2gVqvRuXNnrFu3zhGb5/J27dqF+++/HxEREVAoFNi0aZPRfCEE5s+fj/DwcPj4+CAlJQW5ublGMdeuXcPEiROh0WgQEBCAJ554AmVlZUYxR44cweDBg+Ht7Y2oqCi89dZbjcqyYcMGdO/eHd7e3ujZsye+/fZbm2+vO7jVPnvssccaHXOjRo0yiuE+c5y0tDT0798fbdu2RUhICMaOHYucnByjGEeeB/lZ2DRL9tddd93V6Bh75plnjGK4vxxn9erV6NWrFzQaDTQaDZKTk/Hdd99J83l8ycut9hePL/lbsmQJFAoFZs6cKT3n0seZIJtJT08XKpVKfPTRR+L48eNi2rRpIiAgQBQUFDi7aG4vNTVVxMXFicuXL0tTUVGRNP+ZZ54RUVFRIiMjQxw8eFDceeedYsCAAdL82tpa0aNHD5GSkiIOHz4svv32WxEUFCTmzp0rxZw5c0b4+vqKWbNmiezsbPHee+8JDw8PsWXLFoduqyv69ttvxWuvvSa+/PJLAUBs3LjRaP6SJUuEv7+/2LRpk/j111/FH/7wBxETEyNu3LghxYwaNUr07t1b7N27V/z444+ic+fOYsKECdL8kpISERoaKiZOnCiOHTsmPv/8c+Hj4yP+/ve/SzE//fST8PDwEG+99ZbIzs4Wf/nLX4SXl5c4evSo3evA1dxqn02ZMkWMGjXK6Ji7du2aUQz3meOMHDlSrF27Vhw7dkxkZWWJe++9V7Rv316UlZVJMY46D/Kz8NYs2V9Dhw4V06ZNMzrGSkpKpPncX4719ddfi82bN4vffvtN5OTkiFdffVV4eXmJY8eOCSF4fMnNrfYXjy95279/v+jQoYPo1auXeOGFF6TnXfk4Y9JtQ4mJiWL69OnSY51OJyIiIkRaWpoTS9U6pKamit69e5ucV1xcLLy8vMSGDRuk506cOCEAiD179ggh6hIMpVIp8vPzpZjVq1cLjUYjqqqqhBBCvPzyyyIuLs5o2ePHjxcjR4608da4t4YJnF6vF2FhYWLp0qXSc8XFxUKtVovPP/9cCCFEdna2ACAOHDggxXz33XdCoVCIS5cuCSGE+Nvf/iYCAwOl/SWEEK+88oro1q2b9PiRRx4Ro0ePNipPUlKSePrpp226je7GXNI9ZswYs6/hPnOuwsJCAUDs3LlTCOHY8yA/C63XcH8JUZcU1P+y2RD3l/MFBgaKf/zjHzy+XIRhfwnB40vOSktLRZcuXcS2bduM9pOrH2fsXm4j1dXVOHToEFJSUqTnlEolUlJSsGfPHieWrPXIzc1FREQEOnbsiIkTJ+L8+fMAgEOHDqGmpsZo33Tv3h3t27eX9s2ePXvQs2dPhIaGSjEjR46EVqvF8ePHpZj6yzDEcP+2zNmzZ5Gfn29Ut/7+/khKSjLaPwEBAUhISJBiUlJSoFQqsW/fPilmyJAhUKlUUszIkSORk5OD69evSzHch7azY8cOhISEoFu3bnj22Wdx9epVaR73mXOVlJQAANq1awfAcedBfhY2T8P9ZfDpp58iKCgIPXr0wNy5c1FRUSHN4/5yHp1Oh/T0dJSXlyM5OZnHl8w13F8GPL7kafr06Rg9enSjunX148yz2a8kI1euXIFOpzPayQAQGhqKkydPOqlUrUdSUhLWrVuHbt264fLly1i4cCEGDx6MY8eOIT8/HyqVCgEBAUavCQ0NRX5+PgAgPz/f5L4zzGsqRqvV4saNG/Dx8bHT1rk3Q/2aqtv6dR8SEmI039PTE+3atTOKiYmJabQMw7zAwECz+9CwDLLcqFGj8OCDDyImJganT5/Gq6++invuuQd79uyBh4cH95kT6fV6zJw5EwMHDkSPHj0AwGHnwevXr/Oz0Eqm9hcA/PGPf0R0dDQiIiJw5MgRvPLKK8jJycGXX34JgPvLGY4ePYrk5GRUVlbCz88PGzduRGxsLLKysnh8yZC5/QXw+JKr9PR0/PLLLzhw4ECjea7+Ocakm9zCPffcI/3fq1cvJCUlITo6GuvXr2cyTGQHjz76qPR/z5490atXL3Tq1Ak7duzA8OHDnVgymj59Oo4dO4bdu3c7uyhkAXP766mnnpL+79mzJ8LDwzF8+HCcPn0anTp1cnQxCUC3bt2QlZWFkpIS/Otf/8KUKVOwc+dOZxeLzDC3v2JjY3l8ydCFCxfwwgsvYNu2bfD29nZ2cWyO3cttJCgoCB4eHo1G0CsoKEBYWJiTStV6BQQEoGvXrjh16hTCwsJQXV2N4uJio5j6+yYsLMzkvjPMaypGo9EwsW8BQ/02deyEhYWhsLDQaH5tbS2uXbtmk33IY7TlOnbsiKCgIJw6dQoA95mzzJgxA9988w0yMzNx++23S8876jzIz0LrmNtfpiQlJQGA0THG/eVYKpUKnTt3Rnx8PNLS0tC7d2+8++67PL5kytz+MoXHl/MdOnQIhYWF6NevHzw9PeHp6YmdO3dixYoV8PT0RGhoqEsfZ0y6bUSlUiE+Ph4ZGRnSc3q9HhkZGUbXj5BjlJWV4fTp0wgPD0d8fDy8vLyM9k1OTg7Onz8v7Zvk5GQcPXrUKEnYtm0bNBqN1BUpOTnZaBmGGO7flomJiUFYWJhR3Wq1Wuzbt89o/xQXF+PQoUNSzPbt26HX66UPyuTkZOzatQs1NTVSzLZt29CtWzcEBgZKMdyH9nHx4kVcvXoV4eHhALjPHE0IgRkzZmDjxo3Yvn17o277jjoP8rPQMrfaX6ZkZWUBgNExxv3lXHq9HlVVVTy+XIRhf5nC48v5hg8fjqNHjyIrK0uaEhISMHHiROl/lz7Omj0EGzWSnp4u1Gq1WLduncjOzhZPPfWUCAgIMBpBj+zjxRdfFDt27BBnz54VP/30k0hJSRFBQUGisLBQCFF3i4H27duL7du3i4MHD4rk5GSRnJwsvd5wi4ERI0aIrKwssWXLFhEcHGzyFgOzZ88WJ06cEKtWreItwyxUWloqDh8+LA4fPiwAiHfeeUccPnxYnDt3TghRd8uwgIAA8dVXX4kjR46IMWPGmLxlWN++fcW+ffvE7t27RZcuXYxuP1VcXCxCQ0PFpEmTxLFjx0R6errw9fVtdPspT09PsWzZMnHixAmRmprK20+Z0dQ+Ky0tFS+99JLYs2ePOHv2rPjhhx9Ev379RJcuXURlZaW0DO4zx3n22WeFv7+/2LFjh9EtcCoqKqQYR50H+Vl4a7faX6dOnRKLFi0SBw8eFGfPnhVfffWV6NixoxgyZIi0DO4vx5ozZ47YuXOnOHv2rDhy5IiYM2eOUCgUYuvWrUIIHl9y09T+4vHlOhqOMu/KxxmTbht77733RPv27YVKpRKJiYli7969zi5SqzB+/HgRHh4uVCqViIyMFOPHjxenTp2S5t+4cUM899xzIjAwUPj6+ooHHnhAXL582WgZv//+u7jnnnuEj4+PCAoKEi+++KKoqakxisnMzBR9+vQRKpVKdOzYUaxdu9YRm+fyMjMzBYBG05QpU4QQdbcNmzdvnggNDRVqtVoMHz5c5OTkGC3j6tWrYsKECcLPz09oNBoxdepUUVpaahTz66+/ikGDBgm1Wi0iIyPFkiVLGpVl/fr1omvXrkKlUom4uDixefNmu223K2tqn1VUVIgRI0aI4OBg4eXlJaKjo8W0adMafRhxnzmOqX0FwOgc5cjzID8Lm3ar/XX+/HkxZMgQ0a5dO6FWq0Xnzp3F7Nmzje4jLAT3lyM9/vjjIjo6WqhUKhEcHCyGDx8uJdxC8PiSm6b2F48v19Ew6Xbl40whhBDNbycnIiIiIiIiInN4TTcRERERERGRnTDpJiIiIiIiIrITJt1EREREREREdsKkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJNREREREREZCdMuomIiIiIiIjshEk3ERERERERkZ0w6SYiIiIiIiKyEybdRERERERERHbCpJuIiIiIiIjITph0ExEREREREdkJk24iIiIiIiIiO2HSTURERERERGQnTLqJiIiIiIiI7IRJNxEREREREZGdMOkmIiIim3rsscfQoUMHq1/XoUMHPPbYYzYvDxERkTMx6SYiIrKTdevWQaFQmJ327t3r7CI2qaKiAgsWLMCOHTucsv7s7GwsWLAAv//+u1PWT0REZAuezi4AERGRu1u0aBFiYmIaPd+5c2cnlMZyFRUVWLhwIQDgrrvusvh1H3zwAfR6vdXry8nJgVJ5sz0gOzsbCxcuxF133dWslnMiIiI5YNJNRERkZ/fccw8SEhKcXQy7Ky8vR5s2beDl5dWs16vVahuXiIiIyPnYvZyIiMjJ9Ho93n33XfTs2RPe3t4IDg7GqFGjcPDgQaO4Tz75BImJifD19UVgYCCGDBmCrVu3GsV89913GDx4MNq0aYO2bdti9OjROH78uFHMY489Bj8/P1y6dAljx46Fn58fgoOD8dJLL0Gn0wEAfv/9dwQHBwMAFi5cKHWJX7BggdEyTp8+jXvvvRdt27bFxIkTpXkNW6Yt2cb613SvW7cODz/8MABg2LBh0vp37NiBKVOmICgoCDU1NY3qcsSIEejWrZsVtU9ERGRfTLqJiIjsrKSkBFeuXDGarl69Ks1/4oknMHPmTERFReHNN9/EnDlz4O3tbXTN98KFCzFp0iR4eXlh0aJFWLhwIaKiorB9+3Yp5uOPP8bo0aPh5+eHN998E/PmzUN2djYGDRrU6LponU6HkSNH4rbbbsOyZcswdOhQvP3223j//fcBAMHBwVi9ejUA4IEHHsDHH3+Mjz/+GA8++KC0jNraWowcORIhISFYtmwZxo0bZ7YOLNnG+oYMGYLnn38eAPDqq69K67/jjjswadIkXL16Fd9//73Ra/Lz87F9+3b86U9/amp3EBEROZYgIiIiu1i7dq0AYHJSq9VCCCG2b98uAIjnn3++0ev1er0QQojc3FyhVCrFAw88IHQ6ncmY0tJSERAQIKZNm2Y0Pz8/X/j7+xs9P2XKFAFALFq0yCi2b9++Ij4+XnpcVFQkAIjU1NRGZTMsY86cOSbnRUdHS48t2UYhhIiOjhZTpkyRHm/YsEEAEJmZmUav0el04vbbbxfjx483ev6dd94RCoVCnDlzptF6iIiInIXXdBMREdnZqlWr0LVrV6PnPDw8AAD//ve/oVAokJqa2uh1CoUCALBp0ybo9XrMnz/faKCx+jHbtm1DcXExJkyYgCtXrhitJykpCZmZmY2W/8wzzxg9Hjx4MD7++GOrtu3ZZ5+9ZYwl22gNpVKJiRMnYsWKFSgtLUXbtm0BAJ9++ikGDBhgctA6IiIiZ2HSTUREZGeJiYlmB1I7ffo0IiIi0K5dO7OvP336NJRKJWJjY83G5ObmAgDuvvtuk/M1Go3RY8N11fUFBgbi+vXrZtfRkKenJ26//fZbxlmyjdaaPHky3nzzTWzcuBGTJ09GTk4ODh06hDVr1thsHURERLbApJuIiMgNGG7R9fHHHyMsLKzRfE9P4498Q0t7S6jV6kYt744SGxuL+Ph4fPLJJ5g8eTI++eQTqFQqPPLII04pDxERkTlMuomIiJyoU6dO+P7773Ht2jWzLcGdOnWCXq9HdnY2+vTpYzYGAEJCQpCSkmKTsjWn67cplmxjc9Y/efJkzJo1C5cvX8Znn32G0aNHIzAwsKXFJSIisimOXk5ERORE48aNgxACCxcubDRPCAEAGDt2LJRKJRYtWiS1aDeMGTlyJDQaDd544w2Tt9IqKiqyumy+vr4AgOLiYqtfW58l22hKmzZtmlz/hAkToFAo8MILL+DMmTMctZyIiGSJLd1ERER29t133+HkyZONnh8wYACGDRuGSZMmYcWKFcjNzcWoUaOg1+vx448/YtiwYZgxYwY6d+6M1157DYsXL8bgwYPx4IMPQq1W48CBA4iIiEBaWho0Gg1Wr16NSZMmoV+/fnj00UcRHByM8+fPY/PmzRg4cCBWrlxpVbl9fHwQGxuLL774Al27dkW7du3Qo0cP9OjRw6rlWLKNpvTp0wceHh548803UVJSArVajbvvvhshISEAIN3re8OGDQgICMDo0aOtKhcREZEjMOkmIiKys/nz55t8fu3atejYsSPWrl2LXr164cMPP8Ts2bPh7++PhIQEDBgwQIpdtGgRYmJi8N577+G1116Dr68vevXqhUmTJkkxf/zjHxEREYElS5Zg6dKlqKqqQmRkJAYPHoypU6c2q+z/+Mc/8Oc//xn/+7//i+rqaqSmplqddBu29Vbb2FBYWBjWrFmDtLQ0PPHEE9DpdMjMzJSSbqCui/k333yDRx55BGq1ulnbSEREZE8K0VS/LiIiIiIZ++qrrzB27Fjs2rULgwcPdnZxiIiIGmHSTURERC7rvvvuw4kTJ3Dq1CmbDfxGRERkS+xeTkRERC4nPT0dR44cwebNm/Huu+8y4SYiItliSzcRERG5HIVCAT8/P4wfPx5r1qxpdB9yIiIiueAnFBEREbkcthkQEZGr4H26iYiIiIiIiOyESTcRERERERGRnbB7uR3o9Xrk5eWhbdu2HNiFiIiIiIjIgYQQKC0tRUREBJRK57czM+m2g7y8PERFRTm7GERERERERK3WhQsXcPvttzu7GEy67aFt27YA6nayRqNxcmmIiIiIiIhaD61Wi6ioKCkvczYm3XZg6FKu0WiYdBMRERERETmBXC71ZdJNABq/IYUQUCgUvCULERERERFRCzDpbmUMifStfvUxzDeVjBMREREREZFlmHS3Ag0T55Z0s2DrNxERERERkeWYdLuxppJraxPn+suq/z8TcCIiIiIiIvOYdLshc8l2SxJkw2vNtZoz+SYiIiIiImqMSbcbsUey3dSyTLV+M/kmIiIiIiK6iUm3G3BEst3U8hsm30y8iYiIiIiI6jDpdmGmkm1nJLwNk28m3kRERERERHWYdLsguSTbpsrQ8FZjcigXERERERGRszDpdhHO6kJuLbZ6ExERERER3aR0dgHcmb+/f4vuiW1grmVbzslswwHXbFEPREREREREroYt3Q5gTXfwWyWnck60G6rf3RxgqzcREREREbU+bOm2o5KSErPzDK2/DSdz5N6ybU7DMrPFm4iIiIiIWhO2dNuZuftaW/taV8brvImIiIiIqLVi0u1ArT3R5OjmRERERETU2rB7OTkUu5sTEREREVFrwqSbHK7h9ekc3ZyIiIiIiNwVk25yGrZ6ExERERGRu2PSTU5lqtVbrhpejy7nshIRERERkTxwIDWSBbkNsmYuobYk8ebgcEREREREZODyLd2rVq1Chw4d4O3tjaSkJOzfv99s7AcffIDBgwcjMDAQgYGBSElJaRQvhMD8+fMRHh4OHx8fpKSkIDc3196bQTDf6u2oFmVL7pduzXKIiIiIiIhcOun+4osvMGvWLKSmpuKXX35B7969MXLkSBQWFpqM37FjByZMmIDMzEzs2bMHUVFRGDFiBC5duiTFvPXWW1ixYgXWrFmDffv2oU2bNhg5ciQqKysdtVmtXv3ku37ibetEtn6Sbcmy65fLktZsJt9ERERERKQQLtwXNikpCf3798fKlSsBAHq9HlFRUfjzn/+MOXPm3PL1Op0OgYGBWLlyJSZPngwhBCIiIvDiiy/ipZdeAgCUlJQgNDQU69atw6OPPmpRubRaLfz9/VFSUgKNRtP8DaQmk9bmvHUtTYKbe1jYurxERERERGQdueVjLtvSXV1djUOHDiElJUV6TqlUIiUlBXv27LFoGRUVFaipqUG7du0AAGfPnkV+fr7RMv39/ZGUlGTxMsm2GnY5r69hK3XDlmtTkyXrakly3NQy2OpNRERERNT6uOxAaleuXIFOp0NoaKjR86GhoTh58qRFy3jllVcQEREhJdn5+fnSMhou0zDPlKqqKlRVVUmPtVqtResny91qhHNrE1pHtDo37CLf8H+2fBMRERERuT+XbeluqSVLliA9PR0bN26Et7d3i5aVlpYGf39/aYqKirJRKcmU+q3J5hLXhs9b8hp7MbXO+qO1ExERERGR+3LZpDsoKAgeHh4oKCgwer6goABhYWFNvnbZsmVYsmQJtm7dil69eknPG15n7TLnzp2LkpISabpw4YK1m0Mt0DChrj/YmTOSbHOcOTI7ERERERE5h8sm3SqVCvHx8cjIyJCe0+v1yMjIQHJystnXvfXWW1i8eDG2bNmChIQEo3kxMTEICwszWqZWq8W+ffuaXKZarYZGozGaiEwx9SMAE28iIiIiIvflstd0A8CsWbMwZcoUJCQkIDExEcuXL0d5eTmmTp0KAJg8eTIiIyORlpYGAHjzzTcxf/58fPbZZ+jQoYN0nbafnx/8/PygUCgwc+ZM/PWvf0WXLl0QExODefPmISIiAmPHjnXWZpIbati9XKFQyKZFnoiIiIiIbMelk+7x48ejqKgI8+fPR35+Pvr06YMtW7ZIA6GdP38eSuXNxvzVq1ejuroaDz30kNFyUlNTsWDBAgDAyy+/jPLycjz11FMoLi7GoEGDsGXLlhZf903UEBNvIiIiIiL359L36ZYrud0XjuSPo5oTEREREdmG3PIxl72mm8idNBxkjdd5ExERERG5BybdRDLBFm4iIiIiIvfDpJtIRtjiTURERETkXlx6IDUid8QB1ojIViz54Y7nFyIiIvti0k0kQ0y8icgaLekVY+q1PN8QERHZDpNuIpli4k1ETbE20W54+Yoly+Y5h4iIqOWYdBPJGBNvImroVgmzJeeIpmIannOsWS4RERE1xqSbSOYMX3QNX36ZeBO1Lk0l2fY4F5hrEWfrNxERUfMw6SZyEfVbvfnll6iO4Ueo5nS1lvsPWI5OtptaD5NvIiKi5mPSTeRC2N2cqHEy2pxBxBr+gFWfs48pc9vjzHIx+SYiImo+Jt1ELoaJN7VG1iTW9RPE+i3ali7DGdcxy6FV2xLmkm85lZGIiEhuHJ50V1VV4ZdffkFhYSEGDhyIoKAgRxeByOUx8abWoKUDhhnmN/xrzboaPm+r48wWg6E5k6mxJhrOIyIiojpKR65sxYoVCA8Px6BBg/Dggw/iyJEjAIArV64gKCgIH330kSOLQ+TSGn6xbcl9eh1BoVDIvowkD029V4QQ0mRL9Zd7q+Tc1FR/viWvae765cZUeXmsExERGXNY0r127VrMnDkTo0aNwocffmj0IR0UFIS7774b6enpjioOkVuQ05ddc8mIqaTkVgkItU6WJNuOYm0SXL/s1ry/XS3JNofJNxGRYzX1ucNzr/w4rHv522+/jTFjxuCzzz7D1atXG82Pj4/HihUrHFUcIrdh6hpLw2N7f5m31Um9/oBM7Crf+shx4LCGzJWlOdeauzMOuEZEZB+WXgbV1PM8DzuPw1q6T506hXvuucfs/Hbt2plMxonIMqburWvLXzsd8SuqPcpN8nWrrtauoGGLeFNTa8KWbyKilrHndzlyPIe1dAcEBODKlStm52dnZyMsLMxRxSFyS+ZGaG5OS1Nz7ntseJ2t1sMWMvfFX+BbB1PnJB7XRETmmRsnpCXnzKZutclzsWM4rKX73nvvxfvvv4/i4uJG844fP44PPvgAf/jDHxxVHCK31VSr2q2uu7a2FdtUK561J29LWgP5y6z7MLUvW2NLcGtibv82vB7RUaw5D/K8Q0SOYs/eX019z+K5zjEUwkHfdPLy8pCUlAQhBO6//368//77+NOf/gSdTod///vfCA8Px/79+93iFmJarRb+/v4oKSmBRqNxdnGolbP1idTZ9y1urcmZoQeBq17zzv1J9VkywJy919FcfM8SkS05s+eXO/c6k1s+5rCkGwAKCwvx6quv4ssvv5RavNu2bYtx48ZhyZIlCAkJcVRR7EpuO5nIoDlfQp198nXnDwRzWpIsyLFuWuM+JMvIqXXF3OU5t3oNEVFzmOr15SxyKoutyC0fc2jSXV9RURH0ej2Cg4OhVDr0duF2J7edTOTqWkPS5m6tcq1hn5Ht2fM4aEkvEUe0zBNR6yDnBFfOZbOW3PIxhw2k1lBwcLCzVk1ELsYdb0NUv7u4vddj4Ii6YjdyaglLb83W1LFjbhkteQ+aujtEw/LxPU5ETXGFH6Mbft9y9e9acuLyTcyrVq1Chw4d4O3tjaSkJOzfv99s7PHjxzFu3Dh06NABCoUCy5cvbxSzYMGCRoOodO/e3Y5bQESWcocBQCwZPMqa21BZc0sqew0S1dTyOEga2YKp97qzbs1mbl0cfI2ITHHFAUQblo/nt5Zz6aT7iy++wKxZs5CamopffvkFvXv3xsiRI1FYWGgyvqKiAh07dsSSJUuavD1ZXFwcLl++LE27d++21yYQkZWaGn1T7poqoy2ShpYk4vX/t6QuLYmV8xcKIltw5fMREdmfqyXbDTX1A6NcGcrn7+/v7KIYcemk+5133sG0adMwdepUxMbGYs2aNfD19cVHH31kMr5///5YunQpHn30UajVarPL9fT0RFhYmDS5w4jqRO7Glb7oNvUBZe8PYEsTcFP38LT2NkqObnEkkgtX/GJKRPbT8Ph39c9FOZ/jXOU2jy6bdFdXV+PQoUNISUmRnlMqlUhJScGePXtatOzc3FxERESgY8eOmDhxIs6fP99kfFVVFbRardFERPYn98Tbmcl2U+u0dWLs6l8miGxF7uckIldhqgeW3BMrU+Vzt89HuVzmJ/f3gikum3RfuXIFOp0OoaGhRs+HhoYiPz+/2ctNSkrCunXrsGXLFqxevRpnz57F4MGDUVpaavY1aWlp8Pf3l6aoqKhmr5+IrCPHX19vdX2znD6Arb0u1tT1tER0k7lzEhGZZu4Sp6aOG2t7YtmLufW68+djU5fV2HMfWHpZm2EqKSmxSzmay2mjl8vVPffcI/3fq1cvJCUlITo6GuvXr8cTTzxh8jVz587FrFmzpMdarZaJN5GDmRrN2NEjCrvTyN2WJN5EZB5HASYyz9TntT2WbfhuYMvjjmOZ1Gnqrg7NHand2veBK9W3yybdQUFB8PDwQEFBgdHzBQUFTQ6SZq2AgAB07doVp06dMhujVqubvEaciBzD1AdAww9fe+AHMBGZYyr55nmBWitLkyprjhHDMWVq2Za0mjdcnzsnfvZiSf219IcVV69nl+1erlKpEB8fj4yMDOk5vV6PjIwMJCcn22w9ZWVlOH36NMLDw222TCKyP0dcd+RK3ciJyLlM3X6HqDWwdhBOaz87zV32ZG3ibs1xyc9582w9doy71LPLtnQDwKxZszBlyhQkJCQgMTERy5cvR3l5OaZOnQoAmDx5MiIjI5GWlgagbvC17Oxs6f9Lly4hKysLfn5+6Ny5MwDgpZdewv3334/o6Gjk5eUhNTUVHh4emDBhgnM2koiarWELk0FLunla82s5EVF9DVvj2OpN7s5Zl101lXg35wcvHqfNZ24ftLY6demke/z48SgqKsL8+fORn5+PPn36YMuWLdLgaufPn4dSebMxPy8vD3379pUeL1u2DMuWLcPQoUOxY8cOAMDFixcxYcIEXL16FcHBwRg0aBD27t2L4OBgh24bEdnOrbqdNZxvLlm/1TqIiG6FiTe5O7mPbyKXcrRmrXEfKERr3Go702q18Pf3R0lJCTQajbOLQ0T1WJtIs2WbiOzF1IjHRK5K7sk2tS5yy8dcuqWbiMha1rRi8wsEEdkTW73JHfCzkujWmHQTUavU1H10zXU3JyKyNSbe5Mqae2sootaGSTcRERp/SeCXBiJyFN5WjFwRL48gshyTbiIiIiIZqN/q3ZK7LBDZE5NtIuu57H26iYiIiNyNqUtfeE9vkgsm3ETNw6SbiIiISEZsdW9hIlsw/PDDhJuo+di9nIiIiEhmTN1pgV3OydE4UBqRbTDpJiIiIpIpJt/kDLwNGJFtMekmIiIikrmGtxYDGt/qkKilmGwT2QeTbiIiIiIXYKrV28AeCbjh1mXmuhg3XCdvdebamHAT2Q+TbiIiIiIX0lTy3dTz9V9v6cBslq6j4a3O6q+HSZu88bptIvtj0k1ERETkguonRtaMbu6okdDNJeLkfGzVJnIsJt1ERERELq65Cbgly63fzdzUX2vWyUHgnMOS3g9EZD9MuomIiIjcSFMJlKmE2dLlmftrbp1NJXqtvfW7JT+MWHN5gKXLIyL7YtJNRERE1EqYSpjtvS4DU9d713/e3ZI/e3Xjb6pruKXrdLe6JpI7Jt1EREREZHe36gLv6q3fjrpWvjnrd8X6JHInTLqJiIiIyKEsHYFd7slicxNtW9/WjYjkjUk3ERERETmFJa3fcksqrUm07V12udUNEZnGpJuIiIiInM5c67dcup1bkmwzCSYiU5h0ExEREZFsNNX13JHdzplkE5GtMOkmIiIiItlxRvLN0b+JyB6YdBMRERGRbFmSfDeMtcatRv12lUHdiEi+lM4uQEutWrUKHTp0gLe3N5KSkrB//36zscePH8e4cePQoUMHKBQKLF++vMXLJCIiIiL7E0JIkzkKhaLRZO75+vObWt6t1klEdCsunXR/8cUXmDVrFlJTU/HLL7+gd+/eGDlyJAoLC03GV1RUoGPHjliyZAnCwsJsskwiIiIicixrEmFrb+tVP7lnsk1EtqAQLnw2SUpKQv/+/bFy5UoAgF6vR1RUFP785z9jzpw5Tb62Q4cOmDlzJmbOnGmzZRpotVr4+/ujpKQEGo3G+g0jIiIiIqsYWqWbc+9sF/46TEQmyC0fc9mW7urqahw6dAgpKSnSc0qlEikpKdizZ49Dl1lVVQWtVms0EREREZHjGBLn+i3UppLphi3ZTLiJyN5cNum+cuUKdDodQkNDjZ4PDQ1Ffn6+Q5eZlpYGf39/aYqKimrW+omIiIjINhom4UywichZXDbplpO5c+eipKREmi5cuODsIhEREREREZEMuOwtw4KCguDh4YGCggKj5wsKCswOkmavZarVaqjV6matk4iIiIiIiNyXyybdKpUK8fHxyMjIwNixYwHUDXqWkZGBGTNmOHWZhq5LvLabiIiIiIjIsQx5mFwuKXHZpBsAZs2ahSlTpiAhIQGJiYlYvnw5ysvLMXXqVADA5MmTERkZibS0NAB1A6VlZ2dL/1+6dAlZWVnw8/ND586dLVqmJa5evQoAvLabiIiIiIjISa5evQp/f39nF8O1k+7x48ejqKgI8+fPR35+Pvr06YMtW7ZIA6GdP38eSuXNy9bz8vLQt29f6fGyZcuwbNkyDB06FDt27LBomZZo166dtP6W7OT+/fvjwIEDzX69LZcjl2VotVpERUXhwoULLRr+Xy7bI5ey2KpebVEWWy1DLmVxx7qVy/6R0/nAVsuRyzJYt/Zbhpzq1p32D8+19luOnN6ztlqOXMrCurXfMkpKStC+fXspL3M2l066AWDGjBlmu34bEmmDDh06WNTFoKllWsKQ6Pv7+7foAPLw8LDJfeVssRy5LMNAo9E4vW7dbf8ALa9XW5WFdWu/sshlGbZcjhzOB7ZajlyWYcC6tf0yDORQt+62fwCea+25HDm8Z221HDmVBWDd2mMZBvUbYJ1JHqUgk6ZPny6b5chlGbYip+2RU1lsQU7bI6ey2IJctkdO+8cW5LQ9clmGrbBu7UdO2yOnstiCXLZHTvvHFuS0PXIqiy3IaXvksgy5UQi5XF3uRrRaLfz9/VFSUmKzX2moDuvWPliv9sO6tR/Wrf2wbu2HdWsfrFf7Yd3aD+vWfuRWt2zptgO1Wo3U1FTeRswOWLf2wXq1H9at/bBu7Yd1az+sW/tgvdoP69Z+WLf2I7e6ZUs3ERERERERkZ2wpZuIiIiIiIjITph0ExEREREREdkJk24iIiIiIiIiO2HSTURERERERGQnTLptbNWqVejQoQO8vb2RlJSE/fv3O7tITrVr1y7cf//9iIiIgEKhwKZNm4zmCyEwf/58hIeHw8fHBykpKcjNzTWKuXbtGiZOnAiNRoOAgAA88cQTKCsrM4o5cuQIBg8eDG9vb0RFReGtt95qVJYNGzage/fu8Pb2Rs+ePfHtt9/afHsdKS0tDf3790fbtm0REhKCsWPHIicnxyimsrIS06dPx2233QY/Pz+MGzcOBQUFRjHnz5/H6NGj4evri5CQEMyePRu1tbVGMTt27EC/fv2gVqvRuXNnrFu3rlF53OW9v3r1avTq1QsajQYajQbJycn47rvvpPmsU9tZsmQJFAoFZs6cKT3H+m2eBQsWQKFQGE3du3eX5rNeW+bSpUv405/+hNtuuw0+Pj7o2bMnDh48KM3nZ1nzdOjQodH7VqFQSPfo5fu2eXQ6HebNm4eYmBj4+PigU6dOWLx4MeqPncz3bPOVlpZi5syZiI6Oho+PDwYMGIADBw5I81m3lnGlHMGSstySIJtJT08XKpVKfPTRR+L48eNi2rRpIiAgQBQUFDi7aE7z7bffitdee018+eWXAoDYuHGj0fwlS5YIf39/sWnTJvHrr7+KP/zhDyImJkbcuHFDihk1apTo3bu32Lt3r/jxxx9F586dxYQJE6T5JSUlIjQ0VEycOFEcO3ZMfP7558LHx0f8/e9/l2J++ukn4eHhId566y2RnZ0t/vKXvwgvLy9x9OhRu9eBvYwcOVKsXbtWHDt2TGRlZYl7771XtG/fXpSVlUkxzzzzjIiKihIZGRni4MGD4s477xQDBgyQ5tfW1ooePXqIlJQUcfjwYfHtt9+KoKAgMXfuXCnmzJkzwtfXV8yaNUtkZ2eL9957T3h4eIgtW7ZIMe703v/666/F5s2bxW+//SZycnLEq6++Kry8vMSxY8eEEKxTW9m/f7/o0KGD6NWrl3jhhRek51m/zZOamiri4uLE5cuXpamoqEiaz3ptvmvXrono6Gjx2GOPiX379okzZ86I77//Xpw6dUqK4WdZ8xQWFhq9Z7dt2yYAiMzMTCEE37fN9frrr4vbbrtNfPPNN+Ls2bNiw4YNws/PT7z77rtSDN+zzffII4+I2NhYsXPnTpGbmytSU1OFRqMRFy9eFEKwbi3lSjmCJWW5FSbdNpSYmCimT58uPdbpdCIiIkKkpaU5sVTy0fCA0uv1IiwsTCxdulR6rri4WKjVavH5558LIYTIzs4WAMSBAwekmO+++04oFApx6dIlIYQQf/vb30RgYKCoqqqSYl555RXRrVs36fEjjzwiRo8ebVSepKQk8fTTT9t0G52psLBQABA7d+4UQtTVpZeXl9iwYYMUc+LECQFA7NmzRwhRd8JTKpUiPz9film9erXQaDRSfb788ssiLi7OaF3jx48XI0eOlB67+3s/MDBQ/OMf/2Cd2khpaano0qWL2LZtmxg6dKiUdLN+my81NVX07t3b5DzWa8u88sorYtCgQWbn87PMdl544QXRqVMnodfr+b5tgdGjR4vHH3/c6LkHH3xQTJw4UQjB92xLVFRUCA8PD/HNN98YPd+vXz/x2muvsW6bSc45giVlsQS7l9tIdXU1Dh06hJSUFOk5pVKJlJQU7Nmzx4klk6+zZ88iPz/fqM78/f2RlJQk1dmePXsQEBCAhIQEKSYlJQVKpRL79u2TYoYMGQKVSiXFjBw5Ejk5Obh+/boUU389hhh32jclJSUAgHbt2gEADh06hJqaGqPt7t69O9q3b29Uvz179kRoaKgUM3LkSGi1Whw/flyKaaru3Pm9r9PpkJ6ejvLyciQnJ7NObWT69OkYPXp0ozpg/bZMbm4uIiIi0LFjR0ycOBHnz58HwHptqa+//hoJCQl4+OGHERISgr59++KDDz6Q5vOzzDaqq6vxySef4PHHH4dCoeD7tgUGDBiAjIwM/PbbbwCAX3/9Fbt378Y999wDgO/ZlqitrYVOp4O3t7fR8z4+Pti9ezfr1kbkVI+WlMUSTLpt5MqVK9DpdEYnfgAIDQ1Ffn6+k0olb4Z6aarO8vPzERISYjTf09MT7dq1M4oxtYz66zAX4y77Rq/XY+bMmRg4cCB69OgBoG6bVSoVAgICjGIb1m9z606r1eLGjRtu+d4/evQo/Pz8oFar8cwzz2Djxo2IjY1lndpAeno6fvnlF6SlpTWax/ptvqSkJKxbtw5btmzB6tWrcfbsWQwePBilpaWs1xY6c+YMVq9ejS5duuD777/Hs88+i+effx7//Oc/AfCzzFY2bdqE4uJiPPbYYwB4PmiJOXPm4NFHH0X37t3h5eWFvn37YubMmZg4cSIAvmdbom3btkhOTsbixYuRl5cHnU6HTz75BHv27MHly5dZtzYip3q0pCyW8LQ4kohka/r06Th27Bh2797t7KK4hW7duiErKwslJSX417/+hSlTpmDnzp3OLpbLu3DhAl544QVs27atUSsBtYyhBQsAevXqhaSkJERHR2P9+vXw8fFxYslcn16vR0JCAt544w0AQN++fXHs2DGsWbMGU6ZMcXLp3MeHH36Ie+65BxEREc4uistbv349Pv30U3z22WeIi4tDVlYWZs6ciYiICL5nbeDjjz/G448/jsjISHh4eKBfv36YMGECDh065OyikYyxpdtGgoKC4OHh0WhUzYKCAoSFhTmpVPJmqJem6iwsLAyFhYVG82tra3Ht2jWjGFPLqL8OczHusG9mzJiBb775BpmZmbj99tul58PCwlBdXY3i4mKj+Ib129y602g08PHxccv3vkqlQufOnREfH4+0tDT07t0b7777Luu0hQ4dOoTCwkL069cPnp6e8PT0xM6dO7FixQp4enoiNDSU9WsjAQEB6Nq1K06dOsX3bQuFh4cjNjbW6Lk77rhD6r7Pz7KWO3fuHH744Qc8+eST0nN83zbf7Nmzpdbunj17YtKkSfjf//1fqYcR37Mt06lTJ+zcuRNlZWW4cOEC9u/fj5qaGnTs2JF1ayNyqkdLymIJJt02olKpEB8fj4yMDOk5vV6PjIwMJCcnO7Fk8hUTE4OwsDCjOtNqtdi3b59UZ8nJySguLjb69XD79u3Q6/VISkqSYnbt2oWamhopZtu2bejWrRsCAwOlmPrrMcS48r4RQmDGjBnYuHEjtm/fjpiYGKP58fHx8PLyMtrunJwcnD9/3qh+jx49anTS2rZtGzQajfQl81Z11xre+3q9HlVVVazTFho+fDiOHj2KrKwsaUpISMDEiROl/1m/tlFWVobTp08jPDyc79sWGjhwYKPbMf7222+Ijo4GwM8yW1i7di1CQkIwevRo6Tm+b5uvoqICSqXxV3wPDw/o9XoAfM/aSps2bRAeHo7r16/j+++/x5gxY1i3NiKnerSkLBaxeMg1uqX09HShVqvFunXrRHZ2tnjqqadEQECA0aiarU1paak4fPiwOHz4sAAg3nnnHXH48GFx7tw5IUTdEPwBAQHiq6++EkeOHBFjxowxeTuAvn37in379ondu3eLLl26GN0OoLi4WISGhopJkyaJY8eOifT0dOHr69vodgCenp5i2bJl4sSJEyI1NdWlbqtgyrPPPiv8/f3Fjh07jG65UlFRIcU888wzon379mL79u3i4MGDIjk5WSQnJ0vzDbdbGTFihMjKyhJbtmwRwcHBJm+3Mnv2bHHixAmxatUqk7dbcZf3/pw5c8TOnTvF2bNnxZEjR8ScOXOEQqEQW7duFUKwTm2t/ujlQrB+m+vFF18UO3bsEGfPnhU//fSTSElJEUFBQaKwsFAIwXptif379wtPT0/x+uuvi9zcXPHpp58KX19f8cknn0gx/CxrPp1OJ9q3by9eeeWVRvP4vm2eKVOmiMjISOmWYV9++aUICgoSL7/8shTD92zzbdmyRXz33XfizJkzYuvWraJ3794iKSlJVFdXCyFYt5ZypRzBkrLcCpNuG3vvvfdE+/bthUqlEomJiWLv3r3OLpJTZWZmCgCNpilTpggh6obhnzdvnggNDRVqtVoMHz5c5OTkGC3j6tWrYsKECcLPz09oNBoxdepUUVpaahTz66+/ikGDBgm1Wi0iIyPFkiVLGpVl/fr1omvXrkKlUom4uDixefNmu223I5iqVwBi7dq1UsyNGzfEc889JwIDA4Wvr6944IEHxOXLl42W8/vvv4t77rlH+Pj4iKCgIPHiiy+Kmpoao5jMzEzRp08foVKpRMeOHY3WYeAu7/3HH39cREdHC5VKJYKDg8Xw4cOlhFsI1qmtNUy6Wb/NM378eBEeHi5UKpWIjIwU48ePN7qPNOu1Zf7zn/+IHj16CLVaLbp37y7ef/99o/n8LGu+77//XgBoVF9C8H3bXFqtVrzwwguiffv2wtvbW3Ts2FG89tprRrdN4nu2+b744gvRsWNHoVKpRFhYmJg+fbooLi6W5rNuLeNKOYIlZbkVhRBCWN4uTkRERERERESW4jXdRERERERERHbCpJuIiIiIiIjITph0ExEREREREdkJk24iIiIiIiIiO2HSTURERERERGQnTLqJiIiIiIiI7IRJNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdBMRERERERHZCZNuIiIiIiIiIjv5/074KgXTTGPdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import resonances\n", + "\n", + "sim = resonances.find(463, ['Jupiter', 'Saturn'])\n", + "sim.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, the package will display the cases where the status is not non-resonant. If you want to see all cases, you can set `show_all=True` in the simulation parameters. However, you have access to all the results in `summary` variable:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
namemmrstatuspurenum_libration_periodsmax_libration_lengthmonotonyoverlappingaeincOmegaomegaM
04632J+3S-1+0+0-40False1061193.8881890.0058902.3980040.2197640.236340.6369125.7510113.184299
14634J-2S-1+0+0-12True1100000.0746890.504935(8543, 8848), (10544, 11801)2.3980040.2197640.236340.6369125.7510113.184299
24636J-7S-1+0+0+20False1051782.8730290.9941102.3980040.2197640.236340.6369125.7510113.184299
34636J+1S-2+0+0-50False1051766.9545190.0167142.3980040.2197640.236340.6369125.7510113.184299
446310J-3+0-70False278463.6740371.0000002.3980040.2197640.236340.6369125.7510113.184299
54638S-1+0-70False211811.8439680.003025(11264, 13045)2.3980040.2197640.236340.6369125.7510113.184299
64638S+1+0-90False247363.6740371.0000002.3980040.2197640.236340.6369125.7510113.184299
\n", + "
" + ], + "text/plain": [ + " name mmr status pure num_libration_periods \\\n", + "0 463 2J+3S-1+0+0-4 0 False 106 \n", + "1 463 4J-2S-1+0+0-1 2 True 1 \n", + "2 463 6J-7S-1+0+0+2 0 False 105 \n", + "3 463 6J+1S-2+0+0-5 0 False 105 \n", + "4 463 10J-3+0-7 0 False 2784 \n", + "5 463 8S-1+0-7 0 False 211 \n", + "6 463 8S+1+0-9 0 False 2473 \n", + "\n", + " max_libration_length monotony overlapping a \\\n", + "0 1193.888189 0.005890 2.398004 \n", + "1 100000.074689 0.504935 (8543, 8848), (10544, 11801) 2.398004 \n", + "2 1782.873029 0.994110 2.398004 \n", + "3 1766.954519 0.016714 2.398004 \n", + "4 63.674037 1.000000 2.398004 \n", + "5 811.843968 0.003025 (11264, 13045) 2.398004 \n", + "6 63.674037 1.000000 2.398004 \n", + "\n", + " e inc Omega omega M \n", + "0 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "1 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "2 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "3 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "4 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "5 0.219764 0.23634 0.636912 5.751011 3.184299 \n", + "6 0.219764 0.23634 0.636912 5.751011 3.184299 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_summary = sim.get_simulation_summary()\n", + "df_summary.head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The columns are:\n", + "\n", + "- `name`: ID of the asteroid or celestial body\n", + "- `mmr`: Mean motion resonance code (e.g., '4J-2S-1' for Jupiter-Saturn resonance)\n", + "- `status`: Resonance status (0 for non-resonant, 2 for pure resonant, 1 for transient, -1 - controversial but possibly transient, -2 - controversial but possibly pure resonant; see [Libration](../libration) Section for more details)\n", + "- `pure`: Boolean indicating if the resonance is pure (no circulation periods)\n", + "- `num_libration_periods`: Number of libration periods detected\n", + "- `max_libration_length`: Maximum length of one libration in years\n", + "- `monotony`: Measure of the resonant angle's monotonicity\n", + "- `overlapping`: Overlapping regions of different resonances\n", + "- `a`: Semi-major axis in astronomical units\n", + "- `e`: Eccentricity\n", + "- `inc`: Inclination in radians\n", + "- `Omega`: Longitude of ascending node in radians\n", + "- `omega`: Argument of perihelion in radians\n", + "- `M`: Mean anomaly in radians\n", + "\n", + "Based on the dataframe, the only non-zero status is for the resonance `4J-2S-1`. Therefore, we can claim that the asteroid 463 Lola is trapped in the pure resonance `4J-2S-1`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function `find` accepts different types of inputs:\n", + "\n", + "- `asteroids` - the number or name of the asteroid or a list of numbers or names;\n", + "- `planets` - the list of the names of the planets;\n", + "- `name` - name of the simulation, which is used as a directory name to store the output;\n", + "- `sigma2` - the threshold for two-body resonant axis value (looking for objects with semi-major axis from a-sigma2 to a+sigma2); default is `0.02`;\n", + "- `sigma3` - the same but for three-body resonances; default is `0.1`);\n", + "\n", + "The first parameter (`asteroids`) can be an asteroid's number, a string (for unnumbered asteroids), or a list of numbers. For example, you might want to examine simultaneously several objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Searching NASA Horizons for '463;'... \n", + "Found: 463 Lola (A900 UK) \n", + "Searching NASA Horizons for '490;'... \n", + "Found: 490 Veritas (A902 RE) \n", + "Searching NASA Horizons for '2348;'... \n", + "Found: 2348 Michkovitch (1939 AA) \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1fs28HvTE9IoIYGQSofQSwhIEfIjIC2INBESEAQFBQuIKARQiaCifpEiogRBREC6QAglIEiRJr1J6NJJQg2QPe8fvLtmk02y2ezulL0/15XrgtnZmec858yZOdNWI4QQICIiIiIiIiKLc5A6ACIiIiIiIiK14qCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiK7NXnyZGg0Gmg0GuzatSvf+dLS0jBo0CCEhITA1dUV/v7+eP7557FkyRKD+U6ePIlBgwahXr168PPzg6urK0JDQ9GxY0ds2rTJ2sUhO3bnzh0EBgZCo9GgXbt2eT4/d+5cvp8Zc/nyZXz99ddo27YtgoOD4eLigoCAAHTr1g27d+/O93u///47OnTogLJly8LZ2RllypRBREQEBgwYgJUrVxapTNOmTUP//v1Ru3ZtODk5QaPRIDU1tUjLsITx48dbdN0ajQatWrWyyLLk7P79+1iwYAF69OiBKlWqwN3dHb6+vmjZsiV++eUXqcMjIrIpJ6kDICKSwpEjR5CQkIASJUrg/v37+c6XkpKC2NhYAECnTp0QHh6OO3fu4NChQ9i4cSO6d++un/fw4cNYtmwZoqKi0LRpU3h7e+Py5ctYuXIlfv/9d3zyySf48MMPrV00skPDhg1DRkaGxZY3bdo0TJ48GRUrVkTbtm3h5+eH06dPY8WKFVixYgUWLlyInj17GnxnwoQJGD9+PDw8PNCxY0eEhobi6dOnOHr0KH799VecOnUKXbp0MTmGt956CwBQrlw5+Pn54erVqxYrH1nfH3/8gb59+6J06dJo06YNunXrhuvXr2PZsmV4+eWXsWPHDnz77bdSh0lEZBMcdBOR3Xny5Ani4uJQt25dVK5cGQsWLDA634ULF/DSSy8hMDAQGzduRHBwsMHnT58+Nfh/p06d0K1bN2g0GoPpV65cQb169TBhwgQMHToUvr6+Fi0P2bfffvsNCxcuxLfffothw4ZZZJmNGzdGamoqWrZsaTD9jz/+QJs2bfD6668jNjYWrq6uAJ5dSZ84cSKCgoKwa9culC9f3uB7Dx8+LPAKuTFr1qxBgwYNEBAQgCFDhuC7774rXqHIpgICAjB//nz06NEDLi4u+umTJk1CZGQkpk+fjn79+qFx48YSRklEZBu8vZyI7M6nn36Ko0eP4scff4Sjo2O+802aNAmZmZmYNWtWngE3ADg5GZ63dHV1zTPgBoDy5cujWbNmePLkCc6fP1+s2Fu1agWNRoNHjx7ho48+QsWKFeHs7Izx48fr50lLS8PAgQMRHBwMV1dXlCtXDvHx8UbXvX//frz00kv6ef38/NCoUSN8+umneeY9cuQIevTogbJly8LV1RVhYWEYMWIEbt26lWfe0NBQhIaG4t69exg+fDjKly8PV1dX1K5dG0uXLs0z/6lTpzBq1CjUr18fpUuXhpubG6pUqYLRo0fj3r17+ebhyZMnGD9+PEJDQ+Hq6ooqVapgxowZRnMnhMDcuXPRvHlz+Pr6wsPDA5UrV8bgwYNx4cIFg3nv3r2LhIQE1KxZU39bbExMDLZv32502VK5ceMGXn/9dfTt2xcdOnSw2HJffPHFPANuAGjevDmef/553LlzB4cPH9ZP37NnD7RaLV588cU8A24AcHd3L/It1R06dEBAQECRYzdVRkYGxo0bhxo1asDT0xPe3t6oVKkS4uLi9NtKq1atMGHCBADA888/r38cJTQ0VL+cLVu2YMCAAahatSo8PT3h6emJhg0bYvbs2QbrS01N1fcPW7du1S9Lo9EgKSkJQMG3siclJRnMm3P97du3129j/v7+aN68eZ7121rdunXxyiuvGAy4AcDf3x+DBw8GAGzbtk2K0IiIbI5XuonIruzfvx+ffvopJk6ciBo1auQ7nxACS5YsQenSpdG6dWvs27cPW7duhVarRd26ddG6dWs4OJh23vLWrVvYvXs3PDw8EB4ebpFydOvWDX///TfatWsHX19fhIWFAQB2796NmJgY3L9/Hx07dkTlypVx7tw5/Pzzz1i3bh127typj+HgwYNo2rQpHB0d0aVLF4SEhCA9PR3Hjh3D7NmzDW6F3759O2JiYvD48WO89NJLCA0Nxc6dO/HNN99gzZo12LVrF8qUKWMQ45MnT9C2bVvcuXMH3bp1w4MHD7Bo0SL06NED69evR9u2bfXzLlu2DD/88AOef/55tGrVClqtFrt27cLkyZOxdetWbNu2Dc7Oznny0Lt3b+zZswft27eHo6MjFi9ejKFDh8LZ2RmDBg3Sz6fVatGzZ08sXboUgYGB6N27N7y9vXHu3DksXrwY7du3159YuX37Nlq0aIGjR4+iWbNmGDJkCDIzM7Fy5Ur9s/y6Rw6kNmTIEDg6OuKbb76x6O3lBdHVQ86TTqVLlwYAnD592iYxFJcQAjExMdi9ezeaNWuGdu3awcHBAefPn8eqVavQt29fhISEID4+HsCzQXJcXJx+sJ3zbpXJkyfjzJkzaNKkCbp27Yr09HSsX78egwcPxsmTJ/Hll18CeHYiKiEhARMmTDBYNvBsgGqO33//HZ06dYKvry+6dOmCcuXK4caNG/j7778xf/58vPbaa2Yt19qMtSEiIjVjb0dEdiMrKwv9+vVD3bp1MWrUqALnTUtLw+3bt9GwYUMMHjw4z1WjevXqYdWqVahQoUKe7546dQoLFy5EdnY2rly5glWrViE9PR2zZs2Cl5eXRcpy5coVHDp0CKVKldJPe/LkCXr16gWtVos9e/agXr16+s+2b9+OVq1aYfjw4Vi9ejUAYP78+cjKysKKFSvyPGub8+q1VqtFfHw8Hjx4gPXr1yMmJkb/2ahRo/D555/j/fffxw8//JAnxkaNGiE1NVV/tevll19GdHQ0pk6dajDo7tu3L9555508V8UmTpyIhIQELF68GH369MmTh0uXLuHIkSPw9vYGAAwfPhwRERH48ssvDQbdM2bMwNKlS9GmTRusXr0a7u7u+s8ePnyIhw8f6v//5ptv4ujRo/j+++8xcOBA/fTExEQ0bNgQr732Gtq1awc3N7c88eSUnp6Or7/+usB5chsxYoTJjx8sWLAAy5Ytw4oVK1CyZEmbDLovXLiAjRs3oly5cqhVq5Z+emRkJIKDg7F27Vp07NgRvXr1QuPGjVG5cmWjd39I7ciRI9i9ezdiY2OxfPlyg8+ysrLw5MkTAEB8fDzOnTuHrVu3Ij4+3ujV+pkzZ+pPeuk8ffoUL7zwAr755hsMHz4cwcHBCA0Nxfjx4zFhwgT9v4vrxx9/hBACW7ZsQZ06dQw+M3YHijEHDx7EihUrTF6nr68vRowYUYQoDWVnZ+Onn36CRqNBdHS02cshIlIUQURkJ0aNGiVcXFzE4cOH9dPi4uIEALFz506DeXfu3CkACEdHR+Hp6Snmzp0rbt++LdLS0sSgQYMEABEZGWl0PatXrxYA9H+enp5i/vz5FilDy5YtBQCxcuXKPJ8tW7ZMABATJ040+t0XX3xRODg4iIyMDCGEEO+8844AIJKTkwtc57Zt2wQA0b59+zyf3b17V5QqVUq4ubmJrKws/fSQkBABQJw9ezbPd0JCQkSpUqUKXKfOrVu3BAARHx9vMF2Xh82bN+f5ju6zzMxM/bTq1asLR0dHcerUqQLXd+PGDeHo6Chat25t9PP//e9/AoBYvXp1obGnpaUZtANT/tLS0gpdrhBCXL58WZQsWVL07t07z/piYmLyjcXYZ6Z6/PixaNGihQAgfvrppzyf79+/X9SsWdOgPD4+PqJjx45i2bJlZq9XCCEGDx4sAIgtW7YUazk6hw4dEgAM8pefhIQEs9b922+/CQAiKSnJYDoA0bJlyyKva+7cuQKAmDt3rn7aiy++KACIkydPFik2Y8s19S8kJMTsdQkhxAcffCAAiAEDBhRrOURESsIr3URkF3bu3IkvvvgC48ePR0RERKHza7VaAM+uynz88cf6W0FLliyJ2bNn49ChQ9i9eze2b9+O5557zuC7HTt2hBACjx8/xrlz5/D999+jX79+2LNnD/73v/9ZpDzGXj6k+9mzkydPGr2KdvXqVWi1Wpw6dQoNGzZEjx498PXXX6Nr167o2bMn/u///g8tWrRAYGCgwfcOHDgAAEav8umeX92wYQNOnjxpcPUz523vOVWoUAE7d+40mCb+//PWSUlJOHLkCDIyMvR1ADy7am5MgwYNjC4feHal2cvLC/fu3cPx48dRqVIlVK5c2ehydP766y9kZ2cjKyvLaA51t0+fOHECHTt2LHBZoaGhEEIUOI+5Bg4cCGdnZ7PbU35X4fO7+qq722Hbtm0YNGgQ+vbtm2eeevXq4fDhw9i5cye2bNmCffv2Yfv27VizZg3WrFmDPn36YP78+dBoNDh37lyeZ5OLewW1KKpXr47atWvjl19+waVLlxAbG4tWrVqhbt26Jj82onP37l188cUXWLFiBf755588v4aQX9u1hF69emHZsmVo0qQJXn75ZbRp0wbNmzfP86hHQeLj4w1udbemWbNmITExEfXq1cM333xjk3USEckBB91EpHpPnz5FXFwcateujdGjR5v0HR8fH/2/O3funOfzTp06Yffu3di7d2+eQbeOi4sLqlSpgs8//xwPHjzAtGnT0L59e7Rv3968guTg7++fZ9rt27cBAD///HOB39UNCiIjI5GamopJkyZh4cKFmDt3LgCgUaNGmDx5Mp5//nkAQGZmZr7rBJ79pFPO+XRy5jAnJycngwE18Oznob799lsEBQWhc+fOKFeunP7N2BMmTEBWVpbRZeluK8+9fODZCRMA+tuuc59MMEaXwx07dmDHjh35zlfQz8xZ27x587Bu3TosWbKkSIOrnNLT0/UvCMvJ2KBbq9ViwIABWLhwIV555RXMmjUr3+VqNBo0bdoUTZs2BfDsZMrKlSvRr18//Pzzz+jWrRu6du2Kc+fO5Vl/SEiIzQbdTk5O2Lx5M8aPH4/ffvsN7777LgDAz88Pw4YNw4cffljgSxZ1Hj9+jFatWmH//v2oV6+e/ieynJyccO7cOcybNy/ftmsJ3bt3x4oVKzB16lTMmjUL06dPh0ajwfPPP48vv/zS7GfFrWHOnDl44403UKtWLaSkpMDT01PqkIiIbIaDbiJSvXv37umvUOZ+ZlgnKioKALB8+XLExsaiYsWKcHR0RHZ2ttFnbHXTcj4LXJC2bdtixowZSE1Ntcig29hzsroB6OrVqwu9CqvTvHlzrFu3Tv+TTqtXr8aMGTPQoUMHHDlyBOHh4frlXrt2zegydL+fbGwAbIrr169j+vTpqF27Nnbu3AkPDw+DZRsbHBaFbvB/+fLlQufVleHdd9/FF198Uaz1WuuZbt2dBzl/Iz6n5ORkaDQa1KlTBwcPHjQ6j6lX4bVaLfr374+ffvoJvXv3RlJSUpGuBGs0GsTGxuLtt9/GxIkTsXnzZnTt2hWtWrWy2l0ApipdujSmTZuG//3vfzhx4gQ2b96MadOmISEhAc7Ozvjggw8KXcbKlSuxf/9+vPrqq5gzZ47BZ4sWLcK8efOKFJMut7l/jhBAvs/sd+nSBV26dMHdu3exY8cO/UsJ27VrhxMnThTanmzxTPf333+PwYMHo0aNGti0aZP+xXtERPaCg24iUj1XV1e8+uqrRj/btm0bTp8+jc6dO8PPz0//dmI3Nzc0bdoUf/zxB44dO5bnavaxY8cAwOCngwqiu8XU2Bu4LSUyMhLAs1vpTR106+h+0qlVq1bw9fXFuHHjkJKSgsGDB+tfyJaamprnBXT379/H3r174e7ujqpVq5oV99mzZyGEQHR0tMGAG3j2u9DF5enpiRo1auDkyZM4ffp0gbeYN2rUCBqNJs/t7+bI72pyQeLj4wsdJEVFRRn9GbV79+7h119/RYUKFRATE2P0Z+6KIueAu2fPnpg/f75JV3+NkfNVTY1Gg+rVq6N69ero3LkzgoODsWrVKv2gW1dm3Z0TOf3zzz8AkOdFhED+bdfBwcHosoBnj68Axk8Q6U625MfLywvt2rVDu3btkJ2djR9//FH/awYFOXjwYJHaaVHvSNANuKtXr47NmzfDz8/P5O8SEamGhM+TExFJLr8XqQkhxMKFCwUA0aZNG/Ho0SP99OPHjwsPDw/h5eUlbt++rZ++d+9eodVq8yzn3LlzIigoSAAQ27dvN7r+nC9HKojuJWHGPHr0SAQHBws3NzexdevWPJ8/fvxY/PHHH/r///nnn+Lhw4d55hs6dKjBC6Cys7NFxYoVBQCRkpJiMO/o0aONvhQpJCQk3xcu5S7DlStXBADRpEkTkZ2drZ9+8eJF/Xpzv3iqoDzocprzpWTTp08XAER0dLR48OCBwfwPHz4Ut27d0v+/Z8+eAoCYMmWK0frctWuXuH//vtF1S8mSL1LLzs7W57F79+7iyZMnBc6/e/duMW/ePKPt6fr166JKlSoCgFi0aJFphcnFlBep6V5ClpCQUOjy0tLSjL607q+//hIARKtWrfTTvv3223y3UV0fMWrUKIPpqampwtnZ2Wg8ZcqUEaGhoUbj0r3AsXXr1gbbwp9//imcnJzyxLF161bx9OnTPMvp2LGjACBSU1ONrsdWvv/+e6HRaET16tXF1atXJY2FiEhKvNJNRJQP3UuKli5dijp16iAmJgYZGRn47bff8OjRI/z000/6K1PAs1uSz5w5o//5JAcHB/zzzz9Yt24dHj9+jPfeew/NmjUzWIfu2WZL/F6tq6srli5divbt26Nly5Zo3bo1atWqBY1Gg/Pnz+OPP/5A6dKlceLECQDPfl94y5YtaNGiBcLCwuDm5ob9+/dj06ZNCA8PR9euXQE8uzKXlJSEmJgYvPDCC+jevTtCQkKwc+dOpKamomLFivjss8/MjrtcuXLo1q0bfvvtNzRs2BBt2rTBtWvXsGbNGrRp00Z/NbE4Xn/9dWzduhWLFy9G5cqV0blzZ3h7e+PChQtITk7GDz/8oP/t7RkzZuDkyZMYNWoU5s+fj6ioKPj6+uLixYvYu3cvTp8+jX///TfPVXk1mThxIubNmwdPT09UqVIFn3zySZ55YmNj9c8MX7lyBXFxcRg2bBhatGiBatWqwcnJCefPn8eaNWtw7949dOjQId9b4o357LPP9G1Vd+fBZ599pn8BW2xsrMHvpRdlWzp48CBefPFFNG7cGDVq1EBAQAAuX76MFStWwMHBAW+//bZ+3ueffx4ajQZjxozB0aNH4ePjA19fXwwbNgydOnVCaGgopkyZgiNHjiAiIgInT57EmjVr0LVrVyxdujTPulu3bo3FixcjNjYW9erVg6OjIzp37ozatWujSZMmaNasGTZv3oyoqCi0aNEC58+fx8qVK9GpU6c8P2/21ltv4cqVK3juuecQGhoKjUaD7du3Y8+ePWjSpEm+75uwhc2bN+O1116DEAItWrTAzJkz88xTt25d2fzmPRGRVUk96iciklJBV7qFEOLJkydi6tSpombNmsLV1VV4e3uLtm3bGr2CtGTJEtG9e3cRHh4uSpQoIZydnUVgYKB48cUXxfr1640uv169enmumBekoCu8OpcuXRLDhw8XlStX1sdcvXp1MXDgQLFp0yb9fOvXrxf9+vUTVatWFV5eXsLT01PUqFFDjBkzRty4cSPPcg8dOiReeuklUaZMGeHs7CxCQkLE8OHDjc5blCvdQjz76bF3331XhIaGCldXV1G5cmXx8ccfi8ePH1vkSrcQQmi1WjFnzhzRpEkTUaJECeHh4SEqV64shgwZIi5cuGAw74MHD8SUKVNEgwYNRIkSJYS7u7sICwsTsbGx4qeffir0yq8UCrqafebMGQFAdOrUyaRl6XJY0F/OK66ZmZliwYIFom/fvqJmzZrC19dXODk5CT8/P9GmTRvxww8/GL0iWxBdHef3l/sKcteuXYWDg4NJP5918eJFMXr0aNGkSRNRtmxZ4eLiIoKDg8WLL75otC9ISkoStWrVEq6urnl+Nuvs2bOiW7duws/PT3h4eIhGjRqJRYsWiS1bthiN899//xU9evQQZcqUEQ4ODnlyefPmTdGvXz9RqlQp4e7uLpo0aSKSk5ON/mTYokWLRI8ePUTFihWFh4eH8PHxEXXq1BGTJ08Wd+/eNSXNVmPKT5HFxcVJGiMRka1ohJD4TSZERHYqMzMTJUuWxLvvvospU6ZIHQ6p2K5duxAVFYX+/fvjxx9/lDocqyhbtixatWqFxYsXSx0KERGRgaL9GCUREVnMjh074OzsjHfeeUfqUEjlVq5cCeC/l+2pzfHjx3Hjxg2T3jhORERka7zSTUREpEKPHj3CJ598gsOHD2PVqlUoV64cjh8/nu/vpxMREZF1cNBNRESkQunp6ShVqhR8fX3RqlUrTJ48ucCfSyMiIiLr4KCbiIiIiIiIyEr4TDcRERERERGRlXDQTURERERERGQlHHQTERERERERWQkH3URERERERERWwkE3ERERERERkZVw0E1ERERERERkJRx0ExEREREREVkJB91EREREREREVsJBNxEREREREZGVcNBNREREqpWUlASNRoNz585JHQoREdkpDrqJiIiM0A3WdH9OTk4IDAxEfHw8Ll++LHV4kjp27BjGjx/PgSwREZEJnKQOgIiISM4mTpyIsLAwPHr0CLt27UJSUhK2b9+OI0eOwM3NTerwJHHs2DFMmDABrVq1QmhoqNThEBERyRoH3URERAVo3749GjZsCAAYOHAgypQpg8mTJ2PVqlXo0aOHxNERERGR3PH2ciIioiJo3rw5AOCff/4xmH7ixAm89NJLKFWqFNzc3NCwYUOsWrXKYJ4nT55gwoQJqFy5Mtzc3FC6dGk899xzSElJMZhv8+bNaN68OUqUKAFfX1906dIFx48fN5hn/Pjx0Gg0OHPmDOLj4+Hr6wsfHx/0798fDx48MJh37ty5aN26NcqWLQtXV1fUqFEDM2fOzFO20NBQdOzYEdu3b0fjxo3h5uaG8PBw/PTTT/p5kpKS0L17dwDA888/r7/9PjU1Nd+cHTp0CPHx8QgPD4ebmxsCAgIwYMAA3Lp1y+wyPXz4EG+99RbKlCkDLy8vdO7cGZcvX4ZGo8H48ePzjUVn3bp1+hx7eXmhQ4cOOHr0aKHfIyIiKioOuomIiIpA9xxzyZIl9dOOHj2KJk2a4Pjx4xg9ejS+/PJLlChRArGxsVi+fLl+vvHjx2PChAl4/vnn8e233+LDDz9EcHAw9u/fr59n48aNiImJwfXr1zF+/Hi88847+PPPP9GsWTOjz1D36NEDd+/eRWJiInr06IGkpCRMmDDBYJ6ZM2ciJCQEY8aMwZdffomgoCC88cYbmD59ep7lnTlzBi+99BL+7//+D19++SVKliyJ+Ph4/YC0RYsWeOuttwAAY8aMwfz58zF//nxUr14935ylpKTg7Nmz6N+/P6ZNm4ZevXph0aJFeOGFFyCEMKtM8fHxmDZtGl544QVMnjwZ7u7u6NChQ74x5DR//nx06NABnp6emDx5MsaOHYtjx47hueee43PqRERkeYKIiIjymDt3rgAgNm7cKG7cuCEuXrwoli5dKvz8/ISrq6u4ePGift42bdqIWrVqiUePHumnabVa0bRpU1G5cmX9tDp16ogOHToUuN66deuKsmXLilu3bumn/f3338LBwUH069dPPy0hIUEAEAMGDDD4fteuXUXp0qUNpj148CDPemJiYkR4eLjBtJCQEAFAbNu2TT/t+vXrwtXVVbz77rv6aUuWLBEAxJYtWwosS0Hr/+WXX/Ksy9Qy7du3TwAQI0aMMJgvPj5eABAJCQn6abp6TEtLE0IIcffuXeHr6ysGDRpk8N2rV68KHx+fPNOJiIiKi1e6iYiIChAdHQ0/Pz8EBQXhpZdeQokSJbBq1SpUqFABAHD79m1s3rxZf3X25s2buHnzJm7duoWYmBicPn1a/7ZzX19fHD16FKdPnza6rn///RcHDx5EfHw8SpUqpZ9eu3Zt/N///R/Wrl2b5ztDhgwx+H/z5s1x69YtZGZm6qe5u7vr/52RkYGbN2+iZcuWOHv2LDIyMgy+X6NGDf0t9ADg5+eHqlWr4uzZs6amLI+c63/06BFu3ryJJk2aAIDBVX5Ty7R+/XoAwBtvvGEw35tvvlloLCkpKUhPT0fv3r31dXXz5k04OjoiMjISW7ZsKVrhiIiICsEXqRERERVg+vTpqFKlCjIyMvDjjz9i27ZtcHV11X9+5swZCCEwduxYjB071ugyrl+/jsDAQEycOBFdunRBlSpVEBERgXbt2qFv376oXbs2AOD8+fMAgKpVq+ZZRvXq1ZGcnIz79++jRIkS+unBwcEG8+lue79z5w68vb0BADt27EBCQgJ27tyZ59nojIwM+Pj45Ls83TLv3LmTf5IKcfv2bUyYMAGLFi3C9evX86w/t8LKdP78eTg4OCAsLMxgvkqVKhUai+6ER+vWrY1+rssZERGRpXDQTUREVIDGjRvr314eGxuL5557Di+//DJOnjwJT09PaLVaAMB7772HmJgYo8vQDQZbtGiBf/75BytXrsSGDRswZ84cfPXVV5g1axYGDhxoVnyOjo5Gp4v//6z0P//8gzZt2qBatWqYOnUqgoKC4OLigrVr1+Krr77Sx2/q8szRo0cP/Pnnnxg5ciTq1q2rz1u7du3yrN9aMejo1jd//nwEBATk+dzJiYdGRERkWdyzEBERmcjR0RGJiYn6F6GNHj0a4eHhAABnZ2dER0cXuoxSpUqhf//+6N+/P+7du4cWLVpg/PjxGDhwIEJCQgAAJ0+ezPO9EydOoEyZMgZXuU2xevVqZGVlYdWqVQZXkItzG7VGozF53jt37mDTpk2YMGECxo0bp5+e3y32pggJCYFWq0VaWhoqV66sn37mzJlCv1uxYkUAQNmyZU2qLyIiouLiM91ERERF0KpVKzRu3Bhff/01Hj16hLJly6JVq1b47rvv8O+//+aZ/8aNG/p/5/6JLE9PT1SqVAlZWVkAgHLlyqFu3bqYN28e0tPT9fMdOXIEGzZswAsvvFDkeHVXjXNeJc7IyMDcuXOLvCwd3cA/Z4xFWT8AfP3112avX3dHwYwZMwymT5s2zaTvent7Y9KkSXjy5Emez3PWFxERkSXwSjcREVERjRw5Et27d0dSUhKGDBmC6dOn47nnnkOtWrUwaNAghIeH49q1a9i5cycuXbqEv//+G8Czl5S1atUKDRo0QKlSpbB3714sXboUw4YN0y/7888/R/v27REVFYVXX30VDx8+xLRp0+Dj42PS70/n1rZtW7i4uKBTp04YPHgw7t27h++//x5ly5Y1epLAFHXr1oWjoyMmT56MjIwMuLq66n8HPDdvb2+0aNECU6ZMwZMnTxAYGIgNGzYgLS3NrHUDQIMGDdCtWzd8/fXXuHXrFpo0aYKtW7fi1KlTAAq+Eu/t7Y2ZM2eib9++qF+/Pnr16gU/Pz9cuHABv//+O5o1a4Zvv/3W7NiIiIhy46CbiIioiF588UVUrFgRX3zxBQYNGoQaNWpg7969mDBhApKSknDr1i2ULVsW9erVM7il+q233sKqVauwYcMGZGVlISQkBJ988glGjhypnyc6Ohrr169HQkICxo0bB2dnZ7Rs2RKTJ0/O8+IwU1StWhVLly7FRx99hPfeew8BAQF4/fXX4efnhwEDBphV/oCAAMyaNQuJiYl49dVXkZ2djS1bthgddAPAwoUL8eabb2L69OkQQqBt27ZYt24dypcvb9b6AeCnn35CQEAAfvnlFyxfvhzR0dH49ddfUbVqVbi5uRX43Zdffhnly5fHZ599hs8//xxZWVkIDAxE8+bN0b9/f7NjIiIiMkYjLPFWEiIiIiKJHTx4EPXq1cOCBQvQp08fqcMhIiICwGe6iYiISIEePnyYZ9rXX38NBwcHtGjRQoKIiIiIjOPt5URERKQ4U6ZMwb59+/D888/DyckJ69atw7p16/Daa68hKChI6vCIiIj0eHs5ERERKU5KSgomTJiAY8eO4d69ewgODkbfvn3x4Ycf8re2iYhIVjjoJiIiIiIiIrISPtNNREREREREZCUcdBMRERERERFZCR96sgKtVosrV67Ay8sLGo1G6nCIiIiIiIjshhACd+/eRfny5eHgIP11Zg66reDKlSt8cyoREREREZGELl68iAoVKkgdBgfd1uDl5QXgWSV7e3tLHA0REREREZH9yMzMRFBQkH5cJjUOuq1Ad0u5t7c3B91EREREREQSkMujvtLf4E5ERERERESkUhx0q5RczuqYQkmxAsqJVylx6mg0GsXFDCgvz7kpPX4dpbaf/KihLGqoEyWXQalx58ZyyI8ayqKGMuiopSxK7m9NwUG3SgkhVN1wpaSE3Go0GgghpA6jSJQWL6DMPBsj9/ZsKjXUhY4S+hlTKL1OlBq/GtoOyRvbmLwovT508Su1zzUFB90kKaV3EmR5bBO2pYYdnJrbjFLLptS486PE8qhh2wbUcQJK6fHnpvS2pZYT5jpKL4s9DLgBDrpJBpS6kcl1JyrXuEyhpLagtp220qmxLnRlUuo2rZY6UVo5lNpe1E5p7cgUbGtkKWrcPnLjoFvF5H52WM6xFUbunYPc4yuMktsG2ZbaT34osWxq3X6VVC4ltpuCyP14piBKjbswSm1jaq0PQJllU2LM5uKgmySl1E5brtTQeSmhTaghzzkp+YDWXiitfpSwHReFUsqjtHZSVEotn1Laj71QY30ouUxKjr0oOOi2A3LcSckxpqKS60BFLZ2XHHObk1ryTPKnpLam5jsP5Nrn56bm/CuNEtpLcShlm7AnSqoPJcVqCRx0q5ycd1Jyjo2kxbYhDaXtANU8wDNG7vUj9/jUzl62B6W0M3t5OZSSKKXtmEuJbU2JMZuLg247IaeORk6xWIJcyiOXOCxJjmWSY0yWYE87PiVSSv0oJU5z8cqetNTevpRKSduE2tsQ+yj54qDbDsixg5FjTOaQWznkFk9xyLksco6NSAo8yJOWveVf7uW1p6vcSimj3NuMpcm9vHKPzxo46LYjcmjgcojBGqQul9TrtyY5lU1OsViDks6Q28uttLnJuX7spT7kup3YU/6VQClxWooct4nc7KVOlPJzk/ZSHzocdNsJOTVsOcViCXIpj1zisCQ5lkmOMZF9kGvbk/uBndrZa/7lWm65xmVNcu2bgGf1YY8naeU88JZjTLbAQbedsdeGrmasU9uwpzzLvaxyj8/a5Fh+ezugBeRVD/aWf7mXV+7xWYuctgnAvm7zN0bO5ZZzbNbCQbcdkbqBy60ztiSpbzeUum6tSerc5qTmPOvI+ex4TvZQF8bYa7nlRi71IPft1NrkVn65xWNLct13yGVblYqcjqEA+bUPW1L1oHv8+PH620p0f9WqVSvwO0uWLEG1atXg5uaGWrVqYe3atTaK1jak3vjU3vnZOrf23HnZkr3lWa4HT4A8Y7Jn9njbZk5yaI/2mn+5lluucdmCnPYdcoiBjLPXbUTVg24AqFmzJv7991/93/bt2/Od988//0Tv3r3x6quv4sCBA4iNjUVsbCyOHDliw4jVyR46P1t3IvZ225RUbcje8qwj5/LKOTZbkPrkKT0j9QDD3k946MhlW5BLHFKTU5uUUyxSk7p96i5+2jPVD7qdnJwQEBCg/ytTpky+837zzTdo164dRo4cierVq+Pjjz9G/fr18e2339owYtuQouHbS+dny9zaS06lKqe9Drh15Da4k1MsxPoApBt4M/fPyK1vlls8UpF638ETUoakzkXOYympY5GS6gfdp0+fRvny5REeHo4+ffrgwoUL+c67c+dOREdHG0yLiYnBzp07rR2mTdlzg7c2Wx2A2esBF08W2S97PwGSm9QHtTnjsHe8y0l6Um8LUq9frpgXeZGiPthf/UfVg+7IyEgkJSVh/fr1mDlzJtLS0tC8eXPcvXvX6PxXr16Fv7+/wTR/f39cvXq1wPVkZWUhMzPT4E8JbLXx2dsZR1uV1Z5yCtj+ihIPFp6Rw+COO+388dZm+bBFXXBbyEvq2/xzx0HPSH2HGhmSsn1y23hGloPuR48eISsrq9jLad++Pbp3747atWsjJiYGa9euRXp6OhYvXmyBKP+TmJgIHx8f/V9QUJBFl28NttoA7LXzs+ZAxZ4Pdm19J4G95llOWBf5092qZ+tn5ey1Xy+ILfombgv5k3Lgze2hYLxDTV5sva9gXfxHFoPu1NRUvP3222jcuDE8PT1RokQJeHh4wMvLC40bN8aIESOQmppa7PX4+vqiSpUqOHPmjNHPAwICcO3aNYNp165dQ0BAQIHL/eCDD5CRkaH/u3jxYrFjtRVbbHzc4CyHO3fbHVyx3f5H6qvdrIuC2TI/HPjlz5p9E/NeOClyw3opmBSPXrAu8pezj+JjkLYn2aD7yZMn+PbbbxEeHo7WrVtj/vz58PX1xSuvvIJRo0Zh5MiRePnll+Hr64sFCxagdevWCAsLw7fffosnT56Ytc579+7hn3/+Qbly5Yx+HhUVhU2bNhlMS0lJQVRUVIHLdXV1hbe3t8GfEli7Y7L3zs9aAxV7zqmOXG4nJOti/RYN7wCRnjX7Jua9cLY8QcjtwXTsy+Uj58vMrD345rZhyEmqFVeqVAmPHz9GXFwcevTogfr16xc4/759+7BkyRJMmjQJX3zxBc6dO1foOt577z106tQJISEhuHLlChISEuDo6IjevXsDAPr164fAwEAkJiYCAIYPH46WLVviyy+/RIcOHbBo0SLs3bsXs2fPLnZ55cwag2N2sP+xVH6ZU0PWOriy95NFBZEiN6wL01h7sMEBhuksXRfs+4tGl39rtlVuD6azxYkQ1kfR5R54WzJ37LOMk2zQPWbMGMTHx8PV1dWk+Rs0aIAGDRpg4sSJmDt3rknfuXTpEnr37o1bt27Bz88Pzz33HHbt2gU/Pz8AwIULF+Dg8N/F/qZNm2LhwoX46KOPMGbMGFSuXBkrVqxARERE0QuoEDmfB7TUBsfO7z+W2tkwp/mzRtulvKS+xZwKZ63BBvuforNUXTD35rPWwJt1Yh5rX+BhfZjHWicJWR95aQSzYnGZmZnw8fFBRkaGYm41t9RGwo0tr+LmhDktmCXzw6vcBbNlW2S7N4818sbtwjzmDghyHwAz9+axVh/C7cE8lh4gcx9hOcXJpbEBu1zqRG7jMcmudJO8WOKKNztA43K/XdjU/PAMrmmKc5aWB7dFY407YwpbHxWNNa5asB7MU9Bzk8Zyyv7Isqxxdw63B/MZ2x54vCkP5u7bWQ9FI9mg28HBwazOMDs72wrREJD3BTDmbETc8Iwrys6Gg+2iM+dWTubZPOaeRCoKHtgWnyVvbabiyVkPupzmrB/2RdbF96rIS3GfJeZAzzpyn6Qq7CQg66HoJBt0jxs3Lk+FLl++HEePHkVMTAyqVq0KADhx4gQ2bNiAiIgIxMbGShApmYI7I9MYO/jigZdl5HdVo6ArSsyzefgCFnnLfWIk92f5MTYQ5DZiWfld/WaercNSJwm5PVieOVdXWQ/Wlfs4Kr99PevBPJINusePH2/w/9mzZ+P69es4cuSIfsCtc/z4cbRu3Rrly5e3YYT2y9SdFA8Yiie/A2Pm0nzGzsTmd3KDeS6+nDktTj65DVhefiebjNVVflc3WA/Ww9zajjknOuT8nKqaGBt455d77rttw1h+eXHIMiT7ne7cPv/8cwwbNizPgBsAqlevjmHDhmHKlCkSRGafcl+RNfZnbF4qGiFEnj+ynJw5zbljZ54tz5wr1LnrhHVjXcYOnHIeyLIeSM1yt21jfVZ+J8K5PVhPfo/f5fzjgFseuH8oHtm8SO3SpUtwdnbO93NnZ2dcunTJhhERrwySWrDtWldxXrDGurEtY3fYsA7I3pj7CAZZR2E5Z52QGsjmSndERARmzJiBy5cv5/ns0qVLmDFjBmrVqiVBZMSzWkRUmIJuZ87vihJJg1e0iYzf3cHtgYisRTZXur/66ivExMSgSpUq6Nq1KypVqgQAOH36NFasWAEhBBYsWCBxlEREVBBjt2bmvm2Qd88QERGRPZHNoPu5557D7t27MXbsWCxfvhwPHz4EALi7uyMmJgYTJkzglW4iIhnLbxCd3zN7RERERPZAI2R45KPVanHjxg0AgJ+fHxwcZHMXvEkyMzPh4+ODjIwMeHt7Sx0OERERERGR3ZDbeEw2V7pzcnBwgL+/v9RhEBERERERERWLrAbdjx49wm+//Yb9+/cjIyMDWq3W4HONRoMffvhBouiIiIiIiIiIikY2g+7z58/j+eefx7lz5+Dr64uMjAyUKlUK6enpyM7ORpkyZeDp6Sl1mEREREREREQmk83D0iNHjkRGRgZ27dqFU6dOQQiBX3/9Fffu3cPkyZPh7u6O5ORkqcMkIiIiIiIiMplsBt2bN2/GG2+8gcaNG+tfnCaEgKurK0aOHIk2bdpgxIgR0gZJREREREREVASyGXQ/ePAAoaGhAABvb29oNBpkZGToP4+KisL27dslio6IiIiIiIio6GQz6A4ODsalS5cAAE5OTggMDMSuXbv0nx87dgxubm5ShUdERERERERUZLJ5kVrr1q2xcuVKJCQkAADi4+ORmJiIO3fuQKvVYv78+ejXr5/EURIRERERERGZTjaD7tGjR+Ovv/5CVlYWXF1dMWbMGFy5cgVLly6Fo6MjXn75ZUydOlXqMImIiIiIiIhMphFCCKmDUJvMzEz4+PggIyMD3t7eUodDRERERERkN+Q2HpPFM90PHjxAgwYNMGvWLKlDISIiIiIiIrIYWQy6PTw8kJaWBo1GI3UoRERERERERBYji0E3ALRr1w7JyclSh0FERERERERkMbIZdI8dOxanTp1C3759sX37dly+fBm3b9/O80dERERERESkFLJ5kZqDw3/j/4JuM8/OzrZFOMUitwf3iYiIiIiI7IXcxmOy+cmwcePGWfyZ7sTERCxbtgwnTpyAu7s7mjZtismTJ6Nq1ar5ficpKQn9+/c3mObq6opHjx5ZNDYiIiIiIiJSP9kMusePH2/xZW7duhVDhw5Fo0aN8PTpU4wZMwZt27bFsWPHUKJEiXy/5+3tjZMnT+r/zxe8ERERERERkTlkM+i2hvXr1xv8PykpCWXLlsW+ffvQokWLfL+n0WgQEBBg7fCIiIiIiIhI5WTzIjVbyMjIAACUKlWqwPnu3buHkJAQBAUFoUuXLjh69GiB82dlZSEzM9Pgj4iIiIiIiEiyQXeNGjXw008/4fHjxyZ/JysrC3PnzkWNGjWKvD6tVosRI0agWbNmiIiIyHe+qlWr4scff8TKlSuxYMECaLVaNG3aFJcuXcr3O4mJifDx8dH/BQUFFTk+IiIiIiIiUh/J3l4+ZcoUTJkyBdnZ2ejcuTOio6NRv359hIWFwcPDAwBw//59pKWlYe/evdi4cSNWr14NFxcXjBw5EqNGjSrS+l5//XWsW7cO27dvR4UKFUz+3pMnT1C9enX07t0bH3/8sdF5srKykJWVpf9/ZmYmgoKCjL4tT6PRQCYvjCciIiIiIlIdub29XNKfDLt79y5++OEHJCUl4dChQ/oXljk5PXvU/OnTpwAAIQQiIiIwYMAADBgwoMiJGzZsGFauXIlt27YhLCysyHF2794dTk5O+OWXX0ya31gl5/cyNg7AiYjkTdd/s78mIiJSBg6683Hu3Dn8+eefOHHiBG7dugUAKF26NKpVq4aoqCizBstCCLz55ptYvnw5UlNTUbly5SIvIzs7GzVr1sQLL7yAqVOnmvSd3JWc3wEbB+JERPKWs//O3Zfn7sPZdxMREcmD3Abdsnl7eWhoKEJDQy26zKFDh2LhwoVYuXIlvLy8cPXqVQCAj48P3N3dAQD9+vVDYGAgEhMTAQATJ05EkyZNUKlSJaSnp+Pzzz/H+fPnMXDgQLNiKOgKibFpGo2Gt6ATEclA7v5bN/DOOdjOOQBn301ERETGyGbQbQ0zZ84EALRq1cpg+ty5cxEfHw8AuHDhAhwc/nuf3J07dzBo0CBcvXoVJUuWRIMGDfDnn3+a9fI2Hx8fAEW7+pHzAI4Hb+bhraCkBryKKq38+pH86iHngJx1ZR3GTnbknp77M7I87mPlLb/thIikJZvby9XEErczcKdWdPndrg8wj6Qs+d3GzHZsG8XJNwfd1mHsNv+cuK1YX0H7WGNYB9Zlan2wHqTBkx/S4+3lZBJeNSmagjq33LeDGpuHTFPQwS5ZhrFBg7HbmnN+RsVj6byy37YsY7f554f7TusoyskM3bysA+soygUGbgvSMHbinHVge7o7juWCg24Zy++MPhkq7Gwid0LmM2UwwitLxWPqgI/vgLAuS+Uw9wkS1k3xmJNHDrwtq6h1wPccWI85dcH+yLb48mR5kOP4yaHwWWyjUqVK+f4Otj0r6AqXvcu9IzHngICMy3mwlPsvN+bTfLnbb1Hase57OZdDRWeNQUHOemT/bb7iDBSYf8uwVB1Q8ZlbF8b6I9aJZeTMZ0EnN3Lv23Pu71kXlqfLaUZGhsSRGJLNle6zZ89i79692LdvH06dOgVvb29Ur14d4eHhUocmOZ61z6u4Z22Z0/wV98pSUb9rryyVK+605YtX/Mxnie3D2MCbdWAaSz2Pyn2tZVliewDYJ1mCucdK+S2LdWG+/O4YzMzMlCCa/MnmRWoODg5Gn4GoWbMmxowZg169ekkZXpFY68F9HjQ8Y8k8MKeGLJEPvjykcNZod9xpF50tc8a+xjTWzBPrwDTW6p90mP+isVa75fZgPkvnjvvv4smvPuT2IjXZ3F4OAM7Ozhg/fjxSU1OxYcMGfPrpp3BxcUGfPn0wZMgQqcOTHDdI7iSUoKi3SNsraw4qSH64TRTO2v0766Bw1qqD3Lc4k2msmStuD8VjyfzxjjXzKWlcIKsr3e+//z4SExPzfPbVV1/hvffew48//oi4uDgJoisaa55ZUVLjsgZrnA2095zq8OqrbVj7Sh7zbRopcsX6yZ+t+mH29/mzZR0w/4VjfciTtfLFvqnoCssZr3Tnw93dHRUqVDD62dtvv42ePXti2rRpNo5Kfux5Y7TWWUCefbfNLZ30H2teyWO+CydVjlg/BbPF/s2e96GmsFUdcDsomK0HYKwP6fFY1DxK6tNlM+iuVq0afv/993w/b968OY4dO2bDiOTN3jZKW912aG95BaybWyV1hrZgq/bFt9MWjm1TPmx9pY2DvrykuvOD8rL1gJt9oemsvZ3wVxfUTTaD7sGDB2P9+vV488038fDhwzyf79ixAx4eHhJEJj/22kFau9z2mFdb7Nx5gPuMrQ6k+OxkwaTOCbcH+WA9PCNFHuxxf1sUUuSH20PBbHViivtw0yjxsQjZ/GTYa6+9huPHj+Obb77BokWL0L59e0RERMDFxQUbN27EunXrEB8fL3WYsqLEBmcOW3Y6ugNie8qrPZRValLkmoO7vNjm5Ueq/pbbhyGptgl72d+aSupHX1gfeUm132Cd5E+pfbdsXqSm88cff+Crr77Cxo0bce/ePf302NhYJCUlyeJB+MLY6sF9e9kQbV1OezkwlyKvas+pMVK3J3vNe25S10NOcopFalK2T9aD9Dlg/2RI6nxI3R7kRg75kLpNyJGpOZHbi9RkN+jWyc7Oxrlz53D37l0EBwejVKlSUodkMg66LUeqDk/tuZUir3LYedmaHMqs9rZsCjnUQ25yjMnW5JADOcQgFTmUXQ4xyIVcciGXOKQmlzzIJQ65KEo+5Dbols3t5bk5OjqiYsWKUocha/ZyKzTPwFsHb5WyDanLai/9RGHkVn573R5yk7rs9n6buVzyb+/bgY4ccmDv20ROrA95UfoJCNm8SI0oNyk7GaVu0KZgXm2DO0l5kHM92PPLcuQ0yLLHg1o5lVcu7UBKcqoPwD63iZzkWHY5xmRLSh9wAxx0q4KaN0SpNy615pZ5tQ2p85yTveTcGDnVQ25yjs1a5NoW5RqXpcn14NVe8p8fudUHYN91Iqf6kFMsUpBrn1VUHHQrnNIbYH7kcBVE6vVbgxx2oGrMa25yyHNO9pBzpZNbm7EWuR48yS0ea5Nbee39rg85klsbIfsk132GOTjoVgG13QakprLIkRw6LrW1WWPkkGd7J4eTd6ZQQoyWJOfyqr1fkvM2Ide4rEkJAwq1bxO5yXUbsYfjpvzIsT7MwUE3yZJcNjB77uRIfdiW5U3t9SP38sllv2Pv5N5OLE3O7U7OsREpDQfdKsHBIRVGbmdv1dpm5ZZnHTnGRP+xl/pRQjnV2C8ByiiXEtqHpSihPuyN3OtErcdN+VFbWTnoVhmlN1C5xi/XuIiKyl7aslxPftgrpdSHEmIsDqWUz176KSXUh70N9JRQJ6wPZeKgW0XU0jDlVg65xWMOuR7wqm1nLveyyLEN0H/Utj0omdrqQUnlsYd+Sq77ZHumlG3EXl46qMbycdBNsiH3DUzu8ZE8KOFASu1tWe3lUxql1YcStmFzqLVcSqO07UFHqXEXhVK2EXsZeCulPkzFQbfKKP1KiVw3MLnGZQolnFFXcptVGrm3BUuxl3IqBetDOkrsX5V+LFMYpW0PSou3qJRwnJSb0uIlOxl0T58+HaGhoXBzc0NkZCT27NlT4PxLlixBtWrV4Obmhlq1amHt2rU2ipTkTmkHAUqIVy07DiXttNV+QKtkrBv5UFM9KKVvInlT0zaho+QyqXV/ocYyAXYw6P7111/xzjvvICEhAfv370edOnUQExOD69evG53/zz//RO/evfHqq6/iwIEDiI2NRWxsLI4cOWLjyItHaQ1WCfEq9aBFqXEriRLarzFKjbsgSjr5YQ+UWh9KjNkYpW/jSo8/N6VuD4A6b2lWwu+k2ys11olGqLFUOURGRqJRo0b49ttvAQBarRZBQUF48803MXr06Dzz9+zZE/fv38eaNWv005o0aYK6deti1qxZJq0zMzMTPj4+yMjIgLe3t2UKUkRK69iVEq+SOmjGahtKj12JcedHyXWRk1rKASi7jamhHpScf0D58eemhvKooQw6aiiLGvqpnCxZHjmMx3JS9ZXux48fY9++fYiOjtZPc3BwQHR0NHbu3Gn0Ozt37jSYHwBiYmLynR8AsrKykJmZafBHplPSWVOldWpKiVcpceZHqfGr8dY0pdZFTmoogxqwHuRBLX2UWsqhlv2GGsoAqLOfUmOZAJUPum/evIns7Gz4+/sbTPf398fVq1eNfufq1atFmh8AEhMT4ePjo/8LCgoqfvDFpKQGK4RQXLxKoJQ4dZQWr45S49ZRevw5sSzyo/RyMH5pKe34oCBqK4vSsT7kSU1lyU3Vg25b+eCDD5CRkaH/u3jxotQhERERERERkQw4SR2ANZUpUwaOjo64du2awfRr164hICDA6HcCAgKKND8AuLq6wtXVtfgBExERERERkaqo+kq3i4sLGjRogE2bNumnabVabNq0CVFRUUa/ExUVZTA/AKSkpOQ7PxEREREREVF+VH2lGwDeeecdxMXFoWHDhmjcuDG+/vpr3L9/H/379wcA9OvXD4GBgUhMTAQADB8+HC1btsSXX36JDh06YNGiRdi7dy9mz55t8jp1zyPwhWpERERERES2pRuHyeU5cdUPunv27IkbN25g3LhxuHr1KurWrYv169frX5Z24cIFODj8d8G/adOmWLhwIT766COMGTMGlStXxooVKxAREWHyOm/dugUAsnihGhERERERkT26desWfHx8pA5D/b/TLYX09HSULFkSFy5cKFYlN2rUCH/99Vex47HEcuSyjMzMTAQFBeHixYvF+s09uZRHLrFYKq+WiMVSy5BLLGrMrVzqR079gaWWI5dlMLfWW4accqum+mFfa73lyKnNWmo5comFubXeMjIyMhAcHIw7d+7A19e3WMuyBNVf6ZaC7sq5j49PsTYgR0dHi/yYuyWWI5dl6Hh7e0ueW7XVD1D8vFoqFubWerHIZRmWXI4c+gNLLUcuy9Bhbi2/DB055FZt9QOwr7XmcuTQZi21HDnFAjC31liGTs47mqUkjyjIqKFDh8pmOXJZhqXIqTxyisUS5FQeOcViCXIpj5zqxxLkVB65LMNSmFvrkVN55BSLJcilPHKqH0uQU3nkFIslyKk8clmG3PD2civIzMyEj48PMjIyLHaWhp5hbq2DebUe5tZ6mFvrYW6th7m1DubVephb62FurUduueWVbitwdXVFQkICf7vbCphb62BerYe5tR7m1nqYW+thbq2DebUe5tZ6mFvrkVtueaWbiIiIiIiIyEp4pZuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aDbwqZPn47Q0FC4ubkhMjISe/bskTokSW3btg2dOnVC+fLlodFosGLFCoPPhRAYN24cypUrB3d3d0RHR+P06dMG89y+fRt9+vSBt7c3fH198eqrr+LevXsG8xw6dAjNmzeHm5sbgoKCMGXKlDyxLFmyBNWqVYObmxtq1aqFtWvXWry8tpSYmIhGjRrBy8sLZcuWRWxsLE6ePGkwz6NHjzB06FCULl0anp6e6NatG65du2Ywz4ULF9ChQwd4eHigbNmyGDlyJJ4+fWowT2pqKurXrw9XV1dUqlQJSUlJeeJRS9ufOXMmateuDW9vb3h7eyMqKgrr1q3Tf86cWs5nn30GjUaDESNG6Kcxv+YZP348NBqNwV+1atX0nzOvxXP58mW88sorKF26NNzd3VGrVi3s3btX/zn3ZeYJDQ3N0241Go3+N3rZbs2TnZ2NsWPHIiwsDO7u7qhYsSI+/vhj5Hx3Mtus+e7evYsRI0YgJCQE7u7uaNq0Kf766y/958ytaZQ0RjAllkIJsphFixYJFxcX8eOPP4qjR4+KQYMGCV9fX3Ht2jWpQ5PM2rVrxYcffiiWLVsmAIjly5cbfP7ZZ58JHx8fsWLFCvH333+Lzp07i7CwMPHw4UP9PO3atRN16tQRu3btEn/88YeoVKmS6N27t/7zjIwM4e/vL/r06SOOHDkifvnlF+Hu7i6+++47/Tw7duwQjo6OYsqUKeLYsWPio48+Es7OzuLw4cNWz4G1xMTEiLlz54ojR46IgwcPihdeeEEEBweLe/fu6ecZMmSICAoKEps2bRJ79+4VTZo0EU2bNtV//vTpUxERESGio6PFgQMHxNq1a0WZMmXEBx98oJ/n7NmzwsPDQ7zzzjvi2LFjYtq0acLR0VGsX79eP4+a2v6qVavE77//Lk6dOiVOnjwpxowZI5ydncWRI0eEEMyppezZs0eEhoaK2rVri+HDh+unM7/mSUhIEDVr1hT//vuv/u/GjRv6z5lX892+fVuEhISI+Ph4sXv3bnH27FmRnJwszpw5o5+H+zLzXL9+3aDNpqSkCABiy5YtQgi2W3N9+umnonTp0mLNmjUiLS1NLFmyRHh6eopvvvlGPw/brPl69OghatSoIbZu3SpOnz4tEhIShLe3t7h06ZIQgrk1lZLGCKbEUhgOui2ocePGYujQofr/Z2dni/Lly4vExEQJo5KP3BuUVqsVAQEB4vPPP9dPS09PF66uruKXX34RQghx7NgxAUD89ddf+nnWrVsnNBqNuHz5shBCiBkzZoiSJUuKrKws/Tzvv/++qFq1qv7/PXr0EB06dDCIJzIyUgwePNiiZZTS9evXBQCxdetWIcSzXDo7O4slS5bo5zl+/LgAIHbu3CmEeNbhOTg4iKtXr+rnmTlzpvD29tbnc9SoUaJmzZoG6+rZs6eIiYnR/1/tbb9kyZJizpw5zKmF3L17V1SuXFmkpKSIli1b6gfdzK/5EhISRJ06dYx+xrwWz/vvvy+ee+65fD/nvsxyhg8fLipWrCi0Wi3bbTF06NBBDBgwwGDaiy++KPr06SOEYJstjgcPHghHR0exZs0ag+n169cXH374IXNrJjmPEUyJxRS8vdxCHj9+jH379iE6Olo/zcHBAdHR0di5c6eEkclXWloarl69apAzHx8fREZG6nO2c+dO+Pr6omHDhvp5oqOj4eDggN27d+vnadGiBVxcXPTzxMTE4OTJk7hz545+npzr0c2jprrJyMgAAJQqVQoAsG/fPjx58sSg3NWqVUNwcLBBfmvVqgV/f3/9PDExMcjMzMTRo0f18xSUOzW3/ezsbCxatAj3799HVFQUc2ohQ4cORYcOHfLkgPktntOnT6N8+fIIDw9Hnz59cOHCBQDMa3GtWrUKDRs2RPfu3VG2bFnUq1cP33//vf5z7sss4/Hjx1iwYAEGDBgAjUbDdlsMTZs2xaZNm3Dq1CkAwN9//43t27ejffv2ANhmi+Pp06fIzs6Gm5ubwXR3d3ds376dubUQOeXRlFhMwUG3hdy8eRPZ2dkGHT8A+Pv74+rVqxJFJW+6vBSUs6tXr6Js2bIGnzs5OaFUqVIG8xhbRs515DePWupGq9VixIgRaNasGSIiIgA8K7OLiwt8fX0N5s2dX3Nzl5mZiYcPH6qy7R8+fBienp5wdXXFkCFDsHz5ctSoUYM5tYBFixZh//79SExMzPMZ82u+yMhIJCUlYf369Zg5cybS0tLQvHlz3L17l3ktprNnz2LmzJmoXLkykpOT8frrr+Ott97CvHnzAHBfZikrVqxAeno64uPjAbA/KI7Ro0ejV69eqFatGpydnVGvXj2MGDECffr0AcA2WxxeXl6IiorCxx9/jCtXriA7OxsLFizAzp078e+//zK3FiKnPJoSiymcTJ6TiGRr6NChOHLkCLZv3y51KKpQtWpVHDx4EBkZGVi6dCni4uKwdetWqcNSvIsXL2L48OFISUnJc5WAikd3BQsAateujcjISISEhGDx4sVwd3eXMDLl02q1aNiwISZNmgQAqFevHo4cOYJZs2YhLi5O4ujU44cffkD79u1Rvnx5qUNRvMWLF+Pnn3/GwoULUbNmTRw8eBAjRoxA+fLl2WYtYP78+RgwYAACAwPh6OiI+vXro3fv3ti3b5/UoZGM8Uq3hZQpUwaOjo553qp57do1BAQESBSVvOnyUlDOAgICcP36dYPPnz59itu3bxvMY2wZOdeR3zxqqJthw4ZhzZo12LJlCypUqKCfHhAQgMePHyM9Pd1g/tz5NTd33t7ecHd3V2Xbd3FxQaVKldCgQQMkJiaiTp06+Oabb5jTYtq3bx+uX7+O+vXrw8nJCU5OTti6dSv+97//wcnJCf7+/syvhfj6+qJKlSo4c+YM220xlStXDjVq1DCYVr16df3t+9yXFd/58+exceNGDBw4UD+N7dZ8I0eO1F/trlWrFvr27Yu3335bf4cR22zxVKxYEVu3bsW9e/dw8eJF7NmzB0+ePEF4eDhzayFyyqMpsZiCg24LcXFxQYMGDbBp0yb9NK1Wi02bNiEqKkrCyOQrLCwMAQEBBjnLzMzE7t279TmLiopCenq6wdnDzZs3Q6vVIjIyUj/Ptm3b8OTJE/08KSkpqFq1KkqWLKmfJ+d6dPMouW6EEBg2bBiWL1+OzZs3IywszODzBg0awNnZ2aDcJ0+exIULFwzye/jwYYNOKyUlBd7e3vqDzMJyZw9tX6vVIisrizktpjZt2uDw4cM4ePCg/q9hw4bo06eP/t/Mr2Xcu3cP//zzD8qVK8d2W0zNmjXL83OMp06dQkhICADuyyxh7ty5KFu2LDp06KCfxnZrvgcPHsDBwfAQ39HREVqtFgDbrKWUKFEC5cqVw507d5CcnIwuXbowtxYipzyaEotJTH7lGhVq0aJFwtXVVSQlJYljx46J1157Tfj6+hq8VdPe3L17Vxw4cEAcOHBAABBTp04VBw4cEOfPnxdCPHsFv6+vr1i5cqU4dOiQ6NKli9GfA6hXr57YvXu32L59u6hcubLBzwGkp6cLf39/0bdvX3HkyBGxaNEi4eHhkefnAJycnMQXX3whjh8/LhISEhT1swrGvP7668LHx0ekpqYa/OTKgwcP9PMMGTJEBAcHi82bN4u9e/eKqKgoERUVpf9c93Mrbdu2FQcPHhTr168Xfn5+Rn9uZeTIkeL48eNi+vTpRn9uRS1tf/To0WLr1q0iLS1NHDp0SIwePVpoNBqxYcMGIQRzamk5314uBPNrrnfffVekpqaKtLQ0sWPHDhEdHS3KlCkjrl+/LoRgXotjz549wsnJSXz66afi9OnT4ueffxYeHh5iwYIF+nm4LzNfdna2CA4OFu+//36ez9huzRMXFycCAwP1Pxm2bNkyUaZMGTFq1Cj9PGyz5lu/fr1Yt26dOHv2rNiwYYOoU6eOiIyMFI8fPxZCMLemUtIYwZRYCsNBt4VNmzZNBAcHCxcXF9G4cWOxa9cuqUOS1JYtWwSAPH9xcXFCiGev4R87dqzw9/cXrq6uok2bNuLkyZMGy7h165bo3bu38PT0FN7e3qJ///7i7t27BvP8/fff4rnnnhOurq4iMDBQfPbZZ3liWbx4sahSpYpwcXERNWvWFL///rvVym0LxvIKQMydO1c/z8OHD8Ubb7whSpYsKTw8PETXrl3Fv//+a7Ccc+fOifbt2wt3d3dRpkwZ8e6774onT54YzLNlyxZRt25d4eLiIsLDww3WoaOWtj9gwAAREhIiXFxchJ+fn2jTpo1+wC0Ec2ppuQfdzK95evbsKcqVKydcXFxEYGCg6Nmzp8HvSDOvxbN69WoREREhXF1dRbVq1cTs2bMNPue+zHzJyckCQJ58CcF2a67MzEwxfPhwERwcLNzc3ER4eLj48MMPDX42iW3WfL/++qsIDw8XLi4uIiAgQAwdOlSkp6frP2duTaOkMYIpsRRGI4QQpl8XJyIiIiIiIiJT8ZluIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIgU69y5c9BoNEhKStJPGz9+PDQajXRBFZHS4qWi0Wg0GD9+vNRhEBGRhDjoJiIi2UpKSoJGozH6N3r0aJOXM2nSJKxYscJ6gZJNsT6JiEhJnKQOgIiIqDATJ05EWFiYwbSIiAiEhITg4cOHcHZ2LvD7kyZNwksvvYTY2FgrRkm2wvokIiIl4aCbiIhkr3379mjYsKHRz9zc3GwczTOPHj2Ci4sLHByku2nswYMH8PDwkGz9REREVDjeXk5ERIpl7Jnu3DQaDe7fv4958+bpb02Pj4/Xf3758mUMGDAA/v7+cHV1Rc2aNfHjjz8aLCM1NRUajQaLFi3CRx99hMDAQHh4eCAzMxMAsHv3brRr1w4+Pj7w8PBAy5YtsWPHjjyxbN++HY0aNYKbmxsqVqyI7777zuSytmrVChEREdi3bx9atGgBDw8PjBkzBgCQlZWFhIQEVKpUCa6urggKCsKoUaOQlZVlsIyUlBQ899xz8PX1haenJ6pWrapfhs7169fx6quvwt/fH25ubqhTpw7mzZtnMI8u71988QVmz56NihUrwtXVFY0aNcJff/1lMO+hQ4cQHx+P8PBwuLm5ISAgAAMGDMCtW7cM5tM9237mzBnEx8fD19cXPj4+6N+/Px48eKCfr7D6zO3x48cYN24cGjRoAB8fH5QoUQLNmzfHli1bzC4TACxZsgQ1atSAm5sbIiIisHz5csTHxyM0NDTfWHRMaXNERKQevNJNRESyl5GRgZs3bxpMK1OmjEnfnT9/PgYOHIjGjRvjtddeAwBUrFgRAHDt2jU0adIEGo0Gw4YNg5+fH9atW4dXX30VmZmZGDFihMGyPv74Y7i4uOC9995DVlYWXFxcsHnzZrRv3x4NGjRAQkICHBwcMHfuXLRu3Rp//PEHGjduDAA4fPgw2rZtCz8/P4wfPx5Pnz5FQkIC/P39Tc7DrVu30L59e/Tq1QuvvPIK/P39odVq0blzZ2zfvh2vvfYaqlevjsOHD+Orr77CqVOn9M8+Hz16FB07dkTt2rUxceJEuLq64syZMwYnBx4+fIhWrVrhzJkzGDZsGMLCwrBkyRLEx8cjPT0dw4cPN4hn4cKFuHv3LgYPHgyNRoMpU6bgxRdfxNmzZ/W3/KekpODs2bPo378/AgICcPToUcyePRtHjx7Frl278rxErkePHggLC0NiYiL279+POXPmoGzZspg8eXKh9WlMZmYm5syZg969e2PQoEG4e/cufvjhB8TExGDPnj2oW7dukcv0+++/o2fPnqhVqxYSExNx584dvPrqqwgMDCy0Dova5oiISAUEERGRTM2dO1cAMPonhBBpaWkCgJg7d67+OwkJCSL37q1EiRIiLi4uz/JfffVVUa5cOXHz5k2D6b169RI+Pj7iwYMHQgghtmzZIgCI8PBw/TQhhNBqtaJy5coiJiZGaLVa/fQHDx6IsLAw8X//93/6abGxscLNzU2cP39eP+3YsWPC0dExT7zGtGzZUgAQs2bNMpg+f/584eDgIP744w+D6bNmzRIAxI4dO4QQQnz11VcCgLhx40a+6/j6668FALFgwQL9tMePH4uoqCjh6ekpMjMzhRD/5b106dLi9u3b+nlXrlwpAIjVq1cb5CK3X375RQAQ27Zt00/T1duAAQMM5u3atasoXbq0wbT86tOYp0+fiqysLINpd+7cEf7+/gbrKkqZatWqJSpUqCDu3r2rn5aamioAiJCQEIN1ARAJCQn6/5va5oiISD14ezkREcne9OnTkZKSYvBXXEII/Pbbb+jUqROEELh586b+LyYmBhkZGdi/f7/Bd+Li4uDu7q7//8GDB3H69Gm8/PLLuHXrlv779+/fR5s2bbBt2zZotVpkZ2cjOTkZsbGxCA4O1n+/evXqiImJMTlmV1dX9O/f32DakiVLUL16dVSrVs2gDK1btwYA/W3Uvr6+AICVK1dCq9UaXf7atWsREBCA3r1766c5Ozvjrbfewr1797B161aD+Xv27ImSJUvq/9+8eXMAwNmzZ/XTcubr0aNHuHnzJpo0aQIAefILAEOGDDH4f/PmzXHr1i39rfxF5ejoCBcXFwCAVqvF7du38fTpUzRs2NDo+gsr05UrV3D48GH069cPnp6e+vlatmyJWrVqFRiLOW2OiIiUj7eXExGR7DVu3DjfF6mZ68aNG0hPT8fs2bMxe/Zso/Ncv37d4P+536B++vRpAM8G4/nJyMhAVlYWHj58iMqVK+f5vGrVqli7dq1JMQcGBuoHkDljOH78OPz8/AosQ8+ePTFnzhwMHDgQo0ePRps2bfDiiy/ipZde0r8M7vz586hcuXKel8NVr15d/3lOOU8gANAPVu/cuaOfdvv2bUyYMAGLFi3Kk8+MjIw88Ra0TG9vb6NlLMy8efPw5Zdf4sSJE3jy5Il+eu76LGz9wH85qFSpUp7vVqpUqcBBszltjoiIlI+DbiIisku6q72vvPJKvoPm2rVrG/w/51XbnMv4/PPP8zwbrOPp6ZnnhWbmyr1+XQy1atXC1KlTjX4nKChI/91t27Zhy5Yt+P3337F+/Xr8+uuvaN26NTZs2ABHR8cix5Pfd4QQ+n/36NEDf/75J0aOHIm6devC09MTWq0W7dq1M3rF3ZRlFsWCBQsQHx+P2NhYjBw5EmXLloWjoyMSExPxzz//WH39OZnT5oiISPk46CYiItXL/bIuAPDz84OXlxeys7MRHR1t1nJ1L/Dy9vYucBl+fn5wd3fXXxnP6eTJk2atO2cMf//9N9q0aWO0nDk5ODigTZs2aNOmDaZOnYpJkybhww8/xJYtWxAdHY2QkBAcOnQIWq3W4Gr3iRMnAAAhISFFiu3OnTvYtGkTJkyYgHHjxumnG8tDURRWzpyWLl2K8PBwLFu2zOB7CQkJZq1bl4MzZ87k+czYtJws0eaIiEh5+Ew3ERGpXokSJZCenm4wzdHREd26dcNvv/2GI0eO5PnOjRs3Cl1ugwYNULFiRXzxxRe4d+9evstwdHRETEwMVqxYgQsXLug/P378OJKTk4tYGkM9evTA5cuX8f333+f57OHDh7h//z6AZ7d556a7Oq+7Ev/CCy/g6tWr+PXXX/XzPH36FNOmTYOnpydatmxZpNh0V41zXyX++uuvi7Sc3IzVZ1Fi2L17N3bu3GnWusuXL4+IiAj89NNPBnW+detWHD58uNBYitvmiIhIeXilm4iIVK9BgwbYuHEjpk6divLlyyMsLAyRkZH47LPPsGXLFkRGRmLQoEGoUaMGbt++jf3792Pjxo1GB6o5OTg4YM6cOWjfvj1q1qyJ/v37IzAwEJcvX8aWLVvg7e2N1atXAwAmTJiA9evXo3nz5njjjTf0g9maNWvi0KFDZpetb9++WLx4MYYMGYItW7agWbNmyM7OxokTJ7B48WIkJyejYcOGmDhxIrZt24YOHTogJCQE169fx4wZM1ChQgU899xzAIDXXnsN3333HeLj47Fv3z6EhoZi6dKl2LFjB77++mt4eXkVKTZvb2+0aNECU6ZMwZMnTxAYGIgNGzYgLS3N7PIC+denMR07dsSyZcvQtWtXdOjQAWlpaZg1axZq1Khh9ESJKSZNmoQuXbqgWbNm6N+/P+7cuYNvv/0WERERhS6zuG2OiIiUh4NuIiJSvalTp+K1117DRx99hIcPHyIuLg6RkZHw9/fHnj17MHHiRCxbtgwzZsxA6dKlUbNmTf3vQhemVatW2LlzJz7++GN8++23uHfvHgICAhAZGYnBgwfr56tduzaSk5PxzjvvYNy4cahQoQImTJiAf//9t1iDbgcHB6xYsQJfffUVfvrpJyxfvhweHh4IDw/H8OHDUaVKFQBA586dce7cOfz444+4efMmypQpg5YtW2LChAnw8fEB8Oy579TUVIwePRrz5s1DZmYmqlatirlz5yI+Pt6s+BYuXIg333wT06dPhxACbdu2xbp161C+fHmzy5xffRoTHx+Pq1ev4rvvvkNycjJq1KiBBQsWYMmSJUhNTTVr/Z06dcIvv/yC8ePHY/To0ahcuTKSkpIwb948HD16tMDvWqLNERGRsmiEJd4MQkRERGTn6tatCz8/P4v8pB0REakHn+kmIiIiKoInT57g6dOnBtNSU1Px999/o1WrVtIERUREssUr3URERERFcO7cOURHR+OVV15B+fLlceLECcyaNQs+Pj44cuQISpcuLXWIREQkI3ymm4iIiKgISpYsiQYNGmDOnDm4ceMGSpQogQ4dOuCzzz7jgJuIiPLglW4iIiIiIiIiK+Ez3URERERERERWwkE3ERERERERkZXwmW4r0Gq1uHLlCry8vKDRaKQOh4iIiIiIyG4IIXD37l2UL18eDg7SX2fmoNsKrly5gqCgIKnDICIiIiIislsXL15EhQoVpA6Dg25r8PLyAvCskr29vSWOhoiIiIiIyH5kZmYiKChIPy6TGgfdVqC7pdzb25uDbiIiIiIiIgnI5VFf6W9wJyIiIiIiItXTaDSyGQjbEgfdRERERApkrwevRKRMGo0GQgipw5AEB91EREQKoRtkyWmgJadYbEUO9ZBz3fZcB0RknBz6qZxyxiGEkE1ctsJBNxHJmtx2GkRS0V0hkNNVAl1M9rR96sqqqwcpyy639mArOa+Wyant2fv+Sk7ll1MsUpBTP5Vz/fbYX+lw0E2kYGrfocihk7b3HbfcsB7+I3Uuct8mKHU8tqQrt1R9U+5c29uJDx05HcDL8aSYLclhf52bXAacUpG6n8pNLnFIhYNuOyRF52MPAxdbl9Febi3MudOQqpz2uOOW4/aqi0ducdmCsUGWnMgtHluTok3aa85zn+yRwwkHY+uXOiYpyGF/DeS9jZmekVublLqd2BoH3XZGioNWOZ79tDRbn+HOmVO15lUOHXHOgzu15tkYOZ7Qyd3m5RKXLRlrg1LlwZ5fhpObrfPA3MtT7hMBJK3cdWBP+wxjZZX6jkFuExx025XcA0NbdkD2dAuirQYE9tCB5S6jvQ62pCBVX1EQe2jzRSHHfMilrVhLQQePai+7nEm5b2C9579dSHVnpbFjB3vDfkp+OOi2U7a8Iqv2s7/5dWDW6thsvT57xTOzz8ghB2zbBbN1fvLbNuTQVqQi1T41dwzcVqRhz20/P8yJ/EhRJzyW+g8H3XaOO2jLsPVZVXs+iyv1s91q32bkdMUiJ971YJw9bftKwDZpXYUdwMst/3KLRwpSPM5IBWOepMFBt52Q4vkObtSWx5zaBs/MGpL6WTB7J6ccyCkWueE+VVpyu4rHfYg0OWDeC2bL/LDPMsRBtx2RS+dnT1eorFFOe9ihmDLotZc2RPbR5gtTUA5s3aeyPgpmzbpg7klu5LK/Lmwd9nTsKSeFtQ17qhcOuu2ctRq7vWxABeHBkfVYM7dsu/ljbuybvde/KYMLa/VN9p57U9nyAJ51YhpbHgvxuMv0fsra7ZfbR14cdJPV2EPnZ8szvIWty57OFlqbPbRdY+R2qyTbc9HwVxPkg3c52QfWCVH+uH0Y4qCbAPDg1lrY4ViPNU4ymLI8ntywLZ5oMo1c+hrWieXrwt7zaQ7mTF6s3S/wPSxFZ8064fZnHAfddsCUK6S2XJ89Km4HxJzaDvOcPw6o5M+aB1HcNorGknVhau7VvI2a2gZt0U65PciHWtu7rVgrf9w+8lLFoPvRo0fIysqSOgzFs/WLeOylo2THYz2WbEf20h6Vgge1Rcd8yYel6oL9kvnkkDt7OtYxBQd48mKNvLG950+Rg+7U1FS8/fbbaNy4MTw9PVGiRAl4eHjAy8sLjRs3xogRI5Camip1mIrCAwTrMzc3HHzYDvNsGm7ntmPO9m+Nxy64bZinOHWh+y5zX3TWftlmUZbP+ntGDgM8ezgJYk6eLX3xgm3eOI1QSGaePHmC7777DlOnTsW5c+dQqlQp1K9fH+Hh4ShZsiSEELhz5w7S0tKwf/9+3L59GyEhIXj33XcxePBgODs72yzWzMxM+Pj4ICMjA97e3jZbb35M3UFYYmMpys5IDQdy1i5vUetEDTkFil6O4pbbXvNsLmuXvyj1Ye91YYylc2Lr7VGubNGHF3d9xfme3JnTDgHLDgDMWaZa6wMwf5uw5IUeKdcvR7bup4q7bkt8Nz+yG48pZdAdEhKCx48fIy4uDj169ED9+vULnH/fvn1YsmQJfvrpJ7i4uODcuXO2CRQyrGQbDYTtceBS1NwC1t1Z21tOc34HMH+HYY95NsaWJ+gsEUdR51UiKQ+girN+tdWJLfeNllif2vIPyKMtyiEGOZF6gGeJ5aiJrfspS63bEt83RnbjMaUMur/77jvEx8fD1dW1SN97/Pgx5s6di8GDB1spsrxkV8lWHhiasx41sPbOhmfUi6Y4V4UA5lkuJx54IGVIyqud5tYFtw/j3wcKz6Wt7zhTO0ufgDJnWWquD1vudy31fdaHZb8v53227MZjShl0K4nsKtkGB9P2OHCx5s7Gnncoth48F/U7Ob+r5DznJodbN82NQ031kJtUB7XFWTcZl/O5ydx5LegzekbKbaG462ed5iXlgF2t9WHrk61S31VVGLmNxxT5IjUqmqI2YiGK9qIJOZ/lkiNdnvLLMfNpnsLymhvzXDzWvMpd1DjM+Z7aFXV7yM1SV3bVwhLlEUIY1EvOv9yfF4facl9cxd0WivtdNStuXor6fe63C2aJvOTuo4zJ3W+RaTjoVjlr72S40ZnHWKfGTqz4TNlZ6D7POX9x1mXPrDHgZV4NWaKNmntgS9ahG1zn/rPk8tVWh8U9CVScgXdx9xfs04wzdX+tw+Ojwllquy/oBKGlTxLaEyepAzCVg4ODWY0pOzvbCtGon26nbcqOrjg7IiXf5lPcuI3tcCx5ltJe5ZfX3P2HVLcaqpGlbmljPvOyxGDD1D6GB7UkV5baN5p6XKPDxzSsK/f+2lieLP3oBevCdLbMlT3Ui2IG3ePGjctz0Lx8+XIcPXoUMTExqFq1KgDgxIkT2LBhAyIiIhAbG1vs9X722Wf44IMPMHz4cHz99dfFXp6SFHSwZqmDMyVvZJbakUr9TKzcWCp2a53UUKvinjwrTrsr7tl51mvBCtoWLH0yytLLkQullUdp8RbGkvtbU/YJlhzoKf0CQ0Gssb+25np061BjXSidPdSLYgbd48ePN/j/7Nmzcf36dRw5ckQ/4NY5fvw4WrdujfLlyxdrnX/99Re+++471K5du1jLUbKCbv+R64sTSNks3SbYvkxTnLwX53ZWXkkqmDW2hdz9ubWez1dTnSitPEqL15ZMva2Z+Ssc99fywvzJm2Kf6f78888xbNiwPANuAKhevTqGDRuGKVOmmL38e/fuoU+fPvj+++9RsmTJ4oQqKUuehbTW82dESsRtwFDuK0im4B0IBbPWc7nsy4nyf7beGtuFGrczpZ7YUeM7D3SUXC4ltqWiUuyg+9KlS3B2ds73c2dnZ1y6dMns5Q8dOhQdOnRAdHS02cuQAyVvgHIn1w5CrnGZSinxq2nbsvSjEoXlhrf8q5/a6lVp5VFavIVRennUtL9QA6W3J2OUehIkJ7VvJ4q5vTy3iIgIzJgxAy+//DICAwMNPrt06RJmzJiBWrVqmbXsRYsWYf/+/fjrr79Mmj8rKwtZWVn6/2dmZpq1Xnuk1A5Czp2bnGMrjJJjVzJL3x5oyhVv3pJYOCWXS23bstLKo7R4C6O28qiBkutDje1JbeVRI8UOur/66ivExMSgSpUq6Nq1KypVqgQAOH36NFasWAEhBBYsWFDk5V68eBHDhw9HSkoK3NzcTPpOYmIiJkyYUOR1kTo7Pqmp+aUtcqKm/Cr9uTy1tne1lktpWA9UXGpsP9wu5EUN9aH0+AujEQou4ZEjRzB27Fhs2LABDx8+BAC4u7sjJiYGEyZMMOtK94oVK9C1a1c4Ojrqp2VnZ0Oj0cDBwQFZWVkGnwHGr3QHBQUhIyMD3t7eZpbOPqihkyD7pZb2q4ZyqKEMuamxTET2SI3bshrLpGRqqA9LlyEzMxM+Pj6yGY8petCto9VqcePGDQCAn58fHBzMf1T97t27OH/+vMG0/v37o1q1anj//fcRERFR6DLkUslq2ADlSu65lXt8+VFa3EqLl8iW1LJ9KLEcSoy5IEovj9LjVxvWh32Qy3hMR7G3l+fk4OAAf39/iyzLy8srz8C6RIkSKF26tEkDbioadnykZGppu2rYDtVQhtzUWCayDbU9ZqT0cig9fmPU1L7UQA31oYYyFETRg+5Hjx7ht99+w/79+5GRkQGtVmvwuUajwQ8//CBRdNJTc8OVmtxzK/f48qO0uNW+gyAqDrVsG0oth1LjNkbpfa3S4zdGyeVRcuykXIoddJ8/fx7PP/88zp07B19fX2RkZKBUqVJIT09HdnY2ypQpA09PT4usKzU11SLLsTUldPJyjy8/cs+t3OPLj1LjVjo15FwNZchN6WVSy/as1HIoNe7c1FAOpcdvjJLrRcmx50cN5VFDGQqi2N/pHjlyJDIyMrBr1y6cOnUKQgj8+uuvuHfvHiZPngx3d3ckJydLHSaZQO2/y0fqpZYdhBq2QTWUITc1lkmJlLqdKzXu3NRSDm7P8qGWNpWTGtqXGspQEMUOujdv3ow33ngDjRs31r84TQgBV1dXjBw5Em3atMGIESOkDVJiauxU5ELuuZV7fPlRWtxq30EoidLaTmHUcCVG6fHrKHU7V2rcuamlHGqj5O1bjW1KyfVhLxQ76H7w4AFCQ0MBAN7e3tBoNMjIyNB/HhUVhe3bt0sUnTwopVNRYkch99zKPb78KDVupVPiNpib2toO64RIXdSwTeek5O1b96JBNVFDedS2jeSm2EF3cHAwLl26BABwcnJCYGAgdu3apf/82LFjcHNzkyo8KgI1dBRkGUrrcJUWb364DcqPGupELduHUsuh1LhzU0s51LBN6/BOHLIWNW0nuSn2RWqtW7fGypUrkZCQAACIj49HYmIi7ty5A61Wi/nz56Nfv34SRyktdijWI/fcyj0+Y5S4E1dizLmpoQyAMtt8QdRQHrW0LaWWQ6lx56aWcqiJGupDbe1KLWVRSzmMUeyge/To0fjrr7+QlZUFV1dXjBkzBleuXMHSpUvh6OiIl19+GVOnTpU6TEkppUNRQow5KSWvSolTydSQXzWUAVBfe1dbeZRMqfWg1LhzYznkRw39k9Ljz0kN9aGjprLkphFqLZmEMjMz4ePjg4yMDHh7e0sdjuypeQMjdVND21VDGXRYFrI0JdeDkmPPieUga2B9qJ/cxmOKfKb7wYMHaNCgAWbNmiV1KLKmlOcilNbpKSWvSolTR2nxAup4GYvStr+CsCzyo/Ttg8hS1LJNA9yu5UZN9aGmsuSmyEG3h4cH0tLSVF0xxaWkM3isRwKUe0Ci1Lh11LT9sSzyo/TtQ8nxKzn2nNRSDrVs02qhlnZFyqHIQTcAtGvXDsnJyVKHIVvsTKxHKblVSpw6Sj0gUWrcaqS0Nl8QtZRF6dsH45eeGsqgNmron9TUrtRQHzpqKktuih10jx07FqdOnULfvn2xfft2XL58Gbdv387zZ6+U1JkobQNTSm6VEidJS2nbX0HU1ObVVBYlU/r2ofT4AXWUAVBPOQB19E+sD3lSU1lyU+yL1Bwc/jtfUFAFZWdn2yIcA3J4cF9Jt5cDyopXSbESFUZN7ZllIUtTej0wfnlRW3mUjHWhfnIYj+Wk2J8MGzdunKrPhhSX0joSJcWrlFiVtkNRWrw6So1bR8mx58ayyI/Stw8iS1LLtsDtWl7UVB9qKktuir3SLWdyOLOitEarpHiVEqtS4tRRWrxqoaa8syxEJGdq2a7VUg61UFN9WLIschiP5aTYZ7qpYGrZ+ORIKblVSpw6SotXh3fcyIdS21BuajuAUjLGLy2lx69W7J/kRS31AairLLkpZtBdo0YN/PTTT3j8+LHJ38nKysLcuXNRo0YNK0YmT0rrSJS0kSklt0qJE1BWrGqjpG2vMGppR2qqE5KW0tuS0uPPTQ3lUUs/C6ijPgB11YmaypKbYp7pjo+PxzvvvIPhw4ejc+fOiI6ORv369REWFgYPDw8AwP3795GWloa9e/di48aNWL16NVxcXDBy5EiJo6fCKOXKjlLiBJS1M1FSrLkpOXYltWd7oqZ6UXo5lB6/0tuS0uPPTQ3lUXr8OamhPgB11YmaypKbop7pvnv3Ln744QckJSXh0KFD+rMhTk7Pzh08ffoUwLMKi4iIwIABAzBgwACb38cvt2cIlEAtHZ/cKCWvSonTGMZOlD8ltzElx66j9DIoPX41UlOdqKEsaihDbpYqk9zGY4oadOd07tw5/Pnnnzhx4gRu3boFAChdujSqVauGqKgohIWFSRabHCpZjRuhHCgtr0qJVylxkryppR2ppRyAuspCVFxq2B7UUAY1UWN9qHXQrZjby3MLDQ1FaGio1GHIkhI3QCXGrARKyalS4syPUtuvUuPOjxBCdWVSOiXXhRraktLLoPT41UhN9aGG9qX0+I1RY5kABb1IjUyn1sYqB0rLrVJeSKGUONVGae3ZFGookxrKkBO3b6Jn1LBtq2l7Zn3IkxrLBHDQrUpKbKxK6fiUmFuyPqW039zU2J7VUCY1lEENlLpd56T0Mig9/tzUsG2rqU7UUB+kHBx0k2yw87M8pewclRJnfth2ifKn1O1bLdu1Usuh1LjVjvUiL0rtXwuixjIBHHSrklobqxwoLbdK2TkqJU61UVp7NoUayqSGMuTE7ZvoGbVt20qnhvpQY/+qxjIBKhl0T506VeoQikSj0ej/rLV8JVJC56fU3JJ1KaHtGqPG9qyGMqmhDGqg1O06N6WWQ6lxF0bp27ea6kXpdUHKoopB9yeffKL/d7du3SSMJH+5B9pCCP2bdq05AFcS5sDylLJzVEqc+WHbtQ+26K/V8Dbd3JRaHrVs10oth1LjVjs11YvuOFzJlNq/FkSNZQJUMuiuXr06Jk+ejFOnTiElJaVYy0pMTESjRo3g5eWFsmXLIjY2FidPnjRrWT4+PkYH2jkbU87/c/Atf0rrCJTSnpQSp9oorT2bwtJlMnbCNPd0tt+CMT9E/1Fyv8uTgvKjxv5VjWUCVDLoXrhwIU6cOIHo6Gg8ePAAdevWRd++ffH5558jOTkZV65cMXlZW7duxdChQ7Fr1y6kpKTgyZMnaNu2Le7fv1/kuDIyMowOtI3JPfguDqV3IHKl1k5AamrYiSsxfrW2Z0uVq6ATpjn/b6l+W0eJbUmt1FIXSi2HUuMujJL7XjXWiZLrQw3HT8ao4Q4EYzRCZbXl6emJjRs34tChQzh06BAOHz6Mw4cPw8HBATdv3izy8m7cuIGyZcti69ataNGihUnfyczMhI+PDzIyMuDt7V3kdea+omLO91VWrbKg1LzKPW65x2cKJZZBiTGbwhLlMqcPLm6/nXM5aqsXS5cpv4MxS69DLfWg1LIoNe7CKLlcSo49P2osEz1T3PGYpTlJHYC5KlWqhLi4OIwdO9Zg+tWrV+Hp6YkmTZoYTL906ZJZ68nIyAAAlCpVyrxAzVCcMzxK7jwsFbux3Ck1J5Yg97LLPT5T6LZZS5WloO1fDfmypuLWhbmD55xXvFlHhqyxXeReprFHAMg6Cjs+Yf5ti/uL4lFyjtS8v1Fj2RQ76D579iz27t2Lffv24dSpU/D29kb16tURHh5udP4KFSoUeR1arRYjRoxAs2bNEBERke98WVlZyMrK0v8/MzOzyOsyRo0NzpoKOyAzNr0olFoX1rrKZMkDaaXm1tIKasO6zy2VfzXnXMrcWPoEjFoUNyeFtfuc0zn4NmTpkx4FLY8nPwpni5NQus9ZF4WzZn9dWB2RfVHs7eUODg5GX2xTs2ZNjBkzBr169Sr2Ol5//XWsW7cO27dvL3DQPn78eEyYMCHP9OLezmBOR6D0gz1z4zf1YKCweawRm9Qsebttfop7MK3EvFpaUdqnJQ6k1Jz34vQjlrzbRq35NYet7z5gHfxHikcumP/82bo+OPArmDUff8nvnR+sh8JZol7kdnu5ogfdLi4u+PDDD9GyZUs8fvwYe/fuxdKlS3HgwAEMGjQIs2bNMnv5w4YNw8qVK7Ft2zaEhYUVOK+xK91BQUEWqWQ1HxgbY+6JBsD6gxWl1oW1rzDZ68mM3JQ2qFBL3o2xdj9izeWptV6seULV0uss7nflSIpHLuxxf2sKa++TLf293MtQW71Y49FGUy4AFTafqetUW33oWPLkFAfdxeTg4ID3338fiYmJeT776quv8N577+HHH39EXFxckZYrhMCbb76J5cuXIzU1FZUrVy5ybJY8s1LURqf0DdAWV/d5MGw6U3PFgyvpBhXF+a4a8m6MXO4SkkscciDViRCp73qQCyn6p+KuV035z03K+iju99VcL+aS6m4c1odxue8skMugW7E/Gebu7p7vLd9vv/02evbsiWnTphV5uUOHDsWCBQuwcOFCeHl54erVq7h69SoePnxY3JDNons+0F7Y4gDV3jooc9uPLrem5Cu/W6jINOa2yeI+e0zP2OqZPinjkJoUbVyH/ZJ5LPUuFObfMuz53TTWVNz2aW698LipYMU5dgWe5Vf3Mmy5UOygu1q1avj999/z/bx58+Y4duxYkZc7c+ZMZGRkoFWrVihXrpz+79dffy1OuGSioh6g2nJd9rSzMie3vJpRdJba2ZqzHO7orc+e23ZuRW1vluobWAfFY+nHLegZKU9CmXsixN7318YU90QIB96WJfd3SSh20D148GCsX78eb775ptGr0Dt27ICHh0eRl6u7spf7Lz4+3gJRm4dnivMn5Y5LrSx1+5op1FQPUj1DzJMdxWOLXLD/LhpL54v7UPP7JynWbQ+kOglVnBjUWo/FOQmh+35x1y/Fd+XO3HqRc04U+5Nhr732Go4fP45vvvkGixYtQvv27REREQEXFxds3LgR69atk3SgLAV7OpC2xAGBboNWe87MKWdxTmZoNBqT16em/Ev5qIO9tGVTySkfHPCZxxp1Z4/9kk5RymStq0VqzKstWKP/MKdfYv3lZcl82Ns7nCxNCflQ7IvUdP744w989dVX2LhxI+7du6efHhsbi6SkJEkenLfGK+pN2QkqocEVxtYHRfZyEFaUcgK2e6Om0vOam63zbM66izqvUplSRlvdilaUFxKquV6krhN77ZcAefQPcohBLuSQi6Jua2quEzkMeOUQg9wU95hKbj8Zptgr3TrNmzdH8+bNkZ2djXPnzuHu3bsIDg5GqVKlpA7NouzlaokpV6gsfdubPXRcRWHJZ/iY1/xZOjdsy+axRb7spf+2FGvWCbcRaTH/RWPNfoP90n+KOti1VgzcPsynhLwpftCt4+joiIoVK0odBtmIEjYupbHGyQzKi3mRB9aD/bHnfsnUA3prHvSbmn8OPAzZ4k4ce8+3rR7Bs0Ys9k5JfbpiX6Rmj+z5gEFHLs82qZXUL2qxF1If1NIztjywKaxueKDFHNgL9lHy6au5vRWNteuM9WEepeSNg25SHKVsXEpirZMZha2TdUlEtiSXwY4c2SIv7PNNZ8t9JLcJ09miTlgf/1FTLjjoViBjDZADmOLLb8NWS24L67jUUEa5s9XOo7ArqvZCjtu0PeXfmILqRA7kEodUOMizP/b6csHcCmuTtmqzas9zUajt4g0H3QqjpMZVHLY+saD2vEpVPl5VysvadWHK8tXe3gF5llGOMdlSYeW3ZX4K6pfssZ5s2U/bY36LSmmDCaUzNddyqRO2D2XioFuh1DyQkbIjUXNe88PO23IKOslgj21LjuRQD7ljkENMUrJ1+e21vyvsJKgc8mLv24JUeIJcXlgfhVPisSsH3QqktEZmCbbYuOwxr7ZgbOdhrzsTW7Ux7rALJuW2nt+67b3/kaL83EaekSIPBfVR9rIt5JcDtkv5UeIAj+SHg24F03XMau0McpZPivXq/q2m3Mpp8KumvBaGB1HSyb09y4WcYpGSVHkw1v/Yc53YU3+sBFLUB0/Wyg/r4xk5HbsWBwfdCqXrkJXa8AqTe4djyyuEaiXlFTbuzG3ftvK7w0DNbTw3Y2WVQ/lz9t/2tl0Ya5dyeqRIDu3DlqQ+8Wpv7b8wcsyHHGOyFjm9qNje+qL8qOnuMA66FUwIof9TI90OWarbDtU+QJFiR2oPec19IGlPByxyJcfBbc5tQM3bQ37kUCc58y51LLYktxMNar9rrzByqo/8ToTYQ73ItYz2fvI8NyWX30nqAIgKwrOLlpezA7dlWdWe14JI/fZ4e76iJOd2J+fYrElO5c65bcgpLmvJWV459Am6eOQQixTkVh86Sh7YWJLUdWLP++6c1JIHDrqJ7Ah3orYjpwN5OcVCJDf2tl3I7USDHGKQmtzqw57vPshdZqnLz5Pnz0hdD5bAQTcRkYXJaecgp1iISB7YL8iHXOvCHgd4cj7hIKcTM2QeDrqJiIiIiAgAB3ZyO+Fg7/WhFhx0ExERERGR3eMAl6yFby8nIiIiIiIishIOuomIiIiIiIishLeXW4Hu1pTMzEyJIyEiIiIiIrIvunGYXB4Z4KDbCm7dugUACAoKkjgSIiIiIiIi+3Tr1i34+PhIHQYH3dZQqlQpAMCFCxeKVcmNGjXCX3/9Vex4LLEcuSwjMzMTQUFBuHjxIry9vSWNRU31Y6m8WiIWSy1DLrGoMbdyqR859QeWWo5clsHcWm8ZcsqtmuqHfa31liOnNmup5cglFubWesvIyMhAcHCwflwmNQ66rcDB4dmj8j4+PsXagBwdHYu947DUcuSyDB1vb2/Jc6u2+gGKn1dLxcLcWi8WuSzDksuRQ39gqeXIZRk6zK3ll6Ejh9yqrX4A9rXWXI4c2qylliOnWADm1hrL0NGNy6QmjyjIqKFDh8pmOXJZhqXIqTxyisUS5FQeOcViCXIpj5zqxxLkVB65LMNSmFvrkVN55BSLJcilPHKqH0uQU3nkFIslyKk8clmG3GiEXJ4uV5HMzEz4+PggIyPDYmdp6Bnm1jqYV+thbq2HubUe5tZ6mFvrYF6th7m1HubWeuSWW17ptgJXV1ckJCTA1dVV6lBUh7m1DubVephb62FurYe5tR7m1jqYV+thbq2HubUeueWWV7qJiIiIiIiIrIRXuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrotbPr06QgNDYWbmxsiIyOxZ88eqUOS1LZt29CpUyeUL18eGo0GK1asMPhcCIFx48ahXLlycHd3R3R0NE6fPm0wz+3bt9GnTx94e3vD19cXr776Ku7du2cwz6FDh9C8eXO4ubkhKCgIU6ZMyRPLkiVLUK1aNbi5uaFWrVpYu3atxctrS4mJiWjUqBG8vLxQtmxZxMbG4uTJkwbzPHr0CEOHDkXp0qXh6emJbt264dq1awbzXLhwAR06dICHhwfKli2LkSNH4unTpwbzpKamon79+nB1dUWlSpWQlJSUJx61tP2ZM2eidu3a8Pb2hre3N6KiorBu3Tr958yp5Xz22WfQaDQYMWKEfhrza57x48dDo9EY/FWrVk3/OfNaPJcvX8Yrr7yC0qVLw93dHbVq1cLevXv1n3NfZp7Q0NA87Vaj0eh/o5ft1jzZ2dkYO3YswsLC4O7ujooVK+Ljjz9Gzncns82a7+7duxgxYgRCQkLg7u6Opk2b4q+//tJ/ztyaRkljBFNiKZQgi1m0aJFwcXERP/74ozh69KgYNGiQ8PX1FdeuXZM6NMmsXbtWfPjhh2LZsmUCgFi+fLnB55999pnw8fERK1asEH///bfo3LmzCAsLEw8fPtTP065dO1GnTh2xa9cu8ccff4hKlSqJ3r176z/PyMgQ/v7+ok+fPuLIkSPil19+Ee7u7uK7777Tz7Njxw7h6OgopkyZIo4dOyY++ugj4ezsLA4fPmz1HFhLTEyMmDt3rjhy5Ig4ePCgeOGFF0RwcLC4d++efp4hQ4aIoKAgsWnTJrF3717RpEkT0bRpU/3nT58+FRERESI6OlocOHBArF27VpQpU0Z88MEH+nnOnj0rPDw8xDvvvCOOHTsmpk2bJhwdHcX69ev186ip7a9atUr8/vvv4tSpU+LkyZNizJgxwtnZWRw5ckQIwZxayp49e0RoaKioXbu2GD58uH4682uehIQEUbNmTfHvv//q/27cuKH/nHk13+3bt0VISIiIj48Xu3fvFmfPnhXJycnizJkz+nm4LzPP9evXDdpsSkqKACC2bNkihGC7Ndenn34qSpcuLdasWSPS0tLEkiVLhKenp/jmm2/087DNmq9Hjx6iRo0aYuvWreL06dMiISFBeHt7i0uXLgkhmFtTKWmMYEosheGg24IaN24shg4dqv9/dna2KF++vEhMTJQwKvnIvUFptVoREBAgPv/8c/209PR04erqKn755RchhBDHjh0TAMRff/2ln2fdunVCo9GIy5cvCyGEmDFjhihZsqTIysrSz/P++++LqlWr6v/fo0cP0aFDB4N4IiMjxeDBgy1aRildv35dABBbt24VQjzLpbOzs1iyZIl+nuPHjwsAYufOnUKIZx2eg4ODuHr1qn6emTNnCm9vb30+R40aJWrWrGmwrp49e4qYmBj9/9Xe9kuWLCnmzJnDnFrI3bt3ReXKlUVKSopo2bKlftDN/JovISFB1KlTx+hnzGvxvP/+++K5557L93Puyyxn+PDhomLFikKr1bLdFkOHDh3EgAEDDKa9+OKLok+fPkIIttniePDggXB0dBRr1qwxmF6/fn3x4YcfMrdmkvMYwZRYTMHbyy3k8ePH2LdvH6Kjo/XTHBwcEB0djZ07d0oYmXylpaXh6tWrBjnz8fFBZGSkPmc7d+6Er68vGjZsqJ8nOjoaDg4O2L17t36eFi1awMXFRT9PTEwMTp48iTt37ujnybke3TxqqpuMjAwAQKlSpQAA+/btw5MnTwzKXa1aNQQHBxvkt1atWvD399fPExMTg8zMTBw9elQ/T0G5U3Pbz87OxqJFi3D//n1ERUUxpxYydOhQdOjQIU8OmN/iOX36NMqXL4/w8HD06dMHFy5cAMC8FteqVavQsGFDdO/eHWXLlkW9evXw/fff6z/nvswyHj9+jAULFmDAgAHQaDRst8XQtGlTbNq0CadOnQIA/P3339i+fTvat28PgG22OJ4+fYrs7Gy4ubkZTHd3d8f27duZWwuRUx5NicUUHHRbyM2bN5GdnW3Q8QOAv78/rl69KlFU8qbLS0E5u3r1KsqWLWvwuZOTE0qVKmUwj7Fl5FxHfvOopW60Wi1GjBiBZs2aISIiAsCzMru4uMDX19dg3tz5NTd3mZmZePjwoSrb/uHDh+Hp6QlXV1cMGTIEy5cvR40aNZhTC1i0aBH279+PxMTEPJ8xv+aLjIxEUlIS1q9fj5kzZyItLQ3NmzfH3bt3mddiOnv2LGbOnInKlSsjOTkZr7/+Ot566y3MmzcPAPdllrJixQqkp6cjPj4eAPuD4hg9ejR69eqFatWqwdnZGfXq1cOIESPQp08fAGyzxeHl5YWoqCh8/PHHuHLlCrKzs7FgwQLs3LkT//77L3NrIXLKoymxmMLJ5DmJSLaGDh2KI0eOYPv27VKHogpVq1bFwYMHkZGRgaVLlyIuLg5bt26VOizFu3jxIoYPH46UlJQ8VwmoeHRXsACgdu3aiIyMREhICBYvXgx3d3cJI1M+rVaLhg0bYtKkSQCAevXq4ciRI5g1axbi4uIkjk49fvjhB7Rv3x7ly5eXOhTFW7x4MX7++WcsXLgQNWvWxMGDBzFixAiUL1+ebdYC5s+fjwEDBiAwMBCOjo6oX78+evfujX379kkdGskYr3RbSJkyZeDo6JjnrZrXrl1DQECARFHJmy4vBeUsICAA169fN/j86dOnuH37tsE8xpaRcx35zaOGuhk2bBjWrFmDLVu2oEKFCvrpAQEBePz4MdLT0w3mz51fc3Pn7e0Nd3d3VbZ9FxcXVKpUCQ0aNEBiYiLq1KmDb775hjktpn379uH69euoX78+nJyc4OTkhK1bt+J///sfnJyc4O/vz/xaiK+vL6pUqYIzZ86w3RZTuXLlUKNGDYNp1atX19++z31Z8Z0/fx4bN27EwIED9dPYbs03cuRI/dXuWrVqoW/fvnj77bf1dxixzRZPxYoVsXXrVty7dw8XL17Enj178OTJE4SHhzO3FiKnPJoSiyk46LYQFxcXNGjQAJs2bdJP02q12LRpE6KioiSMTL7CwsIQEBBgkLPMzEzs3r1bn7OoqCikp6cbnD3cvHkztFotIiMj9fNs27YNT5480c+TkpKCqlWromTJkvp5cq5HN4+S60YIgWHDhmH58uXYvHkzwsLCDD5v0KABnJ2dDcp98uRJXLhwwSC/hw8fNui0UlJS4O3trT/ILCx39tD2tVotsrKymNNiatOmDQ4fPoyDBw/q/xo2bIg+ffro/838Wsa9e/fwzz//oFy5cmy3xdSsWbM8P8d46tQphISEAOC+zBLmzp2LsmXLokOHDvppbLfme/DgARwcDA/xHR0dodVqAbDNWkqJEiVQrlw53LlzB8nJyejSpQtzayFyyqMpsZjE5FeuUaEWLVokXF1dRVJSkjh27Jh47bXXhK+vr8FbNe3N3bt3xYEDB8SBAwcEADF16lRx4MABcf78eSHEs1fw+/r6ipUrV4pDhw6JLl26GP05gHr16ondu3eL7du3i8qVKxv8HEB6errw9/cXffv2FUeOHBGLFi0SHh4eeX4OwMnJSXzxxRfi+PHjIiEhQVE/q2DM66+/Lnx8fERqaqrBT648ePBAP8+QIUNEcHCw2Lx5s9i7d6+IiooSUVFR+s91P7fStm1bcfDgQbF+/Xrh5+dn9OdWRo4cKY4fPy6mT59u9OdW1NL2R48eLbZu3SrS0tLEoUOHxOjRo4VGoxEbNmwQQjCnlpbz7eVCML/mevfdd0VqaqpIS0sTO3bsENHR0aJMmTLi+vXrQgjmtTj27NkjnJycxKeffipOnz4tfv75Z+Hh4SEWLFign4f7MvNlZ2eL4OBg8f777+f5jO3WPHFxcSIwMFD/k2HLli0TZcqUEaNGjdLPwzZrvvXr14t169aJs2fPig0bNog6deqIyMhI8fjxYyEEc2sqJY0RTImlMBx0W9i0adNEcHCwcHFxEY0bNxa7du2SOiRJbdmyRQDI8xcXFyeEePYa/rFjxwp/f3/h6uoq2rRpI06ePGmwjFu3bonevXsLT09P4e3tLfr37y/u3r1rMM/ff/8tnnvuOeHq6ioCAwPFZ599lieWxYsXiypVqggXFxdRs2ZN8fvvv1ut3LZgLK8AxNy5c/XzPHz4ULzxxhuiZMmSwsPDQ3Tt2lX8+++/Bss5d+6caN++vXB3dxdlypQR7777rnjy5InBPFu2bBF169YVLi4uIjw83GAdOmpp+wMGDBAhISHCxcVF+Pn5iTZt2ugH3EIwp5aWe9DN/JqnZ8+eoly5csLFxUUEBgaKnj17GvyONPNaPKtXrxYRERHC1dVVVKtWTcyePdvgc+7LzJecnCwA5MmXEGy35srMzBTDhw8XwcHBws3NTYSHh4sPP/zQ4GeT2GbN9+uvv4rw8HDh4uIiAgICxNChQ0V6err+c+bWNEoaI5gSS2E0Qghh+nVxIiIiIiIiIjIVn+kmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiIiIiIiIrISDbiIiIiIiIiIr4aCbiIiIiIiIyEo46CYiIiIiIiKyEg66iYiIiIiIiKyEg24iIiIiIiIiK+Ggm4iIiIiIiMhKOOgmIiIiIiIishIOuomIiIiIiIishINuIiIiIiIiIivhoJuIiIiIiIjISjjoJiIiIiIiIrISDrqJiEgxzp07B41Gg6SkJP208ePHQ6PRSBdUESktXgBISkqCRqPBuXPnpA5FT4l51ImPj0doaKjUYRARkY1w0E1ERLKhG9wZ+xs9erTJy5k0aRJWrFhhvUCJiIiITOQkdQBERES5TZw4EWFhYQbTIiIiEBISgocPH8LZ2bnA70+aNAkvvfQSYmNjrRil/ejbty969eoFV1dXqUPR++ijj4p0IkZOvv/+e2i1WqnDICIiG+Ggm4iIZKd9+/Zo2LCh0c/c3NxsHM0zjx49gouLCxwc7O8mMUdHRzg6OkodhgEnJyc4OVnmMEYIgUePHsHd3d0iyytMYSeNiIhIXezvyIGIiBTL2DPduWk0Gty/fx/z5s3T35oeHx+v//zy5csYMGAA/P394erqipo1a+LHH380WEZqaio0Gg0WLVqEjz76CIGBgfDw8EBmZiYAYPfu3WjXrh18fHzg4eGBli1bYseOHXli2b59Oxo1agQ3NzdUrFgR3333ncllPX36NLp164aAgAC4ubmhQoUK6NWrFzIyMgzmW7BgARo0aAB3d3eUKlUKvXr1wsWLFw3madWqFSIiInDo0CG0bNkSHh4eqFSpEpYuXQoA2Lp1KyIjI+Hu7o6qVati48aNBt8vyjPdGo0Gw4YNw5IlS1CjRg24u7sjKioKhw8fBgB89913qFSpEtzc3NCqVas8y/zjjz/QvXt3BAcHw9XVFUFBQXj77bfx8OFDg/mMPdP99OlTfPzxx6hYsSJcXV0RGhqKMWPGICsry2C+0NBQdOzYEcnJyWjYsCHc3d0LrBtTYrp+/Tr8/PzQqlUrCCH008+cOYMSJUqgZ8+e+mnGnuletGgRGjRoAC8vL3h7e6NWrVr45ptv8k80EREpBq90ExGR7GRkZODmzZsG08qUKWPSd+fPn4+BAweicePGeO211wAAFStWBABcu3YNTZo00Q8M/fz8sG7dOrz66qvIzMzEiBEjDJb18ccfw8XFBe+99x6ysrLg4uKCzZs3o3379mjQoAESEhLg4OCAuXPnonXr1vjjjz/QuHFjAMDhw4fRtm1b+Pn5Yfz48Xj69CkSEhLg7+9faBkeP36MmJgYZGVl4c0330RAQAAuX76MNWvWID09HT4+PgCATz/9FGPHjkWPHj0wcOBA3LhxA9OmTUOLFi1w4MAB+Pr66pd5584ddOzYEb169UL37t0xc+ZM9OrVCz///DNGjBiBIUOG4OWXX8bnn3+Ol156CRcvXoSXl5dJOc/tjz/+wKpVqzB06FAAQGJiIjp27IhRo0ZhxowZeOONN3Dnzh1MmTIFAwYMwObNm/XfXbJkCR48eIDXX38dpUuXxp49ezBt2jRcunQJS5YsKXC9AwcOxLx58/DSSy/h3Xffxe7du5GYmIjjx49j+fLlBvOePHkSvXv3xuDBgzFo0CBUrVo13+WaElPZsmUxc+ZMdO/eHdOmTcNbb70FrVaL+Ph4eHl5YcaMGfkuPyUlBb1790abNm0wefJkAMDx48exY8cODB8+vOBkExGR/AkiIiKZmDt3rgBg9E8IIdLS0gQAMXfuXP13EhISRO7dWYkSJURcXFye5b/66quiXLly4ubNmwbTe/XqJXx8fMSDBw+EEEJs2bJFABDh4eH6aUIIodVqReXKlUVMTIzQarX66Q8ePBBhYWHi//7v//TTYmNjhZubmzh//rx+2rFjx4Sjo2OeeHM7cOCAACCWLFmS7zznzp0Tjo6O4tNPPzWYfvjwYeHk5GQwvWXLlgKAWLhwoX7aiRMnBADh4OAgdu3apZ+enJycJ8e6eklLSyswbiGEACBcXV0N5v3uu+8EABEQECAyMzP10z/44IM8y82Zb53ExESh0WgMcpm73g8ePCgAiIEDBxp897333hMAxObNm/XTQkJCBACxfv36QstTlJiEEKJ3797Cw8NDnDp1Snz++ecCgFixYoXBPHFxcSIkJET//+HDhwtvb2/x9OlTk+IhIiJl4e3lREQkO9OnT0dKSorBX3EJIfDbb7+hU6dOEELg5s2b+r+YmBhkZGRg//79Bt+Ji4szeM734MGDOH36NF5++WXcunVL//379++jTZs22LZtG7RaLbKzs5GcnIzY2FgEBwfrv1+9enXExMQUGqvuSnZycjIePHhgdJ5ly5ZBq9WiR48eBmUJCAhA5cqVsWXLFoP5PT090atXL/3/q1atCl9fX1SvXh2RkZH66bp/nz17ttA489OmTRuD26d1y+zWrZvB1XNj68qZ7/v37+PmzZto2rQphBA4cOBAvutcu3YtAOCdd94xmP7uu+8CAH7//XeD6WFhYSbVRVFj+vbbb+Hj44OXXnoJY8eORd++fdGlS5cCl+/r64v79+9bpJ0TEZH88PZyIiKSncaNG+f7IjVz3bhxA+np6Zg9ezZmz55tdJ7r168b/D/3G9RPnz4N4NlgPD8ZGRnIysrCw4cPUbly5TyfV61aVT9AzE9YWBjeeecdTJ06FT///DOaN2+Ozp0745VXXtEPyE+fPg0hhNF1AHlf1lWhQoU8z0D7+PggKCgozzTg2e3oBZUx5/PMLi4uKFWqlP7/OU805FymKeu6cOECxo0bh1WrVuWJIffz7DmdP38eDg4OqFSpksH0gIAA+Pr64vz58wbTc9dtQYoSU6lSpfC///0P3bt3h7+/P/73v/8Vuvw33ngDixcvRvv27REYGIi2bduiR48eaNeunckxEhGRfHHQTUREdkH3E02vvPJKvoPm2rVrG/w/99usdcv4/PPPUbduXaPL8PT0zPPiLnN8+eWXiI+Px8qVK7Fhwwa89dZbSExMxK5du1ChQgVotVpoNBqsW7fO6JvFPT09Df6f39vH85sucrwMLLfhw4dj3rx5+v+3bNkSqampxV5XdnY2/u///g+3b9/G+++/j2rVqqFEiRK4fPky4uPjTfqZrdwnFvJj6pvKzYkpOTkZwLOTCZcuXTJ4tt6YsmXL4uDBg0hOTsa6deuwbt06zJ07F/369TPIMxERKRMH3UREpDrGBl5+fn7w8vJCdnY2oqOjzVqu7oVs3t7eBS7Dz88P7u7u+ivjOZ08edLk9dWqVQu1atXCRx99hD///BPNmjXDrFmz8Mknn6BixYoQQiAsLAxVqlQpemGKYdSoUXjllVf0/y9ZsqRFlnv48GGcOnUK8+bNQ79+/fTTTbntOiQkBFqtFqdPn0b16tX1069du4b09HSEhITYJKb169djzpw5GDVqFH7++WfExcVh9+7dhf68mYuLCzp16oROnTpBq9XijTfewHfffYexY8fmuXpPRETKwme6iYhIdUqUKIH09HSDaY6OjujWrRt+++03HDlyJM93bty4UehyGzRogIoVK+KLL77AvXv38l2Go6MjYmJisGLFCly4cEH/+fHjx/VXQQuSmZmJp0+fGkyrVasWHBwc9FfRX3zxRTg6OmLChAl5rkoLIXDr1q1C12OuGjVqIDo6Wv/XoEEDiyxXdyU8Z3mEECb9dNYLL7wAAPj6668Npk+dOhUA0KFDB6vHlJ6ern9z/qRJkzBnzhzs378fkyZNKnAduevKwcFBf9eFJe6aICIiafFKNxERqU6DBg2wceNGTJ06FeXLl0dYWBgiIyPx2WefYcuWLYiMjMSgQYNQo0YN3L59G/v378fGjRtx+/btApfr4OCAOXPmoH379qhZsyb69++PwMBAXL58GVu2bIG3tzdWr14NAJgwYQLWr1+P5s2b44033sDTp08xbdo01KxZE4cOHSpwPZs3b8awYcPQvXt3VKlSBU+fPsX8+fP1Jw6AZ1fdP/nkE3zwwQc4d+4cYmNj4eXlhbS0NCxfvhyvvfYa3nvvPcsk1EaqVauGihUr4r333sPly5fh7e2N3377rcDny3Xq1KmDuLg4zJ49G+np6WjZsiX27NmDefPmITY2Fs8//7zVYxo+fDhu3bqFjRs3wtHREe3atcPAgQPxySefoEuXLqhTp47RdQwcOBC3b99G69atUaFCBZw/fx7Tpk1D3bp1Da7aExGRMnHQTUREqjN16lS89tpr+Oijj/Dw4UPExcUhMjIS/v7+2LNnDyZOnIhly5ZhxowZKF26NGrWrKn/feTCtGrVCjt37sTHH3+Mb7/9Fvfu3UNAQAAiIyMxePBg/Xy1a9dGcnIy3nnnHYwbNw4VKlTAhAkT8O+//xY66K5Tpw5iYmKwevVqXL58GR4eHqhTpw7WrVuHJk2a6OcbPXo0qlSpgq+++goTJkwA8OxlZW3btkXnzp3NyJy0nJ2dsXr1av3z625ubujatSuGDRuW74A1pzlz5iA8PBxJSUlYvnw5AgIC8MEHHyAhIcHqMa1atQo//fQTvvzyS1SrVk0/ferUqUhJSUFcXBz++uuvPC+4A569Z2D27NmYMWMG0tPTERAQgJ49e2L8+PFwcOBNiURESqcRBb0phYiIiEiGxo4di8TExDy34RMREckNT58SERGR4vz7778oU6aM1GEQEREVireXExERkWKcPXsWy5cvx5IlS9CxY0epwyEiIioUr3QTERGRYmzbtg0TJkxAy5Yt9W8mJyIikjM+001ERERERERkJbzSTURERERERGQlHHQTERERERERWQlfpGYFWq0WV65cgZeXFzQajdThEBERERER2Q0hBO7evYvy5cvDwUH668wcdFvBlStXEBQUJHUYREREREREduvixYuoUKGC1GFw0G0NXl5eAJ5Vsre3t8TREBERERER2Y/MzEwEBQXpx2VS46DbCnS3lHt7e3PQTUREREREJAG5POor/Q3uRERERERERCrFK90kGWNnnviz8UREREREpCYcdJMkdAPunINsjUYDjUbDgbcF5DyhwXwSEREREUlHtreXJyYmolGjRvDy8kLZsmURGxuLkydPFvidZcuWoWHDhvD19UWJEiVQt25dzJ8/32Cea9euIT4+HuXLl4eHhwfatWuH06dPG8zzzz//oGvXrvDz84O3tzd69OiBa9euWbyM9srYgDvn/+Xy7IUS6U5cAMwnEREREZEcyHbQvXXrVgwdOhS7du1CSkoKnjx5grZt2+L+/fv5fqdUqVL48MMPsXPnThw6dAj9+/dH//79kZycDODZICQ2NhZnz57FypUrceDAAYSEhCA6Olq/3Pv376Nt27bQaDTYvHkzduzYgcePH6NTp07QarU2Kbs9yO/qKweK5ss52Nblkfm0rpwnOYiIiIiIjNEIhdx7euPGDZQtWxZbt25FixYtTP5e/fr10aFDB3z88cc4deoUqlatiiNHjvw/9u48Lqqq/wP4Z9h3ENkVEURFxRWS0BRL3HNpU3ssxSXLpTQr08o9d+uxTM0W0TIz9XHLfdfcckkTlxQV3AEXNtlhzu8PfnNjYMAZmGHuwOf9es0L5t4z5557zrnnznfuhiZNmgAAlEolvLy8MGvWLAwbNgy7d+9Gt27dkJycLN15PDU1FTVq1MDu3bsRGRn51GWmpaXB2dkZqampvHt5MaUd5daUzkS6pmyUVWfa1jtpp7RAm/VrHMXbg+1ARERUvcktHpPtke7iUlNTARQezdaGEAL79u3DlStXpCA9JycHAGBjYyOlMzMzg7W1NY4cOSKlUSgUsLa2ltLY2NjAzMxMSkMVo+0XYh5B1N7T6opHvPWj6H0Hir9U86nyFL+cQvXiGQjGpar/4i+qPKx/+WBbEBFgIkG3UqnE2LFj0bZtWwQHB5eZNjU1FQ4ODrCyskKPHj2waNEidOrUCQAQFBSEOnXqYOLEiUhOTkZubi7mzp2LO3fu4P79+wCAZ599Fvb29vj444+RmZmJjIwMfPjhhygoKJDSFJeTk4O0tDS1F5Wky46GR6q0p+1RbNapfvDSCHnQdDmFCtvCeDT9CML2qDyl/RClmkeVh21BREWZRNA9atQoXLhwAWvWrHlqWkdHR5w7dw6nTp3CzJkzMW7cOBw8eBAAYGlpiQ0bNuDq1atwdXWFnZ0dDhw4gG7dusHMrLAq3N3dsW7dOvz+++9wcHCAs7MzUlJS0KpVKylNcbNnz4azs7P08vX11du6VzW6Bn7cMWlHl3plnZaPNvXGL1SVq6x+z7aofGX9AMj2MDz+ECUfbAsiKk7213SPHj0amzdvxuHDh+Hv76/z54cNG4bbt29LN1NTSU1NRW5uLtzd3REWFobQ0FAsXrxYLc3Dhw9hYWEBFxcXeHl54YMPPsBHH31UYhk5OTnSqetA4TUEvr6+srmGQA7Ke00xr+0uW3nqlXWqO13rmdfQG5YufZj9vXLocr8ObdKRblj/8sG2kDdNP3awDaomuV3TLdvndAsh8O6772Ljxo04ePBguQJuoPDU9KIBsYqzszMAIDY2FqdPn8aMGTNKpHFzcwMA7N+/H0lJSejVq5fGZVhbW6tdA06alXdQ45fmsulaN6prXlmnutGlvlR1TPpXnnplf68c2tQxtw3D0aX+uU0Yhi6BNNui8mlqH02PWqXKVdY+oSq1iWyD7lGjRmH16tXYvHkzHB0dkZCQAKAwWLa1tQUADBw4ELVq1cLs2bMBFJ7mHRoainr16iEnJwfbt2/Hzz//jKVLl0r5rlu3Du7u7qhTpw5iYmIwZswY9OnTB507d5bSREdHo1GjRnB3d8fx48cxZswYvP/++2jYsGEl1kDVUZEvWPyCVrqK1gt39NqpSD2xjg2jPD+AsC0MR9e65Q9/+lXe+ifD4PgkT6UF1kVP92c7VK6i45Cmeq9qbSLboFsVKHfo0EFtenR0NKKiogAAt27dUrvOOiMjAyNHjsSdO3dga2uLoKAgrFq1Cv369ZPS3L9/H+PGjUNiYiK8vb0xcOBATJo0SW0ZV65cwcSJE/H48WPUrVsXn376Kd5//33DrGg1UdENpiptdPpU3jrhly7t8AcjeSnvOMC2MJyK1CvH9Ypj/ctHeduC45PhadPX+QNI5dLm7IKq1iayv6bbFMntGgJj0tcpO1Vlg9MXfdQrT6d6On30O/Zd/ahof2V/NwyeCWJcFa1/gNuEPnB8ki9dtxG2heFV1n1y5BaPmcTdy8m06Wvg4i/B6ipar9yhVB72Xf2oSJ9lf9c/ffRrbhvlV9G64zahX/oYn7g96Fd56pNtUTl0vQwDMP02YdBNJoFfDqiy6esoHPtuxelzR2vqO2254Q8hxqHPo3HcJipGX/XH7UG/KrKNsC0MpyKXiZk6Bt1kMNyRG4Y+T8nktWSaGaJOWM8Vwx9A5IU/hBgftwn50Gc9cnvQn4r+KMi20K/qfnYUg24yKH3uiDgAUmXSd9+l8uEPIPLFoM84uE3Ih77vS8DtQT/4o6B8Veezoxh0E5kQQw3+3KlUDtZz+fBLrbzoux/zB1XdcZuo2rg9lJ8+L73gtqE/+rxkz1S3D70F3dnZ2cjJydFXdmTiDHlXWlPd2PRF3/XKnYo6Q/Vd1rPuDLmtV/dxpKLYn43DUP3WlL/IGgv3FfKl7zrktlExPDunULmD7oMHD+L9999H69at4eDgAHt7e9jZ2cHR0RGtW7fG2LFjcfDgQT0WlYg7I0MyxQHMFLGedcMvtfJiyECD24Z2DNl/2QbaMXQ9cXsoH0PUWVW5c7ax8ewcHZ/TnZeXh2XLluHLL79EfHw8XF1d0apVKwQEBKBGjRoQQiA5ORlxcXH466+/8PjxY/j5+eGDDz7A22+/DUtLS0Oui2zI7blwlc3Qzzisrs92NfR6V9d6Laoy6oD1rJ3KGEcMmX9VVRlnMbFNNKuM+uH4pJ3K2lcA3B50YejxiW2hO0PVmzbbh9ziMZ2Cbj8/P+Tm5mLQoEHo27cvWrVqVWb6M2fOYN26dfjpp59gZWWF+Pj4ipbXJMitkSsbAxfDqIygG6jeO3h+kZIPjiPywzYxLo5P8lCZdcTtQXv8oVZ+jN0mcovHdAq6ly1bhqioKFhbW+u0kNzcXERHR+Ptt9/WuYCmSG6NXNn4xUz/Kmuwr271WhS/SMlHZfb3ylhOVcGx3Xg4PslHZdYPxyjtcXySH2O3idziMZ2CbtKO3Bq5MlXWgFTddkSVWa/VpU6L4xcp+ajstmA7PB2DPuPi+CQPxqgbbg9Px32G/Mjhx3O5xWN8ZBiZpOo04FXmzTuq681bKnudq1P/1ZUxvtBUxz5fHuy3xsHxSV6MUT8co0rHupGvythWTGm8YtBNJq26DLamNKiYKn6Rqp64bT2dMYI+bhvqOD4Zn7Hqg2PU01VmHXF8ejpj1I8ptImFrh944YUXSp2nUChgY2MDPz8/dO/eHS+++GKFCkempbKPUHHgM5zqdPqUMb9Isf+qM2a/q059vjyMFfRV9zbh+CQvxuyP3B5KMmYfZXtoZoxLMExlvNI56E5KSipzxTIzM7Fnzx4sW7YMXbp0webNm6vNo8KI9M0Yg4ipDF76xC9S1Vt17PPaYtBnfByfjM/Y9cDtoXTGaBe2R9mM2SZyHq90DrovXLjw1DRZWVlYtmwZxo0bh3nz5uHTTz8tV+HIdBj7i5mcN7KK4pE/wzH2TpM77n8Zu79Vh7GkvBj0GYex153jUyG51AHHKHVyaBe2hzq2SdkMck23ra0txo4di/79+2P16tWGWATJkFw7OemuOrVldVpXejo5fGmQC2PXBbdN42PgXUhOfZHt8S9j/yhFJcmhTeS6jRj0Rmpt27ZFXFycIRdBBEC+G1hFyOHXuqpYrypyWTd+qZVHXwf4JUoTOdRJddw+quM6y5Hc2kEO26McyKld5FQWY5JLPcg58DZo0J2ZmQkLC53PYCcTY+wvzNwJGUZ1qNfqsI5yJ8cdoxzLVNnkUgfVeRuVy7pX9x8G5dIORVXn9lCRQ7vIoQxyIpf6UJXD2dnZyCVRZ7CgWwiBLVu2oGnTpoZaBFGVJacdqpzKUlXxS608dtSAvMpibHKqi+q0fch1XeVaLkOR6/rKabs0BmMf6NFErn2lsshx/eXWR4By3Ejt8ePHZc7PysrClStXsHTpUhw7dgyrVq0qd+FMneoXFjk2vL7IZUOrijcYkcO6VNVgsKr1FVMl575VnfuI3Nqlqo5DZZFb36uObQDIrx1UquJ3Hm3IsQ9W122jODn2xdTUVFkd7db5SLebmxvc3d1LfdWpUwedOnXC77//jhkzZuD1118vV8Fmz56NZ555Bo6OjvDw8ECfPn1w5cqVMj+zYcMGhIaGwsXFBfb29mjRogV+/vlntTSJiYmIioqCj48P7Ozs0LVrV8TGxqqlSUhIwJtvvgkvLy/Y29ujVatW+N///qfzOqSmpgKQ5yChT3Lc0IhMTXXdcctx/JBjmSqbHOugOmwfcg+kqkMbAPJvB5Xq0h5FybFdquv+GzCdbUUOdD7SPXny5DI7lo2NDfz8/NCxY0e4u7uXu2CHDh3CqFGj8MwzzyA/Px+ffPIJOnfujEuXLsHe3l7jZ1xdXfHpp58iKCgIVlZW2Lp1KwYPHgwPDw906dIFQgj06dMHlpaW2Lx5M5ycnPDll18iMjJSLd+BAwciJSUFW7ZsgZubG1avXo2+ffvi9OnTaNmypU7rodoQ2SkNr6r88iu3dagq9apSXXeMciP3dqhq/V5bcm2X6vylVi6qSxuYyjpWl/ZQMYV1rW77DFNoEzlRCAP3juTkZNSoUaPC+Tx48AAeHh44dOgQ2rdvr/XnWrVqhR49emDGjBm4evUqGjZsiAsXLqBJkyYAAKVSCS8vL8yaNQvDhg0DADg4OGDp0qV48803pXxq1qyJuXPnSmnKkpaWBmdnZ6SmpsLJyQlA1dwQ5bhOciyTruS4DnIsU3nJfV3kXj59MYX1VH2hkHs59Unu7SL38lWEqaybqZSzvExt/UytvOVlCutpCmXUJ7mvr6Z4zJgMciO1nJwcrFu3Dn369IG3t7de8lSdqu3q6qpVeiEE9u3bhytXrkhBek5ODoDCo/EqZmZmsLa2xpEjR6Rpbdq0wW+//YbHjx9DqVRizZo1yM7ORocOHTQuKycnB2lpaWovTfiLUOUw5XqWc9nlXDZtVYV1qApMpR3k/GXCEOT+BUrFVPoPmR5T7VumWm5tmdL6mVJZK6K6rKc+6S3oFkJg7969GDx4MDw9PdGvXz8cP34c//nPfyqct1KpxNixY9G2bVsEBweXmTY1NRUODg6wsrJCjx49sGjRInTq1AkAEBQUhDp16mDixIlITk5Gbm4u5s6dizt37uD+/ftSHmvXrkVeXh5q1qwJa2trvP3229i4cSMCAwM1LnP27NlwdnaWXr6+viXSyPm5ceUh1/UwhS+MTyPHdZBjmcpL7utS1U8ZNMWjx1W5PUyNKfUbXZjKDx5A1R2jTHFsAkyvvOVlCutpCmXUp+q2vhVV4YdonzlzBr/88gvWrFmDhIQEKBQK9O/fH6NHj8azzz6rl4F51KhRuHDhgtrR6NI4Ojri3LlzePLkCfbt24dx48YhICAAHTp0gKWlJTZs2IChQ4fC1dUV5ubmiIyMRLdu3dQ6zqRJk5CSkoK9e/fCzc0NmzZtQt++ffHHH39ofATaxIkTMW7cOOl9WlpaqYF3VdpRyXljM6UvMCqm0DdMsV5VTKF+qwtT6kPV5b4cprZ+plbespjq2FSV2kDFlNenKrYHYHrbR3W4H0hVXz9DKdc13Tdu3MAvv/yCX375BbGxsahVqxb69euH1q1bo1+/fli/fj1efvllvRRw9OjR2Lx5Mw4fPgx/f3+dPz9s2DDcvn0bu3btUpuempqK3NxcuLu7IywsDKGhoVi8eDGuX7+OwMBAteu+ASAyMhKBgYH49ttvn7rMsq4hMNVfUosyhXUwxQHBFMpsCmUsjamV3dTKqw1TGDtKUxXbQ8UU26UqtYeproupllsTU9wGiqsK66CJKfazqtoWgGmtm9yu6db5SHd4eDhOnjwJNzc3vPrqq/jhhx/w3HPPAQCuX7+ut4IJIfDuu+9i48aNOHjwYLkCbqDw1HTVtdxFqZ7bFhsbi9OnT2PGjBkAgMzMTACF13oXZW5uDqVSWa4yFFVVjnabwsZmigO1KTDFejXVbc4U6/ppTHl9qmJ7qJjielWF9jDVsUmlKrSBiqmvR1X5flmUqfavqtgWRZlim8iBzkH3n3/+CX9/f3z55Zfo0aMHLCwqfIa6RqNGjcLq1auxefNmODo6IiEhAUBhsGxrawug8NFetWrVwuzZswEUXlsdGhqKevXqIScnB9u3b8fPP/+MpUuXSvmuW7dOep54TEwMxowZgz59+qBz584ACq/7DgwMxNtvv40FCxagZs2a2LRpE/bs2YOtW7fqZd1M+dQTUxlETG3AM5Wymlq9FmVq25sp17UmpjrmqVTV08xNtY9VpfYw1fJXlTGqKqxDUVVhm6gqqlpbVLVtpbLpHDF/8803WL16NV566SW4urrilVdeQf/+/Uu9s3d5qQLl4vlGR0cjKioKAHDr1i21I9IZGRkYOXIk7ty5A1tbWwQFBWHVqlXo16+flOb+/fsYN24cEhMT4e3tjYEDB2LSpEnSfEtLS2zfvh0TJkxAz5498eTJEwQGBmLlypXo3r27XtfRVFWlAUROTKleTWlHYuo7CVOq69KYehuoVJUgozhT7V+m3h6mXHYVUz6IAJjWqbLaMPVtoihT7ldA1WqLoky5TYyt3M/pjouLwy+//ILVq1fjn3/+gZeXF55//nmsWbMG69evx0svvaTvspoMba4hMNWB3tQGQVMoryn2BVOoVxVTKqsmpl5+oGqsg4opbq+lqQrtYsrtURXqHzDt9TDlspfF1NfLlLfr4ky9LVRMcT3kdk13uYPuolR3MP/tt99w//59eHp6omfPnujVqxciIyPVnotdHWjbyKbWgU1xEDSFOjaFMhZnKn3BVMpZFlNfB1MvvyamuM1qwvUwnqq2XbAN5MXU180U+1NpTL0tANNdhyoZdKsolUrs378fq1atwsaNG5Geng47Ozs8efJEX4swCbo0sikNLKZU1qLkXm65l680plBuUyijNkx1PUx1R/00VWG9TLVPaWKK7VGV6h9gG8iRqa6fKfalpzHVtlAx1fLLLeg2e3oSHTIzM0NkZCRWrFiBxMRE/Prrr+jYsaM+F1ElmcI1H6ZQRlNkqgOZipz7hZzLVh6muj6m3L9Lo1onU20TUy13aUytj1W1+gfYBnJlqutpav1JG6baFqZabjnS65FuKqTrLyumEHiZQhlLI+dfTU25XgF5l1/OZSsPU1sfOW93+mJqbaJiquUuiyn1t6pY/4DptIGplFMfTG1dq+q2AZjmupla/ynOpI90N27cGD/99BNyc3O1/kxOTg6io6PRuHFjnQtXncj5lyQ5l00bch0sTL1eVarKepgCU6truW57+mRqbWJq5dWWqfQ1U/zirS1TWi9TKmtFmNJ6VtWxScVU72ZuSn1I7nR6ZFhUVBTGjRuHMWPGSDdJa9WqFfz9/WFnZweg8LFdcXFxOH36NPbu3Yvff/8dVlZW+OijjwyyAlWBKWyIVWGjk+OXHbmVR1dy7btyLFNFybWuNTGVclaUqT4r2pTKqgtTf3xVVSHnNqguY1Nxcm6TokyhjBVlKm1RXbcVQ9L59PL09HT8+OOPWLFiBc6fPy81ioVFYfyen58PoHDDCQ4OxpAhQzBkyBBZHNavLOU5nUHOp3CYygDxNHJbD7mVp7zkuB5yLJM+yHmcUDGFMuqbqfS36tA2cl5HU+knFSXn9ZRz2QxJ7ust5+1W3+TeFiqmUs6yyO308gpd0x0fH49jx47hn3/+waNHjwAANWvWRFBQEMLDw+Hv76+3gpqS8jayHDu4HMtUXnIa1KtSvQLyWh85tbMhyKmuNZF7+QzBVPpcdWkbua6nXMulb3LdHqpL/Wsi1zZRqU5tI/e2AEyjjNqQW9Ct0+nlxdWtWxd169bVU1EIqF4DT2UzpdNzqWKq+jYk13Gium5fpjC2yL18+ia3bURu5TEkU9geqhs5XwpT3fqKqWwfcusnVYFeHxlGFSO3Dm4Kg4Ipqor1KpediBzKYGhyGyeKk3v5DEUu20BZqkvbVJf1lDO5bQ9yDDYrm5zXX85lMwS5bR9FcVsxHAbdMiSnDbGqbXhyGeiqWr3KSXWoW7n046LkVh5jkWM9yLFMlUEu680vscYll34gF3KqDzmVxRjktv5yK09Vw6BbZrhjJlNmzAGbOwvjq+7jl5zXX85lM4Tqtr5yJKcfB9kfCsmxHuRYpsog1/WWa7mqAgbdpJFcdpSGYMwvAlX5iIcc1ksOZagscvpCK5dyyIWc6qMqjznaMHZbVPf6B/hjrNzIZd/BbaOQHNoCkE85qjK9Bd1ffvmlvrKq9uQyIHIwpPKQQ9+lysfxohDrQT7YFsYnhzaQQxmINJFb35RbeaoavQXdn3/+ufT/K6+8oq9syQiqS9BU2etZHerVWAN2df3FXA4/0FXXun8aY7eLqgxsG+O1Bev/X8ZoAzlsg3Jl7H0Htw11xu6rxl5+daG3oLtRo0aYO3curl69ij179ugr22rNmBtBVR8MjbV+Vb1eVTiAVw9sZ83ksJ2zbQrJoS2qO2O2Adu/bPwxxPjk0kflUo6qrELP6S5q9erVmDp1KiIjI5GZmYkWLVqgadOmaNasGZo1a4amTZvCx8dHX4ur8oz9KyRReVV2363u24mqvvlDkrwYu11UZaBCld0W1X1c0qQy24D1/3TG/J7JsakkY+0vjL2fqk4UwgA17eDggL179+L8+fM4f/48YmJiEBMTAzMzMzx8+FDfi5OdtLQ0ODs7IzU1FU5OTuXORzUYVvYXheq08VXW+hqjLY2psr9cVZd6LY0x6qC69enyMGYdcbtQZ4ygm/WvjvsF+ansMYr7jdJxP65/+orH9EVvR7qLSkhIgIODA5599lm16Xfu3DHE4qosHu2uWqrqoFaaytiBcPv4lzF22NWtT+vKWGM4Aw7NKvtHViqJ+wV5McYYxbFJM2OdHcX2qDx6uaY7NzcXmZmZ0nsHBweN6WrXrq2PxVU7lTUgVtcdVXVdb0OqzEGcOwzWgdxxjDE+fpE1Pu4X5KsyxiiOg/LC9qh8FQq6ExIS0LlzZ9jb28PR0RGenp7o1KkTPvzwQ/z000/4+++/kZeXV668Z8+ejWeeeQaOjo7w8PBAnz59cOXKlTI/s2HDBoSGhsLFxQX29vZo0aIFfv75Z7U0iYmJiIqKgo+PD+zs7NC1a1fExsZK8+Pj46FQKDS+1q1bV651qQh+UTCsyjrqUd3qVYWDeuWqzB/oqmuf1pUxThdk25TO0NsIx7ynM2Qdsf51xx9D5KOyzzxge1SuCp1e/uGHH+Lw4cOYOHEiXFxc8OGHH+LevXs4ePAglEpl4QIsLJCTk6Nz3ocOHcKoUaPwzDPPID8/H5988gk6d+6MS5cuwd7eXuNnXF1d8emnnyIoKAhWVlbYunUrBg8eDA8PD3Tp0gVCCPTp0weWlpbYvHkznJyc8OWXXyIyMlLK19fXF/fv31fL97vvvsP8+fPRrVs33SuJqJoy9M6DwYW6ytpZ80tt+fC0WuOrrG2E41LpKqMNWP/lY8gximOTbgy9v2B7GEeFbqTm7e2Nfv36YeHChXj06BHc3d2xd+9eNGrUCMOGDcO9e/fw0ksvYfLkyRUu6IMHD+Dh4YFDhw6hffv2Wn+uVatW6NGjB2bMmIGrV6+iYcOGuHDhApo0aQIAUCqV8PLywqxZszBs2DCNebRs2RKtWrXCjz/+qNUyDXHhfmVtgNV1Z2Wo+mW9Gm79GXSXVBn9jfVePpUVdLNtymboMclQeVc1huir7P8VY+igm22jvcr4zl8d2kNuN1Kr0OnlaWlpaNasGYDCI9pA4fXd3t7e2LRpEwoKClC3bt0KFxIAUlNTARQezdaGEAL79u3DlStXpCBddcTdxsZGSmdmZgZra2scOXJEYz5nzpzBuXPnMHTo0IoU3yRUhw3QGKpzvfJX88rFI6nyxtNqjc/Q20h1Hu/JtBnqLASOTeVjqHpjexhPhYJuX19fJCQkAACcnZ1ha2srPRLM0tISb775Jv773/9WuJBKpRJjx45F27ZtERwcXGba1NRUODg4wMrKCj169MCiRYvQqVMnAEBQUBDq1KmDiRMnIjk5Gbm5uZg7dy7u3LlT4pRylR9//BGNGjVCmzZtSl1mTk4O0tLS1F6GwA3FsFi/poVfbktnyL7Mei+fyqg3to329L2NVJcjR/qi7wCP9a8/hth/sG10wx8Hq6YKBd3PP/88/vjjD+l9UFCQ2ntbW1tcvXq1IosAAIwaNQoXLlzAmjVrnprW0dER586dw6lTpzBz5kyMGzcOBw8eBFD4Q8CGDRtw9epVuLq6ws7ODgcOHEC3bt1gZlayKrKysrB69eqnHuWePXs2nJ2dpZevr2+51rMsPM3EsHj6s+EY4ssVlY5nF8gb69H4OC7Lhz62B25T+sNT/uWFPw5WLRW6pvuff/7B8uXLMX36dNjY2GD58uUYMWIEFixYgHr16uG9996DtbU1Ll68WO4Cjh49Gps3b8bhw4fh7++v8+eHDRuG27dvY9euXWrTU1NTkZubC3d3d4SFhSE0NBSLFy9WS/Pzzz9j6NChuHv3Ltzd3UtdRk5OjtrN4tLS0uDr66v3awgMed0xN0L91wPr9V/6rAvW69MZ4tpS1rt+8FpWedDnNsJructPH32X/V+/9NWfuV1UnL6/OwHVqz3kdk13he5eHhQUhHnz5knvo6KisG/fPowZMwYAYGdnV+7HbAkh8O6772Ljxo04ePBguQJuoPDUdE13T3d2dgYAxMbG4vTp05gxY0aJND/++CN69epVZsANANbW1rC2ti5X+XShOmKo7y/SVMgQ9Uv/Yt1WHp5dIF/6HmfYNuWj722EY1v5VWR7YP/XP31uG9wuKkbf+wu2h3FVKOguzszMDL/88gs+++wz3LlzBy1atHhqwFqaUaNGYfXq1di8eTMcHR1LXDsOAAMHDkStWrUwe/ZsAIWneYeGhqJevXrIycnB9u3b8fPPP2Pp0qVSvuvWrYO7uzvq1KmDmJgYjBkzBn369EHnzp3Vln/t2jUcPnwY27dvL1f5TQk3Qv1jgKlOXztx1qtuuLOuHtg25VfRbYRBX8Wo9g3laYfqeOSuslQ02ON2oV8cp6oGvQbdKo0aNUKjRo0qlIcqUO7QoYPa9OjoaERFRQEAbt26pXYtdkZGBkaOHIk7d+7A1tYWQUFBWLVqFfr16yeluX//PsaNG4fExER4e3tj4MCBmDRpUonlL1++HLVr1y4RjMsBAw/DYv0aDuu28ujzhw7SP32dVkvlp69thGNaxVSkHVj3hsUfQ4yP41TVUaFrukkzQ19DoK/AhQGQZvr6RZF1W1JFfzlnnepGH32R9W4YbBv5KG89sv71R9ftgfvZylGeeuZ2YRgcp3Qnt2u6K3T3cjIeHuEwrIrWb3Ud4LRRnrplfy8fVT8sb/2x3g2HR7nlRdf6ZP3rly5jFQPuylOeo9xsF8PhOGXaGHSbIH3ebZVK4nUzhlORuuWOvHwqek0e692wKjJmsG30o7z1yPrXL20Cb45LlU/b05v5/cewdP0RnduK/DDorsa4IZaN15gZhq7XJ3FHrh/lqUf2ZcPiTYrkRdcvs6R/ZQUWDCKMS3XDu9LmAWwbQ9M28GZ7yBODbhNVkRsr8AvD05X3uhnSni71xR1HxZT3RjhkeOX9EYrbhH7xy6x8FG2Loi8hBOvdSIrWffF24TZRuZ42VrE95ItBdzXFjVE7ugYfrFft6HqzHKo4XU8RZF+uXPwRyvj4ZVY+VEFe0RcZX/G2YPsYh6axij+AyB+DbhNWnqPdDGK0p+vdOkl3vHav8rHO5UeXo6xsG8MqfjSv+P+sf6KSwTdVPlUbFB+f2C7yxaC7GuIGqRttA2rWq2547V7l0xRQqLDOjUubo6xsm8pR/FTa4tOIiOSCZxuYDgtjF4AqRvUrlzYbG4/G6q7or4il1THrtfyK/0pbfB7pX1mBN+vcuLg9yAvrnIiI9IVBdxWhbeDNLxG6K+s0fh4drDjWnXGw3uWJ7UJERFT18PTyKoBHuStH8SNQDLiJiIiIiOhpGHRXITwaaziaHpehmk5ERERERFQanl5eRZR27TGDQ/1iPRIRERERkS4YdFchpd2Eh4EiERERERGRcTDormIYYBMREREREckHr+kmIiIiIiIiMhAG3UREREREREQGwqCbiIiIiIiIyEB4TbcBqK6rTktLM3JJiIiIiIiIqhdVHCaX+10x6DaAR48eAQB8fX2NXBIiIiIiIqLq6dGjR3B2djZ2MRh0G4KrqysA4NatWxVq5GeeeQanTp2qcHn0kY9c8khLS4Ovry9u374NJycno5alKrWPvupVH2XRVx5yKUtVrFu5tI+cxgN95SOXPFi3hstDTnVbldqHY63h8pFTn9VXPnIpC+vWcHmkpqaiTp06UlxmbAy6DcDMrPBSeWdn5wptQObm5hXecegrH7nkoeLk5GT0uq1q7QNUvF71VRbWreHKIpc89JmPHMYDfeUjlzxUWLf6z0NFDnVb1doH4FhryHzk0Gf1lY+cygKwbg2Rh4oqLjM2eZSCNBo1apRs8pFLHvoip/WRU1n0QU7rI6ey6INc1kdO7aMPclofueShL6xbw5HT+sipLPogl/WRU/vog5zWR05l0Qc5rY9c8pAbhZDL1eVVSFpaGpydnZGamqq3X2moEOvWMFivhsO6NRzWreGwbg2HdWsYrFfDYd0aDuvWcORWtzzSbQDW1taYMmUKrK2tjV2UKod1axisV8Nh3RoO69ZwWLeGw7o1DNar4bBuDYd1azhyq1se6SYiIiIiIiIyEB7pJiIiIiIiIjIQBt1EREREREREBsKgm4iIiIiIiMhAGHQTERERERERGQiDbj1bvHgx6tatCxsbG4SFheHkyZPGLpJRHT58GD179oSPjw8UCgU2bdqkNl8IgcmTJ8Pb2xu2traIjIxEbGysWprHjx9jwIABcHJygouLC4YOHYonT56opTl//jzatWsHGxsb+Pr6Yt68eSXKsm7dOgQFBcHGxgZNmzbF9u3b9b6+lWn27Nl45pln4OjoCA8PD/Tp0wdXrlxRS5OdnY1Ro0ahZs2acHBwwCuvvILExES1NLdu3UKPHj1gZ2cHDw8PfPTRR8jPz1dLc/DgQbRq1QrW1tYIDAzEihUrSpSnqvT9pUuXolmzZnBycoKTkxPCw8OxY8cOaT7rVH/mzJkDhUKBsWPHStNYv+UzdepUKBQKtVdQUJA0n/VaMXfv3sUbb7yBmjVrwtbWFk2bNsXp06el+dyXlU/dunVL9FuFQiE9o5f9tnwKCgowadIk+Pv7w9bWFvXq1cOMGTNQ9N7J7LPll56ejrFjx8LPzw+2trZo06YNTp06Jc1n3WrHlGIEbcryVIL0Zs2aNcLKykosX75cXLx4Ubz11lvCxcVFJCYmGrtoRrN9+3bx6aefig0bNggAYuPGjWrz58yZI5ydncWmTZvE33//LXr16iX8/f1FVlaWlKZr166iefPm4sSJE+KPP/4QgYGB4vXXX5fmp6amCk9PTzFgwABx4cIF8euvvwpbW1uxbNkyKc3Ro0eFubm5mDdvnrh06ZL47LPPhKWlpYiJiTF4HRhKly5dRHR0tLhw4YI4d+6c6N69u6hTp4548uSJlOadd94Rvr6+Yt++feL06dPi2WefFW3atJHm5+fni+DgYBEZGSnOnj0rtm/fLtzc3MTEiROlNDdu3BB2dnZi3Lhx4tKlS2LRokXC3Nxc7Ny5U0pTlfr+li1bxLZt28TVq1fFlStXxCeffCIsLS3FhQsXhBCsU305efKkqFu3rmjWrJkYM2aMNJ31Wz5TpkwRTZo0Effv35deDx48kOazXsvv8ePHws/PT0RFRYk///xT3LhxQ+zatUtcu3ZNSsN9WfkkJSWp9dk9e/YIAOLAgQNCCPbb8po5c6aoWbOm2Lp1q4iLixPr1q0TDg4O4quvvpLSsM+WX9++fUXjxo3FoUOHRGxsrJgyZYpwcnISd+7cEUKwbrVlSjGCNmV5GgbdetS6dWsxatQo6X1BQYHw8fERs2fPNmKp5KP4BqVUKoWXl5eYP3++NC0lJUVYW1uLX3/9VQghxKVLlwQAcerUKSnNjh07hEKhEHfv3hVCCLFkyRJRo0YNkZOTI6X5+OOPRcOGDaX3ffv2FT169FArT1hYmHj77bf1uo7GlJSUJACIQ4cOCSEK69LS0lKsW7dOSnP58mUBQBw/flwIUTjgmZmZiYSEBCnN0qVLhZOTk1Sf48ePF02aNFFbVr9+/USXLl2k91W979eoUUP88MMPrFM9SU9PF/Xr1xd79uwRERERUtDN+i2/KVOmiObNm2ucx3qtmI8//lg899xzpc7nvkx/xowZI+rVqyeUSiX7bQX06NFDDBkyRG3ayy+/LAYMGCCEYJ+tiMzMTGFubi62bt2qNr1Vq1bi008/Zd2Wk5xjBG3Kog2eXq4nubm5OHPmDCIjI6VpZmZmiIyMxPHjx41YMvmKi4tDQkKCWp05OzsjLCxMqrPjx4/DxcUFoaGhUprIyEiYmZnhzz//lNK0b98eVlZWUpouXbrgypUrSE5OltIUXY4qTVVqm9TUVACAq6srAODMmTPIy8tTW++goCDUqVNHrX6bNm0KT09PKU2XLl2QlpaGixcvSmnKqruq3PcLCgqwZs0aZGRkIDw8nHWqJ6NGjUKPHj1K1AHrt2JiY2Ph4+ODgIAADBgwALdu3QLAeq2oLVu2IDQ0FK+99ho8PDzQsmVLfP/999J87sv0Izc3F6tWrcKQIUOgUCjYbyugTZs22LdvH65evQoA+Pvvv3HkyBF069YNAPtsReTn56OgoAA2NjZq021tbXHkyBHWrZ7IqR61KYs2GHTrycOHD1FQUKA28AOAp6cnEhISjFQqeVPVS1l1lpCQAA8PD7X5FhYWcHV1VUujKY+iyygtTVVpG6VSibFjx6Jt27YIDg4GULjOVlZWcHFxUUtbvH7LW3dpaWnIysqqkn0/JiYGDg4OsLa2xjvvvIONGzeicePGrFM9WLNmDf766y/Mnj27xDzWb/mFhYVhxYoV2LlzJ5YuXYq4uDi0a9cO6enprNcKunHjBpYuXYr69etj165dGDFiBN577z2sXLkSAPdl+rJp0yakpKQgKioKAMeDipgwYQL69++PoKAgWFpaomXLlhg7diwGDBgAgH22IhwdHREeHo4ZM2bg3r17KCgowKpVq3D8+HHcv3+fdasncqpHbcqiDQutUxKRbI0aNQoXLlzAkSNHjF2UKqFhw4Y4d+4cUlNTsX79egwaNAiHDh0ydrFM3u3btzFmzBjs2bOnxFECqhjVESwAaNasGcLCwuDn54e1a9fC1tbWiCUzfUqlEqGhoZg1axYAoGXLlrhw4QK+/fZbDBo0yMilqzp+/PFHdOvWDT4+PsYuislbu3YtfvnlF6xevRpNmjTBuXPnMHbsWPj4+LDP6sHPP/+MIUOGoFatWjA3N0erVq3w+uuv48yZM8YuGskYj3TriZubG8zNzUvcVTMxMRFeXl5GKpW8qeqlrDrz8vJCUlKS2vz8/Hw8fvxYLY2mPIouo7Q0VaFtRo8eja1bt+LAgQOoXbu2NN3Lywu5ublISUlRS1+8fstbd05OTrC1ta2Sfd/KygqBgYEICQnB7Nmz0bx5c3z11Ves0wo6c+YMkpKS0KpVK1hYWMDCwgKHDh3C119/DQsLC3h6erJ+9cTFxQUNGjTAtWvX2G8ryNvbG40bN1ab1qhRI+n0fe7LKu7mzZvYu3cvhg0bJk1jvy2/jz76SDra3bRpU7z55pt4//33pTOM2Gcrpl69ejh06BCePHmC27dv4+TJk8jLy0NAQADrVk/kVI/alEUbDLr1xMrKCiEhIdi3b580TalUYt++fQgPDzdiyeTL398fXl5eanWWlpaGP//8U6qz8PBwpKSkqP16uH//fiiVSoSFhUlpDh8+jLy8PCnNnj170LBhQ9SoUUNKU3Q5qjSm3DZCCIwePRobN27E/v374e/vrzY/JCQElpaWaut95coV3Lp1S61+Y2Ji1AatPXv2wMnJSfqS+bS6qw59X6lUIicnh3VaQR07dkRMTAzOnTsnvUJDQzFgwADpf9avfjx58gTXr1+Ht7c3+20FtW3btsTjGK9evQo/Pz8A3JfpQ3R0NDw8PNCjRw9pGvtt+WVmZsLMTP0rvrm5OZRKJQD2WX2xt7eHt7c3kpOTsWvXLvTu3Zt1qydyqkdtyqIVrW+5Rk+1Zs0aYW1tLVasWCEuXbokhg8fLlxcXNTuqlndpKeni7Nnz4qzZ88KAOLLL78UZ8+eFTdv3hRCFN6C38XFRWzevFmcP39e9O7dW+PjAFq2bCn+/PNPceTIEVG/fn21xwGkpKQIT09P8eabb4oLFy6INWvWCDs7uxKPA7CwsBALFiwQly9fFlOmTDGpxypoMmLECOHs7CwOHjyo9siVzMxMKc0777wj6tSpI/bv3y9Onz4twsPDRXh4uDRf9biVzp07i3PnzomdO3cKd3d3jY9b+eijj8Tly5fF4sWLNT5upar0/QkTJohDhw6JuLg4cf78eTFhwgShUCjE7t27hRCsU30revdyIVi/5fXBBx+IgwcPiri4OHH06FERGRkp3NzcRFJSkhCC9VoRJ0+eFBYWFmLmzJkiNjZW/PLLL8LOzk6sWrVKSsN9WfkVFBSIOnXqiI8//rjEPPbb8hk0aJCoVauW9MiwDRs2CDc3NzF+/HgpDfts+e3cuVPs2LFD3LhxQ+zevVs0b95chIWFidzcXCEE61ZbphQjaFOWp2HQrWeLFi0SderUEVZWVqJ169bixIkTxi6SUR04cEAAKPEaNGiQEKLwNvyTJk0Snp6ewtraWnTs2FFcuXJFLY9Hjx6J119/XTg4OAgnJycxePBgkZ6erpbm77//Fs8995ywtrYWtWrVEnPmzClRlrVr14oGDRoIKysr0aRJE7Ft2zaDrXdl0FSvAER0dLSUJisrS4wcOVLUqFFD2NnZiZdeekncv39fLZ/4+HjRrVs3YWtrK9zc3MQHH3wg8vLy1NIcOHBAtGjRQlhZWYmAgAC1ZahUlb4/ZMgQ4efnJ6ysrIS7u7vo2LGjFHALwTrVt+JBN+u3fPr16ye8vb2FlZWVqFWrlujXr5/ac6RZrxXz+++/i+DgYGFtbS2CgoLEd999pzaf+7Ly27VrlwBQor6EYL8tr7S0NDFmzBhRp04dYWNjIwICAsSnn36q9tgk9tny++2330RAQICwsrISXl5eYtSoUSIlJUWaz7rVjinFCNqU5WkUQgih/XFxIiIiIiIiItIWr+kmIiIiIiIiMhAG3UREREREREQGwqCbiIiIiIiIyEAYdBMREREREREZCINuIiIiIiIiIgNh0E1ERERERERkIAy6iYiIiIiIiAyEQTcRERERERGRgTDoJiIiIiIiIjIQBt1EREREREREBsKgm4iIiIiIiMhAGHQTERERERERGQiDbiIiIiIiIiIDYdBNREREREREZCAMuomIiIiIiIgMhEE3ERERERERkYEw6CYiIiIiIiIyEAbdRESkdx06dECHDh30ll98fDwUCgVWrFihtzxN0bx58xAUFASlUvnUtFFRUXBwcKiEUpEpqlu3LqKionT+3KNHj2Bvb4/t27frv1BERFUUg24iompixYoVUCgU0svGxgYNGjTA6NGjkZiYaOzi0VOkpaVh7ty5+Pjjj2FmVrj7zszMxNSpU3Hw4EHjFo4AAEuWLKnyPwzVrFkTw4YNw6RJk4xdFCIik2Fh7AIQEVHlmj59Ovz9/ZGdnY0jR45g6dKl2L59Oy5cuAA7Ozu9LGP37t16yYf+tXz5cuTn5+P111+XpmVmZmLatGkAoNczC6h8lixZAjc3t3IdQTYl77zzDr7++mvs378fL7zwgrGLQ0QkezzSTURUzXTr1g1vvPEGhg0bhhUrVmDs2LGIi4vD5s2bK5x3ZmYmAMDKygpWVlYVzs/YlEolsrOzjV0MAEB0dDR69eoFGxsbYxflqTIyMoxdBDKgRo0aITg4uMof1Sci0hcG3URE1ZzqSFVcXJw0bdWqVQgJCYGtrS1cXV3Rv39/3L59W+1zHTp0QHBwMM6cOYP27dvDzs4On3zyiTSv+JHXpKQkDB06FJ6enrCxsUHz5s2xcuXKEuVJSUlBVFQUnJ2d4eLigkGDBiElJUVj2ffv34927drB3t4eLi4u6N27Ny5fvlwi3cGDBxEaGgobGxvUq1cPy5Ytw9SpU6FQKNTSKRQKjB49Gr/88guaNGkCa2tr7Ny5EwCwYMECtGnTBjVr1oStrS1CQkKwfv36EstS5bFu3To0btwYtra2CA8PR0xMDABg2bJlCAwMhI2NDTp06ID4+HiN61ZUXFwczp8/j8jISGlafHw83N3dAQDTpk2TLhuYOnWq2mfv3r2LPn36wMHBAe7u7vjwww9RUFCglkapVGLhwoVo0qQJbGxs4OnpibfffhvJyclPLZvq2vHr16+je/fucHR0xIABA3TK9/Tp0+jSpQvc3Nxga2sLf39/DBkyRC1NRkYGPvjgA/j6+sLa2hoNGzbEggULIIRQS6eq/02bNiE4OBjW1tZo0qSJ1I4qN2/exMiRI9GwYUPY2tqiZs2aeO2110q0h+qyjKNHj2LcuHFwd3eHvb09XnrpJTx48EBKV7duXVy8eBGHDh2S2uJpZx/o2qeetk6A9n1dk5SUFIwdO1aq48DAQMydO1fjPQQ6deqE33//vUT9ExFRSTy9nIiomrt+/TqAwms1AWDmzJmYNGkS+vbti2HDhuHBgwdYtGgR2rdvj7Nnz8LFxUX67KNHj9CtWzf0798fb7zxBjw9PTUuIysrCx06dMC1a9cwevRo+Pv7Y926dYiKikJKSgrGjBkDABBCoHfv3jhy5AjeeecdNGrUCBs3bsSgQYNK5Ll3715069YNAQEBmDp1KrKysrBo0SK0bdsWf/31F+rWrQsAOHv2LLp27Qpvb29MmzYNBQUFmD59uhSwFrd//36sXbsWo0ePhpubm5TPV199hV69emHAgAHIzc3FmjVr8Nprr2Hr1q3o0aOHWh5//PEHtmzZglGjRgEAZs+ejRdffBHjx4/HkiVLMHLkSCQnJ2PevHkYMmQI9u/fX2YbHTt2DADQqlUraZq7uzuWLl2KESNG4KWXXsLLL78MAGjWrJmUpqCgAF26dEFYWBgWLFiAvXv34osvvkC9evUwYsQIKd3bb7+NFStWYPDgwXjvvfcQFxeHb775BmfPnsXRo0dhaWlZZvny8/PRpUsXPPfcc1iwYIF0mYI2+SYlJaFz585wd3fHhAkT4OLigvj4eGzYsEHKXwiBXr164cCBAxg6dChatGiBXbt24aOPPsLdu3fx3//+V608R44cwYYNGzBy5Eg4Ojri66+/xiuvvIJbt25J/fzUqVM4duwY+vfvj9q1ayM+Ph5Lly5Fhw4dcOnSpRKXWrz77ruoUaMGpkyZgvj4eCxcuBCjR4/Gb7/9BgBYuHAh3n33XTg4OODTTz8FgFK3BxVd+pQ266RrXy8qMzMTERERuHv3Lt5++23UqVMHx44dw8SJE3H//n0sXLhQLX1ISAj++9//4uLFiwgODn5q/kRE1ZogIqJqITo6WgAQe/fuFQ8ePBC3b98Wa9asETVr1hS2trbizp07Ij4+Xpibm4uZM2eqfTYmJkZYWFioTY+IiBAAxLfffltiWRERESIiIkJ6v3DhQgFArFq1SpqWm5srwsPDhYODg0hLSxNCCLFp0yYBQMybN09Kl5+fL9q1aycAiOjoaGl6ixYthIeHh3j06JE07e+//xZmZmZi4MCB0rSePXsKOzs7cffuXWlabGyssLCwEMV3gwCEmZmZuHjxYol1yszMVHufm5srgoODxQsvvFAiD2traxEXFydNW7ZsmQAgvLy8pHUVQoiJEycKAGppNfnss88EAJGenq42/cGDBwKAmDJlSonPDBo0SAAQ06dPV5vesmVLERISIr3/448/BADxyy+/qKXbuXOnxumlLWfChAlq07XNd+PGjQKAOHXqVKnLUPWLzz//XG36q6++KhQKhbh27Zo0DYCwsrJSm/b3338LAGLRokXStOLtKYQQx48fFwDETz/9JE1TbTeRkZFCqVRK099//31hbm4uUlJSpGlNmjRR6/dPo0uf0maddOnrfn5+YtCgQdL7GTNmCHt7e3H16lW1dBMmTBDm5ubi1q1batOPHTsmAIjffvtN6/UlIqqueHo5EVE1ExkZCXd3d/j6+qJ///5wcHDAxo0bUatWLWzYsAFKpRJ9+/bFw4cPpZeXlxfq16+PAwcOqOVlbW2NwYMHP3WZ27dvh5eXl9pNwCwtLfHee+/hyZMnOHTokJTOwsJC7Sisubk53n33XbX87t+/j3PnziEqKgqurq7S9GbNmqFTp07S44wKCgqwd+9e9OnTBz4+PlK6wMBAdOvWTWNZIyIi0Lhx4xLTbW1tpf+Tk5ORmpqKdu3a4a+//iqRtmPHjtIRcgAICwsDALzyyitwdHQsMf3GjRsay6Ly6NEjWFhYlOsRYO+8847a+3bt2qktb926dXB2dkanTp3U2jwkJAQODg4l2rw0RdtMl3xVZ05s3boVeXl5GvPevn07zM3N8d5776lN/+CDDyCEwI4dO9SmR0ZGol69etL7Zs2awcnJSW29i7ZnXl4eHj16hMDAQLi4uGhs0+HDh6udot2uXTsUFBTg5s2bZVVLmXTpU09bp/L09aLWrVuHdu3aoUaNGmrtFRkZiYKCAhw+fFgtfY0aNQAADx8+1G2liYiqIZ5eTkRUzSxevBgNGjSAhYUFPD090bBhQ+kRVLGxsRBCoH79+ho/W/w041q1aml1w7SbN2+ifv360nJUGjVqJM1X/fX29i4RXDZs2LBEfpqmq/LctWsXMjIykJaWhqysLAQGBpZIp2kaAPj7+2ucvnXrVnz++ec4d+4ccnJypOmarpWtU6eO2ntnZ2cAgK+vr8bp2lw7XR42NjYlTi2uUaOG2vJiY2ORmpoKDw8PjXkkJSU9dTkWFhaoXbu22jRt842IiMArr7yCadOm4b///S86dOiAPn364D//+Q+sra0BFLa3j4+P2g8WQMn+o1K8/oGS652VlYXZs2cjOjoad+/eVbs2OTU1tcTni+epCjor0nYV6VOqMqiWn5SUpHNfLyo2Nhbnz58v9VT04v1AVV/aXCtORFTdMegmIqpmWrdujdDQUI3zlEolFAoFduzYAXNz8xLziwfDRY/UVRWa1umPP/5Ar1690L59eyxZsgTe3t6wtLREdHQ0Vq9eXSK9prora7p4ys2oatasifz8fKSnp5cIPMtS2vKKUiqV8PDwwC+//KJxvjbXA1tbW5f4QUXbfBUKBdavX48TJ07g999/x65duzBkyBB88cUXOHHiRLmO7mtTz++++y6io6MxduxYhIeHw9nZGQqFAv3799d447Dytl1p9NWnyrv84pRKJTp16oTx48drnN+gQQO196pg383NTS/LJyKqyhh0ExGRpF69ehBCwN/fv8SX7Irw8/PD+fPnoVQq1YKzf/75R5qv+rtv3z48efJELdi6cuVKifw0TVfl6ebmBnt7e9jY2MDGxgbXrl0rkU7TtNL873//g42NDXbt2iUdfQUKH+NVGYKCggAU3sW86I3S9HGUsV69eti7dy/atm2r1x9RdM332WefxbPPPouZM2di9erVGDBgANasWYNhw4bBz88Pe/fuLfGjQ/H+o4v169dj0KBB+OKLL6Rp2dnZpd4pXxu6tIe++5SHh0eF+nq9evXw5MkTtTvkl0X1tAPV2QZERFQ6XtNNRESSl19+Gebm5pg2bVqJI2hCCDx69Khc+Xbv3h0JCQnSnZ6BwjteL1q0CA4ODoiIiJDS5efnY+nSpVK6goICLFq0SC0/b29vtGjRAitXrlQLki5cuIDdu3eje/fuAAqPDkZGRmLTpk24d++elO7atWslrgMui7m5ORQKhdqjtuLj47Fp0yat86iI8PBwAIWP1ipKdYftigSKffv2RUFBAWbMmFFiXn5+frnz1jbf5OTkEn2tRYsWACCdct29e3cUFBTgm2++UUv33//+FwqFQqtrloszNzcvsdxFixaVeJyaLuzt7bWuL333qYr29b59++L48ePYtWtXiXkpKSnIz89Xm3bmzBk4OzujSZMm5SovEVF1wiPdREQkqVevHj7//HNMnDgR8fHx6NOnDxwdHREXF4eNGzdi+PDh+PDDD3XOd/jw4Vi2bBmioqJw5swZ1K1bF+vXr8fRo0excOFC6ehlz5490bZtW0yYMAHx8fFo3LgxNmzYoPEa2/nz56Nbt24IDw/H0KFDpUeGOTs7qz2reurUqdi9ezfatm2LESNGSMFbcHAwzp07p1X5e/TogS+//BJdu3bFf/7zHyQlJWHx4sUIDAzE+fPnda4PXQUEBCA4OBh79+5Ve361ra0tGjdujN9++w0NGjSAq6srgoODdXqEU0REBN5++23Mnj0b586dQ+fOnWFpaYnY2FisW7cOX331FV599VWdy6xtvitXrsSSJUvw0ksvoV69ekhPT8f3338PJycn6ceTnj174vnnn8enn36K+Ph4NG/eHLt378bmzZsxduxYtRuMaevFF1/Ezz//DGdnZzRu3BjHjx/H3r17pcdvlUdISAiWLl2Kzz//HIGBgfDw8MALL7ygMa0h+lRF+vpHH32ELVu24MUXX0RUVBRCQkKQkZGBmJgYrF+/HvHx8Wqnku/Zswc9e/bkNd1ERNowyj3TiYio0qkefVTWo5lU/ve//4nnnntO2NvbC3t7exEUFCRGjRolrly5IqWJiIgQTZo00fj54o8ME0KIxMREMXjwYOHm5iasrKxE06ZN1R4BpvLo0SPx5ptvCicnJ+Hs7CzefPNNcfbs2RKPDBNCiL1794q2bdsKW1tb4eTkJHr27CkuXbpUIs99+/aJli1bCisrK1GvXj3xww8/iA8++EDY2NiopQMgRo0apXGdfvzxR1G/fn1hbW0tgoKCRHR0tJgyZYrGx44VzyMuLk4AEPPnz1ebfuDAAQFArFu3TuMyi/ryyy+Fg4NDicdMHTt2TISEhAgrKyu1x4cNGjRI2Nvbl8hHU5mFEOK7774TISEhwtbWVjg6OoqmTZuK8ePHi3v37pVZrtKWo22+f/31l3j99ddFnTp1hLW1tfDw8BAvvviiOH36tFo+6enp4v333xc+Pj7C0tJS1K9fX8yfP1/tMV5ClN6GxR+RlZycLPVHBwcH0aVLF/HPP/+USFfadqNquwMHDkjTEhISRI8ePYSjo6MA8NTHh1WkT2laJyG07+uaPpueni4mTpwoAgMDhZWVlXBzcxNt2rQRCxYsELm5uVK6y5cvS48fJCKip1MIoac7cBAREZmQPn364OLFi4iNjTV2UbSSmpqKgIAAzJs3D0OHDjV2cciE6Luvjx07FocPH8aZM2d4pJuISAu8ppuIiKq8rKwstfexsbHYvn07OnToYJwClYOzszPGjx+P+fPna7y7NhFg+L7+6NEj/PDDD/j8888ZcBMRaYlHuomIqMrz9vZGVFQUAgICcPPmTSxduhQ5OTk4e/Zsqc8kJzJF7OtERPLDG6kREVGV17VrV/z6669ISEiAtbU1wsPDMWvWLAYhVOWwrxMRyQ+PdBMREREREREZCK/pJiIiIiIiIjIQBt1EREREREREBsJrug1AqVTi3r17cHR05J09iYiIiIiIKpEQAunp6fDx8YGZmfGPMzPoNoB79+7B19fX2MUgIiIiIiKqtm7fvo3atWsbuxgMug3B0dERQGEjOzk5Gbk0pic3NxdffPEFAOCDDz4AALX3VlZWRisbmZ7i/Umb/jN3LjBrFvDJJ8DHHz99ekWWRURERET6lZaWBl9fXykuMzYG3QagOqXcycmJQXc55ObmwsbGBgCk+iv6noEM6aJ4f9Km/8ycCdjYAJMnF/6dNAmYMaMw4J4+vfC9vpZFRERERIYhl0t9GXQTEWkwaRKQlnYXkycvwtSpd6BULsH06U6lBtxERERERJow6CYiKub8+fP44osvsHr1agD5UCoBc/NQTJo01thFIyIiIiITY/xbuRERycQff/yBLl26oHnz5vjpp5+Qn58PoPDmGwUFmzBjhnHLR0RERESmh0E3ERGA2NhYREZGYvfu3TAzM0NwcF8Af+L99w8DABSKPzB58iMG3kRERESkEwbdREQAdu3ahdzcXLRo0QJjxlzDhQu/Yfr01vjyS380a9YMQijx0ktbMXkyGHgTERERkdZ4TTfJjpmZGRo3biz9D6DEeyJtaepPmvzxxx8AAFfXl/Hf//qr3aW8T58+OH/+PIDNmD59ECZPLpxe/KZq2i6LiIiIiKoPhRBCGLsQVU1aWhqcnZ2RmprKR4YRmQAhBGrXro179+4BOIDp0zuoBdRnz55Fq1atYGdnh4cPH2LBAltMnlz248OIiIiIyDjkFo+Z/KGYxYsXo27durCxsUFYWBhOnjxZatoVK1ZAoVCovVTP1FURQmDy5Mnw9vaGra0tIiMjERsba+jVICIjiouL+/+A2xKTJoWVCKRbtGiBOnXqIDMzE3v37sWkSYUBN081JyIiIqKnMemg+7fffsO4ceMwZcoU/PXXX2jevDm6dOmCpKSkUj/j5OSE+/fvS6+bN2+qzZ83bx6+/vprfPvtt/jzzz9hb2+PLl26IDs729CrQ0RGojq13Nc3FNOn25aYr1Ao0Lt3bwDApk2bAEAKvAsKKq2YRERERGSCTDro/vLLL/HWW29h8ODBaNy4Mb799lvY2dlh+fLlpX5GoVDAy8tLenl6ekrzhBBYuHAhPvvsM/Tu3RvNmjXDTz/9hHv37klftMnwcnNzMW3aNEybNg25ubkl3hPpQpv+owq6X3+9Xan5qILu33//HQX/H2lPmgRMnarbsoiIiIioejHZoDs3NxdnzpxBZGSkNM3MzAyRkZE4fvx4qZ978uQJ/Pz84Ovri969e+PixYvSvLi4OCQkJKjl6ezsjLCwsDLzJCLTpgq6n3vuuVLTtG/fHi4uLnjw4AFOnDhRWUUjIiIiIhNnskH3w4cPUVBQoHakGgA8PT2RkJCg8TMNGzbE8uXLsXnzZqxatQpKpRJt2rTBnTt3AED6nC55AkBOTg7S0tLUXkRkGpKSknD16lUAQNu2bUtNZ2lpiR49egAAz3whIiIiIq2ZbNBdHuHh4Rg4cCBatGiBiIgIbNiwAe7u7li2bFmF8p09ezacnZ2ll6+vr55KTESGduTIEQBAcHAwXF1dy0zbp08fAIVBNx/8QERERETaMNmg283NDebm5khMTFSbnpiYCC8vL63ysLS0RMuWLXHt2jUAkD6na54TJ05Eamqq9Lp9+7Yuq0JERqQ6tbxdu9Kv51bp0qULrKyscO3aNVy+fNnQRSMiIiKiKsBkg24rKyuEhIRg37590jSlUol9+/YhPDxcqzwKCgoQExMDb29vAIC/vz+8vLzU8kxLS8Off/5ZZp7W1tZwcnJSexGRadAl6HZ0dJTu+bB582aDlouIiIiIqgaTDboBYNy4cfj++++xcuVKXL58GSNGjEBGRgYGDx4MABg4cCAmTpwopZ8+fTp2796NGzdu4K+//sIbb7yBmzdvYtiwYQAK72w+duxYfP7559iyZQtiYmIwcOBA+Pj4SKeVElHVkZ6ejrNnzwLQLugGUOLRYUREREREZbEwdgEqol+/fnjw4AEmT56MhIQEtGjRAjt37pRuhHbr1i2Ymf37u0JycjLeeustJCQkoEaNGggJCcGxY8fQuHFjKc348eORkZGB4cOHIyUlBc899xx27twJGxubSl+/6srMzAz169eX/gdQ4j2RtjT1J5Xjx49DqVTCz88PtWvX1iq/Xr164Z133sHJkydx7949+Pj4aLUsIiIiIqqeFIJ3A9K7tLQ0ODs7IzU1laeaE8nY5MmTMWPGDLzxxhv4+eeftf5ceHg4Tpw4gaVLl+Kdd94xYAmJiIiISFdyi8d4KIaIqi1drucuSnW5Ca/rJiIiIqKnYdBNRNVSbm4uTpw4AUD3oFt1Xfe+ffuQlZWl97IRERERUdXBoJtkJzc3F7NmzcKsWbOQm5tb4j2RLkrrP2fOnEF2djbc3NwQFBSkU54NGzaEt7c38vLycObMmacui4iIiIiqLwbdJEt5eXnIy8sr9T2RLjT1H9Wp5c899xwUCoVO+SkUCrRp0wYAcOzYsacui4iIiIiqLwbdRFQtFQ26yyM8PBxAyaCbiIiIiKgoBt1EVO0olUocPXoUgO7Xc6sUPdLNh0AQERERUWkYdBNRtXPp0iUkJyfDzs4OLVu2LFcerVq1gpWVFR48eIAbN27ouYREREREVFUw6Caiakd1Svizzz4LS0vLcuVhbW2N0NBQtfyIiIiIiIpj0E1E1U5MTAyAwqPVFcHruomIiIjoaSyMXQCi4hQKBfz8/KT/AZR4T6QtTf3p4sWLAIDg4OAK5d2mTRt88cUXUtCtaVlEREREVL0pBO8ApHdpaWlwdnZGamoqnJycjF0cIirGw8MDDx48wKlTp6RTxMvj/v378PHxgUKhQEpKCrd3IiIiIhmQWzzG08uJqFpJSkrCgwcPoFAo0KhRowrl5e3tDX9/fwghcPLkST2VkIiIiIiqEgbdRFStqE4t9/f3h729fYXz43XdRERERFQWBt0kO7m5uZg/fz7mz5+P3NzcEu+JdFG8/+jrem6Vos/rZl8lIiIiouJ4IzWSpczMzDLfE+miaP+5cOECAKBJkyZ6yVsVdJ84cQJKpZJ9lYiIiIjU8Eg3EVUr+j7S3bRpU9jb2yM1NRX//POPXvIkIiIioqqDQTcRVRtCCL0f6bawsEDr1q0BAMePH9dLnkRERERUdTDoJqJq4/79+0hJSYG5uTkaNmyot3yLnmJORERERFQUg24iqjZUp5bXr18fNjY2estXFXTzSDcRERERFcegm4iqDVXQra9Ty1WeffZZAEBsbCwyMjL0mjcRERERmTajBN1jx47Fw4cPjbFoMgEKhQI+Pj7w8fGBQqEo8Z5IF0X7z+XLlwHo7yZqKq6urggKCgIAZGVlsa8SERERkcQojwz7+uuv4ezsjOzsbHh4eKBHjx7SF1YiS0tLvPXWW2rTir8n0lbR/vTDDz8A0P+RbqDwFPN//vkHjo6O7K9EREREJDHa6eW//vorMjIycPbsWURERGDIkCHIzc01VnGIqIpTKpW4dOkSAP0f6Qb+va772LFjes+biIiIiEyXQgghKnuhFhYWSEhIgJubGwAgMzMTw4cPR+3atTFnzpzKLo7epaWlwdnZGampqXBycjJ2cYgIQHx8PPz9/WFpaYmMjAxYWlrqNf/Lly+jcePGsLW1RWpqqt7zJyIiIiLtyC0eM8qRbh8fH5iZ/btoOzs7LFmyBGvWrDFGcUhm8vLysHDhQixcuBB5eXkl3hPpQtV/Zs6cCQAICgoySEDcsGFDuLi4ICsrCxMmTGBfJSIiIiIARgq6X375ZbzxxhtqN1NLSkpCdna2MYpDMiOEQGpqKlJTUyGEKPGeSBeq/hMfHw/AMNdzA4CZmRnCwsIAFB71Zl8lIiIiIsBIQfecOXPg7++POnXqoE2bNujRowfCwsIwfPhwYxSHiKqBpKQkAIa5nlslPDwcAHD79m2DLYOIiIiITItR7l5uY2ODxYsXY8aMGTh48CAeP36Mzz77TPrCSkSkb6qg21BHuoF/n9d969YtHukmIiIiIgCVcKR7x44deOONNxAREYHu3btjwoQJOHXqFIDCZ9u+/PLLGDZsWLkD7sWLF6Nu3bqwsbFBWFgYTp48WWra77//Hu3atUONGjVQo0YNREZGlkgfFRUlPRta9eratWu5ykZE8qBUKqXLWQx5pLt169YwNzdHWloarly5YrDlEBEREZHpMGjQvXDhQrz44ovYuHEjMjIykJSUhK+//hrPPvssevTogYSEhArl/9tvv2HcuHGYMmUK/vrrLzRv3hxdunSRjmgVd/DgQbz++us4cOAAjh8/Dl9fX3Tu3Bl3795VS9e1a1fcv39fev36668VKicRGVdycjLy8/Nha2sLf39/gy3H3t4efn5+AAp/cCQiIiIiMmjQ/dVXX6FFixa4efMmTp8+jdOnTyM5ORnffPMNLly4gNatW5cIeHXx5Zdf4q233sLgwYPRuHFjfPvtt7Czs8Py5cs1pv/ll18wcuRItGjRAkFBQfjhhx+gVCqxb98+tXTW1tbw8vKSXjVq1Ch3GYnI+FQ/xAUFBcHc3Nygy2rQoAEAYOfOnQZdDhERERGZBoMG3YmJiRg2bJj0PG6gMKAdMWIETp8+DYVCgfHjx5cr79zcXJw5cwaRkZHSNDMzM0RGRuL48eNa5ZGZmYm8vDy4urqqTT948CA8PDzQsGFDjBgxAo8ePSpXGal8FAoF3N3d4e7uLp3iX/Q9kS4UCgUyMjIAGPZ6btWyVHcwP3LkCNLS0gy6PCIiIiKSP4PeSK1hw4ZITEzUOM/d3R0jR47EnDlzypX3w4cPUVBQAE9PT7Xpnp6e+Oeff7TK4+OPP4aPj49a4N61a1e8/PLL8Pf3x/Xr1/HJJ5+gW7duOH78eKlHyHJycpCTkyO95xftirG0tMTIkSPVphV/T6QtS0tLODg4AACaNm1q8GVNnToVq1evRmxsLPbs2YNXXnnFoMskIiIiInkz6JHu8ePH45tvvkFsbKzG+XZ2dkY7cjlnzhysWbMGGzduhI2NjTS9f//+6NWrF5o2bYo+ffpg69atOHXqFA4ePFhqXrNnz4azs7P08vX1rYQ1ICJtXbhwAYBhb6JWVI8ePQAA27Ztq5TlEREREZF8GTTo/uKLL2Bubo7WrVtj3rx5uHfvnjTv+vXrWLx4MV577bVy5e3m5gZzc/MSR9ITExPh5eVV5mcXLFiAOXPmYPfu3WjWrFmZaQMCAuDm5oZr166VmmbixIlITU2VXnxGL5F85OXlSXcSN/Tp5SqqoHv79u1QKpWVskwiIiIikieDBt0+Pj6wt7dHWloaJkyYAF9fX7i7u8PLywsNGjSAra0thg8fjry8PJ3ztrKyQkhIiNpN0FQ3RSvr8WPz5s3DjBkzsHPnToSGhj51OXfu3MGjR4/g7e1dahpra2s4OTmpvaj88vLysGTJEixZsgR5eXkl3hPp4tKlS8jLy4O1tXWZ27E+qPrqpUuX4ODggMTERJw9e9agyyQiIiIieTPoNd1btmwBADx58gQXL15ETEwMLly4IP39+++/pefaBgQEoFGjRmjcuDFmzpypVf7jxo3DoEGDEBoaitatW2PhwoXIyMjA4MGDAQADBw5ErVq1MHv2bADA3LlzMXnyZKxevRp169aVHlnm4OAABwcHPHnyBNOmTcMrr7wCLy8vXL9+HePHj0dgYCC6dOligBoiTYQQePDggfQ/gBLvibR18eJFAFC7oaOhFO27HTt2xObNm7Ft2zaEhIQYfNlEREREJE8GDbpVHBwcEBYWJt3VVyUpKalEIL5v3z6tg+5+/frhwYMHmDx5MhISEtCiRQvs3LlTurnarVu3YGb278H8pUuXIjc3F6+++qpaPlOmTMHUqVNhbm6O8+fPY+XKlUhJSYGPjw86d+6MGTNmwNrauoK1QETG8NdffwHAUy870beuXbtKQffkyZMrddlEREREJB+VEnSXxsPDAx07dkTHjh3Lncfo0aMxevRojfOK3/wsPj6+zLxsbW2xa9eucpeFiOTnzJkzAAovd6lMXbt2BQCcOnUKSUlJ8PDwqNTlExEREZE8GPSabiIiY1IqldKR7lq1alXqsn18fNCyZUsIIbBjx45KXTYRERERyQeDbiKqsq5du4a0tDRYWFjA3d290pdf9C7mRERERFQ9Megmoirr1KlTAAqv5zY3N6/05auC7l27dvHO+0RERETVFINukoWpU4EZMwr/VygUcHZ2hrOzMxQKRYn3KjNmFH6OqDSnT58GAPj7+5foP4ZQvK8+88wzcHNzQ2pqKo4dO2bQZRMRERGRPBn1RmpEKubmgOoGz5MmWWLs2LFq84u/nzGjMP306ZVTPjJNqiPdb731Ft58802DL8/SsmTf7dq1K1atWoVt27YhIiLC4GUgIiIiInnhkW6ShUmTCgPoyZP/PeJdmqIB96RJlVM+Mj35+fnSTdSeeeYZo5VDdYr5tm3bjFYGIiIiIjIeHukm2VAF0P8e8S6ZhgE3aevy5cvIysqCo6MjGjRoYLRydOnSBebm5rh06RLi4+NRt25do5WFiIiIiCofj3STrEyaBEyZUoDJk4HevU8jLy8PeXl5+P7779G792kG3KQ11anlrVq1wo8//ojvv//e4DczU/XVosuqUaMG2rRpA4B3MSciIiKqjhh0k+x88kkBnn/+ALZsCcXMmQoIIfDrr4HYsiUUU6bkM+AmrahuotaqVSvcu3cP9+7dgxDCoMsUQmhcVvfu3QHwFHMiIiKi6ohBN8lSRMRhhIWtwrRpL8PW9gMcONAOzz9/AJ98ojR20chEqI50h4aGGrkk/17XvX//fmRmZhq5NERERERUmRh0k4x9A+B3KJXfwMxsHyIiDhu7QGQicnJy8PfffwMAQkJCjFwaIDg4GH5+fsjOzkZ0dLSxi0NERERElYhBN8nW5cvp0v9K5T84dKi9EUtDpiQmJgZ5eXmoWbOmLG5cplAoMH78eADAtGnTkJ6e/pRPEBEREVFVwaCbZOnAgXCkpV2X3vv47MWBA89j1ix2WXq6oqeWKxQKI5em0FtvvYX69evjwYMHWLBggbGLQ0RERESVhBEMyc6sWWY4dMgbQI40zcLiPJ5//gCmTbN46nO8iVQ3UZPD9dwqlpaWmDVrFgDgiy++QEJCgpFLRERERESVgUE3ycqMGcC0aRZo3nwLAMDCovBR8o8fP0a3bqcxZUo+Jk8GA28qk+pI9zPPPAMAsLOzg52dXaUsu6xlvfLKKwgLC0NGRgamTZtWKeUhIiIiIuNSCEM/Q6caSktLg7OzM+49uAcnJ6cS883NzGFjYSO9z8jNKDUvM4UZbC1ty5U2My+z1EckKRQK2FnalSttVl4WlKL0u4jbW9mXK+2UaXmYPtUSn03JhaXlHEz5bAqef+F5HNh/AAqFArm5ubCwKDzSPXky8NmUXEz4RPNzl+0s7aTTinPyc5CvzC+1DLqktbW0hZmi8Leq3IJc5BWU/txnXdLaWNjA3Mxc57R5BXnILcgtNa21hTUszCx0TpuvzEdOfk6paa3MrWBpbqlz2gJlAbLzs0tNa2luCStzK53TKoUSWXlZAIDMzEx41fSCUqnE1RtX4VPLp9S0mliYWcDawhpA4SPAMvNKv9u4LmlV2/3hw4cREREBc3NznDp7Cg0aNig1rQrHiELZ+dkoUBboJS3HiELVcYyoaFpDjxEqZW3LHCM0p+UYwTGCY4TuaavqGJGWlgYfdx+kpqZqjMcqG4NuA1AF3ZgAwKbk/O71u2Pbf/59Xq/9LPtSN7IIvwgcjDoovXef746HmQ81pg31CcWpt05J7+surIubqTc1pm3s3hgXR16U3jdZ0gSXHlzSmNbP2Q/xY+Ol9898/wxO3zutMa2bnRsefPRAet9hRQccunlIY1o7SztkfFK4YasCaTw/CYj4HNgM4CyACACHAQjg7t278PHxKSxvvzW4tLb/v+mLeTLxibRBRm2Kwsq/V2osAwAkfZgEd3t3AMCobaOw5PSSUtPGjYlDXZe6AICPdn+EBcdLvzb3wogLaOLRBAAw9eBUTDtU+pHNk8NO4plahUdl5x+dj/F7x5ea9sCgA+hQtwMAYPHJxRi9Y3Spabe+vhU9GhQ+rmrFuRUYvHlwqWnXvroWrzV5DQCw7uI69F3ft9S00b2jEdUiCgCw7eo2vPjri6Wm/abbNxjVehQA4GD8QTy/8vlS086LnIeP2n4EADh19xRa/9C61LRTIqZgaoepAICLSRcRvDS4cMYtAMsBOAD4sHDSh+EfYn7n+QCA+JR4+H/lX2q+I0NHYnGPxQCABxkP4LHAo9S0g5oPwoo+KwAU7qQcZjuUmvbVxq9i3WvrAAA9e/bE1q1bgUYA+pVMyzGiUNExAgB6rO6B7bHbNaYFADHl393Za+tew/pL60tNyzGiULUcIzSQ2xgBAIpppd+PgmNEIY4R/+IYUYhjRCGOEQCyAcyBbIJunl5OslBQANR/9ed/A+hH/z/DDYXBE4B79+5J6Ru/+r/CgFtpXqnlJBOg6iY+Ri1FmebMmQMoAFwGcNvYpSEiIiIiQ+KRbgPg6eUVOy0sLy8PdXzqID0tHQf+OIBxY8bh7F9nMWbMGMyfPx+WlpY8LYynhZV6qtfQqKH47dff8NmUzzDhkwnIy8vDxrUboVAoMGDAAJhbmBvstLDUzFT8b+3/AACv9H0FlpaWUtri2/2gwYPw04qf0Oa5Nti1d5faXdY5RmhOy1NHOUbw1FHd03KMKF9ajhGFOEbonpZjRCFjjxE8vbwaUAXdcmlkU/PgwQN4eHhI/0dFRWHbtm148cUX8b///Q9WVlZGLiHJWcOGDXH16lXs2LEDXbt2RW5uLmbPng0AmDhxokH7jy7LunPnDurXr4/s7Gxs2bIFPXv2NFi5iIiIiKoTucVjPL2cZOfatWsAAHt7ezg5OcHLywsAkJ6ebsxiUSVITEzE1atXER8fj/v37yM1NVWnzycnJ+Pq1asA5PW4ME1q166NMWPGAAAmTJiA/PzSj4wQERERkeli0E2yowq6a9asCQDw9vYGADx58sRoZSLDW7RoEXx8fNCwYUP4+/vDx8cHLi4uGDZsGJTK0k8xKp4HAAQHB8PNzc2QxdWLCRMmwNXVFZcuXcL3339v7OIQERERkQEw6CbZiY2NBVAy6OaR7qrr559/xnvvvQelUglHR0fY2NhI18f9+OOP+PTTT5+ax6NHj/DFF18AACZNmmTQ8uqLi4uLtG4jR47Eu+++i4yM0q+lIiIiIiLTY2HsAlRpGRmAuYa7a5ubAzY26ulKY2YG2NqWL21mJlDaJfsKBWBnV760WVlAWUce7e3LlzY7GygowLV//gEAuLq6AhkZ8KpRA0CxoPv/05bKzq6w3ACQkwOUdequLmltbQvrGQByc4G80m9UolNaG5t/+4ouafPyCtOXxtoasLDQPW1+fmFdlMbKClDdJEyXtAUFhW1XxO/bt2Pw4MJHkIx99118+dVXhQF3QQF+jo7GwLfewpw5c+Dv44PhQ4b8+0FLy8K8AUCpxLyZM5GWlobmTZvi1W7d/t1Wiq+zUlnYL0tjYVFYF0DhNpFZ+k1NSqQtun1mZKi3Yynb/XtDh+L6P/9gyfff45tvvsHOHTuw8vvv0eb550uk1agajhF6ScsxopAJjBFqim73uqR92navS9qKjBFlpdXluwG/R2hOyzFC97QcIwr/5xhRvrRyHiPkdhBDkN6lpqYKACK1sGuVfHXvrv4BOzvN6QAhIiLU07q5lZ42NFQ9rZ9f6WkbN1ZP27hx6Wn9/NTThoaWntbNTT1tRETpae3s1NN27y4EIEIVCgFA9O3bV+RYWopj5uYCgHB0dBQ5OTmFaV99tfR8ASGePPk330GDyk6blPRv2pEjy04bF/dv2g8/LDvthQv/pp0ypey0J0/+m3bevLLTHjjwb9pvvik77dat/6aNji477dq1/6Zdu7bstNHRUtL9s2aJjwCxERB5mtJ+882/+R44oDbvECBsAAFADAJEwZw5/6Y9eVIIQEz9//nmgNhRNN8pU6Sk9w4cELb/n+73YsvPsbQUU6dOFVOnTi3sP3FxZa/byJH/liEpqey0gwb9m/bJE/VlWVqqp331VaGmWF67AVH7/9dBAYiPPvpIZGVlFablGFHo/8eIUl9FcYwoJIMxQmzdWnbaMsaIEq958/5N+/9jRKmvImOEuHCh7LQffvhvWgOOEWWmfcoYofbi94jCF8eIf18cIwpfHCMKXxwjRCoKv1OlpqYKOeDp5SQrAkCsEAAAz/+/06D3//96nJGRgYKyfpWmSvXnn38iMjISL3zyCeYDeAmAH4DJ+PdR2WU5BaAngGwAvQD8AMDMrOSQNBnAQAAFAF4D8LeGvGZ+9x2yAIQD6KFhvqUQao/vMiTL3FxYlnUkoBSdAMQAiELhdjB//nyEhITg9OnT+i0gEREREVUqPjLMAKRb1N/T/JxunvJR6O+YGDh6eCAgIKBwQnY2bt+8iTpBQbCwsMCTxERYW1sjPz8fVjVqQAiB+/fvF97NnKeFFf5vhNPClEolRn7wAZb9/42/LC0t0bNbN/xx7BgePHwIAKhRowZWL1+Orp06aTwt7OTp0+jcuzdSU1MR8dxz2LFxI2xtbUs9LSw3Nxdd+/TBgcOH4erqimVffYVX+/YFrKwQHx+PBg0aIC8vD/u3bcPzERElC21ip4X9vnMn3ho1ComJiTA3N0f3Ll0Q8dxziHjuObRo1gwWFkWuDKrCY0SJtDx1VPe0PHW08H+eOlq+tBwjCv/nGKF7Wo4Rhf9zjChfWj2MEWlpaXD2kc9zumHkI+1VknR6uUxOZ5CjRYsWCQDCyclJPHz4UJr++++/CwAiODhYLb2np6cAIM6cOVPZRaUiCgoKxLBhwwQAYWZmJgYPHizi/v9UuezsbLFmzRrRsmVLAUAoFAoxc+ZMUVBQoJbHiRMnhJOTkwAg2rVrJ9LT07VadnJysggNDRX4/9OF3njjDZGcnCyioqIEANGxY0d9r65RPXz4UPTr109aX9XL0dFRdO3aVcyePVscPXr030suiIiIiEgIIb94zORPL1+8eDHq1q0LGxsbhIWF4eTJk2WmX7duHYKCgmBjY4OmTZti+/btavOFEJg8eTK8vb1ha2uLyMhI6W7a1UlKSgoOHDig9aOadPHo0SPp7tJpaWlYuXKlNO/vvwtPHm7WrJnaZwIDAwEAV65c0Xt5SDtCCIwePRo//PADzMzMsHr1aixfvhx169YFAFhbW6Nfv344fvw4hg8fDiEEPv30U/Ts2RPffPMN1q5dizVr1qBz585IS0tD+/btsX37djg4OGi1fBcXFxw9ehSffPIJzMzMsGrVKgQHB+Onn34CAMycOdNQq24UNWvWxJo1a3D69GnMmzcPL774IpydnZGeno6dO3di4sSJaNu2LVxcXNCxY0dMnz4dBw8eRFZZv74TERERUaUz6dPLf/vtNwwcu9eElAAAiMNJREFUOBDffvstwsLCsHDhQqxbtw5XrlyBh4dHifTHjh1D+/btMXv2bLz44otYvXo15s6di7/++gvBwcEAgLlz52L27NlYuXIl/P39MWnSJMTExODSpUuwKXqaRhmk08vlcjqDjoQQePbZZ3Hy5EmMHj1aevaxPowZMwZff/212rSQkBCEhYXh9u3buHXrFv7++2+8+eab6Nq1K/r27QsA6NKlC/bv348JEyZgwIABuHv3Lp577jnYFz29hAwmJycHY8eOxbfffguFQoGffvoJb7zxRpmf+eGHHzBq1CjkajgVrX379ti2bZvWAXdxx44dw8CBA3H9+nUAQK9evbB582aNafPz87F27VoAQN++fdVPzdYzQy+roKAAMTExOHz4MA4dOoTDhw/j4f+f0q9iZWWF1q1bo3379mjfvj1atmypcTzUNyEEsrKykJKSgtTUVLW/qv8tLCzg5OQEZ2dnODs7q/3v7OwMe3t76VFxREREROUlt3jMpIPusLAwPPPMM/jmm28AFF5r6uvri3fffRcTJkwokb5fv37IyMjA1q1bpWnPPvssWrRogW+//RZCCPj4+OCDDz7Ahx9+CABITU2Fp6cnVqxYgf79+2tVLrk1sq5Onz6NZ555RnofFxcHPz+/cn8ZPnbsGN5//308fPgQN27cAAA4ODjgq6++wtChQzV+ZtSoUXB3d8fEiRMBAH369MGOHTvg6OiI7Oxs5OXlwc/PD2PGjMGrr74KX1/fcpWtuhJCIDY2FufOnYMQAhYWFnBxccEzzzxTos+ePXsWb775Ji5evAig8LnZQ4o+uqsMZ8+exfLly5GQkIDExEQkJSWhdevWWLp0aYV/MHny5AkmTpyI48ePY/Xq1WjQoIHGdLm5uZg9ezYAYOLEibBSXZNlAJW5LKCwHS9fvozDhw9Lgfi9eyVvY+fm5oYmTZpIr8aNG6NJkyZwd3fXahmpqam4c+dOidfdu3dx584dJCQkICUlBfllXceoBTMzMzg5OaFmzZrw9vaGj49PqX+dnZ0ZoBMREZFGcovHTPY53bm5uThz5owUlAGFX9giIyNx/PhxjZ85fvw4xo0bpzatS5cu2LRpE4DC4DIhIQGRkZHSfGdnZ4SFheH48eNaB93aSk1NlY7UFaXN7yDa/lZy69YtPH78GB4eHnByckJeXh7y8/ORl5eHvLw8PHz4EGfPnoVSqUTNmjXRtGlTbNmyRS0Pf39/BAcHY/jw4cjNzYW7uztcXFzg4OAAhUIBpVIJBwcHFBQUICsrC/fv30d6ejru3r2Ls2fPljiFf9SoUfjyyy9hZWWFn376CYcOHVKbHxwcDDc3N7VpqiN1RZ/VffPmTYwbNw7jxo3Diy++iP79++PYsWM4ceIEPDw80KFDB1hbW+PJkydQKpUICAiAm5sbEhMT8ejRIygUCvj5+cHd3R0PHz7Ew4cPYWdnBxcXF7i4uCA3Nxd37tzBgwcP4OjoiBo1asDV1RUWFhaIj49HXFwckpOTAQC+vr7w9/eHp6cnHj9+jCtXriA2Nhbp6emwt7dHYGAg6tWrB29vb+Tk5ODevXuIi4tDamoq8vLy4O7ujlq1asHHxwd2dnZITEzEtWvXcO7cOdy+fRtPnjyBubk5AgMD0aBBAzRs2BB+fn7IyclBcnIyYmNjcenSJSQlJSEjIwNCCPj5+aFevXrw8vJCzZo1oVAocOnSJcTExODEiRNITEws0V/MzMzQsmVLBAcHS0cuN27ciPz8fHh4eOD7779Hr169tOp7ANCyZUu9nilRlIODg8HyNhUKhQKNGzdG48aN8c4770AIgRs3bkhHwY8ePYrr16/j4cOHOHToUIltzc3NDXZ2dhBCQAgBpVJZ4v+MjAxklnVjl2LMzMzg7OwMFxcXtb/Ozs4oKChAamoqUlNTkZaWpva3oKAASqVSOjKuaWwsysbGBj4+PqhZsyYcHBzg4OAAR0dHtb/Fp6nWNT8/X+tXTk6O9MrOzi7xv6ZpxX98KP7jQNH3xf+3srKCpaUlrKys1F7aTLOwsIC5uXm5/5qbm5faD3T9v6CgQOuXUqksc74qbwB6+6uqbzMzM6P/Le9nVa/yMNTnOJ/zKzJfpeh2aoj/K2MZVa18uqQr7TOVPV9ul9uZbND98OFDFBQUwNPTU226p6cn/vnnH42fSUhI0Jg+ISFBmq+aVloaTVRfuFTS0tK0WoejR4+iRw9NDziSh549e+L3338HAFy4cAHvvfdehfLz8PBAs2bNMGvWLOkI4Lfffovx48fjpZdeQoMGDbB+/Xq899570nW6Kr6+vnB3d8eDBw/QtGlT7Nu3D2vWrMG6detw5MgRbN26Ve0MBgDYuXNnhcorR2fPntU67YkTJ8qcb2VlhZYtW8LW1hb5+fm4e/cu4uLicObMGZw5c0Yt7SuvvIKlS5dqdWSUjEehUKBevXqoV6+edDZCZmYm/vnnH1y8eFHtFRcXV+LU9LLUrFkTtWvXRq1atVC7dm21/729vaUfq1Q/xulCCIHMzEwpAH/48CHu3buH+/fva/ybkpKC7Oxs3LhxQzp7hoiIiEiuTDbolpPZs2dj2rRpOn/OxsYGtWrV0jivtC+tZX2Z1TTPysoKDg4OyM/PR0FBASwtLdVe9vb2aNy4MbKysqBUKhETE4Pk5GT0798fEyZMwAcffICEhAR4eHjg+PHjsLW1RV5eHnJzc6Wj5RYWFsjKyoJCoYCtrS08PDwghICdnR2CgoKQnZ2NTz75BLVr1y5RvqCgILUj623bttV4DbCFhQUGDRoENzc3vPHGG3B3d8e7776Ld999F1evXsWCBQtw9uxZNGrUCD179sTt27fx559/wtzcHA4ODlAqlbh+/ToeP34MT09PuLm5oaCgADdv3sTDhw/h7u4ONzc3ZGdnIyUlBcnJybCwsEDt2rXh7u6OJ0+eIDk5GcnJycjNzUWdOnXg7+8PDw8PKZ+4uDg8ePAArq6uCAgIQOPGjeHi4iIdtbt27RqSkpJgY2MDd3d31KtXTzpynpSUhLt37+LevXvIzMyEp6cn/Pz80KJFC9SvXx8ODg7Izs5GbGwsrl69iqtXr+L27duws7ODo6MjAgIC0KRJE9SuXRv29vZQKpWIj4/HjRs3kJSUhIcPHyI/Px9BQUFo0qQJQkJCEBoaWuI+BXfu3MGhQ4dw+/Zt6chXkyZN0LlzZ57Ka6Ls7OzQqlUrtGrVSm16RkYGYmNjkZubq/EImup/W1tb+Pj4FD7SzUAUCgXs7e1hb28Pb2/vp6ZXnVFz//59JCcn48mTJ0hPTy/z75MnT5CRkQEzMzNYWFho9TI3N4e1tTWsra1hY2NT4v/S/lpYWEjbi6YjrKX9r1Qq1cbX3Nxc6VX0vaZ5OTk5KCgokMb68v4tfhRVU5/QZp5q/NDHy8zs33u+quq1vH9V/6uOnhc9Om+MvxXNozIZ84gV51eP+WWdBaTv/ytjGVWhTOUpX3HGOoMiLy9PVgfgTDbodnNzg7m5eYlTZBMTEwuf46yBl5dXmelVfxMTE9W++CUmJqJFixallmXixIlqp62npaVpdY3xCy+8gDt37jw1nTHJ6fRdBwcHvP/++yWuk23QoAG+++47I5WqaqlduzYGDBhg7GJQJbC3ty9zXJMzW1tbBAQEICAgwNhFISIiIhlSXdMtFyb7yDArKyuEhIRg37590jSlUol9+/YhPDxc42fCw8PV0gPAnj17pPT+/v7w8vJSS5OWloY///yz1DyBwkclOTk5qb2IiIiIiIiITPZINwCMGzcOgwYNQmhoKFq3bo2FCxciIyMDgwcPBgAMHDgQtWrVku4mPGbMGEREROCLL75Ajx49pGfgqo6SKhQKjB07Fp9//jnq168vPTLMx8cHffr00bpcqlNotL22m9Tl5uYiOzsbwL91WPS9oe8ITVVL8f5k6LuXs68SERERGZcqhqjsS3FKJUzcokWLRJ06dYSVlZVo3bq1OHHihDQvIiJCDBo0SC392rVrRYMGDYSVlZVo0qSJ2LZtm9p8pVIpJk2aJDw9PYW1tbXo2LGjuHLlik5lun79ugDAF1988cUXX3zxxRdffPHFl5Fe169fL3ecqU8m/ZxuuUpJSUGNGjVw69YtWV1LQJqprsG/ffs2Lw0wEWwz08L2Mj1sM9PC9jI9bDPTwvYyPampqahTpw6Sk5Ph4uJi7OKY9unlcqW606qzszM3TBPC6/FND9vMtLC9TA/bzLSwvUwP28y0sL1MT9EnYBiTPEpBREREREREVAUx6CYiIiIiIiIyEAbdBmBtbY0pU6bA2tra2EUhLbC9TA/bzLSwvUwP28y0sL1MD9vMtLC9TI/c2ow3UiMiIiIiIiIyEB7pJiIiIiIiIjIQBt1EREREREREBsKgm4iIiIiIiMhAGHQTERERERERGQiDbj1bvHgx6tatCxsbG4SFheHkyZPGLlK1MHXqVCgUCrVXUFCQND87OxujRo1CzZo14eDggFdeeQWJiYlqedy6dQs9evSAnZ0dPDw88NFHHyE/P18tzcGDB9GqVStYW1sjMDAQK1asqIzVM3mHDx9Gz5494ePjA4VCgU2bNqnNF0Jg8uTJ8Pb2hq2tLSIjIxEbG6uW5vHjxxgwYACcnJzg4uKCoUOH4smTJ2ppzp8/j3bt2sHGxga+vr6YN29eibKsW7cOQUFBsLGxQdOmTbF9+3a9r29V8LQ2i4qKKrHNde3aVS0N26zyzJ49G8888wwcHR3h4eGBPn364MqVK2ppKnMc5L6wbNq0V4cOHUpsY++8845aGrZX5Vm6dCmaNWsGJycnODk5ITw8HDt27JDmc/uSl6e1F7cv+ZszZw4UCgXGjh0rTTPp7UyQ3qxZs0ZYWVmJ5cuXi4sXL4q33npLuLi4iMTERGMXrcqbMmWKaNKkibh//770evDggTT/nXfeEb6+vmLfvn3i9OnT4tlnnxVt2rSR5ufn54vg4GARGRkpzp49K7Zv3y7c3NzExIkTpTQ3btwQdnZ2Yty4ceLSpUti0aJFwtzcXOzcubNS19UUbd++XXz66adiw4YNAoDYuHGj2vw5c+YIZ2dnsWnTJvH333+LXr16CX9/f5GVlSWl6dq1q2jevLk4ceKE+OOPP0RgYKB4/fXXpfmpqanC09NTDBgwQFy4cEH8+uuvwtbWVixbtkxKc/ToUWFubi7mzZsnLl26JD777DNhaWkpYmJiDF4HpuZpbTZo0CDRtWtXtW3u8ePHamnYZpWnS5cuIjo6Wly4cEGcO3dOdO/eXdSpU0c8efJESlNZ4yD3hU+nTXtFRESIt956S20bS01NleazvSrXli1bxLZt28TVq1fFlStXxCeffCIsLS3FhQsXhBDcvuTmae3F7UveTp48KerWrSuaNWsmxowZI0035e2MQbcetW7dWowaNUp6X1BQIHx8fMTs2bONWKrqYcqUKaJ58+Ya56WkpAhLS0uxbt06adrly5cFAHH8+HEhRGGAYWZmJhISEqQ0S5cuFU5OTiInJ0cIIcT48eNFkyZN1PLu16+f6NKli57XpmorHsAplUrh5eUl5s+fL01LSUkR1tbW4tdffxVCCHHp0iUBQJw6dUpKs2PHDqFQKMTdu3eFEEIsWbJE1KhRQ2ovIYT4+OOPRcOGDaX3ffv2FT169FArT1hYmHj77bf1uo5VTWlBd+/evUv9DNvMuJKSkgQAcejQISFE5Y6D3Bfqrnh7CVEYFBT9slkc28v4atSoIX744QduXyZC1V5CcPuSs/T0dFG/fn2xZ88etXYy9e2Mp5frSW5uLs6cOYPIyEhpmpmZGSIjI3H8+HEjlqz6iI2NhY+PDwICAjBgwADcunULAHDmzBnk5eWptU1QUBDq1Kkjtc3x48fRtGlTeHp6Smm6dOmCtLQ0XLx4UUpTNA9VGrZvxcTFxSEhIUGtbp2dnREWFqbWPi4uLggNDZXSREZGwszMDH/++aeUpn379rCyspLSdOnSBVeuXEFycrKUhm2oPwcPHoSHhwcaNmyIESNG4NGjR9I8tplxpaamAgBcXV0BVN44yH1h+RRvL5VffvkFbm5uCA4OxsSJE5GZmSnNY3sZT0FBAdasWYOMjAyEh4dz+5K54u2lwu1LnkaNGoUePXqUqFtT384syv1JUvPw4UMUFBSoNTIAeHp64p9//jFSqaqPsLAwrFixAg0bNsT9+/cxbdo0tGvXDhcuXEBCQgKsrKzg4uKi9hlPT08kJCQAABISEjS2nWpeWWnS0tKQlZUFW1tbA61d1aaqX011W7TuPTw81OZbWFjA1dVVLY2/v3+JPFTzatSoUWobqvIg7XXt2hUvv/wy/P39cf36dXzyySfo1q0bjh8/DnNzc7aZESmVSowdOxZt27ZFcHAwAFTaOJicnMx9oY40tRcA/Oc//4Gfnx98fHxw/vx5fPzxx7hy5Qo2bNgAgO1lDDExMQgPD0d2djYcHBywceNGNG7cGOfOneP2JUOltRfA7Uuu1qxZg7/++gunTp0qMc/U92MMuqlK6Natm/R/s2bNEBYWBj8/P6xdu5bBMJEB9O/fX/q/adOmaNasGerVq4eDBw+iY8eORiwZjRo1ChcuXMCRI0eMXRTSQmntNXz4cOn/pk2bwtvbGx07dsT169dRr169yi4mAWjYsCHOnTuH1NRUrF+/HoMGDcKhQ4eMXSwqRWnt1bhxY25fMnT79m2MGTMGe/bsgY2NjbGLo3c8vVxP3NzcYG5uXuIOeomJifDy8jJSqaovFxcXNGjQANeuXYOXlxdyc3ORkpKilqZo23h5eWlsO9W8stI4OTkxsK8AVf2Wte14eXkhKSlJbX5+fj4eP36slzbkNlpxAQEBcHNzw7Vr1wCwzYxl9OjR2Lp1Kw4cOIDatWtL0ytrHOS+UDeltZcmYWFhAKC2jbG9KpeVlRUCAwMREhKC2bNno3nz5vjqq6+4fclUae2lCbcv4ztz5gySkpLQqlUrWFhYwMLCAocOHcLXX38NCwsLeHp6mvR2xqBbT6ysrBASEoJ9+/ZJ05RKJfbt26d2/QhVjidPnuD69evw9vZGSEgILC0t1drmypUruHXrltQ24eHhiImJUQsS9uzZAycnJ+lUpPDwcLU8VGnYvhXj7+8PLy8vtbpNS0vDn3/+qdY+KSkpOHPmjJRm//79UCqV0o4yPDwchw8fRl5enpRmz549aNiwIWrUqCGlYRsaxp07d/Do0SN4e3sDYJtVNiEERo8ejY0bN2L//v0lTtuvrHGQ+0LtPK29NDl37hwAqG1jbC/jUiqVyMnJ4fZlIlTtpQm3L+Pr2LEjYmJicO7cOekVGhqKAQMGSP+b9HZW7luwUQlr1qwR1tbWYsWKFeLSpUti+PDhwsXFRe0OemQYH3zwgTh48KCIi4sTR48eFZGRkcLNzU0kJSUJIQofMVCnTh2xf/9+cfr0aREeHi7Cw8Olz6seMdC5c2dx7tw5sXPnTuHu7q7xEQMfffSRuHz5sli8eDEfGaal9PR0cfbsWXH27FkBQHz55Zfi7Nmz4ubNm0KIwkeGubi4iM2bN4vz58+L3r17a3xkWMuWLcWff/4pjhw5IurXr6/2+KmUlBTh6ekp3nzzTXHhwgWxZs0aYWdnV+LxUxYWFmLBggXi8uXLYsqUKXz8VCnKarP09HTx4YcfiuPHj4u4uDixd+9e0apVK1G/fn2RnZ0t5cE2qzwjRowQzs7O4uDBg2qPwMnMzJTSVNY4yH3h0z2tva5duyamT58uTp8+LeLi4sTmzZtFQECAaN++vZQH26tyTZgwQRw6dEjExcWJ8+fPiwkTJgiFQiF2794thOD2JTdltRe3L9NR/C7zprydMejWs0WLFok6deoIKysr0bp1a3HixAljF6la6Nevn/D29hZWVlaiVq1aol+/fuLatWvS/KysLDFy5EhRo0YNYWdnJ1566SVx//59tTzi4+NFt27dhK2trXBzcxMffPCByMvLU0tz4MAB0aJFC2FlZSUCAgJEdHR0ZayeyTtw4IAAUOI1aNAgIUThY8MmTZokPD09hbW1tejYsaO4cuWKWh6PHj0Sr7/+unBwcBBOTk5i8ODBIj09XS3N33//LZ577jlhbW0tatWqJebMmVOiLGvXrhUNGjQQVlZWokmTJmLbtm0GW29TVlabZWZmis6dOwt3d3dhaWkp/Pz8xFtvvVViZ8Q2qzya2gqA2hhVmeMg94Vle1p73bp1S7Rv3164uroKa2trERgYKD766CO15wgLwfaqTEOGDBF+fn7CyspKuLu7i44dO0oBtxDcvuSmrPbi9mU6igfdprydKYQQovzHyYmIiIiIiIioNLymm4iIiIiIiMhAGHQTERERERERGQiDbiIiIiIiIiIDYdBNREREREREZCAMuomIiIiIiIgMhEE3ERERERERkYEw6CYiIiIiIiIyEAbdRERERERERAbCoJuIiIiIiIjIQBh0ExERERERERkIg24iIiIiIiIiA2HQTURERERERGQgDLqJiIiIiIiIDIRBNxEREREREZGBMOgmIiIiIiIiMhAG3UREREREREQGwqCbiIiIiIiIyEAYdBMRkSx06NABHTp00Ft+8fHxUCgUWLFihd7yNEXz5s1DUFAQlEqlsYuikb7bXR/q1q2LqKgoYxejXBQKBaZOnarTZ/r374++ffsapkBERMSgm4iISrdixQooFArpZWNjgwYNGmD06NFITEw0dvHoKdLS0jB37lx8/PHHMDPjLp80+/jjj/G///0Pf//9t7GLQkRUJVkYuwBERCR/06dPh7+/P7Kzs3HkyBEsXboU27dvx4ULF2BnZ6eXZezevVsv+dC/li9fjvz8fLz++uvGLkqp5NjuV65cMdkfKbKysmBhodvXu5YtWyI0NBRffPEFfvrpJwOVjIio+jLNPQoREVWqbt264Y033sCwYcOwYsUKjB07FnFxcdi8eXOF887MzAQAWFlZwcrKqsL5GZtSqUR2draxiwEAiI6ORq9evWBjY2PsopRKju1ubW0NS0tLveSVnZ1dqaf229jY6Bx0A0Dfvn2xYcMGPHnyxAClIiKq3hh0ExGRzl544QUAQFxcnDRt1apVCAkJga2tLVxdXdG/f3/cvn1b7XMdOnRAcHAwzpw5g/bt28POzg6ffPKJNK/4tb1JSUkYOnQoPD09YWNjg+bNm2PlypUlypOSkoKoqCg4OzvDxcUFgwYNQkpKisay79+/H+3atYO9vT1cXFzQu3dvXL58uUS6gwcPIjQ0FDY2NqhXrx6WLVuGqVOnQqFQqKVTKBQYPXo0fvnlFzRp0gTW1tbYuXMnAGDBggVo06YNatasCVtbW4SEhGD9+vUllqXKY926dWjcuDFsbW0RHh6OmJgYAMCyZcsQGBgIGxsbdOjQAfHx8RrXrai4uDicP38ekZGRJeatWbMGISEhcHR0hJOTE5o2bYqvvvqqRJ2OHTsWvr6+sLa2RmBgIObOnasWQKqum1+wYAEWL16MgIAA2NnZoXPnzrh9+zaEEJgxYwZq164NW1tb9O7dG48fP1ZbjrbXdKsudThy5Ajee+89uLu7w8XFBW+//TZyc3ORkpKCgQMHokaNGqhRowbGjx8PIYRaHtq2h6Zrum/cuIHXXnsNrq6usLOzw7PPPott27appTl48CAUCgXWrFmDzz77DLVq1YKdnR3S0tJKXS9tyhQdHQ2FQoHly5erTZ81axYUCgW2b98uTSt+TXd6ejrGjh2LunXrwtraGh4eHujUqRP++usvtbw6deqEjIwM7Nmzp9SyEhFR+fD0ciIi0tn169cBADVr1gQAzJw5E5MmTULfvn0xbNgwPHjwAIsWLUL79u1x9uxZuLi4SJ999OgRunXrhv79++ONN96Ap6enxmVkZWWhQ4cOuHbtGkaPHg1/f3+sW7cOUVFRSElJwZgxYwAAQgj07t0bR44cwTvvvINGjRph48aNGDRoUIk89+7di27duiEgIABTp05FVlYWFi1ahLZt2+Kvv/5C3bp1AQBnz55F165d4e3tjWnTpqGgoADTp0+Hu7u7xrLu378fa9euxejRo+Hm5ibl89VXX6FXr14YMGAAcnNzsWbNGrz22mvYunUrevTooZbHH3/8gS1btmDUqFEAgNmzZ+PFF1/E+PHjsWTJEowcORLJycmYN28ehgwZgv3795fZRseOHQMAtGrVSm36nj178Prrr6Njx46YO3cuAODy5cs4evSoVKeZmZmIiIjA3bt38fbbb6NOnTo4duwYJk6ciPv372PhwoVqef7yyy/Izc3Fu+++i8ePH2PevHno27cvXnjhBRw8eBAff/wxrl27hkWLFuHDDz8sETzq4t1334WXlxemTZuGEydO4LvvvoOLiwuOHTuGOnXqYNasWdi+fTvmz5+P4OBgDBw4UPqsLu1RVGJiItq0aYPMzEy89957qFmzJlauXIlevXph/fr1eOmll9TSz5gxA1ZWVvjwww+Rk5NT5pF8bco0ePBgbNiwAePGjUOnTp3g6+uLmJgYTJs2DUOHDkX37t1Lzf+dd97B+vXrMXr0aDRu3BiPHj3CkSNHcPnyZbW+ofqx5+jRoyXWh4iIKkgQERGVIjo6WgAQe/fuFQ8ePBC3b98Wa9asETVr1hS2trbizp07Ij4+Xpibm4uZM2eqfTYmJkZYWFioTY+IiBAAxLfffltiWRERESIiIkJ6v3DhQgFArFq1SpqWm5srwsPDhYODg0hLSxNCCLFp0yYBQMybN09Kl5+fL9q1aycAiOjoaGl6ixYthIeHh3j06JE07e+//xZmZmZi4MCB0rSePXsKOzs7cffuXWlabGyssLCwEMV3nQCEmZmZuHjxYol1yszMVHufm5srgoODxQsvvFAiD2traxEXFydNW7ZsmQAgvLy8pHUVQoiJEycKAGppNfnss88EAJGenq42fcyYMcLJyUnk5+eX+tkZM2YIe3t7cfXqVbXpEyZMEObm5uLWrVtCCCHi4uIEAOHu7i5SUlJKlLF58+YiLy9Pmv76668LKysrkZ2dLU0r3u6lUfXFLl26CKVSKU0PDw8XCoVCvPPOO9K0/Px8Ubt27RL5atsefn5+YtCgQdL7sWPHCgDijz/+kKalp6cLf39/UbduXVFQUCCEEOLAgQMCgAgICCixrNJoW6b79+8LV1dX0alTJ5GTkyNatmwp6tSpI1JTU9XSARBTpkyR3js7O4tRo0ZpVZYGDRqIbt26aZWWiIi0x9PLiYjoqSIjI+Hu7g5fX1/0798fDg4O2LhxI2rVqoUNGzZAqVSib9++ePjwofTy8vJC/fr1ceDAAbW8rK2tMXjw4Kcuc/v27fDy8lK7CZilpSXee+89PHnyBIcOHZLSWVhYYMSIEVI6c3NzvPvuu2r53b9/H+fOnUNUVBRcXV2l6c2aNUOnTp2kU3QLCgqwd+9e9OnTBz4+PlK6wMBAdOvWTWNZIyIi0Lhx4xLTbW1tpf+Tk5ORmpqKdu3alTi1FwA6duwoHSEHgLCwMADAK6+8AkdHxxLTb9y4obEsKo8ePYKFhQUcHBzUpru4uDz1NOJ169ahXbt2qFGjhlqbRkZGoqCgAIcPH1ZL/9prr8HZ2blEGd944w2164vDwsKQm5uLu3fvlln2sgwdOlTtFP+wsDAIITB06FBpmrm5OUJDQ0vUkS7tUdT27dvRunVrPPfcc9I0BwcHDB8+HPHx8bh06ZJa+kGDBqktqyzalsnLywuLFy/Gnj170K5dO5w7dw7Lly+Hk5NTmfm7uLjgzz//xL17955aFlV7ExGRfvH0ciIieqrFixejQYMGsLCwgKenJxo2bCjd3Tk2NhZCCNSvX1/jZ4vfkKpWrVpa3Tjr5s2bqF+/fom7SDdq1Eiar/rr7e1dIrhs2LBhifw0TVfluWvXLmRkZCAtLQ1ZWVkIDAwskU7TNADw9/fXOH3r1q34/PPPce7cOeTk5EjTi18XDgB16tRRe68KYn19fTVOT05O1rjMpxk5ciTWrl2Lbt26oVatWujcuTP69u2Lrl27SmliY2Nx/vz5Uk+nT0pKMljZExISSnymaGCqy7KKL0eX9ijq5s2b0g8JRRXti8HBwdL00vqDJrqUqX///li1ahW2bduG4cOHo2PHjk/Nf968eRg0aBB8fX0REhKC7t27Y+DAgQgICCiRVgjx1LogIiLdMegmIqKnat26NUJDQzXOUyqVUCgU2LFjB8zNzUvMLx4Ma3sE0JRoWqc//vgDvXr1Qvv27bFkyRJ4e3vD0tIS0dHRWL16dYn0muqurOmi2E3CiqtZsyby8/ORnp6udqTcw8MD586dw65du7Bjxw7s2LED0dHRGDhwoHSTOqVSiU6dOmH8+PEa827QoIHByu7t7a32Pjo6Wu2mZrosq+hydG2PitC2j+tapkePHuH06dMAgEuXLkGpVD710WZ9+/ZFu3btsHHjRuzevRvz58/H3LlzsWHDhhJnbiQnJ5f64xkREZUfg24iIqqQevXqQQgBf3//EsFYRfj5+eH8+fMlAot//vlHmq/6u2/fPjx58kQtwL9y5UqJ/DRNV+Xp5uYGe3t72NjYwMbGBteuXSuRTtO00vzvf/+DjY0Ndu3aBWtra2l6dHS01nlURFBQEIDCu5g3a9ZMbZ6VlRV69uyJnj17QqlUYuTIkVi2bBkmTZqEwMBA1KtXD0+ePNF453NDK37ae5MmTfSSb0Xaw8/Pr9R+o5pfGWUaNWoU0tPTMXv2bEycOBELFy7EuHHjnrocb29vjBw5EiNHjkRSUhJatWqFmTNnqgXd+fn5uH37Nnr16lWudSEiotLxmm4iIqqQl19+Gebm5pg2bVqJI5hCCDx69Khc+Xbv3h0JCQn47bffpGn5+flYtGgRHBwcEBERIaXLz8/H0qVLpXQFBQVYtGiRWn7e3t5o0aIFVq5cqfY4sQsXLmD37t3SHaDNzc0RGRmJTZs2qV0He+3aNezYsUPr8pubm0OhUKCgoECaFh8fj02bNmmdR0WEh4cDgHRkVKV4e5iZmUlBuer05r59++L48ePYtWtXiXxTUlKQn59viCIDKLx/QNFX8SPf5VWR9ujevTtOnjyJ48ePS9MyMjLw3XffoW7duhqv59d3mdavX4/ffvsNc+bMwYQJE9C/f3989tlnuHr1aqn5FxQUIDU1VW2ah4cHfHx81E5lBwqPnGdnZ6NNmzblWhciIiodj3QTEVGF1KtXD59//jkmTpyI+Ph49OnTB46OjoiLi8PGjRsxfPhwfPjhhzrnO3z4cCxbtgxRUVE4c+YM6tati/Xr1+Po0aNYuHChdMp0z5490bZtW0yYMAHx8fFo3LgxNmzYUCLYAID58+ejW7duCA8Px9ChQ6VHhjk7O6s923jq1KnYvXs32rZtixEjRqCgoADffPMNgoODce7cOa3K36NHD3z55Zfo2rUr/vOf/yApKQmLFy9GYGAgzp8/r3N96CogIADBwcHYu3cvhgwZIk0fNmwYHj9+jBdeeAG1a9fGzZs3sWjRIrRo0UK6Rvmjjz7Cli1b8OKLLyIqKgohISHIyMhATEwM1q9fj/j4eLi5uRl8HfSpIu0xYcIE/Prrr+jWrRvee+89uLq6YuXKlYiLi8P//ve/p57iXdEyJSUlYcSIEXj++ecxevRoAMA333yDAwcOICoqCkeOHNFYhvT0dNSuXRuvvvoqmjdvDgcHB+zduxenTp3CF198oZZ2z549sLOzQ6dOncq1LkREVDoG3UREVGETJkxAgwYN8N///hfTpk0DUHhjq86dO5f7dFVbW1scPHgQEyZMwMqVK5GWloaGDRuWuMbXzMwMW7ZswdixY7Fq1SooFAr06tULX3zxBVq2bKmWZ2RkJHbu3IkpU6Zg8uTJsLS0REREBObOnat286uQkBDs2LEDH374ISZNmgRfX19Mnz4dly9flk4pfpoXXngBP/74I+bMmYOxY8fC398fc+fORXx8fKUE3QAwZMgQTJ48GVlZWdJ1xm+88Qa+++47LFmyBCkpKfDy8kK/fv0wdepUKXCzs7PDoUOHMGvWLKxbtw4//fQTnJyc0KBBA0ybNk3tTuWmoiLt4enpiWPHjuHjjz/GokWLkJ2djWbNmuH3338v8/ne+irTiBEjkJOTg+joaOlGZzVr1sR3332H3r17Y8GCBRqvv7ezs8PIkSOxe/du6SkDgYGBWLJkidrd/oHCO9a//PLLatf/ExGRfijE0+7EQkRERACAPn364OLFi4iNjTV2UbSSmpqKgIAAzJs3T+2RWlQ2X19fdOnSBT/88IOxi1Ipzp07h1atWuGvv/5CixYtjF0cIqIqh9d0ExERaZCVlaX2PjY2Ftu3b0eHDh2MU6BycHZ2xvjx4zF//nwolUpjF8ck5OXl4dGjRyZ3+nxFzJkzB6+++ioDbiIiA+GRbiIiIg28vb0RFRWFgIAA3Lx5E0uXLkVOTg7Onj3LxypVUbt27cKaNWvwf+3deVxU9f4/8NcMMAOIAxg7IeIeuIMQrplctaybZWV+vWpWtmnl17K0ruJyC1Pra6ZXb93S+2szvTdtMU1DtCw3THJBCZfckEUTBkG2mc/vD+4cGZiBGZjlzPB6Ph7nAXPO+5zzOZ8z58y853PO56xbtw7bt2/n/c1ERGQTTLqJiIhMmDJlCjIyMpCfnw+1Wo3k5GS88cYb6Nevn7OLRnYybNgwnDp1Cs888wxeffVVZxeHiIjcBJNuIiIiIiIiIjvhPd1EREREREREdsKkm4iIiIiIiMhO+JxuO9Dr9cjLy0Pbtm2l52kSERERERGR/QkhUFpaioiICCiVzm9nZtJtB3l5eYiKinJ2MYiIiIiIiFqtCxcu4NZbb3V2MZh020Pbtm0B1O5kjUbj5NIQ2ZYQAtXV1QAALy8vo6s5GpvmLNaW6c03gTfeAF59FXjlFeumy3H7iYiIiFobrVaLqKgoKS9zNibddmD4oq3RaJh0k9upqqrC8uXLAQBz5syBSqWyaJqzWFum118HvL2BefNq/86de3PaokW1CffChcbjm7suIiIiIrIfuTSAMOkmIqrHkFDPm6dDUVEunnyyBps29cC8eeYTbiIiIiIiU5h0ExH918mTJ7Fr1y5kZWUhKysLXl5H8O67N/DuuwCwGwsXDmHCTURERERWYdJNRATg9OnT6NGjB3Q6ncnpSuXHmDt3iINLRURERESuzvn9pxMRycD27duh0+kQFRWFV155BZ999hmee+4EgG0AAL3+SyxYYDohJyIiIiIyh0k3ERGAH374AQDwxBNPYPHixcjNfQTvvtsdqal3IjAwEEAh5s//GYsWObecRERERORamHQTUasnhJCS7iFDhmDRIkidps2f74V7770XAJCcvAnz5oGJNxERERFZjPd0E5FVlEolYmNjpf8tneYslpTpzJkzyMvLg5eXF3buTMKiRca9lN9///34f//v/yEv7wssWPAW5s2rffxE/U7V5Lj9RERERORcCiGEcHYh3I1Wq4W/vz9KSkr4nG4iF7B27Vo89thjaN9+IM6f39PgsWDl5eUIDg5GeXk5Dh06hC1b+vHxYUREREQyJbd8jE0xRNTqGS4tP39+iMlE2tfXF6NGjQIAbNq0CXPn1ibcvNSciIiIiJrCpJuIWj1D0j1xovnncD/wwAMAgC+++AIApMTbzBPGiIiIiIgA8PJyu5Db5QxEtlRVVYW0tDQAwJw5c6BSqSya5ixNlenixYuIioqCUqnEtWvXzB6zxcXFCA4ORk1NDU6ePIlu3bpZvS4iIiIisj+55WNs6SaiVu3HH38EAPTt27fRk3JAQACGDx8OoPYScyIiIiIiSzDpJqJWre6jwppS/xJzIiIiIqKmMOkmolbNmqT7vvvug0KhwMGDB3HhwgV7F42IiIiI3ACTbiJqtYqKipCdnQ0AGDRoUJPxoaGhGDhwIABg8+bN9iwaEREREbkJJt1E1Grt2bMHABAXF4egoCCL5rn//vsB8L5uIiIiIrIMk24iarWsubTcwJB07969G1euXLFLuYiIiIjIfXg6uwBE5FqUSiW6dOki/W/pNGdprEzNSbpjYmLQp08fZGVl4euvv8aUKVMsWhcRERERtU58TrcdyO25cETUUElJCdq1awe9Xo+LFy8iMjLS4nkXLVqEefPm4Z577sHXX39tx1ISERERkbXklo+xKYaIWqWff/4Zer0enTp1sirhBm5eYr5jxw5UVFTYo3hERERE5CaYdBNRq/Tjjz8CsO7ScoO4uDiEhISgsrIShw8ftnXRiIiIiMiNMOkmIqtUVVXhjTfewBtvvIGqqiqLpzmLuTI1535uA4VCgdtvvx0AsG/fvibXRUREREStF5NuIrJadXU1qqurrZ7mLPXLdOPGDRw4cABA85JuACaTblPrIiIiIqLWjUk3EbU6+/fvR3V1NSIjIxETE9OsZZhLuomIiIiI6mLSTUStzsGDBwEAAwYMgEKhaNYy+vfvD6VSifPnzyMvL8+WxSMiIiIiN8Kkm4hanezsbABAz549m70MPz8/aX62dhMRERGROUy6iajVMSTdt912W4uWw0vMiYiIiKgpTLqJqFURQuDEiRMAgNjY2BYti0k3ERERETXF09kFICLXolAoEB0dLf1v6TRnqV+mS5cuobS0FJ6enujcuXOLlm1IujMzM1FdXS3L7SciIiIi51IIIYSzC+FutFot/P39UVJSAo1G4+ziEFEd27dvx8iRI3HbbbdJl5k3l16vxy233ILi4mJkZmYiPj7eRqUkIiIiouaSWz7Gy8uJqFUxJNotvbQcAJRKJS8xJyIiIqJGMekmolbFVp2oGTDpJiIiIqLGtIqke9WqVejQoQO8vb2RlJSEAwcOmI1dt24dFAqF0eDt7e3A0hLJW1VVFZYuXYqlS5eiqqrK4mnOUr9MtmzpBoyTbjluPxERERE5l9t3pPb5559j5syZWLNmDZKSkrB8+XKMHDkSOTk5CAkJMTmPRqNBTk6O9JodIhEZKy8vb9Y0ZzGUSQhh86Q7MTERAHDq1CkUFRXJcvuJiIiIyHncvqX77bffxtSpUzFlyhTExsZizZo18PX1xYcffmh2HoVCgbCwMGkIDQ11YImJyF4KCwtx7do1KJVKdO3a1SbLDAwMRPfu3QGg0atoiIiIiKh1cuuku6qqCocOHUJKSoo0TqlUIiUlBXv37jU73/Xr1xEdHY2oqCjcd999OH78eKPrqayshFarNRqISH4Mz+fu2LEjfHx8bLbc5ORkAEy6iYiIiKght066r1y5Ap1O16ClOjQ0FPn5+Sbn6datGz788EN8+eWX+Pjjj6HX6zFgwABcvHjR7HrS0tLg7+8vDVFRUTbdDiKyDUPSbatO1AwM93Xv37/fpsslIiIiItfn1kl3cyQnJ2PSpEno06cPhg4dii+++ALBwcH4xz/+YXaeOXPmoKSkRBouXLjgwBITkaVOnjwJwHb3cxsYku7MzEzo9XqbLpuIiIiIXJtbd6QWFBQEDw8PFBQUGI0vKChAWFiYRcvw8vJC3759cerUKbMxarUaarW6RWUlIvuzV9IdFxeHNm3aoLS0FEVFRewHgoiIiIgksm7p3r17NzZv3ozs7OxmtR6pVCrEx8cjPT1dGqfX65Geni7dg9kUnU6Ho0ePIjw83Or1E7kjhUKBiIgIRERENOjZv7FpzlK3TIbLy22ddHt4eEi9mF+/fl1W209EREREziXblu5nn30WX3/9NRITE/HVV1/Bx8cHXbt2Re/evfHBBx9YvJyZM2di8uTJSEhIQGJiIpYvX46ysjJMmTIFADBp0iRERkYiLS0NALBw4ULcfvvt6Ny5M4qLi7F06VKcO3cOTzzxhF22k8jVeHl5YerUqVZPcxZDma5evYonn3wSAKTexm3p9ttvR0ZGhizrgIiIiIicR7ZJ9/r163H06FFERkYiMDAQJ0+exIQJE6DRaKxazrhx41BUVIR58+YhPz8fffr0wbZt26TLP8+fPw+l8maD/7Vr1zB16lTk5+cjMDAQ8fHx+Pnnn23eMkZEjmVo5W7fvj38/PxsvnzD1TP79u2z+bKJiIiIyHUphBDC2YUwJSQkBPn5+VAqlQgODkZhYSEuXLiAxx9/HDt27HB28Rql1Wrh7++PkpISq38kICL7eP/99/Hkk09i1KhR2Lp1q82XX1hYKP2Yd+3aNQQEBNh8HURERETUNLnlY7K9pzs+Pl56lnbHjh2RnZ2NyMhIPgeXyMmqq6uxfPlyLF++HNXV1RZPcxZDmT7++GMAtr+f2yAkJAQdO3YEAMyePVs2209EREREziXby8vfe+89lJaWAgCmT5+Ohx56CDExMXa5F5OILCeEQElJifS/pdOcxVCmS5cuAbBf0g0AiYmJOHPmDHJycmSz/URERETkXLJNuqOioqT/J06ciNDQUBw5cgQTJkxwYqmIyFUVFRUBAG677Ta7rSMxMRHr16/HxYsX7bYOIiIiInItski6t27dik8++QQXLlxAmzZt0KtXLzz44INISEiQYkaMGIERI0Y4sZRE5KoqKiqg1WoB2Dfpvv322wEAFy9ebNZjDomIiIjI/Tj9nu7ly5fjnnvuwaZNm1BWVobCwkKsWLECSUlJGD16NPLz851dRCJycVeuXAEAhIeHIzAw0G7r6dWrF1QqFSoqKvDrr7/abT1ERERE5DqcnnS/88476NOnD86dO4fMzExkZmbi2rVrWLlyJY4dO4bExETpXkwiouYwXFpu7z4hvLy80KFDBwBAenq6XddFRERERK7B6Ul3QUEBnnjiCQQFBUnj1Go1nnnmGWRmZkKhUODll192YgmJyNU54n5uA0MP5jt37rT7uoiIiIhI/pyedHfr1g0FBQUmpwUHB+PZZ5/Ft99+6+BSEZE5CoUCwcHBCA4OhkKhsHiasygUCofcz21YV3x8PADg559/RkVFhV3XR0RERETy5/Sk++WXX8bKlSuRm5trcrqvr69svrwTUe0l1M8++yyeffZZeHl5WTzNWby8vFBeXg4A6Nmzp93XtWjRIoSFheHGjRvYu3evXddHRERERPLn9KT7rbfegoeHBxITE7FkyRLk5eVJ006fPo1Vq1bhoYcecmIJiciVlZeX4+zZswDs+4xuA4VCgeHDhwMAvv/+e7uvj4iIiIjkzelJd0REBNq0aQOtVovZs2cjKioKwcHBCAsLQ9euXeHj44Mnn3wS1dXVzi4qEbmgnJwcCCEQFBSE4OBgh6wzJSUFADtTIyIiIiIZPKf7q6++AgBcv34dx48fx9GjR3Hs2DHp76+//orExER4eHigY8eOuO222xAbG4vXX3/dySUnap2qq6vx/vvvAwCmTp1qdBl5Y9OcxfDoLn9/f1RXV9u1TIbtv3btGgDg4MGDKC4uRkBAgN3WSURERETy5vSk28DPzw9JSUlISkoyGl9YWNggEU9PT2fSTeQkQgipN3AhhMXTnOXQoUMAgKCgILuXqe72d+nSBbm5udi1axfGjBlj1/USERERkXzJJuk2JyQkBMOHD5fukSQiskZmZiYAIDIy0qHrvfPOO5Gbm4vvv/+eSTcRERFRK+b0e7qJiOyluroahw8fBuD4pNvwQyHv6yYiIiJq3Zh0E5HbOnr0KCorK+Ht7Y127do5dN1DhgyBUqnEyZMncfHiRYeum4iIiIjkg0k3EbmtAwcOAKht5VYoFA5dd2BgIOLj4wGwtZuIiIioNWPSTURuq27S7QyGR4fxed1ERERErReTbiKyikKhgL+/P/z9/Ru0Hjc2zRkMSXeXLl0cUqb621/3ed1y6c2diIiIiBxLIfhN0Oa0Wi38/f1RUlICjUbj7OIQtUqlpaXw9/eHEAKXL19GWFiYw8tQUVGBwMBAVFRU4Pjx44iNjXV4GYiIiIhaG7nlY2zpJiK3dOjQIQgh0L59e6ck3ADg7e2NQYMGAeAl5kREREStFZNuInJLhkvLk5KSnFoO3tdNRERE1Lp5OrsARORaqqursW7dOgDAo48+Ci8vL4umOdr+/fsBAPHx8Xj//fcdUiZT229Iunft2oWamhp4evK0S0RERNSa8NsfEVlFCIG8vDzpf0unOZqhpTshIQF79uwBYP8ymdr+Pn36IDAwENeuXcPBgweRnJxs1zIQERERkbzw8nIicjt5eXm4ePEilEol+vbt69SyeHh44M477wTAS8yJiIiIWiMm3UTkdg4ePAgAiIuLg5+fn5NLA6NHhxERERFR68Kkm4jcjuHS8sTERCeXpJYh6f75559RVlbm5NIQERERkSMx6SYityO3pLtTp06IiYlBdXU11q5d6+ziEBEREZEDMekmIrei1+uly8vlknQrFAq89NJLAICFCxdCq9U6uURERERE5ChMuonIar6+vvD19bV6miPk5uaipKQEPj4+iIuLc3iZzK1r6tSp6NKlC4qKirB06VKHlIWIiIiInE8hnP1cHzek1Wrh7++PkpISaDQaZxeHqFX56KOPMGnSJAwcOFB6VJhcfPHFFxg7dix8fX2Rm5uLiIgIZxeJiIiIyO3ILR9jSzcRuRW53c9d1/3334/k5GSUl5dj/vz5zi4OERERETkAk24icityTroVCoV0afkHH3yA7OxsJ5eIiIiIiOyNSTcRWaW6uhrr1q3DunXrUF1dbfE0R6isrERWVhaAm0m3I8tkyboGDhyIMWPGQK/XY86cOXYtDxERERE5H5NuIrLI/PnAokWAEALnzp3DuXPnUL9LiPrTFi2qnc9R1q1bh6qqKoSGhiImJsZkmezJ0nWlpaXBw8MDX331FX788Ue7lomIiIiInMvT2QVwZ2VVZfCo8mgw3kPpAW9Pb6M4c5QKJXy8fJoVW15dbvaLv0KhgK+Xb7Nib1TfgF7ozZajjapNs2Iraiqg0+tsEuvr5QuFQgEAqKypRI2+xiaxPl4+UCpqf6uq0lWhWme+5dSaWG9Pb3goPayOrdZVo0pXZTZW7amGp9LT6tgafQ0qayqNpuvghQXzVLhRpYO6zpmjbmxV1c3lz1+kQ9rfgNT5OgC15dXpdaioqTBbBi8PL5SXluPnn3/GDz/+gMzMTIx5YAymPD7FZKzKQwUA0As98grz8OprrwIAZs6aifLq8gZlMsTeqL5htgyeSk+oPdUAapNow3Isia17fJZVlaEaN/dj3eO+e/fuePSxR/HB+x/gxZdexM4fdkrvwfqxhmWZw3NE82J5jqhly3NEXSoPFbw8vKyOteQcYTjurYlt6ri3JrYl54jGYq057nmOMB3LcwTPETxHWB/rrueIxrbDGdh7uR0YesvDbADeDaff3eVubPmfLdLrNm+0MXuQDY0eil2P7pJeBy8NxpXyKyZjEyIScHDqQel1h+UdcK7knMnY2OBYHH/2uPQ67u9xyC4yfX9ptH80fp/xu/S6//v9kZmXaTI2yDcIRbOKpNd3rLsDu8/tNhnr6+WLsldvHhCjPx2Nb3O/NRkLACL15lv1oY0P4d/Z/zYbe33OdemAfHTzo/jXr/8yG1v4UiGC2wQDAKZtmYa/Z/7dbOzZF86iQ0AHAMCs7bOwbO8ys7HHnjmGuJDaR1bN3zUfC3YvMBt74IkD6B/ZHwCw9KelePn7l83GZkzOwB0d7gAArDqwCtO3Tjcb+834bzC662gAwLqsdZjyZcPk1WDDgxvwUNxDAICNxzfi4X8/3DBo91+BjEUYNiwDQ4f+gDlz5mDH7ztwz2f3AAC84IXX8Bp27x6CjIxhwLC5WLk4DNMSpwEAdv2+C8P+Ncx0AfKBW3fdiks5lxqelJMB/AlG1+akDk3F/DvmAwCOFx5Hjz/3APYDCAbwNAx5vlQmAJgzZw7yyvMQ806M2Xp4NuFZrBq9CgBQVFaEkGUhZmMn956MdWPWAag9uQemBUrreh2vGyXdD8Y+iI0PbZReK15SACsAVAN4CEDczeXyHFGL54ibXOYc8V9r71uLR/s8CgDY8tsW6Rxhysq7Vlp2jgCwJGUJZg2cBQA4eOkgEv9pvu+GBueI1T3Mxr6U/BKWjqjtb+H34t/tdo7wS/MzG9vgHLFAYTaW54haPEfcxHNELZ4javEcAaACwGKw93IickFD/wblsPnIyBiG3buHmAwxJNzKYfOBoX+zbLlXAXwEXDx5EUIIdOnSBfeOuxcwfFbuBbARgJkf2E+dPAUc+O+LUZASbllrC2DAf/9PB2C+wYWIiIiIXBhbuu3A0NKdV5Rn8pcVXvJhOpaXhbnGZWFVVVUY++csZGQMQ2pqDf46D1Ls64uUSPubD4YNy8B/vuoDlUrV5GVheZfy8Kdhf8K5c+fQq3cvfLvlW0RGRkqxGz7fgKefeBpVVVVI6J+ADV9sQEhIiHSplxACfxrxJ6R/n4577r0H6/+9vkF5V7y1AkBtS7enl6fdLgsrLiuW1vX8i89DpVJJsaaO+9LSUvSO643CgkK89MpLmPPaHKjVap4jzMTyHOEa5wiAl442J5aXjt7Ec4T1sTxH1OI5wvpYdz1HaLVaRARHyKalm0m3HcjtYexEtlRVVYW0tDSpRXvhQmDu3NpO1ubNg9Gl53WTTlP++OMPDBkyBMePH0enTp2wZ88ehIWFNYj78ccfcd999+HatWsICQnBX//6Vzz55JNQq9XYvHkz7r//fqhUKmRnZ6NTp04mywvAojK1RHPWtWbNGjzzzDMAgJCQEEybNg3PPPMMgoOD7VZOIiIiIncmt3yMHanZU1kZ4GHiOlcPD8Db2zjOHKUS8PFpXmx5OWDuNxWFAvD1bV7sjRuA3vyvT2jTpnmxFRWArpFrbK2J9fWtLTcAVFYCNeZ/dbYq1sentp4BoKoKaOwRVNbEenvffK9YE1tdXRtvjloNeHpaH1tTU1sXplRVwcvLCykpezFkyGDMm7cH8+evh14fjgfHdEJE1AEoFUG179XqakClArxqf6GGTle771CbcN89diyOHz+OiPBw7PjyS4S1a3dzPXViB/frh73p6bhv3Djk5Obi+eefx7JlyzB37lwpyX3x+efRKSys4THy3/JK9Pra96U5np61dQHUHhPl5n91bhBbVgYvQx0att/AzHH/1F/+gkqtFstWrMDFS5eQmpqKN954AxMnTsSMGTMQFxfHc4QBzxHWxzrjHAEYH/fWxNY57k3y8qqNtza2qePemtiWnCMai7XmuwG/R5iO5TnC+lieI2r/5zmiebFyPkc0th3OIMjmSkpKBABRUvvWajjcfbfxDL6+puMAIYYONY4NCjIfm5BgHBsdbT42NtY4NjbWfGx0tHFsQoL52KAg49ihQ83H+voax959t/nY+m/VBx9sPPb69Zuxkyc3HltYeDP22Wcbjz179mbsSy81Hnvs2M3Y1NTGYw8cuBm7ZEnjsRkZN2NXrmw89ptvbsauXdt47IYNN2M3bGg8du1akZ2dLe69914BoMEQA4j1gNADtWU0yMgQAhD7ABH939hAQBw1LHfJkpuxBw40WG8lIFYDIqLe+iJCQkRpY+V96aWbyz17tvFte/bZm7GFhY3HTp58M/b69cZjH3zQ+D1cb3oVID4DRP962zZixAjxupeX+BcgvgfEScB4W3mOuDnUxXNELSeeIyTffNN4rIlzhNmhiXOE0ZCaejP22LHGY13gHGE08HtE7cBzxM2B54jageeI2oHnCFGC2u9RJSUlQg7Y0k1EVqkG8NqGDXj7iSeg09U+DkyJCdDDE7fiOxTjEs4CeATA/wF4IycHidevw8/PD0IIvAPg5f8upyOA/wAw31+oMRVqOyafDODvf/oT0n75BVevXsXbs2bBb9YsW2+qQ3mhts7GAfj59tvxdkQENm/ejO3bt2O7iXh/AJEAbjt+HIOWL8egQYPQu3dveJmIdRY9gIsAfgNwCrV9xWkqKqD58ktoNBq0bdsWmvJyaABoAPgAMN8XKxEREZFrahX3dK9atQpLly5Ffn4+evfujXfffReJieYfIbBx40bMnTsXv//+O7p06YI333wTd999t8Xrk+4hyDPdkRov+TATy8vCrI918GVh+QUFGDdpEn746af/jhmD56e/jncWR2PRYi/M+5sKf335GlSqt/Hm//0fyuq8XzUaDQIDA3HuXO2jJcbedx8++Pvfax+vZ2DlZWHXq6qQl5eHrp07u+VlYWfPnsVHH32Es7m5uHjpEi7l5eHS5cvQarUmZ/P19cXt/ftjUHIyBg0YgNv790fbtm1vBtjhHCGEQEFhIXIvXcJvv/2G3Nxc/HbiBHJPncKpM2dQ0dg+rEepVEKj0SAsJARxt92GHrGxiOvbF3FxcejSpQu8dDqeI6yN5aWjtf/z0tHmxfJ7RO3/PEdYH8tzRO3/PEc0L9YG5witVgv/CHak5jCff/45Jk2ahDVr1iApKQnLly/Hxo0bkZOTg5CQhs/N+/nnnzFkyBCkpaXhnnvuwaeffoo333wTv/zyC3r0sKw9Tm437hO1lBAC6enpmDRpEi5fvgxPzzaoqfkI8+f/GampN/stWLBAh/nzPfDgg0fwf//XDn/729+wfv16lJSUSDFeXl546623MH36dKm3V3uqqanBhg0bAAAPP/wwPD3td4GPo9ZVWlqKS5cu4cKFC/jll1+wZ88e/PTTT7h27ZpRnFKpRJ8+fTBw4EAMGjQIgwYNQkRERIvWXVBQgMzMTBw8eFAaioqKzMZ7enqiU6dO6NKlC9RqNbRaLUpLS6HVaqWhtLQUTX0UeXl5oVu3boiLi0NcXBx69OiBuLg4dOzY0a77lIiIiFyP3PIxt0+6k5KS0L9/f6xcuRIAoNfrERUVheeeew6zZ89uED9u3DiUlZXhm2++kcbdfvvt6NOnD9asWWPROuW2k11ZSUkJbty4gdDQUIckaK6svLwcxcXFuHHjBvR6PW655RYEBARAafiV/L90Oh1+++03ZGVlITs7G1qtFuX//WW1c+fO6NatG9q3bw8fHx+o1WpkZGRg5cqVyMrKAgAEB8ehqOgLDBt2Cdu2DTTqobuqqgqjRv0kPU5s/vzaZMiQJF66dAmdO3dGdHS0YyoF8u+93Fb0ej1OnDiBPXv2SMPvv//eIC4mJgaDBg3CwIEDMWDAAAQGBkKn00Gv10tD3df5+flGSfaFCxcaLFOhUCA6Ohpdu3ZFly5djP5GR0c3mRTr9XqUl5dLSfj58+dx/PhxHDt2DMePH8fx48dx/fp1k/MqFAqEhoYiMjLS5HDrrbciMjKy2ediIQQqKytx/fp1lJWVoayszOj/+q+vX7+OynotNqY+Zk2NUygU8Pb2hq+vL3x9feHj42Pyr6lxarXa4edIIQRqampQVVVlcqisrDQ7zZo4/X9bMAzbZ4u/SqWy9pGGJga1Wm12mqVD/fOuOxFCQK/Xo6amBjqdzuRfa6dZEq+r0ypd9/gx97+lcc2ZH6j9UdPDw0P6W38wNd5esabGK5VKKBQKfndycYbjTa/Xm/3f2tf2mNdwfDT219HTbty4gaeeeko2+ZhbNw9UVVXh0KFDmDNnjjROqVQiJSUFe/fuNTnP3r17MXPmTKNxI0eOxObNm82up7Ky0uhLlrlLP+vLzMzEwoULLYptii1/O7H17zCGL/F1ByGE0YeE4ctbdXU1qqurUVlZiYsXL+KPP/4AALRt2xbdu3eHRqNBdXW1URnrfqgY/q//2rBdhvnqrhuA9KXPw8MDnp6e8PLykhKBiooKeHh4wMvLC15eXlAqldI+F0IYfVFTKBTSl+8bN25I83l6ekpfTqurq43+6nQ6+Pn5oU2bNkZ1YIgxDAqFAgEBAdLg5+eHGzduQKvV4tKlS1Jd1aVUKnHLLbcgODgY3t7eyM/PR0FBgdGXF0t5e3ujZ88pOHhwCYYNO4ihQ38AMLBBXO14YMGCYfDwqH2cmGH/de/e3er1kmWUSqXUCvzUU08BAC5evIiffvpJagn/9ddfcfbsWemy9eZQKBTo3r07+vfvj4SEBPTv3x+9e/eGT93LzZpRdj8/P/j5+SEiIgLdu3fHiBEjpOlCCCkRNwzHjh1DdnY2bty4gfz8fOTn5+PQoUNm1+Hn54ewsDAolUrpRwVL/lZUVEhJn5wpFArpHOXp6SkNdV+b+9/wWqlUWpQk102UyTxTiZFh8PT0bHS6JfNY81629P3e2Lx1B3ItSqVSGgw/OsltnEKhkL6n1U+mzA1yn26L5Jfch1sn3VeuXIFOp0NoaKjR+NDQUJw8edLkPPn5+Sbj8/Pzza4nLS0NCxYssLp8hYWF+Prrr62er7VRKBQoLS3FwYMHnV0Uu7l69apFcYbkwhwPDw/4+PhIdabX61FUVNTg8t82bdqgd+/e6NmzJ9q1aycl/L/99htOnjyJy5cvo7KyEhUVFYiIiMBTTz2Fq1enYPHiW5CaWgOF4odGyzl06A//fZxY7Slm7lyLNo9s7NZbb8W4ceMwbtw4ALU/CO7bt09qCT948CAqKyulL/B1W24M/2s0GsTHx0sJdt++fR3+i7GhJT06Otqofw3D+9twFUX94eLFi7h06RJKSkpw/fp1nDp1qkXl8Pb2Rps2bdCmTRvph7L6/7dp0wbe3t4NWpdMtTbVH6fX61FRUYHy8nKUl5fjxo0bDf6vO668vFxKgIQQUkLsTKZaiS1tOTYV5+XlJf0wa9hOw9+WtKzodDrpx01bDDUm7uFtjQmqUqmUfhww9dfaaXX/NyRmBo0dY/aeZkiO6v5AUXcwNc4esZYyJHHUOtT/gaP+jxuN/RjSnHnNNXZZ8rc5VypZGqvT6bBz504b127zuXXS7Shz5swxah3XarWIiopqcr6ePXvin//8p83KYctLiGy9rPq/2CsUCqMPLABSy4vhb0REBGJiYqBSqXD69GmcPHkSFRUV0oevQWO/OtZ9XfcDu+4HlxAC3t7eUKlU0uVshpblNm3aQK1WS1/Qqqurodfr4e3tLbVs1/3ipdPppC/h3t7e0nw1NTVSK1TdL5OGyxBLS0tRXl4OT09PaVrdwVC2kpISFBcXo7i4GGVlZfDx8YGfnx/Cw8MRFRUFf39/aRurqqpw9epVKemuqKhAaGgowsPDERYWJrXyW2r+fGDhQuCVV/T47xXUjXr1VT08PBrvp4YcS6PRYMSIEUatyK5MqVQiNDQUoaGh6Nevn9m4srIyXLp0CQUFBdJ89S/HNDeubqJt7THjCNXV1VICbjjXGIb6r02Nq/tap9NZlSjXjzGc21sjvV4vJfGVlZUmk6i6l0mbG6yJ0ev1Zt+/9vrbVKLcWve/szSW+JtraZXzuLpXK9YfADQ63ZYxtlhWcxPYliS/9X+Yau0Mt/vKhVsn3UFBQfDw8JC+aBkUFBQgLCzM5DxhYWFWxQO1v+yrDT0PWiEqKgqPP/641fO1RrGxsYiNjXV2MVyKSqVCeHg4wsPDbbK8+fNr/1rTkMYWbpKDNm3aoGvXrujatauzi2JzXl5e8Pf3l9UXi9ZIqVRK3wWMnhhAZEeGRIuI5M+tj1SVSoX4+Hikp6dL4/R6PdLT05GcnGxynuTkZKN4ANixY4fZeCIiIiIiIiJz3LqlGwBmzpyJyZMnIyEhAYmJiVi+fDnKysowZcoUAMCkSZMQGRkp9Tj8wgsvYOjQoXjrrbcwevRorF+/HpmZmXjvvfcsXqfhsmZLO1QjciVVVVXSs5e1Wm2D3svNTXMWR5ZJjttPRERE1NoY8jDZdEgnWoF3331XtG/fXqhUKpGYmCj27dsnTRs6dKiYPHmyUfyGDRtE165dhUqlEnFxcWLLli1Wre/06dMCAAcOHDhw4MCBAwcOHDhwcNJw+vRpW6STLeb2z+l2huLiYgQGBuL8+fO8z84FGDq+u3Dhgiye40dN4z5zLdxfrof7zLVwf7ke7jPXwv3lekpKStC+fXtcu3YNAQEBzi6O+19e7gyGTi38/f15YLoQjUbD/eViuM9cC/eX6+E+cy3cX66H+8y1cH+5Hrl0NiiPUhARERERERG5ISbdRERERERERHbCpNsO1Go1UlNTm/XsbnI87i/Xw33mWri/XA/3mWvh/nI93GeuhfvL9chtn7EjNSIiIiIiIiI7YUs3ERERERERkZ0w6SYiIiIiIiKyEybdRERERERERHbCpJuIiIiIiIjITph029iqVavQoUMHeHt7IykpCQcOHHB2kVqF+fPnQ6FQGA3du3eXpldUVGDatGm45ZZb4Ofnh7Fjx6KgoMBoGefPn8fo0aPh6+uLkJAQzJo1CzU1NUYxu3btQr9+/aBWq9G5c2esW7fOEZvn8n744Qfce++9iIiIgEKhwObNm42mCyEwb948hIeHw8fHBykpKcjNzTWK+eOPPzBhwgRoNBoEBATg8ccfx/Xr141ijhw5gsGDB8Pb2xtRUVFYsmRJg7Js3LgR3bt3h7e3N3r27Ilvv/3W5tvrDpraZ48++miDY27UqFFGMdxnjpOWlob+/fujbdu2CAkJwZgxY5CTk2MU48jzID8LG2fJ/rrjjjsaHGNPP/20UQz3l+OsXr0avXr1gkajgUajQXJyMrZu3SpN5/ElL03tLx5f8rd48WIoFArMmDFDGufSx5kgm1m/fr1QqVTiww8/FMePHxdTp04VAQEBoqCgwNlFc3upqakiLi5OXL58WRqKioqk6U8//bSIiooS6enpIjMzU9x+++1iwIAB0vSamhrRo0cPkZKSIg4fPiy+/fZbERQUJObMmSPFnDlzRvj6+oqZM2eK7Oxs8e677woPDw+xbds2h26rK/r222/Fa6+9Jr744gsBQGzatMlo+uLFi4W/v7/YvHmz+PXXX8Wf//xnERMTI27cuCHFjBo1SvTu3Vvs27dP/Pjjj6Jz585i/Pjx0vSSkhIRGhoqJkyYII4dOyY+++wz4ePjI/7xj39IMT/99JPw8PAQS5YsEdnZ2eKvf/2r8PLyEkePHrV7HbiapvbZ5MmTxahRo4yOuT/++MMohvvMcUaOHCnWrl0rjh07JrKyssTdd98t2rdvL65fvy7FOOo8yM/Cplmyv4YOHSqmTp1qdIyVlJRI07m/HOurr74SW7ZsEb/99pvIyckRr776qvDy8hLHjh0TQvD4kpum9hePL3k7cOCA6NChg+jVq5d44YUXpPGufJwx6bahxMREMW3aNOm1TqcTERERIi0tzYmlah1SU1NF7969TU4rLi4WXl5eYuPGjdK4EydOCABi7969QojaBEOpVIr8/HwpZvXq1UKj0YjKykohhBAvv/yyiIuLM1r2uHHjxMiRI228Ne6tfgKn1+tFWFiYWLp0qTSuuLhYqNVq8dlnnwkhhMjOzhYAxMGDB6WYrVu3CoVCIS5duiSEEOLvf/+7CAwMlPaXEEK88sorolu3btLrhx9+WIwePdqoPElJSeKpp56y6Ta6G3NJ93333Wd2Hu4z5yosLBQAxO7du4UQjj0P8rPQevX3lxC1SUHdL5v1cX85X2BgoPjnP//J48tFGPaXEDy+5Ky0tFR06dJF7Nixw2g/ufpxxsvLbaSqqgqHDh1CSkqKNE6pVCIlJQV79+51Yslaj9zcXERERKBjx46YMGECzp8/DwA4dOgQqqurjfZN9+7d0b59e2nf7N27Fz179kRoaKgUM3LkSGi1Whw/flyKqbsMQwz3b8ucPXsW+fn5RnXr7++PpKQko/0TEBCAhIQEKSYlJQVKpRL79++XYoYMGQKVSiXFjBw5Ejk5Obh27ZoUw31oO7t27UJISAi6deuGZ555BlevXpWmcZ85V0lJCQCgXbt2ABx3HuRnYfPU318Gn3zyCYKCgtCjRw/MmTMH5eXl0jTuL+fR6XRYv349ysrKkJyczONL5urvLwMeX/I0bdo0jB49ukHduvpx5tnsOcnIlStXoNPpjHYyAISGhuLkyZNOKlXrkZSUhHXr1qFbt264fPkyFixYgMGDB+PYsWPIz8+HSqVCQECA0TyhoaHIz88HAOTn55vcd4ZpjcVotVrcuHEDPj4+dto692aoX1N1W7fuQ0JCjKZ7enqiXbt2RjExMTENlmGYFhgYaHYfGpZBlhs1ahQeeOABxMTE4PTp03j11Vdx1113Ye/evfDw8OA+cyK9Xo8ZM2Zg4MCB6NGjBwA47Dx47do1fhZaydT+AoD/+Z//QXR0NCIiInDkyBG88soryMnJwRdffAGA+8sZjh49iuTkZFRUVMDPzw+bNm1CbGwssrKyeHzJkLn9BfD4kqv169fjl19+wcGDBxtMc/XPMSbd5Bbuuusu6f9evXohKSkJ0dHR2LBhA5NhIjt45JFHpP979uyJXr16oVOnTti1axeGDx/uxJLRtGnTcOzYMezZs8fZRSELmNtfTz75pPR/z549ER4ejuHDh+P06dPo1KmTo4tJALp164asrCyUlJTg3//+NyZPnozdu3c7u1hkhrn9FRsby+NLhi5cuIAXXngBO3bsgLe3t7OLY3O8vNxGgoKC4OHh0aAHvYKCAoSFhTmpVK1XQEAAunbtilOnTiEsLAxVVVUoLi42iqm7b8LCwkzuO8O0xmI0Gg0T+xYw1G9jx05YWBgKCwuNptfU1OCPP/6wyT7kMdpyHTt2RFBQEE6dOgWA+8xZpk+fjm+++QYZGRm49dZbpfGOOg/ys9A65vaXKUlJSQBgdIxxfzmWSqVC586dER8fj7S0NPTu3RvvvPMOjy+ZMre/TOHx5XyHDh1CYWEh+vXrB09PT3h6emL37t1YsWIFPD09ERoa6tLHGZNuG1GpVIiPj0d6ero0Tq/XIz093ej+EXKM69ev4/Tp0wgPD0d8fDy8vLyM9k1OTg7Onz8v7Zvk5GQcPXrUKEnYsWMHNBqNdClScnKy0TIMMdy/LRMTE4OwsDCjutVqtdi/f7/R/ikuLsahQ4ekmJ07d0Kv10sflMnJyfjhhx9QXV0txezYsQPdunVDYGCgFMN9aB8XL17E1atXER4eDoD7zNGEEJg+fTo2bdqEnTt3Nrhs31HnQX4WWqap/WVKVlYWABgdY9xfzqXX61FZWcnjy0UY9pcpPL6cb/jw4Th69CiysrKkISEhARMmTJD+d+njrNldsFED69evF2q1Wqxbt05kZ2eLJ598UgQEBBj1oEf28eKLL4pdu3aJs2fPip9++kmkpKSIoKAgUVhYKISofcRA+/btxc6dO0VmZqZITk4WycnJ0vyGRwyMGDFCZGVliW3btong4GCTjxiYNWuWOHHihFi1ahUfGWah0tJScfjwYXH48GEBQLz99tvi8OHD4ty5c0KI2keGBQQEiC+//FIcOXJE3HfffSYfGda3b1+xf/9+sWfPHtGlSxejx08VFxeL0NBQMXHiRHHs2DGxfv164evr2+DxU56enmLZsmXixIkTIjU1lY+fMqOxfVZaWipeeuklsXfvXnH27Fnx/fffi379+okuXbqIiooKaRncZ47zzDPPCH9/f7Fr1y6jR+CUl5dLMY46D/KzsGlN7a9Tp06JhQsXiszMTHH27Fnx5Zdfio4dO4ohQ4ZIy+D+cqzZs2eL3bt3i7Nnz4ojR46I2bNnC4VCIbZv3y6E4PElN43tLx5frqN+L/OufJwx6baxd999V7Rv316oVCqRmJgo9u3b5+witQrjxo0T4eHhQqVSicjISDFu3Dhx6tQpafqNGzfEs88+KwIDA4Wvr6+4//77xeXLl42W8fvvv4u77rpL+Pj4iKCgIPHiiy+K6upqo5iMjAzRp08foVKpRMeOHcXatWsdsXkuLyMjQwBoMEyePFkIUfvYsLlz54rQ0FChVqvF8OHDRU5OjtEyrl69KsaPHy/8/PyERqMRU6ZMEaWlpUYxv/76qxg0aJBQq9UiMjJSLF68uEFZNmzYILp27SpUKpWIi4sTW7Zssdt2u7LG9ll5ebkYMWKECA4OFl5eXiI6OlpMnTq1wYcR95njmNpXAIzOUY48D/KzsHFN7a/z58+LIUOGiHbt2gm1Wi06d+4sZs2aZfQcYSG4vxzpscceE9HR0UKlUong4GAxfPhwKeEWgseX3DS2v3h8uY76SbcrH2cKIYRofjs5EREREREREZnDe7qJiIiIiIiI7IRJNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdBMRERERERHZCZNuIiIiIiIiIjth0k1ERERERERkJ0y6iYiIiIiIiOyESTcRERERERGRnTDpJiIiIiIiIrITJt1EREREREREdsKkm4iIiIiIiMhOmHQTERERERER2QmTbiIiIiIiIiI7YdJNREREREREZCdMuomIiIiIiIjshEk3ERER2dSjjz6KDh06WD1fhw4d8Oijj9q8PERERM7EpJuIiMhO1q1bB4VCYXbYt2+fs4vYqPLycsyfPx+7du1yyvqzs7Mxf/58/P77705ZPxERkS14OrsARERE7m7hwoWIiYlpML5z585OKI3lysvLsWDBAgDAHXfcYfF877//PvR6vdXry8nJgVJ5sz0gOzsbCxYswB133NGslnMiIiI5YNJNRERkZ3fddRcSEhKcXQy7KysrQ5s2beDl5dWs+dVqtY1LRERE5Hy8vJyIiMjJ9Ho93nnnHfTs2RPe3t4IDg7GqFGjkJmZaRT38ccfIzExEb6+vggMDMSQIUOwfft2o5itW7di8ODBaNOmDdq2bYvRo0fj+PHjRjGPPvoo/Pz8cOnSJYwZMwZ+fn4IDg7GSy+9BJ1OBwD4/fffERwcDABYsGCBdEn8/PnzjZZx+vRp3H333Wjbti0mTJggTavfMm3JNta9p3vdunV46KGHAADDhg2T1r9r1y5MnjwZQUFBqK6ublCXI0aMQLdu3ayofSIiIvti0k1ERGRnJSUluHLlitFw9epVafrjjz+OGTNmICoqCm+++SZmz54Nb29vo3u+FyxYgIkTJ8LLywsLFy7EggULEBUVhZ07d0oxH330EUaPHg0/Pz+8+eabmDt3LrKzszFo0KAG90XrdDqMHDkSt9xyC5YtW4ahQ4firbfewnvvvQcACA4OxurVqwEA999/Pz766CN89NFHeOCBB6Rl1NTUYOTIkQgJCcGyZcswduxYs3VgyTbWNWTIEDz//PMAgFdffVVa/2233YaJEyfi6tWr+O6774zmyc/Px86dO/GXv/ylsd1BRETkWIKIiIjsYu3atQKAyUGtVgshhNi5c6cAIJ5//vkG8+v1eiGEELm5uUKpVIr7779f6HQ6kzGlpaUiICBATJ061Wh6fn6+8Pf3Nxo/efJkAUAsXLjQKLZv374iPj5eel1UVCQAiNTU1AZlMyxj9uzZJqdFR0dLry3ZRiGEiI6OFpMnT5Zeb9y4UQAQGRkZRvPodDpx6623inHjxhmNf/vtt4VCoRBnzpxpsB4iIiJn4T3dREREdrZq1Sp07drVaJyHhwcA4D//+Q8UCgVSU1MbzKdQKAAAmzdvhl6vx7x584w6Gqsbs2PHDhQXF2P8+PG4cuWK0XqSkpKQkZHRYPlPP/200evBgwfjo48+smrbnnnmmSZjLNlGayiVSkyYMAErVqxAaWkp2rZtCwD45JNPMGDAAJOd1hERETkLk24iIiI7S0xMNNuR2unTpxEREYF27dqZnf/06dNQKpWIjY01G5ObmwsAuPPOO01O12g0Rq8N91XXFRgYiGvXrpldR32enp649dZbm4yzZButNWnSJLz55pvYtGkTJk2ahJycHBw6dAhr1qyx2TqIiIhsgUk3ERGRGzA8ouujjz5CWFhYg+mensYf+YaW9pZQq9UNWt4dJTY2FvHx8fj4448xadIkfPzxx1CpVHj44YedUh4iIiJzmHQTERE5UadOnfDdd9/hjz/+MNsS3KlTJ+j1emRnZ6NPnz5mYwAgJCQEKSkpNilbcy79NsWSbWzO+idNmoSZM2fi8uXL+PTTTzF69GgEBga2tLhEREQ2xd7LiYiInGjs2LEQQmDBggUNpgkhAABjxoyBUqnEwoULpRbt+jEjR46ERqPBG2+8YfJRWkVFRVaXzdfXFwBQXFxs9bx1WbKNprRp06bR9Y8fPx4KhQIvvPACzpw5w17LiYhIltjSTUREZGdbt27FyZMnG4wfMGAAhg0bhokTJ2LFihXIzc3FqFGjoNfr8eOPP2LYsGGYPn06OnfujNdeew2LFi3C4MGD8cADD0CtVuPgwYOIiIhAWloaNBoNVq9ejYkTJ6Jfv3545JFHEBwcjPPnz2PLli0YOHAgVq5caVW5fXx8EBsbi88//xxdu3ZFu3bt0KNHD/To0cOq5Viyjab06dMHHh4eePPNN1FSUgK1Wo0777wTISEhACA963vjxo0ICAjA6NGjrSoXERGRIzDpJiIisrN58+aZHL927Vp07NgRa9euRa9evfDBBx9g1qxZ8Pf3R0JCAgYMGCDFLly4EDExMXj33Xfx2muvwdfXF7169cLEiROlmP/5n/9BREQEFi9ejKVLl6KyshKRkZEYPHgwpkyZ0qyy//Of/8Rzzz2H//3f/0VVVRVSU1OtTroN29rUNtYXFhaGNWvWIC0tDY8//jh0Oh0yMjKkpBuovcT8m2++wcMPPwy1Wt2sbSQiIrInhWjsui4iIiIiGfvyyy8xZswY/PDDDxg8eLCzi0NERNQAk24iIiJyWffccw9OnDiBU6dO2azjNyIiIlvi5eVERETkctavX48jR45gy5YteOedd5hwExGRbLGlm4iIiFyOQqGAn58fxo0bhzVr1jR4DjkREZFc8BOKiIiIXA7bDIiIyFXwOd1EREREREREdsKkm4iIiIiIiMhOeHm5Hej1euTl5aFt27bs2IWIiIiIiMiBhBAoLS1FREQElErntzMz6baDvLw8REVFObsYRERERERErdaFCxdw6623OrsYTLrtoW3btgBqd7JGo3FyaYiIiIiIiFoPrVaLqKgoKS9zNibddmC4pFyj0TDpJiIiIiIicgK53OrLpJsANHxDCiGgUCj4SBYiIiIiIqIWYNLdyhgS6aZ+9TFMN5WMExERERERkWWYdLcC9RPnllxmwdZvIiIiIiIiyzHpdmONJdfWJs51l1X3fybgRERERERE5jHpdkPmku2WJMiGec21mjP5JiIiIiIiaohJtxuxR7Ld2LJMtX4z+SYiIiIiIrqJSbcbcESy3djy6yffTLyJiIiIiIhqMel2YaaSbWckvPWTbybeREREREREtZh0uyC5JNumylD/UWNyKBcREREREZGzMOl2Ec66hNxabPUmIiIiIiK6SensArgzf3//Fj0T28Bcy7ack9n6Ha7Zoh6IiIiIiIhcDVu6HcCay8GbSk7lnGjXV/dyc4Ct3kRERERE1PqwpduOSkpKzE4ztP7WH8yRe8u2OfXLzBZvIiIiIiJqTdjSbWfmnmtt7byujPd5ExERERFRa8Wk24Fae6LJ3s2JiIiIiKi14eXl5FC83JyIiIiIiFoTJt3kcPXvT2fv5kRERERE5K6YdJPTsNWbiIiIiIjcHZNucipTrd5yVf9+dDmXlYiIiIiI5IEdqZEsyK2TNXMJtSWJNzuHIyIiIiIiA5dv6V61ahU6dOgAb29vJCUl4cCBA2Zj33//fQwePBiBgYEIDAxESkpKg3ghBObNm4fw8HD4+PggJSUFubm59t4MgvlWb0e1KFvyvHRrlkNEREREROTSSffnn3+OmTNnIjU1Fb/88gt69+6NkSNHorCw0GT8rl27MH78eGRkZGDv3r2IiorCiBEjcOnSJSlmyZIlWLFiBdasWYP9+/ejTZs2GDlyJCoqKhy1Wa1e3eS7buJt60S2bpJtybLrlsuS1mwm30REREREpBAufC1sUlIS+vfvj5UrVwIA9Ho9oqKi8Nxzz2H27NlNzq/T6RAYGIiVK1di0qRJEEIgIiICL774Il566SUAQElJCUJDQ7Fu3To88sgjFpVLq9XC398fJSUl0Gg0zd9AajRpbc5b19IkuLmHha3LS0RERERE1pFbPuayLd1VVVU4dOgQUlJSpHFKpRIpKSnYu3evRcsoLy9HdXU12rVrBwA4e/Ys8vPzjZbp7++PpKQki5dJtlX/kvO66rdS12+5NjVYsq6WJMeNLYOt3kRERERErY/LdqR25coV6HQ6hIaGGo0PDQ3FyZMnLVrGK6+8goiICCnJzs/Pl5ZRf5mGaaZUVlaisrJSeq3Vai1aP1muqR7OrU1oHdHqXP8S+fr/s+WbiIiIiMj9uWxLd0stXrwY69evx6ZNm+Dt7d2iZaWlpcHf318aoqKibFRKMqVua7K5xLX+eEvmsRdT66zbWzsREREREbkvl026g4KC4OHhgYKCAqPxBQUFCAsLa3TeZcuWYfHixdi+fTt69eoljTfMZ+0y58yZg5KSEmm4cOGCtZtDLVA/oa7b2ZkzkmxznNkzOxEREREROYfLJt0qlQrx8fFIT0+Xxun1eqSnpyM5OdnsfEuWLMGiRYuwbds2JCQkGE2LiYlBWFiY0TK1Wi3279/f6DLVajU0Go3RQGSKqR8BmHgTEREREbkvl72nGwBmzpyJyZMnIyEhAYmJiVi+fDnKysowZcoUAMCkSZMQGRmJtLQ0AMCbb76JefPm4dNPP0WHDh2k+7T9/Pzg5+cHhUKBGTNm4G9/+xu6dOmCmJgYzJ07FxERERgzZoyzNpPcUP3LyxUKhWxa5ImIiIiIyHZcOukeN24cioqKMG/ePOTn56NPnz7Ytm2b1BHa+fPnoVTebMxfvXo1qqqq8OCDDxotJzU1FfPnzwcAvPzyyygrK8OTTz6J4uJiDBo0CNu2bWvxfd9E9THxJiIiIiJyfy79nG65kttz4Uj+2Ks5EREREZFtyC0fc9l7uoncSf1O1nifNxERERGRe2DSTSQTbOEmIiIiInI/TLqJZIQt3kRERERE7sWlO1IjckfsYI2IbMWSH+54fiEiIrIvJt1EMsTEm4is0ZKrYkzNy/MNERGR7TDpJpIpJt5E1BhrE+36t69Ysmyec4iIiFqOSTeRjDHxJqL6mkqYLTlHNBZT/5xjzXKJiIioISbdRDJn+KJr+PLLxJuodWksybbHucBcizhbv4mIiJqHSTeRi6jb6s0vv0S1DD9CNedSa7n/gOXoZLux9TD5JiIiaj4m3UQuhJebEzVMRpvTiVj9H7DqcvYxZW57nFkuJt9ERETNx6SbyMUw8abWyJrEum6CWLdF29JlOOM+Zjm0alvCXPItpzISERHJjcOT7srKSvzyyy8oLCzEwIEDERQU5OgiELk8Jt7UGrS0wzDD9Pp/rVlX/fG2Os5s0RmaM5nqa6L+NCIiIqqldOTKVqxYgfDwcAwaNAgPPPAAjhw5AgC4cuUKgoKC8OGHHzqyOEQurf4X25Y8p9cRFAqF7MtI8tDYe0UIIQ22VHe5TSXnpoa60y2Zp7nrlxtT5eWxTkREZMxhSffatWsxY8YMjBo1Ch988IHRh3RQUBDuvPNOrF+/3lHFIXILcvqyay4ZMZWUNJWAUOtkSbLtKNYmwXXLbs3729WSbHOYfBMROVZjnzs898qPwy4vf+utt3Dffffh008/xdWrVxtMj4+Px4oVKxxVHCK3YeoeS8Nre3+Zt9VJvW6HTLxUvvWRY8dh9ZkrS3PuNXdn7HCNiMg+LL0NqrHxPA87j8Nauk+dOoW77rrL7PR27dqZTMaJyDKmnq1ry187HfErqj3KTfLV1KXWrqB+i3hjQ2vClm8iopax53c5cjyHtXQHBATgypUrZqdnZ2cjLCzMUcUhckvmemhuTktTc557bJjPVuthC5n74i/wrYOpcxKPayIi88z1E9KSc2Zjj9rkudgxHNbSfffdd+O9995DcXFxg2nHjx/H+++/jz//+c+OKg6R22qsVa2p+66tbcU21Ypn7cnbktZA/jLrPkzty9bYEtyamNu/9e9HdBRrzoM87xCRo9jz6q/GvmfxXOcYCuGgbzp5eXlISkqCEAL33nsv3nvvPfzlL3+BTqfDf/7zH4SHh+PAgQNu8QgxrVYLf39/lJSUQKPROLs41MrZ+kTq7OcWt9bkzHAFgave8879SXVZ0sGcvdfRXHzPEpEtOfPKL3e+6kxu+ZjDkm4AKCwsxKuvvoovvvhCavFu27Ytxo4di8WLFyMkJMRRRbErue1kIoPmfAl19snXnT8QzGlJsiDHummN+5AsI6fWFXO35zQ1DxFRc5i66stZ5FQWW5FbPubQpLuuoqIi6PV6BAcHQ6l06OPC7U5uO5nI1bWGpM3dWuVawz4j27PncdCSq0Qc0TJPRK2DnBNcOZfNWnLLxxzWkVp9wcHBzlo1EbkYd3wMUd3Lxe29HgNH1BUvI6eWsPTRbI0dO+aW0ZL3oKmnQ9QvH9/jRNQYV/gxuv73LVf/riUnLt/EvGrVKnTo0AHe3t5ISkrCgQMHzMYeP34cY8eORYcOHaBQKLB8+fIGMfPnz2/QiUr37t3tuAVEZCl36ADEks6jrHkMlTWPpLJXJ1GNLY+dpJEtmHqvO+vRbObWxc7XiMgUV+xAtH75eH5rOZdOuj///HPMnDkTqamp+OWXX9C7d2+MHDkShYWFJuPLy8vRsWNHLF68uNHHk8XFxeHy5cvSsGfPHnttAhFZqbHeN+WusTLaImloSSJe939L6tKSWDl/oSCyBVc+HxGR/blasl1fYz8wypWhfP7+/s4uihGXTrrffvttTJ06FVOmTEFsbCzWrFkDX19ffPjhhybj+/fvj6VLl+KRRx6BWq02u1xPT0+EhYVJgzv0qE7kblzpi25jH1D2/gC2NAE39QxPax+j5OgWRyK5cMUvpkRkP/WPf1f/XJTzOc5VHvPoskl3VVUVDh06hJSUFGmcUqlESkoK9u7d26Jl5+bmIiIiAh07dsSECRNw/vz5RuMrKyuh1WqNBiKyP7kn3s5Mthtbp60TY1f/MkFkK3I/JxG5ClNXYMk9sTJVPnf7fJTLbX5yfy+Y4rJJ95UrV6DT6RAaGmo0PjQ0FPn5+c1eblJSEtatW4dt27Zh9erVOHv2LAYPHozS0lKz86SlpcHf318aoqKimr1+IrKOHH99ber+Zjl9AFt7X6yp+2mJ6CZz5yQiMs3cLU6NHTfWXollL+bW686fj43dVmPPfWDpbW2GoaSkxC7laC6n9V4uV3fddZf0f69evZCUlITo6Ghs2LABjz/+uMl55syZg5kzZ0qvtVotE28iBzPVm7GjexR2p567LUm8icg89gJMZJ6pz2t7LNvw3cCWxx37MqnV2FMdmttTu7XvA1eqb5dNuoOCguDh4YGCggKj8QUFBY12kmatgIAAdO3aFadOnTIbo1arG71HnIgcw9QHQP0PX3vgBzARmWMq+eZ5gVorS5Mqa44RwzFlatmWtJrXX587J372Ykn9tfSHFVevZ5e9vFylUiE+Ph7p6enSOL1ej/T0dCQnJ9tsPdevX8fp06cRHh5us2USkf054r4jV7qMnIicy9Tjd4haA2s74bT2s9PcbU/WJu7WHJf8nDfP1n3HuEs9u2xLNwDMnDkTkydPRkJCAhITE7F8+XKUlZVhypQpAIBJkyYhMjISaWlpAGo7X8vOzpb+v3TpErKysuDn54fOnTsDAF566SXce++9iI6ORl5eHlJTU+Hh4YHx48c7ZyOJqNnqtzAZtOQyT2t+LSciqqt+axxbvcndOeu2q8YS7+b84MXjtPnM7YPWVqcunXSPGzcORUVFmDdvHvLz89GnTx9s27ZN6lzt/PnzUCpvNubn5eWhb9++0utly5Zh2bJlGDp0KHbt2gUAuHjxIsaPH4+rV68iODgYgwYNwr59+xAcHOzQbSMi22nqsrP6080l602tg4ioKUy8yd3JvX8TuZSjNWuN+0AhWuNW25lWq4W/vz9KSkqg0WicXRwiqsPaRJot20RkL6Z6PCZyVXJPtql1kVs+5tIt3URE1rKmFZtfIIjIntjqTe6An5VETWPSTUStUmPP0TV3uTkRka0x8SZX1txHQxG1Nky6iYjQ8EsCvzQQkaPwsWLkinh7BJHlmHQTERERyUDdVu+WPGWByJ6YbBNZz2Wf001ERETkbkzd+sJnepNcMOEmah4m3UREREQyYqtnCxPZguGHHybcRM3Hy8uJiIiIZMbUkxZ4yTk5GjtKI7INJt1EREREMsXkm5yBjwEjsi0m3UREREQyV//RYkDDRx0StRSTbSL7YNJNRERE5AJMtXob2CMBNzy6zNwlxvXXyUeduTYm3ET2w6SbiIiIyIU0lnw3Nr7u/JZ2zGbpOuo/6qzuepi0yRvv2yayPybdRERERC6obmJkTe/mjuoJ3VwiTs7HVm0ix2LSTUREROTimpuAW7LcupeZm/przTrZCZxzWHL1AxHZD5NuIiIiIjfSWAJlKmG2dHnm/ppbZ2OJXmtv/W7JDyPW3B5g6fKIyL6YdBMRERG1EqYSZnuvy8DU/d51x7tb8mevy/gbuzTc0nW6W10TyR2TbiIiIiKyu6YugXf11m9H3SvfnPW7Yn0SuRMm3URERETkUJb2wC73ZLG5ibatH+tGRPLGpJuIiIiInMKS1m+5JZXWJNr2Lrvc6oaITGPSTUREREROZ671Wy6XnVuSbDMJJiJTmHQTERERkWw0dum5Iy87Z5JNRLbCpJuIiIiIZMcZyTd7/yYie2DSTURERESyZUnyXT/WGk31+u0qnboRkXwpnV2Allq1ahU6dOgAb29vJCUl4cCBA2Zjjx8/jrFjx6JDhw5QKBRYvnx5i5dJRERERPYnhJAGcxQKRYPB3Pi60xtbXlPrJCJqiksn3Z9//jlmzpyJ1NRU/PLLL+jduzdGjhyJwsJCk/Hl5eXo2LEjFi9ejLCwMJssk4iIiIgcy5pE2NrHetVN7plsE5EtKIQLn02SkpLQv39/rFy5EgCg1+sRFRWF5557DrNnz2503g4dOmDGjBmYMWOGzZZpoNVq4e/vj5KSEmg0Gus3jIiIiIisYmiVbs6zs1346zARmSC3fMxlW7qrqqpw6NAhpKSkSOOUSiVSUlKwd+9ehy6zsrISWq3WaCAiIiIixzEkznVbqE0l0/VbsplwE5G9uWzSfeXKFeh0OoSGhhqNDw0NRX5+vkOXmZaWBn9/f2mIiopq1vqJiIiIyDbqJ+FMsInIWVw26ZaTOXPmoKSkRBouXLjg7CIRERERERGRDLjsI8OCgoLg4eGBgoICo/EFBQVmO0mz1zLVajXUanWz1klERERERETuy2WTbpVKhfj4eKSnp2PMmDEAajs9S09Px/Tp0526TMOlS7y3m4iIiIiIyLEMeZhcbilx2aQbAGbOnInJkycjISEBiYmJWL58OcrKyjBlyhQAwKRJkxAZGYm0tDQAtR2lZWdnS/9funQJWVlZ8PPzQ+fOnS1apiWuXr0KALy3m4iIiIiIyEmuXr0Kf39/ZxfDtZPucePGoaioCPPmzUN+fj769OmDbdu2SR2hnT9/HkrlzdvW8/Ly0LdvX+n1smXLsGzZMgwdOhS7du2yaJmWaNeunbT+luzk/v374+DBg82e35bLkcsytFotoqKicOHChRZ1/y+X7ZFLWWxVr7Yoi62WIZeyuGPdymX/yOl8YKvlyGUZrFv7LUNOdetO+4fnWvstR07vWVstRy5lYd3abxklJSVo3769lJc5m0sn3QAwffp0s5d+GxJpgw4dOlh0iUFjy7SEIdH39/dv0QHk4eFhk+fK2WI5clmGgUajcXrdutv+AVper7YqC+vWfmWRyzJsuRw5nA9stRy5LMOAdWv7ZRjIoW7dbf8APNfaczlyeM/aajlyKgvAurXHMgzqNsA6kzxKQSZNmzZNNsuRyzJsRU7bI6ey2IKctkdOZbEFuWyPnPaPLchpe+SyDFth3dqPnLZHTmWxBblsj5z2jy3IaXvkVBZbkNP2yGUZcqMQcrm73I1otVr4+/ujpKTEZr/SUC3WrX2wXu2HdWs/rFv7Yd3aD+vWPliv9sO6tR/Wrf3IrW7Z0m0HarUaqampfIyYHbBu7YP1aj+sW/th3doP69Z+WLf2wXq1H9at/bBu7UdudcuWbiIiIiIiIiI7YUs3ERERERERkZ0w6SYiIiIiIiKyEybdRERERERERHbCpJuIiIiIiIjITph029iqVavQoUMHeHt7IykpCQcOHHB2kZzqhx9+wL333ouIiAgoFAps3rzZaLoQAvPmzUN4eDh8fHyQkpKC3Nxco5g//vgDEyZMgEajQUBAAB5//HFcv37dKObIkSMYPHgwvL29ERUVhSVLljQoy8aNG9G9e3d4e3ujZ8+e+Pbbb22+vY6UlpaG/v37o23btggJCcGYMWOQk5NjFFNRUYFp06bhlltugZ+fH8aOHYuCggKjmPPnz2P06NHw9fVFSEgIZs2ahZqaGqOYXbt2oV+/flCr1ejcuTPWrVvXoDzu8t5fvXo1evXqBY1GA41Gg+TkZGzdulWazjq1ncWLF0OhUGDGjBnSONZv88yfPx8KhcJo6N69uzSd9doyly5dwl/+8hfccsst8PHxQc+ePZGZmSlN52dZ83To0KHB+1ahUEjP6OX7tnl0Oh3mzp2LmJgY+Pj4oFOnTli0aBHq9p3M92zzlZaWYsaMGYiOjoaPjw8GDBiAgwcPStNZt5ZxpRzBkrI0SZDNrF+/XqhUKvHhhx+K48ePi6lTp4qAgABRUFDg7KI5zbfffitee+018cUXXwgAYtOmTUbTFy9eLPz9/cXmzZvFr7/+Kv785z+LmJgYcePGDSlm1KhRonfv3mLfvn3ixx9/FJ07dxbjx4+XppeUlIjQ0FAxYcIEcezYMfHZZ58JHx8f8Y9//EOK+emnn4SHh4dYsmSJyM7OFn/961+Fl5eXOHr0qN3rwF5Gjhwp1q5dK44dOyaysrLE3XffLdq3by+uX78uxTz99NMiKipKpKeni8zMTHH77beLAQMGSNNrampEjx49REpKijh8+LD49ttvRVBQkJgzZ44Uc+bMGeHr6ytmzpwpsrOzxbvvvis8PDzEtm3bpBh3eu9/9dVXYsuWLeK3334TOTk54tVXXxVeXl7i2LFjQgjWqa0cOHBAdOjQQfTq1Uu88MIL0njWb/OkpqaKuLg4cfnyZWkoKiqSprNem++PP/4Q0dHR4tFHHxX79+8XZ86cEd999504deqUFMPPsuYpLCw0es/u2LFDABAZGRlCCL5vm+v1118Xt9xyi/jmm2/E2bNnxcaNG4Wfn5945513pBi+Z5vv4YcfFrGxsWL37t0iNzdXpKamCo1GIy5evCiEYN1aypVyBEvK0hQm3TaUmJgopk2bJr3W6XQiIiJCpKWlObFU8lH/gNLr9SIsLEwsXbpUGldcXCzUarX47LPPhBBCZGdnCwDi4MGDUszWrVuFQqEQly5dEkII8fe//10EBgaKyspKKeaVV14R3bp1k14//PDDYvTo0UblSUpKEk899ZRNt9GZCgsLBQCxe/duIURtXXp5eYmNGzdKMSdOnBAAxN69e4UQtSc8pVIp8vPzpZjVq1cLjUYj1efLL78s4uLijNY1btw4MXLkSOm1u7/3AwMDxT//+U/WqY2UlpaKLl26iB07doihQ4dKSTfrt/lSU1NF7969TU5jvbbMK6+8IgYNGmR2Oj/LbOeFF14QnTp1Enq9nu/bFhg9erR47LHHjMY98MADYsKECUIIvmdbory8XHh4eIhvvvnGaHy/fv3Ea6+9xrptJjnnCJaUxRK8vNxGqqqqcOjQIaSkpEjjlEolUlJSsHfvXieWTL7Onj2L/Px8ozrz9/dHUlKSVGd79+5FQEAAEhISpJiUlBQolUrs379fihkyZAhUKpUUM3LkSOTk5ODatWtSTN31GGLcad+UlJQAANq1awcAOHToEKqrq422u3v37mjfvr1R/fbs2ROhoaFSzMiRI6HVanH8+HEpprG6c+f3vk6nw/r161FWVobk5GTWqY1MmzYNo0ePblAHrN+Wyc3NRUREBDp27IgJEybg/PnzAFivLfXVV18hISEBDz30EEJCQtC3b1+8//770nR+ltlGVVUVPv74Yzz22GNQKBR837bAgAEDkJ6ejt9++w0A8Ouvv2LPnj246667APA92xI1NTXQ6XTw9vY2Gu/j44M9e/awbm1ETvVoSVkswaTbRq5cuQKdTmd04geA0NBQ5OfnO6lU8maol8bqLD8/HyEhIUbTPT090a5dO6MYU8uouw5zMe6yb/R6PWbMmIGBAweiR48eAGq3WaVSISAgwCi2fv02t+60Wi1u3Ljhlu/9o0ePws/PD2q1Gk8//TQ2bdqE2NhY1qkNrF+/Hr/88gvS0tIaTGP9Nl9SUhLWrVuHbdu2YfXq1Th79iwGDx6M0tJS1msLnTlzBqtXr0aXLl3w3Xff4ZlnnsHzzz+Pf/3rXwD4WWYrmzdvRnFxMR599FEAPB+0xOzZs/HII4+ge/fu8PLyQt++fTFjxgxMmDABAN+zLdG2bVskJydj0aJFyMvLg06nw8cff4y9e/fi8uXLrFsbkVM9WlIWS3haHElEsjVt2jQcO3YMe/bscXZR3EK3bt2QlZWFkpIS/Pvf/8bkyZOxe/duZxfL5V24cAEvvPACduzY0aCVgFrG0IIFAL169UJSUhKio6OxYcMG+Pj4OLFkrk+v1yMhIQFvvPEGAKBv3744duwY1qxZg8mTJzu5dO7jgw8+wF133YWIiAhnF8XlbdiwAZ988gk+/fRTxMXFISsrCzNmzEBERATfszbw0Ucf4bHHHkNkZCQ8PDzQr18/jB8/HocOHXJ20UjG2NJtI0FBQfDw8GjQq2ZBQQHCwsKcVCp5M9RLY3UWFhaGwsJCo+k1NTX4448/jGJMLaPuOszFuMO+mT59Or755htkZGTg1ltvlcaHhYWhqqoKxcXFRvH167e5dafRaODj4+OW732VSoXOnTsjPj4eaWlp6N27N9555x3WaQsdOnQIhYWF6NevHzw9PeHp6Yndu3djxYoV8PT0RGhoKOvXRgICAtC1a1ecOnWK79sWCg8PR2xsrNG42267Tbp8n59lLXfu3Dl8//33eOKJJ6RxfN8236xZs6TW7p49e2LixIn43//9X+kKI75nW6ZTp07YvXs3rl+/jgsXLuDAgQOorq5Gx44dWbc2Iqd6tKQslmDSbSMqlQrx8fFIT0+Xxun1eqSnpyM5OdmJJZOvmJgYhIWFGdWZVqvF/v37pTpLTk5GcXGx0a+HO3fuhF6vR1JSkhTzww8/oLq6WorZsWMHunXrhsDAQCmm7noMMa68b4QQmD59OjZt2oSdO3ciJibGaHp8fDy8vLyMtjsnJwfnz583qt+jR48anbR27NgBjUYjfclsqu5aw3tfr9ejsrKSddpCw4cPx9GjR5GVlSUNCQkJmDBhgvQ/69c2rl+/jtOnTyM8PJzv2xYaOHBgg8cx/vbbb4iOjgbAzzJbWLt2LUJCQjB69GhpHN+3zVdeXg6l0vgrvoeHB/R6PQC+Z22lTZs2CA8Px7Vr1/Ddd9/hvvvuY93aiJzq0ZKyWMTiLteoSevXrxdqtVqsW7dOZGdniyeffFIEBAQY9arZ2pSWlorDhw+Lw4cPCwDi7bffFocPHxbnzp0TQtR2wR8QECC+/PJLceTIEXHfffeZfBxA3759xf79+8WePXtEly5djB4HUFxcLEJDQ8XEiRPFsWPHxPr164Wvr2+DxwF4enqKZcuWiRMnTojU1FSXeqyCKc8884zw9/cXu3btMnrkSnl5uRTz9NNPi/bt24udO3eKzMxMkZycLJKTk6XphsetjBgxQmRlZYlt27aJ4OBgk49bmTVrljhx4oRYtWqVycetuMt7f/bs2WL37t3i7Nmz4siRI2L27NlCoVCI7du3CyFYp7ZWt/dyIVi/zfXiiy+KXbt2ibNnz4qffvpJpKSkiKCgIFFYWCiEYL22xIEDB4Snp6d4/fXXRW5urvjkk0+Er6+v+Pjjj6UYfpY1n06nE+3btxevvPJKg2l83zbP5MmTRWRkpPTIsC+++EIEBQWJl19+WYrhe7b5tm3bJrZu3SrOnDkjtm/fLnr37i2SkpJEVVWVEIJ1aylXyhEsKUtTmHTb2Lvvvivat28vVCqVSExMFPv27XN2kZwqIyNDAGgwTJ48WQhR2w3/3LlzRWhoqFCr1WL48OEiJyfHaBlXr14V48ePF35+fkKj0YgpU6aI0tJSo5hff/1VDBo0SKjVahEZGSkWL17coCwbNmwQXbt2FSqVSsTFxYktW7bYbbsdwVS9AhBr166VYm7cuCGeffZZERgYKHx9fcX9998vLl++bLSc33//Xdx1113Cx8dHBAUFiRdffFFUV1cbxWRkZIg+ffoIlUolOnbsaLQOA3d57z/22GMiOjpaqFQqERwcLIYPHy4l3EKwTm2tftLN+m2ecePGifDwcKFSqURkZKQYN26c0XOkWa8t8/XXX4sePXoItVotunfvLt577z2j6fwsa77vvvtOAGhQX0LwfdtcWq1WvPDCC6J9+/bC29tbdOzYUbz22mtGj03ie7b5Pv/8c9GxY0ehUqlEWFiYmDZtmiguLpams24t40o5giVlaYpCCCEsbxcnIiIiIiIiIkvxnm4iIiIiIiIiO2HSTURERERERGQnTLqJiIiIiIiI7IRJNxEREREREZGdMOkmIiIiIiIishMm3URERERERER2wqSbiIiIiIiIyE6YdBMRERERERHZCZNuIiIiIiIiIjth0k1ERERERERkJ0y6iYiIiIiIiOyESTcRERERERGRnfx/mzMhFHZvaEoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUxf8/8NclIQVCEiANEEKvCSAtBGlKPgZEJTaKCISmKCiIoohAAn4lgor6QQT9qARBRFEpIr0LBlCK9CYd6ZCEGiCZ3x/87ry7XJLLZfd2du/1fDzuAdnb252dnZ3d987srEkIIUBEREREREREivPSOgFERERERERERsWgm4iIiIiIiEglDLqJiIiIiIiIVMKgm4iIiIiIiEglDLqJiIiIiIiIVMKgm4iIiIiIiEglDLqJiIiIiIiIVMKgm4iIiIiIiEglDLqJiIiIiIiIVMKgm4iIiIiIiEglDLqJyGNNmDABJpMJJpMJmzZtcjjP5s2b0blzZ4SGhsLPzw81a9bEmDFjcPPmzXyX++2336J58+YoVaoUypQpg0cffRTbtm1TazPIA6WkpFjKrqPPsWPHbOY/duwYTCYTOnTo4NTyT58+jY8//hgPP/wwKleuDF9fX0RGRuKpp57C5s2b8/3dr7/+ik6dOiE8PBwlSpRAaGgooqOj0bdvXyxYsMDp7Tt06BDGjx+PNm3aoEKFCvD19UWlSpXQq1cv7N+/3+nlKMGc12vXrlVkeSaTCe3atVNkWbJbv349Xn/9dTz44IMIDg6GyWRCUlKS1skiInI7H60TQESkhd27dyM5ORmlSpXC9evXHc7z888/o2vXrvD29sZTTz2FyMhIbNy4Ee+88w5Wr16NVatWwc/Pz+Y37777LkaNGoWoqCgMHDgQV69exZw5c9CyZUusWrUKDzzwgDs2jzxE7969UaVKlTzTQ0JCirXcyZMnY8KECahevToefvhhhIWF4dChQ5g/fz7mz5+P2bNno2vXrja/GTt2LFJSUlCyZEk8+uijqFKlCu7evYs9e/bg+++/x8GDB9G5c2en1j969Gh8//33iI6ORufOnREUFIRdu3Zh5syZ+PHHH7F06VK0adOmWNtI6vv6668xY8YMlCxZEpUrV0ZWVpbWSSIi0gSDbiLyOHfu3EHv3r3RqFEj1KxZE7Nmzcozz82bNzFw4ECYTCZs3LgRTZo0AQAIIfDyyy9jypQp+OijjzBixAjLbw4dOoSUlBTUqlULW7ZsQXBwMADgpZdeQosWLTBgwADs3r0bXl7sZETKSEpKUqXVtHnz5li7di3atm1rM/23335D+/bt8eKLLyIxMdFy0+nYsWMYN24cKlWqhE2bNqFChQo2v7t582aBLeT2OnTogDfffBP333+/zfQ5c+age/fuePHFF7Fnzx4Xt47cZfDgwRg+fDjq1KmDP/74A3FxcVoniYhIE7zyIyKP8+6772LPnj34+uuv4e3t7XCe33//HRcuXEBiYqIl4AbudQ39v//7PwDAtGnTIISwfDd9+nTcvXsXb7/9tiXgBoBGjRqhe/fu2LdvHzZs2FCstFepUgVVqlRBRkYGBg8ejEqVKsHHxwdpaWmWeXbu3Ilu3bqhfPny8PX1RVRUFF5++WVcunQpz/LWrFmDjh07okKFCvDz80NERARat26NL774Is+8GzduRKdOnVC2bFn4+/ujTp06SE5Oxo0bN/LMa+5Ce+7cOfTu3RuhoaEICAhAixYtHHbT3bp1KwYPHozo6GgEBwcjICAAMTExeO+993Dnzp188+HatWsYMmSIJf0NGjTAjz/+6DDvbt++jY8++gjNmjVD6dKlERgYiHr16mHYsGG4cuWKzbznz5/Hq6++iho1asDPzw+hoaF46qmnsHv3bofLNponn3wyT8ANAK1bt8aDDz6IK1euYNeuXZbpW7ZsQW5uLp588sk8ATcABAQEFOnmQFJSUp6AGwC6deuGWrVqYe/evbh48aLTy3MkMzMTY8aMQb169RAYGIigoCDUqFEDvXv3xvHjxwEA7dq1w9ixYwEADz74oKX7vnXvgjVr1qBv376oXbs2AgMDERgYiKZNm+Y5htauXQuTyQQAWLdunc3jAObjt6Cu7GlpaTbzWq/f2WPY3Zo2bYr69evnW88SEXkKtnQTkUfZtm0b3n33XYwbNw716tXLd76zZ88CAKpWrZrnu5CQEJQpUwbHjx/HkSNHUL16dQCwXCg//PDDeX6TkJCAtLQ0rFu3rtjdYrOzs/HQQw/h2rVrePzxx+Hj44OIiAgAwMKFC9GlSxd4eXmhc+fOqFSpEvbu3YtPP/0Uy5Ytw+bNm1GmTBkA956/feyxxxASEoLOnTujfPnyuHDhAv766y/MnDkTzz//vGWdc+fORffu3eHn54euXbsiPDwcy5cvx7hx47Bs2TKsXbsW/v7+NunMyMhAq1atEBwcjJ49e+L8+fP4/vvvkZCQgK1btyI6Otoy7//+9z/88ssvaNOmDR555BHcuHEDa9euxVtvvYU//vgDP/30U558uHPnDh5++GFcuXIFTz31FG7cuIE5c+agS5cuWLp0qc1+uHnzJv7zn/9g48aNqFmzJvr06QM/Pz8cOnQIn3/+OXr16mXJl7///hvt2rXDqVOn8PDDDyMxMRHnz5/HTz/9hGXLlmHVqlWIjY0t1j5Uyvr167F582Z4eXmhZs2aiI+PR2BgoKrrLFGiBADAx+ffS4hy5coBuNfbQ22O1l9UQggkJCRg8+bNeOCBB9ChQwd4eXnh+PHjWLhwIXr27ImoqCjL88fr1q2z6cpv3X1/woQJOHz4MFq0aIEnnngCGRkZWLp0KV544QUcOHAAH374IYB7N4qSk5MxduxYm2UD927MuaIoxzAREWmHQTcReYzs7Gz06tULjRo1whtvvFHgvKGhoQCAo0eP5vkuMzPT0jJ68OBBS9B96NAhBAYGIjIyMs9vatasaZmnuM6ePYuGDRti48aNCAgIsEy/dOkSevbsidDQUGzcuBFRUVGW78zdcseMGYPJkycDuPe8pRACa9asQcOGDW3WYd0qnpWVhQEDBsDHxwfp6elo0KABAGD8+PF49tln8f333+P999/H6NGjbZbx119/4aWXXsLkyZMtXeofeugh9O/fH59++immTZtmmXfkyJGYMmWKTYuYEAL9+/fH119/jY0bN+Z5Hv6ff/5Bs2bNsHbtWvj6+gIAnn32WcTHx2PSpEk2Qffo0aOxceNG9OzZE9OnT7dZT2Zmps3fvXr1wpkzZ7B06VIkJCRYpo8aNQpNmzbFgAEDsHPnTsc7x8qxY8fytEoWJiUlpUjzJycn2/wdEhKCTz75BL169SrScpx14sQJrFy5EuXLl0dMTIxlemxsLCpXrozFixfj0UcfRbdu3dC8eXPUrFnT0rqrhC1btmDPnj1o1qxZsZ5b3717NzZv3ozExETMmzfP5rvs7GxL74qkpCQcO3YM69aty7cr/9SpU/PcnLt79y4eeeQRfPLJJxgyZAgqV66MKlWqICUlBWPHjrX8v7icPYYLsmPHDsyfP9/pdYaEhGDo0KFFSCUREUEQEXmIN954Q/j6+opdu3ZZpvXu3VsAEOnp6TbzXr16VQQFBYkSJUqIbdu22Xz3yiuvCAACgJg9e7ZleokSJUTFihUdrvvgwYMCgHj88ceLtQ1RUVECgPjrr7/yfDdp0iQBQHzzzTcOf9u4cWMRGhpq+fvJJ58UAMSBAwcKXOc333wjAIgXX3wxz3fHjx8XPj4+olq1ajbTAYhSpUqJq1ev2ky/c+eO8PHxEY0bNy5wnWZbt24VAERKSorNdHM+HDlyJM9voqKiRNmyZW3WWbp0aREcHCwuX75c4Pq2bdsmAIi+ffs6/H7YsGECgE0Zys+aNWss5cTZj7N+/vln8fXXX4sjR46ImzdviqNHj4rJkyeLMmXKCJPJJBYsWGAz/9GjRwUAkZCQ4PQ67N2+fVu0adMm3zK2bds2Ub9+fZvtCQ4OFo8++qj4+eefXV6vWUZGhqhTp47w8vISa9asKdaydu7cKQCI7t27FzpvcnKyAFDkdf70008CgEhLS7OZDkC0bdu2yOuaPn26ACCmT59umebsMVwQ83Kd/URFRbm0nvT0dAFA9O7d2+W0EhHpFVu6icgjpKen44MPPkBKSopNt+b8BAYGYtKkSejfvz/i4uLw9NNPIzIyEr///ju2bt2KOnXqYP/+/ZoMiubv72/Tymhmfu3Z5s2b8ffff+f5/tatW7h48SIuXryI0NBQdOvWDT///DNatGiBZ599Fu3bt0fr1q0trfxm27dvBwCHrXyVK1dGtWrVcPDgQVy9ehWlS5e2fFerVq08XZ3NXeEzMjJspt++fRuffvop5syZg/379+PatWs2z8v/888/edYdEhLisPv/fffdh/T0dMvf+/fvx9WrVxEfH2/pQp4fcx6eO3fOYUuk+XVV+/fvL7QctWvXzmYblPTEE0/Y/F2lShUMHjwYdevWxX/+8x+MGjUKjz/+eL6/z8jIwMcff5xnen6tr7m5uUhKSsL69esxYMAA9OzZM888999/P3bt2oX09HSsWbMGW7duxYYNG7Bo0SIsWrQIPXr0wMyZMy2vNLPvBVBQC+rNmzfxxBNPYP/+/Xj33XeLPXhc3bp10aBBA3z33Xc4deoUEhMT0a5dOzRq1KjIx/TVq1fxwQcfYP78+fj777/zvA3BUdlVirPHcEGSkpL4Gi8iIpUx6CYiw7t79y569+6NBg0a2Iw2Xph+/fqhQoUKmDhxIhYsWICcnBw0a9YMq1atwoQJE7B//36Eh4db5g8ODkZmZqbDZZlflWM9wJqrwsPDHXbZvXz5MgBgypQpBf7++vXrCA0NxTPPPIP58+dj0qRJmDZtGqZMmQKTyYQHH3wQH374oeU5U3Pazc+N2ytfvjwOHjyIrKwsm6A7KCjI4fw+Pj7Iycmxmfb000/jl19+Qa1atSzPjJcoUQIZGRn45JNPkJ2dnWc5+eWlj48PcnNzLX+b90nFihXzyZF/mfPw119/xa+//prvfPm9Zk5r7du3R/Xq1bFr1y5kZWXluw8yMjIsA4RZcxR05+bmom/fvpg9ezaee+45m8cC7JlMJrRs2RItW7YEcO8RgQULFqBXr1749ttv8dRTT+GJJ57AsWPH8qw/KirKYdB969YtdO7cGWvWrMFbb72FkSNHFpADzvHx8cHq1auRkpKCn376Ca+99hoAICwsDIMHD8bbb7/t1OBft2/fRrt27bBt2zbcf//96NmzJ8qVKwcfHx8cO3YMM2bMcFh2leLsMUxERNpi0E1Ehnft2jXLs9TmZ3/tmV9lM2/ePCQmJlqmd+zYER07dswzf8+ePeHl5YXGjRtbptWsWRPp6ek4e/Zsnue6zes3P9tdHPk9I2sOsHbt2uVUaz4AdO7cGZ07d8bVq1exceNG/Pzzz/jqq6/QoUMH7N+/HyEhIZblnjt3zuEyzIPO5RfgFeaPP/7AL7/8goSEBPz66682wc6mTZvwySefuLRcM/Ozv6dPny50XvM2TJ48GYMHDy7Wet3xTLcjoaGhOHz4MG7cuJHvPqlSpYpTrfC5ubno06cPvvnmG3Tv3h1paWlFagk2mUxITEzEq6++inHjxmH16tV44oknnO4FcPPmTXTu3BkrVqzAG2+8gfHjxzu97sKUK1cOkydPxn//+1/s378fq1evxuTJk5GcnIwSJUrgrbfeKnQZCxYswLZt29CvXz98+eWXNt/NmTMHM2bMKFKazHl79+7dPN/ld0PPmWO4IHymm4hIfQy6icjw/Pz80K9fP4ffrV+/HocOHcLjjz+OsLAwm1cB5Wfjxo04duwYHnnkEZvW1rZt2yI9PR3Lly/PM5DVsmXLLPOoJTY2Fj///DPS09OdDrrNSpcujQ4dOqBDhw7IycnB119/jc2bNyMhIcHy6qa1a9eiS5cuNr87efIk/v77b1SrVs2mlbsozF3hO3XqlKd18bfffnNpmdZq166NoKAg/PHHH7hy5UqBXczNo5Knp6crEnQ7ak0uSHGD7uvXr2PPnj0oVapUkboYO2IdcHft2hUzZ850+dVProyobh1wv/7665gwYYJL6y6MyWRC3bp1UbduXTz++OOoXLkyFi5caAm6zdts3zsD+Lfsdu7cOc93+ZVdLy8vh8sCYCmbjm4QmR/zyE9Bx3BBduzYUaRyml+PBCIiyh/f001EhhcQEIAvv/zS4cfcDfatt97Cl19+adMd09yt2to///yD/v37w8fHB++8847Nd3369IGPjw/effddm1apHTt24LvvvkPdunXRqlUrm9+0a9cu3/fyFlWfPn1QunRpvP3229izZ0+e72/cuGF5Zhm4d8PB0cX/+fPnAcDyCrDOnTsjODgY06dPt1muEAJvvvkm7t69W6xnQs2jrNu/w3zPnj1ITU11eblmPj4+eOGFF5CZmYkhQ4bk2ebMzExcu3YNANC8eXPExsbiu+++w/fff59nWbm5uVi3bp1T6zW35hbl44yrV6/i4MGDeabfvHkTAwYMwNWrV9GlS5divVLL3KX8m2++wTPPPINZs2YVGHBv2bIF33zzDW7dupXnuwsXLlhage3Lf37MXcpXrFiBYcOG4f333y/0N+Z3XDtz4+LYsWM4duxYnunm3hzWr78rW7YsgHs3mOzlV3bXrVuH//3vfw7XXbZsWZw6dcrhd82aNQMAfPPNNzaPSKSnp+Pbb7/NM7+zx3BBkpKSilRGHeUbEREVjC3dRET5+O9//4tZs2ahVatWCA8Px8mTJ7FgwQLcuHEDX331lU3XcuDewGEpKSkYNWoUGjZsiKeeegpXr17FnDlzANx7F7V911zzhXVxAiSzsLAwfPfdd3jmmWfQsGFDdOjQAXXq1EF2drbltUctW7bE0qVLAQCvvPIK/vnnH7Rq1QpVqlSByWTChg0bsGXLFrRo0cISIAUFBeF///sfunfvjtjYWHTt2hVhYWFYuXIltm7diubNm2P48OEup7t58+Zo3rw5fvjhB5w5cwYtWrTAiRMnsHDhQnTq1Ak//vhjsfNm3Lhx2LRpE2bOnIlNmzahY8eO8PPzw5EjR7B06VJs2LDBcsPlu+++w4MPPohu3brh448/RuPGjREQEIATJ04gPT0dFy5ccBhcusulS5dQp04dNGvWDHXr1kVkZCTOnTuHlStX4tSpU4iJiXEqSC3IuHHjMGPGDAQGBqJWrVr4v//7vzzzJCYmWvLsn3/+Qe/evTF48GC0adMGderUgY+PD44fP45Fixbh2rVr6NSpE5555hmn1j9w4ECsWLECkZGRKF26tMNAOikpyaZnSlGOpR07duDJJ59E8+bNUa9ePURGRuL06dOYP38+vLy88Oqrr1rmffDBB2EymTBy5Ejs2bMHwcHBCAkJweDBg/HYY4+hSpUqmDhxInbv3o3o6GgcOHAAixYtwhNPPOGw7D700EP44YcfkJiYiPvvvx/e3t54/PHH0aBBA7Ro0QIPPPAAVq9ejbi4OLRp0wbHjx/HggUL8Nhjj+V5vZmzx7BWNmzYYLnhcuHCBcs080260NBQfPDBB1olj4jIfdwyRjoRkaTye2WYEEKsWrVKxMfHi/DwcFGiRAkRGRkpunbtmucVYvZmzZolmjZtKgICAkRwcLB45JFHxNatW/PMl5ubK8qWLSuqVKki7ty541R6o6KiCn1lz/79+0W/fv1EVFSU8PX1FWXKlBExMTHilVdeEVu2bLHMN2fOHNGlSxdRvXp1UbJkSREcHCwaNmwoJkyYkOdVX0IIsX79etGxY0cREhIifH19Ra1atcTo0aPFtWvX8syLAl6L5Ggbzp8/L/r27SsqVKgg/P39RUxMjJgyZYo4cuSIw9cMFZQPbdu2dfj6rVu3bokPPvhANGrUSAQEBIjAwEBRr1498dprr4krV67YzHv58mUxatQoER0dbZm3Zs2a4tlnn1Xk9VfFkZmZKQYNGiSaNWsmwsLChI+PjyhdurRo3ry5mDhxorhx40ae3xw+fFgAEI899phT6zAfFwV9rF9dlZWVJWbNmiV69uwp6tevL0JCQoSPj48ICwsT7du3F1999ZW4e/eu09to3ocFfexfq/XEE08ILy8vp16fdfLkSTFixAjRokULER4eLnx9fUXlypXFk08+6bAuSEtLEzExMcLPzy/Pa7OOHDkinnrqKREWFiZKliwpmjVrJubMmWN5ZVxycrLNss6cOSO6dOkiQkNDhZeXV568vHjxoujVq5coW7asCAgIEC1atBDLli1z+Mqwoh7D7lbY68hcff0YEZHemIRQ6X0mRERUoN27dyMmJgZTpkzBSy+9pHVyyMA2bdqEuLg49OnTB19//bXWyVFFeHg42rVrhx9++EHrpBAREdngM91ERBr57bffEBERgb59+2qdFDK4BQsWAPh3oDij2bdvHy5cuODUiONERETuxpZuIiIiA7p16xb+7//+D7t27cLChQtRvnx57Nu3T5F3xRMREZHzGHQTEREZUEZGBsqWLYuQkBC0a9cOEyZMUOQ98URERFQ0DLqJiIiIiIiIVMJnuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIDCstLQ0mkwnHjh3TOilEROShGHQTERE5YA7WzB8fHx9UrFgRSUlJOH36tNbJ09TevXuRkpLCQJaIiMgJPlongIiISGbjxo1D1apVcevWLWzatAlpaWnYsGEDdu/eDX9/f62Tp4m9e/di7NixaNeuHapUqaJ1coiIiKTGoJuIiKgAHTt2RNOmTQEA/fv3R2hoKCZMmICFCxeiS5cuGqeOiIiIZMfu5UREREXQunVrAMDff/9tM33//v14+umnUbZsWfj7+6Np06ZYuHChzTx37tzB2LFjUbNmTfj7+6NcuXJo1aoVVqxYYTPf6tWr0bp1a5QqVQohISHo3Lkz9u3bZzNPSkoKTCYTDh8+jKSkJISEhCA4OBh9+vTBjRs3bOadPn06HnroIYSHh8PPzw/16tXD1KlT82xblSpV8Oijj2LDhg1o3rw5/P39Ua1aNXzzzTeWedLS0vDMM88AAB588EFL9/u1a9fmm2c7d+5EUlISqlWrBn9/f0RGRqJv3764dOmSy9t08+ZNvPLKKwgNDUXp0qXx+OOP4/Tp0zCZTEhJSck3LWZLliyx5HHp0qXRqVMn7Nmzp9DfERERFRWDbiIioiIwP8dcpkwZy7Q9e/agRYsW2LdvH0aMGIEPP/wQpUqVQmJiIubNm2eZLyUlBWPHjsWDDz6ITz/9FG+//TYqV66Mbdu2WeZZuXIlEhIScP78eaSkpGDYsGH4/fff8cADDzh8hrpLly64evUqUlNT0aVLF6SlpWHs2LE280ydOhVRUVEYOXIkPvzwQ1SqVAkvvfQSpkyZkmd5hw8fxtNPP43//Oc/+PDDD1GmTBkkJSVZAtI2bdrglVdeAQCMHDkSM2fOxMyZM1G3bt1882zFihU4cuQI+vTpg8mTJ6Nbt26YM2cOHnnkEQghXNqmpKQkTJ48GY888ggmTJiAgIAAdOrUKd80WJs5cyY6deqEwMBATJgwAaNHj8bevXvRqlUrPqdORETKE0RERJTH9OnTBQCxcuVKceHCBXHy5Enx448/irCwMOHn5ydOnjxpmbd9+/YiJiZG3Lp1yzItNzdXtGzZUtSsWdMyrWHDhqJTp04FrrdRo0YiPDxcXLp0yTLtr7/+El5eXqJXr16WacnJyQKA6Nu3r83vn3jiCVGuXDmbaTdu3MiznoSEBFGtWjWbaVFRUQKAWL9+vWXa+fPnhZ+fn3jttdcs0+bOnSsAiDVr1hS4LQWt/7vvvsuzLme3aevWrQKAGDp0qM18SUlJAoBITk62TDPvx6NHjwohhLh69aoICQkRAwYMsPnt2bNnRXBwcJ7pRERExcWWbiIiogLEx8cjLCwMlSpVwtNPP41SpUph4cKFuO+++wAAly9fxurVqy2tsxcvXsTFixdx6dIlJCQk4NChQ5bRzkNCQrBnzx4cOnTI4brOnDmDHTt2ICkpCWXLlrVMb9CgAf7zn/9g8eLFeX4zcOBAm79bt26NS5cuISsryzItICDA8v/MzExcvHgRbdu2xZEjR5CZmWnz+3r16lm60ANAWFgYateujSNHjjibZXlYr//WrVu4ePEiWrRoAQA2rfzObtPSpUsBAC+99JLNfC+//HKhaVmxYgUyMjLQvXt3y766ePEivL29ERsbizVr1hRt44iIiArBgdSIiIgKMGXKFNSqVQuZmZn4+uuvsX79evj5+Vm+P3z4MIQQGD16NEaPHu1wGefPn0fFihUxbtw4dO7cGbVq1UJ0dDQ6dOiAnj17okGDBgCA48ePAwBq166dZxl169bFsmXLcP36dZQqVcoyvXLlyjbzmbu9X7lyBUFBQQCAjRs3Ijk5Genp6Xmejc7MzERwcHC+yzMv88qVK/lnUiEuX76MsWPHYs6cOTh//nye9dsrbJuOHz8OLy8vVK1a1Wa+GjVqFJoW8w2Phx56yOH35jwjIiJSCoNuIiKiAjRv3twyenliYiJatWqFZ599FgcOHEBgYCByc3MBAK+//joSEhIcLsMcDLZp0wZ///03FixYgOXLl+PLL7/ERx99hGnTpqF///4upc/b29vhdPH/n5X++++/0b59e9SpUweTJk1CpUqV4Ovri8WLF+Ojjz6ypN/Z5bmiS5cu+P333zF8+HA0atTIkm8dOnTIs3610mBmXt/MmTMRGRmZ53sfH14aERGRsnhmISIicpK3tzdSU1MtA6GNGDEC1apVAwCUKFEC8fHxhS6jbNmy6NOnD/r06YNr166hTZs2SElJQf/+/REVFQUAOHDgQJ7f7d+/H6GhoTat3M745ZdfkJ2djYULF9q0IBenG7XJZHJ63itXrmDVqlUYO3YsxowZY5meXxd7Z0RFRSE3NxdHjx5FzZo1LdMPHz5c6G+rV68OAAgPD3dqfxERERUXn+kmIiIqgnbt2qF58+b4+OOPcevWLYSHh6Ndu3b4/PPPcebMmTzzX7hwwfJ/+1dkBQYGokaNGsjOzgYAlC9fHo0aNcKMGTOQkZFhmW/37t1Yvnw5HnnkkSKn19xqbN1KnJmZienTpxd5WWbmwN86jUVZPwB8/PHHLq/f3KPgs88+s5k+efJkp34bFBSE8ePH486dO3m+t95fRERESmBLNxERURENHz4czzzzDNLS0jBw4EBMmTIFrVq1QkxMDAYMGIBq1arh3LlzSE9Px6lTp/DXX38BuDdIWbt27dCkSROULVsWf/75J3788UcMHjzYsuz3338fHTt2RFxcHPr164ebN29i8uTJCA4Odur90/Yefvhh+Pr64rHHHsMLL7yAa9eu4X//+x/Cw8Md3iRwRqNGjeDt7Y0JEyYgMzMTfn5+lveA2wsKCkKbNm0wceJE3LlzBxUrVsTy5ctx9OhRl9YNAE2aNMFTTz2Fjz/+GJcuXUKLFi2wbt06HDx4EEDBLfFBQUGYOnUqevbsicaNG6Nbt24ICwvDiRMn8Ouvv+KBBx7Ap59+6nLaiIiI7DHoJiIiKqInn3wS1atXxwcffIABAwagXr16+PPPPzF27FikpaXh0qVLCA8Px/3332/TpfqVV17BwoULsXz5cmRnZyMqKgr/93//h+HDh1vmiY+Px9KlS5GcnIwxY8agRIkSaNu2LSZMmJBn4DBn1K5dGz/++CNGjRqF119/HZGRkXjxxRcRFhaGvn37urT9kZGRmDZtGlJTU9GvXz/k5ORgzZo1DoNuAJg9ezZefvllTJkyBUIIPPzww1iyZAkqVKjg0voB4JtvvkFkZCS+++47zJs3D/Hx8fj+++9Ru3Zt+Pv7F/jbZ599FhUqVMB7772H999/H9nZ2ahYsSJat26NPn36uJwmIiIiR0xCiVFJiIiIiDS2Y8cO3H///Zg1axZ69OihdXKIiIgA8JluIiIi0qGbN2/mmfbxxx/Dy8sLbdq00SBFREREjrF7OREREenOxIkTsXXrVjz44IPw8fHBkiVLsGTJEjz//POoVKmS1skjIiKyYPdyIiIi0p0VK1Zg7Nix2Lt3L65du4bKlSujZ8+eePvtt/mubSIikgqDbiIiIiIiIiKV8JluIiIiIiIiIpUw6CYiIiIiIiJSCR96UkFubi7++ecflC5dGiaTSevkEBEREREReQwhBK5evYoKFSrAy0v7dmYG3Sr4559/OHIqERERERGRhk6ePIn77rtP62Qw6FZD6dKlAdzbyUFBQRqnhoiIiIiIyHNkZWWhUqVKlrhMawy6VWDuUh4UFMSgm4iIiIiISAOyPOqrfQd3IiIiIiIiIoNi0C0hWe7IuIPJZNLt9hYn7ebfWv/e+m9H3xuR2tunxvI9Yb8URq95UJw0Wx+TSh6fesxHpci07TKlpSjszyFac1ca9FoH6YmM+StjmtQg63bKmi69YNBNmp+8hBCardtVJpPJku7i5J0QwmHwLYRQZPl6oPT2WQdEapQt2faLVsevHo9bR8dbYQqaX4k8cCVNRqDW8elprMuPLPnpjrLs7m2V4fh0dxrMZUsWMpVxNcmU5/a0zn+Z88YZDLolo0WlotVBpPeDx9UWBvO81ic0633gaRfhSpc/8w0LNcu11iceGei5fFofYwUdawVto5JlgOWJXGEdbMtShmRJh1Hpud5VgqdcG8l6HGmd97Lmi7MYdJMFW8uc5+gix5n8y69F2/7CyX75Wld0alF6/9t30VebDPtFr8eQlhztN0cXc/Y3w9S8oSNbq5LaZOoxoucWNE+7SWvPXdstQ3nVaxlVktHzwFOPY2fpva5j0C0RPZ/4i0rPB42ZoxaGorSaOdMtUKYWDLUoWYna38RQk0z7xZ1pka1lragKS7ejFnC9bqseMG9dY13HeWoeeup2u5sM12vm8m7062Qjb5sS9J4/DLpJM3o/eKzvfBcUfOcXVDp7Qe/OllutKFEW1H6WW2buvvur97Ioa/nwtNZuQP9lSSvW5x8Z6zwj7ldZ8tmdeSvLDVZPCLgB+Y8bGc5Rei4DDLoloXVl4u6WMqOwD6wdBd/2rRFF7aZq9EHVlKzErVu63cWI+yQ/RtpWR8eho+NRzyd42Wl93tM7WXudGHWQM08NOLTeZus0yJAWtbBnlXP0XAYYdJMmjFSp2F+w219IWp8sihM8GynPlGbd9czdrQAycPeFtyzbrSRHF9RG3E7ZaH0BpcfA3/omr96fcSwuLR6t8URaljHrm0tGzX89HcMy3HzSev2uYtAtAVkqcnccSHo9UPJT2PPcjgLy4u5vo+WhWXG2y34wOhmOJ9If+4HTtEqDUY9xRzxte5WQ3wCcsjHqfpVhuzzt5rIMeU7/kqFnrh7LBINusnD3KKBG4SiIth/0Q6kbK3qubArj6sW3fauPFmTYH2q3eHlK1zdZghgZypTaZMhnPbIfM0RGRu1iLkMjiVbr16KsWd9YkrWsK0nrsuUsT+9h4yoG3RqToQI3kyUdepNfK6t9IKhU0GLEwNvVGxPWeapV4O0Jx42RypoeeEKZkoEey7Wn3PwqCnflhScFf7LwhEco9LhtWt+c1uux6KN1AjyV3gqKEoy8zfYHf37Pdyu9TqNx9YLS0XPznsb64oRljvRC62NWb2XaHecWvXJHnnhqvmsV4Bj9JpOj60a90PpYULonqTuwpVsDsh5k7uiuJtP2qsU++FEjX41899fZk7t97wKt77zKsC8YbBuLUY9xco25PGj9OE1R8LE1dWgdBLtzXXop655I6/2ip4AbYNDtdrIG3ID23UX0zlF3FzXvxBltf9l3m3c28Jbh+UZZ9oMa+cDATxv2gzAaHcuYc+wHUZOZFulTuxwZ8fEuZ7l72/VU1l2l53pe6zTbD1CsB4YOulNSUmwuyk0mE+rUqVPgb+bOnYs6derA398fMTExWLx4sWLpkTngNlOrctPLAaEE+2BYzROGkfO1oLvbjrqcGfnE7Cz7MQWUWqb1v+Q+Ru7RYqbloFB6KtPW6dVb2o3E6N2dneWOOkntx6VkYIS6Xctt0FvZMHTQDQD169fHmTNnLJ8NGzbkO+/vv/+O7t27o1+/fti+fTsSExORmJiI3bt3K5ommQuJmt14ZN5uNbiry7MRKm1HCgu4zf+XqcVfhn3BVm5jMvJ+MPqFtVI8IQgpDne0xMrW1VnLgUPVXLcnlHMj3MDh9VfRGD7o9vHxQWRkpOUTGhqa77yffPIJOnTogOHDh6Nu3bp455130LhxY3z66afFTocRDi5X6eFA0CujlSfr7bHuWuZooDT7Cyyt80Lr9ZupcVEky7Z5IvY0IL1z5zWAJx0nWm2ru9bLa0d90Ho/6ekcafig+9ChQ6hQoQKqVauGHj164MSJE/nOm56ejvj4eJtpCQkJSE9PL1YaZAkKikLrg4iKxkj7K7/WCvvn4+27W5It5o1xeEI3c3dun95a0RzdbNQLvaXXGUbcpqJS+/wiw+CoatJjXFAQGc5NejhHGvqVYbGxsUhLS0Pt2rVx5swZjB07Fq1bt8bu3btRunTpPPOfPXsWERERNtMiIiJw9uzZAteTnZ2N7Oxsy99ZWVmW/+vxwFKj+5Setl9vZOvupiT7wNq+xVu2i2dZ0qREmZBhO+hfRj7OAZ4j8qP1IJF6pfZYKrLU9Uakh/GP6F8ynJv00sggZUv3rVu3bIJYV3Xs2BHPPPMMGjRogISEBCxevBgZGRn44YcfFEjlv1JTUxEcHGz5VKpUCQAQHBwMwLMrDdkPACMxUl7bHzOOtk3mCx4Z9oUSg6rJsB1kfHq5YHI3+/yQtb6TDfPJPdzR2m1kRt8+d7O+GSYrKYLutWvX4tVXX0Xz5s0RGBiIUqVKoWTJkihdujSaN2+OoUOHYu3atcVeT0hICGrVqoXDhw87/D4yMhLnzp2zmXbu3DlERkYWuNy33noLmZmZls/JkycBAJmZmbo9qJRMt17zQE+MeNFq/Uy3+W/776lgrva0MVI5MhLZLyiKw1030WS+WWdkWpRbtYNBGcqRLHWCUmmQYVvU5gnbqAVZjoWCaBZ037lzB59++imqVauGhx56CDNnzkRISAiee+45vPHGGxg+fDieffZZhISEYNasWXjooYdQtWpVfPrpp7hz545L67x27Rr+/vtvlC9f3uH3cXFxWLVqlc20FStWIC4ursDl+vn5ISgoyOajd0o8GyF74TcaGS4AlGY/UrmZzNsq0w0QZ99j6eg7Iz9PR/KS4bjRkvlYNVIrtxZp51tD3EPp11TKdEODikamY0KmtFgzCY1KdlRUFG7fvo3evXujS5cuaNy4cYHzb926FXPnzsU333wDX19fHDt2rNB1vP7663jssccQFRWFf/75B8nJydixYwf27t2LsLAw9OrVCxUrVkRqaiqAe68Ma9u2Ld577z106tQJc+bMwfjx47Ft2zZER0c7vW1ZWVkIDg5GZmamrgPw4rYI6PF5dr0zYp4XNICazGRKp6MbFo4u6o10oW9URjzGral93Mh0XNrLr3ukrOktCi3yXc1jRaZypHVaCgpwCkuXozKvp/O8K4y8bVrLb4BdWeIxzQZSGzlyJJKSkuDn5+fU/E2aNEGTJk0wbtw4TJ8+3anfnDp1Ct27d8elS5cQFhaGVq1aYdOmTQgLCwMAnDhxAl5e/zb2t2zZErNnz8aoUaMwcuRI1KxZE/Pnzy9SwE33GP3CUFbWoxwbJe+tT8h62y5Z0mufh/bTrKc7+o7kwX3jOlmOR0fyGzBN1vS6Qub8L6qCHn3yNAXVSQXtc0c31Av7jd4Zue6WYb/ZB9yZmZmW8bVkoFlLt5EZqaUbcO2EIsPB58mY/3KQZT8UJaA2eiuDERj1Yt+TW7kBYwfcgPFau83Ll2E/aZ2OwoLJgrqg29/A0Hpb1GLUettMlv3mqIzJEo9JMZAaGYuR7+TpCfeDHGTYD9YnwsLSI0N6qWAyjRugBjW2S+a8sn+Gm+MpyE/m8qSFwsqsdRl3NK/1wKlGLPueUF5k6YUl87gAmnUv9/Lycmnn5OTkqJAacqQ4B5CMhd2TGLGbuR7JchICnE8Ly4u+GK31RM06S8Y8Mnrrtj13n5PUOhcaOUAsjsJu8Dpq1dbLIKmuMvr2ycpkMknXvVyzoHvMmDF5Dsh58+Zhz549SEhIQO3atQEA+/fvx/LlyxEdHY3ExEQNUurZinpikSXAILkCPpKDM2WCF5L64OiZfL3vN0+7WehpAbfRzkky7S8ZbwI42t/Wz2/nN8CnTNtQXAy4tSFrbzDNgu6UlBSbv7/44gucP38eu3fvtgTcZvv27cNDDz2EChUquDGFBLhWYFmxyMVoJzG9ke1iKL/0GK3F1BPYtyrJVM5cpff0O8vTAm4tqX0zxwjHnVoKC7ztA3Aj5qMRt6kgMh0PsrV0S/NM9/vvv4/BgwfnCbgBoG7duhg8eDAmTpyoQcoIcC74lu2OEnleZU/OcVQu+Bypvsl6Z7+ozBfgSm6HTBeBAANuvZdRM6Nsh9oclW9Hb9MwGk8sH0bcj0qSJug+deoUSpQoke/3JUqUwKlTp9yYIgKKNgCT/fwkB6N16dMr7gNSW36Bt9JBrJqMfvPH0wNurbZXrZtSst/QkUVheSRbPhaXkW8mkOukCbqjo6Px2Wef4fTp03m+O3XqFD777DPExMRokDKyVtC7GEluerrwNhqeeMldrIML+2M+vzrAel7WEe5h9JsLnkKmfShTWhwxl/n8PkZjxG1yFs8jjmn2TLe9jz76CAkJCahVqxaeeOIJ1KhRAwBw6NAhzJ8/H0IIzJo1S+NUeib7O8T53cHz5ApGdvYX4vbTici4HD37XRCtW53sn/lUYlkyYOuXtpR+ttv+uWRZ9qtMaSHPw96V+ZMm6G7VqhU2b96M0aNHY968ebh58yYAICAgAAkJCRg7dixbujWUX+sI6YujGyg8ObsP85vcoaAy5uiCyFHX2/xe9+NORjxWjLhNRSVbkFoc5m2QZVsY8GiP+X+PUY5xJZmEhDmSm5uLCxcuAADCwsLg5SVNL3inZGVlITg4GJmZmQgKCtI6OYqxvqNrTcIiRE5gi7f7saWL9KCgi0Z3lV2l6idZLvxkSYcstMwPJethtnSTNZ7j75GlDMoWj0nT0m3Ny8sLERERWieD7NifWNhaqm/2Xc65D4kIKLi1zF11hRIDX7FeI0eUbg2WsZzJmCbyHNbHGMvhv6QKum/duoWffvoJ27ZtQ2ZmJnJzc22+N5lM+OqrrzRKHQEFd00kfbJ/T6Z5GilP7ffFEimlsNf8qF1+7bu6F3V9MnXxlCktsjBi/SdLvc4u5u7H6yfHmBe2pAm6jx8/jgcffBDHjh1DSEgIMjMzUbZsWWRkZCAnJwehoaEIDAzUOpkEHkRGlN9gedbfkTIYeJNeWV/Mq11+i9OjSqaAg609jmmdL0p1Ced+9Wwy1TWyYWt3XtI8LD18+HBkZmZi06ZNOHjwIIQQ+P7773Ht2jVMmDABAQEBWLZsmdbJJDI0R6/w4ElFeTwBkV7Zj4SuJvugyJn1yXjDUJZ0yMRIeSLrOVLWdBmZkcq1EpgftqQJulevXo2XXnoJzZs3twycJoSAn58fhg8fjvbt22Po0KHaJpKISCHsAkh6ZT1is9rv9rZvKSloXbIdT7Klh9QlU53OYEd99jf4mOf5k+W40Jo0QfeNGzdQpUoVAEBQUBBMJhMyMzMt38fFxWHDhg0apY7IM+X3fm9ShkwXaURFpXbZLUqPG1nHGpElHZSXUvuG9bhn4zFOzpIm6K5cuTJOnToFAPDx8UHFihWxadMmy/d79+6Fv7+/Vskj8lju7E5KRPpg37Kj1o0565bu/AJwGeslGdMkGxmCVSXWL+MjDWZa569R8Vll57EXwL+kGUjtoYcewoIFC5CcnAwASEpKQmpqKq5cuYLc3FzMnDkTvXr10jiVRJ7JfgAl8zQiIjM13lecXxd2Gd4lnh/WkZ7F/uaTLPtdhpsaRibLftYD1on3SBN0jxgxAn/88Qeys7Ph5+eHkSNH4p9//sGPP/4Ib29vPPvss5g0aZLWySTyWHw/uzrUCFSI3MX+ERQ1ynFhwYOMo+TKkg5yL9bnxscbGUXHG0D3mARrBsVlZWUhODgYmZmZCAoK0jo5RKqQ7SJXz3iRRkbgzvd3Wwc3MtVFPJaLTus8U2L9MpVBa7KmS6+Yn67T4jiXLR6T4pnuGzduoEmTJpg2bZrWSSEiJ/GkoyzeBSYjcMfgatbrkekimMewfhV33+VXLsk4uE+Lz9PzUIqgu2TJkjh69KjH7wwiPeJxW3wyBAxExWUeMMddgXd+f2tJprSQ85TYb9bLkKUcyJIOvZN5sDy9YL5JEnQDQIcOHbBs2TKtk0FERcBKVFm8gUF6564uhOYAX5Y6iMeu67R+3lPJ983zNZvGYr8fZalvSJ+kCbpHjx6NgwcPomfPntiwYQNOnz6Ny5cv5/kQkXx4cVF8MgUQRMXliXUCj199U+q5bhnLvoxpkp19sM3jm4pLmoHUvLz+jf8LqhxycnLckZxike3BfSK1aT0QjlEwH8kIPLEce+I2K0nr/FNq/Y4G+pOBTGnRC+aZ8tw9Bods8Zg0rwwbM2aM4nfiUlNT8fPPP2P//v0ICAhAy5YtMWHCBNSuXTvf36SlpaFPnz420/z8/HDr1i1F00ZkNDxBKYP5SKQvbEVUhpZ1n5JBsnV3edbn+sT9pg6tHyXRmjRBd0pKiuLLXLduHQYNGoRmzZrh7t27GDlyJB5++GHs3bsXpUqVyvd3QUFBOHDggOVvTy4gRM7w9IpUKcxHMgqZRhV3B0/ZTrUYpe6zD95l2iYGks6RaZ8ZlaeWRWmCbjUsXbrU5u+0tDSEh4dj69ataNOmTb6/M5lMiIyMVDt5RIbjqRWp0piPpGcyBhxq8YRt9CRK1L2OXh+mdX1ulJsa7qL1/lKSDOXPmieXRWkGUnOHzMxMAEDZsmULnO/atWuIiopCpUqV0LlzZ+zZs6fA+bOzs5GVlWXz0Yp5pEVPLdCkHZkqdT3zpICFjEu2Cz3SB63rPaXKrNbbQa4x0n6zjgVk3C4Z06Q2zYLuevXq4ZtvvsHt27ed/k12djamT5+OevXqFXl9ubm5GDp0KB544AFER0fnO1/t2rXx9ddfY8GCBZg1axZyc3PRsmVLnDp1Kt/fpKamIjg42PKpVKlSkdOnFOvXqHhigSbtsdwRkZkn1Ae8uaAMrfNRyfXbj3Yty3EgSzpkZNRHYoy2PXqm2ejlEydOxMSJE5GTk4PHH38c8fHxaNy4MapWrYqSJUsCAK5fv46jR4/izz//xMqVK/HLL7/A19cXw4cPxxtvvFGk9b344otYsmQJNmzYgPvuu8/p3925cwd169ZF9+7d8c477zicJzs7G9nZ2Za/s7KyUKlSJbePlmc/aqYZD7h/sfVFfcxjZRj1AoA8i5HrAx6jytO6vCi5fkfPdmtdVrTOX9k4ugmhx/wx79f8bqrINpo+4J5jQrbRyzV9ZdjVq1fx1VdfIS0tDTt37rTsAB+fe4+a3717F8C9HRIdHY2+ffuib9++Rc64wYMHY8GCBVi/fj2qVq1a5HQ+88wz8PHxwXfffefU/FrsZEcBt/3/PVVBlRApj2VOGcxH0jvZLvKUZvTt04qW+apGvWt/DWKUmwp6Z8SAO7/H02SNB9Qujwy683Hs2DH8/vvv2L9/Py5dugQAKFeuHOrUqYO4uDiXgmUhBF5++WXMmzcPa9euRc2aNYu8jJycHNSvXx+PPPIIJk2a5NRvtAq6GXD/y9kuVJ6YN+7AE7symI+kZ0Yuv558flWb1kG3GgG3TD0QjXxcOsuIAbe1wlq9ZaJmeZQt6JZm9PIqVaqgSpUqii5z0KBBmD17NhYsWIDSpUvj7NmzAIDg4GAEBAQAAHr16oWKFSsiNTUVADBu3Di0aNECNWrUQEZGBt5//30cP34c/fv3VzRtSipsoARPuziwP7E5OqD5XJP6eGJXBvOR9MroN3+NuE2eTul9yjIiNyPsH0fXs/b1Lhvk5CBN0K2GqVOnAgDatWtnM3369OlISkoCAJw4cQJeXv+OJ3flyhUMGDAAZ8+eRZkyZdCkSRP8/vvvLg3epgXrA8wTR0F2VJk4qlgc5RMphwP5KYNlk4zAaOVYr3WbTN2cC6N1azeg/Ejm1tcdWm6fjM/3upNej197RelC7uiaTKYyIFNa1CRN93IjcWd3hoK6KznqdmLk3e3KidJT8kYLnlKJqo35SHpmxPKrx5YiRz3ArP+WjdZBt9Lrlu16zIjHpTNkyX8lFHTzwNG2yfiog5la5VG27uUe9Z5uoynsoPHE1saiHrTm+WWodIzI08ofETlmlLpAjwE3kPd1ovZ/G2X/yMq+FdITr8+0ZvT8tj6m8/ve0f+Nni8yMXT3ciPL746VI57Qzby426bXCymZ8aJCOUZtlZDtbjspz4j1gN7KakHPfDqaprftU5pa3a9lCnQ8pYu5XgYTKypHgycX5bcy8oTyKE1Ld40aNfJ9Dzblr7BCan8XW9aDrTiKe6Eg04mQyJ5RT0KOni/LbxqPS/0zajnWA+sWsPxaw2Q7D2p9s0bN8mq9XTLktVEZNeA2c+Xat6DjXkuypENt0rR0HzlyBH/++Se2bt2KgwcPIigoCHXr1kW1atW0TpohaH0CU4tSd+Y95a6vuzE/yZGCBoAp6C0MLE+kJT2WwfxejWQ/2KrMgyxpRa088ITehzIw6nUvULxrVvsbbLJc/2q9fneQZiA1Ly8vhyM81q9fHyNHjkS3bt20TF6RqP3gvitdMovTFUVWSndNZVdXdchQmeud3o9bZy78Hc3n6OKA9EnvZRjQbxl09DYTR4GfbAMsGW0wtfzWA2iX13ot04XJ75xjFEqWG1nKgBrp4EBqBShRogRSUlKwdu1aLF++HO+++y58fX3Ro0cPDBw4UOvkSceVLiUFDbKgJ/YDkiiBg6oRKa8oLdfWx3NBo6+S/ui9XpXlwrQo7B8tsx5AzTzNfn7ZuplrmQZ3rFtvZUqPjHLda6bGjRoZHuMycs8EM6laut98802kpqbm+e6jjz7C66+/jq+//hq9e/fWIHVFo+adleLchZbpDnZxqH1nWOs7z0ajx4tVUobSz9Tx2NQvve87vdZjjgJpR73eHE2X4ZpBq3x353q1PDb0Wq4Love6pjBqdQmXoSwonQa2dOcjICAA9913n8PvXn31VXTt2hWTJ092c6rkpcSgYXpmlO3wBJ5w99Id9JyHBQ3gVNTlAPrOC0/Gett9rFu2rVlfrFsPtOroOW/75XkSllWSmRoBN6lPmqC7Tp06+PXXX/P9vnXr1ti7d68bUyQnJS5Y9cwdd+KsL0aIyDXu6JEiQ5c4co4Rzj96Yh9UW3/sg237Rzryuznmaceau7ZXy5uJRrvW8ZRWbqXJct0rQxrUJE3Q/cILL2Dp0qV4+eWXcfPmzTzfb9y4ESVLltQgZXIp7gFX2AjBdI8M3WyI7OntuFVz5F9ressX0hc9ng/sg2pnA2trMhxrWl+Ee0LgbRRGD7jN1KqPWPbUJ80rw55//nns27cPn3zyCebMmYOOHTsiOjoavr6+WLlyJZYsWYKkpCStk6kppQ4IrU9irnLnhY/9c25EWtPTcat2OmUb7ImcxzrVfeyf0XYl3x0Fg560D/mctf4YNf/sx11Qmp6uMfRKmoHUzH777Td89NFHWLlyJa5du2aZnpiYiLS0NCkehC+MWg/uG/EVAc7S4g6mp9w1dRe9lTlynbuPHR6r+qDHOkBvabYfCE3pG8hanYs9JfjVqi7TWzm3J8Ogf2pzV9nQe1mwJttAatK0dJu1bt0arVu3Rk5ODo4dO4arV6+icuXKKFu2rNZJ05xRDgJXefr2k/L0FqzpIb1GOmET6Y3189pmSh6T9s+Du4sW9YoW9RhbG4uuoAEAjULtVm7r9WhND9c5rpIu6Dbz9vZG9erVtU6GNJRu5Tb/q4dCrVUlwC7mxuap3SXVpFXdwgtVUoMey5SjV37pvW7zxOOb5yTn2I9TZOQ8c9dAwu5aV0FpMOrxLs1AauQ+xX1tjztpXZHyxKccmfLR0XOOehgNW+ZjV4bufTLvO5KrDnCWXtOsZsuY0VsVrWlxTvCk/KXCubsccMBl9TDo1hE9nvyNQPZATE9kyEf7liBHN1Zk3ucypkuGNMl8Q4L+JfOxZQSORilXcz3upHWvNyOvV4+ti/Y3eo1c/7tz+2TISz2WR2cw6CZpad3Kbb1urSsgUp4zz4HJWunLmi5A22OFAZ0+6KE+1WM5sm+hcsc2uPuVWp7CqEGHkqxfh2f0vNJq+4yer+7GoFsH1Cj0snebliHgtsaKRxla709HXaCtT9wy3OEtjGzpk+lYlSENZBx6K0/WwYfs53hyDq89HLN+HMwTyrpWg/ppyYg3Uxh0eyhHI5zKQqaLeDMjHvxakeGObWFlS/Y76DKmS6YLH5nyRg9jBZAtPe4rR+NUqM0TupjL0NPOnevTU9nXy43y4tDT/lCLkfKAQbdOqFGpyFxZyZQu6xZRIx38nqS4+022/S5begB5jlktBiGyb3WxnmY/n6fTSz0qS3l2lv2NdHe/zssdPHGARr2VQ3eRueFIaVrf+GH5Vw6Dbsl5wjv5rMmWHjNP6cLkDu6uxO0vQou6D2Xc57LcMJP1eDXT6plW2fNFazKUXaMxn5/cXb96wr7UMvDQIrCUvf7S6uYSUXEx6PZwMlZYMqfJU+6sGoX9SOXFKVuy7XeZ0iPbMWv/Kji111XQ3/bfybTftCRrPsiarsJo/X5dLW6kegItupjLTpabzmqTpZxrnddar19JDLol5o47ebIc1IBcaSH9sy5Pxb0QlbXS5zFTMLUDb0c9YBytS9byQ47pdX95Qn2g1Q0FvZYJV8lcljyp56Es26h1edB6/Uph0O3BzJWWTIVZlgomP1o8L2pE7tjP9t3JjbbPZDhWZEhDYdRKo/1NnfzW52hMCKOVxaKSdftlTVdhijJIpBqMWsd6Kr3U60Yvb3rYD1Q0HhF0T5kyBVWqVIG/vz9iY2OxZcuWAuefO3cu6tSpA39/f8TExGDx4sVuSmleah50Mh3Qeqg8PaGSdyd3jVegVI8RGfe/DO/ElqkeyY+79p39ehwF4AxQ7pG13MiaroJ44g0dT3tu3VP2qzNcHZ9FT2R7lFHr6x+t168Uwwfd33//PYYNG4bk5GRs27YNDRs2REJCAs6fP+9w/t9//x3du3dHv379sH37diQmJiIxMRG7d+92a7qNULiKSm8VqNL7yNEIyOSa4g6ephcsK0WjRF45ynPrYLqw19jk10LuSYx6PGrFehA1rfLW6K8qA7Q7Xj1tewvCayTtaF1va71+JZiEEbaiALGxsWjWrBk+/fRTAEBubi4qVaqEl19+GSNGjMgzf9euXXH9+nUsWrTIMq1FixZo1KgRpk2b5tQ6s7KyEBwcjMzMTAQFBbmUbr20IClBj6NQKpXmwk4cesqTonJHGVd6HbKVVS3TI1teqK2gY7WoeWD/aI+n5KE92c5zsqXHGY5uAGnFneVZi32lZfnQY9lUg3XdaeT8kHH7tE6TK+tXIh5TkqFbum/fvo2tW7ciPj7eMs3Lywvx8fFIT093+Jv09HSb+QEgISEh3/kBIDs7G1lZWTaf4nD3KKAy3DWUrXIpiFItVfkNuKSnvCgOtboLqVmmZesarHV50VtZdbVcWLckmhWnF4V92ZelPLmbTOVH6wtKV1m3cGudfq3XryYZyoe76wkZ6yVPCLgpfzKWyaIwdNB98eJF5OTkICIiwmZ6REQEzp496/A3Z8+eLdL8AJCamorg4GDLp1KlSsVKt7u7aWl9stZb5anURY79cuwv6PWWL65QYxvVvgj1lH1TGD3mgav7Lr9jU8njn7TFfaAMo3Yx17p8aFFPaL3N+ZE1XUqScRu1TpMRzpWGDrrd5a233kJmZqblc/LkSa2TRERERERERBLw0ToBagoNDYW3tzfOnTtnM/3cuXOIjIx0+JvIyMgizQ8Afn5+8PPzK36CiYiIiIiIyFAM3dLt6+uLJk2aYNWqVZZpubm5WLVqFeLi4hz+Ji4uzmZ+AFixYkW+8xMRERERERHlx9At3QAwbNgw9O7dG02bNkXz5s3x8ccf4/r16+jTpw8AoFevXqhYsSJSU1MBAEOGDEHbtm3x4YcfolOnTpgzZw7+/PNPfPHFF06v0/zMQXEHVCMiIiIiIqKiMcdhsjwLbvigu2vXrrhw4QLGjBmDs2fPolGjRli6dKllsLQTJ07Ay+vfBv+WLVti9uzZGDVqFEaOHImaNWti/vz5iI6Odnqdly5dAoBiD6hGRERERERErrl06RKCg4O1Tobx39OthYyMDJQpUwYnTpwo1k5u1qwZ/vjjj2KnR4nlyLKMrKwsVKpUCSdPnizWO/dk2R5Z0qJUviqRFqWWIUtajJi3suwfmeoDpZYjyzKYt+otQ6a8NdL+YV2r3nJkKrNKLUeWtDBv1VtGZmYmKleujCtXriAkJKRYy1KC4Vu6tWBuOQ8ODi7WAeTt7a3Iy9yVWI4syzALCgrSPG+Ntn+A4uerUmlh3qqXFlmWoeRyZKgPlFqOLMswY94qvwwzGfLWaPsHYF2r5nJkKLNKLUemtADMWzWWYWbdo1lLcqSCHBo0aJA0y5FlGUqRaXtkSosSZNoemdKiBFm2R6b9owSZtkeWZSiFeasembZHprQoQZbtkWn/KEGm7ZEpLUqQaXtkWYZs2L1cBVlZWQgODkZmZqZid2noHuatOpiv6mHeqod5qx7mrXqYt+pgvqqHease5q16ZMtbtnSrwM/PD8nJyXx3twqYt+pgvqqHease5q16mLfqYd6qg/mqHuatepi36pEtb9nSTURERERERKQStnQTERERERERqYRBNxEREREREZFKGHQTERERERERqYRBNxEREREREZFKGHQrbMqUKahSpQr8/f0RGxuLLVu2aJ0kTa1fvx6PPfYYKlSoAJPJhPnz59t8L4TAmDFjUL58eQQEBCA+Ph6HDh2ymefy5cvo0aMHgoKCEBISgn79+uHatWs28+zcuROtW7eGv78/KlWqhIkTJ+ZJy9y5c1GnTh34+/sjJiYGixcvVnx73Sk1NRXNmjVD6dKlER4ejsTERBw4cMBmnlu3bmHQoEEoV64cAgMD8dRTT+HcuXM285w4cQKdOnVCyZIlER4ejuHDh+Pu3bs286xduxaNGzeGn58fatSogbS0tDzpMUrZnzp1Kho0aICgoCAEBQUhLi4OS5YssXzPPFXOe++9B5PJhKFDh1qmMX9dk5KSApPJZPOpU6eO5Xvma/GcPn0azz33HMqVK4eAgADExMTgzz//tHzPc5lrqlSpkqfcmkwmyzt6WW5dk5OTg9GjR6Nq1aoICAhA9erV8c4778B67GSWWdddvXoVQ4cORVRUFAICAtCyZUv88ccflu+Zt87RU4zgTFoKJUgxc+bMEb6+vuLrr78We/bsEQMGDBAhISHi3LlzWidNM4sXLxZvv/22+PnnnwUAMW/ePJvv33vvPREcHCzmz58v/vrrL/H444+LqlWrips3b1rm6dChg2jYsKHYtGmT+O2330SNGjVE9+7dLd9nZmaKiIgI0aNHD7F7927x3XffiYCAAPH5559b5tm4caPw9vYWEydOFHv37hWjRo0SJUqUELt27VI9D9SSkJAgpk+fLnbv3i127NghHnnkEVG5cmVx7do1yzwDBw4UlSpVEqtWrRJ//vmnaNGihWjZsqXl+7t374ro6GgRHx8vtm/fLhYvXixCQ0PFW2+9ZZnnyJEjomTJkmLYsGFi7969YvLkycLb21ssXbrUMo+Ryv7ChQvFr7/+Kg4ePCgOHDggRo4cKUqUKCF2794thGCeKmXLli2iSpUqokGDBmLIkCGW6cxf1yQnJ4v69euLM2fOWD4XLlywfM98dd3ly5dFVFSUSEpKEps3bxZHjhwRy5YtE4cPH7bMw3OZa86fP29TZlesWCEAiDVr1gghWG5d9e6774py5cqJRYsWiaNHj4q5c+eKwMBA8cknn1jmYZl1XZcuXUS9evXEunXrxKFDh0RycrIICgoSp06dEkIwb52lpxjBmbQUhkG3gpo3by4GDRpk+TsnJ0dUqFBBpKamapgqedgfULm5uSIyMlK8//77lmkZGRnCz89PfPfdd0IIIfbu3SsAiD/++MMyz5IlS4TJZBKnT58WQgjx2WefiTJlyojs7GzLPG+++aaoXbu25e8uXbqITp062aQnNjZWvPDCC4puo5bOnz8vAIh169YJIe7lZYkSJcTcuXMt8+zbt08AEOnp6UKIexWel5eXOHv2rGWeqVOniqCgIEt+vvHGG6J+/fo26+ratatISEiw/G30sl+mTBnx5ZdfMk8VcvXqVVGzZk2xYsUK0bZtW0vQzfx1XXJysmjYsKHD75ivxfPmm2+KVq1a5fs9z2XKGTJkiKhevbrIzc1luS2GTp06ib59+9pMe/LJJ0WPHj2EECyzxXHjxg3h7e0tFi1aZDO9cePG4u2332beukjmGMGZtDiD3csVcvv2bWzduhXx8fGWaV5eXoiPj0d6erqGKZPX0aNHcfbsWZs8Cw4ORmxsrCXP0tPTERISgqZNm1rmiY+Ph5eXFzZv3myZp02bNvD19bXMk5CQgAMHDuDKlSuWeazXY57HSPsmMzMTAFC2bFkAwNatW3Hnzh2b7a5Tpw4qV65sk78xMTGIiIiwzJOQkICsrCzs2bPHMk9BeWfksp+Tk4M5c+bg+vXriIuLY54qZNCgQejUqVOePGD+Fs+hQ4dQoUIFVKtWDT169MCJEycAMF+La+HChWjatCmeeeYZhIeH4/7778f//vc/y/c8lynj9u3bmDVrFvr27QuTycRyWwwtW7bEqlWrcPDgQQDAX3/9hQ0bNqBjx44AWGaL4+7du8jJyYG/v7/N9ICAAGzYsIF5qxCZ8tGZtDiDQbdCLl68iJycHJuKHwAiIiJw9uxZjVIlN3O+FJRnZ8+eRXh4uM33Pj4+KFu2rM08jpZhvY785jHKvsnNzcXQoUPxwAMPIDo6GsC9bfb19UVISIjNvPb562reZWVl4ebNm4Ys+7t27UJgYCD8/PwwcOBAzJs3D/Xq1WOeKmDOnDnYtm0bUlNT83zH/HVdbGws0tLSsHTpUkydOhVHjx5F69atcfXqVeZrMR05cgRTp05FzZo1sWzZMrz44ot45ZVXMGPGDAA8lyll/vz5yMjIQFJSEgDWB8UxYsQIdOvWDXXq1EGJEiVw//33Y+jQoejRowcAltniKF26NOLi4vDOO+/gn3/+QU5ODmbNmoX09HScOXOGeasQmfLRmbQ4w8fpOYlIWoMGDcLu3buxYcMGrZNiCLVr18aOHTuQmZmJH3/8Eb1798a6deu0TpbunTx5EkOGDMGKFSvytBJQ8ZhbsACgQYMGiI2NRVRUFH744QcEBARomDL9y83NRdOmTTF+/HgAwP3334/du3dj2rRp6N27t8apM46vvvoKHTt2RIUKFbROiu798MMP+PbbbzF79mzUr18fO3bswNChQ1GhQgWWWQXMnDkTffv2RcWKFeHt7Y3GjRuje/fu2Lp1q9ZJI4mxpVshoaGh8Pb2zjOq5rlz5xAZGalRquRmzpeC8iwyMhLnz5+3+f7u3bu4fPmyzTyOlmG9jvzmMcK+GTx4MBYtWoQ1a9bgvvvus0yPjIzE7du3kZGRYTO/ff66mndBQUEICAgwZNn39fVFjRo10KRJE6SmpqJhw4b45JNPmKfFtHXrVpw/fx6NGzeGj48PfHx8sG7dOvz3v/+Fj48PIiIimL8KCQkJQa1atXD48GGW22IqX7486tWrZzOtbt26lu77PJcV3/Hjx7Fy5Ur079/fMo3l1nXDhw+3tHbHxMSgZ8+eePXVVy09jFhmi6d69epYt24drl27hpMnT2LLli24c+cOqlWrxrxViEz56ExanMGgWyG+vr5o0qQJVq1aZZmWm5uLVatWIS4uTsOUyatq1aqIjIy0ybOsrCxs3rzZkmdxcXHIyMiwuXu4evVq5ObmIjY21jLP+vXrcefOHcs8K1asQO3atVGmTBnLPNbrMc+j530jhMDgwYMxb948rF69GlWrVrX5vkmTJihRooTNdh84cAAnTpywyd9du3bZVForVqxAUFCQ5SKzsLzzhLKfm5uL7Oxs5mkxtW/fHrt27cKOHTssn6ZNm6JHjx6W/zN/lXHt2jX8/fffKF++PMttMT3wwAN5Xsd48OBBREVFAeC5TAnTp09HeHg4OnXqZJnGcuu6GzduwMvL9hLf29sbubm5AFhmlVKqVCmUL18eV65cwbJly9C5c2fmrUJkykdn0uIUp4dco0LNmTNH+Pn5ibS0NLF3717x/PPPi5CQEJtRNT3N1atXxfbt28X27dsFADFp0iSxfft2cfz4cSHEvSH4Q0JCxIIFC8TOnTtF586dHb4O4P777xebN28WGzZsEDVr1rR5HUBGRoaIiIgQPXv2FLt37xZz5swRJUuWzPM6AB8fH/HBBx+Iffv2ieTkZF29VsGRF198UQQHB4u1a9favHLlxo0blnkGDhwoKleuLFavXi3+/PNPERcXJ+Li4izfm1+38vDDD4sdO3aIpUuXirCwMIevWxk+fLjYt2+fmDJlisPXrRil7I8YMUKsW7dOHD16VOzcuVOMGDFCmEwmsXz5ciEE81Rp1qOXC8H8ddVrr70m1q5dK44ePSo2btwo4uPjRWhoqDh//rwQgvlaHFu2bBE+Pj7i3XffFYcOHRLffvutKFmypJg1a5ZlHp7LXJeTkyMqV64s3nzzzTzfsdy6pnfv3qJixYqWV4b9/PPPIjQ0VLzxxhuWeVhmXbd06VKxZMkSceTIEbF8+XLRsGFDERsbK27fvi2EYN46S08xgjNpKQyDboVNnjxZVK5cWfj6+ormzZuLTZs2aZ0kTa1Zs0YAyPPp3bu3EOLeMPyjR48WERERws/PT7Rv314cOHDAZhmXLl0S3bt3F4GBgSIoKEj06dNHXL161Waev/76S7Rq1Ur4+fmJihUrivfeey9PWn744QdRq1Yt4evrK+rXry9+/fVX1bbbHRzlKwAxffp0yzw3b94UL730kihTpowoWbKkeOKJJ8SZM2dslnPs2DHRsWNHERAQIEJDQ8Vrr70m7ty5YzPPmjVrRKNGjYSvr6+oVq2azTrMjFL2+/btK6KiooSvr68ICwsT7du3twTcQjBPlWYfdDN/XdO1a1dRvnx54evrKypWrCi6du1q8x5p5mvx/PLLLyI6Olr4+fmJOnXqiC+++MLme57LXLds2TIBIE9+CcFy66qsrCwxZMgQUblyZeHv7y+qVasm3n77bZvXJrHMuu77778X1apVE76+viIyMlIMGjRIZGRkWL5n3jpHTzGCM2kpjEkIIZxvFyciIiIiIiIiZ/GZbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiIiIiIiUgmDbiIiIiIiIiKVMOgmIiLdOnbsGEwmE9LS0izTUlJSYDKZtEtUEektvVQ0JpMJKSkpWieDiIg0xKCbiIiklZaWBpPJ5PAzYsQIp5czfvx4zJ8/X72EkltxfxIRkZ74aJ0AIiKiwowbNw5Vq1a1mRYdHY2oqCjcvHkTJUqUKPD348ePx9NPP43ExEQVU0nuwv1JRER6wqCbiIik17FjRzRt2tThd/7+/m5OzT23bt2Cr68vvLy06zR248YNlCxZUrP1ExERUeHYvZyIiHTL0TPd9kwmE65fv44ZM2ZYuqYnJSVZvj99+jT69u2LiIgI+Pn5oX79+vj6669tlrF27VqYTCbMmTMHo0aNQsWKFVGyZElkZWUBADZv3owOHTogODgYJUuWRNu2bbFx48Y8admwYQOaNWsGf39/VK9eHZ9//rnT29quXTtER0dj69ataNOmDUqWLImRI0cCALKzs5GcnIwaNWrAz88PlSpVwhtvvIHs7GybZaxYsQKtWrVCSEgIAgMDUbt2bcsyzM6fP49+/fohIiIC/v7+aNiwIWbMmGEzjznfP/jgA3zxxReoXr06/Pz80KxZM/zxxx828+7cuRNJSUmoVq0a/P39ERkZib59++LSpUs285mfbT98+DCSkpIQEhKC4OBg9OnTBzdu3LDMV9j+tHf79m2MGTMGTZo0QXBwMEqVKoXWrVtjzZo1Lm8TAMydOxf16tWDv78/oqOjMW/ePCQlJaFKlSr5psXMmTJHRETGwZZuIiKSXmZmJi5evGgzLTQ01Knfzpw5E/3790fz5s3x/PPPAwCqV68OADh37hxatGgBk8mEwYMHIywsDEuWLEG/fv2QlZWFoUOH2izrnXfega+vL15//XVkZ2fD19cXq1evRseOHdGkSRMkJyfDy8sL06dPx0MPPYTffvsNzZs3BwDs2rULDz/8MMLCwpCSkoK7d+8iOTkZERERTufDpUuX0LFjR3Tr1g3PPfccIiIikJubi8cffxwbNmzA888/j7p162LXrl346KOPcPDgQcuzz3v27MGjjz6KBg0aYNy4cfDz88Phw4dtbg7cvHkT7dq1w+HDhzF48GBUrVoVc+fORVJSEjIyMjBkyBCb9MyePRtXr17FCy+8AJPJhIkTJ+LJJ5/EkSNHLF3+V6xYgSNHjqBPnz6IjIzEnj178MUXX2DPnj3YtGlTnkHkunTpgqpVqyI1NRXbtm3Dl19+ifDwcEyYMKHQ/elIVlYWvvzyS3Tv3h0DBgzA1atX8dVXXyEhIQFbtmxBo0aNirxNv/76K7p27YqYmBikpqbiypUr6NevHypWrFjoPixqmSMiIgMQREREkpo+fboA4PAjhBBHjx4VAMT06dMtv0lOThb2p7dSpUqJ3r1751l+v379RPny5cXFixdtpnfr1k0EBweLGzduCCGEWLNmjQAgqlWrZpkmhBC5ubmiZs2aIiEhQeTm5lqm37hxQ1StWlX85z//sUxLTEwU/v7+4vjx45Zpe/fuFd7e3nnS60jbtm0FADFt2jSb6TNnzhReXl7it99+s5k+bdo0AUBs3LhRCCHERx99JACICxcu5LuOjz/+WAAQs2bNsky7ffu2iIuLE4GBgSIrK0sI8W++lytXTly+fNky74IFCwQA8csvv9jkhb3vvvtOABDr16+3TDPvt759+9rM+8QTT4hy5crZTMtvfzpy9+5dkZ2dbTPtypUrIiIiwmZdRdmmmJgYcd9994mrV69apq1du1YAEFFRUTbrAiCSk5Mtfztb5oiIyDjYvZyIiKQ3ZcoUrFixwuZTXEII/PTTT3jssccghMDFixctn4SEBGRmZmLbtm02v+nduzcCAgIsf+/YsQOHDh3Cs88+i0uXLll+f/36dbRv3x7r169Hbm4ucnJysGzZMiQmJqJy5cqW39etWxcJCQlOp9nPzw99+vSxmTZ37lzUrVsXderUsdmGhx56CAAs3ahDQkIAAAsWLEBubq7D5S9evBiRkZHo3r27ZVqJEiXwyiuv4Nq1a1i3bp3N/F27dkWZMmUsf7du3RoAcOTIEcs06/y6desWLl68iBYtWgBAnvwFgIEDB9r83bp1a1y6dMnSlb+ovL294evrCwDIzc3F5cuXcffuXTRt2tTh+gvbpn/++Qe7du1Cr169EBgYaJmvbdu2iImJKTAtrpQ5IiLSP3YvJyIi6TVv3jzfgdRcdeHCBWRkZOCLL77AF1984XCe8+fP2/xtP4L6oUOHANwLxvOTmZmJ7Oxs3Lx5EzVr1szzfe3atbF48WKn0lyxYkVLAGmdhn379iEsLKzAbejatSu+/PJL9O/fHyNGjED79u3x5JNP4umnn7YMBnf8+HHUrFkzz+BwdevWtXxvzfoGAgBLsHrlyhXLtMuXL2Ps2LGYM2dOnvzMzMzMk96ClhkUFORwGwszY8YMfPjhh9i/fz/u3LljmW6/PwtbP/BvHtSoUSPPb2vUqFFg0OxKmSMiIv1j0E1ERB7J3Nr73HPP5Rs0N2jQwOZv61Zb62W8//77eZ4NNgsMDMwzoJmr7NdvTkNMTAwmTZrk8DeVKlWy/Hb9+vVYs2YNfv31VyxduhTff/89HnroISxfvhze3t5FTk9+vxFCWP7fpUsX/P777xg+fDgaNWqEwMBA5ObmokOHDg5b3J1ZZlHMmjULSUlJSExMxPDhwxEeHg5vb2+kpqbi77//Vn391lwpc0REpH8MuomIyPDsB+sCgLCwMJQuXRo5OTmIj493abnmAbyCgoIKXEZYWBgCAgIsLePWDhw44NK6rdPw119/oX379g6305qXlxfat2+P9u3bY9KkSRg/fjzefvttrFmzBvHx8YiKisLOnTuRm5tr09q9f/9+AEBUVFSR0nblyhWsWrUKY8eOxZgxYyzTHeVDURS2ndZ+/PFHVKtWDT///LPN75KTk11atzkPDh8+nOc7R9OsKVHmiIhIf/hMNxERGV6pUqWQkZFhM83b2xtPPfUUfvrpJ+zevTvPby5cuFDocps0aYLq1avjgw8+wLVr1/Jdhre3NxISEjB//nycOHHC8v2+ffuwbNmyIm6NrS5duuD06dP43//+l+e7mzdv4vr16wDudfO2Z26dN7fEP/LIIzh79iy+//57yzx3797F5MmTERgYiLZt2xYpbeZWY/tW4o8//rhIy7HnaH8WJQ2bN29Genq6S+uuUKECoqOj8c0339js83Xr1mHXrl2FpqW4ZY6IiPSHLd1ERGR4TZo0wcqVKzFp0iRUqFABVatWRWxsLN577z2sWbMGsbGxGDBgAOrVq4fLly9j27ZtWLlypcNA1ZqXlxe+/PJLdOzYEfXr10efPn1QsWJFnD59GmvWrEFQUBB++eUXAMDYsWOxdOlStG7dGi+99JIlmK1fvz527tzp8rb17NkTP/zwAwYOHIg1a9bggQceQE5ODvbv348ffvgBy5YtQ9OmTTFu3DisX78enTp1QlRUFM6fP4/PPvsM9913H1q1agUAeP755/H5558jKSkJW7duRZUqVfDjjz9i48aN+Pjjj1G6dOkipS0oKAht2rTBxIkTcefOHVSsWBHLly/H0aNHXd5eIP/96cijjz6Kn3/+GU888QQ6deqEo0ePYtq0aahXr57DGyXOGD9+PDp37owHHngAffr0wZUrV/Dpp58iOjq60GUWt8wREZH+MOgmIiLDmzRpEp5//nmMGjUKN2/eRO/evREbG4uIiAhs2bIF48aNw88//4zPPvsM5cqVQ/369S3vhS5Mu3btkJ6ejnfeeQeffvoprl27hsjISMTGxuKFF16wzNegQQMsW7YMw4YNw5gxY3Dfffdh7NixOHPmTLGCbi8vL8yfPx8fffQRvvnmG8ybNw8lS5ZEtWrVMGTIENSqVQsA8Pjjj+PYsWP4+uuvcfHiRYSGhqJt27YYO3YsgoODAdx77nvt2rUYMWIEZsyYgaysLNSuXRvTp09HUlKSS+mbPXs2Xn75ZUyZMgVCCDz88MNYsmQJKlSo4PI257c/HUlKSsLZs2fx+eefY9myZahXrx5mzZqFuXPnYu3atS6t/7HHHsN3332HlJQUjBgxAjVr1kRaWhpmzJiBPXv2FPhbJcocERHpi0koMTIIERERkYdr1KgRwsLCFHmlHRERGQef6SYiIiIqgjt37uDu3bs209auXYu//voL7dq10yZRREQkLbZ0ExERERXBsWPHEB8fj+eeew4VKlTA/v37MW3aNAQHB2P37t0oV66c1kkkIiKJ8JluIiIioiIoU6YMmjRpgi+//BIXLlxAqVKl0KlTJ7z33nsMuImIKA+2dBMRERERERGphM90ExEREREREamEQTcRERERERGRSvhMtwpyc3Pxzz//oHTp0jCZTFonh4iIiIiIyGMIIXD16lVUqFABXl7atzMz6FbBP//8g0qVKmmdDCIiIiIiIo918uRJ3HfffVong0G3GkqXLg3g3k4OCgrSODVERERERESeIysrC5UqVbLEZVpj0K0Cc5fyoKAgBt1EREREREQakOVRX+07uBMREUnAZDJJc3ImIiIi42DQTUREHs9kMkEIYfk/ERERkVIYdBMRkUezDrLNgTcRERGRUhh0ExGRx7MPttnaTURERErhQGpEKrC/YGfrGZGcHAXXQggG3URERKQYtnQTKcx8sS6E4DOiRDrAm2JERESkJgbdRCqwvojnBT2RPvFmGRERESmBQTeRggq6SOcFPJF+8GYZERERKYVBN5HCHF2s8wKeiIiIiMgzMegmIiKPZP1ubiIiIiK1MOjWgMlkYldjD6TEiMjmssMyROQePM6IiIiouBh0u5n1yNa8mDMWd7WacVR0IvdgKzgREREpgUG3G5mDMusLOU8JmtgyW3x89zeRZ2GvFiIiImNg0O0mjlpBPS1oYuv+PcXJA0dlxhPzlMEIGZ39TVqWdSIiIv0ydNCdkpKS5xnYOnXqFPibuXPnok6dOvD390dMTAwWL15c7HQU1u3Y6BdT9ttv9O0tiNI3Wox648b+uHX0LLtswQhvApBajHqcU9GwfiEZ8KY3kWsMHXQDQP369XHmzBnLZ8OGDfnO+/vvv6N79+7o168ftm/fjsTERCQmJmL37t0urTs4OLjQSsnoF1PsEq2MgsqR0XoQWAfVBX3M88iAYzXoj8wjl+dXhli2PJN1gMMyUDAGhOqS9aa33nBQXGXpJR+lC7pv3bqF7OxsxZbn4+ODyMhIyyc0NDTfeT/55BN06NABw4cPR926dfHOO++gcePG+PTTT11ev/0z3J7IE7bfHRfwnpCPZkXZVlkCXdl6cxT3JMSLgnu0Kl+e/jgS3WN/E9J6GtmyDwhJHfY3vVkeXcP4QBnW19+yl0XNg+61a9fi1VdfRfPmzREYGIhSpUqhZMmSKF26NJo3b46hQ4di7dq1Li//0KFDqFChAqpVq4YePXrgxIkT+c6bnp6O+Ph4m2kJCQlIT08vcB3Z2dnIysqy+QBAZmamy+kmY1O6YpAl8CwumVsf8yNjbw7rNLlSLhxd6JMcjHCck3McBZE8HgtmHRDyWFGWo/xUqzwa+Wavo+0y6raqzTrfzNcrMueljxYrvXPnDj7//HNMmjQJx44dQ9myZdG4cWM899xzKFOmDIQQuHLlCo4ePYpZs2bhv//9L6KiovDaa6/hhRdeQIkSJZxaT2xsLNLS0lC7dm2cOXMGY8eORevWrbF7926ULl06z/xnz55FRESEzbSIiAicPXu2wPWkpqZi7NixzmeAA3oMNgqTX8E3HxRG215nyV4p6JWWZSq/Ae60LOPWd35dSYv9hb7W20OsOzwRjznn8LhwD0flUenzg3lZrp679MDR+VWP7INeLch4/ZUfTYLuGjVq4Pbt2+jduze6dOmCxo0bFzj/1q1bMXfuXIwfPx4ffPABjh075tR6OnbsaPl/gwYNEBsbi6ioKPzwww/o169fcTbBxltvvYVhw4ZZ/s7KykKlSpWc/r2eD7jCyFjo9cbZsuHJgZFsx5CW6XHU8l6UixeZ8tETObOfPPU49ySFHYcsA3np6eJbKTJtnxJpsV6GbOd1Jci0v5Qi236yvuaRrcexJkH3yJEjkZSUBD8/P6fmb9KkCZo0aYJx48Zh+vTpLq83JCQEtWrVwuHDhx1+HxkZiXPnztlMO3fuHCIjIwtcrp+fn9PbQuQKo1XSjhjxZKTVNjl6HtiZkyKfiZSfbBc4eqOHMl5YGvVWBrTKc73lU1FZD66ndXlWIq+NvK+MyL6V293lsLABhgubRwuaPNP9wgsvuBSk+vr64oUXXnB5vdeuXcPff/+N8uXLO/w+Li4Oq1atspm2YsUKxMXFubxOTyXDScBTyVbJeCrZyr+zF0WypZsc43FedHp6y4BRjsPiji+hdBqMxl3Bhbt6Srl6w1gPCstDPW6n1vVUYeuXraVb84HU1PT6669j3bp1OHbsGH7//Xc88cQT8Pb2Rvfu3QEAvXr1wltvvWWZf8iQIVi6dCk+/PBD7N+/HykpKfjzzz8xePBgrTaBdMDVGwxqVLBaV4CeRrabS0VpzS7qbz3p4seebNsuU5nTG9nzTqZyphQtB2SUfX+7SoZnae0V5waAbOdSdzPCtst2npSRJt3L3eXUqVPo3r07Ll26hLCwMLRq1QqbNm1CWFgYAODEiRPw8vr3vkPLli0xe/ZsjBo1CiNHjkTNmjUxf/58REdHa7UJuuTsQefJlayalZMnP9stI3fvi4LWld/z3Xrockt58Th3Xn5jHciUf0U5DmVMvz13XYDLng9qsd9mGfLBlQHQPCFQk2HfkPZMQoNS4OXl5dJBlpOTo0JqlJeVlYXg4GBkZmYiKCjIqd/IdkAW5y5qUbohybTNripOS7da+aS3IEqpsqDFM0UyDXpVnC6APGaV/40rinqxaoT94Q6O8kq2/CtqemRLvz135bmz3XZlzquicnd5dqVsAoXnuTPzyV7OnSHbtUJx5ZdW2a53XInH1KRJS/eYMWPyXPTNmzcPe/bsQUJCAmrXrg0A2L9/P5YvX47o6GgkJiZqkFL3kfGutSt3LElZruY9u/lQQTz9eJZ1+2W+GaBneqgL9ZBGveL50P2cuX50NjCX8fq4KDyp7LlrX+m1PGgSdKekpNj8/cUXX+D8+fPYvXu3JeA227dvHx566CFUqFDBjSn0bI5GJPS01muj4P7Qnt4vGIzIKPvDSDdG1X5GtaALf63zzogtsaSewgJZWcpRQfWTp5V59l4iQJKB1N5//30MHjw4T8ANAHXr1sXgwYMxceJEDVLmuawPelYA+sT95lnccbJmi5F83DV6sTuYB9xy17bIUEd6YvChRVn1hLpLlq7l1qzrJ+uP9XdGVpQyZ6T8MPqx5iopgu5Tp06hRIkS+X5fokQJnDp1yo0pIkcKO4iKepAZqYJxlTsqJlZ+cuB+ILXovS4tqCXMyIwcfMg4BgJpw3wzzf7jKTxpWwHP296ikCLojo6OxmeffYbTp0/n+e7UqVP47LPPEBMTo0HKPE9+JzBnDyJXBtrQMyXuAKvJSK1gsinKvudJSC5GHCfBuiun3il5vMgalCkRcMteJo1M5mNN1nR5GqPuB6NulztI8cqwjz76CAkJCahVqxaeeOIJ1KhRAwBw6NAhzJ8/H0IIzJo1S+NUUkHPpnrqQSjjxZw9Iz33WRg+P03OMGoZMdqxbpTtyI+Rt60wWu1bJdZrfb0jWxk16o0YvZ7b9ZZeZxl1u9QmRdDdqlUrbN68GaNHj8a8efNw8+ZNAEBAQAASEhIwduxYtnRLxL7ic/WOvV4rUWsyvaKjIDJfjMuYJjUYobwD+j/ZGmEfFMRRi7fM21tQ76riBg+yBh9GL4OFMcJz3exFRgXx9HKh5vWOnutPKYJu4F4X83nz5iE3NxcXLlwAAISFhcHLS4oe8G6hh4ty++DNyM+kGY3MgTfpB8uPOpS+yWa9XGcvAI24X2V7HZGnX4wbjRblx4jHqRFxP5E9aYJuMy8vL0RERGidDI/kbGVu35LCikU/GHhrT4285/50nqz5pFa6ivKqGvuAUOu80sON6KLgOVMOxSlTerlpYqTjRm+KO9YP951xSRN037p1Cz/99BO2bduGzMxM5Obm2nxvMpnw1VdfaZQ6sscKQRlaVLD23eK4L91HrW6V7i4/er4okHXwQ63z1NHo4Xrpou6IbMGRJ9W3WpflgihRB+c3ro0s26zkeUam7dID2eodLen9WkENUgTdx48fx4MPPohjx44hJCQEmZmZKFu2LDIyMpCTk4PQ0FAEBgZqnUy38LTC6WnbKxP2WNCO0icintjcw5PyOb8u6noa/Eq2fSVberSk1AW5DHlq1MHLyDUylEmSkxQPTA8fPhyZmZnYtGkTDh48CCEEvv/+e1y7dg0TJkxAQEAAli1bpnUy3cLTKm69b68eBlEriBD/vi9T5legyEbW1lIiNdjXE+5et96xXlVHcfKV+4SUptR1m8x1nifdeFaDFEH36tWr8dJLL6F58+aWgdOEEPDz88Pw4cPRvn17DB06VNtEEjlglBO3kYJvd7Q68KSjX8XZd57eoqV04O0Jo9uq3UPA08ukK9TYF+7aD0VJu9HKhcxlXcl0ybqNrpB5n2lBiqD7xo0bqFKlCgAgKCgIJpMJmZmZlu/j4uKwYcMGjVJH5JiSdzVlqZS0CL5luTguCiWeCZRln3saWfNdL8eBFi3eej9e9LJvqWAy3Mxx95sItN5ee7KlB/Cs8Ro8YRvVJEXQXblyZZw6dQoA4OPjg4oVK2LTpk2W7/fu3Qt/f3+tkkfkcdzVnVTPF9JEStLTsaBVV3Nn1udKmtQK6vW0T7Wg95spnkC2/SNbesw8JRjVOv9luPFVHFIMpPbQQw9hwYIFSE5OBgAkJSUhNTUVV65cQW5uLmbOnIlevXppnEr30KowaVWQ9XzwqPk8tyw42Jp6OLKnNpjfynB3wFSU9cm0j2VKC/1LjfpX7Tqd5wv5cJ84xxOed3eGFEH3iBEj8McffyA7Oxt+fn4YOXIk/vnnH/z444/w9vbGs88+i0mTJmmdTLfxtINYr9ur5gjUMuWHfXdzmdKWH7XTqIc8UJOet1/GMixjmpzl7rQXtD6ZBjiU6eYpeSbe2FWXWse40fYbX2H3L5PQc+ollZWVheDgYGRmZiIoKKjIv9eiUGlZkPV6EKkRdJvJmh9Kt3jrdSAlpZavRH5qdfzo8bjVY5pl52qeulr28/tdcY8lPb/GT8/lWk/XHs7ML1tLd3HSI2O5kiVNavf+k2U77RWnvlfqmqkoyyluPKY0zZ/pvnHjBpo0aYJp06ZpnRQiKchY0Zpp9SynUcm8r8kxPvtrqzitGK6Uf0d1kGyPv8h6wewOrpQFV8uPO4+bouxTPR/P1jy1DBdGtvpGL4xyXBSH5kF3yZIlcfToUe4MD8aK6x7rwctkpoc0ehLuD+cxr4zB0RsWPHnf6nlAMi1bYdXINyOVQ72WKXfgI2xFY7TtcZXmQTcAdOjQAcuWLdM6GdLwtMKp14rd0/aTNdkv8tRMn1qD7xQnPeQcJfJK9rKvBS3yxHyTUrablZ7cyk3qcrVnCOsr5bjr+JZ1n7FuKx4pgu7Ro0fj4MGD6NmzJzZs2IDTp0/j8uXLeT6eQtaDjWxxPynzvmq1qLVsnnTuYT4oh3lJxcUyJBc+hqIOLcu5p+e/Etsv8zWjO0gxkJqX17+xf0E7JCcnxx3JKTa9DaTGO/NFxzy7R+ZBWvQ0SFtxushyIDX30/OgW2oq6nOvMm2zEunRsqu7LPnp6mBfQNHyzd2DWaox6FpRuXsQK1nKlD2tBhsG3Hdsy5j3StWR7hw4VraB1KR4ZdiYMWM8/g6SJ5OxciHncf8VH7sAugfLqhxkLOtKlQtPL1/u6gKt5P6SsTzaY92lHY4bIQcjHANSBN0pKSlaJ0Eqei9UnoD76B69XLAQKYnHf/6cvTCSMQ+L23OH3PvMq+ytjrIECebzdFHTIkPatcaAW3myHBdakOKZbsrLk07gegzc9JZetXlSfqj5rHhR89GTT16uUCqvOOKxY0bZDld5+vbTv4xQFjzpvO6IlgG3EcqPI0bdLmdpEnTXq1cP33zzDW7fvu30b7KzszF9+nTUq1fP6d+kpqaiWbNmKF26NMLDw5GYmIgDBw4U+Ju0tDTLa0jMH39/f6fXSeRpPK0S9fQLETPeLFOOrOkiKgq93gRU+20XStDiGWY97kulyNDCLdt5wZPLg1I0CbqTkpIwbNgwREREoHfv3pg5cyb27NmDGzduWOa5fv06du/ejbS0NDz33HMIDw/HG2+8gaSkJKfXs27dOgwaNAibNm3CihUrcOfOHTz88MO4fv16gb8LCgrCmTNnLJ/jx4+7uqnkJB7M+scTBMlM1otIWdNVHLLVBWqTYXv1eBPMnt7Tb0/pwRbJPWQIuGWkZBl0ZVlG2B+ajV5+9epVfPXVV0hLS8POnTstO8DH595j5nfv3gVwL5Ojo6PRt29f9O3bt1ijz124cAHh4eFYt24d2rRp43CetLQ0DB06FBkZGS6vR4nR8oz4XJQe0uEsvaXXHWQY3dUdy9druj2dkvkq67JkUdg2ybrNen92V+t0uGtkYneODF7cAEzJUdaLm7eA89uhdVkqiKecg2VJh5nW5z1XfsPRy/+/0qVLY+jQoRg6dCiOHTuG33//Hfv378elS5cAAOXKlUOdOnUQFxeHqlWrKrLOzMxMAEDZsmULnO/atWuIiopCbm4uGjdujPHjx6N+/fr5zp+dnY3s7GzL31lZWYqkl+QlU0WoR7KdTJwlW7q1To/W6y8KJdPp6sBE+S3Lk+ipzJDnKOiY1vo1SUowQk8IM7UDbspLhjJsBFK8p9sdcnNz8fjjjyMjIwMbNmzId7709HQcOnQIDRo0QGZmJj744AOsX78ee/bswX333efwNykpKRg7dmye6bLcWSmILAeSLOlwlt7S6w5FuZPuaT05ikJP7zrWev1FoXRaZWnBklFBdYHM2+uu1he1yJQWV2jZ0p3fcmV4N7EWy5C9LKnV2wGQ50aoTPtAjfMnULS8NkJLt8cE3S+++CKWLFmCDRs25Bs8O3Lnzh3UrVsX3bt3xzvvvONwHkct3ZUqVWL3cgNjvjmm9UWT2uuRLd1al0Ot118UspYFPeVhURTUXVfm7ZXtMZmi0Dot7uoCrcegG9B/F3WZyBAEqk2m/eXORzqUXL9sQbcU7+lW2+DBg7Fo0SKsX7++SAE3AJQoUQL3338/Dh8+nO88fn5+8PPzK24yPZo7ntEBlKlQZaoIyXOxG5y2WAcUzuh1JY9BZWndBdq+i7lSadF6u+zToYcbuu5kxG11VN6Mto16ZOj3dAshMHjwYMybNw+rV6926dnwnJwc7Nq1C+XLl1chhaQmk+nf177ZTyN1yHJx4Sl4EtUOy3nBChqUykh4DBqbGq2pJA+Z94mr11PWjUzmj/V0mciYJjUZuqV70KBBmD17NhYsWIDSpUvj7NmzAIDg4GAEBAQAAHr16oWKFSsiNTUVADBu3Di0aNECNWrUQEZGBt5//30cP34c/fv3d2valRyoJz8y3d1TensLe6ZQpm0nsueO418JekknIG9wJGu61OJp2+tOWh6PeqkHCqPWjWPekJaPjF3Kiyu/bTKXP5mOU088JqRr6Z40aZJiy5o6dSoyMzPRrl07lC9f3vL5/vvvLfOcOHECZ86csfx95coVDBgwAHXr1sUjjzyCrKws/P7776hXr55i6VITW3L/PfnnV7HIfNfPKJi3JBtZy6Ss6VKCkS+qjLpdMigob90RNNi3ECpJD+VGpsBMLZ4UcJvx2ld70g2kVrZsWVy+fBkA8NRTT+Gnn37SOEVFp9SD+0UdZMDM+kKnoN/LVrFqMTonUPRKV7Z8k1FheSTbgGRaLa8465KlHMqSjoJoPQiMmsuQnf25SXZ6f+bVCC3dBS1L1nx3livpd/d5TA95XJygWU8BtxqDjck0WKTagyfKNpCadC3ddevWxYQJE3Dw4EGsWLFC6+ToivWdWU+8o1XUbXW1EtFDRS0zd57Q9byvjNxKaATcP85Rs9WQSI9YbxRfcUaCL87vZeVKIC0Do+2Hwkj3TPfs2bORkpKC+Ph43LhxA40aNUJMTAwaNGiABg0aICYmBhUqVNA6mVLJ7+Ap6KJQlgNOKa5WpK48A6eHu8AykCWfjPi6FaMdv0SycOacwOOPXMWbddoxcsBdFHorgzJdexWXdN3LrQUGBmLlypXYuXMndu7ciV27dmHXrl3w8vLCxYsXtU5evtzdvbywrlhA3kpGxkLsapqKW5EW5fdGrbTVkN/+dHfZ03PQLUseFkSmtORHrTQWd7l6yDtPpOfut0boXl7Q8mTOe2cV9ZpDjUdjClq/XvLYUxpM1KqPZHmURs36Vrbu5VK0dNeoUQO9e/fG6NGjbaafPXsWgYGBaNGihc30U6dOuTN5miruHXcZRyxUQ3G2rah3/YycjyQXV3piaKG4N8wKIvu2F4eRt420oUWd4a5WMz21zhVE65ZGrdevBaNurxG2Sy/XOUqQIug+cuQI/vzzT2zduhUHDx5EUFAQ6tati2rVqjmc/7777nNzCrXhbMVYWEG1D7xlPUhd7epN8rLfn9xfxuNKneLs4Frmequw+fTKUy40jMRIdVhBj6YVFcfpKDoZj38Z01RcRj6HAMUbn8iI+1tmUgTdALBo0SIsWrTIZgCw+vXrY+TIkejWrZvGqZNTUVtnjXoBq8S2sPJRXn7BGPO46KzLpt4v+otSB1lvM49PkoXey2FBx6BMx5os6VCDzA0gelGU6zYjliN3lB8jH4NakGb08hIlSiAlJQVr167F8uXL8e6778LX1xc9evTAwIEDtU6etIpyMBhtFFlWBvrAC4vicVTG9VruizPgofXvi7pOveYXaUfv9VZhg6jmd0zIcnPPE45ZLQNvTwn6jVL/K9krxf73MpQDWdKhNmlaul999VWbZ7rj4+MxYsQIfPTRR3j99dcRFxeH3r17a5hCuXhC4SyIWttvlApaFtYVqdYXF3rfr3rfhuL2spFxfIrilC2ZtoNs5XcBqJd9VlD6zd8783sZtlf2x+LUJEP+65lRyoyj8m+UbSuM0Y4BKVq6AwIC8n1O+9VXX0XXrl0xefJkN6dKHmrd4dI7pbe/sOV5SiWnNOsThl7LrNYVv3Xrk6x56I5B0WRphSPSm6LWwTIca/ZplbXuKw6tbyhYr1vm84urjLY91pTaNq3LoDVZ0qEWKYLuOnXq4Ndff833+9atW2Pv3r1uTJE8jFxhuErtg7Kg5XN/uMZIjzVoReY8dOaGlZIXCETupreLQUe9jFx9rKMg7gjU9Jb3emGUurSgXh1GonavQa1b041SHgsiRdD9wgsvYOnSpXj55Zdx8+bNPN9v3LgRJUuW1CBlcjLi3UgzpUZsL876iUg57rpAIFKSo3OR3s4PSvQy0roVzGhj0Tiidfdh60F29aagcmGkMmPf88RdPT21yEPrmwtG2oeAJM90P//889i3bx8++eQTzJkzBx07dkR0dDR8fX2xcuVKLFmyBElJSVonU1Oe/FyTNXdtvxEPdiJ3U/MCQZZnTsnY9H7OVer44LGmPvs8dkd+G+HxL3tGLavu2CatYw37Ny0ZjUlIVDJ/++03fPTRR1i5ciWuXbtmmZ6YmIi0tDQEBQVpmDrnZWVlITg4GJmZmYql2dn32hpBQRWmuypT+/UY7aTkiYpTdox6Eleao1ebqZlvzuwXtfcdB1IzNu6nexzlA8+LytJ7zwot2QeLzDvXGC3WUCMeKw6pgm6znJwcHDt2DFevXkXlypVRtmxZrZNUJLLtZL3J7yLHnZWp/bp44aV/DI7U5+6LxsLqBK1u0ik9P5EMHN2MZjlWFoNG17E8kj3Z4jEpupfb8/b2RvXq1bVOBmkov8rTXRUqu/ITFZ27Wxp4nBK5l9bdT42OQaPrmHckOymDbvJsWg8q4mi9rMyJnOPuY8VcX/AYJVKXOx8dISIyGgbdJD2tTvC8oDAWV4IzBnP6kd84DESkLNaJRERFJ8Urw4js2Y9gyJM8EeVHptedEBEREdlj0E3SMl8w88KZlORsCyhbSvXH+v2e7sRnXImIiKggDLpJagy4SUnWzyQWFCSxh4X+6OV5Uz6yQERE5Hn4TDcReRRnA28GRvrDfUZEREQyYtBNRB6JARopja3YRERE5Ai7lxMRERWTM8E2n/smIiLyTAy6iYiI3IQt4URERJ6HQTcREZECChrFnK3cREREnotBNxERkYLyC7DZyk1EROSZPCLonjJlCqpUqQJ/f3/ExsZiy5YtBc4/d+5c1KlTB/7+/oiJicHixYvdlFIiItIz+1eXmf/PgJuIiMhzGT7o/v777zFs2DAkJydj27ZtaNiwIRISEnD+/HmH8//+++/o3r07+vXrh+3btyMxMRGJiYnYvXu3m1NORER6ZP9aOgbcREREns0kDH41EBsbi2bNmuHTTz8FAOTm5qJSpUp4+eWXMWLEiDzzd+3aFdevX8eiRYss01q0aIFGjRph2rRpTq0zKysLwcHByMzMRFBQkDIbQkRERERERIWSLR4zdEv37du3sXXrVsTHx1umeXl5IT4+Hunp6Q5/k56ebjM/ACQkJOQ7PwBkZ2cjKyvL5kNERERERERk6KD74sWLyMnJQUREhM30iIgInD171uFvzp49W6T5ASA1NRXBwcGWT6VKlYqfeCIiIiIiItI9H60TYARvvfUWhg0bZvk7MzMTlStXZos3ERERERGRm5njMFmepDZ00B0aGgpvb2+cO3fOZvq5c+cQGRnp8DeRkZFFmh8A/Pz84OfnZ/n74sWLAMAWbyIiIiIiIo1cunQJwcHBWifD2EG3r68vmjRpglWrViExMRHAvYHUVq1ahcGDBzv8TVxcHFatWoWhQ4dapq1YsQJxcXFOr7ds2bIAgBMnThRrJzdr1gx//PGHy79XcjmyLCMrKwuVKlXCyZMnizUogizbI0talMpXJdKi1DJkSYsR81aW/SNTfaDUcmRZBvNWvWXIlLdG2j+sa9VbjkxlVqnlyJIW5q16yzD3PDbHZVozdNANAMOGDUPv3r3RtGlTNG/eHB9//DGuX7+OPn36AAB69eqFihUrIjU1FQAwZMgQtG3bFh9++CE6deqEOXPm4M8//8QXX3zh9Dq9vO49Kh8cHFysA8jb21uR0faUWI4syzALCgrSPG+Ntn+A4uerUmlh3qqXFlmWoeRyZKgPlFqOLMswY94qvwwzGfLWaPsHYF2r5nJkKLNKLUemtADMWzWWYWaOy7Rm+KC7a9euuHDhAsaMGYOzZ8+iUaNGWLp0qWWwtBMnTtjsjJYtW2L27NkYNWoURo4ciZo1a2L+/PmIjo52e9oHDRokzXJkWYZSZNoemdKiBJm2R6a0KEGW7ZFp/yhBpu2RZRlKYd6qR6btkSktSpBle2TaP0qQaXtkSosSZNoeWZYhG8O/p1sLsr0XzkiYt+pgvqqHease5q16mLfqYd6qg/mqHuatepi36pEtb+VobzcYPz8/JCcn2wyuRspg3qqD+aoe5q16mLfqYd6qh3mrDuarepi36mHeqke2vGVLNxEREREREZFK2NJNREREREREpBIG3UREREREREQqYdBNREREREREpBIG3UREREREREQqYdCtsClTpqBKlSrw9/dHbGwstmzZonWSNLV+/Xo89thjqFChAkwmE+bPn2/zvRACY8aMQfny5REQEID4+HgcOnTIZp7Lly+jR48eCAoKQkhICPr164dr167ZzLNz5060bt0a/v7+qFSpEiZOnJgnLXPnzkWdOnXg7++PmJgYLF68WPHtdafU1FQ0a9YMpUuXRnh4OBITE3HgwAGbeW7duoVBgwahXLlyCAwMxFNPPYVz587ZzHPixAl06tQJJUuWRHh4OIYPH467d+/azLN27Vo0btwYfn5+qFGjBtLS0vKkxyhlf+rUqWjQoAGCgoIQFBSEuLg4LFmyxPI981Q57733HkwmE4YOHWqZxvx1TUpKCkwmk82nTp06lu+Zr8Vz+vRpPPfccyhXrhwCAgIQExODP//80/I9z2WuqVKlSp5yazKZLO/oZbl1TU5ODkaPHo2qVasiICAA1atXxzvvvAPrsZNZZl139epVDB06FFFRUQgICEDLli3xxx9/WL5n3jpHTzGCM2kplCDFzJkzR/j6+oqvv/5a7NmzRwwYMECEhISIc+fOaZ00zSxevFi8/fbb4ueffxYAxLx582y+f++990RwcLCYP3+++Ouvv8Tjjz8uqlatKm7evGmZp0OHDqJhw4Zi06ZN4rfffhM1atQQ3bt3t3yfmZkpIiIiRI8ePcTu3bvFd999JwICAsTnn39umWfjxo3C29tbTJw4Uezdu1eMGjVKlChRQuzatUv1PFBLQkKCmD59uti9e7fYsWOHeOSRR0TlypXFtWvXLPMMHDhQVKpUSaxatUr8+eefokWLFqJly5aW7+/evSuio6NFfHy82L59u1i8eLEIDQ0Vb731lmWeI0eOiJIlS4phw4aJvXv3ismTJwtvb2+xdOlSyzxGKvsLFy4Uv/76qzh48KA4cOCAGDlypChRooTYvXu3EIJ5qpQtW7aIKlWqiAYNGoghQ4ZYpjN/XZOcnCzq168vzpw5Y/lcuHDB8j3z1XWXL18WUVFRIikpSWzevFkcOXJELFu2TBw+fNgyD89lrjl//rxNmV2xYoUAINasWSOEYLl11bvvvivKlSsnFi1aJI4ePSrmzp0rAgMDxSeffGKZh2XWdV26dBH16tUT69atE4cOHRLJyckiKChInDp1SgjBvHWWnmIEZ9JSGAbdCmrevLkYNGiQ5e+cnBxRoUIFkZqaqmGq5GF/QOXm5orIyEjx/vvvW6ZlZGQIPz8/8d133wkhhNi7d68AIP744w/LPEuWLBEmk0mcPn1aCCHEZ599JsqUKSOys7Mt87z55puidu3alr+7dOkiOnXqZJOe2NhY8cILLyi6jVo6f/68ACDWrVsnhLiXlyVKlBBz5861zLNv3z4BQKSnpwsh7lV4Xl5e4uzZs5Z5pk6dKoKCgiz5+cYbb4j69evbrKtr164iISHB8rfRy36ZMmXEl19+yTxVyNWrV0XNmjXFihUrRNu2bS1BN/PXdcnJyaJhw4YOv2O+Fs+bb74pWrVqle/3PJcpZ8iQIaJ69eoiNzeX5bYYOnXqJPr27Wsz7cknnxQ9evQQQrDMFseNGzeEt7e3WLRokc30xo0bi7fffpt56yKZYwRn0uIMdi9XyO3bt7F161bEx8dbpnl5eSE+Ph7p6ekapkxeR48exdmzZ23yLDg4GLGxsZY8S09PR0hICJo2bWqZJz4+Hl5eXti8ebNlnjZt2sDX19cyT0JCAg4cOIArV65Y5rFej3keI+2bzMxMAEDZsmUBAFu3bsWdO3dstrtOnTqoXLmyTf7GxMQgIiLCMk9CQgKysrKwZ88eyzwF5Z2Ry35OTg7mzJmD69evIy4ujnmqkEGDBqFTp0558oD5WzyHDh1ChQoVUK1aNfTo0QMnTpwAwHwtroULF6Jp06Z45plnEB4ejvvvvx//+9//LN/zXKaM27dvY9asWejbty9MJhPLbTG0bNkSq1atwsGDBwEAf/31FzZs2ICOHTsCYJktjrt37yInJwf+/v420wMCArBhwwbmrUJkykdn0uIMBt0KuXjxInJycmwqfgCIiIjA2bNnNUqV3Mz5UlCenT17FuHh4Tbf+/j4oGzZsjbzOFqG9Trym8co+yY3NxdDhw7FAw88gOjoaAD3ttnX1xchISE289rnr6t5l5WVhZs3bxqy7O/atQuBgYHw8/PDwIEDMW/ePNSrV495qoA5c+Zg27ZtSE1NzfMd89d1sbGxSEtLw9KlSzF16lQcPXoUrVu3xtWrV5mvxXTkyBFMnToVNWvWxLJly/Diiy/ilVdewYwZMwDwXKaU+fPnIyMjA0lJSQBYHxTHiBEj0K1bN9SpUwclSpTA/fffj6FDh6JHjx4AWGaLo3Tp0oiLi8M777yDf/75Bzk5OZg1axbS09Nx5swZ5q1CZMpHZ9LiDB+n5yQiaQ0aNAi7d+/Ghg0btE6KIdSuXRs7duxAZmYmfvzxR/Tu3Rvr1q3TOlm6d/LkSQwZMgQrVqzI00pAxWNuwQKABg0aIDY2FlFRUfjhhx8QEBCgYcr0Lzc3F02bNsX48eMBAPfffz92796NadOmoXfv3hqnzji++uordOzYERUqVNA6Kbr3ww8/4Ntvv8Xs2bNRv3597NixA0OHDkWFChVYZhUwc+ZM9O3bFxUrVoS3tzcaN26M7t27Y+vWrVonjSTGlm6FhIaGwtvbO8+omufOnUNkZKRGqZKbOV8KyrPIyEicP3/e5vu7d+/i8uXLNvM4Wob1OvKbxwj7ZvDgwVi0aBHWrFmD++67zzI9MjISt2/fRkZGhs389vnrat4FBQUhICDAkGXf19cXNWrUQJMmTZCamoqGDRvik08+YZ4W09atW3H+/Hk0btwYPj4+8PHxwbp16/Df//4XPj4+iIiIYP4qJCQkBLVq1cLhw4dZboupfPnyqFevns20unXrWrrv81xWfMePH8fKlSvRv39/yzSWW9cNHz7c0todExODnj174tVXX7X0MGKZLZ7q1atj3bp1uHbtGk6ePIktW7bgzp07qFatGvNWITLlozNpcQaDboX4+vqiSZMmWLVqlWVabm4uVq1ahbi4OA1TJq+qVasiMjLSJs+ysrKwefNmS57FxcUhIyPD5u7h6tWrkZubi9jYWMs869evx507dyzzrFixArVr10aZMmUs81ivxzyPnveNEAKDBw/GvHnzsHr1alStWtXm+yZNmqBEiRI2233gwAGcOHHCJn937dplU2mtWLECQUFBlovMwvLOE8p+bm4usrOzmafF1L59e+zatQs7duywfJo2bYoePXpY/s/8Vca1a9fw999/o3z58iy3xfTAAw/keR3jwYMHERUVBYDnMiVMnz4d4eHh6NSpk2Uay63rbty4AS8v20t8b29v5ObmAmCZVUqpUqVQvnx5XLlyBcuWLUPnzp2ZtwqRKR+dSYtTnB5yjQo1Z84c4efnJ9LS0sTevXvF888/L0JCQmxG1fQ0V69eFdu3bxfbt28XAMSkSZPE9u3bxfHjx4UQ94bgDwkJEQsWLBA7d+4UnTt3dvg6gPvvv19s3rxZbNiwQdSsWdPmdQAZGRkiIiJC9OzZU+zevVvMmTNHlCxZMs/rAHx8fMQHH3wg9u3bJ5KTk3X1WgVHXnzxRREcHCzWrl1r88qVGzduWOYZOHCgqFy5sli9erX4888/RVxcnIiLi7N8b37dysMPPyx27Nghli5dKsLCwhy+bmX48OFi3759YsqUKQ5ft2KUsj9ixAixbt06cfToUbFz504xYsQIYTKZxPLly4UQzFOlWY9eLgTz11WvvfaaWLt2rTh69KjYuHGjiI+PF6GhoeL8+fNCCOZrcWzZskX4+PiId999Vxw6dEh8++23omTJkmLWrFmWeXguc11OTo6oXLmyePPNN/N8x3Lrmt69e4uKFStaXhn2888/i9DQUPHGG29Y5mGZdd3SpUvFkiVLxJEjR8Ty5ctFw4YNRWxsrLh9+7YQgnnrLD3FCM6kpTAMuhU2efJkUblyZeHr6yuaN28uNm3apHWSNLVmzRoBIM+nd+/eQoh7w/CPHj1aRERECD8/P9G+fXtx4MABm2VcunRJdO/eXQQGBoqgoCDRp08fcfXqVZt5/vrrL9GqVSvh5+cnKlasKN577708afnhhx9ErVq1hK+vr6hfv7749ddfVdtud3CUrwDE9OnTLfPcvHlTvPTSS6JMmTKiZMmS4oknnhBnzpyxWc6xY8dEx44dRUBAgAgNDRWvvfaauHPnjs08a9asEY0aNRK+vr6iWrVqNuswM0rZ79u3r4iKihK+vr4iLCxMtG/f3hJwC8E8VZp90M38dU3Xrl1F+fLlha+vr6hYsaLo2rWrzXukma/F88svv4jo6Gjh5+cn6tSpI7744gub73kuc92yZcsEgDz5JQTLrauysrLEkCFDROXKlYW/v7+oVq2aePvtt21em8Qy67rvv/9eVKtWTfj6+orIyEgxaNAgkZGRYfmeeescPcUIzqSlMCYhhHC+XZyIiIiIiIiInMVnuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIiIiIiISCUMuomIiIiIiIhUwqCbiIh049ixYzCZTEhLS7NMS0lJgclk0i5RRaS39AJAWloaTCYTjh07pnVSLPSYj2ZJSUmoUqWK1skgIiI3YdBNRETSMAd3jj4jRoxwejnjx4/H/Pnz1UsoERERkZN8tE4AERGRvXHjxqFq1ao206KjoxEVFYWbN2+iRIkSBf5+/PjxePrpp5GYmKhiKj1Hz5490a1bN/j5+WmdFItRo0YV6UaMTP73v/8hNzdX62QQEZGbMOgmIiLpdOzYEU2bNnX4nb+/v5tTc8+tW7fg6+sLLy/P6yTm7e0Nb29vrZNhw8fHBz4+ylzGCCFw69YtBAQEKLK8whR204iIiIzF864ciIhItxw9023PZDLh+vXrmDFjhqVrelJSkuX706dPo2/fvoiIiICfnx/q16+Pr7/+2mYZa9euhclkwpw5czBq1ChUrFgRJUuWRFZWFgBg8+bN6NChA4KDg1GyZEm0bdsWGzduzJOWDRs2oFmzZvD390f16tXx+eefO72thw4dwlNPPYXIyEj4+/vjvvvuQ7du3ZCZmWkz36xZs9CkSRMEBASgbNmy6NatG06ePGkzT7t27RAdHY2dO3eibdu2KFmyJGrUqIEff/wRALBu3TrExsYiICAAtWvXxsqVK21+X5Rnuk0mEwYPHoy5c+eiXr16CAgIQFxcHHbt2gUA+Pzzz1GjRg34+/ujXbt2eZb522+/4ZlnnkHlypXh5+eHSpUq4dVXX8XNmzdt5nP0TPfdu3fxzjvvoHr16vDz80OVKlUwcuRIZGdn28xXpUoVPProo1i2bBmaNm2KgICAAveNM2k6f/48wsLC0K5dOwghLNMPHz6MUqVKoWvXrpZpjp7pnjNnDpo0aYLSpUsjKCgIMTEx+OSTT/LPaCIi0g22dBMRkXQyMzNx8eJFm2mhoaFO/XbmzJno378/mjdvjueffx4AUL16dQDAuXPn0KJFC0tgGBYWhiVLlqBfv37IysrC0KFDbZb1zjvvwNfXF6+//jqys7Ph6+uL1atXo2PHjmjSpAmSk5Ph5eWF6dOn46GHHsJvv/2G5s2bAwB27dqFhx9+GGFhYUhJScHdu3eRnJyMiIiIQrfh9u3bSEhIQHZ2Nl5++WVERkbi9OnTWLRoETIyMhAcHAwAePfddzF69Gh06dIF/fv3x4ULFzB58mS0adMG27dvR0hIiGWZV65cwaOPPopu3brhmWeewdSpU9GtWzd8++23GDp0KAYOHIhnn30W77//Pp5++mmcPHkSpUuXdirP7f32229YuHAhBg0aBABITU3Fo48+ijfeeAOfffYZXnrpJVy5cgUTJ05E3759sXr1astv586dixs3buDFF19EuXLlsGXLFkyePBmnTp3C3LlzC1xv//79MWPGDDz99NN47bXXsHnzZqSmpmLfvn2YN2+ezbwHDhxA9+7d8cILL2DAgAGoXbt2vst1Jk3h4eGYOnUqnnnmGUyePBmvvPIKcnNzkZSUhNKlS+Ozzz7Ld/krVqxA9+7d0b59e0yYMAEAsG/fPmzcuBFDhgwpOLOJiEh+goiISBLTp08XABx+hBDi6NGjAoCYPn265TfJycnC/nRWqlQp0bt37zzL79evnyhfvry4ePGizfRu3bqJ4OBgcePGDSGEEGvWrBEARLVq1SzThBAiNzdX1KxZUyQkJIjc3FzL9Bs3boiqVauK//znP5ZpiYmJwt/fXxw/ftwybe/evcLb2ztPeu1t375dABBz587Nd55jx44Jb29v8e6779pM37Vrl/Dx8bGZ3rZtWwFAzJ492zJt//79AoDw8vISmzZtskxftmxZnjw275ejR48WmG4hhAAg/Pz8bOb9/PPPBQARGRkpsrKyLNPfeuutPMu1zm+z1NRUYTKZbPLSfr/v2LFDABD9+/e3+e3rr78uAIjVq1dbpkVFRQkAYunSpYVuT1HSJIQQ3bt3FyVLlhQHDx4U77//vgAg5s+fbzNP7969RVRUlOXvIUOGiKCgIHH37l2n0kNERPrC7uVERCSdKVOmYMWKFTaf4hJC4KeffsJjjz0GIQQuXrxo+SQkJCAzMxPbtm2z+U3v3r1tnvPdsWMHDh06hGeffRaXLl2y/P769eto37491q9fj9zcXOTk5GDZsmVITExE5cqVLb+vW7cuEhISCk2ruSV72bJluHHjhsN5fv75Z+Tm5qJLly422xIZGYmaNWtizZo1NvMHBgaiW7dulr9r166NkJAQ1K1bF7GxsZbp5v8fOXKk0HTmp3379jbdp83LfOqpp2xazx2tyzq/r1+/josXL6Jly5YQQmD79u35rnPx4sUAgGHDhtlMf+211wAAv/76q830qlWrOrUvipqmTz/9FMHBwXj66acxevRo9OzZE507dy5w+SEhIbh+/boi5ZyIiOTD7uVERCSd5s2b5zuQmqsuXLiAjIwMfPHFF/jiiy8cznP+/Hmbv+1HUD906BCAe8F4fjIzM5GdnY2bN2+iZs2aeb6vXbu2JUDMT9WqVTFs2DBMmjQJ3377LVq3bo3HH38czz33nCUgP3ToEIQQDtcB5B2s67777svzDHRwcDAqVaqUZxpwrzt6Qdto/Tyzr68vypYta/nb+kaD9TKdWdeJEycwZswYLFy4ME8a7J9nt3b8+HF4eXmhRo0aNtMjIyMREhKC48eP20y337cFKUqaypYti//+97945plnEBERgf/+97+FLv+ll17CDz/8gI4dO6JixYp4+OGH0aVLF3To0MHpNBIRkbwYdBMRkUcwv6LpueeeyzdobtCggc3f9qNZm5fx/vvvo1GjRg6XERgYmGfgLld8+OGHSEpKwoIFC7B8+XK88sorSE1NxaZNm3DfffchNzcXJpMJS5YscTiyeGBgoM3f+Y0+nt90YTUYmL0hQ4ZgxowZlr/btm2LtWvXFntdOTk5+M9//oPLly/jzTffRJ06dVCqVCmcPn0aSUlJTr1my/7GQn6cHanclTQtW7YMwL2bCadOnbJ5tt6R8PBw7NixA8uWLcOSJUuwZMkSTJ8+Hb169bLJZyIi0icG3UREZDiOAq+wsDCULl0aOTk5iI+Pd2m55gHZgoKCClxGWFgYAgICLC3j1g4cOOD0+mJiYhATE4NRo0bh999/xwMPPIBp06bh//7v/1C9enUIIVC1alXUqlWr6BtTDG+88Qaee+45y99lypRRZLm7du3CwYMHMWPGDPTq1csy3Zlu11FRUcjNzcWhQ4dQt25dy/Rz584hIyMDUVFRbknT0qVL8eWXX+KNN97At99+i969e2Pz5s2Fvt7M19cXjz32GB577DHk5ubipZdewueff47Ro0fnab0nIiJ94TPdRERkOKVKlUJGRobNNG9vbzz11FP46aefsHv37jy/uXDhQqHLbdKkCapXr44PPvgA165dy3cZ3t7eSEhIwPz583HixAnL9/v27bO0ghYkKysLd+/etZkWExMDLy8vSyv6k08+CW9vb4wdOzZPq7QQApcuXSp0Pa6qV68e4uPjLZ8mTZooslxzS7j19gghnHp11iOPPAIA+Pjjj22mT5o0CQDQqVMn1dOUkZFhGTl//Pjx+PLLL7Ft2zaMHz++wHXY7ysvLy9Lrwslek0QEZG22NJNRESG06RJE6xcuRKTJk1ChQoVULVqVcTGxuK9997DmjVrEBsbiwEDBqBevXq4fPkytm3bhpUrV+Ly5csFLtfLywtffvklOnbsiPr166NPnz6oWLEiTp8+jTVr1iAoKAi//PILAGDs2LFYunQpWrdujZdeegl3797F5MmTUb9+fezcubPA9axevRqDBw/GM888g1q1auHu3buYOXOm5cYBcK/V/f/+H3v3HdfE+ccB/BMg7KVMUQRU3OIe1IF7r9b9c+CsWq1SratOXFi31tmhdjmqVdvaqhWLuBdOtHWCCxFEGQISSJ7fH/FOAglkkkv4vl+vvCCXJ3fPPXnuku89zz3P4sWYNWsW4uPj0bt3bzg5OSEuLg4HDhzAxx9/jM8//1w/BVpCqlevjsqVK+Pzzz/Hs2fP4OzsjF9//bXI+8s5devWRWhoKL7++mukpqYiJCQEFy9exPfff4/evXujTZs2Bs/T5MmTkZKSgsjISFhaWqJz584YPXo0Fi9ejF69eqFu3bpKtzF69Gi8evUKbdu2RYUKFfDo0SN89dVXqFevnkKrPSGEENNEQTchhBCzs3r1anz88ceYM2cOsrOzERoaiqZNm8LLywsXL17EwoULsX//fmzatAlubm6oVasWPz9ycVq3bo1z585h0aJF2LBhA968eQNvb280bdoUY8eO5dMFBQXh6NGjmDJlCubNm4cKFSogPDwcz58/Lzborlu3Ljp16oQ//vgDz549g729PerWrYvDhw+jWbNmfLqZM2eiatWqWLNmDcLDwwHIByvr2LEjevbsqUXJGZdYLMYff/zB379ua2uLDz/8EBMnTlQZsOb37bffolKlStixYwcOHDgAb29vzJo1C/Pnzzd4nn7//Xf88MMPWLVqFapXr84vX716NY4dO4bQ0FBcunSp0AB3gHycga+//hqbNm1CamoqvL29MWDAACxYsAAWFtQpkRBCTJ2IFTVSCiGEEEKIAM2dOxcRERGFuuETQgghQkOXTwkhhBBicp4/fw53d3djZ4MQQggpFnUvJ4QQQojJePjwIQ4cOIC9e/eie/fuxs4OIYQQUixq6SaEEEKIyTh58iTCw8MREhLCj0xOCCGECBnd000IIYQQQgghhBgItXQTQgghhBBCCCEGQkE3IYQQQgghhBBiIDSQmgHIZDIkJCTAyckJIpHI2NkhhBBCCCGEkFKDMYaMjAz4+PjAwsL47cwUdBtAQkICfH19jZ0NQgghhBBCCCm1njx5ggoVKhg7GxR0G4KTkxMA+Yfs7Oxs5NwQQgghhBBCSOmRnp4OX19fPi4zNgq6DYDrUu7s7ExBNyGEEEIIIYQYgVBu9TV+B3dCCCGEEEIIIcRMUUs3IYQQQoiJKtiKwxgzUk4IIYSoQi3dhBBCCCEmiAu4GWN8sC2UrpSEEELeo6CbEEIIIcRE5W/ZplZuQggRJgq6CSGEEELMCLV2E0KIsNA93YQQQgghJkYkEilt2WaMUdBNzAqNW0DMAbV0E0IIIYQQQgSHxi0g5oKCbkIIIYQQE1Jc0EGt3cSc0LgFxBwINujevHkzgoKC4OzsDGdnZwQHB+Pw4cMq09+6dQt9+vSBv78/RCIR1q5dWygN91rBx4QJExTSnTt3Dm3btoWDgwOcnZ3RqlUrZGdn63sXCSF6VPC4JoQQc0bBBzF3qr7L6aISMUWCDborVKiAZcuWISYmBpcvX0bbtm3Rq1cv3Lp1S2n6rKwsVKpUCcuWLYO3t7fSNJcuXcLz58/5x7FjxwAA/fr149OcO3cOnTt3RseOHXHx4kVcunQJEydOhIWFYIuKEPIOdT8jhKiDLtARYhqKurhExy8xJSJmQpdKy5YtixUrVmDUqFFFpvP390dYWBjCwsKKTBcWFoZDhw7h3r17/IHbrFkzdOjQAYsWLdI6n+np6XBxcUFaWhqcnZ21Xg8hRD357/nKv8yETm+EkBKS/3yR/0e7qZwvNDm30XmQmCpl3+vK0phj/VZ2McEc99PQhBaPmUTzrVQqxe7du5GZmYng4GC9rFMikeCnn37CyJEj+cqdlJSECxcuwNPTEx988AG8vLwQEhKC06dP62WbhBDDoS8kw6Gu+8RcFPwhT71jCBGu0va9zn3HcuclOj+ZF0EH3Tdv3oSjoyNsbGwwbtw4HDhwADVr1tTLug8ePIjU1FQMHz6cX/bw4UMAwIIFCzBmzBgcOXIEDRo0QLt27XDv3j2V68rJyUF6errCgxBSMuieL8OikWOJuSiq5Yyr33RhiRDj0+QYNJfjtbjzEzF9gg66q1WrhmvXruHChQsYP348QkNDcfv2bb2s+7vvvkOXLl3g4+PDL5PJZACAsWPHYsSIEahfvz7WrFmDatWqYdu2bSrXFRERARcXF/7h6+urlzwSQtRDX0iGoexHQP7ghBBToU5X1fyvC7V+a9OdVqj7QkhR1Knn5vbdX9T+0Peu6RN00G1tbY0qVaqgYcOGiIiIQN26dbFu3Tqd1/vo0SNERkZi9OjRCsvLlSsHAIVa02vUqIHHjx+rXN+sWbOQlpbGP548eaJzHgkh+kFfUrqhQWyIqVM34OaY0w95c9oXQlQx9e8iTcdpIKbJytgZ0IRMJkNOTo7O69m+fTs8PT3RrVs3heX+/v7w8fHBnTt3FJbfvXsXXbp0Ubk+Gxsb2NjY6JwvVWhABUKUK+6Liq4Ma0/deYDNdSAbYl40raP5zx1UvwkpOZp+p5j697wmeTf1fS3tBBt0z5o1C126dEHFihWRkZGBnTt34sSJEzh69CgAYNiwYShfvjwiIiIAyAdG47qeSyQSPHv2DNeuXYOjoyOqVKnCr1cmk2H79u0IDQ2FlZXi7otEIkybNg3z589H3bp1Ua9ePXz//ff477//sG/fvhLac0WqRmU2pR+6BU8QppJvQko7dbri0g8AImS61E+hXVgSSj4IIfqlzUUGOheYHsEG3UlJSRg2bBieP38OFxcXBAUF4ejRo+jQoQMA4PHjxwpzZyckJKB+/fr885UrV2LlypUICQnBiRMn+OWRkZF4/PgxRo4cqXS7YWFhePv2LT777DO8evUKdevWxbFjx1C5cmXD7GgRVF1lF9oPgaIU3AdTyTcxH/QFpTlNAxUqXyJkutRNU/q+VYXOgcRU6HKRzBTreGnb39LOpObpNhX6mBfOHOYnVLUP1GWP6APNVWs4mpYXlS8RIn1+1whhPm9djjM6RokpKG11vLTtb0kz23m63759q5f7rYlmPxSE2rVTnakPhJp3Qojm6HgmQqSvH6UFp8wr6fpOxxch5oWC5tJH66D7xIkT+Oyzz9CkSRM4OjrCwcEB9vb2cHJyQpMmTRAWFqbQrZtoxhymSihugCtCSgrde6w+bcqJjmciNIY63pUF3yV1btH1OKNzIBEyXeunKX3P6yOfprS/RE6j7uW5ubnYunUrVq9ejfj4eJQtWxYNGjRApUqVUKZMGTDG8Pr1a8TFxeHKlSt49eoV/Pz8MHXqVIwdOxZisdiQ+yIYunRn0LQ7nBC7aqubJyHmnZgGbeoOXVVWj7blRMczEZKSPN5Louu5PvaHzoFEyEpTHddXPk1lf41FaN3LNQq6/fz8IJFIEBoaiv79+6NBgwZFpo+JicHevXvxww8/wNraGvHx8brm1yRo+yFr+6NVaAedNvMNCin/RPi0qfNCO06EStd7zAA6nolxGaseGir41tf+0DmQCJm+gm5A2N9BhhhrQsj7a0wmHXRv3boVw4cP13hOaolEgu3bt2Ps2LEaZ9AU6RJ0a9vCJJQDTtsWSE3fQ0o3bYNugOpZUfRRRkI6H5HSydh1UN/nGn22igF0DiTCo89j1tjHf3H0nT+h768xmXTQTdSjzYes60EjlIOOuqaqRvOV6485XKASotLS0kDMl1Dqn75bs0pLQEJKp9JSxw2RN6Gc84RIaEG33kYvJ9ozl4EQdNkPcx/RPP9J0dz31dCE/IVK6IufGJ8Q6qC+zvP0PUHMnb7ruFAHGDPk4I7ENFDQLRDmctDosh/GnI7FkJRdhTSXz5uYD0N0eSOkNNPndGX6RMcmERpz/01UEq3RdFwLn5Wmb2jbtq3K10QiEWxtbeHn54euXbuie/fuOmWuNNDnQWIOLYDKAm9T3qfi5is3h8/MlFCZlwyhtjToStU+UX0SBiEe27qccwxxDJnrsUlMkyHrolDOByXxW5aOa9OgcdCdlJRU5AeblZWFY8eOYevWrejUqRN+++23UjNVmLb0cSAa+4DT98lNVau3EE6gmjLFPAsVfamYFqH86NEHVT+cuHOUuewnMQxt6wjVK2LuDFHHjf2bGCiZqQSJadE46I6NjS02TXZ2NrZu3YopU6Zg+fLlmD17tlaZM3f0Q614+cvH1Fq/1fl8qeVVc1RW+meIOsjVbXOo3+r0WDGH/TRlxv6BXRQh1hEh5YUQQyip31dFnXuMMW0hHdfCZZB7uu3s7BAWFoaBAwdi586dhtiEyRPyDwRNldS+FByEzNzu/SYlQwhXwEsLc/ryL2pfaHBEYRByfdO0jhjyx7OQy4mUHiUVIOpjMMOiHsD736cFHyWJjmvhM+hAas2bN0dcXJwhN2GSDNVaa8xgoiQP9oInNCEG35rmR2j5J0SfTLl+q5t3+sFjPKZSv9QNvEtqf0yl3AjRljYXRDUJqo0RXBPTZdCgOysrC1ZWGvdgN2um1D3aFAg5+Fb3M6a6oB59f7ZCqivGZOhyMOVWYE3P19SLwnhM5Txa3PdVSf1GMJXyIuapJM+T6v5GLCrINhX0HSRsBouIGWP4/fffUadOHUNtwuSYY8AtlIO74EnVmGWsbZkYO9+mQJ9T8Ail7gpBSfzAN9Xy1nbUaTqWiSrFBQFUd0hpUNI9JIHiA2869oghaRx0v3r1qsjXs7OzcefOHWzevBlnz57FTz/9pHXmzIW5j2AopH0SyoA1mm7blIMSQtRl7ONSE9oej3QslyxTLmtjHws0kCcxBmMes6WlrtNxLUwaB93u7u5qHTBisRiLFi3CoEGDtMqYOXBxceH/L6nKT1+iwgm8ifCV9jpS0l38TO241CWfprSfpo7KmRDTQses4dCFX+HSOOieN29ekR+mra0t/Pz80K5dO3h4eOiUOVOXlpYGZ2dnY2ejVDLWSYdOdIZhyCmtSruS7uJnCoG3rvWC6hYxJUI/Hon5oPNiyaHjWnhEzMCfyOvXr1GmTBlDbkJw0tPT4eLiYrSguySnYRD6AV3SedR1e6ZQpsZgqHIp7eVtrP0X+vgW+iqX0l6/DI3KVz+oHElJobpWcqisjR+PFWSQ0ctzcnKwd+9e9O7dG+XKlTPEJkgx6Grie1QWpCiltX4Y8wtZyCOa0w8VUhoJ8Vgk5oXqWMmjMhcWvY1ezhjD8ePH8fPPP+PAgQNIT0+Hh4cH/ve//+lrE0RN1LXxvZIsC31th370lxw6VozHVLqa64LG2DAcOm71h86DpKTQubDk0HEtPDoH3TExMfj555+xe/duJCYmQiQSYeDAgZg4cSKaNWtGH7iZMqUfkiX5w1fXbdBJsrCS+OxMqT7rg1DqmNACb6Hkg6iHPiv9ovpPDEUo3zmlER3XwqFV9/KHDx9i0aJFqF69Opo0aYJ9+/Zh8ODB2LNnDxhj6NOnD4KDg+kgI4JC9ZEoU1q/jISy30Lpam6o7dOFNGIKhHI+IOaL6ljJE8r3K5HTOOgODg5GYGAgNmzYgHbt2iE6OhqPHz/GihUr0KBBA71lbPPmzQgKCoKzszOcnZ0RHByMw4cPq0x/69Yt9OnTB/7+/hCJRFi7dm2hNNxrBR8TJkwolJYxhi5dukAkEuHgwYN626+SRAfZe6Z2sqfPjpQmQvlhYGrnidKKWm4Mx9jHIDE/dLwaF5W9cGjcvfzChQsICAjA6tWr0a1bN1hZ6e22cAUVKlTAsmXLEBgYCMYYvv/+e/Tq1QtXr15FrVq1CqXPyspCpUqV0K9fP3z22WdK13np0iVIpVL+eWxsLDp06IB+/foVSrt27VqT/vIxZOuKKZeLKYyCTS1j75VkOZSWHwZCrVvG7GpeEmUilPpV3L4KIY/EOOi7h+gb1SfhEMp3UGmmcUv3hg0bUK5cOXz44Yfw9vbG2LFjERUVpfcPskePHujatSsCAwNRtWpVLFmyBI6Ojjh//rzS9I0bN8aKFSswcOBA2NjYKE3j4eEBb29v/nHo0CFUrlwZISEhCumuXbuGVatWYdu2bXrdJ3NiigeuKeaZlMznVtrqhlD315gt3oYsEyGUN3dBA5DnR9kjf7r86UnpQp870SchnP9KO/oMhEHjoPuTTz7B6dOn8eDBA4SFheHUqVNo164dypcvj3nz5hnki1oqlWL37t3IzMxEcHCwXtYpkUjw008/YeTIkQr5zcrKwv/+9z9s3LgR3t7eetkWERZT+EFBLQ7GQWVufCUdeJd0b4qSpizYVqWoIFwoqLXGsKhsib7QsSo8QjqXl0Zaz9MdEBCAOXPm4Pbt27h06RIGDhyIEydOgDGGTz75BB9//DEOHTqEt2/fap25mzdvwtHRETY2Nhg3bhwOHDiAmjVrar2+/A4ePIjU1FQMHz5cYflnn32GDz74AL169VJ7XTk5OUhPT1d4EGEyVNdyYvpKw48DU6mrJR14m2tvCnWDbVUKBt+kdKCLvkRXVH+Eh87lxqd10J1fw4YNsXr1ajx58gR///03OnXqhD179qBnz55wd3fXer3VqlXDtWvXcOHCBYwfPx6hoaG4ffu2PrKM7777Dl26dIGPjw+/7Pfff8c///yjdBC2okRERMDFxYV/+Pr66iWPujLEF6e5HKz63g9D/aAuqXtNi3oYC10lNwxTKdOS+IFgrJbnktqOtsF2Qdx6jH3+N/b2Sxsqb6ILU/muKU3oMzEuvQTd/MosLNC+fXvs2LEDL168wK5du9CuXTut12dtbY0qVaqgYcOGiIiIQN26dbFu3Tqd8/no0SNERkZi9OjRCsv/+ecfPHjwAK6urrCysuIHievTpw9at26tcn2zZs1CWloa/3jy5InOeRQyUz9oTSX/JZFPde/xLE1K2/4KWUnUwZI8H5TUMW2oC1b5B7szFlM5f5s6KmeiLbpgLnz0O8c4DDP0OABbW1sMGDAAAwYM0Ns6ZTIZcnJydF7P9u3b4enpiW7duiksnzlzZqFAvE6dOlizZg169Oihcn02NjYqB28jwqWPLwZTPXHlD7aLYswRpY1BCK15hmKqn6Gh6qA59uJQ97jWhTkfI0QR91mb4nmDGAedG4SPzuHGo1HQXbNmTcycORMDBw6EtbW1Wu/JycnBzp07sWLFCo26hs+aNQtdunRBxYoVkZGRgZ07d+LEiRM4evQoAGDYsGEoX748IiIiAMgHRuPWL5FI8OzZM1y7dg2Ojo6oUqUKv16ZTIbt27cjNDS00HRn3KjmBVWsWBEBAQFq550Inz5POob+QWKoYEPddRZsbSzJFnhjoR+awmKowNsYn7GhfvCU5PFpjGCMjknjobInmqC6Inx0Qc04NAq6hw8fjilTpmDy5Mno2bMn2rdvjwYNGiAgIAD29vYAgMzMTMTFxeHy5cuIjIzEH3/8AWtra0ybNk2jjCUlJWHYsGF4/vw5XFxcEBQUhKNHj6JDhw4AgMePH8PC4n3v+ISEBNSvX59/vnLlSqxcuRIhISE4ceIEvzwyMhKPHz/GyJEjNcqPqdLngWXsQMgQhH7S0fcPdF1+mJf01VFjfS7meBXYHPZHn4G3EMrDEOceY8xvLuTzJ9GdOZ4PiWHQ+YAIjYuLi7GzoEDENDxCMjIy8N1332HHjh24ceMGfzLmWo3z8vIAyE/UtWvXxsiRIzFy5Eg4OzvrOevClZ6eDhcXF6SlpQliv/UZdJvbCVWXfSqpliV9bUef6zG11n1ttg+YzxV7Y5enPun62Qjls9XnZ2Ksz7ckt2tOddjUCOWYMWX5L1yYYzlSHTFN5npeLXihUDDxmKZBd37x8fE4e/Ys/vvvP6SkpAAA3NzcUL16dQQHB5faLtkUdJsOXYNuU/nBqc8vxJL4chVCXRNCHvTFnPYF0K0OCqUshHYxTcjbFspnVprRZ6CdgsG2uQbfVD9MkzleLMm/T0KLx3QaSM3f3x/+/v56ygoxJDohKlca7mvR90nV0IOrCakroznUDSGVp75oWweFVBb66LZr7B9M1PW4dDGH82FJUnZ85h8jxVzK01z2ozQy13O4UOujXqcMI8JErdz6V9Lloe2J0VA/yg2970Koa0LIg76Y075wCv54LY6xA1RVtP3BI6T9MccfbUSREOqZKVJVbgUHKDVVpp5/Imcun6PQYxUKukmpZ0pX+rTJp6G7gZu70rCPpoox9eaTF1KAmp+2P7yFtD/Utbx0ofOhetSpt+YSeNPxadrM5fMzheOIgm5CTISmJ0ZDn4AM8YNBaCdNU/8yElp5GkrBVu+Cj/zBudBoe1wLbX9KS10rzYRW54RKk2PBlANvuiBmXkyxDhYk9PpIQXcpYUqtucagSfkY+4tGSF1pDbF+IZ40TfnYEWJ5GgIXWCt7mILi6piQLyAILT/EsEz5fFhSNDkmTPH4oTpgXkyxDuZnKvVRb0H36tWr9bUqIjDGDjLJe8VdFc9/fyt9ZvpB5UgMrbj7003lmNb3Dx9T+SFVmgi9DhqbtnXWFBtGqC6YH1Org/mZQn3UW9C9ePFi/v8+ffroa7WElBh1vvSEcAFCVeCd/4e5KQzyZkpMcR+FUFeJ+gren57/wb0uZIbKn9D3u7QytfNhSdLH9J5CZgp5JJoz1XOtKdVHvQXdNWrUwJdffom7d+/i2LFj+lotISWuqFZkoVD24zz/clNkCkGikOoAMU+m3EWelA6mVh/VneHA2EypXE0pr0QzpnCsFGQq9VGnebrz27lzJxYsWID27dsjKysL9erVQ506dRAUFISgoCDUqVMHPj4++toc0ZI289qaSmXWh+Lm/xVSWQgtL+ZeV3Rt7S7qvfouN1P80iSmT5/nAarDwif0c35RvcEMtT1zn6JVyHkjujO1Xn2mlFcAEDEDHD2Ojo6IjIzEjRs3cOPGDdy8eRM3b96EhYUFXr58qe/NCU56ejpcXFyQlpYGZ2dnY2dHAQXd6in45Vxay0ETupaRKZSxNj/a8n8pKHufIX4ImkJZEvNUGgIPIifkz0jVedWQgbe5131z6FFHimdKn3Nxx4rQ4jG9tXTnl5iYCEdHRzRr1kxh+dOnTw2xOUL0Ln+LN/ecFE2XVi6h/sgoqLieEPkVF2xrs05CCBESIZ63ivreNlRLniEGERRauQL0W6g0MJXWblPIY0F6uadbIpEgKyuLf+7o6Kg0XYUKFfSxOaIjTabGKs3ofkqijDrzqmo6qB2XTh/HnFB/rJHSQR/1uLR/95gKIZ5n1L1Qbog6pq/yEHK5ktLDFD5zIR4rRdGppTsxMRHDhg1DVFQUZDIZ3N3dERQUhLp16/J/a9asCbFYrK/8Eh1p+oPI1Co0Ma7ScG83UHzgbe7d7AkxNDoGTIdQzlnqBtym0JInxO9SIeWFGJY+GwGK2oYh1itkOgXdn3/+OU6ePIlZs2bB1dUVn3/+ORISEnDixAnIZDL5BqyskJOTo5fMEkLMj9B+WGhC3/nWtau5qX4REfNjysc1UZ/QAlh16xwN+qc+c98/opoux0hRF8H0cfumKX6/6NS9/Pjx4xg3bhwWLlyI0NBQAMBXX32Fx48fo3PnzggKCsLs2bP1klGiX+rMR02INoT2I8zU6PpFYopfRMS8lMYWjNLO2J+bsbdviPOuEL5LaVyb0ksf53FV68h/652mddyUL+jqFHSnp6cjKCgIgLxFG5Df312uXDkcPHgQUqkU/v7+OmeS6JcmV4IJMSRj/6AQKm1+bFFZEnNB3z2mxdifly6BoSmcN42dR2N/vsS4tP0tou54Nppsw9jHgq50Crp9fX2RmJgIAHBxcYGdnR0/JZhYLMbQoUOxZs0a3XNJCDE56p4c6QtdNU2/YKgsiZCY+g8kohljfN66BNym0LXcmOd0U25RJPqhbVCsSb3RdBumXCd1CrrbtGmDU6dO8c+rV6+u8NzOzg53797VZRPEQIpqSaMTLdGVJiN8E+U0+SKisiRCQ98hpYsxP29j17WS2H5Jn+PpO4Vw1P0too8LYOb+m1GngdQmT56Mbdu24e3bt7C1tcWECRMwfvx41K5dG5UrV8batWupezkhpZQ6XaSN/WNJ6DTpZk5lSUydOfyoKs1KesRtfdQXIY4SXlBJ39tN93GTgoob5FUfdSb/NvKvK3/dN/U6KWJ63AOZTIahQ4di165dAAB7e3vs3bsXXbp00dcmTEJ6ejpcXFyQlpYGZ2dnY2dHJWUHidC/fIhpUXUipnqmvuK+zKgsiVBp+kOM6rLpK6mATZ/b0XWE5pJs6dZkW5pcsDWnwIYYTkkFxAXrrrbrFlo8ptegm/Pvv//i6dOnqFevHjw8PPS9esET2odclPwHEF3dJIag6iRN9Ux9RV28ULacEKHQJCihoNs8GPpz1Pd5T9cpGku6Zb+47WkSCFGwTTSlr4C4JAgtHtOpe7kqNWrUQI0aNQyxaqJnqrpzEKIvVMd0V7AMC75GiKmjruXmxRCBt6ECRF26mJfk+be4Lr6A5hcC6PuDaIrqjPYMEnQT00IHEDE0qmO6ozIkpkrdgIbquHlQ90KrNhdaSnsdURV4U4s1IcKn0+jlhrR582YEBQXB2dkZzs7OCA4OxuHDh1Wmv3XrFvr06QN/f3+IRCKsXbu2UBrutYKPCRMmAABevXqFTz/9FNWqVYOdnR0qVqyISZMmIS0tzVC7SQghhJgtCgBKJ8aYwi1Fyh5cGk0eQmHMnhnKypVbLqQyIoQoEmzQXaFCBSxbtgwxMTG4fPky2rZti169euHWrVtK02dlZaFSpUpYtmwZvL29laa5dOkSnj9/zj+OHTsGAOjXrx8AICEhAQkJCVi5ciViY2OxY8cOHDlyBKNGjTLMThJCCCGlHN3Lbb5MIYAGtBsh3NjTpAm5PAkhhRlkIDVDKVu2LFasWFFsEOzv74+wsDCEhYUVmS4sLAyHDh3CvXv3VJ5s9+7diyFDhiAzMxNWVur1xhfajfuEEEKIMRV3H6oJ/RQhZooG/SPEvAgtHjOJe7qlUin27t2LzMxMBAcH62WdEokEP/30E6ZMmVLk1U3ugyoq4M7JyUFOTg7/PD09XS95JIQQQswZBS/E1NCgf4QQbQi2ezkA3Lx5E46OjrCxscG4ceNw4MAB1KxZUy/rPnjwIFJTUzF8+HCVaV6+fIlFixbh448/LnJdERERcHFx4R++vr56ySMhhBBiDrTpvktISdKkjtKFIkKIpgQddFerVg3Xrl3DhQsXMH78eISGhuL27dt6Wfd3332HLl26wMfHR+nr6enp6NatG2rWrIkFCxYUua5Zs2YhLS2Nfzx58kQveSSEEELMSf6ghlq5CSGElBaC7l5ubW2NKlWqAAAaNmyIS5cuYd26ddi6datO63306BEiIyOxf/9+pa9nZGSgc+fOcHJywoEDByAWi4tcn42NDWxsbHTKEyGEEGLOippvnhBTQHWXEKItQbd0FySTyRTundbW9u3b4enpiW7duhV6LT09HR07doS1tTV+//132Nra6rw9QgghhBQedZkQIVGniznVW0KINgTb0j1r1ix06dIFFStWREZGBnbu3IkTJ07g6NGjAIBhw4ahfPnyiIiIACAfGI3rei6RSPDs2TNcu3YNjo6OfGs5IA/ct2/fjtDQ0EKDo3EBd1ZWFn766Sekp6fzg6J5eHjA0tKyJHadEEIIIYQQQoiZEGzQnZSUhGHDhuH58+dwcXFBUFAQjh49ig4dOgAAHj9+DAuL9w31CQkJqF+/Pv985cqVWLlyJUJCQnDixAl+eWRkJB4/foyRI0cW2uaVK1dw4cIFAFAI1AEgLi4O/v7+etxDQgghhBAiNMrGG6Cu5YQQXZjUPN2mQmjzwhFCCCGEEPWoCrrpJzMhpkNo8ZhJ3dNNCCGEEEKIoRUcaZ8QQnRBQTchhBBCCCHvcC3a+Ufbp1ZuQoguBHtPNyGEEEIIIcZAQTYhRJ+opZsQQgghhBBCCDEQCroJIYQQQgghhBADoaCbEEIIIYQQQggxELqn2wC4+4DS09ONnBNCCCGEEEIIKV24OEwo4zNQ0G0AKSkpAABfX18j54QQQgghhBBCSqeUlBS4uLgYOxsUdBtC2bJlAQCPHz/W6UNu3LgxLl26pHN+9LEeoawjPT0dvr6+ePLkiU4T3Qtlf4SSF32Vqz7yoq91CCUv5li2Qvl8hHQ+0Nd6hLIOKlvDrUNIZWtOnw+daw23HiHVWX2tRyh5obI13DrS0tJQsWJFPi4zNgq6DcDCQn6rvIuLi04HkKWlpc5fHPpaj1DWwXF2djZ62Zrb5wPoXq76yguVreHyIpR16HM9Qjgf6Gs9QlkHh8pW/+vgCKFsze3zAehca8j1CKHO6ms9QsoLQGVriHVwuLjM2ISRC6LUhAkTBLMeoaxDX4S0P0LKiz4IaX+ElBd9EMr+COnz0Qch7Y9Q1qEvVLaGI6T9EVJe9EEo+yOkz0cfhLQ/QsqLPghpf4SyDqERMaHcXW5G0tPT4eLigrS0NL1dpSFyVLaGQeVqOFS2hkNlazhUtoZDZWsYVK6GQ2VrOFS2hiO0sqWWbgOwsbHB/PnzYWNjY+ysmB0qW8OgcjUcKlvDobI1HCpbw6GyNQwqV8OhsjUcKlvDEVrZUks3IYQQQgghhBBiINTSTQghhBBCCCGEGAgF3YQQQgghhBBCiIFQ0E0IIYQQQgghhBgIBd2EEEIIIYQQQoiBUNCtZxs3boS/vz9sbW3RtGlTXLx40dhZMqqTJ0+iR48e8PHxgUgkwsGDBxVeZ4xh3rx5KFeuHOzs7NC+fXvcu3dPIc2rV68wePBgODs7w9XVFaNGjcKbN28U0ty4cQMtW7aEra0tfH19sXz58kJ52bt3L6pXrw5bW1vUqVMHf/31l973tyRFRESgcePGcHJygqenJ3r37o07d+4opHn79i0mTJgANzc3ODo6ok+fPnjx4oVCmsePH6Nbt26wt7eHp6cnpk2bhry8PIU0J06cQIMGDWBjY4MqVapgx44dhfJjLnV/8+bNCAoKgrOzM5ydnREcHIzDhw/zr1OZ6s+yZcsgEokQFhbGL6Py1c6CBQsgEokUHtWrV+dfp3LVzbNnzzBkyBC4ubnBzs4OderUweXLl/nX6btMO/7+/oXqrUgk4ufopXqrHalUirlz5yIgIAB2dnaoXLkyFi1ahPxjJ1Od1V5GRgbCwsLg5+cHOzs7fPDBB7h06RL/OpWtekwpRlAnL8ViRG92797NrK2t2bZt29itW7fYmDFjmKurK3vx4oWxs2Y0f/31F5s9ezbbv38/A8AOHDig8PqyZcuYi4sLO3jwILt+/Trr2bMnCwgIYNnZ2Xyazp07s7p167Lz58+zU6dOsSpVqrBBgwbxr6elpTEvLy82ePBgFhsby3bt2sXs7OzY1q1b+TRnzpxhlpaWbPny5ez27dtszpw5TCwWs5s3bxq8DAylU6dObPv27Sw2NpZdu3aNde3alVWsWJG9efOGTzNu3Djm6+vLjh8/zi5fvsyaNWvGPvjgA/71vLw8Vrt2bda+fXt29epV9tdffzF3d3c2a9YsPs3Dhw+Zvb09mzJlCrt9+zb76quvmKWlJTty5Aifxpzq/u+//87+/PNPdvfuXXbnzh32xRdfMLFYzGJjYxljVKb6cvHiRebv78+CgoLY5MmT+eVUvtqZP38+q1WrFnv+/Dn/SE5O5l+nctXeq1evmJ+fHxs+fDi7cOECe/jwITt69Ci7f/8+n4a+y7STlJSkUGePHTvGALCoqCjGGNVbbS1ZsoS5ubmxQ4cOsbi4OLZ3717m6OjI1q1bx6ehOqu9/v37s5o1a7Lo6Gh27949Nn/+fObs7MyePn3KGKOyVZcpxQjq5KU4FHTrUZMmTdiECRP451KplPn4+LCIiAgj5ko4Ch5QMpmMeXt7sxUrVvDLUlNTmY2NDdu1axdjjLHbt28zAOzSpUt8msOHDzORSMSePXvGGGNs06ZNrEyZMiwnJ4dPM2PGDFatWjX+ef/+/Vm3bt0U8tO0aVM2duxYve6jMSUlJTEALDo6mjEmL0uxWMz27t3Lp/n3338ZAHbu3DnGmPyEZ2FhwRITE/k0mzdvZs7Oznx5Tp8+ndWqVUthWwMGDGCdOnXin5t73S9Tpgz79ttvqUz1JCMjgwUGBrJjx46xkJAQPuim8tXe/PnzWd26dZW+RuWqmxkzZrAWLVqofJ2+y/Rn8uTJrHLlykwmk1G91UG3bt3YyJEjFZZ99NFHbPDgwYwxqrO6yMrKYpaWluzQoUMKyxs0aMBmz55NZaslIccI6uRFHdS9XE8kEgliYmLQvn17fpmFhQXat2+Pc+fOGTFnwhUXF4fExESFMnNxcUHTpk35Mjt37hxcXV3RqFEjPk379u1hYWGBCxcu8GlatWoFa2trPk2nTp1w584dvH79mk+TfztcGnP6bNLS0gAAZcuWBQDExMQgNzdXYb+rV6+OihUrKpRvnTp14OXlxafp1KkT0tPTcevWLT5NUWVnznVfKpVi9+7dyMzMRHBwMJWpnkyYMAHdunUrVAZUvrq5d+8efHx8UKlSJQwePBiPHz8GQOWqq99//x2NGjVCv3794Onpifr16+Obb77hX6fvMv2QSCT46aefMHLkSIhEIqq3Ovjggw9w/Phx3L17FwBw/fp1nD59Gl26dAFAdVYXeXl5kEqlsLW1VVhuZ2eH06dPU9nqiZDKUZ28qIOCbj15+fIlpFKpwokfALy8vJCYmGikXAkbVy5FlVliYiI8PT0VXreyskLZsmUV0ihbR/5tqEpjLp+NTCZDWFgYmjdvjtq1awOQ77O1tTVcXV0V0hYsX23LLj09HdnZ2WZZ92/evAlHR0fY2Nhg3LhxOHDgAGrWrEllqge7d+/GlStXEBERUeg1Kl/tNW3aFDt27MCRI0ewefNmxMXFoWXLlsjIyKBy1dHDhw+xefNmBAYG4ujRoxg/fjwmTZqE77//HgB9l+nLwYMHkZqaiuHDhwOg84EuZs6ciYEDB6J69eoQi8WoX78+wsLCMHjwYABUZ3Xh5OSE4OBgLFq0CAkJCZBKpfjpp59w7tw5PH/+nMpWT4RUjurkRR1WaqckhAjWhAkTEBsbi9OnTxs7K2ahWrVquHbtGtLS0rBv3z6EhoYiOjra2NkyeU+ePMHkyZNx7NixQq0ERDdcCxYABAUFoWnTpvDz88Mvv/wCOzs7I+bM9MlkMjRq1AhLly4FANSvXx+xsbHYsmULQkNDjZw78/Hdd9+hS5cu8PHxMXZWTN4vv/yCn3/+GTt37kStWrVw7do1hIWFwcfHh+qsHvz4448YOXIkypcvD0tLSzRo0ACDBg1CTEyMsbNGBIxauvXE3d0dlpaWhUbVfPHiBby9vY2UK2HjyqWoMvP29kZSUpLC63l5eXj16pVCGmXryL8NVWnM4bOZOHEiDh06hKioKFSoUIFf7u3tDYlEgtTUVIX0BctX27JzdnaGnZ2dWdZ9a2trVKlSBQ0bNkRERATq1q2LdevWUZnqKCYmBklJSWjQoAGsrKxgZWWF6OhorF+/HlZWVvDy8qLy1RNXV1dUrVoV9+/fp3qro3LlyqFmzZoKy2rUqMF336fvMt09evQIkZGRGD16NL+M6q32pk2bxrd216lTB0OHDsVnn33G9zCiOqubypUrIzo6Gm/evMGTJ09w8eJF5ObmolKlSlS2eiKkclQnL+qgoFtPrK2t0bBhQxw/fpxfJpPJcPz4cQQHBxsxZ8IVEBAAb29vhTJLT0/HhQsX+DILDg5GamqqwtXDf/75BzKZDE2bNuXTnDx5Erm5uXyaY8eOoVq1aihTpgyfJv92uDSm/NkwxjBx4kQcOHAA//zzDwICAhReb9iwIcRiscJ+37lzB48fP1Yo35s3byqctI4dOwZnZ2f+R2ZxZVca6r5MJkNOTg6VqY7atWuHmzdv4tq1a/yjUaNGGDx4MP8/la9+vHnzBg8ePEC5cuWo3uqoefPmhaZjvHv3Lvz8/ADQd5k+bN++HZ6enujWrRu/jOqt9rKysmBhofgT39LSEjKZDADVWX1xcHBAuXLl8Pr1axw9ehS9evWistUTIZWjOnlRi9pDrpFi7d69m9nY2LAdO3aw27dvs48//pi5uroqjKpZ2mRkZLCrV6+yq1evMgBs9erV7OrVq+zRo0eMMfkQ/K6uruy3335jN27cYL169VI6HUD9+vXZhQsX2OnTp1lgYKDCdACpqanMy8uLDR06lMXGxrLdu3cze3v7QtMBWFlZsZUrV7J///2XzZ8/36SmVVBm/PjxzMXFhZ04cUJhypWsrCw+zbhx41jFihXZP//8wy5fvsyCg4NZcHAw/zo33UrHjh3ZtWvX2JEjR5iHh4fS6VamTZvG/v33X7Zx40al062YS92fOXMmi46OZnFxcezGjRts5syZTCQSsb///psxRmWqb/lHL2eMyldbU6dOZSdOnGBxcXHszJkzrH379szd3Z0lJSUxxqhcdXHx4kVmZWXFlixZwu7du8d+/vlnZm9vz3766Sc+DX2XaU8qlbKKFSuyGTNmFHqN6q12QkNDWfny5fkpw/bv38/c3d3Z9OnT+TRUZ7V35MgRdvjwYfbw4UP2999/s7p167KmTZsyiUTCGKOyVZcpxQjq5KU4FHTr2VdffcUqVqzIrK2tWZMmTdj58+eNnSWjioqKYgAKPUJDQxlj8mH4586dy7y8vJiNjQ1r164du3PnjsI6UlJS2KBBg5ijoyNzdnZmI0aMYBkZGQpprl+/zlq0aMFsbGxY+fLl2bJlywrl5ZdffmFVq1Zl1tbWrFatWuzPP/802H6XBGXlCoBt376dT5Odnc0++eQTVqZMGWZvb88+/PBD9vz5c4X1xMfHsy5dujA7Ozvm7u7Opk6dynJzcxXSREVFsXr16jFra2tWqVIlhW1wzKXujxw5kvn5+TFra2vm4eHB2rVrxwfcjFGZ6lvBoJvKVzsDBgxg5cqVY9bW1qx8+fJswIABCvNIU7nq5o8//mC1a9dmNjY2rHr16uzrr79WeJ2+y7R39OhRBqBQeTFG9VZb6enpbPLkyaxixYrM1taWVapUic2ePVth2iSqs9rbs2cPq1SpErO2tmbe3t5swoQJLDU1lX+dylY9phQjqJOX4ogYY0z9dnFCCCGEEEIIIYSoi+7pJoQQQgghhBBCDISCbkIIIYQQQgghxEAo6CaEEEIIIYQQQgyEgm5CCCGEEEIIIcRAKOgmhBBCCCGEEEIMhIJuQgghhBBCCCHEQCjoJoQQQgghhBBCDISCbkIIIYQQQgghxEAo6CaEEEIIIYQQQgyEgm5CCCGEEEIIIcRAKOgmhBBCCCGEEEIMhIJuQgghhBBCCCHEQCjoJoQQQgghhBBCDISCbkIIIYQQQgghxEAo6CaEEEIIIYQQQgyEgm5CCCGEEEIIIcRAKOgmhBBCCCGEEEIMhIJuQgghete6dWu0bt1ab+uLj4+HSCTCjh079LZOU7R8+XJUr14dMpms2LTDhw+Ho6NjCeSKmCJ/f38MHz5c4/elpKTAwcEBf/31l/4zRQghZoqCbkIIKSV27NgBkUjEP2xtbVG1alVMnDgRL168MHb2SDHS09Px5ZdfYsaMGbCwkH99Z2VlYcGCBThx4oRxM0cAAJs2bTL7C0Nubm4YPXo05s6da+ysEEKIybAydgYIIYSUrIULFyIgIABv377F6dOnsXnzZvz111+IjY2Fvb29Xrbx999/62U95L1t27YhLy8PgwYN4pdlZWUhPDwcAPTas4BoZ9OmTXB3d9eqBdmUjBs3DuvXr8c///yDtm3bGjs7hBAieNTSTQghpUyXLl0wZMgQjB49Gjt27EBYWBji4uLw22+/6bzurKwsAIC1tTWsra11Xp+xyWQyvH371tjZAABs374dPXv2hK2trbGzUqzMzExjZ4EYUI0aNVC7dm2zb9UnhBB9oaCbEEJKOa6lKi4ujl/2008/oWHDhrCzs0PZsmUxcOBAPHnyROF9rVu3Ru3atRETE4NWrVrB3t4eX3zxBf9awZbXpKQkjBo1Cl5eXrC1tUXdunXx/fffF8pPamoqhg8fDhcXF7i6uiI0NBSpqalK8/7PP/+gZcuWcHBwgKurK3r16oV///23ULoTJ06gUaNGsLW1ReXKlbF161YsWLAAIpFIIZ1IJMLEiRPx888/o1atWrCxscGRI0cAACtXrsQHH3wANzc32NnZoWHDhti3b1+hbXHr2Lt3L2rWrAk7OzsEBwfj5s2bAICtW7eiSpUqsLW1RevWrREfH6903/KLi4vDjRs30L59e35ZfHw8PDw8AADh4eH8bQMLFixQeO+zZ8/Qu3dvODo6wsPDA59//jmkUqlCGplMhrVr16JWrVqwtbWFl5cXxo4di9evXxebN+7e8QcPHqBr165wcnLC4MGDNVrv5cuX0alTJ7i7u8POzg4BAQEYOXKkQprMzExMnToVvr6+sLGxQbVq1bBy5UowxhTSceV/8OBB1K5dGzY2NqhVqxb/OXIePXqETz75BNWqVYOdnR3c3NzQr1+/Qp8Hd1vGmTNnMGXKFHh4eMDBwQEffvghkpOT+XT+/v64desWoqOj+c+iuN4Hmtap4vYJUL+uK5OamoqwsDC+jKtUqYIvv/xS6RgCHTp0wB9//FGo/AkhhBRG3csJIaSUe/DgAQD5vZoAsGTJEsydOxf9+/fH6NGjkZycjK+++gqtWrXC1atX4erqyr83JSUFXbp0wcCBAzFkyBB4eXkp3UZ2djZat26N+/fvY+LEiQgICMDevXsxfPhwpKamYvLkyQAAxhh69eqF06dPY9y4cahRowYOHDiA0NDQQuuMjIxEly5dUKlSJSxYsADZ2dn46quv0Lx5c1y5cgX+/v4AgKtXr6Jz584oV64cwsPDIZVKsXDhQj5gLeiff/7BL7/8gokTJ8Ld3Z1fz7p169CzZ08MHjwYEokEu3fvRr9+/XDo0CF069ZNYR2nTp3C77//jgkTJgAAIiIi0L17d0yfPh2bNm3CJ598gtevX2P58uUYOXIk/vnnnyI/o7NnzwIAGjRowC/z8PDA5s2bMX78eHz44Yf46KOPAABBQUF8GqlUik6dOqFp06ZYuXIlIiMjsWrVKlSuXBnjx4/n040dOxY7duzAiBEjMGnSJMTFxWHDhg24evUqzpw5A7FYXGT+8vLy0KlTJ7Ro0QIrV67kb1NQZ71JSUno2LEjPDw8MHPmTLi6uiI+Ph779+/n188YQ8+ePREVFYVRo0ahXr16OHr0KKZNm4Znz55hzZo1Cvk5ffo09u/fj08++QROTk5Yv349+vTpg8ePH/P1/NKlSzh79iwGDhyIChUqID4+Hps3b0br1q1x+/btQrdafPrppyhTpgzmz5+P+Ph4rF27FhMnTsSePXsAAGvXrsWnn34KR0dHzJ49GwBUHg8cTeqUOvukaV3PLysrCyEhIXj27BnGjh2LihUr4uzZs5g1axaeP3+OtWvXKqRv2LAh1qxZg1u3bqF27drFrp8QQko1RgghpFTYvn07A8AiIyNZcnIye/LkCdu9ezdzc3NjdnZ27OnTpyw+Pp5ZWlqyJUuWKLz35s2bzMrKSmF5SEgIA8C2bNlSaFshISEsJCSEf7527VoGgP3000/8MolEwoKDg5mjoyNLT09njDF28OBBBoAtX76cT5eXl8datmzJALDt27fzy+vVq8c8PT1ZSkoKv+z69evMwsKCDRs2jF/Wo0cPZm9vz549e8Yvu3fvHrOysmIFvwYBMAsLC3br1q1C+5SVlaXwXCKRsNq1a7O2bdsWWoeNjQ2Li4vjl23dupUBYN7e3vy+MsbYrFmzGACFtMrMmTOHAWAZGRkKy5OTkxkANn/+/ELvCQ0NZQDYwoULFZbXr1+fNWzYkH9+6tQpBoD9/PPPCumOHDmidLmq7cycOVNhubrrPXDgAAPALl26pHIbXL1YvHixwvK+ffsykUjE7t+/zy8DwKytrRWWXb9+nQFgX331Fb+s4OfJGGPnzp1jANgPP/zAL+OOm/bt2zOZTMYv/+yzz5ilpSVLTU3ll9WqVUuh3hdHkzqlzj5pUtf9/PxYaGgo/3zRokXMwcGB3b17VyHdzJkzmaWlJXv8+LHC8rNnzzIAbM+ePWrvLyGElFbUvZwQQkqZ9u3bw8PDA76+vhg4cCAcHR1x4MABlC9fHvv374dMJkP//v3x8uVL/uHt7Y3AwEBERUUprMvGxgYjRowodpt//fUXvL29FQYBE4vFmDRpEt68eYPo6Gg+nZWVlUIrrKWlJT799FOF9T1//hzXrl3D8OHDUbZsWX55UFAQOnTowE9nJJVKERkZid69e8PHx4dPV6VKFXTp0kVpXkNCQlCzZs1Cy+3s7Pj/X79+jbS0NLRs2RJXrlwplLZdu3Z8CzkANG3aFADQp08fODk5FVr+8OFDpXnhpKSkwMrKSqspwMaNG6fwvGXLlgrb27t3L1xcXNChQweFz7xhw4ZwdHQs9Jmrkv8z02S9XM+JQ4cOITc3V+m6//rrL1haWmLSpEkKy6dOnQrGGA4fPqywvH379qhcuTL/PCgoCM7Ozgr7nf/zzM3NRUpKCqpUqQJXV1eln+nHH3+s0EW7ZcuWkEqlePToUVHFUiRN6lRx+6RNXc9v7969aNmyJcqUKaPwebVv3x5SqRQnT55USF+mTBkAwMuXLzXbaUIIKYWoezkhhJQyGzduRNWqVWFlZQUvLy9Uq1aNn4Lq3r17YIwhMDBQ6XsLdjMuX768WgOmPXr0CIGBgfx2ODVq1OBf5/6WK1euUHBZrVq1QutTtpxb59GjR5GZmYn09HRkZ2ejSpUqhdIpWwYAAQEBSpcfOnQIixcvxrVr15CTk8MvV3avbMWKFRWeu7i4AAB8fX2VLlfn3mlt2NraFupaXKZMGYXt3bt3D2lpafD09FS6jqSkpGK3Y2VlhQoVKigsU3e9ISEh6NOnD8LDw7FmzRq0bt0avXv3xv/+9z/Y2NgAkH/ePj4+ChcsgML1h1Ow/IHC+52dnY2IiAhs374dz549U7g3OS0trdD7C66TCzp1+ex0qVNcHrjtJyUlaVzX87t37x5u3Lihsit6wXrAlZc694oTQkhpR0E3IYSUMk2aNEGjRo2UviaTySASiXD48GFYWloWer1gMJy/pc5cKNunU6dOoWfPnmjVqhU2bdqEcuXKQSwWY/v27di5c2eh9MrKrqjlrJjBqNzc3JCXl4eMjIxCgWdRVG0vP5lMBk9PT/z8889KX1fnfmAbG5tCF1TUXa9IJMK+fftw/vx5/PHHHzh69ChGjhyJVatW4fz581q17qtTzp9++im2b9+OsLAwBAcHw8XFBSKRCAMHDlQ6cJi2n50q+qpT2m6/IJlMhg4dOmD69OlKX69atarCcy7Yd3d318v2CSHEnFHQTQghhFe5cmUwxhAQEFDoR7Yu/Pz8cOPGDchkMoXg7L///uNf5/4eP34cb968UQi27ty5U2h9ypZz63R3d4eDgwNsbW1ha2uL+/fvF0qnbJkqv/76K2xtbXH06FG+9RWQT+NVEqpXrw5APop5/oHS9NHKWLlyZURGRqJ58+Z6vYii6XqbNWuGZs2aYcmSJdi5cycGDx6M3bt3Y/To0fDz80NkZGShiw4F648m9u3bh9DQUKxatYpf9vbtW5Uj5atDk89D33XK09NTp7peuXJlvHnzRmGE/KJwsx1wvQ0IIYSoRvd0E0II4X300UewtLREeHh4oRY0xhhSUlK0Wm/Xrl2RmJjIj/QMyEe8/uqrr+Do6IiQkBA+XV5eHjZv3synk0ql+OqrrxTWV65cOdSrVw/ff/+9QpAUGxuLv//+G127dgUgbx1s3749Dh48iISEBD7d/fv3C90HXBRLS0uIRCKFqbbi4+Nx8OBBtdehi+DgYADyqbXy40bY1iVQ7N+/P6RSKRYtWlTotby8PK3Xre56X79+Xaiu1atXDwD4Ltddu3aFVCrFhg0bFNKtWbMGIpFIrXuWC7K0tCy03a+++qrQdGqacHBwULu89F2ndK3r/fv3x7lz53D06NFCr6WmpiIvL09hWUxMDFxcXFCrVi2t8ksIIaUJtXQTQgjhVa5cGYsXL8asWbMQHx+P3r17w8nJCXFxcThw4AA+/vhjfP755xqv9+OPP8bWrVsxfPhwxMTEwN/fH/v27cOZM2ewdu1avvWyR48eaN68OWbOnIn4+HjUrFkT+/fvV3qP7YoVK9ClSxcEBwdj1KhR/JRhLi4uCnNVL1iwAH///TeaN2+O8ePH88Fb7dq1ce3aNbXy361bN6xevRqdO3fG//73PyQlJWHjxo2oUqUKbty4oXF5aKpSpUqoXbs2IiMjFeavtrOzQ82aNbFnzx5UrVoVZcuWRe3atTWawikkJARjx45FREQErl27ho4dO0IsFuPevXvYu3cv1q1bh759+2qcZ3XX+/3332PTpk348MMPUblyZWRkZOCbb76Bs7Mzf/GkR48eaNOmDWbPno34+HjUrVsXf//9N3777TeEhYUpDDCmru7du+PHH3+Ei4sLatasiXPnziEyMpKffksbDRs2xObNm7F48WJUqVIFnp6eaNu2rdK0hqhTutT1adOm4ffff0f37t0xfPhwNGzYEJmZmbh58yb27duH+Ph4ha7kx44dQ48ePeiebkIIUYdRxkwnhBBS4ripj4qamonz66+/shYtWjAHBwfm4ODAqlevziZMmMDu3LnDpwkJCWG1atVS+v6CU4YxxtiLFy/YiBEjmLu7O7O2tmZ16tRRmAKMk5KSwoYOHcqcnZ2Zi4sLGzp0KLt69WqhKcMYYywyMpI1b96c2dnZMWdnZ9ajRw92+/btQus8fvw4q1+/PrO2tmaVK1dm3377LZs6dSqztbVVSAeATZgwQek+fffddywwMJDZ2Niw6tWrs+3bt7P58+crnXas4Dri4uIYALZixQqF5VFRUQwA27t3r9Jt5rd69Wrm6OhYaJqps2fPsoYNGzJra2uF6cNCQ0OZg4NDofUoyzNjjH399desYcOGzM7Ojjk5ObE6deqw6dOns4SEhCLzpWo76q73ypUrbNCgQaxixYrMxsaGeXp6su7du7PLly8rrCcjI4N99tlnzMfHh4nFYhYYGMhWrFihMI0XY6o/w4JTZL1+/Zqvj46OjqxTp07sv//+K5RO1XHDfXZRUVH8ssTERNatWzfm5OTEABQ7fZgudUrZPjGmfl1X9t6MjAw2a9YsVqVKFWZtbc3c3d3ZBx98wFauXMkkEgmf7t9//+WnHySEEFI8EWN6GoGDEEIIMSG9e/fGrVu3cO/ePWNnRS1paWmoVKkSli9fjlGjRhk7O8SE6Luuh4WF4eTJk4iJiaGWbkIIUQPd000IIcTsZWdnKzy/d+8e/vrrL7Ru3do4GdKCi4sLpk+fjhUrVigdXZsQwPB1PSUlBd9++y0WL15MATchhKiJWroJIYSYvXLlymH48OGoVKkSHj16hM2bNyMnJwdXr15VOSc5IaaI6johhAgPDaRGCCHE7HXu3Bm7du1CYmIibGxsEBwcjKVLl1IQQswO1XVCCBEeaukmhBBCCCGEEEIMhO7pJoQQQgghhBBCDISCbkIIIYQQQgghxEDonm4DkMlkSEhIgJOTE43sSQghhBBCCCEliDGGjIwM+Pj4wMLC+O3MFHQbQEJCAnx9fY2dDUIIIYQQQggptZ48eYIKFSoYOxsUdBuCk5MTAPmH7OzsbOTcGI9EIsGqVasUlk2dOhUA+OXKnltbW2u9naLer246TUkkEnz00XmcOtUKM2fmYdYsqyKXa7sfhsq/PumSR1PYP0IIIYQQInzp6enw9fXl4zJjo6DbALgu5c7OzqU+6La1tVVYxpUHt1zZc22CbnXer246TUkkErRrFwMrKwcsW9YG9vbA3LnAggV5OHWqO9q0iUJ4ePNit1dc/gyVf33SJY+msH+EEEIIIcR0COVWX+N3cCfETISEnMScOdmYN284rKy+Rni4Fdq0iUJIyEljZ40QQgghhBBiJBR0E6JHLVqcBPA9pNJ5sLZmFHATQgghhBBSylHQTYgerV17+91/SZBIpIiObmXU/BBCCCGEEEKMi4JuQvQkOroVjhz5790zhs8+e4aoqDYUeBNCCCGEEFKKUdBNiB5ER7dCVFQb+Pre5Jf17fsMbdpEISqqDZYupUONEEIIIYSQ0ohGLycGY2FhgZo1a0Imk/HPucnpa9asyS9T9lyb7RT3fnXTaSoiwhJRUW3Qr99N/P33bX75ixcvMH58Hjw8YhEeXhuWlvJRzbXNn6Hyr0+65NEU9o8QQgghhBBNiRhjzNiZMDfp6elwcXFBWlpaqZ4yrDRYtAiYNw9YuBAYOfIZKlSowL+2ZcsWjB07tlC6ogJvQgghhBBCiG6EFo9RSzchWioYSB89GqvwekJCAv8/F2jPm6f4nBBCCCGEEGLeKOgmREtSqWLL9a1btxRef/78ucJzLp1UWhK5I4QQQgghhAgBdS83AKF1ZzAWiUSCiIgIhWWzZs0CAH65sufW1tZab6eo96ubTlPcen/77TdcvXoVPj4+SEhIQNeuXdGkSRO1t1dc/gyVf33SJY+msH+EEEIIIUT4hBaP0WhFhOhJWloaAKBFixYACrd0E0IIIYQQQkof6l5OiJ7k5OQAAKpXrw4ASExMVPu9CxYAgAVEIvW3t2iRvKu6/L2EEEIIIYQQIaKWbkL0RCKRAACqVasGQD5lGDddWnEsLYHwcCtER7dSK/3SpRaYN0/+PiGKigrReG7ypUstEBUVYqAcEUIIIYQQYhzU0k2InnAt3ZUqVYKFhQVkMhkyMzPh5ORU7HvnzgWk0jyEh7cBALy71V2p6OhWiIqyEvT0YxYWDOHhVsXOTc5ZtEh+0aFNGxpighBCCCGEmBdq6SZET7iWbldXV3h6egIAMjIy1H7/F1/I0KZNFKKi2qhsJZYH3G0wf36eYANuAAgJOYn58/Mwb548oC4KN/Xa/Pl5CAk5WTIZJIQQQgghpIRQSzchesAY41u6nZyc4OPjg8TERLx580aj9XBBZ3h4m0KtxPLu123Qpk0Uvviiud7ybihffCGDpWXRc5Pnn+t8xgwZCgx2TwghhBBCiMmjoJsYjIWFBQIDA/n7mi0sLGBhIW/BDQwM5Jcpe67Ndop7v7rptNm+v78/uNn3nJycUK5cOQCAnZ0dAgMD1doel7/AwOcICZFi3jxLpKY+xtChr/DHH/UQHm6Fvn1v4MMPn+s1//pUsIy5QFtZ4J0/4J47F8jLM8znQwghhBBCiDHRPN0GILR54YjhJSUlwcvLCwAglUoxYsQI/PDDD/jyyy8xffp0rdYZHi7FggWBAJ4CuI+FCysKukt5UQoG2AWfE0IIIYQQoi9Ci8dMvjlp48aN8Pf3h62tLZo2bYqLFy+qTHvr1i306dMH/v7+EIlEWLt2rc7rJAR4f++2g4MDLCws+IM7PT1d63W2aXMGQByAXFhZXTHp4HT69BwMG3YM8+ZNh5XVjxRwE0IIIYSQUsOkg+49e/ZgypQpmD9/Pq5cuYK6deuiU6dOSEpKUpo+KysLlSpVwrJly+Dt7a2XdRICvA+6uZHKXVxcAOgWdE+fvpf/Py/vTrEDkgnRtWvX0LNnT5QtWxY//NARwApIpcMhFr+mgJsQQgghhJQKJn1P9+rVqzFmzBiMGDECALBlyxb8+eef2LZtG2bOnFkofePGjdG4cWMAUPq6NuskqkkkEqxcuRKMMYhEIgDA559/DgBYuXKlyufW1tZabae496ubTlMSiQSbNm0CADg6OgIA39J9+vRpLF26VK3t5c9fTs7nuHDhV/61+vXvYN48IDo6Gm3bntFr/vWpYBnPmTMHf/75JwDAyakcMjLeAMhAbu4VLFrUTiHwNtTnQwghhBBCiDGZbNAtkUgQExODWfkmNLawsED79u1x7tw5QawzU5IJS4lloeWWFpawtbJVSKeKhcgCdmI7rdJm5WZB1S37IpEI9mJ7rdJm52ZDxmQq8+Fg7cD/n5ubq/Aal/+Cy7nnmZJM5ELxNWXrfZv3FlKZFID8cyv4fnuxPR/o5+TlIE+WpzQdAKVpVbET28FCJO8gIpFKkCvNhUQiQWamfL8cHB2QKcmEjb0NACA7Oxu5ubnytBLl+wWArw+5ubnvpgW7BOA5/7q1zW3MmpONiMUhkMlkeHetQr59qUTlem2sbGBlYaVx2jxZHnLyclSmtba0hthSXChtwTK+fuM6AKB//1/wyy99UbNWf9y+tQ9t21/AvHntIJFKMPOL3ELvBQCpTIq3eW9V5kFsKYa1pTwwlzEZsnOz9ZLWysIKNlbyz48xhqzcLL2k1eS4L03nCE3S5j/udU2ryXGv6zlCH2ltrWxhaWGpcVqhnSOKS6vJcU/nCDpHFExL5wg6R9A5QvO05nqOKGo/jMFkg+6XL19CKpXyg1dxvLy88N9//5XoOnNycvjpooD3XYp9VvkAtoXTdw3sij//9yf/3HOlp8qDLMQvBCeGn+Cf+6/zx8usl0rTNvJphEtjLvHPa26siUdpj5SmrelRE7c+ucU/b/xNY9xOvq00rZ+LH+LD4vnnrXa0wuWEy0rTutu7I3lastLXAMBrlbxsZ2O2ytdVBd1s/vsDdeiBodh3ex8AQAwxvz7u/W9mveEPyLGHxuL7698rTQcASZ8nwcPBAwAw5egUbLq8SWX+4ybHwd/VX74Px2dj5bmVEEOMXpJeAIAbr2/AMcIRuCFPz9WLlWdXIvx0uMr1Xhx9EXU96vLzcKNCM/n4aV4AXgAXrl/Alc4uaNPm6Lt5vPOwYAHwdczXmHh4osr1Hhp0CN2qdgMA/HzzZ4z4bYTKtL/0/QX9avUDABz49wD67+uvMu32XtsxvN5wAMDR+0fRfVd3AIqfhecST+Q9kf/w+OWXDli4UISnmWVx+xbwz/PZQJtsLA5fhMUnFwEhixXeCwBXnl9Bk2+bqMzD/JD5WNB6AQDg3+R/UXtzbZVpPw/+HCs6rgAAPE57jIB1ASrTftLoE2zsthEA8DLrJTxXeqpMG1o3FDt67wAg/zJxjHBUmbZvzb7Y2+/9LQNFpS1N54guP3dB9KNopWntxfbI/OL9l2afX/rgr3t/KU0LqD5HKKPsHKGKrucIVWLHx6KWZy0AwNJTSxEeXfQ5onF5eU+tdefXYXqk6gEao0Kj0Nq/NQDhnSOU2dBlAyY0mQAAOPX4FNp830Zl2uXtl2Na82kA6BxB5wg6R+RH5wg5OkfI0TkCgOrrLUZh0vd0C0VERARcXFz4h6+vr7GzREoYf9HF5t0C2wLL1ZB/Hm5kXpAvbPHuxWyAZTKEhJxEmzZRCA+3Evw93iyZ+3Hjg4ULXTF3LlC1dlX5ogQAIYuBNnOBqEVA9BxjZZMQQgghhBCDMtkpwyQSCezt7bFv3z707t2bXx4aGorU1FT89ttvRb7f398fYWFhCAsL03mdylq6fX19kZCcoHSI+tLS5UMikSAiIkLhtUlTJwEA1q9aDwB8V34u3aSpk1Tey1tU93Jufdz7VXUvL5gO0E/38kF9B+Ho0aP4qO9H+OHnH3Dm9Bl0atcJZcuWxaRJkzB1+lSILEUq17tymR0WzLdAmzZRaNnyBJYsWQKpVIq7D++iXet2ePL4Cf46+hcunpOPpM/YbISHW2H+AimmzVJ9Kc8Y3cu5Mr5wyQOH/5yASpXa48GDYwCA5JfJ8PSQX/F9+uIpXF1dsWypGIvDrTFrTjZsrJYDkNcLSytL6hamRlpTPkdompa6jlLXUeo6qnlaOkdol5bOEXJ0jtA8LZ0j5Ix9jkhPT4ePh49gpgwz2e7l1tbWaNiwIY4fP84HyDKZDMePH8fEiaq7yRhinTY2NrCxsSm03MHaQaFSqKJOGm3S5q+8+kyb/2DTVHH5d7B2UGsArfwnEjHERb7fxsoGNrApNl3+tOqwtrSWfxFAzF90cXV2hYO1A7zc5N3oueXWltZF7heTAfPn50EkOomMjExIpVKIRCIE+AagerXqePL4CR7HPebTf/GFDJaWgFRqqXadEFuK+S+t4lhZWMHKWr3TQ/60XBnLu8n/DgDo2fN9dy0Pdw8EBAQgLi4Od2LvoG3btli0ALC2BObNs0ObNq0QEnISgPwLQ919sxBZGCStSCQySFrAcMe9qZ0jNEmb/7jXZ1pNjnttzhHGTKvJcV8S54jiaHLc0znC8GnpHCFH5wjN09I5Qo7OEdql1cc5Qmqt+qKaMZh09/IpU6bgm2++wffff49///0X48ePR2ZmJj/y+LBhwxQGRZNIJLh27RquXbsGiUSCZ8+e4dq1a7h//77a6yREGYlEfuW34JRh6nYvX7BAHkgD76cf8/LygpWVFapXrw4AuHv3rsJ75s6Vv0+IZDIRKlWKBQDUqlVL4bWGDRsCAC5ffn+vzty58osOMpnq3gCEEEIIIYSYIpNt6QaAAQMGIDk5GfPmzUNiYiLq1auHI0eO8AOhPX78GBYW768rJCQkoH79+vzzlStXYuXKlQgJCcGJEyfUWidRn0gkgp+fH2QyGUQiEf8AAD8/Pz6NsufabKe496ubTpvtc63YXNDNdWPJy8tD+fLl1doel7/Xr18DAMqXLw8AqFatGgDgzp076Nu3r97zr0/cPgwfHo/Zs+WDZSgLuvft24eYmBiF5bNnM/j7xwPwE+z+EUIIIYQQoimTvadbyNLT0+Hi4iKYewiI4Q0ePBg7d+7EypUrMXXqVOTm5vKB+MuXL+Hm5qb2ur7++muMHTsWPXr0wO+//47jx4+jffv2qFq1Ku7cuWOoXdCr1NRUlClThv+fa/kHgGPHjqFjx46oXLmyQi8TQgghhBBC9EFo8ZhJdy8nRCi4LuFcS7dYLIa9vfzeFW4KOXUlJCQAAHx8fAC8b+l++PBhofnNherWLfkUERUqVFAIuAGgQYMGAIAHDx4gNTW1pLNGCCGEEEJIiaKgmxA9KBh0A++7mOsadJcvXx4ODg7Iy8vDgwcP9JFdg+OC7oJdywHAzc0N/v7+AIArV66UZLYIIYQQQggpcSZ9TzcRNolEgnXr1vHTA4hEIkyePBkAsG7dOgBQ+lyd0cuVbae496ubTlMSiYTvJm1r+340VCcnJyQmJmLLli1Yt25dsdvj8nfq1CkA74Nu7j7p27dvY/Xq1QgMDNRr/vWJ2wduej1lQTcgv687Pj4eMTExaNu2rcJ7Af1+PoQQQgghhBgTtXQTg8rKykJ2djays7ORlZWlsLyo59psR53367odVbKz5fM15m/p5rpVp6Wlqb2erKwsvss1F3QDgIeHBwDg1atXBsm/PmVlZfGt9UUF3QAKDaZmqM+HEEIIIYQQY6GgmxA9KDhlWP7/1Z02jMN1VVcWdJtKQJqcnAxA86CbEEIIIYQQc0NBNyF6wAXWjo6O/DLunm5Ngm6pVIrMzEwAikG3u7s7ANMIurOysvDmzRsAQM2aNZWm4YLu+/fva9QTgBBCCCGEEFNDQTchOmKMKW3p1ibo5oJVKysrPtAGTKulOykpCQBQsWJFhfLIz83NjZ8znQZTI4QQQggh5oyCbkJ0xLVMA7oH3VzX8nLlysHC4v3hyQXg+bclVFzXclWt3JxGjRoBoC7mhBBCCCHEvFHQTUpMVFQIli7VrMotWgQsWGCY/OgLFyiLRCJ+bm5A96A7P1Ns6S4u6Kb7ugkhhBBCSGlglCnDwsLCMGfOHIXus8T8iEQi+Pj48FOGubg4IjzcCoAU5cu/nw4LUJwei7NoETBvHrBwofL1L1gAWFoCM2eKlL5fWX6uXOkGmUxUZDpNcV3CbWxsFFqnuaDbwsJCre2JRCL+/aqCbolEAh8fH73mX59EIhF/j3ZxQXe9evUAADdv3uTfq87nSAghhBBCiCkxStC9fv16uLi44O3bt/D09ES3bt1QvXp1Y2SFGJBYLMaYMWP45x9/zAXSlli4cAzmzn2fNn86QDHgzp8uP0tLeRpAjLlzxyhPlM+yZWL8/nsjLFwIiMVa7JAKXEt22bJlIc634rJlywIAvLy8FJarIhaLERAQAACoUKGCwmvcBSqpVFqorIRELBbj9evXAIC6desWmbZq1aoAgAcPHkAmkxWqL4QQQgghhJgDowTdALBr1y507NgRV69exfLly9GtWzds2bIF1tbWxsoS0RHX8qwqSAbevyYPluWkUsUu5OoE3MrWVVRaddepDa6lu+CgYVxLd3p6utrr4ua3zj9yOfC+pfvly5dgjAm2JTg5OZm/p7tGjRpFpvXz84OVlRXevn2LZ8+ewdfXtySySAghhBBCSIkyStBtYWGBs2fPKkyD9PHHH2PevHlYtmyZMbJE9OB9y7NmwXL+7uOaBsfqBN6GDLiB90F3/unCgPdBtyZTYqkKuvO3dKempqJMmTJa59eQ7t69C0AeUDs4OBSZ1srKCpUqVcLdu3dx7949CroJIYQQQohZMkrQ7ePjo3Dvq729PTZt2oSgoCAKuk1YwQB45sxcbNy4UaFldsKECQCAc+cuAfgAgDyQXLv2K/z9dxMcPvyBxsHxzJm5OHfuEubN+wBSqRQLFljyr+UPuGfOzMXatRv5fKjT5Vsdqamp/N/c3Fx+vVzQ+fjxY4XlquTm5vL3N3Mt2xwbGxs4OTkhIyMDK1asQHh4uN7yr09c0C0Wi9Xa5ypVqvBBd8uWLbFxo/4/H0IIIYQQQozJKEH3Rx99hCFDhuCHH37gW/CSkpLw9u1bY2SH6FH+wFsqFUEkUmzlZYxh6VILHD78Adq0iUL9+lUQHv4lLCw+hkwWhPnz8zB3rmbVkjGGpk2P4e3bHISHt4FIJMWcOcDSpZYKLdwSCeNbnbnB3fSBm8bLwsJCYb1cd/Ps7Gy1tsfY+/wVHEgNkLd2Z2Rk4MWLF3rNvz7Fx8cDkO+7OnkMDAwEANy/f19h/4W6f4QQQgghhGjKKFOGLVu2DAEBAahYsSI++OADdOvWDU2bNsXHH39sjOwQPZs7Vx7ohodbITq6lcJrS5daIDzcCm3aRCEk5CTu3BkPYCNksu6wtMzDF1/ItN5uSMhJTJuWiAULvCAW9zVol/L8uO7lBccj4IJudacMy83N5acE8/LyKvR6/tsxhCouLg4A1O7+zgXd9+7dM1ieCCGEEEIIMSajtHTb2tpi48aNWLRoEU6cOIFXr15hzpw5CA4ONkZ2iAHMnQtIpXkID2+DFy+i0LTpU8THD0VUlBXmz8+DSHQSAPDXX4ffveMJpFIrLF2ap9O83LVqHQWQAsYOQixOxNy53rruSrG4lu6C3aFdXFwAAHl5ecjJySl2kEBufmsLCwu4ubkVep0LurntCZGmQXeVKlUAUNBNCCGEEELMl8GD7sOHD+Pnn3/GkydP4ODggKCgIPTp0weNGzdG2bJl8dFHHxk6C8RIvvhChr/+2oZLlxbh9m0A2Ib58+Wt2RERQHR0K+TvRRwSEonw8PbFjoBelB9/TOD/z809gkWLhmPuXCAjIwMPHz7UaX9UUdXSzQ2kBgCvX78uNLp5QYmJiQDk94LnH/OAw93nLeSWbq57uaYt3dy0YYQQQgghhJgbg3YvX7t2Lbp3744DBw4gMzMTSUlJWL9+PZo1a4Zu3brxQQYxX/7+R/j/LSxy+e7j0dGtEBXVHMD7QKtu3T8wf34e5s2TD4CmqejoVjh+/A7/vHbtI/y6Ro8ejXr16vEDlekT1/JcMOi2sLCAra0tAPBzVxeFOx4KjoLO4Vq/hRp05+Tk4NmzZwAAV1dXtd5TsWJFiMVi5OTk4OnTpwbMHSGEEEIIIcZh0KB73bp1qFevHh49eoTLly/j8uXLeP36NTZs2IDY2Fg0adKE/5FOzNPNmwH8/zJZLpYutcDSpRaIimqDZs32KaTNycnBF1/IsHAhNA685UF8G5Qvf5tfJhbf5df1yy+/AAB+/fVX5Obm6rZTBagKugHAzs4OwPsRzovy4sULAKqDbqHf0/3o0SMwxiAWi4udLozDTRsGyAdTI4QQQgghxNwYNOh+8eIFRo8ezQcLgHzqo/Hjx+Py5csQiUSYPn26IbNAjGjpUkv8918F/nmHDicQHm6F8HArdO9+Ac2aXVJIb29vD5FIxA/Epm7gvXSpJaKi2qBbt/PIyHjf0v38+XPMnQssWCBVSJ+WlsZPYaYPXPfysmXLKqxXJBLxXco1Cbo9PDyU5s/T0xOAfMA1fea/oN69e6NatWpqtc7nx3Xf9/DwgKenp9p55O7rfvDgATw8PFTuPyGEEEIIIabIoEF3tWrV+ECiIA8PD3zyySf466+/DJkFYiSLFgHh4ZYICUnil9WsWZX/v0mTpmjcuLHCezp27MgPRqZu4M1tZ+FC4IcfqiI9PZ1/LSkpCVKpFKNGPVd4T5MmTfQ6BzTX8ty5c2eF9YrFYlStKt/njIyMYteTnJwMAGjTpo3S/HEjmtvb2xtsDusbN27gt99+w927d/HDDz9o9F4u6G7UqBE++eQTtfPI3dcdFxeHTz75RKP3EkIIIYQQInQGDbqnT5+ODRs2qByZmGvZJOZl0SLw03XVrv2+tfTt2zdYuPB9ML1jxxOF93Etxhwu8JYqNlQr3c7cucDLly8BvB+ITCaTISkpCY8ePVJ4386dL/Wwl+9x3cuVdQvnBhTT5J5ub2/lI65zA6lx+2kIP//8M///119/rdF82dzI5Vx3cXXRtGGEEEIIIcScGTToXrVqFSwtLdGkSRMsX74cCQnvR5Z+8OABNm7ciH79+um0jY0bN8Lf3x+2trZo2rQpLl68WGT6vXv3onr16rC1tUWdOnUKtbQPHz4cIpFI4dG5c2ed8liaFAyE3759y782eHAG5s59H0wfO1Z00A3gXfdw5duSShXn4eZair29vfmu2M+fP8fjx48V3peZmaLl3inH5VtfQXe5cuWUvs7dpsHtp77JZDLs3LmTf3779m2cPXtW7fdzLd0BAQHFpFRE04YRQgghhBBzZtCg28fHBw4ODkhPT8fMmTPh6+sLDw8PeHt7o2rVqrCzs8PHH3+s9cBWe/bswZQpUzB//nxcuXIFdevWRadOnfj5jgs6e/YsBg0ahFGjRuHq1avo3bs3evfujdjYWIV0nTt3xvPnz/nHrl27tMpfaVMw4M7NzcWNGzf413fv3o3c3Fzk5ubCzW0TvLwURxL/66+/NKoLCxa8386mTZv47tDu7u584JqYmFiopZuxaL0OpsZ1HT927JjCenNzc/nW35SU4gN9Lug+e/as0vxxI4JnZmYqdKPXl5MnT+Lp06dwcXHB//73PwDy1m51cfv677//YtOmTWqXcf5pwzZs2KDRewkhhBBCCBE6g87T/fvvvwOQtwTeunULN2/eRGxsLP/3+vXraNKkCSwtLVGpUiXUqFEDNWvWxJIlS9Ra/+rVqzFmzBiMGDECALBlyxb8+eef2LZtG2bOnFko/bp169C5c2dMmzYNALBo0SIcO3YMGzZswJYtULlXUQAA+Q9JREFUW/h0NjY2Krv4aiQzE7C0LLzc0hJ4N5UUn04VCwvg3QjYGqfNygJUdQ8WiQB7e+3SZmcDSuZUlmaLsXAOMHeufBRvxhjf9RqQ32PN3rUKJycnw8JC3rLp4OCJzMwkvHr1Sv66klHA3yV8///bt3y/cyaRIDk5mQ9a3cuUgezdbQvPnz/H43fBYBlXV7xOTUVKSoriduzt5fsIADk5QF6e8u0D8vLl5tCWSIDcXGS+C7qzsrIU1sssLfnu2a9fviz6s7O15fOfl5entBycLCz4bvPJycnyecBzc+X5UMXGBrB6d5gXk/andxct+vbtizEjRmDnzp345ZdfsHbJksLzbltbA9x913l5YG/f4sGDBwDkU6UlJye/34f8aaVS+WeXT0U3N4jFYkgkEjx48ACurq7yclOSVoFY/L6MZDJ5vdRHWisrebkB8mOiqNHiNUmryXFvpucIXv5jWZO0+Y57ndNqctzreI7QS1pb2/ffJ5qk1eM5QiFtXp68LFQpcI5QO60mxz2dI9RLS+cI7dLSOUKOzhGap6VzhJyxzxFF7YcxMCN68eIFi4yMZGvXrmWjRo1iTZs2ZU5OTmq9Nycnh1laWrIDBw4oLB82bBjr2bOn0vf4+vqyNWvWKCybN28eCwoK4p+HhoYyFxcX5uHhwapWrcrGjRvHXr58WWRe3r59y9LS0vjHkydPGACWJq9ahR9duyquwN5eeTqAsZAQxbTu7qrTNmqkmNbPT3XamjUV09asqTqtn59i2kaNVKd1d+eT5eTksKpVqzIADADr1asXyxGLWY5YzBYsWMDs7e0ZANaqVSsGgLVs2ZLliMWq151f3778cm597du3ZwBYKMBGDhvGALBFixaxruXLMwCsjUjEADB/f3/F7SQlvV/vJ5+o3j7AWFzc+7Sff84YwMq8278JEyYorDfn2jXWvXt3BoB1r1atyPVmnDjBl9OsWbOUlkOOWMwcHR0ZAHb+/Hl5HjZsKDq/hw69z+/27SrTZQPM2c6OAWBRUVFMtmcPC3qXn/XK3rN9+/v1HjrEUt6lBcC++OILtmDBgvf7sGHD+7RRUUq3X+3de4cOHSp/b04OYxcvFr1v8+e/X29sbNFpP//8fdq4uKLTfvLJ+7RJSUWnDQ19n/bNm6LT9u2rWIeLSltKzhGMMXn+VaW1t1dM27Vr0eWWX75zhNLHmzfv04aGFp1Wx3OEykds7Pu08+cXnfbixfdply8vOm1U1Pu0ejpHMICxX355n/aXX4pOW+AcUWRaNc4R/GP58vdp6RzxHp0j5OgcIUfnCDk6R7xXCs8RaZD/tkxLS2NCYNDu5cXx9PREu3btMHnyZHz77bc4f/682t1mX758CalUyo/ozPHy8uJbDAtKTEwsNn3nzp3xww8/4Pjx4/jyyy8RHR2NLl26QFrE1dCIiAi4uLjwD19fX7X2oTTIy3e1t+D/3Kjf3AjfkqKunqqBW587gHLvPufnz5/j0bsrXfXfXYXW9zzX3J3oRc7TXdQVUQDP3w2OZm1tDRvuiqcS3PzX+h5M7RCA9OxsVKhQAa1atYJIJMLH717bCvlZqyhx7/56Q3k5FCfw3d9Xr15p/F5CCCGEEEKETMQYK+73tCAlJCSgfPnyOHv2LIKDg/nl06dPR3R0NC5cuFDoPdbW1vj+++8xaNAgftmmTZsQHh6ucmqzhw8fonLlyoiMjES7du2UpsnJyUFOvm4x6enp8PX1RVpCgrwLcEGlpMuHRCJBYGAgP5BZ586d8du7gbq+WLIEq1atgoWFBebPn4/58+ejfv36OH/8uOqgTUW3MIlEgoj163Hw4EFcu3YNEeHhcPXwwPhPPkGPHj0QFRWFN2/e4Kdvv8WQ0aPh6OiIlMeP329Hh25hksxM2JQtCwCYMWMGFs6Ywa9XYmmJ0R9/jB9//BG1atZEbBGD/J26dAmt2rRB2bJlMWnSJMyaNKlQOUgkEtRo1AgPHz7Etm3b5LdV6KlbWN/Bg/Hrb79hxowZWLZsGZCXh9QXL+BduTJycnJw99o1BL4b8AxAoW5he3ftQv9hw9CscWN07tYNAN7vgxrdwqbMnIk1GzYgODgYnTp1wqxZs2BtaUndwtRJa8LnCI3TUtdRzdNS11H5/3SO0C4tnSPk/9M5QvO0dI6Q/0/nCO3S6uEckZ6eDhcfH6SlpSmPx0qYQe/pNiR3d3dYWloWCpZfvHih8n5sb29vjdID8umP3N3dcf/+fZVBt42NjfLWSQcHxUqhijpptEmbv/LqM23+g60YhVq63+U/+93JytXVFU5OTgDetXQ7OKi+pzu//CeSdydivqXbxwfly5cHAFy/fp0fXbxu06Z8OmZv//4kl5+NjfLlylhbK4y4LhaLFfMvkbxv6U5LK/KzS3w3Ijk/ArqychCL+defP3/OL+O/iIpTRNqLV64AALq9C5hhZQXX8uXlF0LOn8elW7cQWLeu8vVaWSHuXX4C8gfmyvbB0lJpOQTWrAmgwIBzKtIqZWFhmLQikWHSAsJIK4BzhEZp8x/3+kyryXGv4TlCrfOZIdPq6RxRiJXV+x/X+kyryXFP5wjDp6VzhBydIzRPS+cIOTpHaJdWH+eIoi6qGYFRu5frwtraGg0bNsTx48f5ZTKZDMePH1do+c4vODhYIT0gH3FaVXoAePr0KVJSUlRO40SKlj/olkqlePToEWQyGT+VmIuLC+zfHYR6617u7g5/f38A4FvZPTw8UKFCBQDyesKNOK4rbqA4S0tLWCn5wrB996Ve3JRh3C0OyqYdy497XVXPDG2kp6fjyRP59G21atVSeK1x48YAgEuXLhW5Dm2nC+Nw04ZR93JCCCGEEGJuTDboBoApU6bgm2++wffff49///0X48ePR2ZmJj+a+bBhwzBr1iw+/eTJk3HkyBGsWrUK//33HxYsWIDLly9j4sSJAOSjrE+bNg3nz59HfHw8jh8/jl69eqFKlSro1KmTUfbRlIlEIuS/e+HOnTuoWrUqpk6dCot33aXKlCnDtwZz79FmOy4uLnwg7+7ujooVKyqk8fPzg4ODA99lW50pvNTBtXTb2NjAxcVFIf8ikYgfQyArK6vIiwpc0O3m5lZoPfnX5+HhoZBeH/777z8A8p4gZd91lec0adIEAHCxiK7xwPvpwgICAvixDTT5LLlpw16/fg0nJyet6gEhhBBCCCFCZNJB94ABA7By5UrMmzcP9erVw7Vr13DkyBE+0Hn8+PH7brgAPvjgA+zcuRNff/016tati3379uHgwYOoXbs2AHlr5Y0bN9CzZ09UrVoVo0aNQsOGDXHq1KkiB7ciyonFYoWAOiEhAYD8PvoWLVoAkAfdXPdyd3d3eRdtLbYTFhbGt6q7u7vDwcGBD1ABoGLFihCLxXzdSEtL026nCuCCbjc3N4SFhSnkXywWY+bMmXwAWVRrNxdEd+7cudB68q9vwIABAPTb0n379m0AQM13Xbzz41q6r169WuTc2VxLd2BgIMLCwlTugyq+vr6wtraGVCrFRx99pFU9IIQQQgghRIhM9p5uzsSJE/mW6oJOnDhRaFm/fv3Qr18/pent7Oxw9OhRfWav1HurYgALLtDL39KdXcwI30XJzc1FamoqAHnQDchbt5Pf3Svt5+cHQB4cP3nyRO8t3aq6hVtYWMDZ2RlpaWl4/fp1odHzOdzFIVWvc7jbHPTZ0n3r1i0AyoPuwMBAODs7Iz09Hbdu3UK9evUKpeFuGwDkYyBow9LSEpUqVcJ///2H+/fv87cHEEIIIYQQYupMPugmwqYq6H727BkAedDN3dOtS9DN3QtsYWGBMmXKAIBCS3f16tUByAduA/TX0s3d013UvdhlypThg25VHjx4AKD4oJULuvP34NAVdwGk4P3cgLw8GzdujOPHj+PSpUtKg+5nz54hNzcXYrEYPj4+WucjMDAQ//33H+7du4f27dtrvR5CCCFEV1KpFOnp6Xj9+jX/SE1NxevXr/HmzRu4uLjAw8ODf3h6esLR0ZFujyKEKEVBNzGY3NxclXNicwNzOTk58V2Jk5OT+eBN0+1s3rwZAFC2bFlYvpsG44MPPsDhw4fRqFEjDBkyRKE1XF8DdnEt3Wlpafjmm28wfPhwPv+5ubnYsWMHP8e7qqA7NzeX75596dIl3L9/X2E9+dMdOXIEgHzws6ysLP6ChS6K6l4OQCHoHjNmTKHXubz7+/tDJpNh27ZtAKB0H4pSuXJlAMD+/fsxevRo6mJOCCFEJxKJRCFYLhg8F/Vaeno6NJ1V18bGRiEQ54Lxgsu4h6bjnxBCTBcF3cRgZDKZwujl+XHdu52cnPgRvt++favxFxwAMMYQHx8PQN59nPP555+jWbNmaNmyJWxsbCCRSPj1c8G3rvJPGZaQkKCQf8YYEhIS+FHNVQXd8fHxyMvLg729PbKyspCdna20HBhjeP36NaysrJCXl4fExEStu3NzMjMz+bIrKugGVA+mln8QNW6fufxqghvBPD4+Xqt6UJowxnDmzBns2LEDT548AWMMMpkMMplM4X8rKyt07doVo0aNKjRIHiGEmIq3b9/i/v37KgNnVc9VXfjXhL29PcqUKcM/XF1d4ejoiNTUVCQnJ/OPrKws5OTk4OnTp3j69Kla6xaLxUqDcVWBuqurKz8QLSHEtFDQTQwmJydH5Wv5u2VzQbeqAF0d+acL49ja2hbqpsxtS19BN7cf1kXMh1nctGF3794FIO9eXdwVb5FIxH/ZP3/+XOegmxu53MPDQ6Hs8uNGMI+NjVXaun7//n0A2t/PzeG6rhe8eKGL169fY9euXfjzzz8xevRofPjhh3pZr7G8fv0aP/74I7Zu3cr3UCjOiRMnMH/+fAwZMgSffvop6tSpY+BcCpNMJsOLFy/g6enJ94YhhAhTXl4eYmJicPz4cRw/fhxnzpwp8jdFUbgZTlxdXQsFz8r+z//c1dW1yO/3/DIzMxWC8PyPpKSkQsvevHmD3NxcJCQk8Beri2NlZQV3d/diA3Vvb2/4+/urnXdCiOFR0E0MRtX93Plfc3R05AdSK2p07OJwQXf+lm5ltAm6ZTIZvvvuOwQGBqJ169YKr3Et3UV1heb2T1XQfefOHQDvp80qjpOTE1JTU/UymBo3iJqy+7k55cuXh7e3NxITE3Ht2jV88MEHCq+fPHkSAJTe762JoKAgWFhYICsrC48ePULVqlW1Wo9UKkVkZCS2b9+OgwcP8j/Ujh8/jtOnT6NRo0Y65bOkMcZw/vx5bN26FXv27OGPHXt7ewwcOBAhISGwtLSESCSChYUFLCws+P+TkpLw9ddf49q1a/jmm2/wzTffoHXr1pg0aRJ69OihdG55c5Gbm4uYmBicOnUKp06dwpkzZ/Dq1Ss4OjqiYcOGaNy4Mf/w9/enLp6EGBFjDLdv3+aD7BMnTiA9PV0hTZkyZfjWXk2CZ2dn5xK50Obg4AAHBwe1BwLNzs7Gy5cvlQbkyoL19PR0vpebOt//FhYW8PX1RZUqVVC5cmVUrlxZ4f+ixqIhhOif+f7iIkanzlVpJycnPihljCE3N1erK7PKWrqV4YLugl/mRfnhhx/w8ccfA5Dfp7xt2zb+BzoXdOurpVsd3BelPgZTK+5+bkDeStC4cWP88ccfuHjxokLQnZaWhnPnzgGAznPZ29jYwMvLC8+fP0dMTIxWQXdaWhpatWqFGzdu8MuCgoLg6OiIs2fP4qOPPkJMTIzCIHtCdvr0aUycOBHXr1/nlwUFBWHs2LEYPHgwXFxcil3HuHHjcObMGaxfvx779+/HiRMncOLECVSsWBETJkzA2LFj1VqP0GVmZuL8+fM4efIkTp06hfPnzysdnPHNmzeIjo5GdHQ0v8zNzU0hCG/cuDG8vb1LMvuElDqPHj3ig+x//vmnUCDp6uqKNm3aoF27dmjXrh2qVatmVhfH7Ozs4OvrC19fX7XS5+Tk4OXLl0W2nnPLExISkJmZiUePHvHlXJCXl5fSgLxKlSooW7asWZU1IUJAQTcxmKJaujkODg4Kc3lnZ2fDwcFB420ZsqV7//79/P87duzA4sWLUb58eQDqBd1cd+yXL18qfT1/0P348eNi81PSQTcAPujmBsDjREVFQSqVomrVqvD394dEItEpP+XLl8fz589x+fJlDBo0SOP3b9q0CTdu3ICzszOGDRuGESNGoH79+khPT0fjxo1x7949DBo0CEeOHBF0K29ubi4WLlyIpUuXQiaTwc7ODgMGDMDYsWPRtGlTjX4MiUQitGjRAi1atMCTJ0+wZcsWbN26FY8fP8aMGTOwfv16bNu2DR07djTgHumfTCZDZGQk/v77b5w6dQpXrlwpdIuKm5sbWrRogZYtW6Jly5YICgrC/fv3cenSJf5x/fp1pKSk4MiRI/xAhQBQoUIFNGrUCL169cKQIUMEXV8IMQUvX75EVFQUH2hztyZx7Ozs0KJFCz7Irl+/Pt0Kko+NjQ3Kly/P//4oCmMMSUlJuH//Ph48eFDob0pKCl68eIEXL17gzJkzhd7v4uKiEITnD8zLlStH95UTogX6FUEMRp2g28nJCTY2NvxzbacN0zToVnfKsMzMTBw7dkxh2a1bt/gvvYyMDABFB93cNGXcKN8FaRp0Ozk5AdDPXN3qBt3cfd0FB1Pj5rXXV8DGTTkWExOj8XuzsrKwZs0aAMDGjRsxZMgQ/jUXFxccOHAATZs2xfHjxzF79mx8+eWXesmzvt27dw9Dhgzhyzo0NBRr1qzhp8LTha+vL5YsWYK5c+di9+7dWLx4MR48eIBOnTph/PjxWL58ueC7HEokEuzatQsrVqzgb4/gVKxYkQ+wW7ZsierVqxf6cVi7dm3Url0bI0aMACBvPbpx44ZCIH779m1+MKSDBw9ixYoViIiIQI8ePaj1hxA1vXnzBqdOneKD7GvXrim8bmlpiSZNmvBBdnBwsMLvAaI9kUgELy8veHl5oXnz5oVeT01NxYMHD5QG5M+ePUNaWhpiYmKUfhfb2toq7a5epUoV+Pn50QVKQlSgI4MYjDqtntyclmKxGLm5uVoH3VyAX1y3Ya4brbot3ceOHcPbt28REBCA+vXrY//+/YiNjeWDTK712tXVVen0Xfb29nwgee/evUKvv3nzhp+zvEqVKnxXbVXs7e35Uah1benOzs7mLwQUF3Rz90Hfv38fSUlJ8PT0BGOMD7rzdy3XZRozbtqwmJgYSKVSjVo5vvvuOyQnJ8Pf3x8DBw4s9HqtWrWwbds2DBgwAMuXL0fjxo3Rt29frfOqb4wxbNu2DZMnT0ZmZibKlCmDrVu3ol+/fnrflq2tLYYPH45+/fph5syZ2LBhAzZv3oyjR49ix44daNmypd63qas3b97gm2++werVq/mRgZ2cnPj72lu2bImKFStqvF4bGxu+SzknIyMDV65cwcmTJ7F27Vrcvn0bvXr1QosWLbB8+XIEBwfrbb8IMRcSiQQXLlzgg+zz588X6n1Sp04dPshu1aoVnJ2djZTb0s3V1RUNGzZEw4YNC72WlZWFuLg4pa3kjx49wtu3b3Hr1q1CFz0B+YUUf3//Qt3VK1eujEqVKin0bCSk1GFE79LS0hgAlpaWZuysGNWFCxcYgCIfd+/eZYwxVrZsWQaA3bp1S6tt1apViwFgx44dKzLdlStXGADm4+Oj1npHjhzJALCwsDA2b948BoCNHDmSf71JkyYMADtw4IDKdXD1QVmduHr1KgPA3Nzc1MoPY4z9+eefDACrV6+e2u9RhisLNzc3JpPJik3fsGFDBoAtWLCAMcbYvXv3GAAmFotZRkaGTnnh5OXlMQcHB43rQk5ODvP19WUA2ObNm4tM+/nnnzMAzNHRUev6pm8vX75kH374IV9P2rRpw548eVJi24+MjOTLTyQSsalTp7Ls7OwS235RXrx4wWbPns3KlCnDl4+XlxeLiIhgr1+/Nvj2X79+zWbOnMlsbW357X/00Ufsv//+M/i2CREyqVTKrly5wlasWME6d+7Mn7vzP/z9/dmoUaPYzp07WWJiorGzTHQkkUjY/fv32ZEjR9jGjRvZZ599xnr27Mlq1qypcI5U9Shfvjxr1aoVGzlyJFuyZAnbs2cPu3z5comcy0npI7R4jIJuAxDah2ws0dHRxZ6AExISGGOMlS9fngFgly9fVljHsmXLWOfOnVl6enqR2+J+kBcXRD148IABYPb29sXmXyaTMR8fHz6Y/+WXXxgA1qRJEz5NQEAAA8BOnz5d5Lo8PT2V7t+ePXsYABYcHFxsfjhcsOzt7a32e5T56aefGADWsmVLtdLv3r2bAWBly5Zlb968YRs2bGAAWOvWrXXKR0EtW7ZkANiOHTvUfs+2bdv4MikuWMzNzWVt2rRhAFijRo2YVCrVNcs6OXfuHF/PxGIxW758uVHylJqaykaMGMEfmzVq1GCXLl0q8Xxw7t+/z8aPH6/wQy4wMJB9/fXXRrkg8OTJEzZq1ChmYWHBADBLS0s2duxY/hxGiLmTyWTs3r17bMuWLaxfv37Mzc2t0He6h4cHGzBgAPv666/ZgwcPjJ1lUoKkUil78uQJO3HiBPv222/ZrFmzWP/+/VmDBg2Ys7Nzsb8H3dzcWOPGjdnAgQPZ7Nmz2bZt21h0dDR7+vSp0b+niWkSWjxGQbcBCO1DNpa///6bAWBWVlYqT7JcC2mVKlUYAHbq1Cn+/cnJyXy6rVu3qtxOVlYWn664q6UpKSl82pycnCLT3rhxgwFgdnZ2LDs7m926dYtvIeW+ABwdHRVa7FVp3rw5A8B2796tsHzRokUMAAsNDS3y/fklJCQwAMzCwoLl5eWp/b6CZs6cyQCwsWPHqpU+NzeXVa5cmQFg69atYz169GAAWEREhNZ5UGbKlCkMAJswYYJa6fPy8ljVqlUZALZixQq13vP8+XP+R8C3336rS3Z18vPPPzMbGxsGgFWvXp1duXLFaHnh/PHHH8zb25sPLOfMmVPsRS99kclk7MKFC6x///58cMtd6Pr11191qu/6Ehsby9d97gLenDlzSv35npgniUTCjh8/zj799FPm5+dX6Dvc0dGRdevWja1evZpdv36dgiOilEwmY8nJyez8+fPsp59+YuHh4Wzo0KHsgw8+4BslinrY2tqyGjVqsO7du7PJkyez9evXs0OHDrF///2XvX371ti7RwRKaPEYBd0GILQP2Vj279/PADAnJyeVJ9K3b98yiUTCKlasyACwQ4cO8e/fvHkzn65gUPrq1St29epVJpPJ2H///ccAMGtr6yIDaYlEwr799lt+nUlJSUXmf/ny5QwA69q1K/9+sVjMALC4uDiWnZ3Nr2vjxo1s+/btTCKRKGxv+/btbPv27Wzo0KEMAFu0aJHCNlq0aMEAsDVr1iikz7+eguv77rvv+IBEl1Y2rrX3m2++Ufs9W7ZsYQCYr68vf8EhJiZG6T4r24eicO8dN25coR4FReF6IJQpU0aj4HD16tUMAHN3d2evXr3SKK+6kkqlbO7cuXz96dmzp9666OvDy5cv2YABA/j8ubq6srlz57Lk5GSDbC8lJYWtW7eOBQUFKZwfOnfuzKKiotS6/aGknTx5kjVr1kyhhW/9+vXFXswjROjevHnDfv31VzZ06FCF2zq43jghISFs4cKF7MyZMxqf5wlRJj09nV29epX9+uuvbPny5Wzs2LGsffv2rFKlSszS0rLIgFwkEjFfX1/WunVrvtv67t272aVLl0r8u50Ii9DiMRpIjaiUmZmp1fRdHG5wM1Uje1tbW0MkEoExxi/jRgMHoDBIx4kTJ/j/r1+/juDgYGRnZ+Prr79GlSpVAKDYvDLG8PTpU1hbW0MikSAtLU1h4LWCA3f9+eefAIDOnTsDAMRiMapVq4bY2FjExsbyacViMZKSkgrtC2MMjx49AgA+j/kHU3v06BFOnz4NkUiEvn37KqTPvx5l6/P09ERiYiISExNRrly5Ivdbmby8PH507GbNmqn9vtDQUMyfPx9PnjwBIB+4rl69ekrzqGwfisK9l6sv165dg0QiKXJkeMYYlixZAgCYPHkyP7K7OiZOnIhvv/0Wt2/fxvz587F+/XqN8qutrKwshIaGYt++fQCAGTNmYOnSpYKagsXNzQ27d+9G3759MWfOHNy5cweLFi3CqlWrMGbMGEydOlXtuWVVkclkiIqKwnfffYf9+/cjJycHgHxgs/79++Pzzz9HUFCQPnbHIFq2bImzZ8/iwIEDmDVrFu7evYtJkyZh7dq1WLx4Mfr370/THRGTkZycjEOHDuHgwYP4+++/FWYf8fDwQM+ePdGrVy+0bdtWp98FhCjj5OSEevXqKfye4OTm5uLx48f8aOsPHz7k/3/w4AEyMzPx5MkTPHnyROG3IsfV1ZUfYZ17VKpUCZUrV0aFChUE9d1LzBsF3USp5cuXY9asWTh8+LDW00FxX9rcNF0F5Q+muP/zB91cYAfIA9Q3b97A0dERu3fv5kc5//HHHzFu3DgAUDvgsrW1hUQiURjBfPny5QgPD8ekSZOwdOlSXL16FdHR0bCwsEDPnj35dNWrV0dsbCzu3bvHB7vu7u7FTiOkLOjetWsXACAkJAQVKlTQaI5rLy8vJCYm4vnz56hfv77a7+PcunULmZmZcHZ2Lnbk8vxsbW0RFhaGWbNmAQA6dOig9y+sMmXKoGzZsnj16hVu3rypdHRVzuHDh3H9+nU4ODjg008/1Wg7YrEY69evR/v27bFp0yaMGTMGderU0TX7RXr27Bl69eqFmJgYiMVifP311xg+fLhBt6mLvn374sMPP8TBgwexdOlSXLlyBevWrcOmTZswdOhQzJgxA1WrVtVonU+fPsWOHTuwbds2xMXF8cvr1q2L0aNHY/DgwXqZHq0kiEQifPTRR+jRowe2bduGBQsW4OHDh/jf//6HRYsWYc6cORgwYAAF30SQ4uLi8Ntvv+HAgQM4ffo0ZDIZ/1qlSpXQu3dvfPjhhwgODqY6TIxGLBbzwXJBjDEkJycrBOH5g/LExESkpqaqnP7M2toaAQEBCoE49wgICKDR1oleUdBNlJoxYwYAYMmSJVoH3VzLlaqTlrKg+82bN/yy/EE3APz3339o1KgRjhw5wi87c+YMP32PJkF3eno6Xr16BUA+1RS3v8uWLUNGRgbi4+MBAIMGDYKfnx//Xu6k//DhQ9SoUQOAPOguDve++/fv88t+/vlnAMDgwYPVynd+3t7euH79utJpw3JycnD79m3Uq1dP5cUAbmqyJk2aaBw0jx8/HhEREUhPT1eYKkxfRCIRGjRogMjISFy6dEll0J2/lXv8+PH8VGqaaNeuHfr27Yt9+/bh008/RVRUlMHmYY6JiUHPnj2RkJAAd3d3HDhwAC1atDDItvTJ0tISffr0wUcffYRjx44hIiICJ06cwLZt27B9+3b07dsX48aNg52dHXJzc5GXl4fc3FyFR15eHjIzM/Hbb7/h8OHD/I97Z2dnDB48GKNGjUKDBg1Mdg5ssViMsWPHYsiQIVizZg1WrVqFf//9F4MHD8aCBQswe/Zs/O9//4NYLDZ2VkkpxhjD9evXcfDgQRw8eBDXr19XeL1Bgwbo3bs3evfujdq1a5vs8UhKD5FIBE9PT3h6eiqdyjEzMxMPHz4s1Dr+4MEDxMfHQyKR4M6dO7hz547S9fv4+KhsJXdzc6NjhGiEgm5SJFU/EgcOHIiYmBj8+eefKlu6MjMzAajX0m1jYwNAMeh+/PgxAPCtnrdv34afnx+uXbsGQH4yTEhIwNatWwG8n4O7OI6OjkhKSkJiYiKA98FvSEgIoqOjsXHjRj7tzJkzFd5bqVIlAMCDBw+QnJwMQL2gm2vpTk5ORlpaGu7fv4/Y2FhYW1ujT58+auU7P27u7/wthYD8R1X37t0RGRmJiRMnYv369Uq/FM6fPw8AWs037OLigh9++AGRkZEYMGCAxu9XR6NGjfigm+vJUNCpU6dw9uxZWFtbY8qUKVpva9WqVfjzzz8RHR2NX375xSD79PPPP2P06NF4+/YtatWqhT/++AMBAQF6344hiUQidOzYER07dsS5c+cQERGBP/74A3v37sXevXs1WlerVq0wevRo9OnTR6d53YXGwcEBc+bMwaRJk7BhwwasWrUK9+7dw/DhwxEeHo4vvvgCw4YNK/KWCUL0KS8vD2fOnOEDbe6CMiC/oNaqVSv07t0bvXr1UrjATIg5cHBwQJ06dZT2YpNKpXjy5InKbuvp6elISEhAQkICTp06Vej9zs7OhQJx7uHr60u9Q0ghFHSTIim7L/f169fYs2cPAODgwYOYPn260vdyAbSqH5hcoJ0/Dfee7OxsvHz5EgDQqVMn7Nq1C7GxsXxrZo0aNdC1a1esWrUKaWlpAIAKFSqotU9ci3hCQgIkEgkfgG7atAl37tzB8OHD4erqioiICNSuXVvhvVyLdf6gO/994UVt08vLCy9evMChQ4cQEREBAOjdu7dWXWmbNWuG7du3IzIyEosXL+aX//7774iMjAQAbNiwARYWFli7dm2hwJtr6dbkfu78evXqhV69emn1XnVwrduXLl1SmWbp0qUAgJEjR2p1XzunYsWKmDVrFubNm4epU6eiW7ducHR01Hp9+eXl5WHGjBlYvXo1AKBbt27YuXMnnJ2d9bJ+YwkODsbvv/+Omzdv4ssvv8SpU6dgaWkJsVhc6GFlZcX/X69ePYwYMULjLummxtnZGV988QUmTZqEzZs3Y8WKFYiLi8OYMWOwaNEizJw5EyNHjlQ4BxKiL9nZ2fj7779x8OBB/PHHH0hJSeFfs7OzQ6dOndC7d290794dbm5uRswpIcZjaWkJf39/+Pv7o127dgqvMcaQkpJSKBDnnj979gzp6em4evUqrl69WmjdYrEYXl5e8PDwgKenJzw8PIr838nJiVrNSwEKukkh+e8tzn+PF+fBgwf8/y9evCj0emZmJrZu3YozZ84AgMoflkXd0/306VMA8quUbdq0wa5du3DlyhV+Xc2aNUObNm2watUqfh3aBN1Xr15FdnY23NzcUKNGDdSsWRNdu3aFWCxW2u2aC7rj4uL4fVcn6AbkXZl37tyJIUOGAJB3EV+3bp1a7y2oQ4cOAICLFy8iJSUFbm5uyM3N5S+AtGjRAqdPn8b69evh4uKChQsX8u9NSUnB3bt3AQBNmzbVavuG1qhRIwDv7z0vOHBPTEwMjh49CktLS0ybNk3n7U2bNg3bt29HXFwcFi1ahC+//FLndaakpGDgwIH8RZDZs2dj4cKFZjVoS506dfDTTz8ZOxuC5ejoiGnTpmHChAnYunUrli9fjsePH+OTTz7B4sWLMWPGDIwZM4buGyQ6e/XqFT8Q2tGjR5GVlcW/VrZsWfTs2RO9e/dGhw4dzKp3CSGGIBKJ4O7uDnd3dzRp0qTQ69nZ2YiLi1PaQh4XFweJRIKnT5/yv2WLY2NjU2xgTkG66aOgmxSSnp7O/68s6H748CH//5MnTxAREYF//vkH27dvx/Pnz3H+/HlMnTqVT6Oqe3n+5dyPAK5LOte1vGLFimjcuDEA4PLly5BKpQDkwWKrVq3499vZ2al1xV4sFsPV1RUAFLoMNW/enD+BFdX65OvrC7FYjNzcXP7qpoeHh8pu+PmXf/3115DJZNi9ezcsLS3xyy+/wNvbW2X6otZXvnx51K5dG7GxsXw3761bt+Lu3bvw9PTEn3/+iV27dmHcuHFYvnw5Jk6cCE9PTwDAhQsXAABVq1Y1SCuHLvetcu/18fHhbx+4cuUKWrZsqZCO6ykwaNAgvsu/LmxtbbF27Vr06tULy5cvR8WKFTFhwgSt13fjxg307t0bcXFxcHBwwI4dO9C3b1+d80lMk729PT777DOMGzcO3333Hb788ks8ffoUkydPxtKlSzFt2jSMGzeORoUmGnn8+DE/ENrJkyf570cA8PPz4+/PbtGiBays6OceIfpiZ2eHmjVrKh2IViaT4dmzZ0hMTERycjKSk5ORlJSk8v+srCzk5ORoHaSrE6hTkC4QJT5JWSkgtHnhNHX//n1+/sMGDRoUen3p0qX868XNnwiArVq1iv//o48+4v8fNGgQv84NGzbwr8fGxrJt27YxAKxjx45MIpEwW1tbhXXeuXOHMcbY5cuXWbNmzdiGDRvU3r9ff/2VAWDBwcGsd+/eDABbvny52u8PDAxUmH98y5Ytar9XJpOxAwcOsOjoaLXfo8rnn3/OALDhw4ezly9fMjc3NwaAbd68md9W48aNGQA2f/58/n3c/NAF5z4Xml69evH1J7/bt28zkUjEALDY2Fi9bnPGjBl8HdPkc81vz549zN7engFgAQEB7MaNG3rNIzF9b9++ZVu2bGF+fn58fXN3d2dLlixhN27cYHl5ecbOIhGQvLw8dvfuXbZv3z42b9481qtXLxYQEFDouzYoKIjNmzePXb16VZBz2xNCCsvMzGTx8fHs4sWL7M8//2Q7duxgy5cvZ9OmTWPDhw9nXbt2ZY0bN2b+/v78bwtNH9bW1qxChQqsfv36rGPHjmzIkCHss88+Y0uXLmXffvst++2339jZs2fZ/fv3WVpamtmcP4QWj9GlT1IId480AIVptTj5u5fnv7KuipOTE3788UccPnwYmzZtwv79+wEotqhzXb7379+P/fv38/ducy3Lbdu2xV9//QUAqF27Nn9PaMOGDfn7k9XFDUKWkJDAj5CuSTfrSpUq4d69e3xXeHW7lwPyLku9e/dWP7NF6Ny5M1auXIkjR45AKpUiJSUFtWvXxujRo/ltTZ06FQMHDsTGjRsxY8YM2NnZ6Xw/d0lp3LgxfvvtN+zevRuDBw+Gl5cXAODLL78EYwy9e/dGrVq19LrNiIgI5OXlYdWqVRg3bhysrKwwatQotd579+5dfPbZZ3w97dChA3bv3q3VqOrEvNnY2GDs2LEYOXIkfvzxRyxduhQPHjzA7NmzMXv2bDg6OqJJkyZo1qwZmjVrhqZNm/I9VYh5e/36NW7evInr16/jxo0buHHjBmJjYxW6i3MsLCzQvHlzfPjhh+jVq5deev0QQkqWvb09/Pz81B7IMCsrS60WdO7/zMxMjbu7W1tbq93V3dPTk1rS1WTyQffGjRuxYsUKJCYmom7duvjqq6+U3n/B2bt3L+bOnYv4+HgEBgbiyy+/RNeuXfnXGWOYP38+vvnmG6SmpqJ58+bYvHkzAgMDS2J3jIrb9/yjND58+BDNmjVD69atERERAZFIxHdPVpeTkxMGDhzI38u8Z88eTJw4ERMnTuTTFBy4ipvOq2LFigCAqVOn8sHM+PHjNd+5fMqXLw9APvc3IA9ONZnruuBckZoE3frUokUL2NvbIzExET/++CNEIhG+/fZbhW6Effr0gZ+fHx49eoQffvgBo0eP5j8/bUYuL0kffvghFi5ciEuXLqFWrVrYtGkTmjRpwt9D/MUXX+h9myKRCCtWrIBUKsXatWsxZswYWFpaFjmXdnp6OhYvXoy1a9ciNzcXVlZWmD59OsLDw6lLJymSWCzGyJEjMWzYMOzatQs7duzAxYsX8ebNG/zzzz/4559/+LSVKlXig/Dg4GAEBQUJahT03NxcpKWlIS0tDVlZWRCLxbC2toa1tTVsbGwU/jencQ20lZeXh3v37ikE1zdu3Cg0VSbH1tYWtWvXRlBQEIKCglC3bl3UrVvXZOa0J4ToR0kF6c+ePcOzZ8/U2oaFhQWsra35QVM1/V+b96jzf/4xqoTApH8R7tmzB1OmTMGWLVvQtGlTrF27Fp06dcKdO3eUtgqcPXsWgwYNQkREBLp3746dO3eid+/euHLlCj9K9fLly7F+/Xp8//33CAgIwNy5c9GpUyfcvn1b5b3JQpeamopu3bqhatWq2LZtGzZs2AAbGxv07dsX2dnZuHfvHpo1a4bo6GgsWrSo0PsvXLiACxcuoGfPnjh69ChiY2M12v7ly5eRl5cHCwsL9O/fHx999BFyc3Px6tUr5OXlAUCh+UI5vr6+AIC2bdvi999/5wdWyy8vLw+//PILAKB///4qAx0uHbdNTrVq1dSe4xt4P/0Xp0yZMti5c2eh7aubL3X3o+DrNjY2aNu2LQ4dOgQAmDRpUqEWeysrK4SFheGzzz5DeHg4Pw+5g4OD3luJ1dkHTd5bs2ZNXLx4EaGhobh+/ToGDBiA8uXLQyqVokOHDvy9/vomEomwevVq5OXlYcOGDRg5ciTy8vLQo0cPODg4wN7eHhYWFpDJZPjxxx8xc+ZMfvq5Ll26YM2aNahWrZpB8kbMk5WVFYYOHYqhQ4dCKpXi9u3bOH/+PP+4ffs2P9csd66xtbVFw4YNFVrDPTw8wBgr9JDJZEqXF3wtLy+PD5xTU1OL/FtwmbKWWFUsLS2VBuOq/ndycoKbmxvc3d3h5ubGP/I/d3Z2FmxLS3JyskJgfePGDdy6dQs5OTlK0/v5+SkE10FBQahSpQpNQUQI0VhJBOkymQxv377F27dvDbw3ps2kg+7Vq1djzJgxGDFiBABgy5Yt+PPPP7Ft27ZC8ysDwLp169C5c2d+tONFixbh2LFj2LBhA7Zs2QLGGNauXYs5c+bw0yH98MMP8PLywsGDBzFw4MCS2zk92rNnD86ePYuzZ8+CMYbvv/8eADB37lykp6erfZA0b96c/79u3boQi8W4fPkyQkJCYGtry48mLZVKUb16dfz3338A5KOhc13SuYHZ7t+/r/A8NzdX6TY/+OAD/v8ePXooTSOTyXDv3j2F9RWXztPTE0lJSQDeT0+lriFDhmDjxo148OABRCIRPD09lW5f3Xypm17Z6127dsWhQ4fg5+enMHVYfqNGjcKCBQvw/PlzAOBHMzdEK6ym+1zce+vWrYuLFy9iyZIlWLJkCX/V1RCt3PmJRCKsX78eUqkUmzdvxpgxYxRet7e3h1gs5m/FCAwMxJo1a9CtWzeD5ouYP0tLS35eWa7epaam4tKlSwqB+KtXr3DmzBl+lgih4C5M5eXlQSKRQCKRFDq/S6VSZGdnIzs7W2/btbKyUgjIiwvSnZycIJPJIJVK+Yeuz7ll2dnZuH37Nh9gc+deZWVVp04dPrAOCgpC7dq1+cE+CSGkpGkTpKempiI3Nxe5ubn8OV8I/+fk5Kg8/xqDyQbdEokEMTExmDVrFr/MwsIC7du3V3mP77lz5zBlyhSFZZ06dcLBgwcByKeBSkxMRPv27fnXXVxc0LRpU5w7d07vQXdaWhoePnxYKDjhWh0A8FfuGWMQiUSQSqXIzc2FVCqFWCyGVCpFTk4OsrOzYWVlha1bt+K3334DACxYsADXr1/HgQMH+HVzATcAPuhUpU+fPvj1118LLQ8MDERMTAxu3ryJvXv3YvTo0bC1tUVMTAw6deqE+Ph4uLm5oWHDhihTpoxaI2QrGzHcy8vLYC2GFSpU0Dro9vDwQGxsLLZs2QJbW1uj/kAaNWoU3rx5g549e6qcW9rJyQnffPMN9uzZg169eqFv374mNUWRtbU1wsPD0bNnT0yfPh1VqlRBSEiIwbcrEomwYcMGODo6YsuWLfw9/AD4Vj1HR0fMnTsXkydPpjmXicG4urqiQ4cO/FSBjDHcv38f586d44PwGzduqDXGhjIikQgikQhWVlZwdnaGq6srXFxc4OLiwv9f8K+yZc7OzkpnL5DJZPwPIYlEgpycHP7/gs+VvZaWloaUlBS8fPkSKSkp/IN7npWVhby8PLx48ULpNJZCULlyZYXgOigoCAEBAdTVnhBi0uzt7QU7DWF6ejpcXFyMnQ2eyQbdL1++hFQq5QdX+j97dx4fw/3/Afy1uRORg9xEDiRKCBJJoyVI3EfdZwlVWkdLfSlxJq6g2lJFtVpHqbPipq7EUVeCuEIQcRRJCDnIvfv5/ZHfjt3N7EU2e+T9fDz2kc3MZ2Y/M5+Zz8z7M5+ZEXN2duausMpKT0/nTS/uGir+qygNn6KiIqluYpIPCFPkzJkz6Natm0pp30VUVNQ7T9unTx/s3LkT3t7eSEtLkxo3ceJEGBsbo2nTpmjatCk3XLws4vvfU1JSuFc7qSI8PByXL19GXFwcTp06hY4dO75z/pWZP38+FixYgOzsbPTr10/t6S0sLDBx4kQA0Oo9I2ZmZiq9p7pfv37vtJy6JCAgAMePH6/U3zQyMsKSJUuwZMkSMMZQUFCA169f482bN3jz5g3c3d11qkInVYNAIED9+vVRv359DBs2DMDb45A4gBZ/jIyMyg2T/WiakZERzM3NNdYwVVBQwBuMKwrUX79+DWNjYxgbG8PIyIj7Lm+YOmlMTU3h4+MjdfVaXqMoIYSQqkFvg25dEhMTg+joaLWns7S0RK1atXhPeoyMjLir3WKMMZiYmMDExAQCgQAikQjPnz9HjRo1UFRUBAsLC5ibm0s1OlSvXh0tWrRAaGgo5syZU+536tSpgy5dusDLywseHh7o3bs3/vrrL4SFhQEA9uzZg/379yMlJQWNGjVC27Zt1b4yrKqPP/4YBw4cgJmZGZo0aaKR3xALCwtD586dNfobxLAIBAKdbtElVZsmg1pdZ2lpidq1a6N27drazgohhBDCS2+DbgcHBxgbG5frSpaRkQEXFxfeaVxcXBSmF//NyMiAq6urVBrJK7qyIiMjpbqt5+bmcg8AU6Rdu3YqP76/IsyePVuldBEREdx38b2FhBBCCCGEEELUp7c3E5mZmZXrbioSiXD8+HG5r0IKCQkp1z316NGjXHovLy+4uLhIpcnNzcWFCxcUvl7J3NwcNjY2Uh9CCCGEEEIIIURvr3QDwKRJkxAREYHAwEAEBQVh2bJlePPmDfc082HDhqFWrVrcfcUTJkxAaGgovv/+e3Tt2hVbt25FYmIifv31VwBl3UcnTpyI+fPno379+twrw9zc3NCzZ0+V8yXuFq7qvd2Gqri4uNyT0cXrRDyc73913z0r+TuKplc1nbrkzVfd31OWXlP5r0jvk0d9WD5CCCGEEKL7xDGG7O26WsP03IoVK1idOnWYmZkZCwoKYufPn+fGhYaGsoiICKn027dvZz4+PszMzIw1atSIHThwQGq8SCRis2bNYs7Ozszc3JyFhYWxlJQUtfKUmprKANCHPvShD33oQx/60Ic+9KEPfbT0SU1Nfec4syIJGNOV8N9wZGdnw97eHo8ePaInG+sB8T34jx8/plsD9ASVmX6h8tI/VGb6hcpL/1CZ6RcqL/2Tk5ODOnXq4NWrV1p9va+YXncv11Xi926K31tK9APdj69/qMz0C5WX/qEy0y9UXvqHyky/UHnpH3Fcpm26kQtCCCGEEEIIIcQAUdBNCCGEEEIIIYRoCAXdGmBubo45c+bA3Nxc21khKqDy0j9UZvqFykv/UJnpFyov/UNlpl+ovPSPrpUZPUiNEEIIIYQQQgjRELrSTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBdwVauXAlPT09YWFggODgYFy9e1HaWqoSoqCgIBAKpT4MGDbjxhYWFGDduHGrWrAlra2v06dMHGRkZUvN49OgRunbtCisrKzg5OWHKlCkoLS2VShMfH4/mzZvD3Nwc9erVw/r16ytj8fTeqVOn0L17d7i5uUEgEGD37t1S4xljmD17NlxdXWFpaYnw8HDcvXtXKs3Lly8xZMgQ2NjYwM7ODiNHjsTr16+l0ly7dg2tWrWChYUF3N3dsWTJknJ52bFjBxo0aAALCws0btwYBw8erPDlNQTKymz48OHl9rlOnTpJpaEyqzwxMTFo0aIFqlevDicnJ/Ts2RMpKSlSaSqzHqRjoWKqlFebNm3K7WNffvmlVBoqr8qzevVqNGnSBDY2NrCxsUFISAgOHTrEjaf9S7coKy/av3TfokWLIBAIMHHiRG6YXu9njFSYrVu3MjMzM/bHH3+wmzdvslGjRjE7OzuWkZGh7awZvDlz5rBGjRqxZ8+ecZ/nz59z47/88kvm7u7Ojh8/zhITE9mHH37IWrZsyY0vLS1lfn5+LDw8nF25coUdPHiQOTg4sMjISC7N/fv3mZWVFZs0aRJLTk5mK1asYMbGxuzw4cOVuqz66ODBg2zGjBls165dDACLjY2VGr9o0SJma2vLdu/eza5evcp69OjBvLy8WEFBAZemU6dOzN/fn50/f56dPn2a1atXjw0aNIgbn5OTw5ydndmQIUPYjRs32JYtW5ilpSVbs2YNl+bff/9lxsbGbMmSJSw5OZnNnDmTmZqasuvXr2t8HegbZWUWERHBOnXqJLXPvXz5UioNlVnl6dixI1u3bh27ceMGS0pKYl26dGF16tRhr1+/5tJUVj1Ix0LlVCmv0NBQNmrUKKl9LCcnhxtP5VW59u7dyw4cOMDu3LnDUlJS2PTp05mpqSm7ceMGY4z2L12jrLxo/9JtFy9eZJ6enqxJkyZswoQJ3HB93s8o6K5AQUFBbNy4cdz/QqGQubm5sZiYGC3mqmqYM2cO8/f35x2XnZ3NTE1N2Y4dO7hht27dYgDYuXPnGGNlAYaRkRFLT0/n0qxevZrZ2NiwoqIixhhj3377LWvUqJHUvAcMGMA6duxYwUtj2GQDOJFIxFxcXNh3333HDcvOzmbm5uZsy5YtjDHGkpOTGQCWkJDApTl06BATCATsyZMnjDHGVq1axezt7bnyYoyxqVOnMl9fX+7//v37s65du0rlJzg4mH3xxRcVuoyGRl7Q/cknn8idhspMuzIzMxkAdvLkScZY5daDdCxUn2x5MVYWFEiebMqi8tI+e3t7tnbtWtq/9IS4vBij/UuX5eXlsfr167OjR49KlZO+72fUvbyCFBcX49KlSwgPD+eGGRkZITw8HOfOndNizqqOu3fvws3NDd7e3hgyZAgePXoEALh06RJKSkqkyqZBgwaoU6cOVzbnzp1D48aN4ezszKXp2LEjcnNzcfPmTS6N5DzEaah8309aWhrS09Ol1q2trS2Cg4OlysfOzg6BgYFcmvDwcBgZGeHChQtcmtatW8PMzIxL07FjR6SkpODVq1dcGirDihMfHw8nJyf4+vpizJgxyMrK4sZRmWlXTk4OAKBGjRoAKq8epGPhu5EtL7HNmzfDwcEBfn5+iIyMRH5+PjeOykt7hEIhtm7dijdv3iAkJIT2Lx0nW15itH/ppnHjxqFr167l1q2+72cm7zwlkfLixQsIhUKpQgYAZ2dn3L59W0u5qjqCg4Oxfv16+Pr64tmzZ4iOjkarVq1w48YNpKenw8zMDHZ2dlLTODs7Iz09HQCQnp7OW3bicYrS5ObmoqCgAJaWlhpaOsMmXr9861Zy3Ts5OUmNNzExQY0aNaTSeHl5lZuHeJy9vb3cMhTPg6iuU6dO6N27N7y8vJCamorp06ejc+fOOHfuHIyNjanMtEgkEmHixIn46KOP4OfnBwCVVg++evWKjoVq4isvABg8eDA8PDzg5uaGa9euYerUqUhJScGuXbsAUHlpw/Xr1xESEoLCwkJYW1sjNjYWDRs2RFJSEu1fOkheeQG0f+mqrVu34vLly0hISCg3Tt+PYxR0E4PQuXNn7nuTJk0QHBwMDw8PbN++nYJhQjRg4MCB3PfGjRujSZMmqFu3LuLj4xEWFqbFnJFx48bhxo0bOHPmjLazQlQgr7xGjx7NfW/cuDFcXV0RFhaG1NRU1K1bt7KzSQD4+voiKSkJOTk52LlzJyIiInDy5EltZ4vIIa+8GjZsSPuXDnr8+DEmTJiAo0ePwsLCQtvZqXDUvbyCODg4wNjYuNwT9DIyMuDi4qKlXFVddnZ28PHxwb179+Di4oLi4mJkZ2dLpZEsGxcXF96yE49TlMbGxoYC+/cgXr+K9h0XFxdkZmZKjS8tLcXLly8rpAxpH31/3t7ecHBwwL179wBQmWnL+PHjsX//fsTFxaF27drc8MqqB+lYqB555cUnODgYAKT2MSqvymVmZoZ69eohICAAMTEx8Pf3x/Lly2n/0lHyyosP7V/ad+nSJWRmZqJ58+YwMTGBiYkJTp48iZ9++gkmJiZwdnbW6/2Mgu4KYmZmhoCAABw/fpwbJhKJcPz4can7R0jleP36NVJTU+Hq6oqAgACYmppKlU1KSgoePXrElU1ISAiuX78uFSQcPXoUNjY2XFekkJAQqXmI01D5vh8vLy+4uLhIrdvc3FxcuHBBqnyys7Nx6dIlLs2JEycgEom4A2VISAhOnTqFkpISLs3Ro0fh6+sLe3t7Lg2VoWb8999/yMrKgqurKwAqs8rGGMP48eMRGxuLEydOlOu2X1n1IB0LVaOsvPgkJSUBgNQ+RuWlXSKRCEVFRbR/6QlxefGh/Uv7wsLCcP36dSQlJXGfwMBADBkyhPuu1/vZOz+CjZSzdetWZm5uztavX8+Sk5PZ6NGjmZ2dndQT9Ihm/O9//2Px8fEsLS2N/fvvvyw8PJw5ODiwzMxMxljZKwbq1KnDTpw4wRITE1lISAgLCQnhphe/YqBDhw4sKSmJHT58mDk6OvK+YmDKlCns1q1bbOXKlfTKMBXl5eWxK1eusCtXrjAA7IcffmBXrlxhDx8+ZIyVvTLMzs6O7dmzh127do198sknvK8Ma9asGbtw4QI7c+YMq1+/vtTrp7Kzs5mzszMbOnQou3HjBtu6dSuzsrIq9/opExMTtnTpUnbr1i02Z84cev2UHIrKLC8vj02ePJmdO3eOpaWlsWPHjrHmzZuz+vXrs8LCQm4eVGaVZ8yYMczW1pbFx8dLvQInPz+fS1NZ9SAdC5VTVl737t1jc+fOZYmJiSwtLY3t2bOHeXt7s9atW3PzoPKqXNOmTWMnT55kaWlp7Nq1a2zatGlMIBCwI0eOMMZo/9I1isqL9i/9IfuUeX3ezyjormArVqxgderUYWZmZiwoKIidP39e21mqEgYMGMBcXV2ZmZkZq1WrFhswYAC7d+8eN76goICNHTuW2dvbMysrK9arVy/27NkzqXk8ePCAde7cmVlaWjIHBwf2v//9j5WUlEiliYuLY02bNmVmZmbM29ubrVu3rjIWT+/FxcUxAOU+ERERjLGy14bNmjWLOTs7M3NzcxYWFsZSUlKk5pGVlcUGDRrErK2tmY2NDRsxYgTLy8uTSnP16lX28ccfM3Nzc1arVi22aNGicnnZvn078/HxYWZmZqxRo0bswIEDGltufaaozPLz81mHDh2Yo6MjMzU1ZR4eHmzUqFHlDkZUZpWHr6wASNVRlVkP0rFQMWXl9ejRI9a6dWtWo0YNZm5uzurVq8emTJki9R5hxqi8KtNnn33GPDw8mJmZGXN0dGRhYWFcwM0Y7V+6RlF50f6lP2SDbn3ezwSMMfbu18kJIYQQQgghhBAiD93TTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCCCGEEEKIhlDQTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCCCGEEEKIhlDQTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCdEKbNm3Qpk2bCpvfgwcPIBAIsH79+gqbpz5asmQJGjRoAJFIpO2s8Krocq8Inp6eGD58uLaz8U4EAgGioqLUmmbgwIHo37+/ZjJECCGEgm5CCCHyrV+/HgKBgPtYWFjAx8cH48ePR0ZGhrazR5TIzc3F4sWLMXXqVBgZ0SGf8Js6dSr+/vtvXL16VdtZIYQQg2Si7QwQQgjRfXPnzoWXlxcKCwtx5swZrF69GgcPHsSNGzdgZWVVIb9x5MiRCpkPeeuPP/5AaWkpBg0apO2syKWL5Z6SkqK3jRQFBQUwMVHv9K5Zs2YIDAzE999/j40bN2ooZ4QQUnXp5xGFEEJIpercuTM+/fRTfP7551i/fj0mTpyItLQ07Nmz573nnZ+fDwAwMzODmZnZe89P20QiEQoLC7WdDQDAunXr0KNHD1hYWGg7K3LpYrmbm5vD1NS0QuZVWFhYqV37LSws1A66AaB///7YtWsXXr9+rYFcEUJI1UZBNyGEELW1a9cOAJCWlsYN27RpEwICAmBpaYkaNWpg4MCBePz4sdR0bdq0gZ+fHy5duoTWrVvDysoK06dP58bJ3tubmZmJkSNHwtnZGRYWFvD398eGDRvK5Sc7OxvDhw+Hra0t7OzsEBERgezsbN68nzhxAq1atUK1atVgZ2eHTz75BLdu3SqXLj4+HoGBgbCwsEDdunWxZs0aREVFQSAQSKUTCAQYP348Nm/ejEaNGsHc3ByHDx8GACxduhQtW7ZEzZo1YWlpiYCAAOzcubPcb4nnsWPHDjRs2BCWlpYICQnB9evXAQBr1qxBvXr1YGFhgTZt2uDBgwe8yyYpLS0N165dQ3h4eLlxW7duRUBAAKpXrw4bGxs0btwYy5cvL7dOJ06cCHd3d5ibm6NevXpYvHixVAApvm9+6dKlWLlyJby9vWFlZYUOHTrg8ePHYIxh3rx5qF27NiwtLfHJJ5/g5cuXUr+j6j3d4lsdzpw5g6+//hqOjo6ws7PDF198geLiYmRnZ2PYsGGwt7eHvb09vv32WzDGpOahannw3dN9//599OvXDzVq1ICVlRU+/PBDHDhwQCpNfHw8BAIBtm7dipkzZ6JWrVqwsrJCbm6u3OVSJU/r1q2DQCDAH3/8ITV84cKFEAgEOHjwIDdM9p7uvLw8TJw4EZ6enjA3N4eTkxPat2+Py5cvS82rffv2ePPmDY4ePSo3r4QQQt4NdS8nhBCittTUVABAzZo1AQALFizArFmz0L9/f3z++ed4/vw5VqxYgdatW+PKlSuws7Pjps3KykLnzp0xcOBAfPrpp3B2dub9jYKCArRp0wb37t3D+PHj4eXlhR07dmD48OHIzs7GhAkTAACMMXzyySc4c+YMvvzyS3zwwQeIjY1FREREuXkeO3YMnTt3hre3N6KiolBQUIAVK1bgo48+wuXLl+Hp6QkAuHLlCjp16gRXV1dER0dDKBRi7ty5cHR05M3riRMnsH37dowfPx4ODg7cfJYvX44ePXpgyJAhKC4uxtatW9GvXz/s378fXbt2lZrH6dOnsXfvXowbNw4AEBMTg27duuHbb7/FqlWrMHbsWLx69QpLlizBZ599hhMnTigso7NnzwIAmjdvLjX86NGjGDRoEMLCwrB48WIAwK1bt/Dvv/9y6zQ/Px+hoaF48uQJvvjiC9SpUwdnz55FZGQknj17hmXLlknNc/PmzSguLsZXX32Fly9fYsmSJejfvz/atWuH+Ph4TJ06Fffu3cOKFSswefLkcsGjOr766iu4uLggOjoa58+fx6+//go7OzucPXsWderUwcKFC3Hw4EF899138PPzw7Bhw7hp1SkPSRkZGWjZsiXy8/Px9ddfo2bNmtiwYQN69OiBnTt3olevXlLp582bBzMzM0yePBlFRUUKr+SrkqcRI0Zg165dmDRpEtq3bw93d3dcv34d0dHRGDlyJLp06SJ3/l9++SV27tyJ8ePHo2HDhsjKysKZM2dw69YtqW1D3Njz77//llseQggh74kRQgghcqxbt44BYMeOHWPPnz9njx8/Zlu3bmU1a9ZklpaW7L///mMPHjxgxsbGbMGCBVLTXr9+nZmYmEgNDw0NZQDYL7/8Uu63QkNDWWhoKPf/smXLGAC2adMmblhxcTELCQlh1tbWLDc3lzHG2O7duxkAtmTJEi5daWkpa9WqFQPA1q1bxw1v2rQpc3JyYllZWdywq1evMiMjIzZs2DBuWPfu3ZmVlRV78uQJN+zu3bvMxMSEyR46ATAjIyN28+bNcsuUn58v9X9xcTHz8/Nj7dq1KzcPc3NzlpaWxg1bs2YNA8BcXFy4ZWWMscjISAZAKi2fmTNnMgAsLy9PaviECROYjY0NKy0tlTvtvHnzWLVq1didO3ekhk+bNo0ZGxuzR48eMcYYS0tLYwCYo6Mjy87OLpdHf39/VlJSwg0fNGgQMzMzY4WFhdww2XKXR7wtduzYkYlEIm54SEgIEwgE7Msvv+SGlZaWstq1a5ebr6rl4eHhwSIiIrj/J06cyACw06dPc8Py8vKYl5cX8/T0ZEKhkDHGWFxcHAPAvL29y/2WPKrm6dmzZ6xGjRqsffv2rKioiDVr1ozVqVOH5eTkSKUDwObMmcP9b2try8aNG6dSXnx8fFjnzp1VSksIIUR11L2cEEKIUuHh4XB0dIS7uzsGDhwIa2trxMbGolatWti1axdEIhH69++PFy9ecB8XFxfUr18fcXFxUvMyNzfHiBEjlP7mwYMH4eLiIvUQMFNTU3z99dd4/fo1Tp48yaUzMTHBmDFjuHTGxsb46quvpOb37NkzJCUlYfjw4ahRowY3vEmTJmjfvj3XRVcoFOLYsWPo2bMn3NzcuHT16tVD586defMaGhqKhg0blhtuaWnJfX/16hVycnLQqlWrcl17ASAsLIy7Qg4AwcHBAIA+ffqgevXq5Ybfv3+fNy9iWVlZMDExgbW1tdRwOzs7pd2Id+zYgVatWsHe3l6qTMPDwyEUCnHq1Cmp9P369YOtrW25PH766adS9xcHBwejuLgYT548UZh3RUaOHCnVxT84OBiMMYwcOZIbZmxsjMDAwHLrSJ3ykHTw4EEEBQXh448/5oZZW1tj9OjRePDgAZKTk6XSR0RESP2WIqrmycXFBStXrsTRo0fRqlUrJCUl4Y8//oCNjY3C+dvZ2eHChQt4+vSp0ryIy5sQQkjFou7lhBBClFq5ciV8fHxgYmICZ2dn+Pr6ck93vnv3LhhjqF+/Pu+0sg+kqlWrlkoPznr48CHq169f7inSH3zwATde/NfV1bVccOnr61tufnzDxfP8559/8ObNG+Tm5qKgoAD16tUrl45vGAB4eXnxDt+/fz/mz5+PpKQkFBUVccNl7wsHgDp16kj9Lw5i3d3deYe/evWK9zeVGTt2LLZv347OnTujVq1a6NChA/r3749OnTpxae7evYtr167J7U6fmZmpsbynp6eXm0YyMFXnt2R/R53ykPTw4UOuIUGS5Lbo5+fHDZe3PfBRJ08DBw7Epk2bcODAAYwePRphYWFK579kyRJERETA3d0dAQEB6NKlC4YNGwZvb+9yaRljStcFIYQQ9VHQTQghRKmgoCAEBgbyjhOJRBAIBDh06BCMjY3LjZcNhlW9AqhP+Jbp9OnT6NGjB1q3bo1Vq1bB1dUVpqamWLduHf76669y6fnWnaLhTOYhYbJq1qyJ0tJS5OXlSV0pd3JyQlJSEv755x8cOnQIhw4dwrp16zBs2DDuIXUikQjt27fHt99+yztvHx8fjeXd1dVV6v9169ZJPdRMnd+S/B11y+N9qLqNq5unrKwsJCYmAgCSk5MhEomUvtqsf//+aNWqFWJjY3HkyBF89913WLx4MXbt2lWu58arV6/kNp4RQgh5dxR0E0IIeS9169YFYwxeXl7lgrH34eHhgWvXrpULLG7fvs2NF/89fvw4Xr9+LRXgp6SklJsf33DxPB0cHFCtWjVYWFjAwsIC9+7dK5eOb5g8f//9NywsLPDPP//A3NycG75u3TqV5/E+GjRoAKDsKeZNmjSRGmdmZobu3buje/fuEIlEGDt2LNasWYNZs2ahXr16qFu3Ll6/fs375HNNk+323qhRowqZ7/uUh4eHh9ztRjy+MvI0btw45OXlISYmBpGRkVi2bBkmTZqk9HdcXV0xduxYjB07FpmZmWjevDkWLFggFXSXlpbi8ePH6NGjxzstCyGEEPnonm5CCCHvpXfv3jA2NkZ0dHS5K5iMMWRlZb3TfLt06YL09HRs27aNG1ZaWooVK1bA2toaoaGhXLrS0lKsXr2aSycUCrFixQqp+bm6uqJp06bYsGGD1OvEbty4gSNHjnBPgDY2NkZ4eDh2794tdR/svXv3cOjQIZXzb2xsDIFAAKFQyA178OABdu/erfI83kdISAgAcFdGxWTLw8jIiAvKxd2b+/fvj3PnzuGff/4pN9/s7GyUlpZqIssAyp4fIPmRvfL9rt6nPLp06YKLFy/i3Llz3LA3b97g119/haenJ+/9/BWdp507d2Lbtm1YtGgRpk2bhoEDB2LmzJm4c+eO3PkLhULk5ORIDXNycoKbm5tUV3ag7Mp5YWEhWrZs+U7LQgghRD660k0IIeS91K1bF/Pnz0dkZCQePHiAnj17onr16khLS0NsbCxGjx6NyZMnqz3f0aNHY82aNRg+fDguXboET09P7Ny5E//++y+WLVvGdZnu3r07PvroI0ybNg0PHjxAw4YNsWvXrnLBBgB899136Ny5M0JCQjBy5EjulWG2trZS7zaOiorCkSNH8NFHH2HMmDEQCoX4+eef4efnh6SkJJXy37VrV/zwww/o1KkTBg8ejMzMTKxcuRL16tXDtWvX1F4f6vL29oafnx+OHTuGzz77jBv++eef4+XLl2jXrh1q166Nhw8fYsWKFWjatCl3j/KUKVOwd+9edOvWDcOHD0dAQADevHmD69evY+fOnXjw4AEcHBw0vgwV6X3KY9q0adiyZQs6d+6Mr7/+GjVq1MCGDRuQlpaGv//+W2kX7/fNU2ZmJsaMGYO2bdti/PjxAICff/4ZcXFxGD58OM6cOcObh7y8PNSuXRt9+/aFv78/rK2tcezYMSQkJOD777+XSnv06FFYWVmhffv277QshBBC5KOgmxBCyHubNm0afHx88OOPPyI6OhpA2YOtOnTo8M7dVS0tLREfH49p06Zhw4YNyM3Nha+vb7l7fI2MjLB3715MnDgRmzZtgkAgQI8ePfD999+jWbNmUvMMDw/H4cOHMWfOHMyePRumpqYIDQ3F4sWLpR5+FRAQgEOHDmHy5MmYNWsW3N3dMXfuXNy6dYvrUqxMu3bt8Pvvv2PRokWYOHEivLy8sHjxYjx48KBSgm4A+OyzzzB79mwUFBRw9xl/+umn+PXXX7Fq1SpkZ2fDxcUFAwYMQFRUFBe4WVlZ4eTJk1i4cCF27NiBjRs3wsbGBj4+PoiOjpZ6Urm+eJ/ycHZ2xtmzZzF16lSsWLEChYWFaNKkCfbt26fw/d4VlacxY8agqKgI69at4x50VrNmTfz666/45JNPsHTpUt77762srDB27FgcOXKEe8tAvXr1sGrVKqmn/QNlT6zv3bu31P3/hBBCKoaAKXsSCyGEEEIAAD179sTNmzdx9+5dbWdFJTk5OfD29saSJUukXqlFFHN3d0fHjh2xdu1abWelUiQlJaF58+a4fPkymjZtqu3sEEKIwaF7ugkhhBAeBQUFUv/fvXsXBw8eRJs2bbSToXdga2uLb7/9Ft999x1EIpG2s6MXSkpKkJWVpXfd59/HokWL0LdvXwq4CSFEQ+hKNyGEEMLD1dUVw4cPh7e3Nx4+fIjVq1ejqKgIV65codcqGah//vkHW7duxfr163HkyBG6v5kQQkiFoKCbEEII4TFixAjExcUhPT0d5ubmCAkJwcKFC9G8eXNtZ41oSNu2bXHv3j2MGTMG06dP13Z2CCGEGAgKugkhhBBCCCGEEA2he7oJIYQQQgghhBANoaCbEEIIIYQQQgjREHpPtwaIRCI8ffoU1atX596nSQghhBBCCCFE8xhjyMvLg5ubG4yMtH+dmYJuDXj69Cnc3d21nQ1CCCGEEEIIqbIeP36M2rVrazsbFHRrQvXq1QGUFbKNjY2Wc0P0BWMMJSUlAABTU9NyvSSUjdcF75NHfVg+Is2Qy8yQl01fUBlo1+LFwMKFwPTpwNSp6o8nlY/2GULeys3Nhbu7OxeXaRsF3RogruRsbGwo6CYqKy4uxrJlywAAkZGRMDMzU2u8LnifPOrD8hFphlxmhrxs+oLKQLsWLAAsLIDZs8v+zpr1dty8eWUB99y50sOJdtE+Q0h5utL4REE3IYQQQggpRxxQz579Bo8eXUNMTH2sXu2A2bMp4CaEEHVQ0E0IIYQQQjglJSW4ePEijh8/juPHj8PY+BzWri3B2rVGAFqjS5feGD68JwB6fg0hhKiCgm5CCCGEkCpMJBLhxo0bXJB98uRJvH79WiZVTQBZAOJx8GA86tT5Gi1atEDv3r3Rq1cv+Pr6aiHnhBCiHyjoJoQQQgipYtLS0nD8+HEcO3YMJ06cwPPnz6XG16xZE23btkVYWBhu3w7H8uV1YWr6ACUlsahTJxaPH/+LhIQEJCQkIDIyEg0bNuQC8GbNmunMfZSEEKILKOgmhBBCCDFwmZmZOHHiBHc1Oy0tTWq8lZUVWrdujbCwMISFhcHf3x9GRkaYNw9Yvlx8D7cX5s2bhNmzJ2HKlHTUrbsHsbGxOH78OJKTk5GcnIz58+fDw8MDvXr1Qu/evdGyZUsYGxtraakJIUQ3UNBNCCGEEGJg8vLycOrUKS7IvnbtmtR4ExMTBAcHc0H2hx9+WO5p1/PmodxD094+XM0Fc+d+gcOHv0B2djYOHDiAXbt24fDhw3j48CGWLVuGZcuWwcnJCZ988gl69+6Ndu3a0RO1CSFVEgXdhOgIIyMjNGzYkPuu7nhd8D551IflI9IMucwMedn0BZWBeoqLi3H+/HkuyL5w4QJKS0ul0vj7+3NBdqtWrRS+v5Yv4BZ7G3iL/7fDkCFDMGTIEOTn5+PIkSPYtWsX9u3bh8zMTPz222/47bffYGNjg27duqFXr17o1KkTrK2tK3IVVHm0zxCiuwSMMabtTBia3Nxc2NraIicnh97TTQghhJAKJxKJcPXqVe6+7NOnTyM/P18qjbe3Nxdkt23bFk5OTirNW1HArU66kpISxMfHIzY2FrGxsUhPT+fGWVhYoGPHjujVqxe6d++OGjVqqJQ3QghRha7FYxR0a4CuFTIhhBBCDENBQQHmzp2L3377DVlZWVLjnJyc0K5dOy7Q9vLyUnv+qgbc6qYXiUS4cOECdu3ahV27duH+/fvcOGNjY7Rp0wa9e/dGz5494ebmpna+CSFEkq7FYxR0a4CuFTIhhBBC9N/58+cxfPhwpKSkAACqV6+O0NBQLsj28/N776eGR0UBxsaqBdxi8+YBQmHZtKpgjOH69evYtWsXYmNjy91v/uGHH3JPQq9Xr57qGSGEkP+na/EYBd0aoGuFTPRDcXExYmJiAACRkZHlHjajbLwueJ886sPyEWmGXGaGvGz6gsrgrcLCQsyePRvff/89RCIRXF1d8fPPP6N79+4wNTXVdvbe271797gu6OfOnZMa17hxY/Tu3Rv9+vVDo0aNtJRD/UD7DCFv6Vo8Rk9ZIIQQQgjRURcuXECzZs3w3XffQSQSYejQobh58yZ69+5tEAE3ANSrVw9TpkzB2bNn8eTJE6xatQrh4eEwNjbG9evXER0dDT8/PwwdOhRPnz7VdnYJIURtFHQTQgghhOiYwsJCTJ06FS1btsTt27fh4uKCvXv3YuPGjbC3t9d29jTGzc0NY8aMwdGjR5GZmYkNGzage/fuEAgE2LRpE3x8fLBo0SIUFRVpO6uEEKIyCroJIYQQQnTIxYsX0bx5cyxZsgQikQiffvopbt68ie7du2s7a5WqRo0aGDZsGPbu3YuLFy8iJCQEb968QWRkJBo1aoR9+/aB7pIkhOgDCroJIYQQQnRAYWEhpk2bhpCQENy6dQsuLi7Ys2cP/vzzzyr/Sq3AwECcOXMGGzduhKurK1JTU9GjRw906dKFe7AcIYToKgq6CSGEEEK07OLFiwgICMDixYshEokwZMgQ3Lx5Ez169NB21nSGkZERhg4dipSUFEydOhWmpqY4fPgw/Pz8MGXKFOTm5mo7i4QQwouCbkIIIYQQLSkqKkJkZCRCQkKQnJwMZ2dn7N69G5s2baryV7flqV69OhYtWoSbN2+iW7duKC0txdKlS+Hj44P169dDJBJpO4uEECLFRNsZIISUMTIyQv369bnv6o7XBe+TR31YPiLNkMvMkJdNX1SFMkhISMDw4cORnJwMABg8eDB++ukn1KxZU8s50w/169fHvn37cPDgQUycOBF3797FiBEjsHr1aqxYsQJBQUHazmKlqgr7DCH6it7TrQG69l44QgghhOiOoqIiREdHY8mSJRAKhXB2dsYvv/yCnj17ajtrequ4uBjLly/H3Llz8fr1awDA8OHDERMTAxcXFy3njhBS2XQtHqNmMEIIIYSQSpKYmIiAgADExMRAKBRi0KBBuHnzJgXc78nMzAxTpkzBnTt3EBERAQBYv349fHx8sHTpUhQXF2s5h4SQqoyCbkIIIYQQDSsqKsKMGTPw4Ycf4ubNm3BycsKuXbvw119/UXfyCuTq6or169fj/PnzaNGiBfLy8jBlyhQ0btwYhw8f1nb2CCFVFHUv1wBd685A9ENxcTGWLl0KAJg8eTLMzMzUGq8L3ieP+rB8RJohl5khL5u+MKQyuHTpEoYPH44bN24AAAYOHIgVK1bAwcFByzkzbCKRCBs2bMC0adOQmZkJAOjevTt++OEH1KtXT8u5q3iGtM8Q8r50LR6rEle6V65cCU9PT1hYWCA4OBgXL16Um/a3335Dq1atYG9vD3t7e4SHhytMT0hFKikpQUlJyTuP1wXvk0d9WD4izZDLzJCXTV/oexkUFRVh5syZCA4Oxo0bN+Do6Ii///4bW7ZsoYC7EhgZGWHEiBG4c+cO/ve//8HExAT79u1Do0aNEBkZyd37bUj0fZ8hxFAZfNC9bds2TJo0CXPmzMHly5fh7++Pjh07ci2esuLj4zFo0CDExcXh3LlzcHd3R4cOHfDkyZNKzjkhhBBC9NWlS5cQGBiIBQsWQCgUYsCAAUhOTkbv3r21nbUqx9bWFkuXLsX169fRsWNHFBcXY9GiRfD19cWmTZtAnT4JIZpm8EH3Dz/8gFGjRmHEiBFo2LAhfvnlF1hZWeGPP/7gTb9582aMHTsWTZs2RYMGDbB27VqIRCIcP368knNOCCGEEH1TXFyMWbNmSV3d3rlzJ7Zu3UpXt7WsQYMGOHToEPbu3Qtvb288ffoUQ4cOxccff4xLly5pO3uEEANm0EF3cXExLl26hPDwcG6YkZERwsPDce7cOZXmkZ+fj5KSEtSoUUNumqKiIuTm5kp9CCGEEFK1XLhwAYGBgZg/fz6EQiH69++Pmzdvok+fPtrOGvl/AoEA3bt3x82bN7Fw4UJUq1YNZ8+eRYsWLTBq1Ci5PSEJIeR9GHTQ/eLFC+79l5KcnZ2Rnp6u0jymTp0KNzc3qcBdVkxMDGxtbbmPu7v7e+WbEEIIIfrjxYsXGDVqFD788ENcv34dDg4O2LFjB7Zt2wZHR0dtZ4/wsLCwQGRkJFJSUjBkyBAwxrB27Vr4+Phg+fLldF80IaRCGXTQ/b4WLVqErVu3IjY2FhYWFnLTRUZGIicnh/s8fvy4EnNJCCGEEG0QCoX49ddf4evri7Vr1wIAIiIikJycjL59+2o5d0QVtWrVwqZNm3DmzBk0a9YMOTk5mDhxIpo2bYpjx45pO3uEEANhou0MaJKDgwOMjY2RkZEhNTwjIwMuLi4Kp126dCkWLVqEY8eOoUmTJgrTmpubw9zc/L3zS6o2gUAADw8P7ru643XB++RRH5aPSDPkMjPkZdMXul4GCQkJGDduHBISEgAATZo0wcqVK/Hxxx9rOWfkXXz00UdISEjAH3/8genTpyM5ORnt27dHr1698P3338PLy0vbWVRK1/cZQqoyg39Pd3BwMIKCgrBixQoAZe9srFOnDsaPH49p06bxTrNkyRIsWLAA//zzDz788EO1f1PX3gtHCCGEkIqRlZWFGTNm4NdffwVjDDY2Npg3bx7Gjh0LExODvpZRZbx69QpRUVFYuXIlhEIhzM3NMWXKFEybNg3VqlXTdvYIISrQtXjM4LuXT5o0Cb/99hs2bNiAW7duYcyYMXjz5g1GjBgBABg2bBgiIyO59IsXL8asWbPwxx9/wNPTE+np6UhPTzfIdzkSQgghRDUikQhr166Fr68v1qxZA8YYhg4dipSUFHz99dcUcBsQe3t7LF++HFevXkVYWBiKioowf/58NGjQAFu3bqVXjBFC1GbwQfeAAQOwdOlSzJ49G02bNkVSUhIOHz7MPVzt0aNHePbsGZd+9erVKC4uRt++feHq6sp9li5dqq1FIIQQQogWXbp0CS1btsSoUaOQlZUFPz8/nDx5Ehs3blR6uxrRX40aNcLRo0fx999/w9PTE//99x8GDRqE0NBQJCUlaTt7hBA9YvDdy7VB17ozEP1QXFyM5cuXAwAmTJgAMzMztcbrgvfJoz4sH5FmyGVmyMumL3ShDF69eoWZM2di9erVYIyhevXqiI6Oxvjx42Fqalrp+SHaU1BQgKVLlyImJgYFBQUwMjLCF198gXnz5qFmzZrazh4A3dhnCNEVuhaPGfyVbkL0SX5+PvLz8995vC54nzzqw/IRaYZcZoa8bPpCW2UgEomwbt06+Pj4YNWqVWCMYfDgwbh9+za++eYbCrirIEtLS8yaNQu3b9/GgAEDIBKJsHr1atSvXx8rV65EaWmptrMIgOotQnQVBd2EEEIIIf8vKSkJH3/8MT777DO8ePECDRs2RFxcHDZv3gw3NzdtZ49oWZ06dbB161bEx8ejSZMmePXqFcaPH4/mzZsjPj5e29kjhOgoCroJIYQQUuVlZ2fj66+/RkBAAM6dOwdra2t89913SEpKQps2bbSdPaJjQkNDcenSJaxatQo1atTA9evX0bZtW/Tv3x8PHz7UdvYIITqGgm5CCCGEVFmMMWzcuBG+vr5YsWIFRCIRBgwYgNu3b2Py5MnUlZzIZWJigjFjxuDOnTsYO3YsjIyMsGPHDjRo0ADR0dEoKCjQdhYJITqCgm5CCCGEVEnXrl1D69atERERgczMTDRo0ADHjh3D1q1bUatWLW1nj+iJmjVrYuXKlbhy5QpCQ0NRWFiIqKgofPDBB9i5cye9YowQQkE3IYQQQqqWnJwcTJw4Ec2bN8eZM2dgZWWFxYsXc+9lJuRdNGnSBHFxcdi2bRvc3d3x8OFD9OvXD2FhYbhx44a2s0cI0SITbWdAkZMnT+LVq1fw8fFBgwYNYGREbQTEcAkEAu4hPQKBQO3xuuB98qgPy0ekGXKZGfKy6QtNlEFpaSn+/PNPTJ8+Henp6QCAvn374ocffoC7u3uF/Aap2gQCAfr3749u3bph8eLFWLx4MeLi4tC0aVOMHTsW0dHRsLe319hvU71FiG7S2fd0jx07Fvv27UNQUBD27t0LS0tL+Pj4wN/fH7///ru2s6eQrr0XjhBCCKnKSktL8ddff2HevHm4d+8eAMDHxwcrVqxAhw4dtJw7YsjS0tIwefJk7Nq1C0BZV/QFCxbg888/h7GxsZZzR4jh0rV4TGcvHW/duhXnz5/H33//DWtra9y9exd2dnY6sdIIIYQQovuEQiE2b96MRo0aISIiAvfu3YODgwO+++47XLt2jQJuonFeXl74+++/cezYMTRq1AhZWVn48ssvERgYiDNnzmg7e4SQSqKzQbeJiQlcXV25705OTvjjjz/onhhCCCGEKCQUCrFlyxb4+fnh008/xZ07d1CzZk0sWrSIu/Jobm6u7WySKiQsLAxXrlzB8uXLYWdnh6SkJLRq1QqDBw/Gf//9p+3sEUI0TGeDbvF7MgHA29sbycnJqFWrFi5evKjlnBGiGSUlJVi2bBmWLVuGkpIStcfrAnEeO3U6j6gooVrTRkUJ0anTeZ1ePiJNH7bJd2XIy6Yv3qUMRCIRtm/fjiZNmmDw4MG4ffs27O3tsWDBAqSlpWHq1KmwtrbWcM4J4Wdqaoqvv/4ad+7cwejRoyEQCLBlyxb4+vpiwYIFKCwsfK/5U71FiO7S2aD7119/5R40MX78ePTr1w89evRAgwYNtJwzQjSDMYacnBzk5OTwvl5E2XhdIM5jcXEBoqONMW+eatPNmwdERxujuLhAp5ePSNOHbfJdGfKy6Qt1ykAkEmHnzp3w9/fHgAEDkJycDDs7O8ybNw8PHjzA9OnTUb169UrKOSGKOTo6Ys2aNUhMTETLli2Rn5+PmTNnomHDhtizZ8871zlUbxGiu3T26eWSTxEdOnQonJ2dce3aNQwZMkSLuSKEqCI09BRat26F2bPLqphZs+SnnTcPmD0bmDOnFALBqUrKISHEEDDGsHv3bkRFReHatWsAAFtbW3zzzTeYOHEibG1ttZxDQuQTv7Juy5YtmDJlCtLS0tCzZ0906NABy5YtwwcffKDtLBJCKohOXOk+dOgQPv30U4SGhqJLly6YNm0aEhMTpdJ06NABkydP5u7zJoTotunTRZg7tyyglnfFWxxwz51blp4QQlTBGMPevXsREBCA3r1749q1a7CxscHs2bPx4MEDzJkzhwJuohcEAgEGDx6MlJQUREZGwszMDEeOHEGTJk0wadIk5OTkaDuLhJAKoPWge9myZejWrRtiY2Px5s0bZGZm4qeffkJwcDC6du3KvUeTEKJ/Zs2C3MBbMuBWdCWcEELEGGPYv38/WrRogU8++QRXrlyBtbU1ZsyYgbS0NERHR8POzk7b2SREbdbW1li4cCGSk5PRo0cPlJaW4scff0T9+vXx+++/QySihmlC9JnWg+7ly5ejadOmePjwIRITE5GYmIhXr17h559/xo0bNxAUFIQnT55oO5uEkHckGXhPmpSGtLQ0CrgJIWphjOHQoUMIDg5G9+7dcenSJVSrVg2RkZF48OAB5s+fjxo1amg7m4S8t7p162LPnj04fPgwfH198fz5c3z++ecIDg7mHjBMCNE/Wg+6MzIy8Pnnn8PBwYEbZm5ujjFjxiAxMRECgQDffvutFnNICHlfs2YB06a9xI8/Noe3dz3Mnv0VIiOzKeAmhCjEGMO9e/fQunVrdOnSBQkJCbCyssK3336LtLQ0LFy4EDVr1tR2NgmpcB07dsS1a9fw/fffo3r16txD14YNG4anT59qO3uEEDVpPej29fVFRkYG7zhHR0eMHTsWBw8erORcEVK5oqKAhQuN4ejoCEdHRwgEgnJpBAKB1Ph588qm0yWyeZRUt+4uANkARAB+xh9/NMDmzZu5J6wqmpboJkMuM0NeNn2RkJCAP//8E5s2bcLFixdhaWmJ//3vf0hLS8PixYvh6Oio7SwSolFmZmaYNGkS7t69i88++wwA8Oeff8LX1xdLlixBUVGRVHqqtwjRYUzL/vrrL1azZk12584d3vE//fQTs7e3r+RcvZ+cnBwGgOXk5Gg7K0RPzJ3LGFD2VxPpdYG3dzgDwIyMBjLAlwFgANg333yj7awRQnTIw4cP2eDBg7k6wsLCgn3zzTfs2bNn2s4aIVp14cIFFhwczO0b9erVY/v379d2tgjRSboWj2n9Svf3338PY2NjBAUFYcmSJVJdZlJTU7Fy5Ur069dPizkkRPMUPXBMlj7eDz1t2nPcv38CAHDnznzMnn0NQBQAYM2aNcjPz9de5gghOuH169eYNWsWfH198ddff0EgEGD48OG4d+8efvjhB7i4uGg7i4RoVVBQEM6ePYsNGzbAxcUF9+7dQ7du3dC1a1fcuXNH29kjhCig9aDbzc0N1apVQ25uLqZNmwZ3d3c4OjrCxcUFPj4+sLS0xOjRo1FSUqLtrBKiUaoE3voYcM+bByxe/DcAEQICAlC3bl1ER5shOno2AA/k5+fjyJEj2s4mIURLRCIR1q1bBx8fH8yfPx+FhYVo3bo1EhMTsW7dOtSqVUvbWSREZxgZGWHYsGFISUnBlClTYGpqioMHD8LPzw/ffvstcnNztZ1FQggPrQfde/fuxf3795GTk4Nz585hzZo1GDJkCBo1agQHBwdcvXoVQUFBqFatGho0aIBevXphxowZ2s42IRWupKQENWuuQrduF3gD76goIWbPBrp1u4Bp03SzEaqkpASrVq3CqlWrUFJSwjUSeHpuAwAMGDCASzt7tgAhIb0BAFFRf5eblug+Qy4zQ142XXLy5EkEBgbis88+w7Nnz+Dt7Y2///4b8fHxaNy4MZUBIXLY2NhgyZIluHHjBjp37oySkhJ89913cHd3x6effkrv9yZEx5hoOwNi1tbWCA4ORnBwsNTwzMxMXL9+HTdu3OD+Hj9+HAsWLNBSTgnRDMYYnj9/jsDAwwgICMDs2SZ4+vQyOnV6jKtXeyA62hht28YhMPAUGGum7ezyEi8DACxYIEB0NDBlSjqWLj0JAOVuFVmypDdatfoRV6/uw9y5JTAxec7Nh+g+yfI2tDIz5GXTBampqZgyZQpiY2MBlAUQs2bNwldffQVzc3MAVAaEqMLHxwcHDx7EgQMHMGHCBKSmpmLz5s2IjY1Fly5d0LdvX3Tt2hXW1tbaziohVZrOBN3yODk5ISwsDGFhYdrOitreFL+BcbFxueHGRsawMLGQSiePkcAIlqaW75Q2vyRf7omKQCCAlanVO6UtKCmAiInk5qOaWbV3SltYWgihSFghaa1MrbgndxaVFqFUVFohaS1NLWEkKOsgUiwsRolQ/tUXddJKbg8AMGFyHopKjbFoQXv88stLAFsQOfMTmJuckkpXIixBsbBY7nzNTcxhYmSidtpSUSmKSovkpjUzNoOpsWm5tMXFZfM/ebI14uJMMHNOMRxqbANjDMHBwXCv4y61DfsH+sPZxRkZ6RmYP/8U2rZtjdDQsmUUioQoLC2UmwdTY1OYGZsBAERMhIKSggpJa2JkAnOTtyf9+SXy7zdXJ606+72+1BHi8pZlCHWE5LJJLrc26whjI2O10+paHZGdnY0lMUuweuVqlJSUwMjICKNGj8K8ufPg6OgIoUjIbcOSZfCm+A1KUCK1L1Mdoft1hLy0hlBHvGtaTdURnTp3wpXWV9CnTx8kJCQgOzsbO3fuxM6dO2FhYYHwDuHo1bsXOnftDKcaTjpbRyhLq85+T3VE1a4jFC2HNuh80K3P3L53AyzKD+9SvwsODD7A/e+01EnuThbqEYr44fHc/57LPfEi/wVv2kC3QCSMSuD+b7iyIR7mPORN29CxIW6Ovcn93+K3Fkh+nsyb1sPWAw8mPuD+b72+NRKfJvKmdbBywPMpz7n/O2/ujJMPT/KmtTK1wpvpb3eIPtv74OBd+a+HY3Pe7qhDY4diZ/JOuWlfR77mdsgv9n+BDVc3yE2bOTkTjtXKXj0z6Z9JWJW4Sm7atAlp8LTzBADMOD4DS88tlZv2xpgbaOTUCACw8PRCRJ+Mlpv24ucX4e/oz/3v/L0zSm5LHlzH47vCoZhpPVNqul8v/Yrxh8bLne/+QfvR1acrAGDz9c0YsWeE3LTb+25Hv0ZlV6Jjb8Wi/87+ctOu+2QdhjcdDgD4594/6LalGwDAFKaYgRkQiQQwahuF+YJo1P2jLoCyruWnH51G2w1tpWdWG0A6ANcZEIm+5wZffnYZQWuD5OZhTugcRLWJAgDcen4Lfqv95KadHDIZ33X4DgDwKOcRvJZ7yU07NnAsVnZdCQB4kf8CTkud5KaN8I/A+p7rAZQdTKxj5F9J6NuwL3b028H9ryitvtQR4vKWZQh1hOSyZeVnwc3cDYB264gWtVoAAJafX45vj30rN21cRBzaeLYBoEN1xKZuwCUA8QDEm3JdQNRRhMYRjbnXf0nWEZJl4Py9M0pQgiXhSzDloykAqI7QhzpCjM4j3tL0ecRHH32Eli1bYsGzBShNLgWSgcKXhdi/dz/2790PGAMt27TEF8O+QI8ePbD5zmbdqCP+/zyCz8+df8a4oHEAwH8eIYHqiDJURwCQ396iFRR0E6KrTngDuA/AGEAWStc3ABvH9OLdm23bnsRZLIQoB0i9mgoA6Nu3L1KFqeUTfwAgEUDOZYSGxkEHHjVBCKlAl05dAn4BID5HcgDQEUB97eWJEEMmEAggcBMAbgDCAGQASAZwE0AWcPb4WZw9fhampqaoH1gfcATQAICVgpkSQt6LgNGNUhUuNzcXtra2ePr8KWxsbMqNpy4f/GmrcrcwCxMLCEuFiImJAQA8zxqMlSt8ATBs2b4FQwYOhUhUisDAX9CtWzoiIyNhZmamc93CiouL8dP3PwEAvv7f1/jtl98wdcpUfPTRRzhz5gxvV6+SkhJ4u3vj1atXGD58ODw9PREZGQljE2PqFqZCWm13LxeXt3ibBAyjjpBctmnTpnH3GVP3ctXriLspd/G///0Phw8fBgDUqFkDM2bNwGeffwZTU1OptHxdR2XrEzMzM+o6+g5p6Tzi3dLq+3mEeJ+RxBjDrVu3sH/3fuz6exdu3LjBjTM2NkZom1D06tML3Xp043qfUPdy9dNSHVGmousIxhhKS0tRXFwMM4EZiouLUVJSgtw3uSgqLkJxSTFKS0q54dmvstG/T3/k5OTwxmOVja50a1A1s2pSFbyidOrMU1WSG29FppXc2Soyrex9zRWV1tzEHOYwr/C0ZsZmXAVcEWmFKDv4l90PvR0AQ2hoKAb2G4jNGzdj//79SEwsRPXqrREZWTaNqbEpdyBSRp20JkYmMDFTrXqQTGuKt/OvZlYNR/85CuDtA9SMjYzLb8NmQI8ePbBhwwbcunULnp6e8tPKYSQw0khagUCgkbSA5vb7yqwjJMtbkiHUEZLLJtm7RJt1xLuk1UYd8eLFC3w751usWbMGQqEQpqam+OqrrzBz5kzY29srnK/kfi9bn8gGEFRHaD4tnUeU0bfzCIB/nwGAFk1boEXTFoiOisbt27fx999/Y8eOHbh69SpOHD+BE8dPYML4CWjTpg369u2LXr16wcXFBUDlnEcoo85+T3WEZtIyxpCRkYG0tDQ8ePAAGRkZXKDL91fROHX+6vtbLCjoJkRHCAQCXLjQHnFxLeHgMBYvXgAjRpTdO/Xhhx9i//79cHXdh7i4CVi4UIioKO3ml49AIICtrS2Askr54sWLAIDWrVsrnK5Pnz7YsGEDUlJS0L9/f73oQk+ky9vQysyQl01TSktLsXLlSsyZM4d7XVHPnj2xZMkS1K+vfl9yKgNC1KPuPtOgQQPMmDEDM2bMwN27d/H3339j586duHTpEk6cOIETJ05g3LhxaNWqFfr27YvevXujVq1aml4MogNevXqFtLQ0LrAWfxf/X1Ag/0p/ZTIxMYGpqWlZTyiZv0ZGRkhJSdF2FjnUvVwDxN3LdaU7A9EP4ndaR0ZmIyam7GrQixcvULNmTZw4cQJhYWHw8PDAyJEPMHs2MHcuMGuWljOtwO3bt/HBBx/A0tISOTk5Ut1JZRUWFsLR0RGvX7/GhQsXEBQk/8EnhBDdc+bMGYwbNw7Xrl0DAPj7++PHH39E27byH3hECNFNaWlpXAB+4cIFqXEtW7ZE37590adPH9SpU0dLOSTv682bN1LBtGxgrew97wKBALVr14aXlxdcXV1hYWEhN/jV5F9FjUu6Fo9R0K0BulbIRPeJA+65c4HQ0FMIDQ1FnTp18PBh2RMh8/LyYGtrC8YYnj59irVrXXU+8N64cSMiIiK4+7mVGThwILZt24Zvv/0WixcvroQcEkLeV0ZGBqZOnYoNG8qe7FyjRg3ExMRg5MiRMDYu/8pMQoh+efToEReAnz17VmpccHAwF4B7ecl/mjepfMXFxXj06JHcoDozM1PpPJycnODl5cV9PD09ue916tThvX1Bl+haPEbdywnRAULh2wD6p5+SAABNmzblxlevXh1+fn64fv06zp8/j1mzenHT6Spx63hwcLBK6Xv16oVt27Zhz549FHQTouOEQiF++eUXzJgxg7siMmrUKCxcuBAODg5azh0hpKLUqVMH33zzDb755hs8efIEu3btws6dO3H69GlcuHABFy5cwJQpUxAQEIC+ffuib9++qFevnrazbfCEQiGePn1artu3+PuTJ08gEsl/ACEA2Nrayg2qPT09Ua2a6veBE+XoSrcG6FrLCtEPJSUlWL9+PdavX4+zZ89i9uzZiI5++07OUaNGYe3atejQoQP279+vsLv2+xg/fjxOnDiBkJAQtG7dGp06dYKzs7NaywAAa9aswaVLl7B161YMGDBA6bQvXryAi4sLhEIhrl+/Dj8/+e/LJLpBsryHDx+u1jYZFQUYG6vXU2PevLKGpsp4nsH7LJuhO3/+PMaOHYsrV64AAJo3b45Vq1ap3MCmKioDQtRTmftMeno6YmNjsWPHDpw8eVIqwPP390e/fv3Qt29f+Pr6aiwPhowxhufPn8sNqh8+fKj0wWKWlpZSgbRsYK3swZb6TtfiMbrSTYiOEHcdv3//PgDpK90AEBQUhLVr1+L27dtyX7nwvlJSUrBy5UoAwK1bt/DHH3/Azs4ODx484B7Oooh4GUpKSrh7O1U9EbexsYGHhwfu37+P/fv3U9CtB8TlLf6uDmPjslsqANUCb8lbMCrD+yyboXr+/DkiIyPx+++/AwDs7OywcOFCjB49WiNdyakMCFFPZe4zLi4uGDNmDMaMGYPMzEzs3r0bO3fuxIkTJ3D16lVcvXoVM2fOhJ+fH3cFvGHDhvRQRAk5OTlSQbVkYP3gwQO8eSP/1V1A2UPE6tSpIzeodnZ2pvWtQyjoJkSHlJaW4vnz5wDKB93i4FUc1GriXhpxC7n4Kvcff/yB58+f48CBAxg8eLDK80lPT0dJSQkcHR3h4eGh8nS+vr64f/8+Dhw4gGnTpqmbfaJHxIG2KoG3ZMCtq88wMGRCoRBr165FZGQkXr16BaDszQqLFi2Ck5OTlnNHCNE2JycnjB49GqNHj0ZWVhb27NmDnTt34tixY7hx4wZu3LiBqKgoNGjQgAvAmzRpYvABYUFBAe+Tv8XfxfWpPAKBAG5ublJBtWRgXatWLZiYUCinL6ikCNEhL168gFAohI2NDfe+ajEfHx9YWFigsLAQ165dQ0hISIX+tlAoxMaNGwEA//vf/9CnTx+YmJhgwYIFiI2NVSvofvLkCYCyhgJ1Dqq+vr44dOgQzp49ixcvXtC9oQZOlcCbAm7tSkhIwNixY5GYmAigrNvoypUr8dFHH2k5Z4QQXVSzZk189tln+Oyzz/Dq1Svs27cPO3fuxD///IPbt29j/vz5mD9/PurXr88F4M2aNauwAJwxhtLSUhQVFXHviBZ/VB32vmkLCwvx9OlTpKenK82vg4OD3KDaw8MD5uaqvfOd6D4KugnRIeIK2t/fv9wByMjICLVq1UJqaioSExMrPOg+cuQInj59ipo1a6J79+4Ayt6xu2DBAhw6dAgFBQWwtLRUaV7ioFvdV3/Z2dnB2dkZGRkZOHjwIIYNG6beQhC9oyjwpoBbe7KysjBjxgz8+uuvYIzBxsYG8+fPx5gxY+jKCiFEJfb29hg2bBiGDRuG3NxcLgA/dOgQ7t69i5iYGMTExMDLywvt27eHsbFxhQTCuqR69erlgmpxYO3p6Ynq1atrO4ukktCRkxAdIg66mzRpwjve1dUVqampSEpKqvDfXrduHQBgyJAhXNf1gIAAuLu74/Hjxzh27BgXjCvz33//AVD9fm5Jvr6+yMjIwN69eynoriLeBt6lePToIjp3Tse+fXZYv94OEyfaYfx4ewiFNvQKqkogEomwbt06TJ06FVlZWQCAoUOHYsmSJXBxcdFy7ggh+srGxgZDhgzBkCFDkJeXh4MHD2Lnzp04cOAA0tLS8Ouvv2rkdwUCAczNzWFmZib14RtWkcOdnZ3h5eWFGjVqGHw3eqIaCroJ0SGSV7r5uLm5AQAuX75cob/78uVL7NmzB0DZvZpiAoEAPXv2xIoVK7B7926Vgu78/HzuPqUWLVqonRdfX1+cOnUKhw8fRmFhISwsLNSeB9EfL168wOHDh3Hr1kFYWh7G2rWvsHbt2/HLlpV9gLKTNnt7e9jZ2cHOzg729vZo3LgxBg0ahA8++EAb2Tcoly9fxtixY7nX/fn5+WHlypVo3bq1lnNGCDEk1atXx4ABAzBgwAC8efMGhw4dQlJSEkxNTVUKatUJgI2NjSnoJTqBgm5NevOm7BG9soyNAclAQtHTCY2MAMkuveqkzc8H5D29UiAArKzeLW1BAaDo3X+S7/VTJ21hoeIXT6uT1sqqLN8AUFQElJZWTFpLy7L1DADFxYCi1zWok9bCAowxZGRkAACa+vqWL+viYnh7eQEAbt68iaKiIpgbGZXNWx5zc0DcFbSkRG7aLevXo7i4GE2bNi17gFtpadm6ANCzY0esWLECe/fsQekPP5R1LTUzA8SvIpFIi+JivPj/B8HVr1cP9mZmZb8rTisUlpUdn+JiWFlaom7dunBzc8PTp08Rf/gwOrVvz5/e1LQsH0DZNlZQIH89qJPWxKRsvQFl+0R+fsWkVWe/15c64v/LrBwF+71IJELS3bs4cOAADh48iAsXLsg8ZdceQAMIBLlwdXmJ7Jwc5P//es3NzUVubi4ePnzIpd69ezfmzZuHpk2aYMjQoRg4cCBq1679/nWE5LJJ5k+LdQR3PFEnrYL9HgBgbo6snBzMnj0bv/zyC0QiEaytrTF35kyM/+KLslcOibcpyfpEcr/nI6+OUJZWso6QLIM3b97WJeJ9WVF9AlAdIUbnEe+WVg/PI8qyYlVWDuJ9Rl5aNeoIVc4jyqVVcb+vVq0a+vbsib6dOytNC0C9/V4oVLzPUR1RxlDrCCVPf690jFS4nJwcBoDllG1a5T9dukhPYGXFnw5gLDRUOq2Dg/y0gYHSaT085Kdt2FA6bcOG8tN6eEinDQyUn9bBQTptaKj8tFZW0mm7dJGfVnZT7dtXcdrXr9+mjYhQnDYz823asWMVp01Le5t28mTFaW/ceJt2zhzFaS9eZA8fPmQAmKmxMSuSk04EsBo2NgwAS0hIYOznnxXPd//+t3lYt05uug8BBoAtX768LO327dy4EoDV+P/x8eJp1q17O9/9+6XmFfX/aT8VD/v557dp4+IU53fJEsYYY1988QUDwMYoSjtnztv53riheL6TJ79Nm5amOO3YsW/TZmYqThsR8Tbt69eK0/btK70NK0prYHWECGD7ATYCYC4CAcP/byPiT1OATQfYSEQwoISZoZABjM01jWaMMVZUVMQyMjJYSuvW7ALADgNsK8B+Blg3gJlIzEsgELA2bdqwX5s3Z1mK1rEe1hGcJUsUp42Le5tWQR1RCrDVY8eyGjVqcOtvEMCeyJvv9u1v5ytRR/B+FNQR5T7vUEcwxsrWiaK0VEeUffSgjpD60HnE24+W6wgGqHwewQCqI8QfqiPKPlquI3JQdlzLyclhusCokmN8QqqEHABJar5PW3yfdkMnJ8h7GZgAQICPD4CK62KeAeDC/3/v27dvufEmAMSdymNVmJ94Xurfzf1Wjx49AAB7UVZjEv11E0A7AN0ArAOQzhiqVauGnj174rfffsN/H36IKwAsMBO/Yz3mIhpFsMBczMLsktmYNw8wMzODk5MTfKytEQSgI4ABAMYB2AcgHcAvAFq1agXGGOLj4zH68mW4APgEwHYACq4dVElnAAQCGLNqFV6+fAk/Pz/ETZ2KvwC4aTlvhBBCiKERMHWiAqKS3Nxc2NraIufpU9jY2JRPQF0++NMaQLew/Px8jPjyS+zauxelpaXo378/fv/9d1iLu1nLY2GB6PnzERUVhYihQ7F+9Wq5SadFR2Pxd99h9OjRWPPzz+/dLWz9pk0Y8eWXCGjeHImXLpUNlOkWtnvfPvQaNAh13N3xIDkZAnNz3q6jjDE4engg6+VLXIiPR1Bg4Dt1CyssLETNmjWRn5+PS2fOoLnMO8sl0wLQSLewR48e4dDBgziwbx/SHjyAX8OGaN60KQKaNkUzf3/Y29tTtzB5aQsKkJeTg+iYGCxftQqlpaWwtLTEqOHD0aNLF3zcvv3b16AUFGDeQmPMnm+GuTOLMWva2/1k3iLTsuHip5erUEc8evQIW7duxeZNm3Dt+nVulLW1NXp1745vxo9HM39//ew6WgHdy58+e4ZvZ87E5m3bAJS9MWDu3LllTyVnrMK7jqqdVt2uo9S9XHlaHa0j6DwCOllHlKPh7uVqp6U64u3/VEcoTJubmwtbNzfk5OTwx2OVTavX2Q0U171cR7ozkMozd+5cBrzt5gqANW3alOXm5iqdtkePHgwAGzRoECsuLi43vri4mK1bt46NHTuWAWABAQEVkuc+ffowAGyOZDcrGW/evGGWlpYMALty5YrcdMnJyQwAMzExYXl5eWrlQ7x869atY8XFxaxXr15K81XREhIS2NSpU1njxo25cpT38fb2ZsOHD2dHjhxhpaWlFZqPgoIClpiYyNauXcu+/fZb9ssvv7Dk5GQmEokq9Hfel2yZMcaYSCRiW7ZsYW5ubty66tmzJ0uT7FIpYe7csp5gc+fy/4ay8Ypcv36dTZ8+nXl6ekqVXd++fdnNmzfVXjZ9VlRUxBYvXsysra25+unzzz9nmZLdYnWMoZUBIZpG+wwhb+laPEYPUiOkgmRkZGDJkiUAgA0bNqBu3bro3bs3kpKSMHz4cOzYsQNGRvLv6Lh69SqAsq60jKclkDGGhw8fcu/IvX79OoqLi7nXe72L4uJi/PPPPwCAbt26yU1nZWWF9u3bY+/evdi3b1/Zw9Z4HDx4EABQq1YttfMlXj7x908++QSxsbHYuHEjZs6cqdF3AwuFQsyaNQsxMTHcMCMjI3z44Yfo0qULGjdujJs3b+LSpUu4fPky0tLScP/+fdy/fx/r16+Hi4sLBg0ahCFDhqB58+ZqPSk1OzsbCQkJuHLlCq5evYqrV6/i9u3bEPJcgXFwcECrVq3QqlUrtG7dGv7+/lp9Z7JsmSUnJ2P8+PGIi4sDANStWxcrVqxAZzkPyFHlPdyK3uOtjJ+fHxYsWID58+fj3Llz+Pnnn7F161bs3LkTf//9N4YMGYKoqCjUrVtX6bLps8OHD2PChAm4c+cOAODDDz/EihUrEBgYqOWcKWZIZUBIZaB9hhDdRUE3IRVkwYIFeP36NVq0aIGhQ4dCIBBg9+7daNOmDXbt2oUffvgBkydP5p02OzubO1Aqexeuvb097O3t8erVK9y8eRPNmjV75zyfOnUKr1+/houLC5o3b64wbffu3bF3717s3bsXs+REPvv37wcANGjQ4J3zJNavXz9MnjwZaWlp2LFjBwYNGvTe8+Tz8uVLDB48mGt86NOnD3r37o2OHTuiZs2aXDrxfebiaRITExEbG4vt27cjPT0dP/74I3788Uf4+vqiQ4cO8PDw4D516tSBk5MThEIhrl+/jgsXLuD8+fO4cOECbt++zZsvBwcH+Pv7w9fXF7dv38a5c+fw4sULxMbGIja27O56a2tr9OjRA3PmzIHP/9/rrw1FRUWYNm0aVqxYgdLSUlhYWGDGjBmYPHmy3Fe+qRJwi71P4A2UvfquZcuWaNmyJSIjIzFnzhzExsZi06ZN2LJlCz777DPMnDkTderUUW/GOi41NRWTJk3C3r17AQDOzs5YvHgxhg4dqrABkBBCCCEVi4JuQipAYWEhNm7cCACYP38+d6UzJCQEP/30E7788ktERUVh0KBBqFWrVrnpxVe5bW1tYcn3CiYJAoEATZs2RVxcHBITE98r6BYHyV27dlV6Ei6+Ep6YmIinT59y7wwXe/XqFU6fPg2g7F3b78vKygpff/01Zs+ejUWLFmHgwIEV/q7Nq1evolevXkhLS4OlpSXWrl2LwYMHK52uRo0a6NChAzp06IDly5fj8OHD2Lx5M/bu3YuUlBSkpKSUm8bCwgICgQAFPPeBeXt7IzAwEP7+/mjatCn8/f3h5uYmtbzFxcW4dOkSTp8+jVOnTuHMmTPIycnBX3/9hW3btmHEiBGYPXs23N3d32+lqEEoFOLq1as4duwY8vLyAAA9e/bEjz/+CE9PTyXTqhZwi4nTKboFUxWNGzfGrl27kJiYiFmzZuHw4cP47bffsGHDBnzxxReYPn260oYvXffmzRvExMRg6dKlKCoqgomJCSZMmIBZs2bB1tZW29kjhBBCqhxq6iakAuzbtw85OTlwd3dHeHi41LjRo0cjJCQEb968wbRp03inFz+5XNWT/ZCQEADA0aNH3znPjDHs27cPgOKu5WIuLi4ICgoCABw4cKDc+MOHD0MoFMLR0RE1atR453xJGjduHKytrXHt2jUcPny4QuYptnnzZoSEhCAtLQ3e3t44f/68SgG3LDMzM/To0QPbtm1DRkYG/vzzT0ydOhUDBw5ESEgIFzwXFhaioKAANjY2aN++PWbOnIn9+/cjMzMTqamp2LZtG6ZPn44uXbqgVq1a5RoYzMzMEBISgm+//Rb79+9HVlYWzp8/j27dukEoFGLt2rWoV68evvnmG2RmZlbUauLFGMOePXvQokULxMbGIi8vD97e3jhw4ABiY2OVBtwAEBWl/hXrWbPKpqsIgYGBOHToEE6fPo3Q0FAUFxdjxYoV8Pb2xtSpU5GVlVUxP1SJGGPYvn07PvjgAyxYsABFRUVo3749rl27hqVLl1LATQghhGgJBd3E4DDGcOrUKSxfvhzp6emV8pt//vknAGDIkCHlrhgLBAL89NNPEAgE2LRpExISEspNr27QLQ6SDx06hEJFT+ZUICUlBffv34eZmVm5hgJ5uncve3mYOFiXJO7CWhFXucVq1KiBL774AgCk7rd+H4wxREVF4dNPP0VBQQE6deqEhIQENGnS5L3nbWNjg08//RSLFi3Cli1bcPbsWTx58gSFhYVITU1FSkoKXr16hSNHjmDevHno2rUrHB0d3+m3jI2NERwcjH379uHff//lAsdly5ahbt26mD17NnJyct57mWSdOHECISEh6NmzJ27evAkLCwuEhYXhypUr6NKlS4X/nqZ9/PHHiIuLw7FjxxAcHIyCggIsWbIEvr6+iIuLe+f9q7Jdv34d7dq1w4ABA/D48WN4enpi165d+Oeff/DBBx9oO3uEEEJIlUZBNzE4hw4dQmhoKCZOnIj+/ftzDxNJSkrC5MmTMWfOHLx8+bLCfu/58+c4dOgQAGDo0KG8aQIDA/Hpp58CABYuXCg1TiQS4dixYwDA2/WcT/PmzVGrVi28fv0aJ06ceKd879y5EwDQtm1bWFtbqzSNOOg+evQo8iVea1FcXMw9RK0ig24A+Oabb2BqaorTp0/j33//fa95iUQifP3114iOjgYAREZGYv/+/RV2ZV4eMzMzeHt7w8fHRyP30rZs2RJxcXE4cuQIAgMD8fr1a8ybNw9eXl6YNGkSEhIS3vuhOhcvXkT79u0RFhaGCxcuwMrKClOnTsWECRPQqlUrufdu6wOBQICwsDCcO3cO+/btg7+/P/Ly8nDy5El8//33GDNmDBITE3XuwUT5+fn4888/0a5dOzRp0gTx8fGwsLBAdHQ0kpOT0atXrwq/JYMQQggh6qOgmxicDRs2cN9Pnz6NnTt34vTp0/joo4/w/fffY+7cuWjUqBF3P7OqGGMQ8bwHcP369SgtLUWLFi3QsGFDudNHRkZyD1dLTk7mhickJOC///6DtbU1fHx8YCp+FyUPU1NTmJqaQiAQ4JNPPgEA7NmzR63lAMoe3PbDDz8AgFpdqps0aQJ3d3cUFhbi+PHj3PBTp04hNzcXTk5O8PT0VLgMioiXT1KtWrUwbNgwAMDixYvfab4AUFJSgqFDh+Lnn3+GQCDAzz//jIULF8JY/K5SPScQCNC+fXtcvHgRu3btQsOGDfHq1Sv8+OOPCAoKgo+PD2bNmiW17ani5s2b6N27N4KDg3Hs2DGYmpriq6++QmpqKubOnQsbG5t3Lm9dIxAI0K1bN1y+fBlbtmyBk5MTSkpK8Mcff6BFixYICAjAmjVrkJubq7U8Msbw77//4vPPP4eLiwuGDRuGuLg4CAQC9O3bF7dv38bs2bOVPhtCX/DVCYQQ+WifIURHVeb7yaoKXXsvnCHJyclR+K7ivLw87n3SXbt25d7La2xszAAwPz8/VrduXW748OHDVXqf9JMnT9gHH3zALCwsWKtWrdidO3cYY4wJhUJufr///rvS+fTu3ZsBYEOHDuWGTZkyhQFgAwYMUGENvPXPP/8wAMzZ2ZkJhUK1pp02bRoDwBo1aqT2O6bF7wkfNWoUN+yrr75iANjIkSPVmpeqUlJSuPeeX79+Xe3p37x5w20PJiYm7K+//tJALnVLaWkp27NnDxs4cCCzsrKSek91kyZNWExMDEtNTWVPnz5liYmJbN++fWzNmjUsKiqKjR49mnXv3p0FBARw693IyIhFRETIfd+2IRKJROzUqVNsyJAhzNzcnFt/1apVY59//jlLSEiotHen//fff2zhwoXMx8dHqizr1q3L5s2bxx4+fFgp+SCEEEL0ga7FYxR0a4CuFbKhiImJYQBYw4YN2aNHj7jh6enpXOC4d+9eBoB5eXmx169fs9q1a3Mnpy1atGD5+fksPz+fTZ48mQsm/P392dOnT+X+bnZ2NvPz8yt3opuRkcEOHz7MADBbW1v2+vVrpcuQkJDABTCXLl1iIpGIeXt7MwBsx44daq2PoqIiZmNjwwCws2fPcsOFQiE7d+4cmzlzJmvTpg2bNGkSy8rK4sb/999/zMLCggFge/fuVes3GWPcMru6ujKhUMhEIhHz8PBgANiePXvUnp+q+vbtywCw/v37qxXopKens1atWjEAzNLSkh04cEBjedRVeXl57K+//mLdu3dnpqamUtuyKp/evXuzmzdvansxtOrFixfshx9+YA0aNJBaN82aNWO//PKLRur7goICtm3bNtapUydmZGQkFfQPHz6cnTx5stKCfkIIIUSf6Fo8ViWC7p9//pl5eHgwc3NzFhQUxC5cuKAw/fbt25mvry8zNzdnfn5+ap+k61ohG4JDhw5JnegOGTKEMcbYX3/9xYyNjVlwcDDLy8tjEydOZADYF198wRhj7MSJE6xDhw5s2LBh7MmTJ1LzPHXqFHNycmIAWNOmTeWW1xdffMEFmcePH2deXl5c4O3q6soAsPHjx6u8LIMGDWIAWGBgIEtMTOSCQVWCdnnzGjx4MCssLGSPHj3iAkzJj729PVuwYAHbs2cPN81HH330TifshYWFzNramrtiOmbMGAaAWVhYsDdv3qg9P1WJ15W4p0BBQYHC9CKRiK1fv57Z29tzDSOnT5/WWP70RVZWFvvtt99Yu3btmEAgYEZGRszV1ZUFBASwbt26sdGjR7M5c+awNWvWsH379nG9OkgZkUjETp48qbGr3yKRiCUkJLBx48Zx267406pVK/bHH3+o1DuHEEIIqcp0LR4TMKZjT4apYNu2bcOwYcPwyy+/IDg4GMuWLcOOHTuQkpICJyencunPnj2L1q1bIyYmBt26dcNff/2FxYsX4/Lly/Dz81PpN3Nzc2Fra4ucnBzY2NhU9CJVOa9fv4afnx8ePnyIoKAgXLx4EQKBAOfOnUPbtm259x5PnDgRJ06cwLVr17Bt2zb0799f6bxTU1PRsmVLZGZmIiwsDAcPHoSZmRk3/tSpUwgNDQUAxMfHIzQ0FCkpKejYsSMePnwIAPDz88Px48d5tyc+6enpaNCgAXJycmBsbAyhUIhevXph+/bt2L59OwCgf//+MDExkZqutLS03PiDBw+ia9euAAAfHx88f/4cr169gpWVFbp164aPPvoIv//+O65du1YuH2fOnMFHH32kUp5lzZo1CwsXLpS6x7179+7YtWuXwmVQhG/5ZK1atQpff/01hEIhgoKCEBsbW+594QDw4MEDfPHFFzhy5AgAoFmzZti4caPK+3BVkZ+fD3Nz83e+r12VMtNXqixbVlYWNm7ciDVr1ki9m93DwwN2dnawtLSEpaUlrKyspP7K+/78+XNs3LgRN27c4OZVu3ZtREREYPjw4ahXr57mF1yHGPL2RYgm0D5DyFs6F49pO+rXtKCgIDZu3Djuf6FQyNzc3FhMTAxv+v79+7OuXbtKDQsODuaunKpC11pWNEEkErHCwkLuf6FQyJ49e8aSkpLYq1evuGF///03i4yMZEeOHGFr165lERERbPPmzXLvI7569Srr0qULq169OuvatSt79OgRGzlyJAPAPDw8WF5eHmvXrp3S7rAZGRkqL0tCQgKrVq0aA8DatWvH3RuZmprKXQmXvVf5xYsX7NNPP2UDBw7kllcdv/zyC5fXWrVqsTNnzrCioiIWFRXFoqKiWFFRUblp5I3/66+/mLOzs1Q3+nv37nHjS0tL2dq1a1n37t1ZixYtmIeHB5swYYLaeZb1/PlztnHjRtavXz/2wQcfsFOnTildBkVUnfbYsWPcFUBXV1d26tQplpKSwuLi4tjmzZvZzJkzuXuYLSws2KJFi1hJScn7Li7h8T7lrevUWTbx1e/BgwczMzMztbvvy37Mzc3ZwIED2T///KP2MxcMiSFvX4RoAu0zhLyla/GYQTeBFRcX49KlS4iMjOSGGRkZITw8HOfOneOd5ty5c5g0aZLUsI4dO2L37t1yf6eoqAhFRUXc/6o+2TYxMRFz585VKa06mJLOC/LGM8a4d9KKr/aKXzcjnsbIyAjFxcW4evUqnj9/jvr166OwsBDPnj1DaWkpl8bT0xPFxcX477//AEi/Y3nDhg2YMGECGGMwMjJC7dq1YWdnh5cvX+LatWvcbx04cAB16tTh8rF27VpYW1tjzJgxUq/J2rlzJ2bNmoVbt24BAHr06KHyVWeg7HVeu3btQu/evXHixAl4eXmhYcOGuHv3LoqKiuDv748ff/xRapqaNWty7+Z+F6NHj0ajRo3g4OAAX19fCAQCFBcXv9O8Bg0ahM6dO2PJkiWwtrbG5MmTpa7WGxsbY+TIkRg5cuQ755ePg4MDhg4dKvWatHddBnWEhYUhISEBPXr0QHJyMlq3bs2bLjQ0FL/99hvq16+v8TyRqk0gEKB169Zo3bo1VqxYgRs3bqCgoID75Ofnq/TdyMgI3bp1w8CBA2Fvb6/txSKEEEJIBTHooPvFixcQCoVwdnaWGu7s7Izbt2/zTpOens6bPj09Xe7vxMTEcO/9VUdmZib27dun9nS65O7du9x3gUAAe3t7vHz5Evfv3wcAVK9eHaGhoYiPj4eVlRU6duyIAwcO4MWLF9x0z58/l5pnv379MGzYMMyZMweXL1+GiYkJVq1ahfDwcABAnz59MGjQIGzZsgXDhw9H79694ezsjK5duyI/Px8zZsxQezk6dOiAhIQEjB07FvHx8Vz3zqCgIOzatQvVq1dXe56KCAQCfPzxxxU2Pzs7u3Lv/zZkdevWxblz5/DZZ59h165dsLa2hpubG9zc3ODq6or27dtj2LBhGnknNiGK1KhRQ25DECGEEEKqJoMOuitLZGSk1NXx3NxcuLu7K52ucePG+O233zSSJ/EVamXDZFlaWoIxhpKSEm4YY0zqirdAIECDBg1Qu3Zt3Lp1C9WrV0etWrXg7OwMU1NTPHv2DKmpqRCJRGjSpAns7OwgEokgEAggEAiQn5+Pq1evonr16hAKhXj8+DHy8vJgY2ODhg0bwsvLCwDQuXNnXL16FW5ubnBxcZFajs2bNyM6Ohr16tXjAti7d+/i+fPnaNSo0Tutsw8++ABxcXF48OAB7ty5AycnJ/j7+6u03kjls7Gxwc6dO1FcXCx1ZZ8QQgghhBBdYtBBt4ODA4yNjZGRkSE1PCMjQyqIk+Ti4qJWegAwNzeHubm52vlzd3fH559/rvZ0uqRWrVrlhrm6usLV1VVqmOQVRysrK4SEhHD/+/v7887b2NgYzZs35x0nEAjKdRt2cnJSq1u5PJ6envD09Hzv+ZDKQQE3IYQQQgjRZQbd99LMzAwBAQE4fvw4N0wkEuH48eNSQZ+kkJAQqfQAcPToUbnpCSGEEEIIIYQQeQz6SjcATJo0CREREQgMDERQUBCWLVuGN2/eYMSIEQCAYcOGoVatWtyDviZMmIDQ0FB8//336Nq1K7Zu3YrExET8+uuvKv+m+EFgqj5QjRCg7CFk4gfZ5ebmlruCq2y8LnifPOrD8hFphlxmhrxs+oLKgBD10D5DyFviOEzZA6YrjZaeml6pVqxYwerUqcPMzMxYUFAQO3/+PDcuNDSURURESKXfvn078/HxYWZmZqxRo0bswIEDav1eamrqe78yhj70oQ996EMf+tCHPvShD33o8+6f1NTUiggn35uAMV0J/w1HdnY27O3t8ejRI9ja2mo7O0QJ8YPvHj9+DBsbG21nh6iAyky/UHnpHyoz/ULlpX+ozPQLlZf+ycnJQZ06dfDq1SvY2dlpOzuG371cG8QPDbO1taUdU4/Y2NhQeekZKjP9QuWlf6jM9AuVl/6hMtMvVF76R1deH6sbuSCEEEIIIYQQQgwQBd2EEEIIIYQQQoiGUNCtAebm5pgzZ847vbubVD4qL/1DZaZfqLz0D5WZfqHy0j9UZvqFykv/6FqZ0YPUCCGEEEIIIYQQDaEr3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdFWzlypXw9PSEhYUFgoODcfHiRW1nqUqIioqCQCCQ+jRo0IAbX1hYiHHjxqFmzZqwtrZGnz59kJGRITWPR48eoWvXrrCysoKTkxOmTJmC0tJSqTTx8fFo3rw5zM3NUa9ePaxfv74yFk/vnTp1Ct27d4ebmxsEAgF2794tNZ4xhtmzZ8PV1RWWlpYIDw/H3bt3pdK8fPkSQ4YMgY2NDezs7DBy5Ei8fv1aKs21a9fQqlUrWFhYwN3dHUuWLCmXlx07dqBBgwawsLBA48aNcfDgwQpfXkOgrMyGDx9ebp/r1KmTVBoqs8oTExODFi1aoHr16nByckLPnj2RkpIilaYy60E6FiqmSnm1adOm3D725ZdfSqWh8qo8q1evRpMmTWBjYwMbGxuEhITg0KFD3Hjav3SLsvKi/Uv3LVq0CAKBABMnTuSG6fV+xkiF2bp1KzMzM2N//PEHu3nzJhs1ahSzs7NjGRkZ2s6awZszZw5r1KgRe/bsGfd5/vw5N/7LL79k7u7u7Pjx4ywxMZF9+OGHrGXLltz40tJS5ufnx8LDw9mVK1fYwYMHmYODA4uMjOTS3L9/n1lZWbFJkyax5ORktmLFCmZsbMwOHz5cqcuqjw4ePMhmzJjBdu3axQCw2NhYqfGLFi1itra2bPfu3ezq1ausR48ezMvLixUUFHBpOnXqxPz9/dn58+fZ6dOnWb169digQYO48Tk5OczZ2ZkNGTKE3bhxg23ZsoVZWlqyNWvWcGn+/fdfZmxszJYsWcKSk5PZzJkzmampKbt+/brG14G+UVZmERERrFOnTlL73MuXL6XSUJlVno4dO7J169axGzdusKSkJNalSxdWp04d9vr1ay5NZdWDdCxUTpXyCg0NZaNGjZLax3JycrjxVF6Va+/evezAgQPszp07LCUlhU2fPp2ZmpqyGzduMMZo/9I1ysqL9i/ddvHiRebp6cmaNGnCJkyYwA3X5/2Mgu4KFBQUxMaNG8f9LxQKmZubG4uJidFirqqGOXPmMH9/f95x2dnZzNTUlO3YsYMbduvWLQaAnTt3jjFWFmAYGRmx9PR0Ls3q1auZjY0NKyoqYowx9u2337JGjRpJzXvAgAGsY8eOFbw0hk02gBOJRMzFxYV999133LDs7Gxmbm7OtmzZwhhjLDk5mQFgCQkJXJpDhw4xgUDAnjx5whhjbNWqVcze3p4rL8YYmzp1KvP19eX+79+/P+vatatUfoKDg9kXX3xRoctoaOQF3Z988oncaajMtCszM5MBYCdPnmSMVW49SMdC9cmWF2NlQYHkyaYsKi/ts7e3Z2vXrqX9S0+Iy4sx2r90WV5eHqtfvz47evSoVDnp+35G3csrSHFxMS5duoTw8HBumJGREcLDw3Hu3Dkt5qzquHv3Ltzc3ODt7Y0hQ4bg0aNHAIBLly6hpKREqmwaNGiAOnXqcGVz7tw5NG7cGM7Ozlyajh07Ijc3Fzdv3uTSSM5DnIbK9/2kpaUhPT1dat3a2toiODhYqnzs7OwQGBjIpQkPD4eRkREuXLjApWndujXMzMy4NB07dkRKSgpevXrFpaEyrDjx8fFwcnKCr68vxowZg6ysLG4clZl25eTkAABq1KgBoPLqQToWvhvZ8hLbvHkzHBwc4Ofnh8jISOTn53PjqLy0RygUYuvWrXjz5g1CQkJo/9JxsuUlRvuXbho3bhy6du1abt3q+35m8s5TEikvXryAUCiUKmQAcHZ2xu3bt7WUq6ojODgY69evh6+vL549e4bo6Gi0atUKN27cQHp6OszMzGBnZyc1jbOzM9LT0wEA6enpvGUnHqcoTW5uLgoKCmBpaamhpTNs4vXLt24l172Tk5PUeBMTE9SoUUMqjZeXV7l5iMfZ29vLLUPxPIjqOnXqhN69e8PLywupqamYPn06OnfujHPnzsHY2JjKTItEIhEmTpyIjz76CH5+fgBQafXgq1ev6FioJr7yAoDBgwfDw8MDbm5uuHbtGqZOnYqUlBTs2rULAJWXNly/fh0hISEoLCyEtbU1YmNj0bBhQyQlJdH+pYPklRdA+5eu2rp1Ky5fvoyEhIRy4/T9OEZBNzEInTt35r43adIEwcHB8PDwwPbt2ykYJkQDBg4cyH1v3LgxmjRpgrp16yI+Ph5hYWFazBkZN24cbty4gTNnzmg7K0QF8spr9OjR3PfGjRvD1dUVYWFhSE1NRd26dSs7mwSAr68vkpKSkJOTg507dyIiIgInT57UdraIHPLKq2HDhrR/6aDHjx9jwoQJOHr0KCwsLLSdnQpH3csriIODA4yNjcs9QS8jIwMuLi5aylXVZWdnBx8fH9y7dw8uLi4oLi5Gdna2VBrJsnFxceEtO/E4RWlsbGwosH8P4vWraN9xcXFBZmam1PjS0lK8fPmyQsqQ9tH35+3tDQcHB9y7dw8AlZm2jB8/Hvv370dcXBxq167NDa+sepCOheqRV158goODAUBqH6PyqlxmZmaoV68eAgICEBMTA39/fyxfvpz2Lx0lr7z40P6lfZcuXUJmZiaaN28OExMTmJiY4OTJk/jpp59gYmICZ2dnvd7PKOiuIGZmZggICMDx48e5YSKRCMePH5e6f4RUjtevXyM1NRWurq4ICAiAqampVNmkpKTg0aNHXNmEhITg+vXrUkHC0aNHYWNjw3VFCgkJkZqHOA2V7/vx8vKCi4uL1LrNzc3FhQsXpMonOzsbly5d4tKcOHECIpGIO1CGhITg1KlTKCkp4dIcPXoUvr6+sLe359JQGWrGf//9h6ysLLi6ugKgMqtsjDGMHz8esbGxOHHiRLlu+5VVD9KxUDXKyotPUlISAEjtY1Re2iUSiVBUVET7l54Qlxcf2r+0LywsDNevX0dSUhL3CQwMxJAhQ7jver2fvfMj2Eg5W7duZebm5mz9+vUsOTmZjR49mtnZ2Uk9QY9oxv/+9z8WHx/P0tLS2L///svCw8OZg4MDy8zMZIyVvWKgTp067MSJEywxMZGFhISwkJAQbnrxKwY6dOjAkpKS2OHDh5mjoyPvKwamTJnCbt26xVauXEmvDFNRXl4eu3LlCrty5QoDwH744Qd25coV9vDhQ8ZY2SvD7Ozs2J49e9i1a9fYJ598wvvKsGbNmrELFy6wM2fOsPr160u9fio7O5s5OzuzoUOHshs3brCtW7cyKyurcq+fMjExYUuXLmW3bt1ic+bModdPyaGozPLy8tjkyZPZuXPnWFpaGjt27Bhr3rw5q1+/PissLOTmQWVWecaMGcNsbW1ZfHy81Ctw8vPzuTSVVQ/SsVA5ZeV17949NnfuXJaYmMjS0tLYnj17mLe3N2vdujU3DyqvyjVt2jR28uRJlpaWxq5du8amTZvGBAIBO3LkCGOM9i9do6i8aP/SH7JPmdfn/YyC7gq2YsUKVqdOHWZmZsaCgoLY+fPntZ2lKmHAgAHM1dWVmZmZsVq1arEBAwawe/fuceMLCgrY2LFjmb29PbOysmK9evViz549k5rHgwcPWOfOnZmlpSVzcHBg//vf/1hJSYlUmri4ONa0aVNmZmbGvL292bp16ypj8fReXFwcA1DuExERwRgre23YrFmzmLOzMzM3N2dhYWEsJSVFah5ZWVls0KBBzNramtnY2LARI0awvLw8qTRXr15lH3/8MTM3N2e1atViixYtKpeX7du3Mx8fH2ZmZsYaNWrEDhw4oLHl1meKyiw/P5916NCBOTo6MlNTU+bh4cFGjRpV7mBEZVZ5+MoKgFQdVZn1IB0LFVNWXo8ePWKtW7dmNWrUYObm5qxevXpsypQpUu8RZozKqzJ99tlnzMPDg5mZmTFHR0cWFhbGBdyM0f6laxSVF+1f+kM26Nbn/UzAGGPvfp2cEEIIIYQQQggh8tA93YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCCCGEEEKIhlDQTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCCCGEEEKIhlDQTQghhBBCCCGEaAgF3YQQQgghhBBCiIZQ0E0IIYQQQgghhGgIBd2EEEIIIYQQQoiGUNBNCCGEEEIIIYRoCAXdhBBCCCGEEEKIhlDQTQghhJAKNXz4cHh6eqo9naenJ4YPH17h+SGEEEK0iYJuQgghREPWr18PgUAg93P+/HltZ1Gh/Px8REVFIT4+Xiu/n5ycjKioKDx48EArv08IIYRUBBNtZ4AQQggxdHPnzoWXl1e54fXq1dNCblSXn5+P6OhoAECbNm1Unu63336DSCRS+/dSUlJgZPT2ekBycjKio6PRpk2bd7pyTgghhOgCCroJIYQQDevcuTMCAwO1nQ2Ne/PmDapVqwZTU9N3mt7c3LyCc0QIIYRoH3UvJ4QQQrRMJBJh+fLlaNy4MSwsLODo6IhOnTohMTFRKt2mTZsQFBQEKysr2Nvbo3Xr1jhy5IhUmkOHDqFVq1aoVq0aqlevjq5du+LmzZtSaYYPHw5ra2s8efIEPXv2hLW1NRwdHTF58mQIhUIAwIMHD+Do6AgAiI6O5rrER0VFSc0jNTUVXbp0QfXq1TFkyBBunOyVaVWWUfKe7vXr16Nfv34AgLZt23K/Hx8fj4iICDg4OKCkpKTcuuzQoQN8fX3VWPuEEEKIZlHQTQghhGhYTk4OXrx4IfXJysrixo8cORITJ06Eu7s7Fi9ejGnTpsHCwkLqnu/o6GgMHToUpqammDt3LqKjo+Hu7o4TJ05waf7880907doV1tbWWLx4MWbNmoXk5GR8/PHH5e6LFgqF6NixI2rWrImlS5ciNDQU33//PX799VcAgKOjI1avXg0A6NWrF/7880/8+eef6N27NzeP0tJSdOzYEU5OTli6dCn69Okjdx2osoySWrduja+//hoAMH36dO73P/jgAwwdOhRZWVn4559/pKZJT0/HiRMn8OmnnyoqDkIIIaRyMUIIIYRoxLp16xgA3o+5uTljjLETJ04wAOzrr78uN71IJGKMMXb37l1mZGTEevXqxYRCIW+avLw8Zmdnx0aNGiU1Pj09ndna2koNj4iIYADY3LlzpdI2a9aMBQQEcP8/f/6cAWBz5swplzfxPKZNm8Y7zsPDg/tflWVkjDEPDw8WERHB/b9jxw4GgMXFxUlNIxQKWe3atdmAAQOkhv/www9MIBCw+/fvl/sdQgghRFvonm5CCCFEw1auXAkfHx+pYcbGxgCAv//+GwKBAHPmzCk3nUAgAADs3r0bIpEIs2fPlnrQmGSao0ePIjs7G4MGDcKLFy+kfic4OBhxcXHl5v/ll19K/d+qVSv8+eefai3bmDFjlKZRZRnVYWRkhCFDhuCnn35CXl4eqlevDgDYvHkzWrZsyfvQOkIIIURbKOgmhBBCNCwoKEjug9RSU1Ph5uaGGjVqyJ0+NTUVRkZGaNiwodw0d+/eBQC0a9eOd7yNjY3U/+L7qiXZ29vj1atXcn9DlomJCWrXrq00nSrLqK5hw4Zh8eLFiI2NxbBhw5CSkoJLly7hl19+qbDfIIQQQioCBd2EEEKIARC/ouvPP/+Ei4tLufEmJtKHfPGV9vdhbm5e7sp7ZWnYsCECAgKwadMmDBs2DJs2bYKZmRn69++vlfwQQggh8lDQTQghhGhR3bp18c8//+Dly5dyrwTXrVsXIpEIycnJaNq0qdw0AODk5ITw8PAKydu7dP3mo8oyvsvvDxs2DJMmTcKzZ8/w119/oWvXrrC3t3/f7BJCCCEVip5eTgghhGhRnz59wBhDdHR0uXGMMQBAz549YWRkhLlz53JXtGXTdOzYETY2Nli4cCHvq7SeP3+udt6srKwAANnZ2WpPK0mVZeRTrVo1hb8/aNAgCAQCTJgwAffv36enlhNCCNFJdKWbEEII0bBDhw7h9u3b5Ya3bNkSbdu2xdChQ/HTTz/h7t276NSpE0QiEU6fPo22bdti/PjxqFevHmbMmIF58+ahVatW6N27N8zNzZGQkAA3NzfExMTAxsYGq1evxtChQ9G8eXMMHDgQjo6OePToEQ4cOICPPvoIP//8s1r5trS0RMOGDbFt2zb4+PigRo0a8PPzg5+fn1rzUWUZ+TRt2hTGxsZYvHgxcnJyYG5ujnbt2sHJyQkAuHd979ixA3Z2dujatata+SKEEEIqAwXdhBBCiIbNnj2bd/i6devg7e2NdevWoUmTJvj9998xZcoU2NraIjAwEC1btuTSzp07F15eXlixYgVmzJgBKysrNGnSBEOHDuXSDB48GG5ubli0aBG+++47FBUVoVatWmjVqhVGjBjxTnlfu3YtvvrqK3zzzTcoLi7GnDlz1A66xcuqbBllubi44JdffkFMTAxGjhwJoVCIuLg4LugGyrqY79+/H/3794e5ufk7LSMhhBCiSQKmqF8XIYQQQogO27NnD3r27IlTp06hVatW2s4OIYQQUg4F3YQQQgjRW926dcOtW7dw7969CnvwGyGEEFKRqHs5IYQQQvTO1q1bce3aNRw4cADLly+ngJsQQojOoivdhBBCCNE7AoEA1tbWGDBgAH755Zdy7yEnhBBCdAUdoQghhBCid+iaASGEEH1B7+kmhBBCCCGEEEI0hIJuQgghhBBCCCFEQ6h7uQaIRCI8ffoU1atXpwe7EEIIIYQQQkglYowhLy8Pbm5uMDLS/nVmCro14OnTp3B3d9d2NgghhBBCCCGkynr8+DFq166t7WxQ0K0J1atXB1BWyDY2NlrODSGEEEIIIYRUHbm5uXB3d+fiMm2joFsDxF3KbWxsKOgmhBBCCCGEEC3QlVt9td/BnRAV6MoOQwghhBBCCCHqoCvdRC8wxsoF3vSOVkIIIcSwCAQCOr4TQgwOBd1Ep4kDbcZYuYMwHZgJIYQQw0KN7IQQQ0RBN9FZskG1+H/Jg7FkUE4IIYQQ/SR7POc7/hNCiL6ioJvoLHkHXHmBOB2QFeNrtACowYIQQoj2SAbbAoGA91hFx3lCiL6jB6kRnSQ+2MoejGXHyx6I6YFr5clbV+Iu++KTHEIIIaQyyQbSkreSib9LHrvoWEUI0VcUdBOdw3f1mu+7bBBOB+Xy+E5oxH/5riJQAE4IIaQy8B2D5JEcT8coQog+0vuge+XKlfD09ISFhQWCg4Nx8eJFuWlv3ryJPn36wNPTEwKBAMuWLXvveZKKJa8bOV/wLRmYy7aO00EZ5RolZL/zddeTvfpN65EQQkhFkzx2y97LLRtcyz5QlbqYyye5zugYTohu0euge9u2bZg0aRLmzJmDy5cvw9/fHx07dkRmZiZv+vz8fHh7e2PRokVwcXGpkHmSiiXbmq3s/mPZ+7vFf6v6QVnyhAYof6+cvPR8T4unAzchpCqjOrDi8PVKkw22+W6Fkhwv+52U4eslKHsLGa03QrRHwPQ4OgkODkaLFi3w888/AwBEIhHc3d3x1VdfYdq0aQqn9fT0xMSJEzFx4sQKm6dYbm4ubG1tkZOTAxsbG/UXrApSFCjz3bOtx5utxim6ki2ZRt6D6mQP3PIeakMIIYaK71hDdeC74wuwlX2X/F/es1uoHORvq/Ju06PzKFJV6Fo8prdXuouLi3Hp0iWEh4dzw4yMjBAeHo5z585V6jyLioqQm5sr9QEAW1tbqS4+1N1HPlUfhCZ7BZZvGkVXyqsC2Svc8tIoO3GR140fkL/uCSFEn0keN2R7Xsk+2EsyPdWJ/Ph6T4n/V3TVWzKdLOpmXobvGC5vPcp7vgttr4RUHr0Nul+8eAGhUAhnZ2ep4c7OzkhPT6/UecbExMDW1pb7uLu7AwBycnIA8D+Ns6oGhLJkT1b47seWd482X9cz2W5VVe2gzNf9TlmXPL775mTT8p0IySsvIh81vJHKRtub6vi6NMs7zoi/i8dRnciP76Gn4r+qNBDzHZfkNbRXNXzbnDoN6nQrHiGVS2+Dbl0SGRmJnJwc7vP48WMAZVe6+e6llVc5VjXK7t+STaNsXvKC7KqyjuUFz/KG8Z1UymsAkR0u77dJeZKBtuyVMlpvRBP4tjna3hTj644rHi4bxMh+xOkk01T19S3bY0CWvOOIbMMkX4MvX0N7VVvXsutHWbdxRY3pVX1bJaSymGg7A+/KwcEBxsbGyMjIkBqekZEh9yFpmpqnubk5zM3Nyw2XvNItxtfFpyq2Nirq6sTXnVl2GlWnr0rrlq/rt+wJiryTSnld+hQ1iPBdAaoq61oVinoViNH6IhVNWY8V2k+lyesJpKwhV1Edqkoda8j4lle2AehdGtf5KLtSboj4tllFx3q+Y7i8YZL/E0Iqlt5e6TYzM0NAQACOHz/ODROJRDh+/DhCQkJ0Yp62trYAFF8FrKqti/IqdXkHUHlBtrLpJa84VJV1zdfyLTmcL72qXcsVdVmvilcbZPGtH3lXxqritkk0SzawAfjvf6Vt7i1F+6ckZb2AJNPxBdxVZX3L6/qt6PitrJeavAbMqhocym6n8rY3eUG1vGHi4VQ/EKIZenulGwAmTZqEiIgIBAYGIigoCMuWLcObN28wYsQIAMCwYcNQq1YtxMTEACh7UFpycjL3/cmTJ0hKSoK1tTXq1aun0jzVkZOT885Xbg0VX0WuqOVbPF7RulHUOltVrngr6oonmUbeNqjoiraqreV8v19VKLqKI5kGkP+gO0PfRolmqdKTparUh6pS5wo1Xx2o7no05PXO1+CjyjSA/EZ2Reta0flCVaXsGK7sPIqO5YRoll4H3QMGDMDz588xe/ZspKeno2nTpjh8+DD3ILRHjx7ByOjtxfynT5+iWbNm3P9Lly7F0qVLERoaivj4eJXmqS6+gwZfBVhVToSUdXmSTCePsoODsuDGkCnahviGq7oelU1fFRuQAPnPJZAcLztO3veqUge8C1ovislehQXk3yIiOa6qr1dljY186RX9zzcP2XIwxHXOd26jqJFXWTdmedusoumqyjbNd8xRZX2Kp1V27iV7fFI0X0KIevT6Pd26iu+9cOq0qBsqRVcAVQ043ne9GeJBRNE6qIh1rmieirpSGtI6lvUuwTbfPKrKieL7UHSltqqvN2VXClXZ/qrqOpRdd8rWgyoNaPLmV1WO98qOr+9yjFd1uqqgotaDuuVgiOdNpGqg93RXMcq6/cqevEsOMySyLbKSVKn85aWVd3VW8rvsVaCqcOCQ3a5k17uiq9d8ZcRXBnxlaug9C/iuVEmuD1V6B/DNU9kVtqpIdl1TrwBp8rYbVa/cyq7LqkbyiizfsUJM3j7Nt/2pcqXR0LZb2XpP0TFF0bamaN3wHecVnS8Z6vYse96oaDkVbdOy81H2W1XlvIkQTaOgW8PknRTJjq8KVx2ULdu7BuXy5qHopNJQDsryTrxlg0JlB1m+gFGSot+QF9gbyjoW4wu25TXoqHIyJC8wqqpBkCxFVxCrOkUNEMoCcfH/ssehqrRe+fZbyf1X3n4uSdmVa9npZBuQDGF9S64/RQ3efI2UsmllAztFgaW8spKX3hCo2qgrLw1f/SkviJfXkGEo2y0h2kJBdyWSF1TLG2YIJFuvJYMzecsn78RatmVbUZAnb/0qukKrz5QFzJL41q+qLdmKgh91Tpj0jewVGFUaJfh6rsi7kiPvpNIQ1t274LtypijoqYongvLWiSpXs/nqQ0OrExVRti/zpVc0TDaYliSvl4ai7VqfyGuckD3XUbQO5QXsfMGiovMC8f+Gsm75KAqy+fZjRetVUZ0qrzdHVbrizXe+qc5Hch5EMb51Z6go6K4EiloWxcNUDZr0ibzWf2VXBBVNxzcPyTSy8+EbLu+gpG+UBcuyB1x525yi+UuSnUaVAN8QtmfZBiNAeQOP5DjZ7VZyesnxfCep+rx9vgt5J82S65+vgcNQT7L58G17fEGOogBcliHsp6pSN9BWtn3xXcWVF5TzTauv2y3fSbK8oJCvQZYvSJecB9/2q+i8QPb3DWmbVhRMS+778o49kt/l1R+y85UdLlu36Ot2q4jkssnWqQD/sVzed2WNTqT8RTm+cy1DQ0G3liiqAA3lqoMqrd3yplOUXllrt+x8+KaXF7jrK0Un0nxXtiTH850QyU6v6Hf4ysNQ1qvkSY6iEzq+gFB2HpJUbbAwlPWoCmXbjaJtWHIehkrelT4xVa5IKdtXJU94DHFdylsuVYJkefu/ojJRlA++eekL2WOo7PoD5HdrVhQkKzr+KGuIVPW8QB/xBdPKjtXK5iXGd4yTF3yLvxtiQ6ei80LJ5ZVtAJb3XXZ6Q9oexSSPFYr2U8lhsg0bfPMC9LtBUhEKuiuBvAO0Kgd3fd3oFF1pkR2m7AqC7E6s6GqOsgMzXz70sTKsyACPb57qrA9F89fHdSvGdzIi74SF70AtLzDkSyObju+AZchkT1oA1U5UZMvIUA/UioLrd52Wrw4xxAZJScoaGCW/q1p3yTtBlzdePEyf60Z5QYUsVeo3vvkqqntV3ccN5SqjKo1gfOdGqsxXchpVrtDynYsZyvqV/Q7Ib9yQ3Mdlv8tOK3uOoO/rS0zyWAFIX2TjO57L7st80/E16BjK+hKjoFuDbG1tpf6XrcwUtTgC+ts9V91KRlEa2R2V7wDEV+nxHbz5WuNkp9cX8k7a+FoO+aYVj+ebp2wavvSKWjXVDQp0lSot+qo0GvGRdzIj/i6vwclQSR54ZYfzBUGK9ndDOrEB+ANhRfWlLHnboex6UnRM0neKrqAo2n8V1aeK6kNF+RD/1degUN56kBd4yE4rO5zvuKxoO+Tbx5U1IOkzeY1gfMdryXGA6sdpedPyNdIpO4/VJ4oadeRtq7Lf5QWW8rY/fV5fwNvllVxPfAG3mOz2y7c+5TVM6msdqQgF3ZVIWUUlu+HqI8mKRt2THL5x8loLFQVEilom5QXl+kbRwY6v0UaVAF08TFEAzdfgIfmXryz0bXuW17AjOV4S38mevJMdZUGjLHknXIZE0Um7JL79XV59oW/bnCx1GltUOZGWNw1fekUn6vqK75ik7rYiux/yHeOUNXry7ff6tq0qC/D4SJ6cS6aVDUxkj1eyZaToxF729wyhzuQ7Fr1Lww5fsKxsXrJp5TVwqpInXSXvOMzX4CY5Xnbd8m2TfCTLU9/Xmbx9V3Y83zLLO2dX1Dikr+tLFgXdGpSTk8N9V+XEiK/VTd92TnkHQtmDJt908loRlQUdilomZecnO0xRMKWr+LYTSfIOFpLrWLaVVtEJDN98+CpCvvWpLJDSRfIadBQ17kgO4zsQSc5b3nSS04u/q3OypY9kgx5lfwHlV9JUPQHSZZLLwLd+FDU2KjqxUeUkm+/EU5+3Pb59S0zRtqJOYCL7XXaYsnnpU+AtezItpspxQzat7Em55PyVncxLzp8vf5L/68u6lUdRQ6SyafjOi/jqTUXbpix5jUn6RFEArChABFQ77+LbBiXPLfR1nQH8xwa+Y5RkWkX7tGzjmrz9W9/3Y4CCbo2T3NmUtfLoYwAopmjnUBb4ifGNV7VikpyWrxLgO6nhW9/6st7lNVDIDlN0UqMo+BN/V9aQwXciJO9/fVi3fI0IfAcR2Wn4Gi8kqXpyLptO1ZN2faTKyQzfupb9znfiz7fd6wNl+5yi7VHeX/F85TUGyTvplPxNviBLXygLrOU1csluS5LTKPsuOb2yPPCl11WSy6AocFCncUjeCTkfVepEvjpEH9atLNl9VkyVdS6bXllALXvupWj+kuklx+lT3cBXH8pbPr5lVfZdUd2rr+TFMYqOO5LpVI1/ZM8pZRsr9B0F3RqmqHVHMo28A4cqlaEukD3JlRdkyB605c3rXXcwvoqUb2eWd8Kv6zs1XwWuzskK38FEsuxkT+oVnXAqCiT1+cRHUZAtu/zKDgiqnsTwjZPXKGUI+NaxosY2Rdu47Em47Dz0ZZ3xLTdf8CJveWW/ywvglW1XyvKhT5QdN2XrML51q2je8spFlQYlfW1IU6VOU7S9KtoW1c2D7DFK3vz0MShUd7yi44+y7Vq23OQdf+RNq2/1At/2WRHz4QsoFe33+rRNKopbZJeJ79jDdx7ON19l51/6tM74UNCtJfJai/SRohY+WXwnJspawt41L7L5kTdcsmLU9Z1aXsUu/st38FRl21LUcq0ouJb8fUXD5B3IdYlkAC0vn/KCQXnbsLKGEMm0stPJtvjKptFXylr+5Z0gylu3fP+r2tCmC2T3U1VPCOXtl7KNQZK/w/fbsuPkNWyoE5DqCnknenxUafThm6eiBkZF65zvZFOX1628/VZZXSkvoHufRkS+hmd5AY4+BoVA+aBGnfMs2fMrvvXANz/JcpHXmKGovHV5+5Wl7EIBIP/YLG86VeYpWW/oy3bJd24p/i77l2/74ZufvHMnZY2T+radyaKguxIo2nHVOYDp4obGV3HznTzypeU7UL7vAVJZq7cqJ1S6XBGK8y9vvatS6SsjW2nKBsyKAmi+ilP2QK6L+BprFJ1oyGvc4dv2VW1ckrft850o6WJdoAq+Bi5FJzN84+Vt/3y/JfmbulqHyu5rslQJwPnmKTk9X0MEX3pVt1ldXI+y+NanKo0YsmXBVw8oqg9kt01lAZOqjSy6gK/cleWfb3/VxHLKO5eSV2/oMtlzI0UNaPL2ddmP5HhJiupSvjqjIs/XtIHvnEZ2vJii5Za3z6vyXTYfuoyvgexdG95k90nJ+k/edsS3D+jbNieJgm4NsrW1VbgxyTuAyRuvixuasgOo7M7FR/ZAURF5UjWA0aeKUJVAQ5yuog6G8lou+SpAvt/Ul4OysgYLeeOUHbSV/aa8YEhZY5WiIE2XyDbU8G1D71PnKapD5Z1k69I6k20YEHuXExxFJz7KTmhk/1f0V5cbMCQp27YUnRBLLiNf/SbbqCa7XfPts4oa2fRhncoGb/LwNUxo6mT5/9o79yAriquBn2VhlyW4C7iwuxDeIERe8tB10XypCpSAlGK0IlJoUMxDggkEC8UnVlkGYmKq1BiMRtHEB0qiaBBBgoDBIAiCPIMQUHzwEHR3QQ2P3f7+oObatzmnu+femTs9c8+vauveO93T033mdJ9Hz72rs9emNd1VdAkMSscwu6xCBU6Z3FNTotRVsIREJn62jc+LvcfWe9dl5qHzN0wyo3QtEx2kPscFDrpDpK6ujlQy9b3OIKuOa5wwBYCY4x0EVIYNq0dl4V2SNZaU0AUUYTkXqqEyyQgLGFySq190TgdlvGXnXRdcUQGYXI7J3WV5ymO2ST7qEmXy+CljrcpFnc8uJSwoBwwrl8Hmnxr4YefZ9AM7rutz1DK0Re4vlQCS66qvuvOxe4fZEJsA0FWZqvNFnUNUMBe276L6DyZd1gXpLoD127Q+esdtx6TeO/Ue2iRNMP0O2/cIAmyMuuQG9V5nx9Vz5GOUHF1FXeewOU3JR/dqkhcmP9UPcHWtNMFBd8iYHGVZCXUT2uS4RoE6HsyY+TGIYfSPmtzqAogZN5dkjUE5bbnoty5D7LJTgyHrrq2xsAm2sTLquM74y9dU1wIqWx8llDG2Weu8YxiYbuvui3ofqOA7Kqj7p9Mn9RgV+KlOic4GYedS94UKqFxDncvqHPKgZI/NMfl8SmZqW5iOuSgvE9jco2wNtbbl0i5hfaUSJK6hJoNsA20/Y1JtCYB+LfXA9Ft+73JSQ7VB8iu25mL2ysb+q+dggabueq6gBtwemA8il9m8eu2bzqNkG4d5TMFBd8hghtvkJGEKhwWGLqAaB93igY2PCjaCQCdvqv+uQslV51Tnok+UruoCSNcMDBbA6owAJWsqOFLnts7Rod7bOFeurA+Y7CidUMenOm8YOlno1h65ffWauZQb5phic0J1UCjdo4JjnVODtS8fN/VHrufauok5iSrUHMt0TOr6gckem+tyn3X9jRKd3cGOyTLIlX7oknjqcdfk60EFOWqdIJM4VHCDrTW6eaWu9S7it2+6e0DVM625urZdk5suAMbG7NcXtbHd2LVd8HGygYPuCKAcTa+MMs4uBSyUQTUF0diYwsTkhOuCWVeCGNmBoRw6k7EOu382dUyOcBTYBDFyXVnndUZVl1XHEm1qf6g2sDI1WIhKb+U5YzKWlIwp5802KPFzXSzZkgu5yWPDromNW5WHTm+8z6q90I3PNiFiascFqHlpk8QJ6vqY7NXP8islaxew0Q0PSl/DRrV/qq5S/XUR3RpG+YRBXFNdA1WZUusx1ldX7DsFtebarI+UHEzJEqp9F9dVzP812Ry5nvxqCsapNZBClb8rMrOFg+4IoQI+3YLlyoJmcppN2dhcjcPGKGGOKeY4RQEW6Jky+bmGCpBsA6UosXHQdYGviqo/NtemrkEltagyXV/DRp0zcl/kcvUcD13yyyunyigHgbou1jc1SA1rzqt9xJI4cj1dkpIKwrEAXT5uGh9137B2vDquOD9+Ewvy8TDmjMnGq/c8zL5kiprgk1H1DquTK3Q6Lx93SV891HVK/UyNIWh0fo+aQFLPU8tck6/8Z1oL5HPUdqj62DXVerqA3UVs7rNpzaLq2dg47Loeqs2OCxx0RwzlpOrq29YNE9tslCsGWec4AOh32KKc1KZgFqsXFapB0yVgotZfrx8UNvKkgiS/98LWcFCBKxao59qxVIMwuS/ee7lMPkZ9ps5T1xQ1eKXONwVkuUoS6Rw5qn82QbLtOmXSEcrZ110vE70Pg0z7EeY8keWtSy6FnfDJBNWxpWTrmh4A2O3EuSDrTBO8YctZ9U2ptYBaN13SA8xG6JK8AHhyUTcm1dbYzBW1by7opNwn73OmyQbsuCwfzKfV+bkUruiaDRx0O4JpQkc9EWVMffXqYE6GyXiHBWUMbJMHUUxqyqBh2VgX9EMX+OiMWVTYBqc6B8hvwJNJfzAjjjlnlK6EKWds90AnLz9Oj/xZlo3N2oOdTyUBsCSbPLYgkPuuC/ApGVLJN3WN9bNOYTpi84oleVzA9l5hTl0uxqDaPkymakLEFbB+e1DHo0CWG7b2YQk7F9DNRfm47RoYJNicl4+bgsuoUfVTd+91yWHKdmF+Guaj2fTNBZlR/hpAZhuDVJJBrmubrNHVc0F2NnDQ7Qh+DW2UQYttFpZy/KMydLoFVT3ufXbB+bEJTlxxHjxUo4QFMlEH3mqWmXLQVKh+B3EPsIw85tjoHHf5c9gOmo38qOtja54u2KQcPErXqGvrAl7sc1A6qraNJQewY7r2sr3HlPOjtmsTpES9VmJJK6pPUTm5avLI5IxHjc4p1gUaUaHOWSqhJh9zwQZ57wHMQWGu5UwlIU1rgfzqApQtMNly01hM98Skk/KxqJNuan8wP9NPjCK/qu9tz7fxf13UNwoOuh0CW9ywACVqxZIdG1Of1P670HebjD0WkOWy72pGkOqrK86OjOpQ2gROuUYXqFDBIpYwCCNxQM0p7DjlSKgGLwz9Vee/ukaZ5Ov1j8qMY6/YMb9G3aaOzTj8QDnQuuQZldw0BRJ+sQn8qISkn/bCRJaNmvBVg3G5ThRrEdY/eQxyvagDwkzKooYKrnXzKarxyPfe1I+o9YGSH5YojHJ+yZjsHmV/MBtL+TS666nt6NZ7ql+5AtNBKsEmn+PnVXdtP/UxXNA3Gzjodgx1EVAnehDKmQ2Y06Jm8mRcC7j8BgI254aBSW4uOz1yQCqDOe5R6AOVeKH6LZ8jO/C6HYlswIy8qX9YsKYmxsLoJyUD1TCbEgXycWycqvzVOth8oJwfXTnmpGWbsJDvg7puY/Kj1nisTlAJARvnVP1M3Z+o13gKXYCba0y20gV0/VHXQpewDbh161cuUNdmqp9hruF+UX1T6piMC/ph0wfKhlJ1MB9c57+r59v0NQrZmQJt3Tk2/oCHmgjFztf5anI7On/DNXIedB87dgxWr14NL7/8Mhw6dCjXl48FOoOgBrpR9Q/DFYfGBr8GIpdjoxYNLABzVdY2SYsoxoAlsrA+Ull8dW6G2U+vP1S23EZHwlorqPtGBYam62PODSVvLCmB6RJ2DtVX+Zi69mY697H+2yQLsHFS7QcFFkTboDpN8rFcYbOWq/J2IXihZOTXSQ8LWzsUtSwxdIFqVMleUx9M65Ertp7SiahlqqImArGkJxU4y+er5VjCFEuq6tZv09zH1tUwUf0i3bVtk0Bym9ifamt1MvaTEPaOuTJfVHIadD/44INQVVUFF154IVx++eWwadMmAAA4dOgQlJeXwxNPPJHL7jiLHycvl8qFOcC6RUxdiFwGc+TVscj1wu4Ldl9Vw+Gqw+Ohu/fqwpsrHbHd2cAcolzK2yYxQJ2ngulxNvgNGtV+YH2hHGOb+2SaD9iapJbZXMfvvVd1m0qimvpC9TcMXaSCaOy93I+oAjGsbzqHzSVnjOqL7v7nCt0cd9nmePixK1H4KZi/ofaHOidqsPmtWy+imHOY/mLBNBY4q/1W38vXwNY9U7ApX1fuHxWIhqmf6vhUuWRje+S2sD9df3TX1NkjdQyurPUyOQu6586dC1OnToWRI0fC448/nib08vJy+P73vw/z5s3LVXecx5TlwhaHsKEySmqZ7QSLEnVRU8vUyZsLGZsCEfW4iwuKDGU81LKowO49dg+ikjOWAFLLKbAxBKnHanuYHG3OxcpMa58K5bjK1/LqqddVz8X6TTlOOmzmsVrXNN91fQwKynn2Pqs6STmRuQhiKJ2mAoJMdCtXUImhqPurylftm8tgssMSSpgPk2t0+pvrhIAt1Dynkoq5Ql2nMN8UQw2a1fqy/VBtGDZm1d6o15b7h+kq5kcHrQdYv026qKKuB7pX3R82VptkCDWeqNdOipwF3ffffz+MGTMGnn32WbjkkktOKx88eDBs3bo1V91xHmqCqQtJrg2GyUGNS0Do4SewpQKMMHHNoPlFDbKpACmXSQ11kVfvsepkRu30eq+UfCgjp7ZjCu5sUJ0NU+CDHcMcj2yTMfLcVJ0mU1LAZk6pDoEOysmgrm9qB+tHmGCOJ/WKJS1s5RREP9Vryv3A6ru2Zqp6GqaDnUm/5M/qXHdNliomXwTT8VzIXF0PML3U6bYrmHxPdT3OlT7b+MQ2vrXNNfz0ifLlTHOJCjh19dRjWB0scKUSVV5/qTVW7pvuVfengiUrqAQGNlaPsrIy9HhU5Czo3rVrF4waNYosb9OmDRw+fDhX3YkFOkWUoRy7IFEXT9NC6qKRoNA5a1RQlou+yJ/jksRQsdHhXOqKbUDgkmOpZsRVTAZJdSYyXStMmWUMk2G0SSrYojPemegcJje5DHNudM6Frt/UcdVJyhXUmE11Vb0Lq89y25SuZ5LoiApqbqnJpFz1RbfOqO9dRpWr30AszP5g+mnyP1yD8ke9slwnDEwBqfceW1tzkSTEAmNbG6r6JGpSVw1yqSBdl6S0jTmotkyvmWJa/2ySB66Qs6C7VatW2h9O27ZtG1RWVuaqO7FBnaSY45cL5VInlm4yuWwkKKisH4B+Zy7oa5sMhlw/Luj6i2Vxw+qDTXCjHncB1YgC0I9uqeh02o+sdc6irtzGidQZ/EywnUdUOdUfdXzydSiHiro+NVaqD7l2XuU+eNgmUOTPYfQZm8vU/FXXFxcx9S2K4EWXiI4TujVLl+QIuz9+EoGu6q0MNs9yHdQCnJ5YxtbyXK1TVP9sfR2THVXfY+2q9klN5KmBvHwe5VvI5+ZSbjo/XDeX6urqctBDe3IWdF988cXw6KOPQm1t7WllW7duhcceewwuvfTSXHUnNqiTSHX01EVcXWyCwI+z6rJzo8MmwyePLcgxqveRykpi9z0OyP3FFksqMAwbLAhyNaGBydA7rpZ7UNlfStdM19fJxpTQoALOsNYL3XV1zox8roo6/zAnh3Lc/SaVXNBHSufkcg/KMQs7gMGSE2p/XZzPMib9z3X/bYPBuKALRrz3poRZkH3RXVc3p1yFCt4w2xTmeHRrgU3SJVf48SFVn1qVL5VMkBN1qq1SfUrKr6D6GaX/ickDs7XYe1coEDmS3qeffgrV1dUghIBLLrkEHn30Ubj66quhoaEB/v73v0NVVRWsXbsWysvLc9GdUKmvr4eysjKoq6uD0tLSUK7hUnBrs4MTJ9SFCHPugpK/btcGa9+l++4HapxYABb2GKn24yBbUx+pZIZOzzxM5XIdnY7q+k3Np7Ch5rRffbPVWZskg839cUEfdQky2/ODGofLcsoWm3FEtTbK5QDxt/O6cYY1Rj92J246nSvbbduPsOoHhc0809kNAPpJK8pG69oMqt+5wM/cLSgogLq6utDjMT/kLOgGADh48CDcdttt8OKLL6Z2vM844wy44oorYPbs2dCuXbtcdSVUgg66bRZrzJkNY4KYHMW4Y2s8ghh7Ns5/0qCCliATG6bFOm6yt5WRKdDL1OmjdmeooNoFByfTPlBJAwD8aSTb/mRTJypMeheEc6drNymBH0bUaxSViIt7Yt1luSbJJukIU4f8rqkuytZGPrb91o3Vdv0Oa6MpSGx8mFxsgvohp0G3zGeffQaNjY3Qtm1baNIkp/8uPHSiuslYNgwguwUO2+3Ktk3XyWRhy+Y6uqQKQOa7i67hJ/gNc4GnElMuGhUKU3LNNlOOtamW2eipTYIq6uSSrRMRdtBoKndVDyk9AzB/R11Xx/bacht+HElX5Wkiin6Hpfsu4cfehjF203odV5n72YEM+rq2bbu0xmI23G8SxpRQp65n04bL+Omna0F306gu3LZt26guHVv87EwFaThzEYC6hM1OoFwvE6idMuoeZns9F5DHqdPhIHe0VMMmtxdHY+Oh6olu/mP1PTAdLyjA/5+6H/lgwVbUzg41brXcZu007SRgn3WOPnV9l9DpGTVng7jnmHOq0+84z2vMLphsfZDXTprNkTHZk7DGbhMAmdbzOKBbX8PSYcy+Y9dT++SCbKn1UsZkf9Q1UV0fbcZMteGdj/UrarAxUb5e3v7LsLB4+OGHoUuXLtC8eXOorq6GtWvXauvPnz8fevfuDc2bN4d+/frBokWL0sqvvfbalNPp/Y0cOTLMIVghK5jNxJT7733O5prq+fJnVxaxINEt4NnKFWuXcsrV68Udb5xUgKcaCe99puNXg0bMufHexxnV6cDAytXzZLnLste1ja0RWBty3ShR11JVH+VX0/kYpjGqbevmvmtQeobNMSzJle11MSeLqhtHu6TqI0C6Lc+FHcCukQQbZEp6YT5OUGOm1kZdnaSg82sygZoL2LyRX11Mapr6Qq1luve2ekTZZeq9a2BJMsrXc4lYB93PP/88TJs2DWbOnAnvvvsuDBgwAEaMGAEHDx5E6//73/+GcePGwfXXXw8bNmyAyy67DC677DLYsmVLWr2RI0fCvn37Un/PPfdcLoajRWcwsDJ5Yc9UAU2T2SVHOmjkgIEqzxSdM4gZfpcXkGzBAmH5VbdLYELnUMnXi7MziSUt1HIPqlw1VvJ5avCMtSu3j/XPNf21Ddy8VyoQV+WuysdmF8Yludhikh9mF9SdLxtkZ1N3PnZ/4ihXDyxAk9+HtWbpghLX5nCmYDppU5btNf20lQR7pNMlG7tsalvn2+rWWxdla9MnP3LExosllbEEqak9F8ESMPJn1/5lWGTf6Q6C6upqOPfcc+EPf/gDAAA0NjZCx44d4Re/+AXMmDHjtPpjx46FL7/8EhYuXJg6dv7558M555wDjzzyCACc2umura2FBQsWZNyvsL5DoDoeWPZfrqce887xe71s6yQB1flTj/ttR3dutteIEzoZAJy+++0dy7Z9v3XihGk8NrpM1cnmuq5hmmc2a6vt+otdG8B9h4ZCF1j7Pc9UXyffTOUfVzKZl37azQeysdmZXEsmH3TVz5y1WQ9skpd++hIHbHzDTNdB0/Gw1pgwsNE11369PLY73cePH4f169fD8OHDU8eaNGkCw4cPh9WrV6PnrF69Oq0+AMCIESNOq79ixQpo164d9OrVCyZNmgSHDx/W9uXYsWNQX1+f9hcGasZbPgaAZ7XUHSu/u4RYFgnrU5LRZW4z2XVQd3C8Y1SbSZSxmhH3jnmoOq7Tbaptub6OJMhXpz8qul0IUx1Tu57sTeuGC1C6lO16R+0eqHXirHfUDpMHtq5hzjaGOn/V+6PuTpoCmySBrYlBgbWH3ce4Y9LBoPRJ3k2k/C/1WBLkjMnLFChidgNbl1VZmuQVxjwJC8yG63QRe4+tk+oc1vlc8rXjsI6a1n8XxxDboPvQoUPQ0NAAFRUVaccrKipg//796Dn79+831h85ciT85S9/gWXLlsFvfvMbWLlyJYwaNQoaGhrIvsyaNQvKyspSfx07dsxiZHp0hhEL1jClNC1C8uKGtZtP6BzFTHdtsKSJn8xvUjDtMqplmIx0um2js0nRaypRYwpuvFdMzzFZ6up45aqOuw42J01Oh0lmVAY+KfrmQY1J3TFRj+nmLjbPqbVBro+1FVdsbHSQ11IDGTUxHJe5bIsp4Ssfz2Teqrovt51tUi+uUPNWtRnqmqGuz2qZ6f7YBuhRo/aTsqE2Y1WPya9yG5S+xUkPbXwdl4js18td5aqrrkq979evH/Tv3x+6d+8OK1asgGHDhqHn3HrrrTBt2rTU5/r6+tACbyxLSGV2sGCFClww5xELDuW2seNJQzUAahmA/SNSlAND3csky1iVBRWAY86RWqZzwrEAnWo77mBz2UaOlF7L9bBjJl2OI6Y5h8lDro8l0dQANO4yktHNJZ19MtkiVVaqvur0Wb1mHDEFu2GtYXGXmy22tjtTeVBrq3fMpM9xxzQ/5eMAp9tnnb+ps1cUcZEtFngD+LO5NudQ9lwtixM6/8clYrvTXV5eDoWFhXDgwIG04wcOHIDKykr0nMrKSl/1AQC6desG5eXlsGvXLrJOcXExlJaWpv1Fgc0OgFqmOoNemc7pNNVJGqaMo+wkYugCHOqY7rpJwW+Gkgq4VYODJY50wXeSoMZHyVrdAbBZB1RnUT4v7jK1met+21Nf4y4jDJu5jO0mYvMS0z+Toy23F5cdDxOyXcbGpMorm+tQbVPlScHG18lUpzLdJU8CVPDoIdsLdW3E7JGaiMPAyuIoe2+smP3G5EOtvVgCGJMHVi9u6Hwe14ht0F1UVASDBw+GZcuWpY41NjbCsmXLoKamBj2npqYmrT4AwNKlS8n6AAAff/wxHD58GKqqqoLpeEComSr1mO4cbMHzyjHnJ46TMAzkRQvL5FKYnCe1bZs2kwSVEaeCbO8cLJlBJThU455kZ0iXAKKCQF0CiXqPtZMUsAAQK/fe6+Y19j6JqHPUOyaXYfXluWySM1UmkxQ9lGWC2RBdItfPNXSOeNLRzWOdLtq0KeuzaT1JqrxNGwpYYsMUOFH2GwvMdbYwbpjko/NHsQ0IzL+Pqx3HxuUqsQ26AQCmTZsGjz32GDz11FOwfft2mDRpEnz55Zdw3XXXAQDAj370I7j11ltT9adMmQKLFy+G+++/H/7zn//A3XffDevWrYMbb7wRAACOHj0K06dPh7fffhs++OADWLZsGYwZMwZ69OgBI0aMiGSMOuTgWeeQUEaVcogwx1w9z3XFDgNq54XKxMpOEpa9xNrOlx0GDyqIo8D0lEoimdpJsnz9Ohs6J9Ame5y09cAkPyqhA0Dv6CZZ3wDwx2Sp9ZKqRx2X25frmYKZOKMGbKoNkWWQiU1Oosz8YgpabGy3jCmQySdZ68aKJY5MQbiaUMfax9bZOMqc0iPTOTZJHawsCfZbnWOujinW3+keO3YsfPbZZ3DXXXfB/v374ZxzzoHFixenfixt79690KTJN3mFoUOHwrPPPgt33HEH3HbbbdCzZ09YsGAB9O3bFwAACgsLYdOmTfDUU09BbW0ttG/fHi666CK45557oLi4OJIx6tAtOqZJpr5imUHMiaKum3RkB4eSB7Uzix2Tz1PbyidnSDdeSpbqK+Ys2RiopMuXki01dkxX5TKqnaTK0hQwU8fVY0mVD4ZNkoHSRdN71enGXpMIJQebpIVN26Z5n2TZeqgypeY7VeZhSkpmYqvijkmndPNaxmZdVX3auMrWdl5iT1X4uQZ1vbiC2YqysrKIe5VOrP9Pt6uE9X+6/aAL+rB6VLnfeklGFzRjZaagxO/xpGPjgFPnAdgFlkw6NrJlOdrB8/kUfhI2WH1Te1RZEuXsZ0y2dW3XyyTK0y+ZyMXP7mS+kelct10D/F4vTmQyFlv9TZKcVFyIx2Ri/Xg5cwr1MQqbSYU9jmabwU3q5DQhZ1F1GVYZ3SMusrMov+a7fHXvKV2n7gd2Tj6CzXcAs75i5dijb0kG0zmqTD6Wr/PZSzTqdmGoXVrsVaejSQ64Aex0R5UTNdepduXksPyXRHnqkMfuYdq5xo5lsuuYVNS10iQXTIfVDQ0b/ba9nuuo66h6TK6HYfPEAHUsrrjul3DQnQBUpwUrU+t4hoE61+RY5jOUbLBdbu/PRoa29ZKI7bj9BNey8+jXYCcNk1FVdVc+JtdJepCDgQWRcpn6Xn3KJR+hAg9TsIK9qufl0y6NCSxgVp1zLJjG5Cnbq3yUp27sWCIIs/2qXCmblC+Y1gDKLsv3AVtXdUk73bXjBhUgU3MYgF5j/RyPM67bXQ66E4KaFZSPyZge3cGMCu8apkMt5rLzo1sUZVSHMQmGIhN0OuuhGmub3RwsSGcZ63+khQp6dE96JB2/46WefMk3dI4wtqPqZ8fGpiwJ6II7dd5SiQsqgGHSoRLq6tqHBYs2O4h+kvBJgUqqZWJTbJ48SJpsTf4mgDnZo9O7JK6faqLcJTjoTghYljaTYFk93+/jQUlHNba6oM5mh1Xdlch3qB0Er0ytq/uMtZvvMqbmsE0Cw6ZekrFx+GyO5wuqQ4gFjNgctpFbPs1lNZnrHQPAg28qCPRju/NFtiqmBDimu5TNV8+RP+eTH2UT7GW7hspBZRKTGrZ+JPYZ86Eo/zVJuDo2DroTDLb7rZYB2O8iuKrEuYR6xEkFy+7qjEE+7h6qmJ6yUOuox9T3KixjfJdBPi6TL1lxP2C6hu04JN2hsUFNBOt2/20elaQeP80H5PGabDdlZzxHG9NbtV4+ydYEFbR4n02PNesSJPmCzv9Uy01Pu+nsveyfJQnM7zT59aYnMJImIwwhhHO/Xs5Bd0LBsuLece+YKVhJWrYwKCinUWecqeMs42/Agm3d45TUeSxTM7YJI1OGPd+wSVok0enLNdTj06yHdkE1ppump+F0x/IJzJZT9p0qpxKW+a67HrqnhjDZyp9NQWdS9ZeyMViil9LFfFw/6+rqou5CGhx0JwzTYyPUgmbK2ObbRPWDbuebCtB1uz75jM0jkaYdWCrhwTr8DbrH+XQOO3MK3bxmOZ2O7Q6VzRMu+Sxfm91SzG7rZC8H67xG2iciVH3VJTPyeZdbxrS54ycJRG0m5QOUjQZIt0PeezkuyBcZuQoH3QlDnmwe1K4q5WDzY6X+UBd/1YHBdmuxcuYUmFwoPdUZcZsAPl/BZEgl61g/aajdReYbMGePelTaFKzksy7qdIxyqLHkrq4O6/ApdMEfFcCYEpn5rLsypqf/bM7RbRDlO5w0dxsOuhOK6REcuY58zDvOj5XqoXYG5Ef4VIdHl4lkvsH2KQDT0wWsu2YwPcXqMDjYI7tMOrqdV1Mwgj1emq/YPpKrlnmvNk8aMKdD2Xi5DAusVT8rn3XXwyaxRp2HfebNCyZucNCdcLDg2xSoyJ/ZocTBnG1dpls91zvOssXxa0Cp3XH1qQIGh9pJYLkxQWKz8wqg//Eqxk4Wqs3HAmtOaNDonmChAmpKr1l3T0eVr5qwMH0lAiBdr1l/mTjAQXeCoQyqaWfBVIc5he0jTryD6B/1aQsPKoDWGV5OHJmhdhRZbkxQmL7PKYPthrEupgcq1NMCumBRFyQy6ejsho3cOKFBo/vKifde/ayTJ8uXiQscdCcY6rE+06No3rkceOvRLfQsu+wxBdD8va5gUZ8KYB1mggR76oR61FR+zwH3N5i+UoN91j2BxXNcj7oWYjKjdmTZh6LJRDamJ2IYJg5w0J0HUI+Wc9CSPaadVzYK2UE9fgaAO+yYk8TYY/Mdb4bJFN13OrEdXPmVScd2F5ay+fwEkBn1CSrTV8qwHVm2QTg2QbROdpyMY+IIB915gG7H2+ZRc4aG+q6cXAZw+q+asyG2w+93P/nxSYZxGypQUecsr5NmbL/b7UGtoSxnGirpqz4ibftVCeYb1OS46XcHZF1luTJxhIPuPAJzbEyLHGMH9R1kuZzKljNmdE8UUHVZjxnGPWx/N4TXSRoq8KACQ10dlrMdqt5STxTwD6jZg/0Wi+m73ayrTJzhoDuP0D1mJh/jRc0ffh6HZNlmhvpEge6XTb26LGuGcRNshws7zuBQyUbVxtt8/5sxIydybeXHjz/bgT3Zgr3nNYFJAk2j7gCTe3TGmA2Ff2S5sfzChb8jxzDxR/d9ZF5D7TAle7EkOyfYM8MkJ9uEB0Oj2+1mmKTAO915CO/EBg/l+PDOTfCou978o3UME1+oXW9Gj+7pH/UzFhByAjM7dD+YxjrMMAwGB915DP+wV/jovjvPZIcaeLOjwzDxg3/0MBhMO93YD9WxzDMHkzcn2RmG0cFBdx4jf/eVjW/w8A5O+LBMGYbJZ2zWQOw787x2+sf0o7P89QiGYXRw0M0wAYH9n2gADgwZhmGY3ED9iyUZtkmZgX0nHgu8GYZhMDjoZpiAkL8nx08PMAzDMLmA+n4x9i+XmOygdrL5kXKGYUxw0M0wAcOODcMwDJMrbH65nAkG6kfT+HdbGIYxwUE3wzAMwzBMzMF+GJX6jxpM5uj+5R3DMAwFB90MwzAMwzAxR/5hVOq73RwYBg8nMhiGsYGDboZhGIZhmATB/1IxXDiRwTCMX5pG3QGGYRiGYRgmWDgYDA+WLcMwfuGdboZhGIZhGIZhGIYJCQ66GYZhGIZhGIZhGCYk+PHyEPAeO6qvr4+4JwzDMAzDMAzDMPmFF4e58nUQDrpD4PDhwwAA0LFjx4h7wjAMwzAMwzAMk58cPnwYysrKou4GB91h0KZNGwAA2Lt3b1Y3+dxzz4V33nkn6/4E0Y4rbdTX10PHjh3ho48+gtLS0kj7kqT7E5Rcg+hLUG240pckytaV++PSehBUO660wbINrw2XZJuk+8NrbXjtuKSzQbXjSl9YtuG1UVdXB506dUrFZVHDQXcINGly6qvyZWVlWU2gwsLCrA1HUO240oZHaWlp5LJN2v0ByF6uQfWFZRteX1xpI8h2XFgPgmrHlTY8WLbBt+HhgmyTdn8AeK0Nsx0XdDaodlzqCwDLNow2PLy4LGrc6AWDMnnyZGfacaWNoHBpPC71JQhcGo9LfQkCV8bj0v0JApfG40obQcGyDQ+XxuNSX4LAlfG4dH+CwKXxuNSXIHBpPK604RoFwpVvlyeI+vp6KCsrg7q6usCyNMwpWLbhwHIND5ZteLBsw4NlGx4s23BguYYHyzY8WLbh4Zpseac7BIqLi2HmzJlQXFwcdVcSB8s2HFiu4cGyDQ+WbXiwbMODZRsOLNfwYNmGB8s2PFyTLe90MwzDMAzDMAzDMExI8E43wzAMwzAMwzAMw4QEB90MwzAMwzAMwzAMExIcdDMMwzAMwzAMwzBMSHDQzTAMwzAMwzAMwzAhwUF3wDz88MPQpUsXaN68OVRXV8PatWuj7lKkvPnmm3DJJZdA+/btoaCgABYsWJBWLoSAu+66C6qqqqCkpASGDx8OO3fuTKvz+eefw/jx46G0tBRatWoF119/PRw9ejStzqZNm+C73/0uNG/eHDp27Aj33XffaX2ZP38+9O7dG5o3bw79+vWDRYsWBT7eXDJr1iw499xz4YwzzoB27drBZZddBjt27Eir87///Q8mT54MZ555JrRs2RKuuOIKOHDgQFqdvXv3wujRo6FFixbQrl07mD59Opw8eTKtzooVK2DQoEFQXFwMPXr0gCeffPK0/iRF9+fMmQP9+/eH0tJSKC0thZqaGnjttddS5SzT4Jg9ezYUFBTA1KlTU8dYvplx9913Q0FBQdpf7969U+Us1+z45JNP4Oqrr4YzzzwTSkpKoF+/frBu3bpUOduyzOjSpctpeltQUJD6H72st5nR0NAAd955J3Tt2hVKSkqge/fucM8994D828mss5lz5MgRmDp1KnTu3BlKSkpg6NCh8M4776TKWbZ2xClGsOmLEcEExrx580RRUZF44oknxNatW8VPfvIT0apVK3HgwIGouxYZixYtErfffrt48cUXBQCIl156Ka189uzZoqysTCxYsEC899574tJLLxVdu3YVX3/9darOyJEjxYABA8Tbb78t/vWvf4kePXqIcePGpcrr6upERUWFGD9+vNiyZYt47rnnRElJifjTn/6UqvPWW2+JwsJCcd9994lt27aJO+64QzRr1kxs3rw5dBmExYgRI8TcuXPFli1bxMaNG8XFF18sOnXqJI4ePZqqc8MNN4iOHTuKZcuWiXXr1onzzz9fDB06NFV+8uRJ0bdvXzF8+HCxYcMGsWjRIlFeXi5uvfXWVJ3du3eLFi1aiGnTpolt27aJhx56SBQWForFixen6iRJ91955RXx6quvivfff1/s2LFD3HbbbaJZs2Ziy5YtQgiWaVCsXbtWdOnSRfTv319MmTIldZzlmxkzZ84Uffr0Efv27Uv9ffbZZ6lylmvmfP7556Jz587i2muvFWvWrBG7d+8WS5YsEbt27UrVYVuWGQcPHkzT2aVLlwoAEMuXLxdCsN5myr333ivOPPNMsXDhQrFnzx4xf/580bJlS/HAAw+k6rDOZs6VV14pzj77bLFy5Uqxc+dOMXPmTFFaWio+/vhjIQTL1pY4xQg2fTHBQXeAnHfeeWLy5Mmpzw0NDaJ9+/Zi1qxZEfbKHdQJ1djYKCorK8Vvf/vb1LHa2lpRXFwsnnvuOSGEENu2bRMAIN55551Unddee00UFBSITz75RAghxB//+EfRunVrcezYsVSdW265RfTq1Sv1+corrxSjR49O6091dbX42c9+FugYo+TgwYMCAMTKlSuFEKdk2axZMzF//vxUne3btwsAEKtXrxZCnFrwmjRpIvbv35+qM2fOHFFaWpqS58033yz69OmTdq2xY8eKESNGpD4nXfdbt24t/vznP7NMA+LIkSOiZ8+eYunSpeJ73/teKuhm+WbOzJkzxYABA9Aylmt23HLLLeLCCy8ky9mWBceUKVNE9+7dRWNjI+ttFowePVpMnDgx7djll18uxo8fL4Rgnc2Gr776ShQWFoqFCxemHR80aJC4/fbbWbYZ4nKMYNMXG/jx8oA4fvw4rF+/HoYPH5461qRJExg+fDisXr06wp65y549e2D//v1pMisrK4Pq6uqUzFavXg2tWrWCIUOGpOoMHz4cmjRpAmvWrEnV+b//+z8oKipK1RkxYgTs2LEDvvjii1Qd+TpenSTdm7q6OgAAaNOmDQAArF+/Hk6cOJE27t69e0OnTp3S5NuvXz+oqKhI1RkxYgTU19fD1q1bU3V0skuy7jc0NMC8efPgyy+/hJqaGpZpQEyePBlGjx59mgxYvtmxc+dOaN++PXTr1g3Gjx8Pe/fuBQCWa7a88sorMGTIEPjhD38I7dq1g4EDB8Jjjz2WKmdbFgzHjx+Hp59+GiZOnAgFBQWst1kwdOhQWLZsGbz//vsAAPDee+/BqlWrYNSoUQDAOpsNJ0+ehIaGBmjevHna8ZKSEli1ahXLNiBckqNNX2zgoDsgDh06BA0NDWkLPwBARUUF7N+/P6JeuY0nF53M9u/fD+3atUsrb9q0KbRp0yatDtaGfA2qTlLuTWNjI0ydOhUuuOAC6Nu3LwCcGnNRURG0atUqra4q30xlV19fD19//XUidX/z5s3QsmVLKC4uhhtuuAFeeuklOPvss1mmATBv3jx49913YdasWaeVsXwzp7q6Gp588klYvHgxzJkzB/bs2QPf/e534ciRIyzXLNm9ezfMmTMHevbsCUuWLIFJkybBL3/5S3jqqacAgG1ZUCxYsABqa2vh2muvBQBeD7JhxowZcNVVV0Hv3r2hWbNmMHDgQJg6dSqMHz8eAFhns+GMM86AmpoauOeee+DTTz+FhoYGePrpp2H16tWwb98+lm1AuCRHm77Y0NS6JsMwzjJ58mTYsmULrFq1KuquJIJevXrBxo0boa6uDv72t7/BhAkTYOXKlVF3K/Z89NFHMGXKFFi6dOlpuwRMdng7WAAA/fv3h+rqaujcuTO88MILUFJSEmHP4k9jYyMMGTIEfv3rXwMAwMCBA2HLli3wyCOPwIQJEyLuXXJ4/PHHYdSoUdC+ffuouxJ7XnjhBXjmmWfg2WefhT59+sDGjRth6tSp0L59e9bZAPjrX/8KEydOhA4dOkBhYSEMGjQIxo0bB+vXr4+6a4zD8E53QJSXl0NhYeFpv6p54MABqKysjKhXbuPJRSezyspKOHjwYFr5yZMn4fPPP0+rg7UhX4Oqk4R7c+ONN8LChQth+fLl8O1vfzt1vLKyEo4fPw61tbVp9VX5Ziq70tJSKCkpSaTuFxUVQY8ePWDw4MEwa9YsGDBgADzwwAMs0yxZv349HDx4EAYNGgRNmzaFpk2bwsqVK+HBBx+Epk2bQkVFBcs3IFq1agVnnXUW7Nq1i/U2S6qqquDss89OO/ad73wn9fg+27Ls+fDDD+Gf//wn/PjHP04dY73NnOnTp6d2u/v16wfXXHMN/OpXv0o9YcQ6mx3du3eHlStXwtGjR+Gjjz6CtWvXwokTJ6Bbt24s24BwSY42fbGBg+6AKCoqgsGDB8OyZctSxxobG2HZsmVQU1MTYc/cpWvXrlBZWZkms/r6elizZk1KZjU1NVBbW5uWPXzjjTegsbERqqurU3XefPNNOHHiRKrO0qVLoVevXtC6detUHfk6Xp043xshBNx4443w0ksvwRtvvAFdu3ZNKx88eDA0a9Ysbdw7duyAvXv3psl38+bNaYvW0qVLobS0NOVkmmSXD7rf2NgIx44dY5lmybBhw2Dz5s2wcePG1N+QIUNg/Pjxqfcs32A4evQo/Pe//4WqqirW2yy54IILTvt3jO+//z507twZANiWBcHcuXOhXbt2MHr06NQx1tvM+eqrr6BJk3QXv7CwEBobGwGAdTYovvWtb0FVVRV88cUXsGTJEhgzZgzLNiBckqNNX6yw/sk1xsi8efNEcXGxePLJJ8W2bdvET3/6U9GqVau0X9XMN44cOSI2bNggNmzYIABA/P73vxcbNmwQH374oRDi1E/wt2rVSrz88sti06ZNYsyYMei/Axg4cKBYs2aNWLVqlejZs2favwOora0VFRUV4pprrhFbtmwR8+bNEy1atDjt3wE0bdpU/O53vxPbt28XM2fOjNW/VcCYNGmSKCsrEytWrEj7lytfffVVqs4NN9wgOnXqJN544w2xbt06UVNTI2pqalLl3r9bueiii8TGjRvF4sWLRdu2bdF/tzJ9+nSxfft28fDDD6P/biUpuj9jxgyxcuVKsWfPHrFp0yYxY8YMUVBQIF5//XUhBMs0aORfLxeC5ZspN910k1ixYoXYs2ePeOutt8Tw4cNFeXm5OHjwoBCC5ZoNa9euFU2bNhX33nuv2Llzp3jmmWdEixYtxNNPP52qw7YscxoaGkSnTp3ELbfccloZ621mTJgwQXTo0CH1L8NefPFFUV5eLm6++eZUHdbZzFm8eLF47bXXxO7du8Xrr78uBgwYIKqrq8Xx48eFECxbW+IUI9j0xQQH3QHz0EMPiU6dOomioiJx3nnnibfffjvqLkXK8uXLBQCc9jdhwgQhxKmf4b/zzjtFRUWFKC4uFsOGDRM7duxIa+Pw4cNi3LhxomXLlqK0tFRcd9114siRI2l13nvvPXHhhReK4uJi0aFDBzF79uzT+vLCCy+Is846SxQVFYk+ffqIV199NbRx5wJMrgAg5s6dm6rz9ddfi5///OeidevWokWLFuIHP/iB2LdvX1o7H3zwgRg1apQoKSkR5eXl4qabbhInTpxIq7N8+XJxzjnniKKiItGtW7e0a3gkRfcnTpwoOnfuLIqKikTbtm3FsGHDUgG3ECzToFGDbpZvZowdO1ZUVVWJoqIi0aFDBzF27Ni0/yPNcs2Of/zjH6Jv376iuLhY9O7dWzz66KNp5WzLMmfJkiUCAE6TlxCst5lSX18vpkyZIjp16iSaN28uunXrJm6//fa0f5vEOps5zz//vOjWrZsoKioSlZWVYvLkyaK2tjZVzrK1I04xgk1fTBQIIYT9vjjDMAzDMAzDMAzDMLbwd7oZhmEYhmEYhmEYJiQ46GYYhmEYhmEYhmGYkOCgm2EYhmEYhmEYhmFCgoNuhmEYhmEYhmEYhgkJDroZhmEYhmEYhmEYJiQ46GYYhmEYhmEYhmGYkOCgm2EYhmEYhmEYhmFCgoNuhmEYhmEYhmEYhgkJDroZhmEYhmEYhmEYJiQ46GYYhmEYhmEYhmGYkOCgm2EYhmEYhmEYhmFCgoNuhmEYhmEYhmEYhgmJ/wcR4NXd993scgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU1/s28HvpIC5YEBQBxYIologRsRd+ojEmGHuMgjVGTTSJJmqiWJIQNZpijCUmYjTGWGKJDVGxEFvsYjdiFzsgFhT2vH/4sl8WdmGB3Z3Z3ftzXVyXzpydeZ4zZ8qZqhBCCBARERERERGRwdlIHQARERERERGRpWKnm4iIiIiIiMhI2OkmIiIiIiIiMhJ2uomIiIiIiIiMhJ1uIiIiIiIiIiNhp5uIiIiIiIjISNjpJiIiIiIiIjISdrqJiIiIiIiIjISdbiIiIiIiIiIjYaebiIiIiIiIyEjY6SYii3Ljxg189913aN++PXx9feHg4AAvLy907doVBw4c0Pqb33//HV26dEG1atVQunRpuLq6ok6dOvjwww9x48YNveb72muvQaFQwMnJSWeZhIQEvPbaa/Dx8YGzszOqVauGt99+G8ePHy9WrkT6eO+996BQKKBQKJCSkpJvfOvWrXWOy+vFixdYvXo1IiMjERgYCFdXV5QuXRohISGYO3cusrOztf7u6tWrGDZsGGrUqAEnJye4urqiatWq6NSpE6ZNm4bHjx/rnc/u3bsxevRotGnTBm5ublAoFIiKitL794Zy+fJlg847KioKCoUCly9fNsj05CwxMREff/wxgoODUa5cOTg5OaFWrVr49NNPkZqaKnV4REQGZyd1AEREhjR79mxMmzYN1apVQ/v27eHh4YELFy5g7dq1WLt2LZYtW4aePXtq/Gb58uW4cOECmjRpgooVK0IIgWPHjuH7779HbGwsEhMTUadOHZ3z/PnnnxEXFwcnJycIIXTG9cEHH8Dd3R1vvfUWPDw8cP78eaxcuRKrVq3Cpk2bEBYWZtC6IIqPj8e8efNQqlSpInVsdfnvv//QrVs3uLq6ol27dnjjjTeQlpaGv//+G8OGDcOmTZuwfv16KBQK9W+OHz+O1q1bIzU1Fc2aNUPHjh3h6uqKq1evYs+ePdi0aRO6du2K6tWr6xXDr7/+isWLF8PFxQW+vr5IT08vcV5kWt26dcO9e/fQvHlz9OvXDwqFAjt37sT06dOxatUq7N27F56enlKHSURkOIKIyIKsXr1a7Ny5M9/w3bt3C3t7e1GmTBnx7NkzjXFPnz7VOq2FCxcKAKJbt24655ecnCxKly4tRo8eLfz8/ISjo2O+Ms+fPxdKpVIolUpx9epVjXF//fWXACDatGmjT3pEektNTRWVK1cW3bp1E61atRIAxK1bt/KVK2hcXtevXxdz5swRGRkZGsMzMjJEo0aNBACxYsUKjXFt27YVAMRvv/2mdZp79+4VDx8+1Duvf//9VyQlJYmsrCyxb98+AUBERkbq/XtDSU5ONui8IyMjBQCRnJxskOnJ2ddffy1u3LihMUylUon33ntPABDDhg2TKDIiIuNgp5uIrEb79u0FAPHvv//qVT4tLU0AEA0aNNA6XqVSiTZt2oiaNWuKJ0+e6Ox037p1SwAQTZs2zTcuMzNTKBQKERQUVLRk8li0aJEAIBYtWiTWr18vmjZtKlxdXYWfn5/GvGbOnCleeeUV4eLiIlxdXUXz5s3FunXr8k0vNTVVTJgwQQQGBopSpUqJ0qVLi2rVqol+/fqJy5cva5TNyMgQEydOFAEBAcLR0VGUKVNGvPbaayIxMTHfdKOjowUAkZCQIH7//XdRv3594eTkJLy8vMQHH3wgnjx5kq9+fvjhB9G+fXtRuXJl4eDgIDw8PESXLl3EkSNHCqyHuLg4ERoaKpydnUXZsmVFv379xL1797TW37Fjx8Tbb78tvL29hYODg/Dy8hLh4eFi/fr1+cquXbtWtG3bVri7uwtHR0dRp04dMWPGDJGVlaV12lKJjIwU5cqVE7dv3zZYp7sgy5YtEwDE8OHDNYY7OzsLd3f3Ek1bF2N1uletWiVatmwpPDw8hKOjo6hYsaJo166dWLVqlRDif+1M219CQoIQQogbN26IiRMnipCQEOHh4SEcHByEn5+feO+998Tt27c15ufn56d1Wq1atRJCFN7Bz102x82bN8UHH3wgqlevLpycnISbm5uoVauWePfdd0Vqaqohq8tgbt68KQCIOnXqSB0KEZFB8fZyIrIa9vb2AAA7O/02fRs3bgQABAUFaR0/e/Zs7Nq1C7t374azs7PO6Xh6eqJ8+fJISkrCtWvX4OPjozEPIQTatWunbxoFWrlyJbZu3YrXX38dw4YNU996m5mZiQ4dOmDnzp1o0KABBg4ciBcvXmDjxo148803MXv2bIwYMQIAIIRAeHg4Dhw4gGbNmqFDhw6wsbHBlStXsH79evTt2xd+fn4AgGfPnqFt27Y4ePAgGjZsiFGjRuH27dv4888/ERcXhz/++APdu3fPF+ePP/6ILVu24M0330Tbtm2xZcsW/PDDD7h37x5+//13dbkHDx5g1KhRaNGiBV577TWUKVMGly5dwvr167F582bs3r0br776ar7pr1+/Hhs3bkTnzp3RtGlT7N69G7/99hv+++8/JCYmapRdvXo13n77bQgh0LlzZwQEBODOnTs4cOAAfvnlF3Tu3Flddty4cfj666/h7e2Nt956C25ubtizZw/GjBmDAwcOYOXKlSVfiAbw999/Y/HixVi2bBkqVKhgknnqWr/KlSuHlJQU3Lx5E5UqVTJJLCUxd+5cDBs2DBUrVkSXLl3U8R88eBBr1qxB165d0aBBA4wcORLff/896tevj4iICPXvq1SpAuDls+czZ85Eu3btEBISAnt7exw9ehRz585FXFwcjhw5Ajc3NwDAqFGjEBsbi+PHj2PkyJFwd3fXmFZRPXnyBM2aNcPly5fRvn17dOnSBc+fP0dycjKWLFmC0aNHq+ctJ0XdRhMRmQtu1YjIKly9ehXbtm1DxYoVUbduXa1lVqxYgdOnT+PJkyc4deoU4uLiULVqVUyZMiVf2QsXLmDcuHH44IMP0KxZswLnrVAoMGfOHLzzzjuoV6+exjPdGzZsQPfu3fHFF18YJM8tW7YgLi4u3/PhU6ZMwc6dOzFhwgRMnjxZ/czto0eP0LZtW3z88cd46623UKlSJSQlJeHAgQOIiIjAmjVrNKaTmZmJFy9eqP8/ffp0HDx4EH369MGSJUvU0/3ggw/QpEkTDBkyBB06dEDp0qU1prNt2zYcPnwYAQEBAIAvv/wSDRo0wPLlyzFjxgx156xMmTK4evUqvL29NX5/6tQpNGnSBOPHj0d8fHy+evj777+xc+dO9bLJzs5GWFgYdu7cif3796NJkyYAgNu3byMyMhL29vbYs2cPXnnlFY3pXL9+Xf3v+Ph4fP311wgPD8fq1atRqlQpAC9PUgwbNgzz5s3D6tWr0bVrV53LJ0dsbGyRXpjVunVrtG7dWq+y9+/fx+DBgxEREYHevXvrPY+S+vXXXwEA7du31xjeo0cPzJo1C82bN8fQoUPRokUL1K9fHy4uLiaLrSgWLlwIBwcHHDt2LN8Ji/v37wMAGjRogFGjRuH7779HgwYNMGnSpHzTadu2LVJSUuDq6qox/LfffkNkZCR+/PFHfPbZZwBedrqPHTuG48ePY9SoUcXubOfYvn07kpOTMWrUKHz77bca4zIyMtSd28Joy6sgUVFRJYpdVxsiIjJ70l5oJyIyvufPn4uWLVsW+FypEEJ07dpV49bORo0aiYsXL+Yrl52dLUJDQ0W1atXE48eP1cN13V6eY8eOHcLT01NjHnXr1hV///13yRIU/7vdtUuXLlrjLVOmjKhWrZpQqVT5xq9fv14AELNnzxZCCHHixAkBQPTu3bvQ+fr7+wt7e3tx7dq1fOMGDx6cr85zbi+fOHFivvI547Td0q1N586dhYODg3j+/Ll6WE499OvXL1/5nHE//PCDeti0adN0xpPXG2+8IQCIK1eu5BuXmpoqFAqF6Nq1q16x59zSre9fdHS0XtMVQogePXqIMmXKaNwubuzby+fPny8AiLZt2+Yb9/TpUxEVFSVsbGzU+dja2oqGDRuKqVOnFul57ryMcXt5w4YNRalSpcSDBw8KLFfcZ7pVKpVQKpWidevWGsMLeqa7qLeX56zT48aNK1Js2qZblL+cW+uL4+jRo8LFxUVUqFBB3L17t0RxExHJDa90E5FFU6lUiIqKwu7duzF48GD07dtXZ9lVq1YBAFJTU3H06FF89tlnCA4Oxl9//YW2bduqy82YMQP79+9HQkKC3lfrfvnlFwwbNgzDhw/HiBEj4OXlhbNnz2LcuHHo3Lkz5syZg2HDhpUsWQCNGzfON+zcuXN4+PAhKlWqhMmTJ+cbf/fuXQDA2bNnAQCBgYGoV68e/vjjD1y/fh0RERFo3bo1GjRoABub/31pMj09HZcuXUJgYCAqV66cb7pt2rTBzz//jGPHjuWr9+Dg4Hzlc6aR95NBx44dw/Tp05GYmIiUlBSNK+0AcO/ePVSsWLFY0z948CAA/a6s7d+/H6VKlVJfjcvL2dlZXYeF2blzp17liurPP//EihUr8Ntvv8HLy6tY09B2FT4iIgINGjTQWn7Dhg0YMWIE/Pz8sHTp0nzjnZycsGjRIkydOhWbNm3CwYMHcfDgQRw5cgRHjhzB/PnzsWvXLvj7+wMAvvvuu3xtoKRXUIuiV69e+OSTTxAUFIS3334bbdq0QfPmzaFUKos8rb/++gvz58/HkSNH8PDhQ41Pqt28edOQYWto2bIlKlasiK+//hrHjx/H66+/jlatWiEwMFDjzfKFETq+xmBoly5dQqdOnZCdnY3ly5ejfPnyJpkvEZGpsNNNRBZLpVJhwIABWLZsGd555x3MmzdPr9+5u7ujTZs22LJlCwICAtCvXz8kJyfD3t4e58+fR3R0NIYNG4ZWrVrpNb2zZ89i6NCh6Ny5M2bNmqUe3rBhQ6xZswY1a9bE2LFjMWDAgAK/860PbZ/ZefDgAYCXt2SfOnVK529zPillZ2eHHTt2YNKkSVi9ejU+/vhjAICHhwdGjBiBzz77DLa2turnxXV92ienI6ztk07aOjA5z3Hm7pjs3btXfcKjffv2qFGjBlxdXaFQKLB27VocP34cmZmZxZ5+WloaAOS7fV2bBw8eICsrS+uJixyG+CxXcT148ADDhw9Hp06dCjy5VJjY2Fjs2rVLY1iVKlW0dro3bdqEbt26wdPTEzt27Mh38iO3ypUrY8iQIRgyZAiAl58fGzBgAHbv3o0PP/wQ69atA/Cy033lyhWN37Zu3dpkne7Ro0ejXLlymDt3LmbOnIlvvvkGdnZ26NSpE7799ltUrVpVr+nMnDkTo0ePhoeHB9q3b4/KlSur3/3w3XffaW23huLm5ob9+/dj4sSJ+Pvvv7Fp0yYAgI+PD8aOHWuQE3yGkpycjDZt2uDevXtYvXo12rRpI3VIREQGx043EVkklUqF/v3747fffkPv3r0RGxurcZVWH0qlEk2aNMHatWtx8eJFBAYG4vTp08jMzMScOXMwZ84crb/LuZL08OFDuLu7Iz4+HllZWVoPJl1cXNC4cWOsWbMGFy9e1PnSNn1pu4qV0wHt2rWr+mp+YcqVK4fZs2fjhx9+wNmzZ7Fjxw7Mnj0b0dHRsLe3x7hx49TTvX37ttZppKSkaMy/OL788ktkZmZiz549aN68uca4/fv34/jx48WeNgD1C6tu3LhRaKdOqVRCoVDg3r17JZonYJxnuq9evYr79+9j48aNOq9m5nSKjx49qvPKtb5X4Tdu3IiuXbuifPnySEhIUF+p1le1atUQGxsLf39/7NixQz28KPViDAqFAgMGDMCAAQNw//597NmzB3/88QdWrFiBCxcu4MSJE7C1tS1wGllZWZg6dSoqVqyY79lwIQSmT59epJhytl1ZWVn5xuWcOMrL19cXsbGxUKlUOHHiBLZu3YoffvgBw4cPR5kyZfR63t/Yz3RfunQJbdq0wa1bt7By5Uq8/vrrRZofEZG5YKebiCxO7g53z549sWTJkkIPknXJuQU058VDVapUwcCBA7WW/fPPP/H06VNERUUBABwdHQEAz58/B/C/27jzyhmeU97QAgMDoVQqcejQIbx48ULvlygBLzsggYGBCAwMxBtvvAFfX1+sX79e3en29/fHxYsXcePGjXxXi3M6b7o6d/r477//ULZs2Xwd7idPnuDIkSPFnm6Oxo0bY9WqVdi6dWuhL8QLCQnB5s2bceHCBdSoUaNE89V2NbkwhXW6y5Urp7Ntbty4ESkpKXj77bfh7OyMcuXKFWne2qbXtWtXlC1bFgkJCahevXqxppP3JWNyU65cOURERCAiIgL37t3Djh07cPHiRQQEBKi3KbnvnMhx7949pKWloV27dvlexnbo0CE8ffo0328Kml7uk0N5HT16tMAcbGxs0KBBAzRo0AChoaFo2bIl1q9fr1enu6C7OrQpyh0JuTvcf/75J958880izYuIyKxI/VA5EZEhZWdnq19I1L17d/HixYsCy6enp4uzZ89qHffLL78IAKJGjRp6zVvXi9RyXvbk6ekprl+/rjFu06ZNQqFQCB8fH42XnCUkJGj99q4uub9Prc2nn34qAIgPPvhA48VjOU6ePKn+dnBycrLWlzn9+++/AoDGC6AmT54sAIi+fftqxH/8+HHh6Ogo3NzcRHp6unp47u9065ND+/bthUKhEElJSephWVlZ4r333lO/vCl3rAXVQ06d5n4p2e3bt4Wrq6soVaqUOHr0aL7f5F5emzdvFgBE8+bNtX7v+9atW+L06dP5hsuBIV+ktmnTJuHo6Ci8vLx0rju5TZ48WVy9ejXfcJVKJT766CMBQHTo0EGveeelz4vUcl5Clvub9QVJSEjI98LB58+fiwYNGggA6u/UP3r0SCgUCq3raHZ2tnB2dhZVqlTReNnigwcPREhIiNZ4Ro8eXeDLyAICAoSdnZ24cOGCelh6erpo0qRJvm1FUlKSSElJyTeNlStXCgAiKiqqkFowrkuXLglfX19hZ2cnVq9eLWksRESmwCvdRGRRpkyZgsWLF8PV1RU1a9bU+imu3C+Fun//PgIDA9GoUSPUqlUL3t7eePjwIf79918cOXIESqUSixcvLlFMTZo0wdtvv41ly5YhMDAQXbp0gZeXF86cOYMNGzbAxsYGs2fP1rglWKVSATDc92onT56MI0eO4IcffsDGjRvRsmVLVKhQATdu3MDJkydx/Phx7Nu3DxUqVMCxY8fw1ltvoXHjxqhduza8vLxw48YNrF27FjY2Nvjwww/V0/3kk0+wceNGLFmyBGfOnEG7du1w584d/Pnnn8jKysLPP/+c73NhRfH+++9j69ataN68OXr06AEnJyfs3LkTN27cQOvWrUv8QrIKFSrgt99+Q69evdC4cWO88cYbCAgIwL1793DgwAFUqVIFa9euBQB06NABEyZMwNSpU1G9enV06NABfn5+uH//Pi5evIg9e/bgiy++QGBgYIlikrOzZ8+iS5cuyMzMROvWrfHHH3/kK1OlShX13R4AMGvWLEyaNAmNGjVCcHAwypYti/v37yMhIQHnz59HuXLlMHPmTL1jSExMxMKFCwH87y6RxMRE9TzLly+Pb775Rl2+qOtSRESE+tESPz8/vHjxAvHx8Th9+jS6deum/ka9q6srXn31VezevRt9+/ZFjRo1YGNjo/6O/bBhwzBz5kzUr18fnTt3Rnp6OjZv3gw/Pz+t3ytv27YtvvnmGwwZMgRdu3ZFqVKl4Ofnp34+/+OPP8aQIUMQGhqK7t27Q6VSYfPmzVq/Ux8fH48xY8agWbNmqFmzJsqVK6f+vr2TkxOGDx+uZ20bR5s2bXD16lU0adIEJ06cwIkTJ/KVKeqt7UREsiZ1r5+IyJByrnIX9Jf7KmhGRoaYOHGiaNmypfDy8hL29vaiVKlSok6dOuLDDz/U+iksXQr6ZFh2draYO3euCA0NFaVLlxa2traiQoUKokuXLmLfvn35yn///fcCgPj555/1mndhV7qFeHmFeP78+aJZs2ZCqVQKR0dH4evrKzp06CDmzp0rMjIyhBBCXLt2TYwdO1Y0adJEVKhQQTg4OAhfX1/x1ltvaY01IyNDTJgwQdSsWVM4ODgId3d30bFjR7Fnz558ZYt6pVsIIVatWiUaNmwoXFxcRPny5UWPHj3Ef//9p/UTS0W90p3j6NGjokePHsLT01PY29uLihUrio4dO4oNGzbkKxsfHy86d+4sPDw8hL29vfDy8hKhoaFi6tSpWq/oykFBV7ObN28uAIj79+8XOp2cOizoL++V3927d4uxY8eK0NBQUalSJWFvby9cXV1FvXr1xOjRo8XNmzeLlEvOMtb1l/cK8rp16wQA8dlnn+k1/Z9++km88cYbws/PTzg5OYly5cqJxo0bi7lz5+a7S+TcuXPitddeE+7u7kKhUGi07efPn4svv/xS1KhRQ72uffzxx+LRo0fCz89P65X36dOnixo1agh7e3utdTlnzhz1eF9fXzFx4kTx/PnzfGVPnz4tRo4cKV555RVRrlw54ejoKPz9/UVkZKQ4deqUXvVgTIW1IR6eEpGlUQhhou9BEBGR3rp164YDBw7gv//+g4ODg9ThkAWrVasWLl26hKdPnxb73QdyNnr0aMydOxdXrlzhp6iIiEgSRXuVLxERmURiYiI+/vhjdrjJqM6cOYPz588jODjYIjvcALBnzx4MHjyYHW4iIpIMr3QTERFZmeXLl2PXrl1YsWIFHjx4gBUrVqB79+5Sh0VERGSReKWbiIjIyixfvhyxsbHw8/PD77//zg43ERGREfFKNxEREREREZGR8Eo3ERERERERkZGw001ERERERERkJOx0ExERERERERkJO91ERERERERERsJONxEREREREZGRsNNNREREREREZCTsdBMREREREREZCTvdREREREREREbCTjcRERERERGRkbDTTURERFYtNjYWCoUCly9fljoUIiKyQOx0ExERFVNOZy3nz87ODt7e3oiKisKNGzekDk9Sp0+fxqRJk9iRJSIiq2cndQBERETmbsqUKahatSqePXuG/fv3IzY2FomJiUhKSoKTk5PU4Uni9OnTmDx5Mlq3bo0qVapIHQ4REZFk2OkmIiIqoY4dO6JRo0YAgEGDBqF8+fKYNm0a1q9fjx49ekgcHREREUmJt5cTEREZWIsWLQAA//33n8bws2fPolu3bihbtiycnJzQqFEjrF+/XqPMixcvMHnyZNSoUQNOTk4oV64cmjdvjvj4eI1yO3bsQIsWLVCqVCm4u7vjzTffxJkzZzTKTJo0CQqFAhcvXkRUVBTc3d3h5uaG/v3748mTJxplFy1ahLZt26JChQpwdHRE7dq1MXfu3Hy5ValSBa+//joSExPRuHFjODk5wd/fH7/99pu6TGxsLLp37w4AaNOmjfr2+507d+qssxMnTiAqKgr+/v5wcnKCl5cXBgwYgPv37xc7p6dPn+KDDz5A+fLlUbp0abzxxhu4ceMGFAoFJk2apDOWHJs3b1bXcenSpdGpUyecOnWq0N8RERHlxk43ERGRgeU8x1ymTBn1sFOnTqFJkyY4c+YMxo4di5kzZ6JUqVKIiIjAmjVr1OUmTZqEyZMno02bNvjxxx/x2WefwdfXF0eOHFGX2bZtG8LDw3Hnzh1MmjQJH330Efbu3YtmzZppfYa6R48eePToEWJiYtCjRw/ExsZi8uTJGmXmzp0LPz8/jB8/HjNnzoSPjw+GDRuGOXPm5JvexYsX0a1bN/zf//0fZs6ciTJlyiAqKkrdIW3ZsiU++OADAMD48eOxZMkSLFmyBIGBgTrrLD4+HpcuXUL//v0xe/Zs9OrVC8uXL8drr70GIUSxcoqKisLs2bPx2muvYdq0aXB2dkanTp10xpDbkiVL0KlTJ7i6umLatGmYMGECTp8+jebNm/M5dSIiKhpBRERExbJo0SIBQGzbtk3cvXtXXLt2TaxatUp4eHgIR0dHce3aNXXZdu3aibp164pnz56ph6lUKtG0aVNRo0YN9bD69euLTp06FTjfBg0aiAoVKoj79++rhx0/flzY2NiIfv36qYdFR0cLAGLAgAEav+/SpYsoV66cxrAnT57km094eLjw9/fXGObn5ycAiN27d6uH3blzRzg6OoqPP/5YPWzlypUCgEhISCgwl4Lm/8cff+Sbl745HT58WAAQo0aN0igXFRUlAIjo6Gj1sJzlmJycLIQQ4tGjR8Ld3V0MHjxY47cpKSnCzc0t33AiIqKC8Eo3ERFRCYWFhcHDwwM+Pj7o1q0bSpUqhfXr16Ny5coAgAcPHmDHjh3qq7P37t3DvXv3cP/+fYSHh+PChQvqt527u7vj1KlTuHDhgtZ53bp1C8eOHUNUVBTKli2rHl6vXj383//9HzZt2pTvN0OHDtX4f4sWLXD//n2kp6erhzk7O6v/nZaWhnv37qFVq1a4dOkS0tLSNH5fu3Zt9S30AODh4YGAgABcunRJ3yrLJ/f8nz17hnv37qFJkyYAoHGVX9+ctmzZAgAYNmyYRrn333+/0Fji4+ORmpqK3r17q5fVvXv3YGtri5CQECQkJBQtOSIismp8kRoREVEJzZkzBzVr1kRaWhp+/fVX7N69G46OjurxFy9ehBACEyZMwIQJE7RO486dO/D29saUKVPw5ptvombNmggKCkKHDh3Qt29f1KtXDwBw5coVAEBAQEC+aQQGBiIuLg6PHz9GqVKl1MN9fX01yuXc9v7w4UMolUoAwD///IPo6Gjs27cv37PRaWlpcHNz0zm9nGk+fPhQdyUV4sGDB5g8eTKWL1+OO3fu5Jt/XoXldOXKFdjY2KBq1aoa5apXr15oLDknPNq2bat1fE6dERER6YOdbiIiohJq3Lix+u3lERERaN68Od5++22cO3cOrq6uUKlUAIDRo0cjPDxc6zRyOoMtW7bEf//9h3Xr1mHr1q1YuHAhvv32W8ybNw+DBg0qVny2trZah4v//6z0f//9h3bt2qFWrVqYNWsWfHx84ODggE2bNuHbb79Vx6/v9IqjR48e2Lt3L8aMGYMGDRqo661Dhw755m+sGHLkzG/JkiXw8vLKN97OjodPRESkP+41iIiIDMjW1hYxMTHqF6GNHTsW/v7+AAB7e3uEhYUVOo2yZcuif//+6N+/PzIyMtCyZUtMmjQJgwYNgp+fHwDg3Llz+X539uxZlC9fXuMqtz7+/vtvZGZmYv369RpXkEtyG7VCodC77MOHD7F9+3ZMnjwZEydOVA/XdYu9Pvz8/KBSqZCcnIwaNWqoh1+8eLHQ31arVg0AUKFCBb2WFxERUUH4TDcREZGBtW7dGo0bN8Z3332HZ8+eoUKFCmjdujXmz5+PW7du5St/9+5d9b/zfiLL1dUV1atXR2ZmJgCgYsWKaNCgARYvXozU1FR1uaSkJGzduhWvvfZakePNuWqc+ypxWloaFi1aVORp5cjp+OeOsSjzB4Dvvvuu2PPPuaPgp59+0hg+e/ZsvX6rVCrx1Vdf4cWLF/nG515eREREheGVbiIiIiMYM2YMunfvjtjYWAwdOhRz5sxB8+bNUbduXQwePBj+/v64ffs29u3bh+vXr+P48eMAXr6krHXr1ggODkbZsmVx6NAhrFq1CiNGjFBPe8aMGejYsSNCQ0MxcOBAPH36FLNnz4abm5te35/Oq3379nBwcEDnzp3x7rvvIiMjAz///DMqVKig9SSBPho0aABbW1tMmzYNaWlpcHR0VH8HPC+lUomWLVti+vTpePHiBby9vbF161YkJycXa94AEBwcjK5du+K7777D/fv30aRJE+zatQvnz58HUPCVeKVSiblz56Jv375o2LAhevXqBQ8PD1y9ehUbN25Es2bN8OOPPxY7NiIisi7sdBMRERnBW2+9hWrVquGbb77B4MGDUbt2bRw6dAiTJ09GbGws7t+/jwoVKuCVV17RuKX6gw8+wPr167F161ZkZmbCz88PX3zxBcaMGaMuExYWhi1btiA6OhoTJ06Evb09WrVqhWnTpuV7cZg+AgICsGrVKnz++ecYPXo0vLy88N5778HDwwMDBgwoVv5eXl6YN28eYmJiMHDgQGRnZyMhIUFrpxsAli1bhvfffx9z5syBEALt27fH5s2bUalSpWLNHwB+++03eHl54Y8//sCaNWsQFhaGP//8EwEBAXBycirwt2+//TYqVaqEr7/+GjNmzEBmZia8vb3RokUL9O/fv9gxERGR9VEIQ7xxhIiIiMgMHDt2DK+88gqWLl2KPn36SB0OERFZAT7TTURERBbp6dOn+YZ99913sLGxQcuWLSWIiIiIrBFvLyciIiKLNH36dBw+fBht2rSBnZ0dNm/ejM2bN2PIkCHw8fGROjwiIrISvL2ciIiILFJ8fDwmT56M06dPIyMjA76+vujbty8+++wzfmubiIhMhp1uIiIiIiIiIiPhM91ERERERERERsJONxEREREREZGR8IEmmVKpVLh58yZKly4NhUIhdThERERERERmQQiBR48eoVKlSrCxkf46MzvdMnXz5k2+WZWIiIiIiKiYrl27hsqVK0sdBjvdclW6dGkALxuKUqmUOBoiIiIiIiLzkJ6eDh8fH3WfSmrsdMtUzi3lSqWSnW4iIiIiIqIikstjutLf4E5ERERERERkoXil2wzoOkNjjE+s58xLLp9vN3U8csjfmnKWMldryluqeeoiVf5yyD1H3jowZp3IadnnMNXykNNyN/Zy0HasYC3bN11MGYtUeZs6RzksV8C4seRel6Q+XpAiHm3Tl7J9591PShGHIbDTbQa0NSyFQmHQDY7UGxRdcjYueQ8mDB2nnPLPnbMxD8DzzlMKplq+QP5lLOWy1rWMjb3M5dC+gfz5m2L9lkvuOXS1/ZIuK21tqiTTMyZDnlCWy+2DBcm7zC11/62rbeeMMzZT7E+0Mfa+WxtTL3spOqBSrNt5c5Ni2QLaT86aov61TVvbvtrYpFqXjYWdbjOlbeetT+MsaIWRa2MuKI+SHJjqMx+pGOPgTK4bL2MsX23Tk0u+OYzR6ZLT2enC6GrjxT2w0dW+5dwZ05WjrjooaFnmzlOu63puRc09Z5wpthfGpO3gWdt4fck1d1NcLMg7bX1iMDZTdc6kvOJnypMqcmrfpu54a8tdDvWg68ozYJhjclPc/SUVdrrNmK6dd2EdcktowMU56WBuJxwMeXBmbhsvbTs3fdqwIa+cmUJR8yhoZ29unS6g4LPpuq7YavtdQVcDdM1HznTdCVBY3ZhbntoUdheEua3jumi7YqjrJJQ+0zIH+uRUkpNtcqkHQ3dK5djmTXFSRY7btYKWbc74oipofy2n3AHt+Rd2wlzffXfOv+W4ThsKO90WQNeBK2C6W1GkoO9JB22/MScF7dxyxlvSgVmOgpajrgNTc8tRF20drRzmdDW7uHQt+4JOtsn5QKU4dN0JUFDdWAp97vSxhAOzvHEXdKLVXHPUpqB9lqWcdDBUp9Sctu2FnSzPKZOXuV4Qyauknc7c05AzXfnrs/y1jcu9b7N07HRbOGtoxAWddLBUlnJFrzAF5WPJJ5SAgm9ls/SDcqDwDrWlL3+g4IMbQJ6PTRhKYXlZat6AZeeWQ99tu7by5rreF+VEgrbfmQN9TpgWtizNefnqukunoA6pJZ0wLuhKOGD5x6yFYaebyIxZ2wYrN2vIvbBOl6UrKE9rqYOCsA7IEln6CRdtHTJLos/JwoLKmnN9FHSXTmEdUkvB/bZu7HQTEREREZmINXc+LD13djpJFxupAyAiIiIiIiKyVOx0ExERERERERkJO91ERERERERERsJONxEREREREZGRsNNNREREREREZCTsdBMREREREREZCTvdepg0aZL623o5f7Vq1SrwNytXrkStWrXg5OSEunXrYtOmTSaKloiIiIiIiOSCnW491alTB7du3VL/JSYm6iy7d+9e9O7dGwMHDsTRo0cRERGBiIgIJCUlmTBiIiIiIiIikho73Xqys7ODl5eX+q98+fI6y37//ffo0KEDxowZg8DAQEydOhUNGzbEjz/+aMKIiYiIiIiISGrsdOvpwoULqFSpEvz9/dGnTx9cvXpVZ9l9+/YhLCxMY1h4eDj27dtn7DCJiIiIiIhIRuykDsAchISEIDY2FgEBAbh16xYmT56MFi1aICkpCaVLl85XPiUlBZ6enhrDPD09kZKSonMemZmZyMzMVP8/PT3dcAkQERERERGRJCy20/3s2TMoFAo4OjqWeFodO3ZU/7tevXoICQmBn58fVqxYgYEDB5Z4+gAQExODyZMnG2RaREREREREJA8Wc3v5zp078eGHH6Jx48ZwdXVFqVKl4OLigtKlS6Nx48YYNWoUdu7caZB5ubu7o2bNmrh48aLW8V5eXrh9+7bGsNu3b8PLy0vnNMeNG4e0tDT137Vr1wwSKxEREREREUnHrDvdL168wI8//gh/f3+0bdsWS5Ysgbu7O9555x188sknGDNmDN5++224u7tj6dKlaNu2LapWrYoff/wRL168KPZ8MzIy8N9//6FixYpax4eGhmL79u0aw+Lj4xEaGqpzmo6OjlAqlRp/REREREREZN7M+vby6tWr4/nz54iMjESPHj3QsGHDAssfPnwYK1euxFdffYVvvvkGly9f1ms+o0ePRufOneHn54ebN28iOjoatra26N27NwCgX79+8Pb2RkxMDABg5MiRaNWqFWbOnIlOnTph+fLlOHToEBYsWFCifImIiIiIiMi8mHWne/z48YiKitL7ue3g4GAEBwdjypQpWLRokd7zuX79Onr37o379+/Dw8MDzZs3x/79++Hh4QEAuHr1Kmxs/nfTQNOmTbFs2TJ8/vnnGD9+PGrUqIG1a9ciKCioaAkSERERERGRWVMIIYTUQVB+6enpcHNzQ1paGm81JyIiIiIi0pPc+lJm/Uw3ERERERERkZyZ9e3lNjY2UCgURf5ddna2EaIhIiIiIiIi0mTWne6JEyfm63SvWbMGp06dQnh4OAICAgAAZ8+exdatWxEUFISIiAgJIiUiIiIiIiJrZNad7kmTJmn8f8GCBbhz5w6SkpLUHe4cZ86cQdu2bVGpUiUTRkhERERERETWzKKe6Z4xYwZGjBiRr8MNAIGBgRgxYgSmT58uQWRERERERERkjSyq0339+nXY29vrHG9vb4/r16+bMCIiIiIiIiKyZhbV6Q4KCsJPP/2EGzdu5Bt3/fp1/PTTT6hbt64EkREREREREZE1MutnuvP69ttvER4ejpo1a6JLly6oXr06AODChQtYu3YthBBYunSpxFESERERERGRtbCoTnfz5s1x4MABTJgwAWvWrMHTp08BAM7OzggPD8fkyZN5pZuIiIiIiIhMRiGEEFIHYQwqlQp3794FAHh4eMDGxrzupE9PT4ebmxvS0tKgVCqlDoeIiIiIiMgsyK0vZVFXunOzsbGBp6en1GEQERERERGRFbO4TvezZ8+wevVqHDlyBGlpaVCpVBrjFQoFfvnlF4miIyIiIiIiImtiUZ3uK1euoE2bNrh8+TLc3d2RlpaGsmXLIjU1FdnZ2ShfvjxcXV2lDpOIiIiIiIishHk96FyIMWPGIC0tDfv378f58+chhMCff/6JjIwMTJs2Dc7OzoiLi5M6TCIiIiIiIrISFtXp3rFjB4YNG4bGjRurX5wmhICjoyPGjBmDdu3aYdSoUdIGSURERERERFbDojrdT548QZUqVQAASqUSCoUCaWlp6vGhoaFITEyUKDoiIiIiIiKyNhbV6fb19cX169cBAHZ2dvD29sb+/fvV40+fPg0nJyepwiMiIiIiIiIrY1EvUmvbti3WrVuH6OhoAEBUVBRiYmLw8OFDqFQqLFmyBP369ZM4SiIiIiIiIrIWFtXpHjt2LP79919kZmbC0dER48ePx82bN7Fq1SrY2tri7bffxqxZs6QOk4iIiIiIiKyEQgghpA6C8ktPT4ebmxvS0tKgVCqlDoeIiIiIiMgsyK0vZTHPdD958gTBwcGYN2+e1KEQERERERERAbCgTreLiwuSk5OhUCikDoWIiIiIiIgIgAV1ugGgQ4cOiIuLkzoMIiIiIiIiIgAW1umeMGECzp8/j759+yIxMRE3btzAgwcP8v0RERERERERmYJFvUjNxuZ/5xAKus08OzvbFOGUiNwe/iciIiIiIjIHcutLWdQnwyZOnGiUZ7pjYmLw119/4ezZs3B2dkbTpk0xbdo0BAQE6PxNbGws+vfvrzHM0dERz549M3h8REREREREJE8W1emeNGmSUaa7a9cuDB8+HK+++iqysrIwfvx4tG/fHqdPn0apUqV0/k6pVOLcuXPq//Mlb0RERERERNbFojrdxrJlyxaN/8fGxqJChQo4fPgwWrZsqfN3CoUCXl5exg6PiIiIiIiIZMqiXqRmKmlpaQCAsmXLFlguIyMDfn5+8PHxwZtvvolTp07pLJuZmYn09HSNPyIiIiIiIjJvZt3prl27Nn777Tc8f/5c799kZmZi0aJFqF27drHmqVKpMGrUKDRr1gxBQUE6ywUEBODXX3/FunXrsHTpUqhUKjRt2hTXr1/XWj4mJgZubm7qPx8fn2LFR0RERERERPJh1m8vnz59OqZPn47s7Gy88cYbCAsLQ8OGDVG1alW4uLgAAB4/fozk5GQcOnQI27Ztw99//w0HBweMGTMGn3zySZHn+d5772Hz5s1ITExE5cqV9f7dixcvEBgYiN69e2Pq1Kn5xmdmZiIzM1P9//T0dPj4+MjmjXtERERERETmQG5vLzfrTjcAPHr0CL/88gtiY2Nx4sQJ9cvK7OxePq6elZUFABBCICgoCAMGDMCAAQOKVfkjRozAunXrsHv3blStWrXIv+/evTvs7Ozwxx9/FFpWbg2FiIiIiIjIHMitL2X2ne7cLl++jL179+Ls2bO4f/8+AKBcuXKoVasWQkNDi9VRBl522N9//32sWbMGO3fuRI0aNYo8jezsbNSpUwevvfYaZs2aVWh5uTUUIiIiIiIicyC3vpRFvb28SpUqqFKlisGnO3z4cCxbtgzr1q1D6dKlkZKSAgBwc3ODs7MzAKBfv37w9vZGTEwMAGDKlClo0qQJqlevjtTUVMyYMQNXrlzBoEGDDB4fERERERERyZNFdbqNZe7cuQCA1q1bawxftGgRoqKiAABXr16Fjc3/3kv38OFDDB48GCkpKShTpgyCg4Oxd+/eYr/AjYiIiIiIiMyPRd1ebknkdksEERERERGROZBbX8qsPxlGREREREREJGfsdBMREREREREZiUV1uqtXr671G9hEREREREREUrCoF6ldunQJhw4dwuHDh3H+/HkolUoEBgbC399f6tCIiIiIiIjIClnUi9RsbGygUCgAvPy2NgAoFArUqVMH48ePR69evaQMr0jk9vA/ERERERGROZBbX8qibi8HAHt7e0yaNAk7d+7E1q1b8eWXX8LBwQF9+vTB0KFDpQ6PiIiIiIiIrIjFXen+9NNPERMTk2/ct99+i9GjR+PXX39FZGSkBNEVjdzOzhAREREREZkDufWlLOpKt7OzMypXrqx13IcffoiePXti9uzZJo6KiIiIiIiIrJVFdbpr1aqFjRs36hzfokULnD592oQRERERERERkTWzqE73u+++iy1btuD999/H06dP843/559/4OLiIkFkREREREREZI0s6pNhQ4YMwZkzZ/D9999j+fLl6NixI4KCguDg4IBt27Zh8+bNiIqKkjpMIiIiIiIishIW9SK1HHv27MG3336Lbdu2ISMjQz08IiICsbGxsniYvjBye/ifiIiIiIjIHMitL2WRne4c2dnZuHz5Mh49egRfX1+ULVtW6pD0JreGQkREREREZA7k1peyqNvL87K1tUW1atWkDoOIiIiIiIislEW9SI2IiIiIiIhITtjpJiIiIiIiIjISdrqJiIiIiIiIjISdbiIiIiIiIiIjYaebiIiIiIiIyEjY6SYiIiIiIiIyEna6iYiIiIiIiIzEor/TTdJQKBQAACGExJEQkSFZ87qdk3uOvHVg6XVTWP6WLnf+1pY7ERGVHDvdZDB5D8ry/j8vSzxwsYYDM12dC0vPXVt7zp2nJeefe5krFAqtbcBa8s/5v0Kh0Pi/rrLmpLB1W1v+ha0X5qKw/RWg2f7NMUciIpIOO91UZAUdnOjbEbO0AxdtdWLOB9/a6HNSpaBOmbkqrA3r+o055q4t17zLMm/HS1t5c8y/KCcJ87bzvOP16cDJjbYTB7nlzT93OXPftms7qZAjbx7aln3e8eakqG3V3PIjAizveKwoLPmEeGHc3NykDkEDn+kugjlz5qBKlSpwcnJCSEgIDh48WGD5lStXolatWnByckLdunWxadMmE0VqPAUdaGhbmXOGaztwKezgRY5y4s37B2jmmjvngn5jDgrLMW++2nLP+bec6bNscyusHuSeb166rmbmHpabtpzz/t5caGvfuRUl/5xxeddzOa/3+qzf2hRUV3LNNTddbVzfvAva3stRUfddOcwlv+LQtd039/12XrpysKQctdG2HS6sjDnSlUPedbyw5W+OdOUgx3zY6dbTn3/+iY8++gjR0dE4cuQI6tevj/DwcNy5c0dr+b1796J3794YOHAgjh49ioiICERERCApKcnEkRuOvjvooiioYyon+nQ8tTHHTpm+nc7CaMtVzssXKNqyLYi5tOsceTsexsxfrnVQ0EmVkkxP7p1vY1wBkuvyN9S2TZfc05HbMtYWj777Lm3l5bRciyNvzAWdRDTnkw7aTiwVdNIlZ7y5KajTpWsZ5vyZc95A/ruUch9vAdrvQNW1DTS3OtCVQ87wtLQ0yWLTRiEMuae1YCEhIXj11Vfx448/AgBUKhV8fHzw/vvvY+zYsfnK9+zZE48fP8aGDRvUw5o0aYIGDRpg3rx5hc4vPT1dfVuE1IvIGAdlcpynLsaKJe8OX2qmjMcalm/uaeclh7xzmCr/vDt1KepAVzymjkWKeebMVxtL37ZLOU9Tz1dXHMaKQVdnXm4M2fbltP/SpSTtr6COl9xy1nZCITdd8eraBku1bS4ubW2xJO3T0NMzJn3iyulLpaWlQalUmio0nXilWw/Pnz/H4cOHERYWph5mY2ODsLAw7Nu3T+tv9u3bp1EeAMLDw3WWz8zMRHp6usZfDlOeUdY1L1OvbFKedTNV/gWdeZWKIa/6FDYfwLKXb850tf3JIW9T5597mBR0Xe2Riqnnre2KgKnW99ykWv5S5inVtt0U+29zuItL2xVPQ97FIvW2pKBYinunkq66kjpPbXTdmVBQ7gWNy3u1WA7LVxtd67eh23be+UkhbzxyPRFQGHa69XDv3j1kZ2fD09NTY7inpydSUlK0/iYlJaVI5WNiYuDm5qb+8/HxAfDy1ghD7Sj0UdDG1tSkmrep85dTfZt6ftawfHXFIMU85bJ+S5l/7n9L3QalnKeUByvW1NGXsq1ZyzwLY4yYpF62+sRjrJzlxJjLVdv/5cRYccnpWEFbTLn/b27Y6ZaJcePGIS0tTf137do1qUMiIiIiIiKiEuInw/RQvnx52Nra4vbt2xrDb9++DS8vL62/8fLyKlJ5R0dHODo6GiZgIiIiIiIikgVe6daDg4MDgoODsX37dvUwlUqF7du3IzQ0VOtvQkNDNcoDQHx8vM7yREREREREZHl4pVtPH330ESIjI9GoUSM0btwY3333HR4/foz+/fsDAPr16wdvb2/ExMQAAEaOHIlWrVph5syZ6NSpE5YvX45Dhw5hwYIFes0v51mF3C9UIyIiIiIiooLl9KHk8vw3O9166tmzJ+7evYuJEyciJSUFDRo0wJYtW9QvS7t69SpsbP5340DTpk2xbNkyfP755xg/fjxq1KiBtWvXIigoSK/53b9/HwDUL1QjIiIiIiIi/d2/f1/9GWYp8TvdMpWamooyZcrg6tWrJWoor776Kv79998SxWIp00hPT4ePjw+uXbtWou/1ySEXuUyDdWr4aVhancolFkurVzlMg3Vq+GmwTg0/Ddap4afBOjX8NFinhp9GWloafH198fDhQ7i7u5coFkPglW6Zyrlq7ubmVqKVz9bWtsQfhLekaQCAUqlknRpwGgDr1NDTACynTuUWi6XUq1ymAbBODT0NgHVq6GkArFNDTwNgnRp6GgDr1NDTAKBxJ7KU5BEFGc3w4cM5DQOTSy5ymYYhyCUXuUzDEOSUi5xiKSm55CKXaRiCXHKRyzQMQS65yGUahiCXXOQyDUOQSy5ymYYhyCUXuUxDTnh7uUylp6fDzc0NaWlpBjnLQ6xTY2CdGh7r1DhYr4bHOjU81qnhsU4Nj3VqeKxTw5NbnfJKt0w5OjoiOjqa3+42INap4bFODY91ahysV8NjnRoe69TwWKeGxzo1PNap4cmtTnmlm4iIiIiIiMhIeKWbiIiIiIiIyEjY6SYiIiIiIiIyEna6iYiIiIiIiIyEnW4iIiIiIiIiI2GnW6bmzJmDKlWqwMnJCSEhITh48KDUIUli9+7d6Ny5MypVqgSFQoG1a9dqjBdCYOLEiahYsSKcnZ0RFhaGCxcuaJR58OAB+vTpA6VSCXd3dwwcOBAZGRkaZU6cOIEWLVrAyckJPj4+mD59er5YVq5ciVq1asHJyQl169bFpk2bDJ6vKcTExODVV19F6dKlUaFCBURERODcuXMaZZ49e4bhw4ejXLlycHV1RdeuXXH79m2NMlevXkWnTp3g4uKCChUqYMyYMcjKytIos3PnTjRs2BCOjo6oXr06YmNj88VjCW197ty5qFevHpRKJZRKJUJDQ7F582b1eNZnyXz99ddQKBQYNWqUehjrtOgmTZoEhUKh8VerVi31eNZp8dy4cQPvvPMOypUrB2dnZ9StWxeHDh1Sj+d+qmiqVKmSr50qFAr1N3vZTosuOzsbEyZMQNWqVeHs7Ixq1aph6tSpyP0uZbbTonv06BFGjRoFPz8/ODs7o2nTpvj333/V41mnBTOnY3x9YimUINlZvny5cHBwEL/++qs4deqUGDx4sHB3dxe3b9+WOjST27Rpk/jss8/EX3/9JQCINWvWaIz/+uuvhZubm1i7dq04fvy4eOONN0TVqlXF06dP1WU6dOgg6tevL/bv3y/27NkjqlevLnr37q0en5aWJjw9PUWfPn1EUlKS+OOPP4Szs7OYP3++usw///wjbG1txfTp08Xp06fF559/Luzt7cXJkyeNXgeGFh4eLhYtWiSSkpLEsWPHxGuvvSZ8fX1FRkaGuszQoUOFj4+P2L59uzh06JBo0qSJaNq0qXp8VlaWCAoKEmFhYeLo0aNi06ZNonz58mLcuHHqMpcuXRIuLi7io48+EqdPnxazZ88Wtra2YsuWLeoyltLW169fLzZu3CjOnz8vzp07J8aPHy/s7e1FUlKSEIL1WRIHDx4UVapUEfXq1RMjR45UD2edFl10dLSoU6eOuHXrlvrv7t276vGs06J78OCB8PPzE1FRUeLAgQPi0qVLIi4uTly8eFFdhvuporlz545GG42PjxcAREJCghCC7bQ4vvzyS1GuXDmxYcMGkZycLFauXClcXV3F999/ry7Ddlp0PXr0ELVr1xa7du0SFy5cENHR0UKpVIrr168LIVinhTGnY3x9YikMO90y1LhxYzF8+HD1/7Ozs0WlSpVETEyMhFFJL+8KqVKphJeXl5gxY4Z6WGpqqnB0dBR//PGHEEKI06dPCwDi33//VZfZvHmzUCgU4saNG0IIIX766SdRpkwZkZmZqS7z6aefioCAAPX/e/ToITp16qQRT0hIiHj33XcNmqMU7ty5IwCIXbt2CSFe1qG9vb1YuXKlusyZM2cEALFv3z4hxMsNpY2NjUhJSVGXmTt3rlAqlep6/OSTT0SdOnU05tWzZ08RHh6u/r8lt/UyZcqIhQsXsj5L4NGjR6JGjRoiPj5etGrVSt3pZp0WT3R0tKhfv77WcazT4vn0009F8+bNdY7nfqrkRo4cKapVqyZUKhXbaTF16tRJDBgwQGPYW2+9Jfr06SOEYDstjidPnghbW1uxYcMGjeENGzYUn332Geu0iOR8jK9PLPrg7eUy8/z5cxw+fBhhYWHqYTY2NggLC8O+ffskjEx+kpOTkZKSolFXbm5uCAkJUdfVvn374O7ujkaNGqnLhIWFwcbGBgcOHFCXadmyJRwcHNRlwsPDce7cOTx8+FBdJvd8cspYwjJJS0sDAJQtWxYAcPjwYbx48UIj31q1asHX11ejXuvWrQtPT091mfDwcKSnp+PUqVPqMgXVmaW29ezsbCxfvhyPHz9GaGgo67MEhg8fjk6dOuXLm3VafBcuXEClSpXg7++PPn364OrVqwBYp8W1fv16NGrUCN27d0eFChXwyiuv4Oeff1aP536qZJ4/f46lS5diwIABUCgUbKfF1LRpU2zfvh3nz58HABw/fhyJiYno2LEjALbT4sjKykJ2djacnJw0hjs7OyMxMZF1WkJyqj99YtEHO90yc+/ePWRnZ2vsLADA09MTKSkpEkUlTzn1UVBdpaSkoEKFChrj7ezsULZsWY0y2qaRex66ypj7MlGpVBg1ahSaNWuGoKAgAC9zdXBwgLu7u0bZvPVa3DpLT0/H06dPLa6tnzx5Eq6urnB0dMTQoUOxZs0a1K5dm/VZTMuXL8eRI0cQExOTbxzrtHhCQkIQGxuLLVu2YO7cuUhOTkaLFi3w6NEj1mkxXbp0CXPnzkWNGjUQFxeH9957Dx988AEWL14MgPupklq7di1SU1MRFRUFgOt+cY0dOxa9evVCrVq1YG9vj1deeQWjRo1Cnz59ALCdFkfp0qURGhqKqVOn4ubNm8jOzsbSpUuxb98+3Lp1i3VaQnKqP31i0Yed3iWJyOIMHz4cSUlJSExMlDoUsxcQEIBjx44hLS0Nq1atQmRkJHbt2iV1WGbp2rVrGDlyJOLj4/NdRaDiy7mqBQD16tVDSEgI/Pz8sGLFCjg7O0sYmflSqVRo1KgRvvrqKwDAK6+8gqSkJMybNw+RkZESR2f+fvnlF3Ts2BGVKlWSOhSztmLFCvz+++9YtmwZ6tSpg2PHjmHUqFGoVKkS22kJLFmyBAMGDIC3tzdsbW3RsGFD9O7dG4cPH5Y6NJIhXumWmfLly8PW1jbfmzhv374NLy8viaKSp5z6KKiuvLy8cOfOHY3xWVlZePDggUYZbdPIPQ9dZcx5mYwYMQIbNmxAQkICKleurB7u5eWF58+fIzU1VaN83notbp0plUo4OztbXFt3cHBA9erVERwcjJiYGNSvXx/ff/8967MYDh8+jDt37qBhw4aws7ODnZ0ddu3ahR9++AF2dnbw9PRknRqAu7s7atasiYsXL7KdFlPFihVRu3ZtjWGBgYHq2/a5nyq+K1euYNu2bRg0aJB6GNtp8YwZM0Z9tbtu3bro27cvPvzwQ/WdRGynxVOtWjXs2rULGRkZuHbtGg4ePIgXL17A39+fdVpCcqo/fWLRBzvdMuPg4IDg4GBs375dPUylUmH79u0IDQ2VMDL5qVq1Kry8vDTqKj09HQcOHFDXVWhoKFJTUzXOOu7YsQMqlQohISHqMrt378aLFy/UZeLj4xEQEIAyZcqoy+SeT04Zc1wmQgiMGDECa9aswY4dO1C1alWN8cHBwbC3t9fI99y5c7h69apGvZ48eVJjYxcfHw+lUqk+AC2sziy9ratUKmRmZrI+i6Fdu3Y4efIkjh07pv5r1KgR+vTpo/4367TkMjIy8N9//6FixYpsp8XUrFmzfJ9cPH/+PPz8/ABwP1USixYtQoUKFdCpUyf1MLbT4nny5AlsbDQP+W1tbaFSqQCwnZZUqVKlULFiRTx8+BBxcXF48803WaclJKf60ycWvej9yjUymeXLlwtHR0cRGxsrTp8+LYYMGSLc3d013sRpLR49eiSOHj0qjh49KgCIWbNmiaNHj4orV64IIV6+wt/d3V2sW7dOnDhxQrz55ptaPyfwyiuviAMHDojExERRo0YNjc8JpKamCk9PT9G3b1+RlJQkli9fLlxcXPJ9TsDOzk5888034syZMyI6OtosPsegzXvvvSfc3NzEzp07NT7L8uTJE3WZoUOHCl9fX7Fjxw5x6NAhERoaKkJDQ9Xjcz7J0r59e3Hs2DGxZcsW4eHhofWTLGPGjBFnzpwRc+bM0fpJFkto62PHjhW7du0SycnJ4sSJE2Ls2LFCoVCIrVu3CiFYn4aQ++3lQrBOi+Pjjz8WO3fuFMnJyeKff/4RYWFhonz58uLOnTtCCNZpcRw8eFDY2dmJL7/8Uly4cEH8/vvvwsXFRSxdulRdhvuposvOzha+vr7i008/zTeO7bToIiMjhbe3t/qTYX/99ZcoX768+OSTT9Rl2E6LbsuWLWLz5s3i0qVLYuvWraJ+/foiJCREPH/+XAjBOi2MOR3j6xNLYdjplqnZs2cLX19f4eDgIBo3biz2798vdUiSSEhIEADy/UVGRgohXr7Gf8KECcLT01M4OjqKdu3aiXPnzmlM4/79+6J3797C1dVVKJVK0b9/f/Ho0SONMsePHxfNmzcXjo6OwtvbW3z99df5YlmxYoWoWbOmcHBwEHXq1BEbN240Wt7GpK0+AYhFixapyzx9+lQMGzZMlClTRri4uIguXbqIW7duaUzn8uXLomPHjsLZ2VmUL19efPzxx+LFixcaZRISEkSDBg2Eg4OD8Pf315hHDkto6wMGDBB+fn7CwcFBeHh4iHbt2qk73EKwPg0hb6ebdVp0PXv2FBUrVhQODg7C29tb9OzZU+N70qzT4vn7779FUFCQcHR0FLVq1RILFizQGM/9VNHFxcUJAPnqSQi20+JIT08XI0eOFL6+vsLJyUn4+/uLzz77TOMzSmynRffnn38Kf39/4eDgILy8vMTw4cNFamqqejzrtGDmdIyvTyyFUQghhP7XxYmIiIiIiIhIX3ymm4iIiIiIiMhI2OkmIiIiIiIiMhJ2uomIiIiIiIiMhJ1uIiIiIiIiIiNhp5uIiIiIiIjISNjpJiIiIiIiIjISdrqJiIiIiIiIjISdbiIiIiIiIiIjYaebiIiIiIiIyEjY6SYiIiIiIiIyEna6iYiIiIiIiIyEnW4iIiIiIiIiI2Gnm4iIiIiIiMhI2OkmIiIiIiIiMhJ2uomIiIiIiIiMhJ1uIiIiIiIiIiNhp5uIiIiIiIjISNjpJiIii3b58mUoFArExsaqh02aNAkKhUK6oIrI3OKlolEoFJg0aZLUYRARkZGw001ERGYtNjYWCoVC69/YsWP1ns5XX32FtWvXGi9QMikuTyIikgs7qQMgIiIyhClTpqBq1aoaw4KCguDn54enT5/C3t6+wN9/9dVX6NatGyIiIowYJZkKlycREckFO91ERGQROnbsiEaNGmkd5+TkZOJoXnr27BkcHBxgYyPdjWVPnjyBi4uLZPMnIiKydry9nIiILJq2Z7rzUigUePz4MRYvXqy+NT0qKko9/saNGxgwYAA8PT3h6OiIOnXq4Ndff9WYxs6dO6FQKLB8+XJ8/vnn8Pb2houLC9LT0wEABw4cQIcOHeDm5gYXFxe0atUK//zzT75YEhMT8eqrr8LJyQnVqlXD/Pnz9c61devWCAoKwuHDh9GyZUu4uLhg/PjxAIDMzExER0ejevXqcHR0hI+PDz755BNkZmZqTCM+Ph7NmzeHu7s7XF1dERAQoJ5Gjjt37mDgwIHw9PSEk5MT6tevj8WLF2uUyan3b775BgsWLEC1atXg6OiIV199Ff/++69G2RMnTiAqKgr+/v5wcnKCl5cXBgwYgPv372uUy3m2/eLFi4iKioK7uzvc3NzQv39/PHnyRF2usOWZ1/PnzzFx4kQEBwfDzc0NpUqVQosWLZCQkFDsnABg5cqVqF27NpycnBAUFIQ1a9YgKioKVapU0RlLDn3aHBERmQde6SYiIouQlpaGe/fuaQwrX768Xr9dsmQJBg0ahMaNG2PIkCEAgGrVqgEAbt++jSZNmkChUGDEiBHw8PDA5s2bMXDgQKSnp2PUqFEa05o6dSocHBwwevRoZGZmwsHBATt27EDHjh0RHByM6Oho2NjYYNGiRWjbti327NmDxo0bAwBOnjyJ9u3bw8PDA5MmTUJWVhaio6Ph6empdz3cv38fHTt2RK9evfDOO+/A09MTKpUKb7zxBhITEzFkyBAEBgbi5MmT+Pbbb3H+/Hn1s8+nTp3C66+/jnr16mHKlClwdHTExYsXNU4OPH36FK1bt8bFixcxYsQIVK1aFStXrkRUVBRSU1MxcuRIjXiWLVuGR48e4d1334VCocD06dPx1ltv4dKlS+pb/uPj43Hp0iX0798fXl5eOHXqFBYsWIBTp05h//79+V4i16NHD1StWhUxMTE4cuQIFi5ciAoVKmDatGmFLk9t0tPTsXDhQvTu3RuDBw/Go0eP8MsvvyA8PBwHDx5EgwYNipzTxo0b0bNnT9StWxcxMTF4+PAhBg4cCG9v70KXYVHbHBERyZwgIiIyY4sWLRIAtP4JIURycrIAIBYtWqT+TXR0tMi7CyxVqpSIjIzMN/2BAweKihUrinv37mkM79Wrl3BzcxNPnjwRQgiRkJAgAAh/f3/1MCGEUKlUokaNGiI8PFyoVCr18CdPnoiqVauK//u//1MPi4iIEE5OTuLKlSvqYadPnxa2trb54tWmVatWAoCYN2+exvAlS5YIGxsbsWfPHo3h8+bNEwDEP//8I4QQ4ttvvxUAxN27d3XO47vvvhMAxNKlS9XDnj9/LkJDQ4Wrq6tIT08XQvyv3suVKycePHigLrtu3ToBQPz9998adZHXH3/8IQCI3bt3q4flLLcBAwZolO3SpYsoV66cxjBdy1ObrKwskZmZqTHs4cOHwtPTU2NeRcmpbt26onLlyuLRo0fqYTt37hQAhJ+fn8a8AIjo6Gj1//Vtc0REZB54ezkREVmEOXPmID4+XuOvpIQQWL16NTp37gwhBO7du6f+Cw8PR1paGo4cOaLxm8jISDg7O6v/f+zYMVy4cAFvv/027t+/r/7948eP0a5dO+zevRsqlQrZ2dmIi4tDREQEfH191b8PDAxEeHi43jE7Ojqif//+GsNWrlyJwMBA1KpVSyOHtm3bAoD6Nmp3d3cAwLp166BSqbROf9OmTfDy8kLv3r3Vw+zt7fHBBx8gIyMDu3bt0ijfs2dPlClTRv3/Fi1aAAAuXbqkHpa7vp49e4Z79+6hSZMmAJCvfgFg6NChGv9v0aIF7t+/r76Vv6hsbW3h4OAAAFCpVHjw4AGysrLQqFEjrfMvLKebN2/i5MmT6NevH1xdXdXlWrVqhbp16xYYS3HaHBERyRtvLyciIovQuHFjnS9SK667d+8iNTUVCxYswIIFC7SWuXPnjsb/875B/cKFCwBedsZ1SUtLQ2ZmJp4+fYoaNWrkGx8QEIBNmzbpFbO3t7e6A5k7hjNnzsDDw6PAHHr27ImFCxdi0KBBGDt2LNq1a4e33noL3bp1U78M7sqVK6hRo0a+l8MFBgaqx+eW+wQCAHVn9eHDh+phDx48wOTJk7F8+fJ89ZmWlpYv3oKmqVQqteZYmMWLF2PmzJk4e/YsXrx4oR6ed3kWNn/gf3VQvXr1fL+tXr16gZ3m4rQ5IiKSN3a6iYiIdMi52vvOO+/o7DTXq1dP4/+5r9rmnsaMGTPyPRucw9XVNd8LzYor7/xzYqhbty5mzZql9Tc+Pj7q3+7evRsJCQnYuHEjtmzZgj///BNt27bF1q1bYWtrW+R4dP1GCKH+d48ePbB3716MGTMGDRo0gKurK1QqFTp06KD1irs+0yyKpUuXIioqChERERgzZgwqVKgAW1tbxMTE4L///jP6/HMrTpsjIiJ5Y6ebiIgIyPeyLgDw8PBA6dKlkZ2djbCwsGJNN+cFXkqlssBpeHh4wNnZWX1lPLdz584Va965Yzh+/DjatWunNc/cbGxs0K5dO7Rr1w6zZs3CV199hc8++wwJCQkICwuDn58fTpw4AZVKpXG1++zZswAAPz+/IsX28OFDbN++HZMnT8bEiRPVw7XVQ1EUlmduq1atgr+/P/766y+N30VHRxdr3jl1cPHixXzjtA3LzRBtjoiI5IXPdBMREQEoVaoUUlNTNYbZ2tqia9euWL16NZKSkvL95u7du4VONzg4GNWqVcM333yDjIwMndOwtbVFeHg41q5di6tXr6rHnzlzBnFxcUXMRlOPHj1w48YN/Pzzz/nGPX36FI8fPwbw8jbvvHKuzudciX/ttdeQkpKCP//8U10mKysLs2fPhqurK1q1alWk2HKuGue9Svzdd98VaTp5aVueRYnhwIED2LdvX7HmXalSJQQFBeG3337TWOa7du3CyZMnC42lpG2OiIjkhVe6iYiI8LJzvG3bNsyaNQuVKlVC1apVERISgq+//hoJCQkICQnB4MGDUbt2bTx48ABHjhzBtm3btHZUc7OxscHChQvRsWNH1KlTB/3794e3tzdu3LiBhIQEKJVK/P333wCAyZMnY8uWLWjRogWGDRum7szWqVMHJ06cKHZuffv2xYoVKzB06FAkJCSgWbNmyM7OxtmzZ7FixQrExcWhUaNGmDJlCnbv3o1OnTrBz88Pd+7cwU8//YTKlSujefPmAIAhQ4Zg/vz5iIqKwuHDh1GlShWsWrUK//zzD7777juULl26SLEplUq0bNkS06dPx4sXL+Dt7Y2tW7ciOTm52PkCupenNq+//jr++usvdOnSBZ06dUJycjLmzZuH2rVraz1Roo+vvvoKb775Jpo1a4b+/fvj4cOH+PHHHxEUFFToNEva5oiISF7Y6SYiIgIwa9YsDBkyBJ9//jmePn2KyMhIhISEwNPTEwcPHsSUKVPw119/4aeffkK5cuVQp04d9XehC9O6dWvs27cPU6dOxY8//oiMjAx4eXkhJCQE7777rrpcvXr1EBcXh48++ggTJ05E5cqVMXnyZNy6datEnW4bGxusXbsW3377LX777TesWbMGLi4u8Pf3x8iRI1GzZk0AwBtvvIHLly/j119/xb1791C+fHm0atUKkydPhpubG4CXz33v3LkTY8eOxeLFi5Geno6AgAAsWrQIUVFRxYpv2bJleP/99zFnzhwIIdC+fXts3rwZlSpVKnbOupanNlFRUUhJScH8+fMRFxeH2rVrY+nSpVi5ciV27txZrPl37twZf/zxByZNmoSxY8eiRo0aiI2NxeLFi3Hq1KkCf2uINkdERPKhEIZ46wcRERERFapBgwbw8PAwyCftiIjIPPCZbiIiIiIDe/HiBbKysjSG7dy5E8ePH0fr1q2lCYqIiCTBK91EREREBnb58mWEhYXhnXfeQaVKlXD27FnMmzcPbm5uSEpKQrly5aQOkYiITITPdBMREREZWJkyZRAcHIyFCxfi7t27KFWqFDp16oSvv/6aHW4iIivDK91ERERERERERsJnuomIiIiIiIiMhJ1uIiIiIiIiIiPhM90ypVKpcPPmTZQuXRoKhULqcIiIiIiIiMyCEAKPHj1CpUqVYGMj/XVmdrpl6ubNm/Dx8ZE6DCIiIiIiIrN07do1VK5cWeow2OmWq9KlSwN42VCUSqXE0RAREREREZmH9PR0+Pj4qPtUUmOnW6ZybilXKpXsdBMRERERERWRXB7TZafbSuRucPxKHBGRvOVss611e61P/ta6XzP3vK29bRMVhuuIZWKn2wLpOqOTs/JaysqsLU9rOEAr6vIz17zzLl99YreEtl2cvC1JUdfrvL+xhPpSKBT5ttdA/tyKU1dyl3sdVigUhV6hyF3OUnLPTVs7yBlujnnnzqOk22tr31bKjSG3w9a6bPPWoSUc09D/sNNtIYqygcq9IpsrbRui3AdoBR2o5Aw3t42YroNRXXloqwtzyTtvnIXlm3c5m0ueuuRdZrmH5VbYCTZzpc+y13aAZ05tXJe88WtrC3nH5f6tuecP/C8vffOwhn1a3nE5/zenZV5QjkWN35z2b8U9OWZOJ9W0HZ8UJ9bCtvWWTFvu5rJtM0Qbl2vbNiR2ui1Acc+EyXUHpS9tByBA4QcqOcPMMf+8B6OFXQnStvGWe96FXe3Rp6NpDnlqU9BJIn072Oawg9ZF2zIrSqfTXA5QikOftmzu+Zc0dnNc5wHd+3BLXOYFnTjQNj6vgupKzvVQ1P2TIU9QmIq245Pc/y9MYSeY5Zq3IU6O6HMRRe75F/dCibkcmxoCO90WoqgNVe47qILoc7uhpTHUFU1zWe668rKGK1+6ThIVhSXuvIqSj7nmb65xG1Jx8zfndR6wzP1WbvqcHC7oQN1cr4jp6pAV5Q6evL+TG13bLX07U/peJJGj4nQ4tf2+oLJyzj9HUU6W6ypvDR1vdrrNnKU3UF0MlbM51Z+5xCkX5nY3g6F2quawg9bGUMvKXPM3JHNq91Ry5rKtKyy+oh6oayPHeijoRKo+d/CYs7xXvQsbZo6Kc9elpeRuyItg1rDvZqebrJY1rODayPkAzRqXR25yXCZkXsx1u2aIbZKct226mFu8pmBNdzsU9241ubQZfeu7KI//6fq9nPIGCl93dV391jbenBk6D7ktZ0Nip9uMlXTnIseNWGHMbYdqCNaWszm1R7kyx3Xb0Mwtf3OLl4gKZi3rdFGvZlojQ+RtDe3JHE+cFYWN1AFQyVj6CqgNcyZ9WfoGnLTj+kIkH9bQWSDrYurjCjmuPzy2Kjp2usmqsVNGcmDtB6XWnr+hcbtmnbjMraftW0OOcsd9FuugqNjpNlM8SKWS4k6biOTA0Nsic9m2GTJOHg9YD2td1tZyQsXaWfJyZqfbylly4ybd5LjT5okkw+O6TebCUOu+uW1DzC1e0o81bHutdZ9tDcuWjIOdbjIb1rqBJyoOrivmg9s2IsvDddpySbFseZHM/LHTTSRjPBgvOe6orBOXO5H0uA4SWR4emxYPO91miI3dsHhwTkSWhts1kgserxBRUVjq/oudbj1MmjRJ/WH7nL9atWoV+JuVK1eiVq1acHJyQt26dbFp0yYTRUtE5sTaT6JZe/5EhmKpB6pFZQ31YA05Elkai+x0P3v2DJmZmQadZp06dXDr1i31X2Jios6ye/fuRe/evTFw4EAcPXoUERERiIiIQFJSkkFjIioJ7rSJSGrGOOliDts2nmwiKjpzWLeJdLGITvfOnTvx4YcfonHjxnB1dUWpUqXg4uKC0qVLo3Hjxhg1ahR27txZonnY2dnBy8tL/Ve+fHmdZb///nt06NABY8aMQWBgIKZOnYqGDRvixx9/LFEMxsKNGEmNB6DGwXWbiMi0uD+zXFy2VBJ2UgdQXC9evMD8+fMxa9YsXL58GWXLlkXDhg3xzjvvoEyZMhBC4OHDh0hOTsbSpUvxww8/wM/PDx9//DHeffdd2NvbF2l+Fy5cQKVKleDk5ITQ0FDExMTA19dXa9l9+/bho48+0hgWHh6OtWvX6px+ZmamxtX59PT0IsVHRERERGRs7HwSFZ3ZdrqrV6+O58+fIzIyEj169EDDhg0LLH/48GGsXLkSX331Fb755htcvnxZ73mFhIQgNjYWAQEBuHXrFiZPnowWLVogKSkJpUuXzlc+JSUFnp6eGsM8PT2RkpKicx4xMTGYPHlyobFY64bOGvO2xpyNJeeKL+vTupjDcpd7fERERFRyZtvpHj9+PKKiouDo6KhX+eDgYAQHB2PKlClYtGhRkebVsWNH9b/r1auHkJAQ+Pn5YcWKFRg4cGCRpqXLuHHjNK6Op6enw8fHxyDTJiIiIjIlKU8o8UQWWSI5nEg21fzlkKuhmW2n+9133y3W7xwcHIr92xzu7u6oWbMmLl68qHW8l5cXbt++rTHs9u3b8PLy0jlNR0dHvU8gEBmKJW3MyDyxDVo3Ln8yBks7WCci82cRL1IztYyMDPz333+oWLGi1vGhoaHYvn27xrD4+HiEhoaaIjyLZOydp7W+cEouOVvrwZEpDgzlXLdyaX+Wyhy2a8aKT87t3pjktMylXAZyqgdjsYYctZGqXfFEDpUUO916GD16NHbt2oXLly9j79696NKlC2xtbdG7d28AQL9+/TBu3Dh1+ZEjR2LLli2YOXMmzp49i0mTJuHQoUMYMWKEVCmYPWvcsVgTLl/jYd2SNbLmdi+XjoE1LwMyHrYrMldme3u5jY1NsVa87OzsIv/m+vXr6N27N+7fvw8PDw80b94c+/fvh4eHBwDg6tWrsLH53/mLpk2bYtmyZfj8888xfvx41KhRA2vXrkVQUFCR552bMc+yyWUnTf/DZUJUcnJfj+Qen7mS+/OAxoxLznlbA1PWvTUuZ7mv20S6KISZttpJkybl63SvWbMGp06dQnh4OAICAgAAZ8+exdatWxEUFISIiAhER0dLEW6Rpaenw83NDWlpaVAqlQCMuyOV+wZM7vEZg6lylkPdyiEGKZgibznXrbXnD8g/PmMydu5yrVtryVvqOKSYv6nnaQ05yiUGOeQtB6ash5LOS1tfSkpme6V70qRJGv9fsGAB7ty5g6SkJHWHO8eZM2fQtm1bVKpUyYQRmheeOeQGVSrWdHIhL74BlIyNy56IDInbE2lJvU039Z0cUudrSBbzTPeMGTMwYsSIfB1uAAgMDMSIESMwffp0CSKjkrKkFU5fpszZWupWji+dkVs8pmbKkw5yZI3bttys+SWC1kDq+pd6/pZKrttTMg0u/+KzmE739evXYW9vr3O8vb09rl+/bsKIyFC44zQuqTegXL7GJ9c6lrrtSU2uy8VUjL38rbV9yaVdSV3/Us+fjEcubVwKUp5ItvYTxSVlMZ3uoKAg/PTTT7hx40a+cdevX8dPP/2EunXrShCZ+ZDrimSNO065LgtjsMbla2rWXsdyXZ+sfblYK1O8x0Bq1npwbuqcrbGOAdO3cbm1ZznFQvoz22e68/r2228RHh6OmjVrokuXLqhevToA4MKFC1i7di2EEFi6dKnEURYfXzhkfHLK3dqXhbGwTq2TNa9P1pq3nFlzezQlKZ4HtfT5AdymyAG3IebJYjrdzZs3x4EDBzBhwgSsWbMGT58+BQA4OzsjPDwckydP5pVuKpQ1bsisKV+5LV85xSIFa8/fVOTW7nPIMSYyDLksW7nEYSzWcGKByFJYTKcbeHmL+Zo1a6BSqXD37l0AgIeHh8Y3tMn8cONuXFLvQK11+Vr7y/KkbndyYO35G7sNWGv9yiFvuazfcomDDIvLVBqs95KxqE53DhsbG3h6ekodhtmR68pkjZ0TucRhCjwoMj5rr2O55m6q5SLX/I1Nru3eWj+RaA2kqHNrXM7W3r6lyl2qxxksZXlbVKf72bNnWL16NY4cOYK0tDSoVCqN8QqFAr/88otE0cmfpTTqkpBLHZj6RINc8jY2OeUop1gsnbW0b13kmL8pYpLjtk1u8ZBhSbF8TT1PObRfOa7bpmTNuZszi+l0X7lyBW3atMHly5fh7u6OtLQ0lC1bFqmpqcjOzkb58uXh6uoqdZjFYsqrIXJckeUWjyWyltvL5dS+rf3EipxiIdOztruXrI1c6t1a9y/GJJc8TRWDXPIl82cxDzuPGTMGaWlp2L9/P86fPw8hBP78809kZGRg2rRpcHZ2RlxcnNRhUjHI4fMnlk7Kbz6SacjtoMGUy15uueeQa1ymYKrlb63bGKnbllzqXS5xWAo5dUCtedlKsQzktOzNlcV0unfs2IFhw4ahcePG6henCSHg6OiIMWPGoF27dhg1apS0QZoBa1+h5JK/XOKwNDlXfK2RteYNyDd3U8XF7Yl8mPLqHJmWVOuZtd1aTtKs31z2JWcxne4nT56gSpUqAAClUgmFQoG0tDT1+NDQUCQmJkoUnfmQ447a1LeHSY0bU+OSS65yiUMqpj5QlMO6nZsprxrILXfAem8vl+OyMAa51Ls1HD+Ycr5yar9yaWNSkGKfJqdlb64sptPt6+uL69evAwDs7Ozg7e2N/fv3q8efPn0aTk5OUoVXbG5ublKHICmu5KYhVT1LdYuUHJg6DrkdoMhlOUhFbsvD1Hh7uXFJ3b7kUu9yiYMMz9qXrdTrOBWdxbxIrW3btli3bh2io6MBAFFRUYiJicHDhw+hUqmwZMkS9OvXT+Ioi4e3DpmOHPKXQwymwmeETMfa61puuVvjpxDJOl7+ZK3bGmu4vdzayLljb23rmSXkazGd7rFjx+Lff/9FZmYmHB0dMX78eNy8eROrVq2Cra0t3n77bcyaNUvqMGXPEhp1SUldB1J9B5FMy9rr3NI/qyMncszdWk84yHFZGJqc8rOGt5db6wk8a8xZSlJ/5UbOJ0D0pRBsTbKUnp6uvrXcGnYaciJ1HVjDdz6tnbXXN9u46cktf1PFY615S0luOVpDW7OGHPMyRSxyyldqUtdFceaf05dKS0uDUqk0UmT6s4hnup88eYLg4GDMmzdP6lAMLvfL4ExBbhsXa3ypmNTzNyUplq8lnC0tDmvNO4fc1itrf6bfWlnDi72sldRXAsm6cP02PxbR6XZxcUFycjIboAGwDqWvA6lONEidtzWx9gMka36BnlTklr8pbw2VS+5yicPY5LZ9s4avBFjj5wfltG4T6cMiOt0A0KFDB8TFxUkdhtmT20ZMTht4SydFXVvLPPOy9hMrcolDSnJoh1LhVX7TkPJWZzkxRTxS33prKnJbttZQ57pYc+7mymI63RMmTMD58+fRt29fJCYm4saNG3jw4EG+PyqcnFZk3l5uOtbyzUe5HTSYktRtW0pyy50dT9ORyzovxXsMyDSkXr+s7XnuHMZs43LMNzdr24fI6cJBcVnMi9RsbP53/qCghZKdnW2KcEpMyof/5bShscYXLlnDG1ClmJ9c5i0la80bkF/u1rS+5WWtuVtr3tZA6rqWev5SMWbecq9TU8Ynl7ooahxye5GaxXwybOLEiWZ/BoTyk8NKbkpSbtis6TNlUrcruezApCLVZ/HkVO9yiUMK1rStkRJPar4kt3jMlRzrUW7xEBXEYq50G1NMTAz++usvnD17Fs7OzmjatCmmTZuGgIAAnb+JjY1F//79NYY5Ojri2bNnes1TbmdnpGAtV3zlwpquwki9jKWev9SYP/O3lm2NlLgPfUlu8ZgrOdajNV/pNiW51IW5X+m2mGe6jWnXrl0YPnw49u/fj/j4eLx48QLt27fH48ePC/ydUqnErVu31H9XrlwxUcQlY+13DEjdGSPLZy3P7cuNNedvzbnLhTUsA7kcnOdmquedpWSK+cttuZL07Y6Kxmw73bVr18Zvv/2G58+f6/2bzMxMLFq0CLVr1y7SvLZs2YKoqCjUqVMH9evXR2xsLK5evYrDhw8X+DuFQgEvLy/1n6enZ5Hma+3YMTEt3vJpOtbaxnJY87InbmtMxVq/DpGXtW9vDUWO9SjH9maJ5FTPcmyH+jLbTndUVBQ++ugjeHp6IjIyEkuWLMGpU6fw5MkTdZnHjx8jKSkJsbGxeOedd1ChQgV88skniIqKKtG809LSAABly5YtsFxGRgb8/Pzg4+ODN998E6dOnSrRfE1FLiuXVCuWJbwhsTis5e3lgPR3M1jLc/vaWOtyz02qzpBctmvWtK2RkhR5y7Gu5dT2jcUactTGWDnL8Y4NbazhG/S5mcMyKYhZP9P96NEj/PLLL4iNjcWJEyfUjcLO7uX74bKysgC8XEhBQUEYMGAABgwYUKL7+lUqFd544w2kpqYiMTFRZ7l9+/bhwoULqFevHtLS0vDNN99g9+7dOHXqFCpXrpyvfGZmJjIzM9X/T09Ph4+Pj1W/vVwucVgLa3rOkvOWjrXnL6c4pGJN2xopWePXP3SRa1xUMsZarubSXkwVp5zqoyixyO2ZbrPudOd2+fJl7N27F2fPnsX9+/cBAOXKlUOtWrUQGhqKqlWrGmQ+7733HjZv3ozExEStnWddXrx4gcDAQPTu3RtTp07NN37SpEmYPHlyvuHW3OmWEl9AY3zsfJmeteadQy75c/tindgJtlxyqGdjxyCHHE3FXHJlp7tg7HSbsREjRmDdunXYvXt3sTrx3bt3h52dHf74449843ilW15xWONBsVyWuymwnqXDupeOXPK3xs6n1PM3FbnmaQ0dUmvIURtjxCXXXKUgt7ow50632T7TbUpCCIwYMQJr1qzBjh07itXhzs7OxsmTJ1GxYkWt4x0dHaFUKjX+pCKnlUsq1vjMramfCeOzvaYnl+eypCKX5S7l+yqkJrcDOFPhi0EtmxzatDV2uK0d12/zYid1AOZg+PDhWLZsGdatW4fSpUsjJSUFAODm5gZnZ2cAQL9+/eDt7Y2YmBgAwJQpU9CkSRNUr14dqampmDFjBq5cuYJBgwZJlkdRWPsG1hqvdJuS1Hla68vMck6sWEMb08aacweYv5Sspe7lmqM1dEiNGYcc8iPKIZd1rqjY6dbD3LlzAQCtW7fWGL5o0SL1m9CvXr0KG5v/3Tjw8OFDDB48GCkpKShTpgyCg4Oxd+/eIn+uzJqZ4wpl7qylzqXsfJrrzsJQrDl3ss67iKyJXLdvco3LXMi5/uQaFxmHOb+pn890y5TUzyFIvYG1xvlLnbNcYjAVdrqlIXX+Us9fSnLI3VrXO6nnbypyzdOYccklZ2vIURtDxybnXKUgx/rQNyap+1J5WeQz3bNmzZI6BLMntxXM1KTI35rq3FzPUloCa697qdczvsvAOvGZbssll/VKLnGQaXEdNx8W2en+4osv1P/u2rWrhJGYL2tfiaXI39rrnMgUrHk9s+bcpWYNdS/HK2KmIJdla8w4rHG5EhmaRXa6AwMDMW3aNJw/fx7x8fFSh0NmyJyfGSH98NlSaVh7/lLido2MSc7rtpxjMwdy3m5w2ZK5sMgXqS1btgyTJk1CWFgYnjx5ggYNGqBu3bqoV68e6tWrh7p166JSpUpSh0kF4EZUGtZU79b63L6UrD1/4skuUzNl3nJfv+UeX0lZ69cprDFnU5Fr3ZprW7f4F6m5urpi27ZtOHHiBE6cOIGTJ0/i5MmTsLGxwb1796QOTyepH/6XujFLPX8pYrDGnKXETrfpySF/OcQgJanzt8YXqVlLnUudZ2GMFZ+c8raGHPPii9SMR851oU9sUvel8rKYK93Vq1dHZGQkJkyYoDE8JSUFrq6uaNKkicbw69evmzI8syPXlcySyaHOTXX2UM4bcktn7XUvde7WXP9S5i7llRFrXd7WQk7LV06xmIoh121z3D6bY8zWymI63ZcuXcKhQ4dw+PBhnD9/HkqlEoGBgfD399davnLlyiaO0PxY+4rMq6DGIZc8zfX2pJKy1rxzWHPugHUelEvN2tucJZPbsjVGPHLLkchcWUynGwA2bNiADRs2qDcOCoUCderUwfjx49GrVy+JoyNzwx0NEVkabteIqCi4vSAyDIt6e7m9vT0mTZqEnTt3YuvWrfjyyy/h4OCAPn36YOjQoVKHR3qyxoNCa8yZSApSvsGb6zkRmRs5v7mcjIf7K8OzqCvdH374ocYz3WFhYRg7diy+/fZbjB49GqGhoYiMjJQwQiIiIiLLI/cDdLnHR1Qc1vzImLnlbTFXup2dnXU+p/3hhx+iZ8+emD17tomjInPGb9qSIZnbzsHQrD1/IktmDvtKc4iRiof7FutjjsvcYjrdtWrVwsaNG3WOb9GiBU6fPm3CiIiIiOSFJxOtD5f5S9ZQD9aQozaGyJknhsnYLKbT/e6772LLli14//338fTp03zj//nnH7i4uEgQGREREUnNWjskRNaA67bhsC6Nw2Ke6R4yZAjOnDmD77//HsuXL0fHjh0RFBQEBwcHbNu2DZs3b0ZUVJTUYRLJnjU9H2RNuRJJyVrXM2vN2xpw2coHT6gZHtu24SmEhdXqnj178O2332Lbtm3IyMhQD4+IiEBsbCyUSqWE0ekvPT0dbm5uSEtLkzRmKXYqctqRmSoWOeUMGC8eueUJcBlb6vwKItV2DZDHgYw1b9ettd0bOw655FkYQ8Yp15ytIUdtShqrOeWal6FjN6e6KChWufSlcljMle4cLVq0QIsWLZCdnY3Lly/j0aNH8PX1RdmyZaUOjfRgTiu6oVhjzkRSkuoOB67nRERkDDyWlD+L63TnsLW1RbVq1aQOg4iIiMhi8WCfSFq8vd48WMyL1IiMgRsyMgRrPyjlOiQv3K6RtbKGtm8NORqate+jc2NdGA873USkFXfaZEjciVsvuW1LTBWPnPJmR4ysAdu4dTKX5c5ONxXKXBozGY61vEQNsO6DUWvNm0xPLus+n+MnQ+C2U364rlknc1ru7HRTgazxLa+mxB03ScXa1jUpWeO2jcjSWfo6bS3bLUs6DitpLtayzKXCTjeRHoy5UeYGjsj0rPkOByJD4TpElsASjsMsIYeSMIdtETvdZHAKhUL9ZwmseUNmqGVoDm3BWDFa+5ljS8k/93bNErZvRT3pUNz85VpPxc3dGNM3FWOdaDK39dtaTrhZQ45kOObcXsxlG2Sxnwwjw9LnwDn3CptTVtuwwn5L8mDoAxM5bxT1zTVvGTnnpK+irtt5WUIdFETXNix3J8ySt20lzV+f8aamz/qubV0vSs76liHzYw7rdEn33+aQoy5FOdFrznkaA7dZxsUr3UUwZ84cVKlSBU5OTggJCcHBgwcLLL9y5UrUqlULTk5OqFu3LjZt2mSiSA1LnwPy3Aciucvn/n9hVwrMfWUv6pUgS7sCaMm0tfHcB+G68pd7vejT/rTlre96Lff8gYJj1LVdyz0sb2dMG3NczwvarucdZmnbAG1tPvf/c8qYa87WdAeTsZjjOl1U5phjcWI2xzwLUpz10hLWZXO4g4Wdbj39+eef+OijjxAdHY0jR46gfv36CA8Px507d7SW37t3L3r37o2BAwfi6NGjiIiIQEREBJKSkkwcuXEVdFCWW96DFW3TkLOCVuacg6+idkjMhbb4c3c28+Zqjss3h65cAf06HtqY6w49b7vWxtzz1+cKdVGuaJpb29e1XdN3u563jDnlry13fdp8zm8Lavdyz1sbbSeN9TmBLOf1uyDmcIBuCNaQY3FZYt0UZ30syr7OHMh5uSqEpdSykYWEhODVV1/Fjz/+CABQqVTw8fHB+++/j7Fjx+Yr37NnTzx+/BgbNmxQD2vSpAkaNGiAefPmFTq/9PR0uLm5IS0tDUql0nCJFJO2lbK4K6q2FcIcmmHefIt667wh6k4KuWPVJ2dzXb6A9lyLc5tacX4vFUO1T0vJX9/1urDplWQapqQrf0PkXtzpmIoh4tW1/phD3vouc3Pfh+lS3O2cOeVcnHgtZdnqc5emOeeoi77rc26WVA+585dbX4pXuvXw/PlzHD58GGFhYephNjY2CAsLw759+7T+Zt++fRrlASA8PFxnebnTdTWzuLfy5L0F3Rxou3qt75Wg3L8ztx2atgMzfa8C5f69OShJx0Pb1S9zyN1Q7dNS8s8ZVtzYtd3xImd58zdE7nmnLVd5Yy3J/kyfq8JyUdRlritHuS/fwmg70VbQFX5zWLbaFCVuS1m2hTHXZamPvO1aW5s2t/1UUeTO383NTeJoNPFFanq4d+8esrOz4enpqTHc09MTZ8+e1fqblJQUreVTUlK0ls/MzERmZqb6/+np6SWM2vAMvWKa44pekoNRc1bcg1FzVNK4zTFvQ8Zs7fmbI2vethsqVnPKGbCubXpBcp9MyD0M0P54mLnVgbb89PmNudN2t5W5L8uiyLvcLTlXbXLyzbnSLRe80i0TMTExcHNzU//5+PhIHRIRERGRRdN11S/vcHPtuGjLo6A/S1HQXUyWlKcu1pSruWCnWw/ly5eHra0tbt++rTH89u3b8PLy0vobLy+vIpUfN24c0tLS1H/Xrl0zTPBERERERFbGUk8okHlip1sPDg4OCA4Oxvbt29XDVCoVtm/fjtDQUK2/CQ0N1SgPAPHx8TrLOzo6QqlUavwRERERERGReeMz3Xr66KOPEBkZiUaNGqFx48b47rvv8PjxY/Tv3x8A0K9fP3h7eyMmJgYAMHLkSLRq1QozZ85Ep06dsHz5chw6dAgLFiyQMg0iIiIiIiIyIXa69dSzZ0/cvXsXEydOREpKCho0aIAtW7aoX5Z29epV2Nj878aBpk2bYtmyZfj8888xfvx41KhRA2vXrkVQUJBe88v9EgAiIiIiIiLST04fSi6PFvA73TJ16dIlVKtWTeowiIiIiIiIzNJ///0Hf39/qcPglW65Klu2LICXV9BL8rr7V199Ff/++2+JYrGUaaSnp8PHxwfXrl0r0TPzcshFLtNgnRp+GpZWp3KJxdLqVQ7TYJ0afhqsU8NPg3Vq+GmwTg0/Ddap4aeRlpYGX19fdZ9Kaux0y1TOrepubm4lWvlsbW1L/FI2S5oGgBK/qE4uuchlGgDr1NDTACynTuUWi6XUq1ymAbBODT0NgHVq6GkArFNDTwNgnRp6GgDr1NDTAKDx+K+U5BEFGc3w4cM5DQOTSy5ymYYhyCUXuUzDEOSUi5xiKSm55CKXaRiCXHKRyzQMQS65yGUahiCXXOQyDUOQSy5ymYYhyCUXuUxDTvhMt0ylp6fDzc0NaWlp/HyYgbBODY91anisU+NgvRoe69TwWKeGxzo1PNap4bFODU9udcor3TLl6OiI6OhoODo6Sh2KxWCdGh7r1PBYp8bBejU81qnhsU4Nj3VqeKxTw2OdGp7c6pRXuomIiIiIiIiMhFe6iYiIiIiIiIyEnW4iIiIiIiIiI2Gnm4iIiIiIiMhI2OkmIiIiIiIiMhJ2umVqzpw5qFKlCpycnBASEoKDBw9KHZIkdu/ejc6dO6NSpUpQKBRYu3atxnghBCZOnIiKFSvC2dkZYWFhuHDhgkaZBw8eoE+fPlAqlXB3d8fAgQORkZGhUebEiRNo0aIFnJyc4OPjg+nTp+eLZeXKlahVqxacnJxQt25dbNq0yeD5mkJMTAxeffVVlC5dGhUqVEBERATOnTunUebZs2cYPnw4ypUrB1dXV3Tt2hW3b9/WKHP16lV06tQJLi4uqFChAsaMGYOsrCyNMjt37kTDhg3h6OiI6tWrIzY2Nl88ltDW586di3r16kGpVEKpVCI0NBSbN29Wj2d9lszXX38NhUKBUaNGqYexTotu0qRJUCgUGn+1atVSj2edFs+NGzfwzjvvoFy5cnB2dkbdunVx6NAh9Xjup4qmSpUq+dqpQqFQf7OX7bTosrOzMWHCBFStWhXOzs6oVq0apk6ditzvUmY7LbpHjx5h1KhR8PPzg7OzM5o2bYp///1XPZ51WjBzOsbXJ5ZCCZKd5cuXCwcHB/Hrr7+KU6dOicGDBwt3d3dx+/ZtqUMzuU2bNonPPvtM/PXXXwKAWLNmjcb4r7/+Wri5uYm1a9eK48ePizfeeENUrVpVPH36VF2mQ4cOon79+mL//v1iz549onr16qJ3797q8WlpacLT01P06dNHJCUliT/++EM4OzuL+fPnq8v8888/wtbWVkyfPl2cPn1afP7558Le3l6cPHnS6HVgaOHh4WLRokUiKSlJHDt2TLz22mvC19dXZGRkqMsMHTpU+Pj4iO3bt4tDhw6JJk2aiKZNm6rHZ2VliaCgIBEWFiaOHj0qNm3aJMqXLy/GjRunLnPp0iXh4uIiPvroI3H69Gkxe/ZsYWtrK7Zs2aIuYyltff369WLjxo3i/Pnz4ty5c2L8+PHC3t5eJCUlCSFYnyVx8OBBUaVKFVGvXj0xcuRI9XDWadFFR0eLOnXqiFu3bqn/7t69qx7POi26Bw8eCD8/PxEVFSUOHDggLl26JOLi4sTFixfVZbifKpo7d+5otNH4+HgBQCQkJAgh2E6L48svvxTlypUTGzZsEMnJyWLlypXC1dVVfP/99+oybKdF16NHD1G7dm2xa9cuceHCBREdHS2USqW4fv26EIJ1WhhzOsbXJ5bCsNMtQ40bNxbDhw9X/z87O1tUqlRJxMTESBiV9PKukCqVSnh5eYkZM2aoh6WmpgpHR0fxxx9/CCGEOH36tAAg/v33X3WZzZs3C4VCIW7cuCGEEOKnn34SZcqUEZmZmeoyn376qQgICFD/v0ePHqJTp04a8YSEhIh3333XoDlK4c6dOwKA2LVrlxDiZR3a29uLlStXqsucOXNGABD79u0TQrzcUNrY2IiUlBR1mblz5wqlUqmux08++UTUqVNHY149e/YU4eHh6v9bclsvU6aMWLhwIeuzBB49eiRq1Kgh4uPjRatWrdSdbtZp8URHR4v69etrHcc6LZ5PP/1UNG/eXOd47qdKbuTIkaJatWpCpVKxnRZTp06dxIABAzSGvfXWW6JPnz5CCLbT4njy5ImwtbUVGzZs0BjesGFD8dlnn7FOi0jOx/j6xKIP3l4uM8+fP8fhw4cRFhamHmZjY4OwsDDs27dPwsjkJzk5GSkpKRp15ebmhpCQEHVd7du3D+7u7mjUqJG6TFhYGGxsbHDgwAF1mZYtW8LBwUFdJjw8HOfOncPDhw/VZXLPJ6eMJSyTtLQ0AEDZsmUBAIcPH8aLFy808q1VqxZ8fX016rVu3brw9PRUlwkPD0d6ejpOnTqlLlNQnVlqW8/Ozsby5cvx+PFjhIaGsj5LYPjw4ejUqVO+vFmnxXfhwgVUqlQJ/v7+6NOnD65evQqAdVpc69evR6NGjdC9e3dUqFABr7zyCn7++Wf1eO6nSub58+dYunQpBgwYAIVCwXZaTE2bNsX27dtx/vx5AMDx48eRmJiIjh07AmA7LY6srCxkZ2fDyclJY7izszMSExNZpyUkp/rTJxZ9sNMtM/fu3UN2drbGzgIAPD09kZKSIlFU8pRTHwXVVUpKCipUqKAx3s7ODmXLltUoo20aueehq4y5LxOVSoVRo0ahWbNmCAoKAvAyVwcHB7i7u2uUzVuvxa2z9PR0PH361OLa+smTJ+Hq6gpHR0cMHToUa9asQe3atVmfxbR8+XIcOXIEMTEx+caxTosnJCQEsbGx2LJlC+bOnYvk5GS0aNECjx49Yp0W06VLlzB37lzUqFEDcXFxeO+99/DBBx9g8eLFALifKqm1a9ciNTUVUVFRALjuF9fYsWPRq1cv1KpVC/b29njllVcwatQo9OnTBwDbaXGULl0aoaGhmDp1Km7evIns7GwsXboU+/btw61bt1inJSSn+tMnFn3Y6V2SiCzO8OHDkZSUhMTERKlDMXsBAQE4duwY0tLSsGrVKkRGRmLXrl1Sh2WWrl27hpEjRyI+Pj7fVQQqvpyrWgBQr149hISEwM/PDytWrICzs7OEkZkvlUqFRo0a4auvvgIAvPLKK0hKSsK8efMQGRkpcXTm75dffkHHjh1RqVIlqUMxaytWrMDvv/+OZcuWoU6dOjh27BhGjRqFSpUqsZ2WwJIlSzBgwAB4e3vD1tYWDRs2RO/evXH48GGpQyMZ4pVumSlfvjxsbW3zvYnz9u3b8PLykigqecqpj4LqysvLC3fu3NEYn5WVhQcPHmiU0TaN3PPQVcacl8mIESOwYcMGJCQkoHLlyurhXl5eeP78OVJTUzXK563X4taZUqmEs7OzxbV1BwcHVK9eHcHBwYiJiUH9+vXx/fffsz6L4fDhw7hz5w4aNmwIOzs72NnZYdeuXfjhhx9gZ2cHT09P1qkBuLu7o2bNmrh48SLbaTFVrFgRtWvX1hgWGBiovm2f+6niu3LlCrZt24ZBgwaph7GdFs+YMWPUV7vr1q2Lvn374sMPP1TfScR2WjzVqlXDrl27kJGRgWvXruHgwYN48eIF/P39WaclJKf60ycWfbDTLTMODg4IDg7G9u3b1cNUKhW2b9+O0NBQCSOTn6pVq8LLy0ujrtLT03HgwAF1XYWGhiI1NVXjrOOOHTugUqkQEhKiLrN79268ePFCXSY+Ph4BAQEoU6aMukzu+eSUMcdlIoTAiBEjsGbNGuzYsQNVq1bVGB8cHAx7e3uNfM+dO4erV69q1OvJkyc1Nnbx8fFQKpXqA9DC6szS27pKpUJmZibrsxjatWuHkydP4tixY+q/Ro0aoU+fPup/s05LLiMjA//99x8qVqzIdlpMzZo1y/fJxfPnz8PPzw8A91MlsWjRIlSoUAGdOnVSD2M7LZ4nT57AxkbzkN/W1hYqlQoA22lJlSpVChUrVsTDhw8RFxeHN998k3VaQnKqP31i0Yver1wjk1m+fLlwdHQUsbGx4vTp02LIkCHC3d1d402c1uLRo0fi6NGj4ujRowKAmDVrljh69Ki4cuWKEOLlK/zd3d3FunXrxIkTJ8Sbb76p9XMCr7zyijhw4IBITEwUNWrU0PicQGpqqvD09BR9+/YVSUlJYvny5cLFxSXf5wTs7OzEN998I86cOSOio6PN4nMM2rz33nvCzc1N7Ny5U+OzLE+ePFGXGTp0qPD19RU7duwQhw4dEqGhoSI0NFQ9PueTLO3btxfHjh0TW7ZsER4eHlo/yTJmzBhx5swZMWfOHK2fZLGEtj527Fixa9cukZycLE6cOCHGjh0rFAqF2Lp1qxCC9WkIud9eLgTrtDg+/vhjsXPnTpGcnCz++ecfERYWJsqXLy/u3LkjhGCdFsfBgweFnZ2d+PLLL8WFCxfE77//LlxcXMTSpUvVZbifKrrs7Gzh6+srPv3003zj2E6LLjIyUnh7e6s/GfbXX3+J8uXLi08++URdhu206LZs2SI2b94sLl26JLZu3Srq168vQkJCxPPnz4UQrNPCmNMxvj6xFIadbpmaPXu28PX1FQ4ODqJx48Zi//79UockiYSEBAEg319kZKQQ4uVr/CdMmCA8PT2Fo6OjaNeunTh37pzGNO7fvy969+4tXF1dhVKpFP379xePHj3SKHP8+HHRvHlz4ejoKLy9vcXXX3+dL5YVK1aImjVrCgcHB1GnTh2xceNGo+VtTNrqE4BYtGiRuszTp0/FsGHDRJkyZYSLi4vo0qWLuHXrlsZ0Ll++LDp27CicnZ1F+fLlxccffyxevHihUSYhIUE0aNBAODg4CH9/f4155LCEtj5gwADh5+cnHBwchIeHh2jXrp26wy0E69MQ8na6WadF17NnT1GxYkXh4OAgvL29Rc+ePTW+J806LZ6///5bBAUFCUdHR1GrVi2xYMECjfHcTxVdXFycAJCvnoRgOy2O9PR0MXLkSOHr6yucnJyEv7+/+OyzzzQ+o8R2WnR//vmn8Pf3Fw4ODsLLy0sMHz5cpKamqsezTgtmTsf4+sRSGIUQQuh/XZyIiIiIiIiI9MVnuomIiIiIiIiMhJ1uIiIiIiIiIiNhp5uIiIiIiIjISNjpJiIiIiIiIjISdrqJiIiIiIiIjISdbiIiIiIiIiIjYaebiIiIiIiIyEjY6SYiIiIiIiIyEna6iYiIiIiIiIyEnW4iIiIiIiIiI2Gnm4iIiIiIiMhI2OkmIiIiIiIiMhJ2uomIiIiIiIiMhJ1uIiIiIiIiIiNhp5uIiIiIiIjISNjpJiIiIiIiIjISdrqJiIiIiIiIjISdbiIisiiXL1+GQqFAbGysetikSZOgUCikC6qIzC1eAIiNjYVCocDly5elDkXNHOsxR1RUFKpUqSJ1GEREZADsdBMRkVnJ6dxp+xs7dqze0/nqq6+wdu1a4wVKREREBMBO6gCIiIiKY8qUKahatarGsKCgIPj5+eHp06ewt7cv8PdfffUVunXrhoiICCNGaT369u2LXr16wdHRUepQ1D7//PMinYiRk59//hkqlUrqMIiIyADY6SYiIrPUsWNHNGrUSOs4JycnE0fz0rNnz+Dg4AAbG+u7kczW1ha2trZSh6HBzs4OdnaGOdQRQuDZs2dwdnY2yPQKU9hJIyIiMh/Wd1RAREQWTdsz3XkpFAo8fvwYixcvVt+aHhUVpR5/48YNDBgwAJ6ennB0dESdOnXw66+/akxj586dUCgUWL58OT7//HN4e3vDxcUF6enpAIADBw6gQ4cOcHNzg4uLC1q1aoV//vknXyyJiYl49dVX4eTkhGrVqmH+/Pl653rhwgV07doVXl5ecHJyQuXKldGrVy+kpaVplFu6dCmCg4Ph7OyMsmXLolevXrh27ZpGmdatWyMoKAgnTpxAq1at4OLigurVq2PVqlUAgF27diEkJATOzs4ICAjAtm3bNH5flGe6FQoFRowYgZUrV6J27dpwdnZGaGgoTp48CQCYP38+qlevDicnJ7Ru3TrfNPfs2YPu3bvD19cXjo6O8PHxwYcffoinT59qlNP2THdWVhamTp2KatWqwdHREVWqVMH48eORmZmpUa5KlSp4/fXXERcXh0aNGsHZ2bnAZaNPTHfu3IGHhwdat24NIYR6+MWLF1GqVCn07NlTPUzbM93Lly9HcHAwSpcuDaVSibp16+L777/XXdFERCQLvNJNRERmKS0tDffu3dMYVr58eb1+u2TJEgwaNAiNGzfGkCFDAADVqlUDANy+fRtNmjRRdww9PDywefNmDBw4EOnp6Rg1apTGtKZOnQoHBweMHj0amZmZcHBwwI4dO9CxY0cEBwcjOjoaNjY2WLRoEdq2bYs9e/agcePGAICTJ0+iffv28PDwwKRJk5CVlYXo6Gh4enoWmsPz588RHh6OzMxMvP/++/Dy8sKNGzewYcMGpKamws3NDQDw5ZdfYsKECejRowcGDRqEu3fvYvbs2WjZsiWOHj0Kd3d39TQfPnyI119/Hb169UL37t0xd+5c9OrVC7///jtGjRqFoUOH4u2338aMGTPQrVs3XLt2DaVLl9arzvPas2cP1q9fj+HDhwMAYmJi8Prrr+OTTz7BTz/9hGHDhuHhw4eYPn06BgwYgB07dqh/u3LlSjx58gTvvfceypUrh4MHD2L27Nm4fv06Vq5cWeB8Bw0ahMWLF6Nbt274+OOPceDAAcTExODMmTNYs2aNRtlz586hd+/eePfddzF48GAEBATonK4+MVWoUAFz585F9+7dMXv2bHzwwQdQqVSIiopC6dKl8dNPP+mcfnx8PHr37o127dph2rRpAIAzZ87gn3/+wciRIwuubCIikpYgIiIyI4sWLRIAtP4JIURycrIAIBYtWqT+TXR0tMi7yytVqpSIjIzMN/2BAweKihUrinv37mkM79Wrl3BzcxNPnjwRQgiRkJAgAAh/f3/1MCGEUKlUokaNGiI8PFyoVCr18CdPnoiqVauK//u//1MPi4iIEE5OTuLKlSvqYadPnxa2trb54s3r6NGjAoBYuXKlzjKXL18Wtra24ssvv9QYfvLkSWFnZ6cxvFWrVgKAWLZsmXrY2bNnBQBhY2Mj9u/frx4eFxeXr45zlktycnKBcQshBADh6OioUXb+/PkCgPDy8hLp6enq4ePGjcs33dz1nSMmJkYoFAqNusy73I8dOyYAiEGDBmn8dvTo0QKA2LFjh3qYn5+fACC2bNlSaD5FiUkIIXr37i1cXFzE+fPnxYwZMwQAsXbtWo0ykZGRws/PT/3/kSNHCqVSKbKysvSKh4iI5IO3lxMRkVmaM2cO4uPjNf5KSgiB1atXo3PnzhBC4N69e+q/8PBwpKWl4ciRIxq/iYyM1HjO99ixY7hw4QLefvtt3L9/X/37x48fo127dti9ezdUKhWys7MRFxeHiIgI+Pr6qn8fGBiI8PDwQmPNuZIdFxeHJ0+eaC3z119/QaVSoUePHhq5eHl5oUaNGkhISNAo7+rqil69eqn/HxAQAHd3dwQGBiIkJEQ9POffly5dKjROXdq1a6dx+3TONLt27apx9VzbvHLX9+PHj3Hv3j00bdoUQggcPXpU5zw3bdoEAPjoo480hn/88ccAgI0bN2oMr1q1ql7Loqgx/fjjj3Bzc0O3bt0wYcIE9O3bF2+++WaB03d3d8fjx48N0s6JiMi0eHs5ERGZpcaNG+t8kVpx3b17F6mpqViwYAEWLFigtcydO3c0/p/3DeoXLlwA8LIzrktaWhoyMzPx9OlT1KhRI9/4gIAAdQdRl6pVq+Kjjz7CrFmz8Pvvv6NFixZ444038M4776g75BcuXIAQQus8gPwv66pcuXK+Z6Dd3Nzg4+OTbxjw8nb0gnLM/Tyzg4MDypYtq/5/7hMNuaepz7yuXr2KiRMnYv369fliyPs8e25XrlyBjY0NqlevrjHcy8sL7u7uuHLlisbwvMu2IEWJqWzZsvjhhx/QvXt3eHp64ocffih0+sOGDcOKFSvQsWNHeHt7o3379ujRowc6dOigd4xERCQNdrqJiIj+v5xPNL3zzjs6O8316tXT+H/et1nnTGPGjBlo0KCB1mm4urrme3FXccycORNRUVFYt24dtm7dig8++AAxMTHYv38/KleuDJVKBYVCgc2bN2t9s7irq6vG/3W9fVzXcJHrZWB5jRw5EosXL1b/v1WrVti5c2eJ55WdnY3/+7//w4MHD/Dpp5+iVq1aKFWqFG7cuIGoqCi9PrOV98SCLvq+qbw4McXFxQF4eTLh+vXrGs/Wa1OhQgUcO3YMcXFx2Lx5MzZv3oxFixahX79+GvVMRETyw043ERFZJW0dLw8PD5QuXRrZ2dkICwsr1nRzXsimVCoLnIaHhwecnZ3VV8ZzO3funN7zq1u3LurWrYvPP/8ce/fuRbNmzTBv3jx88cUXqFatGoQQqFq1KmrWrFn0ZErgk08+wTvvvKP+f5kyZQwy3ZMnT+L8+fNYvHgx+vXrpx6uz23Xfn5+UKlUuHDhAgIDA9XDb9++jdTUVPj5+Zkkpi1btmDhwoX45JNP8PvvvyMyMhIHDhwo9PNmDg4O6Ny5Mzp37gyVSoVhw4Zh/vz5mDBhQr6r90REJB98ppuIiKxSqVKlkJqaqjHM1tYWXbt2xerVq5GUlJTvN3fv3i10usHBwahWrRq++eYbZGRk6JyGra0twsPDsXbtWly9elU9/syZM+qroAVJT09HVlaWxrC6devCxsZGfRX9rbfegq2tLSZPnpzvqrQQAvfv3y90PsVVu3ZthIWFqf+Cg4MNMt2cK+G58xFC6PXprNdeew0A8N1332kMnzVrFgCgU6dORo8pNTVV/eb8r776CgsXLsSRI0fw1VdfFTiPvMvKxsZGfdeFIe6aICIi4+GVbiIiskrBwcHYtm0bZs2ahUqVKqFq1aoICQnB119/jYSEBISEhGDw4MGoXbs2Hjx4gCNHjmDbtm148OBBgdO1sbHBwoUL0bFjR9SpUwf9+/eHt7c3bty4gYSEBCiVSvz9998AgMmTJ2PLli1o0aIFhg0bhqysLMyePRt16tTBiRMnCpzPjh07MGLECHTv3h01a9ZEVlYWlixZoj5xALy86v7FF19g3LhxuHz5MiIiIlC6dGkkJydjzZo1GDJkCEaPHm2YCjWRWrVqoVq1ahg9ejRu3LgBpVKJ1atXF/h8eY769esjMjISCxYsQGpqKlq1aoWDBw9i8eLFiIiIQJs2bYwe08iRI3H//n1s27YNtra26NChAwYNGoQvvvgCb775JurXr691HoMGDcKDBw/Qtm1bVK5cGVeuXMHs2bPRoEEDjav2REQkP+x0ExGRVZo1axaGDBmCzz//HE+fPkVkZCRCQkLg6emJgwcPYsqUKfjrr7/w008/oVy5cqhTp476+8iFad26Nfbt24epU6fixx9/REZGBry8vBASEoJ3331XXa5evXqIi4vDRx99hIkTJ6Jy5cqYPHkybt26VWinu379+ggPD8fff/+NGzduwMXFBfXr18fmzZvRpEkTdbmxY8eiZs2a+PbbbzF58mQAL19W1r59e7zxxhvFqDlp2dvb4++//1Y/v+7k5IQuXbpgxIgROjusuS1cuBD+/v6IjY3FmjVr4OXlhXHjxiE6OtroMa1fvx6//fYbZs6ciVq1aqmHz5o1C/Hx8YiMjMS///6b7wV3wMv3DCxYsAA//fQTUlNT4eXlhZ49e2LSpEmwseGNi0REcqYQBb0FhYiIiMhMTZgwATExMfluwyciIjIlnholIiIii3Tr1i2UL19e6jCIiMjK8fZyIqL/x959h0dR7X0A/27KphcgFUgoCcUQapAYkKKELoiNIgqhiFJULihFL10JICqKgHhV8AqKgIBcpJdQBFSQAAHEAAk9CS29Z8/7R94dsslukk12s2W+n+eZBzJzduaUmdn9zTkzQ0RW5erVq9iyZQs2btyIZ555xtTZISIimWNPNxEREVmVw4cPY+7cuejatav0ZHIiIiJT4T3dREREREREREbCnm4iIiIiIiIiI2HQTURERERERGQkfJCamVKpVLh9+zbc3NygUChMnR0iIiIiIiKLIIRARkYG6tatCxsb0/czM+g2U7dv30ZAQICps0FERERERGSRbty4gfr165s6Gwy6zZWbmxuA4h3F3d3dxLkhIiIiIiKyDOnp6QgICJBiKlNj0G2m1EPK3d3dGXQTERERERHpyVxu0zX9AHciIiIiIiIiK8WebqISSl8N42vsiYiIiIioOhh0k05yC0AVCoVGGRUKRZl5RERERERE+uDwctJKHXALIaSg01zuiTAGbcG1HMpNRERERETGxaCbyigZcKtZcwBaXpmsudzAo958ay0fEREREZGpMegmDdoCbjVrHmZdXtmstdyl25rBNxERERGR4THopjIqCkCtKTCzprLoo3TAXfI2AiKyXry4RkREVPP4IDWSyPWHWGWCTfXFBmsKTHWNZrC2chJRsZIX28ob1URE5k3b7zUey0TmjT3dpEGfAJQsU2WCamtv35L3slt7WYmAR8d9ydEt6vlEZHnUxzOPZSLLwJ5uAiDPk7W+PbrW0AtcmXa29osquu5lt+R2JSqPruNZfaxb8/7PHkF5suZ211U2az6W5fYKW7JO7OkmSVUCULI8lW1na2xfuT2Znx4pPbpBbqMcdB331vzjtfSrL3msy4OudrcGcnzYrdxeYUvWi0E3yVJ1TthyONlb45e3HH+sUDFtP8Ll8uOtsj1f1lYPuo53ObS7XC8sAeWf562lLuR0e1jp22IAeRzDZJ0YdJNsT1xVCbQsOTir6nB6ayKnHyulsadX98UWOdWDNpZ8XitPRb371tjuJYMUay5neaz1WK/s7WHWorzyWkN7kvww6CYAVQ9AecIjSyC3Hyul6erplcMxXNHFJmv+8abvhTZrqYPKlNsaj/fy7mO2lrYtT0VltIY2l9vtYXI9d5cmxwvl1ohBt8zJ8QA2RJktrd44nF5+P1bUKvNqKGsrs1ply2UNP8ary1rqQN992Vr2fd4+U0xOZdXFGuqA5+5HdD38lSwPg26q9knLEg/+6pTZUk/ychtOr6ZPb581lFcbOfcW6NP21lQH1lQWfcn1eJfz7TOVZanHuSXmubrkOEqnNG2verT272xrZrZBd3R0NB5//HG4ubnBx8cHAwcOxKVLl8r9zObNm9G+fXt4enrCxcUFbdq0wffff6+RJjk5GVFRUahbty6cnZ3Ru3dvxMfHa6RJSkrCq6++Cj8/P7i4uKBdu3b4+eefNdI8ePAAw4YNg7u7Ozw9PTF69GhkZmZqpDl79iw6d+4MR0dHBAQEYPHixdWoEfNkbT9aiKyJnHsL+INE/3a11ICkuuRQZms8xkuy1ldllSSXZ7Lom29rbffy9mlrLbO1M9ug+9ChQ5gwYQJOnDiBvXv3oqCgAD179kRWVpbOz9SuXRvvv/8+jh8/jrNnz2LkyJEYOXIkdu/eDaB4Jx04cCCuXr2KX375BadPn0aDBg0QGRmpsd7hw4fj0qVL2LZtG86dO4fnn38egwYNwunTp6U0w4YNw/nz57F3715s374dhw8fxtixY6Xl6enp6NmzJxo0aIBTp07ho48+wpw5c/DVV18ZobaqxlJPyObCUupPjsPp1aqSb0v+saKNXHt6AQadclOVwMsafrzqU27u38VYD+atKselNbVpZctiTWWWA4WwkG+cu3fvwsfHB4cOHUKXLl0q/bl27dqhX79+mD9/Pv755x80a9YMcXFxaNGiBQBApVLBz88PCxYswJgxYwAArq6uWLlyJV599VVpPXXq1MGiRYswZswYXLx4ESEhIfjzzz/Rvn17AMCuXbvQt29f3Lx5E3Xr1sXKlSvx/vvvIykpCUqlEgAwffp0bN26FX///XeF+U5PT4eHhwfS0tLg7u5e6fLqw1BXhi3pCrMh82op5TZEPi2lrKVVNd+WWt6SqlIGayi3Gtu+amWozDMAzJVc21zfoNuSy6pNVfZZS6qH6uzXgGUdy9XJsyW1aUX0edWjtZS5PCUvLuhT3pqIpfRhsJ7u3Nxc5OXlGWp1ZaSlpQEo7s2uDCEE9u/fj0uXLklBujp/jo6OUjobGxs4ODjg6NGj0ryOHTvip59+woMHD6BSqbB+/Xrk5uaiW7duAIDjx4/D09NTCrgBIDIyEjY2Nvj999+lNF26dJECbgDo1asXLl26hIcPH1ahBswXe4eIrIc1HMvV+SEi9/OZpf6Aq26bWWqbW2q+Dc1S91tjstQ6qU6+reF40Pc5NNZQZl1KPjTOGh4kV+WgOyYmBv/617/QoUMHuLq6wsXFBc7OznBzc0OHDh0wadIkxMTEGCSTKpUKkyZNQqdOnRAaGlpu2rS0NLi6ukKpVKJfv35YtmwZevToAQBo3rw5AgMDMWPGDDx8+BD5+flYtGgRbt68iTt37kjr2LBhAwoKClCnTh04ODjg9ddfx5YtWxAcHAyg+J5vHx8fje3a2dmhdu3aSEpKktL4+vpqpFH/rU5TUl5eHtLT0zUmInNhiSf26l4BtrTyllTVvFvqjzQioOr7r6Xv93K519fQWA/WxdKPY4D7ZEmlX3Va+v+WWFd2+iQuKCjAqlWr8MknnyAxMRG1a9dGu3bt8Morr6BWrVoQQuDhw4dISEjA2rVr8fnnn6NBgwaYMmUKXn/9ddjb21cpkxMmTEBcXJxGb7Qubm5uiI2NRWZmJvbv34/JkyejcePG6NatG+zt7bF582aMHj0atWvXhq2tLSIjI9GnTx+Ng3XmzJlITU3Fvn374OXlha1bt2LQoEE4cuQIWrZsWaUyVCQ6Ohpz5841yrq1kcuQlJIMXWb1jxdzrkdLPCmZA2v4YVrdCw7mvF+XxxDtZgnHti5yvG2I5Kuq+6mlnOMN9UwWSziWLaE9aoLch9YDFd9mYCnHb2l6Bd3BwcHIz8/HiBEjMGjQILRr167c9KdOncLGjRuxYMECLFmyBImJiXpncOLEidKDyurXr19hehsbG6lHuk2bNrh48SKio6OloeFhYWGIjY1FWloa8vPz4e3tjfDwcGmo+JUrV/DFF19o3PfdunVrHDlyBMuXL8eXX34JPz8/pKSkaGy3sLAQDx48gJ+fHwDAz88PycnJGmnUf6vTlDRjxgxMnjxZ+js9PR0BAQGVqSKzYMk/Uq2dHNvEEk/GhlLdslvql1lJctznDcnS9gG5XmixpDaiqqvuK04taT+p7vFnicexWnVGqFlSG1dWRW1oiW2t1/Dy9957D4mJiVi4cGGFATdQHOAuXLgQiYmJmDFjhl4ZE0Jg4sSJ2LJlCw4cOIBGjRrp9Xk1lUql9V5zDw8PeHt7Iz4+HidPnsSzzz4LAMjOzgZQHLyXZGtrC5VKBQCIiIhAamoqTp06JS0/cOAAVCoVwsPDpTSHDx9GQUGBlGbv3r1o1qwZatWqVSY/Dg4OcHd315iIzI0lndgN1dtniSzpS4jIEOS6z1tzL29NYD2QOZHrLXEl6RtIW1K5zfbp5ePHj8cPP/yAX375Bc2aNZPme3h4wMnJCUDxq73q1auH6OhoAMVDtNu3b4+goCDk5eVhx44dmD59OlauXCk9mXzjxo3w9vZGYGAgzp07h7fffhthYWHSe7gLCgoQEhICf39/LFmyBHXq1MHWrVvx7rvvYvv27ejbty8AoE+fPkhOTsaXX36JgoICjBw5Eu3bt8cPP/wAoPje8mbNmqFnz56YNm0a4uLiMGrUKHz66acarxbTxZhP3DPWlSFzv+JkjPyZ+9NBDV1mc29jNTkPsTXU0+oB892vyyPHNxSoGbLdLKnscj3eq/uUeksqqzaG2N/NuR4MdTxbwvnc0OcuQ62rplj7vlxZhn4Tgbk9vVyv4eU1aeXKlQAgDQtXW716NaKiogAA169f1+iRzsrKwvjx43Hz5k04OTmhefPmWLt2LQYPHiyluXPnDiZPnozk5GT4+/tj+PDhmDlzprTc3t5eCtb79++PzMxMBAcH47vvvpMCbgBYt24dJk6ciO7du8PGxgYvvPACPv/8c2m5h4cH9uzZgwkTJiAsLAxeXl6YNWtWpQJuS2XOQz2MlS9z7jEw17YwNnNtj5pgqDY35/26PHLd50syVPnN+XxekiH3U0spM8B9Xc3a60BO53NDn7ssjbXvy5Vlzfe0m21Pt9xZYk+3sdddHSyz4dYJmPeXg9x7OuVadsA4IzsA897fS5LjyBY5lhkw3IgWSyirLtZeB3I6n8v1OFaT+wg1wDjvaLf4nu6nn35a5zKFQgFHR0c0aNAAffv2xTPPPFOtzJHhWeLVP0tgaSf4qrLUK8hVZUk9X8Yg57IDlrW/W0o+icyNXM5zcimnmqWU11Dnbkv6vtLF2ofX6x10p6SklNuo2dnZ2Lt3L1atWoVevXrhl19+qfKrwsg4zH2nNDRjn4TM8URnbvmpKXItN2D4spvjfl0eS/jCNTZDl9/cLzpZ0v5pSObcJjXF2m+lMXQbm2s5AePsz+ZcXm14PMvjrSt6B91xcXEVpsnJycGqVaswefJkLF68GO+//36VMkeWx1x/pJlbfmqCHMsMyLfcgLzLTvIktwsNhianshKZG2MEipZ6TMvhYZh6vTKsspycnDBp0iQMGTJEepo3mZ4lXAUiy8B9ST7k3taWcAXd3PNH5smcf5wSGYIlnBsNPaLB0hhyeL25M0rQrdapUyckJCQYcxOkJ0vYKS2VJZzcDUFu+5Ccgy5LaWtzb5+aYKy2soT9n+RF7rfSVIe5ldOY+bGU7y+ST1sZNejOzs6GnZ3ZvpWMjMhcTuw1NdRELicMc2buw4qMTc5lB1h+Mixz+Q4rTe7nOTVrrgNjvuLUHJlrvozNmOcYcz1/GZu5X0AzWtAthMC2bdvQsmVLY22CzJRcT6Dmgj/KiAzL3L/I5ciY5zk5nT+5b5O1M+f9W04XV7Qx1nncXNtc727oBw8elLs8JycHly5dwsqVK3Hs2DGsXbu2ypkjw2EgRoYkt4cNAfI9huTY1pbEXH9cEJF5ktP5nBeV5Mec21zvoNvLy6tShbG3t8f8+fMxdOjQKmWMyNIwODEdY9e7OZ/EzTVfNUXu5QeM37PBc5t5YBsYtw7kUL/m9F0mh/rWpSbaQM71CxSXPy0tzdTZ0KB30D1r1qxydxZHR0c0aNAA3bt3h7e3d7UyR5bLHH6kmcsXC5GxyfmLFai58pv6nEbFaurcLpf2Nofva1Mzl2BU7u0gJ3LtKFAz9i1CCoUCHh4eRll/VekddM+ZM0ev9A8fPkStWrX03QyRQcjty4tf2ETGYQk/YuSkpnr3iciy8aKSPJnjOdwoD1LLy8vDxo0bMXDgQPj7+xtjE6QHnmzIGMzlhGYOebB25tLWpKmmz+3cB8iUuP8ZDuvSdGryvG2u7VxT+bL44eW6CCGwf/9+rFu3Dlu2bEF6ejq8vb3x8ssvG2oTZIHkGPDLscymVlOvhTO3tjW3/NQ0uZe/JvHCi2nVxL5uCcdTTQzJNfc6qC5zOJblUM+mZg7tXB45tn+1g+5Tp05h3bp1WL9+PZKSkqBQKDBkyBBMnDgRTzzxhFk3OBmXKQ94U53QTV1mIjIu/liUD7kEYYD5/0CXA7nsa6Ygp2OZzFeVgu6rV69i3bp1WLduHeLj41GvXj0MGzYMHTp0wODBg/HCCy8gIiLC0HmlKuCXqLzwC4XIeBiYmB5/OBORpTLF94e5nTPl/B2qd9AdERGBP/74A15eXnjxxRfx9ddf48knnwQAXLlyxeAZpOozp4ONrI+5ndCNTW7lVWNPgXkxVVtwH6h5rHPWgaGZ8nwu56ALqNnf5OZ6oViux7LeQffvv/+ORo0a4ZNPPkG/fv1gZ2ew28LJCsnxh7qcymzqE3pN17Opy1uSXPYxXeReflMwp/2fDE9O3126sA5qBuuX5Ejvp5d/8cUX8Pf3x3PPPQc/Pz+8/vrrOHjwIA8gMhv8wiQiY2LgKR+80EA1gb9bjM/UxzLPI6R30D1+/HgcPXoUV65cwaRJk3DkyBF0794d9erVw6xZs6BQKLhjmQmexOWDbU1UM8zhOJPrd6wcz3NybeuSWAfGYeogVI7k9oDf0swlH6aiEAbYA9RPMP/pp59w584d+Pr6on///hgwYAAiIyPh6OhoiLzKSnp6Ojw8PJCWlgZ3d/cqrcNcfqCY4l2ypi63nMqsPonW9Pbltl1t+ZDzPb2m3udNWQdy3b7ctmuKbZvL+a0kOXyfymXfluu5S87bNmU+DBFLGZJBgm41lUqFAwcOYO3atdiyZQsyMjLg7OyMzMxMQ21CNqwp6AZqLi9yLHNNb8tcti/nLzBT/jA2ddnNIQ/cvjwCBFNv11TbNvX+VZocLjzIZd829b4l14v1pq53U+XD3IJuvYeXl7syGxtERkZizZo1SE5Oxo8//oju3bsbchNUSXIfwiEnbGt5MocvUDkz1XHH4900WO+mYYpgQe4XOayZKevZ1Ns29TnM1Ns3Bwbt6SbDqe7VGXM7ibOn2/K3Y255kFvvk7ls39RX7NV5kOM+b8rtmjoPpi63qcoMyK9XriQ5HGdy2rdNXVZT5UGu5Tb19i26pzskJAT//e9/kZ+fX+nP5OXlYfXq1QgJCdE7c2Q9auIqG6+iERmfOfxwINMyh14TuTDVg5eIDM3UQR+Rqen1ku2oqChMnjwZb7/9tvSQtHbt2qFRo0ZwdnYGAGRlZSEhIQEnT57Evn378L///Q9KpRLvvvuuUQpAVJI5ndDl9r5POV0tN2XbMtgxr+OciIzDlOc6uX1/y0lNt625fGdznzY9vXq6p06dioSEBMyePRtnzpzBiBEj0KpVK7i5ucHBwQEODg5wd3dH69atMWrUKJw9exZz587FlStXMHXqVL0yFh0djccffxxubm7w8fHBwIEDcenSpXI/s3nzZrRv3x6enp5wcXFBmzZt8P3332ukSU5ORlRUFOrWrQtnZ2f07t0b8fHx0vLExETptWelp40bNwIA1qxZozNNSkoKACAmJkbr8qSkJL3qoSp4UMmHOZ3Mqeawvs1DTR9/5nK8y5Xc6t8cymvt5zpz+b1mDm1tzcyhjU2J+1exat3TnZiYiGPHjuHvv//G/fv3AQB16tRB8+bNERERgUaNGlU5Y71798aQIUPw+OOPo7CwEO+99x7i4uJw4cIFuLi4aP1MTEwMHj58iObNm0OpVGL79u2YMmUKfv31V/Tq1QtCCHTs2BH29vb4+OOP4e7ujk8++QS7du2S1ltUVIS7d+9qrPerr77CRx99hDt37sDV1RU5OTlIS0vTSBMVFYXc3FzExMRIeXnqqadw6dIljfsIfHx8YGNT8bWO6tyHYC4n8dKMfZ+YOZbb2HkypzLLqafblHmQc9lNve3S5Pbk35LkdrzXdD7MocymzoMctm/qMtZUPszpOQGA/I5lNbn9bjG3e7ot5kFqd+/ehY+PDw4dOoQuXbpU+nPt2rVDv379MH/+fPzzzz9o1qwZ4uLi0KJFCwDFrznz8/PDggULMGbMGK3raNu2Ldq1a4dvvvlGZ97q1auHb775Bq+++iqAR0H3w4cP4enpqV9hYZ1BN2C8vJlrmeV0oUFuX2KmfMiRqctuqnzI+YebKbZXETk9LLKm82EOZZb7xTUG3Zazfn3V5LkLMK/vLEA+v1vMLeg26CvDjEnds1y7du1KpRdCYP/+/bh06ZIUpOfl5QEAHB0dpXQ2NjZwcHDA0aNHta7n1KlTiI2NxejRo3Vu67///S+cnZ3x4osvllnWpk0b+Pv7o0ePHvjtt990riMvLw/p6ekaE1k+cznR1pSaGEJkLl/ecrpabE7kXn6imiT3YaFyL7+1qsmHQZrTdxafQ2NaFhF0q1QqTJo0CZ06dUJoaGi5adPS0uDq6gqlUol+/fph2bJl6NGjBwCgefPmCAwMxIwZM/Dw4UPk5+dj0aJFuHnzJu7cuaN1fd988w0ee+wxdOzYUec2v/nmG7z88stwcnKS5vn7++PLL7/Ezz//jJ9//hkBAQHo1q0b/vrrL63riI6OhoeHhzQFBARUVC1a8Ue5fJhbW5tTXohqQk3+cDO3412Oaqq9zaWtTf1aQlOTSy83wDcSkHGZy35uahYxvHzcuHHYuXMnjh49ivr165ebVqVS4erVq8jMzMT+/fsxf/58bN26Fd26dQNQ3HM9evRonDlzBra2toiMjISNjQ2EENi5c6fGunJycuDv74+ZM2diypQpWrd3/PhxdOzYESdPnkRYWFi5eevatSsCAwPLPNwNKO7pVvfEA8VDIgICAvQeEmFOJ3FdDJ1Hcxu+U5qchtTLaTgeIO/hxaY47syp/GpyG2JdktyOd0B+ZTbVbSRyKL85lROQ128VQH7HslpNf3ebsg7MbXi5Xq8MM4WJEydi+/btOHz4cIUBN1A8XDw4OBhA8dDuixcvIjo6Wgq6w8LCEBsbi7S0NOTn58Pb2xvh4eFo3759mXVt2rQJ2dnZGD58uM7tff3112jTpk2FATcAdOjQQecwdvXT36lqzO2kVpo5nnjJMOTatjXdMyLXejZnfAWNPNT0vexENcHY5y9z3ZdreoQWPWKw4eWffPKJoVYFoHinmDhxIrZs2YIDBw5U+UnoKpVKowdZzcPDA97e3oiPj8fJkyfx7LPPlknzzTffYMCAAfD29ta67szMTGzYsKHc+71Lio2Nhb+/v34F0AN3bvNkrCvH5sqYeTO3H/g13ctL5oltQ9bKFOdbczvHG+P4Ntdzhrnmy1KZ075sKqyDRwzW0/3BBx9g8uTJAIAXXngBP//8c7XWN2HCBPzwww/45Zdf4ObmJr3f2sPDQ7p3evjw4ahXrx6io6MBFN8X3b59ewQFBSEvLw87duzA999/j5UrV0rr3bhxI7y9vREYGIhz587h7bffxsCBA9GzZ0+N7V++fBmHDx/Gjh07dObxp59+QmFhIV555ZUyy5YuXYpGjRqhRYsWyM3Nxddff40DBw5gz5491aqXiljKzm2o4EnOXxDm2Na8L8y4zLHN5a4m9nlzu9gkd3IackzGY27tbIxzGX8PED1isKD7sccew6JFi/Dcc89h79691V6fOlBWDwtXW716NaKiogAA169f13jndVZWFsaPH4+bN2/CyckJzZs3x9q1azF48GApzZ07dzB58mQkJyfD398fw4cPx8yZM8ts/9tvv0X9+vXLBOMlffPNN3j++ee1vhIsPz8fU6ZMwa1bt+Ds7IxWrVph3759eOqpp/SoBetk6BO7uX1xEclFTQ0v5g83eTLHdpfrhUW53v9K1WfubWqM/c7czxG8Ncg0DPYgtWvXrmHOnDnYv38/bt++jdDQULRs2RKtWrVCq1at0LJlS9StW9cQm5KFqtz8b0kHkCF7ui2hzIZ+cIU5l1uOvUBy/kEq57Krye0dt6XxAUyWse7qkPNxbqygTA5lNddyliSn9i1JDt9b5vYgNaM8vdzV1RX79u3D2bNncfbsWZw7dw7nzp2DjY0N7t27Z+jNWSV9dxRz2Ln1IbegG5BPmY31ZExzLrccvrx0kfOP8ZKMGXgC5t1bJMegGzDOOc4Y6zUEOZ/jAMPmz5zbGTD87X/mWk41Bt2Wuf7KMLeg2yhPL09KSoKrqyueeOIJjfk3b940xubIAhliaIs5HNBUllyHX8oZj0XjkmPdmvM5xJjnOHNua2NfWJITc25nQ7KUchr6ooollNuYQ8zleExXhkGeXp6fn4/s7Gzpb1dXV63pKvPKLyJrxhOR9ZJr2/J+bgKM006W8MNVLozdFmxrMhXue8bBei2rWj3dSUlJGD58OA4ePAiVSgUvLy+0atUKrVu3lv4NCQmBvb29ofJLWljKVTVtLDnv+jJE74hcAxBzL7cxe77Mvew1wRLOEcboNbCUtufoFvmQ6z4uN4YYiWhp5PR7tCS5ltsUqhV0v/POOzh8+DBmzJgBT09PvPPOO7h9+zZiYmKgUqmKN2Bnp/U92UTV+aEm55OEJZTbGAGIJZTbWCyh7HI+Jo2JdWq+jHGfrzkz1sUVS9jHDfWdZgnnSUO1s7mXsyRDldkS2rckviauZlVrePn+/fvxxhtvYN68eRgxYgQAYNmyZbh+/Tp69+6NVq1a4f333zdIRomIyDwZ80nOZDkM1V6W8MPVGPkz9zIbGo9vIuskt3NZZVUr6E5PT0erVq0AFPdoA8X3d/v7+2Pr1q0oKipCw4YNq51J0s0SfpyUpypX2Sz9i7o6vftk3thGhmdJ5zc5D7O2pHaiqjNkj6B6fWR+qjsS0VJVJ+9yLTdVXrWC7oCAACQlJQEAPDw84OTkJL0SzN7eHq+++io+/fTT6ueSqBRL/aKubr4ttdzVYSkXluT0yiQyPv4IsgyGDEAtidyGH6tZYluZgiW2rSHyLNdyq/E3S/mqFXQ/9dRTOHLkiPR38+bNNf52cnLCP//8U51NUDms6eRf2bJYU5mtnZx7/eSI7W14cvzxYkn7kFyfWWGI+5otkRzu5y7NUtuqOqpSZjnWE+mvWg9Se/vtt/Htt98iNzcXjo6OmDBhAsaNG4fQ0FAEBQVh6dKlHF5uZJZ2AtdG3x/rll7mqjyQxRK/rImqw1L3eWO++9TcGarscqw7S1SdtmYbm7+q3v5nyW1bnYvHllxuQJ5PrK9pCmHAvUSlUuHVV1/Fjz/+CABwdnbGxo0b0adPH0NtQjbS09Ph4eGBtLQ0uLu7l1lubfdDVaY81lRmuQTd1W0zS2xzQ7WVJba5oZ/mbGnlVzPEjxeW3TLI8RynVpW2srT2La06+bfEssvlt0pJ+h6TlnwMl2SN5+6KYqmaZtCgW+3ixYu4efMm2rRpA29vb0OvXhYqE3Sb285dXRWduKytzJUtj6Wf0PkjxbTrqWlyLz9gnT9eKktuxzsgzzIDDE6M/RlzoE+bWWoZtdGnLNZS7uocn+Z6bJtb0F2t4eW6PPbYY3jssceMsWqC9Q7hUA/r0XYCs5aTWlXJuewkP5Z+vHOIuTzLLjflfWeX9xmyHJUdbm2Nv0srs19b07muus9lsZZ6MKZqPUiNap65Xk0yFHW51F/k+n6hW5qKTnDW8kVW1QeTWGq7V7fdLL3dLT3/pmTJ+311WPo+Y+n5ryq59QbKUWWDMWtq35K/RXWx1mO+KvfxU+Uw6LYg1h5wqwkhykzWqDIn9ZLpLJWl519fhiqvpdabpebbGOT8Y6QqZbfUfUeOQ8tLk1Nwom+PoLW0s64yW1v7qsnlGUMl8cGIxsWg2wKoe3sB7tjWprzA21q+qKvCWr/EqWLWst9X5744S1eV+13JclX0PVYyDVkmXW0sh/Zlmaufjoox6DZzHh4eAGDVPb5yV/rLrORFFmtRlXuFLH1/r2obWkvQaW37cFXJbb+vKksvd1V6P61Jed9jlt62usjtXmdtt/+VnG+N5FxmY6WXMwbdZi4tLY07tAyoL6qUPKHLtd2t4UeKXNtOrbqvT7IWcnvVTklyfgBTZVlTewPy+h7Tp1zWVAcl29Sa27ckudzyWFJlzt9yPndXFYNuIjNi7Sf0yp6kraUO+KWkP2tp+5Lk/ONFbg9gsua2rCxr/x4rSU73spckl/aVu4ru4+d+oB8G3URUIyr7nk9rUdV7eq3lS0zuw23VKvPKmcqks0SVLbu14JO85aUyD0NlO5OlkvN9/MbCoJuIapS1P62dqs5a217XBQi5/HiRW1Ai195POdK1/7KdyRqUvGVELve0GxODbiKqMXJ8Wrs+TwGVa/nl8gO15I8Wufx40XbMq+vBGstemTJZY7nlrHRQIpdjm+RDbve0GwuDbiKqUbp+hFsjuX85yfVhQ9qU/LEitx/lpZ8AXHKeNapoZANZn5L7MwMTItLGztQZICL5KdkzUHKeNVKXtbzyWWuvH1Bx+a257NrIqawlybHc2oJsOdaDXLBtiag8ZtvTHR0djccffxxubm7w8fHBwIEDcenSpXI/s3nzZrRv3x6enp5wcXFBmzZt8P3332ukSU5ORlRUFOrWrQtnZ2f07t0b8fHx0vLExMQyw4TU08aNG6V02pavX79eY1sxMTFo164dHBwcEBwcjDVr1lS/YoishNyGK1X0FFBrx54/kpPS5zW5nOeIiEg7sw26Dx06hAkTJuDEiRPYu3cvCgoK0LNnT2RlZen8TO3atfH+++/j+PHjOHv2LEaOHImRI0di9+7dAIq/9AYOHIirV6/il19+wenTp9GgQQNERkZK6w0ICMCdO3c0prlz58LV1RV9+vTR2N7q1as10g0cOFBalpCQgH79+uGpp55CbGwsJk2ahDFjxkh5ISL5kPtTQEsPL5bLMGMiBttERAQACmEh3wZ3796Fj48PDh06hC5dulT6c+3atUO/fv0wf/58/PPPP2jWrBni4uLQokULAIBKpYKfnx8WLFiAMWPGaF1H27Zt0a5dO3zzzTfSPIVCgS1btmgE2iVNmzYNv/76K+Li4qR5Q4YMQWpqKnbt2lVhvtPT0+Hh4YG0tDS4u7tXurxEZL443JSIiIjI+MwtljLbnu7S0tLSABT3ZleGEAL79+/HpUuXpCA9Ly8PAODo6Cils7GxgYODA44ePap1PadOnUJsbCxGjx5dZtmECRPg5eWFDh064Ntvv9X48Xz8+HFERkZqpO/VqxeOHz9eqfwTkfUpPaSeATcRERGR9bOIB6mpVCpMmjQJnTp1QmhoaLlp09LSUK9ePeTl5cHW1hYrVqxAjx49AADNmzdHYGAgZsyYgVWrVsHFxQWffvopbt68iTt37mhd3zfffIPHHnsMHTt21Jg/b948PP3003B2dsaePXswfvx4ZGZm4q233gIAJCUlwdfXV+Mzvr6+SE9PR05ODpycnDSW5eXlSRcFgOKrM0RERERERGTZLCLonjBhAuLi4nT2Rpfk5uaG2NhYZGZmYv/+/Zg8eTIaN26Mbt26wd7eHps3b8bo0aNRu3Zt2NraIjIyEn369NHa45STk4MffvgBM2fOLLOs5Ly2bdsiKysLH330kRR06ys6Ohpz586t0meJiIiIiIjIPJn98PKJEydi+/btOHjwIOrXr19hehsbGwQHB6NNmzaYMmUKXnzxRURHR0vLw8LCEBsbi9TUVNy5cwe7du3C/fv30bhx4zLr2rRpE7KzszF8+PAKtxseHo6bN29KvdV+fn5ITk7WSJOcnAx3d/cyvdwAMGPGDKSlpUnTjRs3KtwmERERERERmTez7ekWQuDNN9/Eli1bEBMTg0aNGlVpPSqVSmPYtpqHhwcAID4+HidPnsT8+fPLpPnmm28wYMAAeHt7V7id2NhY1KpVCw4ODgCAiIgI7NixQyPN3r17ERERofXzDg4O0meBRw9X4jBzIiIiIiKiylPHUGbz/BxhpsaNGyc8PDxETEyMuHPnjjRlZ2dLaV599VUxffp06e8FCxaIPXv2iCtXrogLFy6IJUuWCDs7O/Gf//xHSrNhwwZx8OBBceXKFbF161bRoEED8fzzz5fZfnx8vFAoFGLnzp1llm3btk385z//EefOnRPx8fFixYoVwtnZWcyaNUtKc/XqVeHs7CzeffddcfHiRbF8+XJha2srdu3aVanyX7lyRQDgxIkTJ06cOHHixIkTJ05VmK5cuVKp2MvYzLane+XKlQCAbt26acxfvXo1oqKiAADXr1+Hjc2jEfJZWVkYP348bt68CScnJzRv3hxr167F4MGDpTR37tzB5MmTkZycDH9/fwwfPlzrPdvffvst6tevj549e5ZZZm9vj+XLl+Nf//oXhBAIDg7GJ598gtdee01K06hRI/z666/417/+hc8++wz169fH119/jV69elWq/OqntF+/fl3qla+Kxx9/HH/++WeVP29N60hPT0dAQABu3LhRrVcHmENZzGUdrFPDr8Pa6tRc8mJt9WoO62CdGn4drFPDr4N1avh1sE4Nvw7WqeHXkZaWhsDAwEq/+crYzDboFpUYChATE6Px9wcffIAPPvig3M+89dZblXrY2YIFC7BgwQKty3r37o3evXtXuI5u3brh9OnTFabTRn0xwcPDo1oHn62tbbXfTWdN6wAAd3d31qkB1wGwTg29DsB66tTc8mIt9Wou6wBYp4ZeB8A6NfQ6ANapodcBsE4NvQ6AdWrodQDQ6KA1JfPIBRnNhAkTuA4DM5eymMs6DMFcymIu6zAEcyqLOeWlusylLOayDkMwl7KYyzoMwVzKYi7rMARzKYu5rMMQzKUs5rIOQzCXspjLOsyJQlSmS5lqXHp6Ojw8PJCWlmaQqzzEOjUG1qnhsU6Ng/VqeKxTw2OdGh7r1PBYp4bHOjU8c6tT9nSbKQcHB8yePVvjieZUPaxTw2OdGh7r1DhYr4bHOjU81qnhsU4Nj3VqeKxTwzO3OmVPNxEREREREZGRsKebiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiNh0E1ERERERERkJAy6zdTy5cvRsGFDODo6Ijw8HH/88Yeps2QShw8fRv/+/VG3bl0oFAps3bpVY7kQArNmzYK/vz+cnJwQGRmJ+Ph4jTQPHjzAsGHD4O7uDk9PT4wePRqZmZkaac6ePYvOnTvD0dERAQEBWLx4cZm8bNy4Ec2bN4ejoyNatmyJHTt2GLy8NSE6OhqPP/443Nzc4OPjg4EDB+LSpUsaaXJzczFhwgTUqVMHrq6ueOGFF5CcnKyR5vr16+jXrx+cnZ3h4+ODd999F4WFhRppYmJi0K5dOzg4OCA4OBhr1qwpkx9r2NdXrlyJVq1awd3dHe7u7oiIiMDOnTul5azP6lm4cCEUCgUmTZokzWOd6m/OnDlQKBQaU/PmzaXlrNOquXXrFl555RXUqVMHTk5OaNmyJU6ePCkt5/eUfho2bFhmP1UoFNI7e7mf6q+oqAgzZ85Eo0aN4OTkhKCgIMyfPx8ln6XM/VR/GRkZmDRpEho0aAAnJyd07NgRf/75p7ScdVo+S/qNX5m8VEiQ2Vm/fr1QKpXi22+/FefPnxevvfaa8PT0FMnJyabOWo3bsWOHeP/998XmzZsFALFlyxaN5QsXLhQeHh5i69at4syZM2LAgAGiUaNGIicnR0rTu3dv0bp1a3HixAlx5MgRERwcLIYOHSotT0tLE76+vmLYsGEiLi5O/Pjjj8LJyUmsWrVKSvPbb78JW1tbsXjxYnHhwgXx73//W9jb24tz584ZvQ4MrVevXmL16tUiLi5OxMbGir59+4rAwECRmZkppXnjjTdEQECA2L9/vzh58qR44oknRMeOHaXlhYWFIjQ0VERGRorTp0+LHTt2CC8vLzFjxgwpzdWrV4Wzs7OYPHmyuHDhgli2bJmwtbUVu3btktJYy76+bds28euvv4p//vlHXLp0Sbz33nvC3t5exMXFCSFYn9Xxxx9/iIYNG4pWrVqJt99+W5rPOtXf7NmzRYsWLcSdO3ek6e7du9Jy1qn+Hjx4IBo0aCCioqLE77//Lq5evSp2794tLl++LKXh95R+UlJSNPbRvXv3CgDi4MGDQgjup1Xx4Ycfijp16ojt27eLhIQEsXHjRuHq6io+++wzKQ33U/0NGjRIhISEiEOHDon4+Hgxe/Zs4e7uLm7evCmEYJ1WxJJ+41cmLxVh0G2GOnToICZMmCD9XVRUJOrWrSuio6NNmCvTK31AqlQq4efnJz766CNpXmpqqnBwcBA//vijEEKICxcuCADizz//lNLs3LlTKBQKcevWLSGEECtWrBC1atUSeXl5Uppp06aJZs2aSX8PGjRI9OvXTyM/4eHh4vXXXzdoGU0hJSVFABCHDh0SQhTXob29vdi4caOU5uLFiwKAOH78uBCi+ERpY2MjkpKSpDQrV64U7u7uUj1OnTpVtGjRQmNbgwcPFr169ZL+tuZ9vVatWuLrr79mfVZDRkaGaNKkidi7d6/o2rWrFHSzTqtm9uzZonXr1lqXsU6rZtq0aeLJJ5/UuZzfU9X39ttvi6CgIKFSqbifVlG/fv3EqFGjNOY9//zzYtiwYUII7qdVkZ2dLWxtbcX27ds15rdr1068//77rFM9mfNv/MrkpTI4vNzM5Ofn49SpU4iMjJTm2djYIDIyEsePHzdhzsxPQkICkpKSNOrKw8MD4eHhUl0dP34cnp6eaN++vZQmMjISNjY2+P3336U0Xbp0gVKplNL06tULly5dwsOHD6U0JbejTmMNbZKWlgYAqF27NgDg1KlTKCgo0Chv8+bNERgYqFGvLVu2hK+vr5SmV69eSE9Px/nz56U05dWZte7rRUVFWL9+PbKyshAREcH6rIYJEyagX79+ZcrNOq26+Ph41K1bF40bN8awYcNw/fp1AKzTqtq2bRvat2+Pl156CT4+Pmjbti3+85//SMv5PVU9+fn5WLt2LUaNGgWFQsH9tIo6duyI/fv3459//gEAnDlzBkePHkWfPn0AcD+tisLCQhQVFcHR0VFjvpOTE44ePco6rSZzqr/K5KUyGHSbmXv37qGoqEjjywIAfH19kZSUZKJcmSd1fZRXV0lJSfDx8dFYbmdnh9q1a2uk0baOktvQlcbS20SlUmHSpEno1KkTQkNDARSXValUwtPTUyNt6Xqtap2lp6cjJyfH6vb1c+fOwdXVFQ4ODnjjjTewZcsWhISEsD6raP369fjrr78QHR1dZhnrtGrCw8OxZs0a7Nq1CytXrkRCQgI6d+6MjIwM1mkVXb16FStXrkSTJk2we/dujBs3Dm+99Ra+++47APyeqq6tW7ciNTUVUVFRAHjsV9X06dMxZMgQNG/eHPb29mjbti0mTZqEYcOGAeB+WhVubm6IiIjA/Pnzcfv2bRQVFWHt2rU4fvw47ty5wzqtJnOqv8rkpTLsKp2SiKzOhAkTEBcXh6NHj5o6KxavWbNmiI2NRVpaGjZt2oQRI0bg0KFDps6WRbpx4wbefvtt7N27t0wvAlWdulcLAFq1aoXw8HA0aNAAGzZsgJOTkwlzZrlUKhXat2+PBQsWAADatm2LuLg4fPnllxgxYoSJc2f5vvnmG/Tp0wd169Y1dVYs2oYNG7Bu3Tr88MMPaNGiBWJjYzFp0iTUrVuX+2k1fP/99xg1ahTq1asHW1tbtGvXDkOHDsWpU6dMnTUyQ+zpNjNeXl6wtbUt8yTO5ORk+Pn5mShX5kldH+XVlZ+fH1JSUjSWFxYW4sGDBxpptK2j5DZ0pbHkNpk4cSK2b9+OgwcPon79+tJ8Pz8/5OfnIzU1VSN96Xqtap25u7vDycnJ6vZ1pVKJ4OBghIWFITo6Gq1bt8Znn33G+qyCU6dOISUlBe3atYOdnR3s7Oxw6NAhfP7557Czs4Ovry/r1AA8PT3RtGlTXL58mftpFfn7+yMkJERj3mOPPSYN2+f3VNVdu3YN+/btw5gxY6R53E+r5t1335V6u1u2bIlXX30V//rXv6SRRNxPqyYoKAiHDh1CZmYmbty4gT/++AMFBQVo3Lgx67SazKn+KpOXymDQbWaUSiXCwsKwf/9+aZ5KpcL+/fsRERFhwpyZn0aNGsHPz0+jrtLT0/H7779LdRUREYHU1FSNq44HDhyASqVCeHi4lObw4cMoKCiQ0uzduxfNmjVDrVq1pDQlt6NOY4ltIoTAxIkTsWXLFhw4cACNGjXSWB4WFgZ7e3uN8l66dAnXr1/XqNdz585pnOz27t0Ld3d36QdoRXVm7fu6SqVCXl4e67MKunfvjnPnziE2Nlaa2rdvj2HDhkn/Z51WX2ZmJq5cuQJ/f3/up1XUqVOnMq9c/Oeff9CgQQMA/J6qjtWrV8PHxwf9+vWT5nE/rZrs7GzY2Gj+5Le1tYVKpQLA/bS6XFxc4O/vj4cPH2L37t149tlnWafVZE71V5m8VEqlH7lGNWb9+vXCwcFBrFmzRly4cEGMHTtWeHp6ajyJUy4yMjLE6dOnxenTpwUA8cknn4jTp0+La9euCSGKH+Hv6ekpfvnlF3H27Fnx7LPPan2dQNu2bcXvv/8ujh49Kpo0aaLxOoHU1FTh6+srXn31VREXFyfWr18vnJ2dy7xOwM7OTixZskRcvHhRzJ492yJex6DNuHHjhIeHh4iJidF4LUt2draU5o033hCBgYHiwIED4uTJkyIiIkJERERIy9WvZOnZs6eIjY0Vu3btEt7e3lpfyfLuu++KixcviuXLl2t9JYs17OvTp08Xhw4dEgkJCeLs2bNi+vTpQqFQiD179gghWJ+GUPLp5UKwTqtiypQpIiYmRiQkJIjffvtNREZGCi8vL5GSkiKEYJ1WxR9//CHs7OzEhx9+KOLj48W6deuEs7OzWLt2rZSG31P6KyoqEoGBgWLatGlllnE/1d+IESNEvXr1pFeGbd68WXh5eYmpU6dKabif6m/Xrl1i586d4urVq2LPnj2idevWIjw8XOTn5wshWKcVsaTf+JXJS0UYdJupZcuWicDAQKFUKkWHDh3EiRMnTJ0lkzh48KAAUGYaMWKEEKL4Mf4zZ84Uvr6+wsHBQXTv3l1cunRJYx33798XQ4cOFa6ursLd3V2MHDlSZGRkaKQ5c+aMePLJJ4WDg4OoV6+eWLhwYZm8bNiwQTRt2lQolUrRokUL8euvvxqt3MakrT4BiNWrV0tpcnJyxPjx40WtWrWEs7OzeO6558SdO3c01pOYmCj69OkjnJychJeXl5gyZYooKCjQSHPw4EHRpk0boVQqRePGjTW2oWYN+/qoUaNEgwYNhFKpFN7e3qJ79+5SwC0E69MQSgfdrFP9DR48WPj7+wulUinq1asnBg8erPE+adZp1fzvf/8ToaGhwsHBQTRv3lx89dVXGsv5PaW/3bt3CwBl6kkI7qdVkZ6eLt5++20RGBgoHB0dRePGjcX777+v8Rol7qf6++mnn0Tjxo2FUqkUfn5+YsKECSI1NVVazjotnyX9xq9MXiqiEEKIyveLExEREREREVFl8Z5uIiIiIiIiIiNh0E1ERERERERkJAy6iYiIiIiIiIyEQTcRERERERGRkTDoJiIiIiIiIjISBt1ERERERERERsKgm4iIiIiIiMhIGHQTERERERERGQmDbiIiIiIiIiIjYdBNREREREREZCQMuomIiIiIiIiMhEE3ERERERERkZEw6CYiIiIiIiIyEgbdREREREREREbCoJuIiIiIiIjISBh0ExERERERERkJg24iIiIiIiIiI2HQTUREJtGtWzd069bNYOtLTEyEQqHAmjVrDLZOS7R48WI0b94cKpWqwrRRUVFwdXWtgVyRJWrYsCGioqL0/tz9+/fh4uKCHTt2GD5TREQWiEE3ERFJ1qxZA4VCIU2Ojo5o2rQpJk6ciOTkZFNnjyqQnp6ORYsWYdq0abCxKf6Kz87Oxpw5cxATE2PazBEAYMWKFVZ/YahOnToYM2YMZs6caeqsEBGZBTtTZ4CIiMzPvHnz0KhRI+Tm5uLo0aNYuXIlduzYgbi4ODg7OxtkG3v27DHIeuiRb7/9FoWFhRg6dKg0Lzs7G3PnzgUAg44soKpZsWIFvLy8qtSDbEneeOMNfP755zhw4ACefvppU2eHiMik2NNNRERl9OnTB6+88grGjBmDNWvWYNKkSUhISMAvv/xS7XVnZ2cDAJRKJZRKZbXXZ2oqlQq5ubmmzgYAYPXq1RgwYAAcHR1NnZUKZWVlmToLZESPPfYYQkNDrb5Xn4ioMhh0ExFRhdQ9VQkJCdK8tWvXIiwsDE5OTqhduzaGDBmCGzduaHyuW7duCA0NxalTp9ClSxc4Ozvjvffek5aV7nlNSUnB6NGj4evrC0dHR7Ru3RrfffddmfykpqYiKioKHh4e8PT0xIgRI5Camqo17wcOHEDnzp3h4uICT09PPPvss7h48WKZdDExMWjfvj0cHR0RFBSEVatWYc6cOVAoFBrpFAoFJk6ciHXr1qFFixZwcHDArl27AABLlixBx44dUadOHTg5OSEsLAybNm0qsy31OjZu3IiQkBA4OTkhIiIC586dAwCsWrUKwcHBcHR0RLdu3ZCYmKi1bCUlJCTg7NmziIyMlOYlJibC29sbADB37lzptoE5c+ZofPbWrVsYOHAgXF1d4e3tjXfeeQdFRUUaaVQqFZYuXYoWLVrA0dERvr6+eP311/Hw4cMK86a+d/zKlSvo27cv3NzcMGzYML3We/LkSfTq1QteXl5wcnJCo0aNMGrUKI00WVlZmDJlCgICAuDg4IBmzZphyZIlEEJopFPX/9atWxEaGgoHBwe0aNFCake1a9euYfz48WjWrBmcnJxQp04dvPTSS2XaQ31bxm+//YbJkyfD29sbLi4ueO6553D37l0pXcOGDXH+/HkcOnRIaouKRh/ou09VVCag8vu6NqmpqZg0aZJUx8HBwVi0aJHWZwj06NED//vf/8rUPxGR3HB4ORERVejKlSsAiu/VBIAPP/wQM2fOxKBBgzBmzBjcvXsXy5YtQ5cuXXD69Gl4enpKn71//z769OmDIUOG4JVXXoGvr6/WbeTk5KBbt264fPkyJk6ciEaNGmHjxo2IiopCamoq3n77bQCAEALPPvssjh49ijfeeAOPPfYYtmzZghEjRpRZ5759+9CnTx80btwYc+bMQU5ODpYtW4ZOnTrhr7/+QsOGDQEAp0+fRu/eveHv74+5c+eiqKgI8+bNkwLW0g4cOIANGzZg4sSJ8PLyktbz2WefYcCAARg2bBjy8/Oxfv16vPTSS9i+fTv69eunsY4jR45g27ZtmDBhAgAgOjoazzzzDKZOnYoVK1Zg/PjxePjwIRYvXoxRo0bhwIED5bbRsWPHAADt2rWT5nl7e2PlypUYN24cnnvuOTz//PMAgFatWklpioqK0KtXL4SHh2PJkiXYt28fPv74YwQFBWHcuHFSutdffx1r1qzByJEj8dZbbyEhIQFffPEFTp8+jd9++w329vbl5q+wsBC9evXCk08+iSVLlki3KVRmvSkpKejZsye8vb0xffp0eHp6IjExEZs3b5bWL4TAgAEDcPDgQYwePRpt2rTB7t278e677+LWrVv49NNPNfJz9OhRbN68GePHj4ebmxs+//xzvPDCC7h+/bq0n//55584duwYhgwZgvr16yMxMRErV65Et27dcOHChTK3Wrz55puoVasWZs+ejcTERCxduhQTJ07ETz/9BABYunQp3nzzTbi6uuL9998HAJ3Hg5o++1RlyqTvvl5SdnY2unbtilu3buH1119HYGAgjh07hhkzZuDOnTtYunSpRvqwsDB8+umnOH/+PEJDQytcPxGR1RJERET/b/Xq1QKA2Ldvn7h79664ceOGWL9+vahTp45wcnISN2/eFImJicLW1lZ8+OGHGp89d+6csLOz05jftWtXAUB8+eWXZbbVtWtX0bVrV+nvpUuXCgBi7dq10rz8/HwREREhXF1dRXp6uhBCiK1btwoAYvHixVK6wsJC0blzZwFArF69Wprfpk0b4ePjI+7fvy/NO3PmjLCxsRHDhw+X5vXv3184OzuLW7duSfPi4+OFnZ2dKP1VCUDY2NiI8+fPlylTdna2xt/5+fkiNDRUPP3002XW4eDgIBISEqR5q1atEgCEn5+fVFYhhJgxY4YAoJFWm3//+98CgMjIyNCYf/fuXQFAzJ49u8xnRowYIQCIefPmacxv27atCAsLk/4+cuSIACDWrVunkW7Xrl1a5+vazvTp0zXmV3a9W7ZsEQDEn3/+qXMb6v3igw8+0Jj/4osvCoVCIS5fvizNAyCUSqXGvDNnzggAYtmyZdK80u0phBDHjx8XAMR///tfaZ76uImMjBQqlUqa/69//UvY2tqK1NRUaV6LFi009vuK6LNPVaZM+uzrDRo0ECNGjJD+nj9/vnBxcRH//POPRrrp06cLW1tbcf36dY35x44dEwDETz/9VOnyEhFZIw4vJyKiMiIjI+Ht7Y2AgAAMGTIErq6u2LJlC+rVq4fNmzdDpVJh0KBBuHfvnjT5+fmhSZMmOHjwoMa6HBwcMHLkyAq3uWPHDvj5+Wk8BMze3h5vvfUWMjMzcejQISmdnZ2dRi+sra0t3nzzTY313blzB7GxsYiKikLt2rWl+a1atUKPHj2k1xkVFRVh3759GDhwIOrWrSulCw4ORp8+fbTmtWvXrggJCSkz38nJSfr/w4cPkZaWhs6dO+Ovv/4qk7Z79+5SDzkAhIeHAwBeeOEFuLm5lZl/9epVrXlRu3//Puzs7Kr0CrA33nhD4+/OnTtrbG/jxo3w8PBAjx49NNo8LCwMrq6uZdpcl5Jtps961SMntm/fjoKCAq3r3rFjB2xtbfHWW29pzJ8yZQqEENi5c6fG/MjISAQFBUl/t2rVCu7u7hrlLtmeBQUFuH//PoKDg+Hp6am1TceOHasxRLtz584oKirCtWvXyquWcumzT1VUpqrs6yVt3LgRnTt3Rq1atTTaKzIyEkVFRTh8+LBG+lq1agEA7t27p1+hiYisDIeXExFRGcuXL0fTpk1hZ2cHX19fNGvWTHoFVXx8PIQQaNKkidbPlh5mXK9evUo9MO3atWto0qSJtB21xx57TFqu/tff379McNmsWbMy69M2X73O3bt3IysrC+np6cjJyUFwcHCZdNrmAUCjRo20zt++fTs++OADxMbGIi8vT5qv7V7ZwMBAjb89PDwAAAEBAVrnV+be6apwdHQsM7S4Vq1aGtuLj49HWloafHx8tK4jJSWlwu3Y2dmhfv36GvMqu96uXbvihRdewNy5c/Hpp5+iW7duGDhwIF5++WU4ODgAKG7vunXralywAMruP2ql6x8oW+6cnBxER0dj9erVuHXrlsa9yWlpaWU+X3qd6qCzOm1XnX1KnQf19lNSUvTe10uKj4/H2bNndQ5FL70fqOurMveKExFZMwbdRERURocOHdC+fXuty1QqFRQKBXbu3AlbW9syy0sHwyV76qyFtjIdOXIEAwYMQJcuXbBixQr4+/vD3t4eq1evxg8//FAmvba6K2++qOBhVHXq1EFhYSEyMjLKBJ7l0bW9klQqFXx8fLBu3TqtyytzP7CDg0OZCyqVXa9CocCmTZtw4sQJ/O9//8Pu3bsxatQofPzxxzhx4kSVevcrU89vvvkmVq9ejUmTJiEiIgIeHh5QKBQYMmSI1geHVbXtdDHUPlXV7ZemUqnQo0cPTJ06Vevypk2bavytDva9vLwMsn0iIkvFoJuIiPQSFBQEIQQaNWpU5kd2dTRo0ABnz56FSqXSCM7+/vtvabn63/379yMzM1Mj2Lp06VKZ9Wmbr16nl5cXXFxc4OjoCEdHR1y+fLlMOm3zdPn555/h6OiI3bt3S72vQPFrvGpC8+bNARQ/xbzkg9IM0csYFBSEffv2oVOnTga9iKLvep944gk88cQT+PDDD/HDDz9g2LBhWL9+PcaMGYMGDRpg3759ZS46lN5/9LFp0yaMGDECH3/8sTQvNzdX55PyK0Of9jD0PuXj41OtfT0oKAiZmZkaT8gvj/ptB+rRBkREcsV7uomISC/PP/88bG1tMXfu3DI9aEII3L9/v0rr7du3L5KSkqQnPQPFT7xetmwZXF1d0bVrVyldYWEhVq5cKaUrKirCsmXLNNbn7++PNm3a4LvvvtMIkuLi4rBnzx707dsXQHHvYGRkJLZu3Yrbt29L6S5fvlzmPuDy2NraQqFQaLxqKzExEVu3bq30OqojIiICQPGrtUpSP2G7OoHioEGDUFRUhPnz55dZVlhYWOV1V3a9Dx8+LLOvtWnTBgCkIdd9+/ZFUVERvvjiC410n376KRQKRaXuWS7N1ta2zHaXLVtW5nVq+nBxcal0fRl6n6ruvj5o0CAcP34cu3fvLrMsNTUVhYWFGvNOnToFDw8PtGjRokr5JSKyFuzpJiIivQQFBeGDDz7AjBkzkJiYiIEDB8LNzQ0JCQnYsmULxo4di3feeUfv9Y4dOxarVq1CVFQUTp06hYYNG2LTpk347bffsHTpUqn3sn///ujUqROmT5+OxMREhISEYPPmzVrvsf3oo4/Qp08fREREYPTo0dIrwzw8PDTeVT1nzhzs2bMHnTp1wrhx46TgLTQ0FLGxsZXKf79+/fDJJ5+gd+/eePnll5GSkoLly5cjODgYZ8+e1bs+9NW4cWOEhoZi3759Gu+vdnJyQkhICH766Sc0bdoUtWvXRmhoqF6vcOratStef/11REdHIzY2Fj179oS9vT3i4+OxceNGfPbZZ3jxxRf1znNl1/vdd99hxYoVeO655xAUFISMjAz85z//gbu7u3TxpH///njqqafw/vvvIzExEa1bt8aePXvwyy+/YNKkSRoPGKusZ555Bt9//z08PDwQEhKC48ePY9++fdLrt6oiLCwMK1euxAcffIDg4GD4+Pjg6aef1prWGPtUdfb1d999F9u2bcMzzzyDqKgohIWFISsrC+fOncOmTZuQmJioMZR879696N+/P+/pJiIyyTPTiYjILKlffVTeq5nUfv75Z/Hkk08KFxcX4eLiIpo3by4mTJggLl26JKXp2rWraNGihdbPl35lmBBCJCcni5EjRwovLy+hVCpFy5YtNV4Bpnb//n3x6quvCnd3d+Hh4SFeffVVcfr06TKvDBNCiH379olOnToJJycn4e7uLvr37y8uXLhQZp379+8Xbdu2FUqlUgQFBYmvv/5aTJkyRTg6OmqkAyAmTJigtUzffPONaNKkiXBwcBDNmzcXq1evFrNnz9b62rHS60hISBAAxEcffaQx/+DBgwKA2Lhxo9ZtlvTJJ58IV1fXMq+ZOnbsmAgLCxNKpVLj9WEjRowQLi4uZdajLc9CCPHVV1+JsLAw4eTkJNzc3ETLli3F1KlTxe3bt8vNl67tVHa9f/31lxg6dKgIDAwUDg4OwsfHRzzzzDPi5MmTGuvJyMgQ//rXv0TdunWFvb29aNKkifjoo480XuMlhO42LP2KrIcPH0r7o6urq+jVq5f4+++/y6TTddyo2+7gwYPSvKSkJNGvXz/h5uYmAFT4+rDq7FPayiRE5fd1bZ/NyMgQM2bMEMHBwUKpVAovLy/RsWNHsWTJEpGfny+lu3jxovT6QSIiuVMIYaCnaxAREVmZgQMH4vz584iPjzd1ViolLS0NjRs3xuLFizF69GhTZ4csiKH39UmTJuHw4cM4deoUe7qJSPZ4TzcRERGKXw9VUnx8PHbs2IFu3bqZJkNV4OHhgalTp+Kjjz7S+nRtIsD4+/r9+/fx9ddf44MPPmDATUQEgD3dREREKH7wWlRUFBo3boxr165h5cqVyMvLw+nTp3W+k5zIEnFfJyKqWXyQGhEREYDevXvjxx9/RFJSEhwcHBAREYEFCxYwCCGrw32diKhmsaebiIiIiIiIyEh4TzcRERERERGRkTDoJiIiIiIiIjIS3tNtplQqFW7fvg03Nzc++ZOIiIiIiKiShBDIyMhA3bp1YWNj+n5mBt1m6vbt2wgICDB1NoiIiIiIiCzSjRs3UL9+fVNng0G3uXJzcwNQvKO4u7ubODdkLfLz8/Hxxx/jt9864ciRLnjvPWDatEfLFy0CFiwAOnc+jE6dfsOUKVOgVCpNl2EiIiIiIj2lp6cjICBAiqlMjUG3mVIPKXd3d2fQTQaTn58PR0dHdO9+Ck8/3Rtz59rB0RGYOROYP7844J49uxAKxSkAjnB3d2fQTUREREQWyVxu0zX9AHciMon33lNh3jxg1qz/wdZ2BGbNysK8ecXziYiIiIjIMBh0E8nYzJkAMA0q1X9ha/vD//9NRERERESGwqCbSMZmzswGcAkAUFR0AvPnmzY/RERERETWhvd0E8nUggU2+OCDswCKh5N7ex/HrFlAUZENzOT2FyIiIiIii8eebiIZOnSoC+bOtUP//rHSvLt3L2LGjFTMnWuHQ4e6mC5zRERERERWhD3dRDJiY2ODCxdewMGDoZgzpwi3b5/WWN6t2x9wcOiOOXOegre3N2xseF2OiIiIiKg6+IuaSEaio+2wYUMo5s0DZs+2xenTxUG3h4cHAOD48eOYPdsW8+YBGzaEIjqa1+WIiIiIiKqDQTeRTMyfD8yaBcybV/zU8sLCQpw7dw4AEBUVBQA4ceIEgOLlxa8TAx+uRkRERERUDQy6iWSiqOhRwA0Aly5dQm5uLlxdXTFs2DAAxUG3SlX8YDV14F1UZKocExERERFZPo4dJZKJOXOA/Px8zJ0bDQBo0KABAKB169Zo06YNnJyckJqairi4OGzZsgUAMGPGDCiVSlNlmYiIiIjI4rGnm0imYmNjAQBt27aFvb092rdvDwD4/fffTZgrIiIiIiLrwqCbSKbOnDkDoDjoBoCIiAgAwJ9//mmyPBERERERWRsG3UQyJIQoE3Q3adIEAHDr1i2T5YuIiIiIyNow6CaSoby8PDx8+BAA0KxZMwCAr68vACAlJcVk+SIiIiIisjYMuolkKDs7GwDg7OwMZ2dnAI+C7uTkZJPli4iIiIjI2jDoJpIhddDt5eUlzSsZdAshTJIvIiIiIiJrw1eGEcmIjY0NmjRpgqysLACAt7e3tEwddOfn56NevXpwcXGBjQ2vyxERERERVQeDbiIZsbOzw8svv4yCggIAmj3djo6OcHd3R3p6Orp06SLd601ERERERFXHbiwiGbp37x4AzaAbAPz8/ADwvm4iIiIiIkNh0E0kQ7qCbvUQ86SkpBrPExERERGRNWLQTSQj+fn5WLBgAfbu3QtA855u4FHQ/f3332PBggXIz8+v8TwSEREREVkTBt1EMlNQUIDMzEwAunu609LSpPu+iYiIiIio6hh0E8mQtleGAY+CbvXTzYmIiIiIqHoYdBPJUEVBt7onnIiIiIiIqodBN5EMqYPu0vd0q59ezp5uIiIiIiLDYNBNJDNFRUXIyckBwJ5uIiIiIiJjY9BNJDO5ubnS/2vXrq2xrGTQLYSo0XwREREREVkjBt1EMqJQKODh4QEAqFWrFuzs7DSWq4PuoqIi+Pj4QKFQ1HgeiYiIiIisCYNuIhmxt7dH586dAZS9nxsAnJyc4ObmBgCIjIyEvb19jeaPiIiIiMjaMOgmkpl79+4BKHs/t5q6tzs5ObnG8kREREREZK0YdBPJzN27dwHoDrrVTzBPSkqqsTwREREREVkrBt1EMpKfn48tW7YAAOrUqaM1jXrY+bp165Cfn19jeSMiIiIiskYMuolkJi0tDYDuoNvHxwcA8PDhwxrLExERERGRtWLQTSQz2dnZAHQH3XxXNxERERGR4TDoJpKZrKwsALrv6Vb3dKvTERERERFR1THo1sPy5cvRsGFDODo6Ijw8HH/88YfOtGvWrIFCodCYHB0dazC3RNqpe7orCrrZ001EREREVH0Muivpp59+wuTJkzF79mz89ddfaN26NXr16oWUlBSdn3F3d8edO3ek6dq1azWYYyLtKgq61U8vZ9BNRERERFR9DLor6ZNPPsFrr72GkSNHIiQkBF9++SWcnZ3x7bff6vyMQqGAn5+fNKnvlSUypYru6S45vFwIUWP5IiIiIiKyRlYddE+aNAn37t2r9nry8/Nx6tQpREZGSvNsbGwQGRmJ48eP6/xcZmYmGjRogICAADz77LM4f/68zrR5eXlIT0/XmIgMLScnBwUFBQAevRqsNHVPd2FhIXu7iYiIiIiqyc7UGTCmzz//HB4eHsjNzYWPjw/69euH5s2b672ee/fuoaioqExPta+vL/7++2+tn2nWrBm+/fZbtGrVCmlpaViyZAk6duyI8+fPo379+mXSR0dHY+7cuXrnjUgf6os59vb2Onu6PTw84OrqiszMTDx48EBnOiIiIiIiqphV93QDwI8//oisrCycPn0aXbt2xahRo5Cfn2/07UZERGD48OFo06YNunbtis2bN8Pb2xurVq3Smn7GjBlIS0uTphs3bhg9jyQ/6pEfderUgUKh0JlOfYEpOTm5RvJFRERERGStrLqn28bGBseOHZMeGJWdnY2xY8di1qxZWLhwYaXX4+XlBVtb2zIBSHJysjQUtyL29vZo27YtLl++rHW5g4MDHBwcKp0noqpQB926HqKm5uvriytXriApKakmskVEREREZLWsuqe7bt26sLF5VERnZ2esWLEC69ev12s9SqUSYWFh2L9/vzRPpVJh//79iIiIqNQ6ioqKcO7cOfj7++u1bSJDUl84Knlvd2kFBQXSvdy3b9+usbwREREREVkjqw66n3/+ebzyyisaD1NLSUlBbm6u3uuaPHky/vOf/+C7777DxYsXMW7cOGRlZWHkyJEAgOHDh2PGjBlS+nnz5mHPnj24evUq/vrrL7zyyiu4du0axowZU/2CEVXR/fv3ARRfSNL1ZHIhBJRKJQAOLyciIiIiqi6rHl6+cOFCTJkyBYGBgWjTpg1q1aqFEydOYMKECXqva/Dgwbh79y5mzZqFpKQktGnTBrt27ZLufb1+/bpGr/rDhw/x2muvISkpCbVq1UJYWBiOHTuGkJAQg5WPSF8PHjwAUDzqozyurq4AGHQTEREREVWXQsjgRbwPHjxATEwMHjx4gBYtWlR6SLgppaenw8PDA2lpaXB3dzd1dshKTJw4EcuXL8eTTz6J/fv3Sz3aJeXn5+P555/Hr7/+iv79+2Pbtm0myCkRERERUdWYWyxlNT3dO3fuxLp163Djxg24uLigVatWeOGFF/D444+jdu3aeP75502dRSKTUw8vr2xPd0pKitHzRERERERkzazinu6lS5fimWeewZYtW5CVlYWUlBR8/vnneOKJJ9CvXz8+gZno/6mDbicnp3LTubi4AACPHSIiIiKiarKKoPuzzz5DmzZtcO3aNZw8eRInT57Ew4cP8cUXXyAuLg4dOnTArVu3TJ1NIpPT957ulJQUnQ9cIyIiIiKiillF0J2cnIwxY8ZovHvYwcEB48aNw8mTJ6FQKDB16lQT5pDIPKiD7rp160KhUGhNo1Ao0LBhQwDFrxZTvz6MiIiIiIj0ZxVBd7NmzXQ+Zdnb2xvjx4/Hjh07ajhXROZHPbx87NixsLe315rG3t4e//rXv6Qh5nyCORERERFR1VlF0D116lR88cUXiI+P17rc2dlZZ68ekVwUFBQgPT0dAFCnTp0K06tfh8egm4iIiIio6qwi6P74449ha2uLDh06YPHixbh9+7a07MqVK1i+fDleeuklE+aQyPTUQ8sVCgU8PT0rTK8OuvkwNSIiIiKiqrOKoLtu3bpwcXFBeno6pk+fjoCAAHh7e8PPzw9NmzaFk5MTxo4di4KCAlNnlchk7t27B6B45MeqVat0Hg8FBQVYsWIFsrOzAbCnm4iIiIioOqziPd3btm0DAGRmZuL8+fM4d+4c4uLipH/PnDmDDh06wNbWFo0bN8Zjjz2GkJAQfPjhhybOOVHNUd/P7eDggLt37+p8KrkQAnfv3pXu+WbQTURERERUdVYRdKu5uroiPDwc4eHhGvNTUlLKBOL79+9n0E2yog66K3pdmBofpEZEREREVH1WFXTr4uPjg+7du6N79+6mzgqRyegbdKvf1c2gm4iIiIio6qzinm4iqpg66HZycqpUevZ0ExERERFVH4NuIpmoak83n15ORERERFR1DLqJZII93URERERENU8W93QT0aOgu06dOvDw8IBCodCaTqFQwMPDA46OjgCA7OxsZGZmSj3fRERERERUeQy6iWRC/Z7uwYMH44UXXtCZzt7eHpMmTQIAzJs3D9nZ2UhOTmbQTURERERUBRxeTiQTJXu6K8vX1xcAh5gTEREREVUVg24imahO0M2HqRERERERVQ2HlxPJgBACDx48AADs2rULJ06cQFRUFOzt7cukLSgowJo1awAA3t7eANjTTURERERUVQy6iWQgLS0NRUVFAID09HRkZ2dDCKE1rRACt2/fBgD4+/sDAG7cuFEzGSUiIiIisjIcXk4kA+qh5S4uLrCzq/y1tqCgIADAlStXjJIvIiIiIiJrx6CbSAbUQbeXl5den1MH3fHx8QbPExERERGRHDDoJpIB9evCateurdfngoODAQCXL1/WORydiIiIiIh0Y9BNJAO3bt0C8Ohp5JXVqFEjKBQKZGRk4O7du8bIGhERERGRVWPQTSQD165dAwAEBgbq9TlHR0cEBAQA4BBzIiIiIqKqYNBNJAPqoLtBgwZwdnaGs7NzuelLpmnSpAmA4iHmRERERESkH74yjEgG1EF3UFAQBg8eXG5apVKJd999V/o7ODgY+/fvZ9BNRERERFQF7OkmkoGSPd36Uvd0c3g5EREREZH+GHQTWbnCwkLpQWpVCbpLPsGciIiIiIj0w+HlRFbu1q1bKCoqglKpRO3atbFmzRoAwLBhw2Bvb18mfUFBAdatWyelUQfd8fHxEEJAoVDUWN6JiIiIiCwdg24iK1fyyeUKhUL6W9d7t4UQGmmCgoKgUCiQnp6Oe/fuwdvbu2YyTkRERERkBTi8nMjKJSYmAqja0HKg+LVh9evXB8Ah5kRERERE+mJPt5nLys+Cbb5tmfm2NrZwtHPUSKeLjcIGTvZOVUqbXZCts0dUoVDA2d65SmlzCnKgEiqd+XBRulQpbW5hLopURQZJ62zvLA2lzivMQ6Gq0CBpneydYKMovt6VX5SPgqICg6R1tHOErY1tmbTxV4sfgFYvoJ7Wti8oKkB+Ub70d37+o/9n5WfBxs4GwcHBuHHjBi5euohWYa105sHBzgF2NsWnlUJVIfIK83SmVdoqYW9rr3faIlURcgtzdaa1t7WH0lapd1qVUCGnIMcgae1s7OBg5wCgeLRAdkG2QdLqc9zzHKE9Lc8RZc8RFaUtfY4oreRxr09aniN4juA5omppeY4oxnOE/mnldo4wJwy6zVzdj+sCjmXn923SF7++/Kv0t88SH50HWdcGXRETFSP93fCzhriXfU9r2vZ12+PP1/6U/g5ZHoJrade0pg3xDsH58eelvx//z+O4cPeC1rQNPBogcVKi9HeXNV1w8vZJrWm9nL1w99270t991vXBoWuHtKZ1tndG1nuPDuwXNryAHfE7tKYFADH70YH66pZXsenCJp1pM2dkSl+ur29/Hd+d+U5n2pR3UuDtUjzsevLuyVhxcoXOtAlvJ6ChZ0MAwPv738eS40t0po0bF4cWPi0AAAuOLMDcQ3N1pv1jzB94vN7jAIDPTnyGqfumFi/YVvzPfxP/ix8//hHv432Nz3116itM3DlR+tse9lIa3499sWXoFjRp0gQHDx7EL8d+wehro3XmYcOLG/BSi5cAAFsubsGgTYN0pl397GpEtYkCAOy+vBvP/PiMzrRf9PkCEzpMAAAcuX4ET333lM60iyMX491Oxa88++vOX+jwdQedaWd3nY053eYAAC7evYjQlaE6074T8Q4+6vkRAOB62nU0+qyRzrTj24/H8n7LAQD3su/BZ4mPzrQjWo/AmoFrABR/mbhGu+pM+2LIi9j40kbp7/LS8hxRjOeIR3SeI7Q4OOIgujXsBqDsOaK07UO3o1/TfgCAdefWYeQvI3Wm5TmiGM8R/7+M5wgJzxHFeI4oxnPE/y+rxjmiz7o+WtOZCoeXE1mJwoJCqFRaruSn/f+/nlVft/phasnXk6u+EiIiIiIiGVIIXX30ZFLp6enw8PDA7bu34e7uXma5NQz54LAwwwwLO3/+PJZ+vBQ/b/wZPXv2xLZt21CgKpDStmnRBpcvX8aOPTvwRMQT+PzjzwEAM2bMgFKp1Dq8XJ3mrSlvwc3ZDdu3bcdzzz2HsPZhOPSb9t4CgMPC1DgsrBjPEVVLy6GjxXiO0D8tzxGP8Byhf1qeI4rxHKF/WnM8RyTfT4aflx/S0tK0xlI1jUG3mVIH3eayo5B5unbtGkJCQpCd/egE+/PPP+P5558HAKhUKjg7OyMvLw9Xr15FvXr1sGRJ8TC0d955B0qlssw68/Pzy6SJi4tDy5Yt4eHhgQcPHsDGhoNkiIiIiMg8mVssxaDbTEk7ym3tPd2wtQUcS9zsnaX7ihJsbAAnp6qlzc4GdO0iCgXg7Fy1tDk5gLah0GouLlVLm5sLFOm+6qxXWmfn4nwDQF4eUKj7qrNeaZ2ciusZAPLzgQLdV5IrSjvyjTewZu1atGvTBm3atsW3q1cjKCgI50+fhoONDZKSk+EfFAQbGxvk3r//6L3cjo7F+xBQvM583Ved4eCAvKIi+Pn5ITU1Fds2bED/vn11poXd/z8qorCwuC50USoBdX70SVtUVNx2utjbF6fXN61KVbyvGSKtnV1xXQDFx0S27qvOeqXV57jnOUJ7WpmdIzSUPO71SVuJc4R03OuTlueI4v/zHFG1tDxHFP+f5wj90/Ic8ehvKz5HpCcnw8PPfHq6IcgspaWlCQAirXjXKjv17av5AWdn7ekAIbp21Uzr5aU7bfv2mmkbNNCdNiREM21IiO60DRpopm3fXndaLy/NtF276k7r7KyZtm9f3WlL7+4vvlh+2szMR2lHjCg/bUrKo7Tjx5efNiHhUdp33ik/bVzco7SzZ2ssOw8IG0AAEL8DIiMmRvj5+QkA4uNnnhECECf+f3n90us9ePDRer/4ovw8bN8uhBBi6tSpAoDoVl7aDRserXfDhvLXu3r1o7Tbt5ef9osvHqU9eLD8tIsXP0r7xx/lp509+1HauLjy077zzqO0CQnlpx0//lHalJTy044Y8ShtZmb5aV98UXMfLi8tzxHFk4zPEWWmP/54lHbx4vLTVuEcIYQoPq7LS8tzRPHEc0TxxHPEo4nniOKJ54jiieeI4qka54i0tm0FAJGWlibMAceI6mH58uVo2LAhHB0dER4ejj/++KPc9Bs3bkTz5s3h6OiIli1bYscO3U/DtHYPioqQmppq6mxYlfcAqAA8B6ADAFdnZ3z44YcAgOiDB5EFQP18xwYG2N6bb74JO1tbxAA4bYD1ERERERHJAYeXV9JPP/2E4cOH48svv0R4eDiWLl2KjRs34tKlS/DxKfsY/2PHjqFLly6Ijo7GM888gx9++AGLFi3CX3/9hdBQ3a8TULOm4eXp6ekIad8eD1NTcebMmeInYXNYWPH/qzgsbNuvv+LZwYNha2uLsydOIOSxxwBHRxQKgebNm+PKlSv4YNYsfPv997iakICZ06Zh3syZKCwsxIZffgFsbTFo8GDY2dmVGeolpQEw6NlnYefiIg31GjZ0KH5Yvx6vDh2K//7nPwCAzMxMbN+5Ez//8gsKVCoMGjwYAwcOhLNSWe5Qr/Px8dixdy9Onz6N2NhYJCYmol2bNujVvTt69+iBsLZtH907rsewsIzcXKRmZ0OpVMLexgbK/7+vXet96BwWVswMh4XxHMGhoxw6WoW0PEc8wnOE/ml5jijGc4T+ac3wHGFuw8sZdFdSeHg4Hn/8cXzxxRcAih9QFRAQgDfffBPTp08vk37w4MHIysrC9u3bpXlPPPEE2rRpgy+//LLC7Znbzf/VsX79egwdOhQAMHfuXMyaNcsg683Pz4e9vb30tE+1e/fu4dq1awgNDYWD+iRkRTIyMhASEoKbN29i2rRpWLhwocby1atXY9SoUdLf9erVw99//w1XV1fk5+cjOjoawKOnl5dWXpqTJ0/i8ccfh52dHRYtWoSYmBjs27cPOaW+OFxdXTF48GCMHz8e7dq1k+YLIRATE4OPPvoIO3fuLLec9evXx5gxYzB69GjUr19fZ7rbt2/jyJEjOHr0KI4cOYKzZ8+i9GnN2dkZjz/+OJ544gk88cQTCA8Ph7+/f7nbJyIiIiLLZG6xFIPuSsjPz4ezszM2bdqEgQMHSvNHjBiB1NRU/PL/vYIlBQYGYvLkyZg0aZI0b/bs2di6dSvOnDlT4TYru6MIIXD69GkpyDDUvwBga2tb3BMKoOD/r3YWFRVBoVDg3r17UCqVKCoqgr29vZTW1tZWmgoLC/H111/ju+++k9ZZu3ZtTJs2DT4+PsjPz0fdunXh6ekJGxsbjQkorncAsLe3R0FBAfLz85GXl4ecnBysW7cOmzdvRt26dREWFoY7d+6gc+fOKCgowFdffYXc3Fx4eXlh8ODBcHd3h42NDTw8PKQ81qlTB/7+/lL9JSQkwM3NDQ0bNkRRURHS09NhZ2eHhg0bolatWrCzs5M+CwDXr1/H1atXkZGRAS8vLwQEBCA7OxsnTpzAyZMn8eDBAwQGBuKJJ55ASEgIVCoVkpOTkZ6ejjp16sDX1xceHh6wsbGBra1tmfKnpaXh9OnTUt7q1KmDhg0bonHjxvjxxx9x/vx5BAUF4dy5c3AqebXw/9uqadOmSExMBFB80WPw4MFSnVYn6AaALl264MiRIxrzgoKCMPj/e86///57JCQkSMueeOIJtGzZEgkJCfjnn39w/fp1AICNjQ369OmDjh07om3btggMDMRvv/2GXbt2Yf/+/UhPT5fS9e7dG6GhofD394efnx8yMjKkILvkttTU+0x5vL290bJlS2ny8fGBQqGQJpVKhfv37yM5ORkpKSlISUnBvXv3kJWVhaysLGRnZyMrKwt5eXlwcnKCu7s73NzcpKn0325ubnB1dYW9vb20P6knhUKBwsJCaSooKEBhYSGKiorK7BvVndTr1zXl5+frXFZUVAQhhM4JgFQmdTlL/qttnq5/geLzjUqlkv4t+f/y5umbXts89X6grrfK/L+y6Qzx+dJKzzNmmvL2AUNPNb290j+J1OVX7w/lzatoeXXmWeq6a2J7JZVuv5J/l7fM2tPqQ9sxX920cl6nMRk7hLP09WdlZWHAgAFmE3RD9+3epHbr1i0BQBw7dkxj/rvvvis6dOig9TP29vbihx9+0Ji3fPly4ePjozV9bm6uSEtLk6YbN25U6ub/wsJCAYBTqUmpVJo8D8ac3NzcxOHDh3XuF998840AILp37y5UKpU0Py8vT8yZM0fMmTNH5OXlaf1sRWmOHDki6tatK7p27Sqio6PF6dOnNbahUqnEoUOHxNChQ4W9vX2ZvDs5OYnx48eLy5cv68x/Tk6OWLdunejSpUuFdWFjYyPatm0r3nrrLbFhwwZx+/ZtKR8FBQUiMzNTxMXFia+//lq89tpromXLlkKhUJi8DTlx4sSJEydOnDgZdzKXB6n9/00TZGrR0dGYO3dulT6rHnqr6wpwVf4VQkClUqGwsBBCCKnnycbGBkVFRXBzc0NBQQGcnJxQVFSkdRJCICAgAHfu3EF4eDhGjRqF9evXIzc3F1evXoW7uztu3bqF3NzcMr1NQggolUooFAppGLmDg4M0NW3aFBMnTkRCQgJSUlLg4eGBDRs2ICMjA5MnT0a/fv2wY8cOHDhwAEIIqfe6qKgIhYWFuHfvHm7fvg0hBEJCQtCiRQukpqbi2rVrUCqVcHd3R15eHhITE5GRkSH1QKrLVr9+fQQFBcHDwwN3797FjRs34OTkhJCQEHTp0gU+Pj6Ij4/HsWPHkJCQAHt7e/j4+MDNzQ33799HSkoKMjIypHKX7nVzdHREq1at0LZtWzRt2hSpqam4dOkS/v77b7Rv3x5jx46Fp6enzn1i5MiRaNasGVq3bm3wq7FPPvkkbt26pXO5QqFAly5d0KVLF3z66adYu3Yt0tPT0bhxYzRu3BgtW7YsN+8A4OjoiJdffhkvv/wyLl68iP/973+4ffs2kpKSkJycDBsbG3Ts2BFPPvkkIiIitF7BVCgUUq9rixYt0KJFC4wePRoAkJ2djQsXLuDs2bM4d+4c4uLikJ6ertHbpVAoUKdOHfj4+EiTt7c3XF1d4ezsDBcXF7i4uMDBwQHZ2dnIyMhARkYG0tPTpf+X/jszM1NjX1L/X6VSlekBt7e3h42NjXQsVjSV3H/Km2xtbaVeZ12TUqnUOl89KqPkiICSE1DcO63uGS/Za6/vPHXPrnqbuv6t6rLy0qhH26jPReq6q8z/q/IZfT5fVOr+UaFHb5ih/tbV/saa1MdzTW9TXXb1OYHzzHNe6e+48v6Wc9rKKH28GyKt3Ndp7B5xrl+3oqIiXLx40Wjr1xeD7krw8vKCra0tkpOTNeYnJyfDz89P62f8/Pz0Sj9jxgxMnjxZ+js9PR0BAQEV5s3W1hY3btyoMJ25ePrppw26vg4dOkj/Hz58uMayAQMGYMCAAQbdnj46d+6scW91TVIoFOjUqZNJtl2Sr68vpkyZUq11PPbYY3jssccMlKNizs7OaN++Pdq3b2/Q9RIRERGR6alv1TUXfGVYJSiVSoSFhWH//v3SPJVKhf379yMiIkLrZyIiIjTSA8DevXt1pndwcIC7u7vGRERERERERJaNPd2VNHnyZIwYMQLt27dHhw4dsHTpUmRlZWHkyJEAintZ69WrJz2A6u2330bXrl3x8ccfo1+/fli/fj1OnjyJr776qlLbUw9dUT9MisgQ8vPzkfv/r75IT0/X+SC1itIQEREREZkrdQylz60DRqXzbm8qY9myZSIwMFAolUrRoUMHceLECWlZ165dxYgRIzTSb9iwQTRt2lQolUrRokUL8euvv1Z6W1euXDH5gwc4ceLEiRMnTpw4ceLEyVKnK1euGCoUrBa+MsxMpaamolatWrh+/bpZ3Y9AZanvv79x4wZvCzBjbCfLwHayHGwry8B2sgxsJ8vAdrIcaWlpCAwMxMOHDyt8gG9N4PByM6V+eq6HhwcPagvBe/EtA9vJMrCdLAfbyjKwnSwD28kysJ0shzqmMjXzyAURERERERGRFWLQTURERERERGQkDLrNlIODA2bPng0HBwdTZ4UqwLayDGwny8B2shxsK8vAdrIMbCfLwHayHObWVnyQGhEREREREZGRsKebiIiIiIiIyEgYdBMREREREREZCYNuIiIiIiIiIiNh0E1ERERERERkJAy6zdTy5cvRsGFDODo6Ijw8HH/88Yeps2S15syZA4VCoTE1b95cWp6bm4sJEyagTp06cHV1xQsvvIDk5GSNdVy/fh39+vWDs7MzfHx88O6776KwsFAjTUxMDNq1awcHBwcEBwdjzZo1NVE8i3b48GH0798fdevWhUKhwNatWzWWCyEwa9Ys+Pv7w8nJCZGRkYiPj9dI8+DBAwwbNgzu7u7w9PTE6NGjkZmZqZHm7Nmz6Ny5MxwdHREQEIDFixeXycvGjRvRvHlzODo6omXLltixY4fBy2upKmqnqKioMsdY7969NdKwnYwvOjoajz/+ONzc3ODj44OBAwfi0qVLGmlq8nzH7zntKtNO3bp1K3NMvfHGGxpp2E7GtXLlSrRq1Qru7u5wd3dHREQEdu7cKS3nsWQ+KmorHk/maeHChVAoFJg0aZI0okIFAQAAdhlJREFUz6KPK0FmZ/369UKpVIpvv/1WnD9/Xrz22mvC09NTJCcnmzprVmn27NmiRYsW4s6dO9J09+5dafkbb7whAgICxP79+8XJkyfFE088ITp27CgtLywsFKGhoSIyMlKcPn1a7NixQ3h5eYkZM2ZIaa5evSqcnZ3F5MmTxYULF8SyZcuEra2t2LVrV42W1dLs2LFDvP/++2Lz5s0CgNiyZYvG8oULFwoPDw+xdetWcebMGTFgwADRqFEjkZOTI6Xp3bu3aN26tThx4oQ4cuSICA4OFkOHDpWWp6WlCV9fXzFs2DARFxcnfvzxR+Hk5CRWrVolpfntt9+Era2tWLx4sbhw4YL497//Lezt7cW5c+eMXgeWoKJ2GjFihOjdu7fGMfbgwQONNGwn4+vVq5dYvXq1iIuLE7GxsaJv374iMDBQZGZmSmlq6nzH7zndKtNOXbt2Fa+99prGMZWWliYtZzsZ37Zt28Svv/4q/vnnH3Hp0iXx3nvvCXt7exEXFyeE4LFkTipqKx5P5uePP/4QDRs2FK1atRJvv/22NN+SjysG3WaoQ4cOYsKECdLfRUVFom7duiI6OtqEubJes2fPFq1bt9a6LDU1Vdjb24uNGzdK8y5evCgAiOPHjwshigMOGxsbkZSUJKVZuXKlcHd3F3l5eUIIIaZOnSpatGihse7BgweLXr16Gbg01qt0MKdSqYSfn5/46KOPpHmpqanCwcFB/Pjjj0IIIS5cuCAAiD///FNKs3PnTqFQKMStW7eEEEKsWLFC1KpVS2orIYSYNm2aaNasmfT3oEGDRL9+/TTyEx4eLl5//XWDltEa6Aq6n332WZ2fYTuZRkpKigAgDh06JISo2fMdv+cqr3Q7CVEcJJT8IVoa28k0atWqJb7++mseSxZA3VZC8HgyNxkZGaJJkyZi7969Gm1j6ccVh5ebmfz8fJw6dQqRkZHSPBsbG0RGRuL48eMmzJl1i4+PR926ddG4cWMMGzYM169fBwCcOnUKBQUFGu3RvHlzBAYGSu1x/PhxtGzZEr6+vlKaXr16IT09HefPn5fSlFyHOg3btOoSEhKQlJSkUa8eHh4IDw/XaBtPT0+0b99eShMZGQkbGxv8/vvvUpouXbpAqVRKaXr16oVLly7h4cOHUhq2X/XExMTAx8cHzZo1w7hx43D//n1pGdvJNNLS0gAAtWvXBlBz5zt+z+mndDuprVu3Dl5eXggNDcWMGTOQnZ0tLWM71ayioiKsX78eWVlZiIiI4LFkxkq3lRqPJ/MxYcIE9OvXr0x9WvpxZVflT5JR3Lt3D0VFRRo7CwD4+vri77//NlGurFt4eDjWrFmDZs2a4c6dO5g7dy46d+6MuLg4JCUlQalUwtPTU+Mzvr6+SEpKAgAkJSVpbS/1svLSpKenIycnB05OTkYqnfVS1622ei1Z7z4+PhrL7ezsULt2bY00jRo1KrMO9bJatWrpbD/1Oqh8vXv3xvPPP49GjRrhypUreO+999CnTx8cP34ctra2bCcTUKlUmDRpEjp16oTQ0FAAqLHz3cOHD/k9V0na2gkAXn75ZTRo0AB169bF2bNnMW3aNFy6dAmbN28GwHaqKefOnUNERARyc3Ph6uqKLVu2ICQkBLGxsTyWzIyutgJ4PJmT9evX46+//sKff/5ZZpmlf0cx6CbZ69Onj/T/Vq1aITw8HA0aNMCGDRsYDBMZwJAhQ6T/t2zZEq1atUJQUBBiYmLQvXt3E+ZMviZMmIC4uDgcPXrU1Fmhcuhqp7Fjx0r/b9myJfz9/dG9e3dcuXIFQUFBNZ1N2WrWrBliY2ORlpaGTZs2YcSIETh06JCps0Va6GqrkJAQHk9m4saNG3j77bexd+9eODo6mjo7Bsfh5WbGy8sLtra2ZZ7El5ycDD8/PxPlSl48PT3RtGlTXL58GX5+fsjPz0dqaqpGmpLt4efnp7W91MvKS+Pu7s7AvorUdVveseLn54eUlBSN5YWFhXjw4IFB2o/HZNU0btwYXl5euHz5MgC2U02bOHEitm/fjoMHD6J+/frS/Jo63/F7rnJ0tZM24eHhAKBxTLGdjE+pVCI4OBhhYWGIjo5G69at8dlnn/FYMkO62kobHk+mcerUKaSkpKBdu3aws7ODnZ0dDh06hM8//xx2dnbw9fW16OOKQbeZUSqVCAsLw/79+6V5KpUK+/fv17j3hIwnMzMTV65cgb+/P8LCwmBvb6/RHpcuXcL169el9oiIiMC5c+c0goa9e/fC3d1dGroUERGhsQ51GrZp1TVq1Ah+fn4a9Zqeno7ff/9do21SU1Nx6tQpKc2BAwegUqmkL9WIiAgcPnwYBQUFUpq9e/eiWbNmqFWrlpSG7Wc4N2/exP379+Hv7w+A7VRThBCYOHEitmzZggMHDpQZrl9T5zt+z5WvonbSJjY2FgA0jim2U81TqVTIy8vjsWQB1G2lDY8n0+jevTvOnTuH2NhYaWrfvj2GDRsm/d+ij6sqP4KNjGb9+vXCwcFBrFmzRly4cEGMHTtWeHp6ajyJjwxnypQpIiYmRiQkJIjffvtNREZGCi8vL5GSkiKEKH49QWBgoDhw4IA4efKkiIiIEBEREdLn1a8n6Nmzp4iNjRW7du0S3t7eWl9P8O6774qLFy+K5cuX85VhlZCRkSFOnz4tTp8+LQCITz75RJw+fVpcu3ZNCFH8yjBPT0/xyy+/iLNnz4pnn31W6yvD2rZtK37//Xdx9OhR0aRJE41XUaWmpgpfX1/x6quviri4OLF+/Xrh7Oxc5lVUdnZ2YsmSJeLixYti9uzZfBVVCeW1U0ZGhnjnnXfE8ePHRUJCgti3b59o166daNKkicjNzZXWwXYyvnHjxgkPDw8RExOj8Wqc7OxsKU1Nne/4PadbRe10+fJlMW/ePHHy5EmRkJAgfvnlF9G4cWPRpUsXaR1sJ+ObPn26OHTokEhISBBnz54V06dPFwqFQuzZs0cIwWPJnJTXVjyezFvpJ8tb8nHFoNtMLVu2TAQGBgqlUik6dOggTpw4YeosWa3BgwcLf39/oVQqRb169cTgwYPF5cuXpeU5OTli/PjxolatWsLZ2Vk899xz4s6dOxrrSExMFH369BFOTk7Cy8tLTJkyRRQUFGikOXjwoGjTpo1QKpWicePGYvXq1TVRPIt28OBBAaDMNGLECCFE8WvDZs6cKXx9fYWDg4Po3r27uHTpksY67t+/L4YOHSpcXV2Fu7u7GDlypMjIyNBIc+bMGfHkk08KBwcHUa9ePbFw4cIyedmwYYNo2rSpUCqVokWLFuLXX381WrktTXntlJ2dLXr27Cm8vb2Fvb29aNCggXjttdfKfHGxnYxPWxsB0DgX1eT5jt9z2lXUTtevXxddunQRtWvXFg4ODiI4OFi8++67Gu8VFoLtZGyjRo0SDRo0EEqlUnh7e4vu3btLAbcQPJbMSXltxePJvJUOui35uFIIIUTV+8mJiIiIiIiISBfe001ERERERERkJAy6iYiIiIiIiIyEQTcRERERERGRkTDoJiIiIiIiIjISBt1ERERERERERsKgm4iIiIiIiMhIGHQTERERERERGQmDbiIiIiIiIiIjYdBNREREREREZCQMuomIiIiIiIiMhEE3ERERERERkZEw6CYiIiIiIiIyEgbdREREREREREbCoJuIiIiIiIjISBh0ExERERERERkJg24iIiIiIiIiI2HQTURERERERGQkDLqJiMgidOvWDd26dTPY+hITE6FQKLBmzRqDrdMSLV68GM2bN4dKpTJ1VrQydLsbQsOGDREVFWXqbFSJQqHAnDlz9PrMkCFDMGjQIONkiIhIBhh0ExFRla1ZswYKhUKaHB0d0bRpU0ycOBHJycmmzh5VID09HYsWLcK0adNgY8OfBKTdtGnT8PPPP+PMmTOmzgoRkUWyM3UGiIjI8s2bNw+NGjVCbm4ujh49ipUrV2LHjh2Ii4uDs7OzQbaxZ88eg6yHHvn2229RWFiIoUOHmjorOplju1+6dMliL1Lk5OTAzk6/n39t27ZF+/bt8fHHH+O///2vkXJGRGS9LPMbg4iIzEqfPn3wyiuvYMyYMVizZg0mTZqEhIQE/PLLL9Ved3Z2NgBAqVRCqVRWe32mplKpkJuba+psAABWr16NAQMGwNHR0dRZ0ckc293BwQH29vYGWVdubm6NDu13dHTUO+gGgEGDBmHz5s3IzMw0Qq6IiKwbg24iIjK4p59+GgCQkJAgzVu7di3CwsLg5OSE2rVrY8iQIbhx44bG57p164bQ0FCcOnUKXbp0gbOzM9577z1pWel7e1NSUjB69Gj4+vrC0dERrVu3xnfffVcmP6mpqYiKioKHhwc8PT0xYsQIpKamas37gQMH0LlzZ7i4uMDT0xPPPvssLl68WCZdTEwM2rdvD0dHRwQFBWHVqlWYM2cOFAqFRjqFQoGJEydi3bp1aNGiBRwcHLBr1y4AwJIlS9CxY0fUqVMHTk5OCAsLw6ZNm8psS72OjRs3IiQkBE5OToiIiMC5c+cAAKtWrUJwcDAcHR3RrVs3JCYmai1bSQkJCTh79iwiIyPLLFu/fj3CwsLg5uYGd3d3tGzZEp999lmZOp00aRICAgLg4OCA4OBgLFq0SCOAVN83v2TJEixfvhyNGzeGs7MzevbsiRs3bkAIgfnz56N+/fpwcnLCs88+iwcPHmhsp7L3dKtvdTh69CjeeusteHt7w9PTE6+//jry8/ORmpqK4cOHo1atWqhVqxamTp0KIYTGOirbHtru6b569Speeukl1K5dG87OznjiiSfw66+/aqSJiYmBQqHA+vXr8e9//xv16tWDs7Mz0tPTdZarMnlavXo1FAoFvv32W435CxYsgEKhwI4dO6R5pe/pzsjIwKRJk9CwYUM4ODjAx8cHPXr0wF9//aWxrh49eiArKwt79+7VmVciItKOw8uJiMjgrly5AgCoU6cOAODDDz/EzJkzMWjQIIwZMwZ3797FsmXL0KVLF5w+fRqenp7SZ+/fv48+ffpgyJAheOWVV+Dr66t1Gzk5OejWrRsuX76MiRMnolGjRti4cSOioqKQmpqKt99+GwAghMCzzz6Lo0eP4o033sBjjz2GLVu2YMSIEWXWuW/fPvTp0weNGzfGnDlzkJOTg2XLlqFTp07466+/0LBhQwDA6dOn0bt3b/j7+2Pu3LkoKirCvHnz4O3trTWvBw4cwIYNGzBx4kR4eXlJ6/nss88wYMAADBs2DPn5+Vi/fj1eeuklbN++Hf369dNYx5EjR7Bt2zZMmDABABAdHY1nnnkGU6dOxYoVKzB+/Hg8fPgQixcvxqhRo3DgwIFy2+jYsWMAgHbt2mnM37t3L4YOHYru3btj0aJFAICLFy/it99+k+o0OzsbXbt2xa1bt/D6668jMDAQx44dw4wZM3Dnzh0sXbpUY53r1q1Dfn4+3nzzTTx48ACLFy/GoEGD8PTTTyMmJgbTpk3D5cuXsWzZMrzzzjtlgkd9vPnmm/Dz88PcuXNx4sQJfPXVV/D09MSxY8cQGBiIBQsWYMeOHfjoo48QGhqK4cOHS5/Vpz1KSk5ORseOHZGdnY233noLderUwXfffYcBAwZg06ZNeO655zTSz58/H0qlEu+88w7y8vLK7cmvTJ5GjhyJzZs3Y/LkyejRowcCAgJw7tw5zJ07F6NHj0bfvn11rv+NN97Apk2bMHHiRISEhOD+/fs4evQoLl68qLFvqC/2/Pbbb2XKQ0REFRBERERVtHr1agFA7Nu3T9y9e1fcuHFDrF+/XtSpU0c4OTmJmzdvisTERGFrays+/PBDjc+eO3dO2NnZaczv2rWrACC+/PLLMtvq2rWr6Nq1q/T30qVLBQCxdu1aaV5+fr6IiIgQrq6uIj09XQghxNatWwUAsXjxYildYWGh6Ny5swAgVq9eLc1v06aN8PHxEffv35fmnTlzRtjY2Ijhw4dL8/r37y+cnZ3FrVu3pHnx8fHCzs5OlP5qBSBsbGzE+fPny5QpOztb4+/8/HwRGhoqnn766TLrcHBwEAkJCdK8VatWCQDCz89PKqsQQsyYMUMA0Eirzb///W8BQGRkZGjMf/vtt4W7u7soLCzU+dn58+cLFxcX8c8//2jMnz59urC1tRXXr18XQgiRkJAgAAhvb2+RmppaJo+tW7cWBQUF0vyhQ4cKpVIpcnNzpXml210X9b7Yq1cvoVKppPkRERFCoVCIN954Q5pXWFgo6tevX2a9lW2PBg0aiBEjRkh/T5o0SQAQR44ckeZlZGSIRo0aiYYNG4qioiIhhBAHDx4UAETjxo3LbEuXyubpzp07onbt2qJHjx4iLy9PtG3bVgQGBoq0tDSNdADE7Nmzpb89PDzEhAkTKpWXpk2bij59+lQqLRERPcLh5UREVG2RkZHw9vZGQEAAhgwZAldXV2zZsgX16tXD5s2boVKpMGjQINy7d0+a/Pz80KRJExw8eFBjXQ4ODhg5cmSF29yxYwf8/Pw0HgJmb2+Pt956C5mZmTh06JCUzs7ODuPGjZPS2dra4s0339RY3507dxAbG4uoqCjUrl1bmt+qVSv06NFDGqJbVFSEffv2YeDAgahbt66ULjg4GH369NGa165duyIkJKTMfCcnJ+n/Dx8+RFpaGjp37lxmaC8AdO/eXeohB4Dw8HAAwAsvvAA3N7cy869evao1L2r379+HnZ0dXF1dNeZ7enpWOIx448aN6Ny5M2rVqqXRppGRkSgqKsLhw4c10r/00kvw8PAok8dXXnlF4/7i8PBw5Ofn49atW+XmvTyjR4/WGOIfHh4OIQRGjx4tzbO1tUX79u3L1JE+7VHSjh070KFDBzz55JPSPFdXV4wdOxaJiYm4cOGCRvoRI0ZobKs8lc2Tn58fli9fjr1796Jz586IjY3Ft99+C3d393LX7+npid9//x23b9+uMC/q9iYiIv1weDkREVXb8uXL0bRpU9jZ2cHX1xfNmjWTnu4cHx8PIQSaNGmi9bOlH0hVr169Sj0469q1a2jSpEmZp0g/9thj0nL1v/7+/mWCy2bNmpVZn7b56nXu3r0bWVlZSE9PR05ODoKDg8uk0zYPABo1aqR1/vbt2/HBBx8gNjYWeXl50vzS94UDQGBgoMbf6iA2ICBA6/yHDx9q3WZFxo8fjw0bNqBPnz6oV68eevbsiUGDBqF3795Smvj4eJw9e1bncPqUlBSj5T0pKanMZ0oGpvpsq/R29GmPkq5duyZdSCip5L4YGhoqzde1P2ijT56GDBmCtWvX4tdff8XYsWPRvXv3Cte/ePFijBgxAgEBAQgLC0Pfvn0xfPhwNG7cuExaIUSFdUFERGUx6CYiomrr0KED2rdvr3WZSqWCQqHAzp07YWtrW2Z56WC4sj2AlkRbmY4cOYIBAwagS5cuWLFiBfz9/WFvb4/Vq1fjhx9+KJNeW92VN1+UekhYaXXq1EFhYSEyMjI0esp9fHwQGxuL3bt3Y+fOndi5cydWr16N4cOHSw+pU6lU6NGjB6ZOnap13U2bNjVa3v39/TX+Xr16tcZDzfTZVsnt6Nse1VHZfVzfPN2/fx8nT54EAFy4cAEqlarCV5sNGjQInTt3xpYtW7Bnzx589NFHWLRoETZv3lxm5MbDhw91XjwjIiLdGHQTEZFRBQUFQQiBRo0alQnGqqNBgwY4e/ZsmcDi77//lpar/92/fz8yMzM1AvxLly6VWZ+2+ep1enl5wcXFBY6OjnB0dMTly5fLpNM2T5eff/4Zjo6O2L17NxwcHKT5q1evrvQ6qqN58+YAip9i3qpVK41lSqUS/fv3R//+/aFSqTB+/HisWrUKM2fORHBwMIKCgpCZman1yefGVnrYe4sWLQyy3uq0R4MGDXTuN+rlNZGnCRMmICMjA9HR0ZgxYwaWLl2KyZMnV7gdf39/jB8/HuPHj0dKSgratWuHDz/8UCPoLiwsxI0bNzBgwIAqlYWISM54TzcRERnV888/D1tbW8ydO7dMD6YQAvfv36/Sevv27YukpCT89NNP0rzCwkIsW7YMrq6u6Nq1q5SusLAQK1eulNIVFRVh2bJlGuvz9/dHmzZt8N1332m8TiwuLg579uyRngBta2uLyMhIbN26VeM+2MuXL2Pnzp2Vzr+trS0UCgWKioqkeYmJidi6dWul11EdERERACD1jKqVbg8bGxspKFcPbx40aBCOHz+O3bt3l1lvamoqCgsLjZFlAMXPDyg5le75rqrqtEffvn3xxx9/4Pjx49K8rKwsfPXVV2jYsKHW+/kNnadNmzbhp59+wsKFCzF9+nQMGTIE//73v/HPP//oXH9RURHS0tI05vn4+KBu3boaQ9mB4p7z3NxcdOzYsUplISKSM/Z0ExGRUQUFBeGDDz7AjBkzkJiYiIEDB8LNzQ0JCQnYsmULxo4di3feeUfv9Y4dOxarVq1CVFQUTp06hYYNG2LTpk347bffsHTpUmnIdP/+/dGpUydMnz4diYmJCAkJwebNm8sEGwDw0UcfoU+fPoiIiMDo0aOlV4Z5eHhovNt4zpw52LNnDzp16oRx48ahqKgIX3zxBUJDQxEbG1up/Pfr1w+ffPIJevfujZdffhkpKSlYvnw5goODcfbsWb3rQ1+NGzdGaGgo9u3bh1GjRknzx4wZgwcPHuDpp59G/fr1ce3aNSxbtgxt2rSR7lF+9913sW3bNjzzzDOIiopCWFgYsrKycO7cOWzatAmJiYnw8vIyehkMqTrtMX36dPz444/o06cP3nrrLdSuXRvfffcdEhIS8PPPP1c4xLu6eUpJScG4cePw1FNPYeLEiQCAL774AgcPHkRUVBSOHj2qNQ8ZGRmoX78+XnzxRbRu3Rqurq7Yt28f/vzzT3z88ccaaffu3QtnZ2f06NGjSmUhIpIzBt1ERGR006dPR9OmTfHpp59i7ty5AIofbNWzZ88qD1d1cnJCTEwMpk+fju+++w7p6elo1qxZmXt8bWxssG3bNkyaNAlr166FQqHAgAED8PHHH6Nt27Ya64yMjMSuXbswe/ZszJo1C/b29ujatSsWLVqk8fCrsLAw7Ny5E++88w5mzpyJgIAAzJs3DxcvXpSGFFfk6aefxjfffIOFCxdi0qRJaNSoERYtWoTExMQaCboBYNSoUZg1axZycnKk+4xfeeUVfPXVV1ixYgVSU1Ph5+eHwYMHY86cOVLg5uzsjEOHDmHBggXYuHEj/vvf/8Ld3R1NmzbF3LlzNZ5Ubimq0x6+vr44duwYpk2bhmXLliE3NxetWrXC//73v3Lf722oPI0bNw55eXlYvXq19KCzOnXq4KuvvsKzzz6LJUuWaL3/3tnZGePHj8eePXuktwwEBwdjxYoVGk/7B4qfWP/8889r3P9PRESVoxAVPWmFiIiIKmXgwIE4f/484uPjTZ2VSklLS0Pjxo2xePFijVdqUfkCAgLQq1cvfP3116bOSo2IjY1Fu3bt8Ndff6FNmzamzg4RkcXhPd1ERERVkJOTo/F3fHw8duzYgW7dupkmQ1Xg4eGBqVOn4qOPPoJKpTJ1dixCQUEB7t+/b3HD56tj4cKFePHFFxlwExFVEXu6iYiIqsDf3x9RUVFo3Lgxrl27hpUrVyIvLw+nT5/ma5Ws1O7du7F+/XqsWbMGe/bs4f3NRERUKQy6iYiIqmDkyJE4ePAgkpKS4ODggIiICCxYsADt2rUzddbISJ566ilcvnwZ48aNw3vvvWfq7BARkYVg0E1ERERERERkJLynm4iIiIiIiMhIGHQTERERERERGQnf022mVCoVbt++DTc3N+mdm0RERERERFQ+IQQyMjJQt25d2NiYvp+ZQbeZun37NgICAkydDSIiIiIiIot048YN1K9f39TZYNBtrtzc3AAU7yju7u4mzg1ZCyEEFi4swsKFdpgxQ2D69LKjKBYuFIiOVmD69EJMn27LkRZEREREZFHS09MREBAgxVSmxqDbTKkDHXd3dwbdZDD5+flwdIzGU091QXT0U3ByAmbOfLR8/nwgOhp46qmDcHQ8DCenGVAqlabLMBERERFRFZlL5xGDbiIZ6tr1MLp06YxZs+yQn5+FESPu4McfgzFrFjB7diEUisOmziIRERERkVUw/V3lRGQS772nwrx5wAcfjEKTJk0xa9YfmDeveD4RERERERkGg24iGZs6NQ/ANgACtrb7NYaaExERERFR9THoJpKx8eP/AJALACgqisX8+abNDxERERGRteE93UQytWCBDb799qD0t5fXGcyaBRQV2cBMnjlBRERERGTx2NNNJEOHDnXB3Ll2aNjwUdB9//4/+Pe/szB3rh0OHepiwtwREREREVkP9nQTyYiNjQ0uXHgBBw+G4v33s7BkyXEAgFKpRH5+Pp55Jg52du0xZ85T8Pb2ho0Nr8sREREREVUHf1ETyUh0tB02bAjFvHlAZOSfyMvLg5+fH7p16wYAiI2NxezZtpg3D9iwIRTR0bwuR0RERERUHQy6iWRi/nxg1ixg3jxg5kwgJiYGAPDUU0+hTZs2AIAzZ84AKF4+b15xej5cjYiIiIio6tiNRSQTRUWPAm4AOHiw+H7up556Cq6urgCKe7rV1OmKimoyl0RERERE1oVBN5FMzJkD5OfnY+7caBQVFeHEiRMAgK5du6KwsBAAcPbsWeTm5mLRokUAgBkzZkCpVJoqy0REREREFo9BN5EM5eTkID8/HwqFAkFBQRBCwNHREVlZWbhy5Yqps0dEREREZDV4TzeRDGVlZQEAvLy8YGtrCzs7O4SGhgIo7u0mIiIiIiLDYNBNJEPqoNvb21uap36YGoNuIiIiIiLDYdBNJEPqoNvHx0eaFxISAgC4fPmySfJERERERGSNGHQTyZC2oNvf3x8AkJKSYpI8ERERERFZIwbdRDKkLej29fUFACQnJ5skT0RERERE1ohBN5GM2NjYoEmTJrCzK35xgbagOyUlBU2aNEGTJk1gY8NTBBERERFRdfCVYUQyYmdnh5dffhkbNmwAoD3ofvjwIV588UW+n5uIiIiIyADYjUUkQ+r7tks+vbxWrVpSDzjv6yYiIiIiMgwG3UQydPfuXQCaPd02NjbS37yvm4iIiIjIMBh0E8lIfn4+FixYgBs3bgDQDLqBR0PMP//8cyxYsAD5+fk1nkciIiIiImvCoJtIZrKzs5GXlwdAd9CdlpaGgoKCGs8bEREREZG1YdBNJDPZ2dkAAHt7e3h4eGgsUwfdmZmZNZ4vIiIiIiJrxKCbSGbU7+j29vaGQqHQWMagm4iIiIjIsBh0E8lMyaC7NHXQrU5DRERERETVw6CbSGYqE3Szp5uIiIiIyDAYdBPJjDroLv0QNYA93UREREREhsagm0hGFAoF7OzsAJQfdOfk5KBBgwZl7vkmIiIiIiL9MOgmkhF7e3sp2Pbz8yuzvOTw8mHDhsHe3r5G80dEREREZG0YdBPJTEpKCgDt93TXqVMHNjbFp4W7d+/WaL6IiIiIiKwRg24imVEH3dqGl9va2krBeHJyco3mi4iIiIjIGjHoJpKR/Px8XLlyBQBQq1YtrWnUwfjy5cuRn59fY3kjIiIiIrJGDLqJZEQIgYyMDADah5cDj+7rvn//fo3li4iIiIjIWjHoJpKRzMxMFBUVAag46Oa7uomIiIiIqo9BN5GMqO/ntre3h4uLi9Y06uHlfFc3EREREVH1MegmkpF79+4BAJydnXWmUQfd7OkmIiIiIqo+Bt1EMqK+T7u8oFs9vJw93URERERE1cegm0hGHjx4AABwcnLSmYY93UREREREhvN/7d15eFNV3gfwb5ImaUtJW+gOLaUgxQJlaaEWBZyhLwXRwR2ZyqbiiODAoCjoSEHfmSKirwsMjDgsj6IIjqDDpkyhODplB6EUsCyyt4VCNwpdkvP+UXNp0iRN0qRZ+v08z32a3vvLzbnnLskv5+Rcr0+6d+7ciQ0bNiA/Px86na5Z61q8eDFiY2Ph6+uLlJQU7Nmzx2zsypUrIZPJDCZfX99mvT5Rc+mT7vbt20Mmk5mM0bd037x502wMERERERFZx6uT7ueffx5PPvkkPvnkE/Tu3RtBQUFITk7G008/bfO6vvjiC8yYMQOZmZk4cOAAevfujfT0dGlgKlM0Gg0uX74sTWfPnm3O5hA1W1lZGQCgf//+UCqVJmM6duwIoL57uVzu1ZcIIiIiIiKn8+pP1GvWrMGuXbvwz3/+EwEBASgoKEBQUBA0Go3N63r33XcxadIkTJw4EQkJCVi6dCn8/f2xfPlys8+RyWSIiIiQJn0LIpGr6H/T3b59e7MxISEhkMlk0Ol00sBrRERERERkH69Oun18fBAZGSk9DgsLw/Lly5GXl2fTempqarB//36kpaVJ8+RyOdLS0pCbm2v2eZWVlejUqROio6MxatQoHD161GxsdXU1ysvLDSYiR7Mm6fbx8UFISAgAoLCwsEXKRURERETkrbw66U5KSpKS4ri4OOTn56NDhw4Wf4ttytWrV6HVahu1VIeHh5tNSuLj47F8+XJ8/fXX+PTTT6HT6TBw4EBcuHDBZHxWVhYCAwOlKTo62qYyEllDn3Tv3bsXtbW1JmNqa2vh4+MDALh48WKLlY2IiIiIyBt5ddL90UcfITg4GAAwdepUPPbYY/jd736H7t27O/21U1NTMW7cOPTp0wdDhgzBV199hdDQUPz97383GT979myUlZVJ0/nz551eRmp99Em3EAJCCJMxQghp0L+ioqIWKxsRERERkTfycXUBnKlha/HYsWMRHh6Ow4cPIyMjw6b1hISEQKFQNEpAioqKEBERYdU6lEol+vbti5MnT5pcrlaroVarbSoXka30o5dbuk83AAQEBABg0k1ERERE1Fxe09K9ZcsWPPnkkxgyZAjuu+8+zJo1C/v27TOIGTZsGF566SXpd97WUqlUSEpKQnZ2tjRPp9MhOzsbqampVq1Dq9XiyJEjNr82kSPpW7ot3acbANq0aQMAFkfnJyIiIiKipnlF0v3ee+/h/vvvx/r163Hjxg0UFxfjgw8+QEpKCkaOHOmQwaBmzJiBZcuWYdWqVTh27BgmT56MGzduYOLEiQCAcePGYfbs2VL8G2+8ge+++w6nT5/GgQMH8OSTT+Ls2bN45plnml0WIntUV1fjxo0bAJpOuvUt3Uy6iYiIiIiaxyu6l7///vvo06cPvv32W2nU5erqaixfvhzz58/HgAEDkJubiw4dOtj9GqNHj8aVK1cwZ84cFBYWok+fPti6das0uNq5c+cM7ml8/fp1TJo0CYWFhQgODkZSUhL++9//IiEhoXkbS2QnfddymUwm/WbbHH1LN7uXExERERE1j1ck3UVFRXj55ZelhBuo/4305MmT8eijjyI5ORkvv/wyVq9e3azXmTp1KqZOnWpyWU5OjsH///d//4f/+7//a9brETmSvmu5r6+vwRdEprClm4iIiIjIMbyie3l8fLzZFrnQ0FA8//zz2Lx5cwuXisi96JPutm3bIjQ0FDKZzGScTCZDx44dATDpJiIiIiJqLq9Iul9++WUsWrQIBQUFJpf7+/ubTTCIWgt99/K4uDg8//zzUCqVJuOUSiVeeOEFAMCVK1eg0+larIxERERERN7GK5Lud955BwqFAgMGDMCCBQtw6dIladmpU6ewePFiPPbYYy4sIZHr6Vu627dv32RsWFgYgPpR9/XPIyIiIiIi23lF0h0VFYU2bdqgvLwcs2bNQnR0NEJDQxEREYFu3brBz88Pzz77LGpra11dVCKXsSXpViqVUhwHUyMiIiIisp9XDKT2zTffAAAqKytx9OhRHDlyBHl5edLfn376CQMGDIBCoUBcXBzuvPNOJCQk4C9/+YuLS07UcvRJ9/nz5/G3v/0NkyZNMtnFvLa2FsuWLZOWFRUVoWfPni1aViIiIiIib+EVSbdeQEAAUlJSkJKSYjC/uLi4USKenZ3NpJtaFf1vuoH632oLIUzGCSFw5coV6bZibOkmIiIiIrKfVyXd5oSFhWHo0KEYOnSoq4tC5DL6lm5/f3+r4vW3DWPSTURERERkP6/4TTcRNU2fdPv5+VkV36ZNGwBMuomIiIiImoNJN1ErYWvSzZZuIiIiIqLmY9JN1Erof9NtbfdyfUt3YWGh08pEREREROTtmHQTtQJCCLZ0ExERERG5QKsYSI2otausrJTuUx8REQG1Wg2ZTGYyViaTITAwEOHh4QCYdBMRERERNYdMmLtvELlUeXk5AgMDUVZWBo1G4+rikIc7e/YsYmNjoVKpcOvWLbMJd0Pnz59HTEwMfHx8UF1dDbmcHWOIiIiIyP25Wy7FT9FErYC+a3n79u2tSriB+lvtAUBdXR2uX7/utLIREREREXkzJt1ErUDDpNtaarUaQUFBANjFnIiIiIjIXvxNN1ErUFxcDKA+6V62bBkAYMKECVAqlY1ia2trsXLlSgD1rd2lpaUoKipCQkJCi5WXiIiIiMhbMOkmagUuXrwIAIiKisKlS5cA1I9obooQQooJDw/Hzz//zJZuIiIiIiI7sXs5USvQMOm2hf533Uy6iYiIiIjsw6SbqBXQJ90dOnSw6XnR0dEAgNOnTzu8TERERERErQGTbqJWwN6kOz4+HgBw4sQJh5eJiIiIiKg1YNJN1ArY2728W7duAJh0ExERERHZi0k3kZfTarXSwGj2Jt1nz57FzZs3HV42IiIiIiJvx6SbyMsVFxdDq9VCLpcjIiIC/v7+8Pf3t/gcfUxoaCiCg4MhhEBBQUELlZiIiIiIyHvwlmFEXk7ftVyfcM+cOdNivEqlMoiJj4/Hrl27cPz4cSQmJjq1rERERERE3oYt3URezt5B1PS6d+8OgL/rJiIiIiKyB5NuIi/X3KRbP4L58ePHHVYmIiIiIqLWgt3Libxcw6S7trYWq1evBgBkZGRAqVQ2ijeOYUs3EREREZH9mHQTebmGSbcQAmfPngUACCFMxhvHNLxXtxACMpmsBUpNREREROQd2L2cyMvpk+6OHTva9fwuXbpAoVCgsrJSuvUYERERERFZhy3dbu5GzQ0oahSN5ivkCvj6+BrEmSOXyeGn9LMrtqq2ymyLqEwmg7/S367Ym7U3oRM6s+Voo2pjV+ytulvQ6rQOifVX+kututV11ajT1Tkk1k/pB7ms/vuuGm0NarW1Don19fGFQq5oFHv+wnkAQLuwdib3fa22FjXaGun/mprbj2/U3EBb/7aIi4tDQUEBjuYfRVBokNkyqH3U8JHXX1bqdHWorqs2G6tSqKBUKG2O1eq0uFV3y2ysUqGESqGyOVYndLhZa/5e5LbE+sh9oPZRA6jvLVBVW+WQWFvOe14jTMfyGtH4GtFUrPE1wljD896WWF4jeI3gNcK+WF4j6vEaYXtsa7tGuBMm3W4u6p0owLfx/PvuuA+bfr9J+j9sYZjZk2xIpyHImZAj/R/7fiyuVl01GZsclYy9k/ZK/ycsTsDZsrMmYxNCE3D0+aPS//2X9Uf+lXyTsZ0CO+GX6b9I/w9eORj7Lu0zGRviH4IrM69I/49YPQI7z+40Geuv9MeNV2+f2I+sfQSbCzabjAUAkXn7RB27fiy+zP/SbGzl7ErpzfUPG/+AVT+tMhtb/FIxQtuEAgBmfDsDf9v3N7OxZ6adQWxQLADgtezXsDB3odnYvMl56BHWAwDw1//8FfN2zjMbu+eZPejfoT8A4P1d7+Plf79cv+B0/Z/7N94P5S4lXsNrBs/7aP9HmLplqvS/Erdjwt8Jx/ox69G9e3cUFBTg0x2fIv2/6WbLsPbRtXisx2MAgPXH1uPxLx83G7ti1ApM6DMBAPDtyW9x/+f3m41dNGIRpgyYAgD4z7n/4DerfmM2dkHaAsy8u/6WZwcuH8CAjweYjc0ckom5984FABy7cgw9l/Q0G/tS6kt4e9jbAIBzZefQ+f3OZmOfT34ei0cuBgBcrbqKsIVhZmPH9x6PlQ+uBFD/ZhKQFWA29tGER7HusXXS/5ZieY2ox2vEbWavESbsGL8D98beC6DxNcLYxjEbMbLbSADA6iOrMfHriWZjeY2ox2vEr8t4jZDwGlGP14h6vEb8uqwZ14gRq0eYjHMVdi8n8mbVAPRfKLe1fzX633Vf/uVys4tERERERNSayIS5NnpyqfLycgQGBuLSlUvQaDSNlntDlw92C3NMt7B9e/dh65atKCkuwahRozBy5Egp9sTxE0jqnQSNRoNLVy6hpqYGH7zzAQBg9uzZUKlUJruX62P++OIf0da/LVatWIVnnnkG//M//4P1G9ebLS+7hdVjt7B6vEbYF8uuo/V4jbA9lteI23iNsD2W14h6vEbYHuuO14iikiJEhESgrKzMZC7V0ti93M21UbUxuMBbirNlndZqePA6MrbhyebI2IYXB0fGqn3UUEPt8FiVQiVdgO2J3bdvH347+LfQ6eo/THz++ec4ffo0QkNDoVKocP3KdQD1g6i1UbWBEspGtwlTKpTSGxEAg5g2qjbwkftILd0///yz1cePj9wHPirrLjG2xCrkCqvLYEusXCZ3SqxMJnNKLOC8857XCNtj3fUa4YhY42uEo2J5jajHa4R9sbxG1OM1wvZYXiNuc4dYd7hGtAQm3e7uxg1A0XggNSgUgK+vYZw5cjng52dfbFUVYK4zhEwG+PvbF3vzJqAz/60z2rSxL/bWLUBr/ltnm2L9/evLDQDV1UCd+W+dbYr186uvZwCoqQFqzX+TbClWp9NhyuTJ0Ol0GHjXXbhWWorjx49j/vz5eCcrC6itxc9HjgAAOkREADduQAXg1WnT6o8d/XFVW1u/7l9JMfplcjkSEhIgk8lw9uxZ7P3+e/RPSjJdXrUa8Pn1slJXV18X5qhUgP4LAFtitdr6fWeOUlkfb2usTld/rDki1senvi6A+nOiyvy3zjbF2nLe8xphOrYVXSMaaXje2xJrdI1opOF5b0ssrxH1j3mNsC+W14j6x7xG2B7La8Tt/739GuFOBLmlsrIyAUCU1R9ajaf77jN8gr+/6ThAiCFDDGNDQszHJicbxnbqZD42IcEwNiHBfGynToaxycnmY0NCDGOHDDEf6+9vGHvffeZjjQ/3Rx+1HFtZeTt2/HjLscXFt2Off95y7Jkzt2NfeslybF7e7djMTINlHwMCgGgLiEuA2Pr++wKAUKvV4vyrrwoBiCG/xmQZr3fHjtvrXbTIchk2bhRCCDF27FgBQNwLCJ252LVrb6937VrL612x4nbsxo2WYxctuh27Y4fl2AULbsfu2WM5NjPzdmxenuXYl166HXvmjOXY55+/HVtcbDl2/PjbsZWVlmMffdTwGLYUy2tE/dSKrxGNpj17bscuWGA51o5rhBCi/ry2FMtrRP3Ea0T9xGvE7YnXiPqJ14j6ideI+qkZ14iyvn0FAFFWVibcAQdSs8HixYsRGxsLX19fpKSkYM+ePRbj161bh+7du8PX1xe9evXC5s3mR8MkskURAP2YonMBRAIYdtddGDRoEKqrqzHv3//GWQA7AcgAZDjgNd98802ofXyQA2BLg/lVAP4JYCyAx999F5999hkqKioc8IpERERERJ6PA6lZ6YsvvsC4ceOwdOlSpKSk4L333sO6detw4sQJhIU1Hsb/v//9LwYPHoysrCzcf//9+Oyzz/DWW2/hwIED6NnT/O0E9PQDqZVdMj2Qmld0+WC3sCa7bwlfX9yqqYGfn59B7GNPPokvN2xAn8RE7Nm5s/432L6++HHXLtxzzz2QyWR46IEH8NU33+A3gwdj+69f+NTV1WHt118DCgUeHz0aPj4+jbp6STEAHh81Cj5t2khdvV556SUseOcd9LjzTryTlYVVq1fj602bUGXUlUmtVuPBUaPwp8mTkdK/v8lt0yoUuHz1KsrKylBWUoLqykokdO+O8PDwxsFWdAsTQqCouBhnLlyATqFAWFgYQtu1Q6BaLQ1O0wi7hdXjNcK+WDe4RrDrqIlYdh29/T+vEbbH8hpheyyvEfWPeY2wL9ZJ14jyoiIERrjPQGpMuq2UkpKC/v37Y9GiRQDqf08bHR2NF154AbNmzWoUP3r0aNy4cQMbN26U5t11113o06cPli5d2uTrSUm3mxwo1LS6ujr88ssvuHXrFmJjYxEQcPvehxcuXEBeXh5KS0sRHx+PhIQEqPUXSCNarRbZ2dlYtWoVduzYgcuXL+OOO+5AWloaHn74YWRnZ2P+/Pnw8fHB3r170adPH4PnT5gwAatW3b4X6D/+8Q889dRTAOpHJs/KygJwe/RyY5ZiSktL0aVLF1y7ds3gObGxsXj00Ufh6+uLtWvX4ueff5aW3X333XjggQcQEBAAf39/nD17Fv/973+xa9cuky3isbGxSElJwV133YWUlBT07dsXvg0v+gCqqqqwf/9+7N69G7t27cLx48dx5syZRsk/ACiVSkRHR6NXr15ITExEr1690KNHD3Ts2BFt27Y1n5A3UFtbi4qKClRVVUEmk0Eul0t/FQoF2rRpA7Wl5J6IiFodIYQ0Gf9vab6j53na65hj7j3W1Pzmxrbka3lbuUw9dsW8iooK9OjRw21yKSbdVqipqYG/vz++/PJLPPjgg9L88ePHo7S0FF//2irYUExMDGbMmIHp06dL8zIzM7Fhwwb89NNPjeKrq6tR3eAbuvLyckRHRzd5oOh0OoMyuRPjQ8vRh5pOp5Mm/YmmfyyXy6WpuroaZWVlkMlk0Gg0UCgUuHXrFmQyGRQKhTTJZDJcu3YNly9fRmVlJUJDQxEeHg4hBMrKyiCEgFKphI+PD5RKpTTJ5XKcP38eBQUFqGnw7W379u3RsWNHlJSU4MKFCwZl9/HxQVxcHCIjIwHUJ+xarRY1NTU4fvy4yeTR2Ouvv4433nij0fyrV68iPj4e165dg6+vLwoLCxEYGAig+Uk3ACxZsgTPP/882rVrh9///vcYN24ckpOTpX0ghMDBgwfx4YcfYvXq1ai18E25QqFAYGAgAgMDoVAocOrUqUbHiVKpxJ133gmgPtmuqqpCcXEx6ky0AshkMnTs2BFKpRJXrlxpspu7v78/IiIiEBERAZVKherqaty6dUs6HysqKlBeXo5blr7l/pWPjw8CAgIQEBCAtm3bwtfXF0qlEiqVCiqVSjp2ampqUFNTg+rq6kaPjf/W1tYaHM8NHyuVSqjVaqjVaqhUKumxWq2Gj4+P9IWA8V+tVova2lrU1dWhtrbW4HFTf3U6ncl16v9aWmZrjBACOp0OWq3W4FzXT6bmW4oVQkAmk0mTvj5N/d+cx7Y8x9QHVv2k0+nMLjPF+EOQvR/gPDHGUj1aW6f2xtoaZ2o7rPlrS2xLrMt4nqcldS3xOkTkHtwl6ebo5Va4evUqtFpto26v4eHhOH78uMnnFBYWmowvLCw0GZ+VlYV58+bZVb5//etfdj2PLCspKTG7f83x9fWFn58frl+/jpKSEpSUlAAA5L+OAK7RaHDs2DFcv34dP//8s0GLcEPBwcHIyMjAo48+ivj4eOzbtw/r1q3D1q1b0a1bN/zhD39ARobpX2qHhITgvffew7hx45CRkSEl3I4yefJk/M///A+io6NNttbLZDL069cPK1aswF//+ld8/PHHOHnyJKqqqnDjxg20a9cOAwcOxN13342ePXtC0WB0/rKyMuzduxe7d++WWrGvXLmCw4cPN3qdyMhI3HXXXbjrrrvQu3dvxMXFoVOnTgZfEty6dQvFxcU4ffo0Dh8+jMOHD+PIkSM4duyY1HJ9+vRpnD592qpt199KTZ/MNfxwVVdXh9LSUpSWllpblVYRQkCr1UJrqQsjERG1esZfjBh/QdLUPGfF2vN8Y+a+zDA1v7mxLfla3lYuU49dNU+n01ls+GlpTLrdxOzZszFjxgzpf31Ld1NkMhmWLVvmzKI1i7lvyh1F30IN1J9k8l9/t9SwlUulUkmJZ1lZGXQ6HXx9faUWMH3rmFarRXBwMCIjIxEQEIArV66guLgYcrkcgYGBkMvlUsugcStgZGQkunfvjpiYGMjlcpSVleHs2bO4cOECgoODkZCQIJVBCIELFy7g1KlTKCwslFr3fHx8oFAoEBcXh/j4eINk9P7778f9999vdb2MHTsWAwcORMeOHR1V1Qa6du1qVVxkZCRef/11q9cbGBiItLQ0pKWlAaivq19++QX5+flQKpVo06YN/P39ERoaig4dOjR5PPn6+iImJgYxMTG49957DZbduHEDhYWFuHz5MgoLC1FXVwdfX1+ptdjX1xdt27ZF27ZtodFo0LZt20b3ONcnxFVVVaioqEBlZSUqKytRUVGBW7duoba2VmrN1h83+lZpa/4qlUqDljJ9oq9vrda3yBtPDVt9jf/qjzXjXhvG80z9lcvlZtdt7vXsidFqtQa9VfSt4MaTqfnmYvUtyw1bJo1bKc0ts/WxNXH6XjmmJuOWc3MfVhseh5b+t3aep8Y0VVfW1qmtsfbGNdwOU38tLbMlpiVjWyIJa8mEzxNfi4gM6X+q6y6YdFshJCQECoUCRUVFBvOLiooQERFh8jkRERE2xes/6NtKJpPhmWeesfl55FyBgYFITExEYmJio2UymQzR0dFWfanSHF26dHHq+luCTCZD586d0blzZ4evu02bNujSpUuz6kkmk8HHxwcajcYtui4RERERkfvhLcOsoFKpkJSUhOzsbGmeTqdDdnY2UlNTTT4nNTXVIB4Atm3bZjaeiIiIiIiIvA9buq00Y8YMjB8/HsnJyRgwYADee+893LhxAxMnTgQAjBs3Dh06dJAGoJo2bRqGDBmCd955ByNHjsSaNWuwb98+fPTRR1a9nr7bVnl5uXM2iFqlmpoaaVCw8vJyswOpNRVDREREROSu9DmU2wxuKMhqH374oYiJiREqlUoMGDBA7Nq1S1o2ZMgQMX78eIP4tWvXim7dugmVSiV69OghNm3aZPVrnTp1SgDgxIkTJ06cOHHixIkTJ052TKdOnXJUKtgsvGWYmyotLUVwcDDOnTvnVoMAUGP6Qe/Onz/P3/W6Me4nz8D95Dm4rzwD95Nn4H7yDNxPnqOsrAwxMTG4fv06goKCXF0cdi93V/pRuAMDA3lSewgOpuUZuJ88A/eT5+C+8gzcT56B+8kzcD95Dn1O5WruUQoiIiIiIiIiL8Skm4iIiIiIiMhJmHS7KbVajczMTLvu3U0ti/vKM3A/eQbuJ8/BfeUZuJ88A/eTZ+B+8hzutq84kBoRERERERGRk7Clm4iIiIiIiMhJmHQTEREREREROQmTbiIiIiIiIiInYdJNRERERERE5CRMut3U4sWLERsbC19fX6SkpGDPnj2uLpLXmjt3LmQymcHUvXt3afmtW7cwZcoUtG/fHgEBAXjkkUdQVFRksI5z585h5MiR8Pf3R1hYGGbOnIm6ujqDmJycHPTr1w9qtRpdu3bFypUrW2LzPNr333+PBx54AFFRUZDJZNiwYYPBciEE5syZg8jISPj5+SEtLQ0FBQUGMdeuXUNGRgY0Gg2CgoLw9NNPo7Ky0iDm8OHDGDRoEHx9fREdHY0FCxY0Ksu6devQvXt3+Pr6olevXti8ebPDt9dTNbWfJkyY0OgcGz58uEEM95PzZWVloX///mjbti3CwsLw4IMP4sSJEwYxLXm94/ucadbsp3vvvbfROfXcc88ZxHA/OdeSJUuQmJgIjUYDjUaD1NRUbNmyRVrOc8l9NLWveD65p/nz50Mmk2H69OnSPI8+rwS5nTVr1giVSiWWL18ujh49KiZNmiSCgoJEUVGRq4vmlTIzM0WPHj3E5cuXpenKlSvS8ueee05ER0eL7OxssW/fPnHXXXeJgQMHSsvr6upEz549RVpamjh48KDYvHmzCAkJEbNnz5ZiTp8+Lfz9/cWMGTNEfn6++PDDD4VCoRBbt25t0W31NJs3bxavvfaa+OqrrwQAsX79eoPl8+fPF4GBgWLDhg3ip59+Er/73e9E586dxc2bN6WY4cOHi969e4tdu3aJ//znP6Jr165izJgx0vKysjIRHh4uMjIyRF5envj888+Fn5+f+Pvf/y7F/Pjjj0KhUIgFCxaI/Px88ec//1kolUpx5MgRp9eBJ2hqP40fP14MHz7c4By7du2aQQz3k/Olp6eLFStWiLy8PHHo0CFx3333iZiYGFFZWSnFtNT1ju9z5lmzn4YMGSImTZpkcE6VlZVJy7mfnO+bb74RmzZtEj///LM4ceKEePXVV4VSqRR5eXlCCJ5L7qSpfcXzyf3s2bNHxMbGisTERDFt2jRpviefV0y63dCAAQPElClTpP+1Wq2IiooSWVlZLiyV98rMzBS9e/c2uay0tFQolUqxbt06ad6xY8cEAJGbmyuEqE845HK5KCwslGKWLFkiNBqNqK6uFkII8fLLL4sePXoYrHv06NEiPT3dwVvjvYyTOZ1OJyIiIsTbb78tzSstLRVqtVp8/vnnQggh8vPzBQCxd+9eKWbLli1CJpOJixcvCiGE+Nvf/iaCg4OlfSWEEK+88oqIj4+X/n/88cfFyJEjDcqTkpIi/vCHPzh0G72BuaR71KhRZp/D/eQaxcXFAoDYuXOnEKJlr3d8n7Oe8X4Soj5JaPhB1Bj3k2sEBweLjz/+mOeSB9DvKyF4PrmbiooKcccdd4ht27YZ7BtPP6/YvdzN1NTUYP/+/UhLS5PmyeVypKWlITc314Ul824FBQWIiopCXFwcMjIycO7cOQDA/v37UVtba7A/unfvjpiYGGl/5ObmolevXggPD5di0tPTUV5ejqNHj0oxDdehj+E+td+ZM2dQWFhoUK+BgYFISUkx2DdBQUFITk6WYtLS0iCXy7F7924pZvDgwVCpVFJMeno6Tpw4gevXr0sx3H/Nk5OTg7CwMMTHx2Py5MkoKSmRlnE/uUZZWRkAoF27dgBa7nrH9znbGO8nvdWrVyMkJAQ9e/bE7NmzUVVVJS3jfmpZWq0Wa9aswY0bN5CamspzyY0Z7ys9nk/uY8qUKRg5cmSj+vT088rH7meSU1y9ehVardbgYAGA8PBwHD9+3EWl8m4pKSlYuXIl4uPjcfnyZcybNw+DBg1CXl4eCgsLoVKpEBQUZPCc8PBwFBYWAgAKCwtN7i/9Mksx5eXluHnzJvz8/Jy0dd5LX7em6rVhvYeFhRks9/HxQbt27QxiOnfu3Ggd+mXBwcFm959+HWTZ8OHD8fDDD6Nz5844deoUXn31VYwYMQK5ublQKBTcTy6g0+kwffp03H333ejZsycAtNj17vr163yfs5Kp/QQAv//979GpUydERUXh8OHDeOWVV3DixAl89dVXALifWsqRI0eQmpqKW7duISAgAOvXr0dCQgIOHTrEc8nNmNtXAM8nd7JmzRocOHAAe/fubbTM09+jmHRTqzdixAjpcWJiIlJSUtCpUyesXbuWyTCRAzzxxBPS4169eiExMRFdunRBTk4Ohg4d6sKStV5TpkxBXl4efvjhB1cXhSwwt5+effZZ6XGvXr0QGRmJoUOH4tSpU+jSpUtLF7PVio+Px6FDh1BWVoYvv/wS48ePx86dO11dLDLB3L5KSEjg+eQmzp8/j2nTpmHbtm3w9fV1dXEcjt3L3UxISAgUCkWjkfiKiooQERHholK1LkFBQejWrRtOnjyJiIgI1NTUoLS01CCm4f6IiIgwub/0yyzFaDQaJvZ20tetpXMlIiICxcXFBsvr6upw7do1h+w/npP2iYuLQ0hICE6ePAmA+6mlTZ06FRs3bsSOHTvQsWNHaX5LXe/4Pmcdc/vJlJSUFAAwOKe4n5xPpVKha9euSEpKQlZWFnr37o3333+f55IbMrevTOH55Br79+9HcXEx+vXrBx8fH/j4+GDnzp344IMP4OPjg/DwcI8+r5h0uxmVSoWkpCRkZ2dL83Q6HbKzsw1+e0LOU1lZiVOnTiEyMhJJSUlQKpUG++PEiRM4d+6ctD9SU1Nx5MgRg6Rh27Zt0Gg0Utel1NRUg3XoY7hP7de5c2dEREQY1Gt5eTl2795tsG9KS0uxf/9+KWb79u3Q6XTSm2pqaiq+//571NbWSjHbtm1DfHw8goODpRjuP8e5cOECSkpKEBkZCYD7qaUIITB16lSsX78e27dvb9Rdv6Wud3yfs6yp/WTKoUOHAMDgnOJ+ank6nQ7V1dU8lzyAfl+ZwvPJNYYOHYojR47g0KFD0pScnIyMjAzpsUefV3YPwUZOs2bNGqFWq8XKlStFfn6+ePbZZ0VQUJDBSHzkOC+++KLIyckRZ86cET/++KNIS0sTISEhori4WAhRf3uCmJgYsX37drFv3z6RmpoqUlNTpefrb08wbNgwcejQIbF161YRGhpq8vYEM2fOFMeOHROLFy/mLcOsUFFRIQ4ePCgOHjwoAIh3331XHDx4UJw9e1YIUX/LsKCgIPH111+Lw4cPi1GjRpm8ZVjfvn3F7t27xQ8//CDuuOMOg1tRlZaWivDwcDF27FiRl5cn1qxZI/z9/RvdisrHx0csXLhQHDt2TGRmZvJWVA1Y2k8VFRXipZdeErm5ueLMmTPi3//+t+jXr5+44447xK1bt6R1cD853+TJk0VgYKDIyckxuDVOVVWVFNNS1zu+z5nX1H46efKkeOONN8S+ffvEmTNnxNdffy3i4uLE4MGDpXVwPznfrFmzxM6dO8WZM2fE4cOHxaxZs4RMJhPfffedEILnkjuxtK94Prk345HlPfm8YtLtpj788EMRExMjVCqVGDBggNi1a5eri+S1Ro8eLSIjI4VKpRIdOnQQo0ePFidPnpSW37x5Uzz//PMiODhY+Pv7i4ceekhcvnzZYB2//PKLGDFihPDz8xMhISHixRdfFLW1tQYxO3bsEH369BEqlUrExcWJFStWtMTmebQdO3YIAI2m8ePHCyHqbxv2+uuvi/DwcKFWq8XQoUPFiRMnDNZRUlIixowZIwICAoRGoxETJ04UFRUVBjE//fSTuOeee4RarRYdOnQQ8+fPb1SWtWvXim7dugmVSiV69OghNm3a5LTt9jSW9lNVVZUYNmyYCA0NFUqlUnTq1ElMmjSp0RsX95PzmdpHAAyuRS15veP7nGlN7adz586JwYMHi3bt2gm1Wi26du0qZs6caXBfYSG4n5ztqaeeEp06dRIqlUqEhoaKoUOHSgm3EDyX3ImlfcXzyb0ZJ92efF7JhBDC/nZyIiIiIiIiIjKHv+kmIiIiIiIichIm3UREREREREROwqSbiIiIiIiIyEmYdBMRERERERE5CZNuIiIiIiIiIidh0k1ERERERETkJEy6iYiIiIiIiJyESTcRERERERGRkzDpJiIiIiIiInISJt1ERERERERETsKkm4iIiIiIiMhJmHQTEREREREROQmTbiIiIiIiIiInYdJNRERERERE5CRMuomIiIiIiIichEk3ERERERERkZMw6SYiIiIiIiJyEibdRERE1KImTJiA2NhYm58XGxuLCRMmOLw8REREzsSkm4iIyEVWrlwJmUxmdtq1a5eri2hRVVUV5s6di5ycHJe8fn5+PubOnYtffvnFJa9PRERkDR9XF4CIiKi1e+ONN9C5c+dG87t27eqC0livqqoK8+bNAwDce++9Vj9v2bJl0Ol0Nr/eiRMnIJffbi/Iz8/HvHnzcO+999rVck5ERNQSmHQTERG52IgRI5CcnOzqYjjdjRs30KZNGyiVSruer1arHVwiIiIi52P3ciIiIjen0+nw/vvvo1evXvD19UVoaCiGDx+Offv2GcR9+umnGDBgAPz9/REcHIzBgwfju+++M4jZsmULBg0ahDZt2qBt27YYOXIkjh49ahAzYcIEBAQE4OLFi3jwwQcREBCA0NBQvPTSS9BqtQCAX375BaGhoQCAefPmSV3i586da7COU6dO4b777kPbtm2RkZEhLTNumbZmGxv+pnvlypV47LHHAAC/+c1vpNfPycnB+PHjERISgtra2kZ1OWzYMMTHx9tQ+0RERM3DpJuIiMjFysrKcPXqVYOppKREWv70009j+vTpiI6OxltvvYVZs2bB19fX4Dff8+bNw9ixY6FUKvHGG29g3rx5iI6Oxvbt26WYTz75BCNHjkRAQADeeustvP7668jPz8c999zT6HfRWq0W6enpaN++PRYuXIghQ4bgnXfewUcffQQACA0NxZIlSwAADz30ED755BN88sknePjhh6V11NXVIT09HWFhYVi4cCEeeeQRs3VgzTY2NHjwYPzxj38EALz66qvS6995550YO3YsSkpK8O233xo8p7CwENu3b8eTTz5paXcQERE5liAiIiKXWLFihQBgclKr1UIIIbZv3y4AiD/+8Y+Nnq/T6YQQQhQUFAi5XC4eeughodVqTcZUVFSIoKAgMWnSJIPlhYWFIjAw0GD++PHjBQDxxhtvGMT27dtXJCUlSf9fuXJFABCZmZmNyqZfx6xZs0wu69Spk/S/NdsohBCdOnUS48ePl/5ft26dACB27Nhh8BytVis6duwoRo8ebTD/3XffFTKZTJw+fbrR6xARETkLf9NNRETkYosXL0a3bt0M5ikUCgDAP//5T8hkMmRmZjZ6nkwmAwBs2LABOp0Oc+bMMRhorGHMtm3bUFpaijFjxuDq1asGr5OSkoIdO3Y0Wv9zzz1n8P+gQYPwySef2LRtkydPbjLGmm20hVwuR0ZGBj744ANUVFSgbdu2AIDVq1dj4MCBJgetIyIichYm3URERC42YMAAswOpnTp1ClFRUWjXrp3Z5586dQpyuRwJCQlmYwoKCgAAv/3tb00u12g0Bv/rf1fdUHBwMK5fv272NYz5+PigY8eOTcZZs422GjduHN566y2sX78e48aNw4kTJ7B//34sXbrUYa9BRERkDSbdRERErYD+Fl2ffPIJIiIiGi338TH8SKBvaW8OtVrdqOW9pSQkJCApKQmffvopxo0bh08//RQqlQqPP/64S8pDREStF5NuIiIiN9alSxd8++23uHbtmtmW4C5dukCn0yE/Px99+vQxGwMAYWFhSEtLc0jZ7On6bYo122jP648bNw4zZszA5cuX8dlnn2HkyJEIDg5ubnGJiIhswtHLiYiI3NgjjzwCIQTmzZvXaJkQAgDw4IMPQi6X44033pBatI1j0tPTodFo8Ne//tXkrbSuXLlic9n8/f0BAKWlpTY/tyFrttGUNm3aWHz9MWPGQCaTYdq0aTh9+jRHLSciIpdgSzcREZGLbdmyBcePH280f+DAgfjNb36DsWPH4oMPPkBBQQGGDx8OnU6H//znP/jNb36DqVOnomvXrnjttdfw5ptvYtCgQXj44YehVquxd+9eREVFISsrCxqNBkuWLMHYsWPRr18/PPHEEwgNDcW5c+ewadMm3H333Vi0aJFN5fbz80NCQgK++OILdOvWDe3atUPPnj3Rs2dPm9ZjzTaa0qdPHygUCrz11lsoKyuDWq3Gb3/7W4SFhQGAdK/vdevWISgoCCNHjrSpXERERI7ApJuIiMjF5syZY3L+ihUrEBcXhxUrViAxMRH/+Mc/MHPmTAQGBiI5ORkDBw6UYt944w107twZH374IV577TX4+/sjMTERY8eOlWJ+//vfIyoqCvPnz8fbb7+N6upqdOjQAYMGDcLEiRPtKvvHH3+MF154AX/6059QU1ODzMxMm5Nu/bY2tY3GIiIisHTpUmRlZeHpp5+GVqvFjh07pKQbqO9ivnHjRjz++ONQq9V2bSMREVFzyISlfltEREREHuzrr7/Ggw8+iO+//x6DBg1ydXGIiKgVYtJNREREXuv+++/HsWPHcPLkSYcN/EZERGQLdi8nIiIir7NmzRocPnwYmzZtwvvvv8+Em4iIXIYt3UREROR1ZDIZAgICMHr0aCxdurTRfciJiIhaCt+BiIiIyOuwTYGIiNwF79NNRERERERE5CRMuomIiIiIiIichN3L3ZROp8OlS5fQtm1bDv5CRERERERkJSEEKioqEBUVBbnc9e3MTLrd1KVLlxAdHe3qYhAREREREXmk8+fPo2PHjq4uBpNud9W2bVsA9QeKRqNxcWmIiIiIiIg8Q3l5OaKjo6WcytWYdLspfZdyjUbDpJuIiIiIiMhG7vIzXdd3cCciIiIij6X/UCuTyQweN7WMiKi1YEs3EREREUlkMhmEEAZ/rXmO8WNTSbalxLvhaxIReRO2dP9q8eLFiI2Nha+vL1JSUrBnzx6zscuWLcOgQYMQHByM4OBgpKWlNYqfMGGC9K2ufho+fLizN4OIiIi8mLmW44aTqXm2TMav46ptY4s4EXkLJt0AvvjiC8yYMQOZmZk4cOAAevfujfT0dBQXF5uMz8nJwZgxY7Bjxw7k5uYiOjoaw4YNw8WLFw3ihg8fjsuXL0vT559/3hKbQ0RERB7MUuLccLnxY0vzXKW5rdZMwInIG8gE+/AgJSUF/fv3x6JFiwDU3yM7OjoaL7zwAmbNmtXk87VaLYKDg7Fo0SKMGzcOQH1Ld2lpKTZs2GBXmcrLyxEYGIiysjIOpEZEROTlbE0qre323Rwt3d3b2u1hN3Qiaoq75VKtvqW7pqYG+/fvR1pamjRPLpcjLS0Nubm5Vq2jqqoKtbW1aNeuncH8nJwchIWFIT4+HpMnT0ZJSYlDy05ERESeyVQ3cVufL4QwmAA0mtecSb++lmKuDKa2Xf+XreBE5Ala/UBqV69ehVarRXh4uMH88PBwHD9+3Kp1vPLKK4iKijJI3IcPH46HH34YnTt3xqlTp/Dqq69ixIgRyM3NhUKhaLSO6upqVFdXS/+Xl5fbuUVERETkjoyTQ2uSRVuSXm9s+W24TZbqS7/MG+uAiDxfq0+6m2v+/PlYs2YNcnJy4OvrK81/4oknpMe9evVCYmIiunTpgpycHAwdOrTRerKysjBv3rwWKTMRERG1HGu7QjNhtExfP0y+icjTtPru5SEhIVAoFCgqKjKYX1RUhIiICIvPXbhwIebPn4/vvvsOiYmJFmPj4uIQEhKCkydPmlw+e/ZslJWVSdP58+dt2xAiIiJyK03dm9qartTUmLVd0Nn1nIjcRatPulUqFZKSkpCdnS3N0+l0yM7ORmpqqtnnLViwAG+++Sa2bt2K5OTkJl/nwoULKCkpQWRkpMnlarUaGo3GYCIiIiLP01SyxyTbsZqqTybfRORqrT7pBoAZM2Zg2bJlWLVqFY4dO4bJkyfjxo0bmDhxIgBg3LhxmD17thT/1ltv4fXXX8fy5csRGxuLwsJCFBYWorKyEgBQWVmJmTNnYteuXfjll1+QnZ2NUaNGoWvXrkhPT3fJNhIREZFzMdl2LbZ+E5G74m+6AYwePRpXrlzBnDlzUFhYiD59+mDr1q3S4Grnzp2DXH77+4klS5agpqYGjz76qMF6MjMzMXfuXCgUChw+fBirVq1CaWkpoqKiMGzYMLz55ptQq9Utum1ERETkXE0lcUy0W541t1TjbceIqKXwPt1uyt3uLUdERESGmmrVJvfAL0WIWh93y6XY0k1ERERkAybbnqWp2441HPGcrd9E5AxMuomIiIiswGTb81m67ZjxSPPcp0TkKEy6iYiIiJpg7pZf5Jmaav02ns99TUTNwdHLiYiIiIw0bPVkwu3drBlVnqOeE1FzsKWbiIiI6FcNEysm262Lpa7nemz9JiJ7MOkmIiIiAn+zTfWs6XpuvIzHBxFZwqSbiIiIWjUm22SONa3fDZfzeCEiU5h0ExERUatjze9zmUCRnvGxwMHXiMgWTLqJiIio1WCyTY6gv6e3JWz9JiI9Jt1ERC1AJpOZ7KbID2NEztdUcqRPoHg+ki0stX43TMqZfBMRk24iombSf1i3ttWjqXkN8UMakX1sbdHmuUbN1dQAbPzClaj14n26iYhsYHzvXuOWDGe8nrNfg8gbmLqvtrnExpr7MhM1R8NjzNSxxvt+E7UubOkmImqC8QcjV3xQMteazsSBWrOmzk2eL+RqDX+6wNZvotaLSTcRUQPNSagd+YHJ2q7oTCqotbHnHOV5Qa7UsMXbmvt+83gl8j5Muomo1bI3wW6JD0TmuiM2hR/ayNvYep5yUDRyZ9bc95vHL5H3YdJNRF7N2kHOLHGXDz+mRspll0XyVvYk26YeE7mjppJvfoFK5F2YdBOR12jqw4s1POkDjnGSYev2e9K2UuvQnESbyBNZO+I5j3Uiz8akm4g8iiNarvW85UOMqRFyLSXa5kZD95b6IM/DZJuoces37/VN5D2YdBOR2zKXYLvzb7HdhbkE3NpBfBrWfWuqN2p51p7PPA6ptbDU9ZzJN5FnYtJNRG6luQk2E8XGrGkBb8j4yw52TydHsnT7O45FQHSbpfOE73NEnoVJNxG5BUfeBogfRMyzdjA2W0ZKN14/PwySKQ2PC3MteDxuiAwZnzOmei7xvCFyf0y6icgl+BtO92DL78GtwdZxMmbNzxt4XBBZ1tTvvXkOkTczbiDwxJ/BMekmohbXVFLnCRdPb2buHuGOGMCOg7e1LjzXiRzLXG8RtnqTJ7LlM4WpL3Cb+qLfnTDpJqIWwQ/fns1Ui7gxW2/Npv9dYlPrJc/D853Iucx9CcprKrkzT0iOnYVJNxE5laULLD8UeBdzLeSmNPUbch4bnsn4Az/3K5HzcJRz8gStOdFuiEk3ETkFk20CGv9W3Ph3WOYwWfM8ln67zf1H5DwcoJDcjb2D4zryeC0vL0dgYKBD1uUITLqJyKGYbJM5xl3UTX1QtNRlksePe+I5T+Qe2OWcXMXWcV9a491nmHQTUbPx95vUHNaOnM57OLsXnvdE7oddzqmlWHurUR5v9Zh0E5FT8CJL9rA1Aedx1rKaas3g/iByD5bOU/YcouZobmt2ayV3dQHsUV1djdzcXHz99de4evWqQ9a5ePFixMbGwtfXFykpKdizZ4/Z2GXLlmHQoEEIDg5GcHAw0tLSGsULITBnzhxERkbCz88PaWlpKCgocEhZidyBfuRpUxdfXmjJEYQQTR5L5o5BcqyG9WzunOd5T+ReLJ2XvHaSLcx95jM+vvTHHN8PGvO4pPuDDz5AZGQk7rnnHjz88MM4fPgwAODq1asICQnB8uXLbV7nF198gRkzZiAzMxMHDhxA7969kZ6ejuLiYpPxOTk5GDNmDHbs2IHc3FxER0dj2LBhuHjxohSzYMECfPDBB1i6dCl2796NNm3aID09Hbdu3bJvw4nchKU3al5oyRmseRO39CUQ2c+4Tk3tA57zRO7N+Ppp3KOI100yxZr3VX2vCX7+a5pMeFANrVixAk8//TSeeOIJDBs2DE899RT+/e9/47e//S0A4PHHH0dpaSm+++47m9abkpKC/v37Y9GiRQAAnU6H6OhovPDCC5g1a1aTz9dqtQgODsaiRYswbtw4CCEQFRWFF198ES+99BIAoKysDOHh4Vi5ciWeeOKJJtepH3GvrKwMGo3Gpu0hcia2bJM7sOZDIo/L5mlqgDvWL5Fn4uCHZIm3vL+6Wy7lUS3d77zzDkaNGoXPPvsMDzzwQKPlSUlJOHr0qE3rrKmpwf79+5GWlibNk8vlSEtLQ25urlXrqKqqQm1tLdq1awcAOHPmDAoLCw3WGRgYiJSUFLPrrK6uRnl5ucFE5C4sdSvyhAsveR9bup6zFcd65urMOAHneU/kuUx1CdbjdbP1abjPm/pChtd/+3lU0n3y5EmMGDHC7PJ27dqhpKTEpnVevXoVWq0W4eHhBvPDw8NRWFho1TpeeeUVREVFSUm2/nm2rDMrKwuBgYHSFB0dbdN2EDkLf79J7szaY5EfJM0zVTfmupHzvCfyDg3PZ0sDrvGa6Z1seU/ktd8xPCrpDgoKsjhwWn5+PiIiIlqwRMD8+fOxZs0arF+/Hr6+vnavZ/bs2SgrK5Om8+fPO7CURPZhV3LyFLZ8A99aE3Dj1gxLdcCWbaLWgb2GvJ+11/2G2KrteB6VdN9333346KOPUFpa2mjZ0aNHsWzZMvzud7+zaZ0hISFQKBQoKioymF9UVNRkAr9w4ULMnz8f3333HRITE6X5+ufZsk61Wg2NRmMwEbkKu5KTJ7MnAdc/bvi3ORquy/ixqQ8/5pY1NZl6LVuSa0sDo/GcJ2o9Gp7vHLTSc9mTYOsx0XYuj0q6//d//xdarRY9e/bEn//8Z8hkMqxatQpPPvkkkpOTERYWhjlz5ti0TpVKhaSkJGRnZ0vzdDodsrOzkZqaavZ5CxYswJtvvomtW7ciOTnZYFnnzp0RERFhsM7y8nLs3r3b4jqJXIm3ACNvZO2xa2sCa0sybPzY3GvbQz9yrL3rMNeizXOeqHWy5XrC5Nv17E2w9ZhotxyPSrqjoqKwf/9+DB8+HF988QWEEPjkk0/wr3/9C2PGjMGuXbsQEhJi83pnzJiBZcuWYdWqVTh27BgmT56MGzduYOLEiQCAcePGYfbs2VL8W2+9hddffx3Lly9HbGwsCgsLUVhYiMrKSgD1J8D06dPxv//7v/jmm29w5MgRjBs3DlFRUXjwwQcdUhdEjmSpFYwXYvJ0xsmkJxzTtpTRVK8UW1/LE+qEiFqGrYmYpS8cyTFs6cFkDV73W56Pqwtgq7CwMHz88cf4+OOPceXKFeh0OoSGhkIut//7g9GjR+PKlSuYM2cOCgsL0adPH2zdulUaCO3cuXMG61+yZAlqamrw6KOPGqwnMzMTc+fOBQC8/PLLuHHjBp599lmUlpbinnvuwdatW5v1u28iZ2DLNrUWlu5Ta+3zLcU2p8XZWHNbvy3h+U1E1rL1Wmkq8eY1xzaO/tKC9e8ePOo+3a2Ju91bjrxLU4kDUWtlqdeHrR+E9M+x9NfeMjYsD89ZImppzfkCktcsQ45Mslm3t7lbLuVxLd1EZD++CRJZZuk8sOccMf6NtCN+M83fXRORqxlff6wdw8J4eWu7jjV3HA5jra3+PBmTbqJWgMk2EREROUtT9/w2jrX0+29v+1xivI3mtpmf1bwbk24iL8eLOBEREbUESy3gDedZSjIb/nSmOT/FcRV7WrGbOyAmuT8m3UReisk2ERERuZK5gdjMJZmmYjyhO3pzRxIn78ekm8iLcNRiIiIickfmPoMY3/7KmlZwS+tzNibYZA8m3URegMk2EREReSLjVm5rf/PcEj36bEmwzX1ZwM9gBDDpJvJoTLaJiIjIG1g7Iro1g7ZZStyNb7noqBHF3aEVntwXk24iD8Rkm4iIiLyZqc8yxl3R9XHWJMymWtKtTbg5ujg1F5NuIg9h7W04iIiIiLyRqYHZjFutbWVNd3a2YlNzMekmcnNMtomIiIgMWXN7MmvWYe62ZuZeh8geTLqJ3BSTbSIiIiLrNPWZyFRX8obz+JmKnIlJN5Eb4m+2iYiIiBxH/9nJ1Gcofq4iZ2PSTeQmmGgTEREREXkfJt1ELsZkm4iIiIjIezHpJnKRpm55wWSbiIiIiMjzMel2c4GBgQCYgHkTcy3bDW95QURERERE3oFJt4dgQuYdLHUl574lIiIiIvI+clcXgGxjzz0IyfVkMpnZruNCCCbcREREREReii3dHoi/+/UclrqSc98REREREXk/tnS7ubKyMovJmXELKrkHU/ul4f0hmXATEREREbUOTLo9hKlEjYmbe2LrNhERERER6bF7uYfRJ23GLanscu5avNc2ERERERGZwpZuD2WpizK7nLcsU3XNruRERERERAQw6fZ4xkldw8dMvp3LUv2yKzkREREREQHsXu41GnY7N8Z7fDuWcVd+cwOmERERERERMen2MqaSQD3+7rt5TCXXrFMiIiIiIrKESbcXstTqrcfuz9Zr6ksM1iMREREREZnDpNuLNZV8M2m0jCOSExERERFRc3EgtVagqRG0Gw4IxoHX6jHhJiIiIiIiR2DS/avFixcjNjYWvr6+SElJwZ49e8zGHj16FI888ghiY2Mhk8nw3nvvNYqZO3eulMzqp+7duztxC5pmKvlueGurhol3axv53HhfmaKvPybcRERERERkLSbdAL744gvMmDEDmZmZOHDgAHr37o309HQUFxebjK+qqkJcXBzmz5+PiIgIs+vt0aMHLl++LE0//PCDszbBJg0Tx6ZauI2TUW9KxG3ZJibaRERERERkDybdAN59911MmjQJEydOREJCApYuXQp/f38sX77cZHz//v3x9ttv44knnoBarTa7Xh8fH0REREhTSEiIszbBLva22ppKxI27qLtbcm7py4OGrf0NsWWbiIiIiIiaq9Un3TU1Ndi/fz/S0tKkeXK5HGlpacjNzW3WugsKChAVFYW4uDhkZGTg3LlzZmOrq6tRXl5uMLWUhsllcxPMhsmspeTc1qnh+hq+jqU4a1qyjbvVN6wPIiIiIiKi5mr1SffVq1eh1WoRHh5uMD88PByFhYV2rzclJQUrV67E1q1bsWTJEpw5cwaDBg1CRUWFyfisrCwEBgZKU3R0tN2v3VzWJOAtnZQaJ/PG8xouM1U2c63Zxi3eTLaJiIiIiMiRWn3S7SwjRozAY489hsTERKSnp2Pz5s0oLS3F2rVrTcbPnj0bZWVl0nT+/PkWLrFp5lrBbe0+bk0y66iE11TXcVOJuiNb+ImIiIiIiExp9ffpDgkJgUKhQFFRkcH8oqIii4Ok2SooKAjdunXDyZMnTS5Xq9UWfx/uLkwlpw1bl5u6J7ip9dl7u7KGzzXHVAJORERERETUUlp9S7dKpUJSUhKys7OleTqdDtnZ2UhNTXXY61RWVuLUqVOIjIx02DrdRcNk1rj12Nykj9Un7KaWmfq/IeOu5Kaey5ZsIiIiIiJypVbf0g0AM2bMwPjx45GcnIwBAwbgvffew40bNzBx4kQAwLhx49ChQwdkZWUBqB98LT8/X3p88eJFHDp0CAEBAejatSsA4KWXXsIDDzyATp064dKlS8jMzIRCocCYMWNcs5FuxtxvrE3NM5VY27KciIiIiIjIVZh0Axg9ejSuXLmCOXPmoLCwEH369MHWrVulwdXOnTsHufx2p4BLly6hb9++0v8LFy7EwoULMWTIEOTk5AAALly4gDFjxqCkpAShoaG45557sGvXLoSGhrbothEREREREZHryASbBt1SeXk5AgMDUVZWBo1G4+riEBEREREReQR3y6XY0u2m9N+FtOT9uomIiIiIiDydPodyl/ZlJt1uqqSkBABcer9uIiIiIiIiT1VSUoLAwEBXF4NJt7tq164dgPrfkzfnQOnfvz/27t3brLJ4yzrKy8sRHR2N8+fPN6ubiTtsi7usg3Xq+HV4W526S1m8rV7dYR2sU8evg3Xq+HWwTh2/Dtap49fBOnX8OsrKyhATEyPlVK7GpNtN6QduCwwMbNbJp1Aomv07Bm9aBwBoNBrWqQPXAbBOHb0OwHvq1N3K4i316i7rAFinjl4HwDp19DoA1qmj1wGwTh29DoB16uh1ADAYDNuV3KMU5DRTpkzhOhzMXbbFXdbhCO6yLe6yDkdwp21xp7I0l7tsi7uswxHcZVvcZR2O4C7b4i7rcAR32RZ3WYcjuMu2uMs6HMFdtsVd1uFOOHq5m3K3Efe8AevU8Vinjsc6dQ7Wq+OxTh2Pdep4rFPHY506HuvU8dytTtnS7abUajUyMzOhVqtdXRSvwTp1PNap47FOnYP16nisU8djnToe69TxWKeOxzp1PHerU7Z0ExERERERETkJW7qJiIiIiIiInIRJNxEREREREZGTMOkmIiIiIiIichIm3UREREREREROwqTbTS1evBixsbHw9fVFSkoK9uzZ4+oiucT333+PBx54AFFRUZDJZNiwYYPBciEE5syZg8jISPj5+SEtLQ0FBQUGMdeuXUNGRgY0Gg2CgoLw9NNPo7Ky0iDm8OHDGDRoEHx9fREdHY0FCxY0Ksu6devQvXt3+Pr6olevXti8ebPDt7clZGVloX///mjbti3CwsLw4IMP4sSJEwYxt27dwpQpU9C+fXsEBATgkUceQVFRkUHMuXPnMHLkSPj7+yMsLAwzZ85EXV2dQUxOTg769esHtVqNrl27YuXKlY3K4w3H+pIlS5CYmAiNRgONRoPU1FRs2bJFWs76bJ758+dDJpNh+vTp0jzWqe3mzp0LmUxmMHXv3l1azjq1z8WLF/Hkk0+iffv28PPzQ69evbBv3z5pOd+nbBMbG9voOJXJZNI9e3mc2k6r1eL1119H586d4efnhy5duuDNN99Ew7GUeZzarqKiAtOnT0enTp3g5+eHgQMHYu/evdJy1qllnvQZ35qyNEmQ21mzZo1QqVRi+fLl4ujRo2LSpEkiKChIFBUVubpoLW7z5s3itddeE1999ZUAINavX2+wfP78+SIwMFBs2LBB/PTTT+J3v/ud6Ny5s7h586YUM3z4cNG7d2+xa9cu8Z///Ed07dpVjBkzRlpeVlYmwsPDRUZGhsjLyxOff/658PPzE3//+9+lmB9//FEoFAqxYMECkZ+fL/785z8LpVIpjhw54vQ6cLT09HSxYsUKkZeXJw4dOiTuu+8+ERMTIyorK6WY5557TkRHR4vs7Gyxb98+cdddd4mBAwdKy+vq6kTPnj1FWlqaOHjwoNi8ebMICQkRs2fPlmJOnz4t/P39xYwZM0R+fr748MMPhUKhEFu3bpVivOVY/+abb8SmTZvEzz//LE6cOCFeffVVoVQqRV5enhCC9dkce/bsEbGxsSIxMVFMmzZNms86tV1mZqbo0aOHuHz5sjRduXJFWs46td21a9dEp06dxIQJE8Tu3bvF6dOnxbfffitOnjwpxfB9yjbFxcUGx+i2bdsEALFjxw4hBI9Te/zlL38R7du3Fxs3bhRnzpwR69atEwEBAeL999+XYnic2u7xxx8XCQkJYufOnaKgoEBkZmYKjUYjLly4IIRgnTbFkz7jW1OWpjDpdkMDBgwQU6ZMkf7XarUiKipKZGVlubBUrmd8Qup0OhERESHefvttaV5paalQq9Xi888/F0IIkZ+fLwCIvXv3SjFbtmwRMplMXLx4UQghxN/+9jcRHBwsqqurpZhXXnlFxMfHS/8//vjjYuTIkQblSUlJEX/4wx8cuo2uUFxcLACInTt3CiHq61CpVIp169ZJMceOHRMARG5urhCi/kIpl8tFYWGhFLNkyRKh0Wikenz55ZdFjx49DF5r9OjRIj09Xfrfm4/14OBg8fHHH7M+m6GiokLccccdYtu2bWLIkCFS0s06tU9mZqbo3bu3yWWsU/u88sor4p577jG7nO9TzTdt2jTRpUsXodPpeJzaaeTIkeKpp54ymPfwww+LjIwMIQSPU3tUVVUJhUIhNm7caDC/X79+4rXXXmOd2sidP+NbUxZrsHu5m6mpqcH+/fuRlpYmzZPL5UhLS0Nubq4LS+Z+zpw5g8LCQoO6CgwMREpKilRXubm5CAoKQnJyshSTlpYGuVyO3bt3SzGDBw+GSqWSYtLT03HixAlcv35dimn4OvoYb9gnZWVlAIB27doBAPbv34/a2lqD7e3evTtiYmIM6rVXr14IDw+XYtLT01FeXo6jR49KMZbqzFuPda1WizVr1uDGjRtITU1lfTbDlClTMHLkyEbbzTq1X0FBAaKiohAXF4eMjAycO3cOAOvUXt988w2Sk5Px2GOPISwsDH379sWyZcuk5Xyfap6amhp8+umneOqppyCTyXic2mngwIHIzs7Gzz//DAD46aef8MMPP2DEiBEAeJzao66uDlqtFr6+vgbz/fz88MMPP7BOm8md6s+asliDSbebuXr1KrRarcGbBQCEh4ejsLDQRaVyT/r6sFRXhYWFCAsLM1ju4+ODdu3aGcSYWkfD1zAX4+n7RKfTYfr06bj77rvRs2dPAPXbqlKpEBQUZBBrXK/21ll5eTlu3rzpdcf6kSNHEBAQALVajeeeew7r169HQkIC69NOa9aswYEDB5CVldVoGevUPikpKVi5ciW2bt2KJUuW4MyZMxg0aBAqKipYp3Y6ffo0lixZgjvuuAPffvstJk+ejD/+8Y9YtWoVAL5PNdeGDRtQWlqKCRMmAOC5b69Zs2bhiSeeQPfu3aFUKtG3b19Mnz4dGRkZAHic2qNt27ZITU3Fm2++iUuXLkGr1eLTTz9Fbm4uLl++zDptJneqP2vKYg0fqyOJyOtMmTIFeXl5+OGHH1xdFI8XHx+PQ4cOoaysDF9++SXGjx+PnTt3urpYHun8+fOYNm0atm3b1qgVgeynb9UCgMTERKSkpKBTp05Yu3Yt/Pz8XFgyz6XT6ZCcnIy//vWvAIC+ffsiLy8PS5cuxfjx411cOs/3j3/8AyNGjEBUVJSri+LR1q5di9WrV+Ozzz5Djx49cOjQIUyfPh1RUVE8Tpvhk08+wVNPPYUOHTpAoVCgX79+GDNmDPbv3+/qopEbYku3mwkJCYFCoWg0EmdRUREiIiJcVCr3pK8PS3UVERGB4uJig+V1dXW4du2aQYypdTR8DXMxnrxPpk6dio0bN2LHjh3o2LGjND8iIgI1NTUoLS01iDeuV3vrTKPRwM/Pz+uOdZVKha5duyIpKQlZWVno3bs33n//fdanHfbv34/i4mL069cPPj4+8PHxwc6dO/HBBx/Ax8cH4eHhrFMHCAoKQrdu3XDy5Ekep3aKjIxEQkKCwbw777xT6rbP9yn7nT17Fv/+97/xzDPPSPN4nNpn5syZUmt3r169MHbsWPzpT3+SehLxOLVPly5dsHPnTlRWVuL8+fPYs2cPamtrERcXxzptJneqP2vKYg0m3W5GpVIhKSkJ2dnZ0jydTofs7Gykpqa6sGTup3PnzoiIiDCoq/LycuzevVuqq9TUVJSWlhp867h9+3bodDqkpKRIMd9//z1qa2ulmG3btiE+Ph7BwcFSTMPX0cd44j4RQmDq1KlYv349tm/fjs6dOxssT0pKglKpNNjeEydO4Ny5cwb1euTIEYOL3bZt26DRaKQPoE3Vmbcf6zqdDtXV1axPOwwdOhRHjhzBoUOHpCk5ORkZGRnSY9Zp81VWVuLUqVOIjIzkcWqnu+++u9EtF3/++Wd06tQJAN+nmmPFihUICwvDyJEjpXk8Tu1TVVUFudzwI79CoYBOpwPA47S52rRpg8jISFy/fh3ffvstRo0axTptJneqP2vKYhWrh1yjFrNmzRqhVqvFypUrRX5+vnj22WdFUFCQwUicrUVFRYU4ePCgOHjwoAAg3n33XXHw4EFx9uxZIUT9EP5BQUHi66+/FocPHxajRo0yeTuBvn37it27d4sffvhB3HHHHQa3EygtLRXh4eFi7NixIi8vT6xZs0b4+/s3up2Aj4+PWLhwoTh27JjIzMz0iNsxmDJ58mQRGBgocnJyDG7LUlVVJcU899xzIiYmRmzfvl3s27dPpKamitTUVGm5/pYsw4YNE4cOHRJbt24VoaGhJm/JMnPmTHHs2DGxePFik7dk8YZjfdasWWLnzp3izJkz4vDhw2LWrFlCJpOJ7777TgjB+nSEhqOXC8E6tceLL74ocnJyxJkzZ8SPP/4o0tLSREhIiCguLhZCsE7tsWfPHuHj4yP+8pe/iIKCArF69Wrh7+8vPv30UymG71O202q1IiYmRrzyyiuNlvE4td348eNFhw4dpFuGffXVVyIkJES8/PLLUgyPU9tt3bpVbNmyRZw+fVp89913onfv3iIlJUXU1NQIIVinTfGkz/jWlKUpTLrd1IcffihiYmKESqUSAwYMELt27XJ1kVxix44dAkCjafz48UKI+mH8X3/9dREeHi7UarUYOnSoOHHihME6SkpKxJgxY0RAQIDQaDRi4sSJoqKiwiDmp59+Evfcc49Qq9WiQ4cOYv78+Y3KsnbtWtGtWzehUqlEjx49xKZNm5y23c5kqj4BiBUrVkgxN2/eFM8//7wIDg4W/v7+4qGHHhKXL182WM8vv/wiRowYIfz8/ERISIh48cUXRW1trUHMjh07RJ8+fYRKpRJxcXEGr6HnDcf6U089JTp16iRUKpUIDQ0VQ4cOlRJuIVifjmCcdLNObTd69GgRGRkpVCqV6NChgxg9erTB/aRZp/b517/+JXr27CnUarXo3r27+OijjwyW833Kdt9++60A0KiehOBxao/y8nIxbdo0ERMTI3x9fUVcXJx47bXXDG6jxOPUdl988YWIi4sTKpVKREREiClTpojS0lJpOevUMk/6jG9NWZoiE0II69vFiYiIiIiIiMha/E03ERERERERkZMw6SYiIiIiIiJyEibdRERERERERE7CpJuIiIiIiIjISZh0ExERERERETkJk24iIiIiIiIiJ2HSTUREREREROQkTLqJiIiIiIiInIRJNxEREREREZGTMOkmIiIiIiIichIm3UREREREREROwqSbiIiIiIiIyEn+H3ctw19eOJ/+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sim = resonances.find([463, 490, 2348], planets=['Jupiter', 'Saturn'])\n", + "sim.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thus, all these asteroids are in resonances: 463 and 2348 — in 4J-2S-1, whereas 490 — in 5J-2S-2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MMRs by semi-major axis\n", + "\n", + "One might want to find all resonances for a given semi-major axis and the threshold. This can be done by the function `find_asteroids_in_mmr`. It has the following inputs:\n", + "\n", + "- `a` (float): Semi-major axis value to search for resonances around\n", + "- `planets` (list): List of planets to consider. All planets used if None\n", + "- `sigma2` (float, default=0.1): Width parameter for two-body resonance search\n", + "- `sigma3` (float, default=0.02): Width parameter for three-body resonance search \n", + "- `sigma` (float, optional): Single width parameter that overrides both sigma2 and sigma3\n", + "\n", + "The function returns a list of resonances (MMR objects), which are found for the given semi-major axis.\n", + "\n", + " Note that the function requires AstDyS catalog to be downloaded. If it is not downloaded, the function will download it." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1M-3J-1, axis=2.342528776658818\n", + "2M-3J-3, axis=2.3926127224362483\n", + "2M+3J-5, axis=2.434668465374663\n", + "3M-3J-5, axis=2.4029551594614804\n", + "3M+3J-7, axis=2.430073662671816\n", + "3M+4J-7, axis=2.3589060213049162\n", + "4M-3J-7, axis=2.4074221067469654\n", + "2M+1S-4, axis=2.3685933424168515\n", + "3M+1S-6, axis=2.384999746764762\n", + "3M+2S-6, axis=2.352466015354106\n", + "2J+3S-1, axis=2.3923241120696424\n", + "4J-2S-1, axis=2.3984960978192222\n", + "6J-7S-1, axis=2.4047051998943636\n", + "6J+1S-2, axis=2.395405485482911\n", + "7J-1S-2, axis=2.347954316521227\n", + "1M-2, axis=2.418742714279021\n", + "1M+2, axis=2.418742714279021\n", + "8S-1, axis=2.3853747075\n", + "8S+1, axis=2.3853747075\n" + ] + } + ], + "source": [ + "mmrs = resonances.find_resonances(2.39, sigma=0.05, planets=['Jupiter', 'Saturn', 'Mars'])\n", + "for mmr in mmrs:\n", + " print(f\"{mmr.to_short()}, axis={mmr.resonant_axis}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, you can select some of these resonances and examine them in more detail." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Custom object\n", + "\n", + "One might want to examine a custom object and specify the elements manually. To do this, one should provide Keplerian elements of the object and resonances to check." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "elems = {\n", + " \"a\": 5.270635994654261,\n", + " \"e\": 0.02299891948665412,\n", + " \"inc\": 0.316860843630838,\n", + " \"Omega\": 5.9827890156476125,\n", + " \"omega\": 3.141712198994225,\n", + " \"M\": 5.033788240164378,\n", + " \"epoch\": 60000.0,\n", + "}\n", + "sim = resonances.Simulation(name=\"custom\", date='2023-02-25')" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "Now you can check other asteroids (just change their titles) or resonances. If you need a better precision, do not hesitate to remove `sim.dt=1` (to use the default value `0.1`).\n", + "When creating a simulation, one can provide extra configuration options, see [Config](../config). For now, we set `name` (to save the results in the desired directory) and the date. The date is crucial because the object and the planets should be at the same epoch. The planet's data is taken from NASA JPL Horizons and hence, requires the date to be specified. The date is in string format.\n", "\n", + "Now, we need to create the Solar system. It will utilize the date we've specified earlier." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sim.create_solar_system()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "sim.add_body(elems, ['1J-1', '4J-2S-1'], name='624 Hektor')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`add_body` function adds an object to the simulation. It has the following inputs:\n", + "\n", + "- `elem_or_num` (mixed): The number of an asteroid, the name of the asteroid, or the Keplerian elements (dict) of the object. In our case, we've used the dictionary.\n", + "- `mmr` (str, MMR, List[MMR]): a string representation of a resonance (i.e., '1J-1'), an MMR object, or a list of them.\n", + "- `name` (str): Name of the object. Used only for display purposes and in dataframes.\n", + "\n", + "Now, we can run the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgVxfX//74zw8ywzbAvQ2DYFJRFQBRRiAaJiEQFjQshCsEkLhjBLYoRgRi/ICJG/USiRsHEhYgKoiIKCCgKoigioMgqIJuizIAgINTvD3/35s6d291V3VXddWfer+eZB253ddXpU9s5p6q7Y0IIAUIIIYQQQgghhGgnK2oBCCGEEEIIIYSQigqdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgjJIKZOnYpYLIapU6dGLQohhBBCCJGATjchxHpmzJiBX/7yl6hbty7y8/PRokULDBw4EFu3bk2kOXLkCF588UUMHjwYJ5xwAmrUqIGaNWuiW7dumDx5Mo4ePSpV1nnnnYdYLIb8/HwlGc866yzEYjHs3LnTMU3z5s2V8w3C5s2bEYvFMGTIkNDKJMQPb7/9Nm655Rb84he/QGFhoWe7jQefxo8fL5X/gQMHcP/99+M3v/kN2rZti6ysLMRiMWzevFnPDSgwZMgQbWVXpj6+Z88ePPbYY7jgggvQsmVL5OXloV69eujbty/eeOONqMUjhBBXcqIWgBBCnBBC4JprrsFjjz2GVq1a4fLLL0fNmjWxfft2LFq0CF9++SWaNm0KANiwYQN+/etfo0aNGjj77LNxwQUXoKSkBK+88gquu+46zJ49G7NmzUIsFnMs7/HHH8cbb7yB/Px8CCHCuk1CKj1PPvkknnrqKVSrVg3NmjVDaWmp1vx3796NW265BQBQXFyM2rVr49tvv9VaBjHL9OnTce2116KoqAhnn302mjRpgm3btuHFF1/EnDlzMGHCBNx6661Ri0kIIWmh000IsZaHHnoIjz32GK677jo89NBDyM7OLnP+xx9/TPy/Zs2a+Mc//oHBgwejevXqieP3338/zjrrLLz66qt44YUXcMkll6Qta/Pmzbj55ptx0003Yfr06a4r1oQQvVx//fW49dZb0bZtW3zwwQfo3r271vzr1auHN998EyeffDLq1KmDc889l6ujGcbxxx+PWbNmoV+/fsjK+t9GzTvvvBPdunXDX/7yFwwaNAhFRUURSkkIIenh9nJCiJUcPHgQY8eORcuWLfHggw+Wc7gBICfnf3HDJk2a4LrrrivjcANA9erVcdNNNwEAFi1alLYsIQSGDh2Kxo0b469//avGu5Dn5Zdfxtlnn43atWsjPz8f7du3x8SJE6W3xW/btg3t27dHfn4+XnzxRUydOhUtWrQAADz11FOIxWKJv4ULFyau+/777zF69Gi0bdsW+fn5qFOnDvr164d33323XBljxoxJXD916lR06dIF1apVw1lnneX7vmOxGM466yx89dVXuPLKK9GoUSNkZWWVkfHtt9/G+eefj3r16iEvLw/HHXcc7rzzThw4cKBcfi+++CLOPPNMNGjQAPn5+SgqKkLv3r3x4osvlkv7yiuvJLYzV61aFSeddBImTZpUJpgDlN3Cu379egwYMAC1a9dG9erV0bt3b3zyySfl8l6wYAGGDh2KNm3aoEaNGqhRowa6du2Kxx57zFUPu3btwuDBg1GvXj1UrVoVp512WhldJLNv3z6MHTsWHTt2RLVq1VBYWIjOnTtj1KhROHLkSJm0mzZtwu9//3s0a9YMeXl5aNy4MYYMGYIvv/wybd5h07VrV7Rr1y5tP9dBjRo18Mtf/hJ16tQxkj8A7NixA8OHD8dxxx2HqlWrolatWjjhhBNwzTXXoKSkBMBPj5g89dRTAIAWLVok+mRyH5oxYwYGDhyI1q1bJ+q1Z8+e5dqwTB9328qe3J+TUelDYdKrVy+cf/75ZRxuAGjTpg0uu+wyHDlyBO+9915E0hFCiDtc6SaEWMmbb76J7777Dr/73e9w9OhRzJo1C1988QVq1aqF3r17o3Xr1tJ5ValSBUBZJz2Zhx9+GIsWLcLbb7+NqlWrapFfhZEjR2L8+PFo0qQJLrroIhQWFuKdd97Brbfeivfffx/Tp093vf6zzz5Dnz59UFJSgjlz5uCss87CihUrMHz4cDz44IM46aST0L9//0T65s2bAwB++OEH9OrVC8uWLUOXLl0wYsQI7Nq1C//973/xxhtv4Lnnnku7M+C+++7DggULcOGFF+Kcc84J7Cjt2bMH3bt3R506dXD55Zfjhx9+QEFBAQBg8uTJGDZsGGrVqoXzzz8fDRo0wIcffoh77rkHCxYswIIFC5Cbm5tIe91116Fx48YYMGAA6tati507d2LZsmWYMWMGLr744kSZkyZNws0334w6dergN7/5DapXr45Zs2bh5ptvxjvvvIOXXnqp3KMImzdvxmmnnYZ27dph6NCh2LBhA15++WX84he/wGeffYaGDRsm0t57771Yv349TjvtNAwYMAB79+7FnDlzcPXVV2Pt2rW4//77y+lh79696NGjBwoLC3HFFVdg9+7d+O9//4s+ffpg+fLlaN++fSLt7t27ceaZZ+Lzzz9Hp06dcO211+LYsWP4/PPPce+99+Lmm29GrVq1AADvv/8++vTpg++//x6/+tWvcNxxx2Hz5s145pln8Prrr2PJkiVo2bJloDqs7Bw4cABnnHEGNm/ejHPOOQcDBgzA4cOHsWnTJvznP//BLbfcgsLCQowYMQJTp07FJ598guHDhyfqKN4ngZ/Gg9zcXPTo0QONGzfG119/jVmzZuHXv/41HnroIfzpT38CAHTq1Mmzj6ui0odswmuMJ4SQqOHoRAixkuXLlwMAsrOz0bFjR3zxxReJc1lZWbjxxhsxceJEqbyefPJJAMA555xT7ty6deswcuRI3HDDDTjjjDMCyz1x4kTUqFEj7bm9e/eWOzZ37lyMHz8effr0wYsvvphYqRdC4LrrrsM///lPvPjii47G7tKlS9GvXz/k5ubi7bffxkknnQTgJ4N8xIgRePDBB9GpUyeMGTOm3LUTJkzAsmXLMGjQIPznP/9JOJk33HADTjvtNPzxj3/Eueeei5o1a5a5btGiRXj//ffRoUMHWbW4smrVKvzud7/D448/XsaBX7NmDW644QZ07NgR8+fPR926dRPnxo8fj5EjR+Lhhx/GzTffDAD417/+hdzcXKxYsQINGjQoU8aePXsS/9+wYQNuu+22hAMffy/APffcg969e2PmzJl4+umnccUVV5S77/Hjx+O2225LHBs1ahT+9re/YcqUKbj99tsTxydPnpxYhYzz448/4rzzzsODDz6I4cOHo1mzZmXOf/LJJ7juuuvw8MMPJ1bzevXqhd///vf4v//7P/zzn/9MpL3uuuvw+eef44477sA999xTJp9du3Yl2uCRI0dw+eWX49ixY1i2bBk6d+6cSLd48WKcddZZGD58OF555RV4sWLFCsycOdMzXZxatWphxIgR0ukzmfnz52PTpk0YMWIEHnjggTLn9u/fn3AKR4wYgRUrVuCTTz7BiBEj0jrHs2fPLhcE2b9/P04//XSMGjUKV111FapVqybVx1WR7UNuLFy40HF3RjqaN28e6EVwpaWleOGFF5Cfn4+ePXv6zocQQowiCCHEQq6++moBQGRnZ4tTTjlFLFu2TOzbt0+8/fbbom3btgKAeOSRRzzzefTRRwUA0atXr3Lnjh49Krp37y5atWolvv/++8Tx4uJikZeXpyTvmWeeKQB4/qXme8EFFwgA4ssvvyyX5969e0UsFhMXX3xx4tiUKVMEADFlyhTx2muviWrVqonWrVuLjRs3lrt+06ZNAoAYPHhwWplbtmwpqlSpIrZu3Vru3B/+8AcBQPz73/9OHBs9erQAIG688UZZtXgCQOTm5oqvv/663LkbbrhBABBvv/12uXNHjx4V9evXFyeffHLiWJcuXUT16tXFt99+61rmX//6VwFA3HvvveXOvfvuu+XaS1yPLVq0EEePHi2TPn7uoosu8rxXIYR48cUXBQAxderUMscBiOrVq4t9+/aVOX7kyBGRk5MjunTpkji2Y8cOEYvFRKtWrcThw4ddy3vppZcEAPHXv/417fmLLrpIZGVliZKSEk/Z421P9q+4uNgzz3QsWbLEtd0myzJu3DhfZfTp00cAEJs2bfJ1fSqzZs0SAMTIkSM90w4ePNhX2ffff78AIBYuXJg45tXH3cqK9+cFCxYkjsn2ITfi+cr+nXnmmb7LEkKIgQMHurZxQgixAa50E0Ks5NixYwCA3NxczJw5M/FynJ49e2L69Ok46aSTcP/99+Paa691zOPVV1/F9ddfj+LiYjz99NPlzt93331YunQpFixYgGrVqmmRe8eOHWjUqFHac82bNy/3gralS5eievXqidX4VKpWrYrPP/+83PHp06fjzTffRMeOHfH666+XW5XyorS0FBs3bsQJJ5yAn/3sZ+XO/+IXv8Djjz+OFStWlFvxPfXUU5XK8qJFixaoV69eueNLly4FALzxxhuYP39+ufNVqlQpo5vLL78cf/7zn9G+fXv85je/wS9+8Qv06NEjsVU9zscffwwAaZ9F7969O/Lz87FixYpy5zp16lTuedK47lJ3Mezbtw8TJ07EzJkzsWHDBnz//fdlzm/fvr1c/scff3y5XRI5OTlo2LBhmfw//PBDCCHwi1/8IrGC6kRch2vXrk27Erpz504cO3YMX3zxBbp27eqa15AhQ6z9NFW6VfigK6gq/PznP0fjxo0xfvx4fPLJJ/jVr36FM888EyeccILrFxPSsXv3bowfPx6vv/46vvzySxw8eLDM+XRtRxeyfciNMWPGaFl1l2HkyJF47rnncO655+KOO+4IpUxCCPEDnW5CiJUUFhYC+OkFS6lvo23fvj1atmyJ9evXY+/evYnnIpOZPXs2fv3rX6Nhw4Z466230Lhx4zLnv/jiC4wePRrXXXcdzjzzTGP34cW3336LH3/8EWPHjnVMk+qwAcCSJUvw448/omfPnsoON4DEJ5mSn0NOJq6vdJ9ucrrGL075xT/plLp92olbbrkFdevWxeTJk3H//fdj4sSJyMnJQb9+/fDAAw8ktnu73XssFkPDhg3x1VdflTuXzvGIP0Oa/MK7w4cP46yzzsJHH32Ezp0744orrkDdunWRk5ODzZs346mnnsKhQ4ek8o+XkZx//KVcTZo0cdRFnLgOn3nmGdd06dpYJrFixYpyfejMM88MzekuLCzE0qVLcdddd+GVV17B7NmzAQBNmzbF7bffjuuuu04qn2+//RannHIKtmzZgjPOOAO9e/dGrVq1kJ2djRUrVuDll19O23Z0IduHbGDUqFEYP348evXqhZdeesnYS/gIIUQHdLoJIVbSpk0bAEjrUCcfP3jwYLk0r732Gi6++GLUq1cPCxYsSPuSqDVr1uDQoUP4xz/+gX/84x9py4ivUH333XeOcgSloKAAsVgM33zzjdJ1/+///T/MmjULDz74IHJycqSfb08uF/jp+d90xFfk0zmCqit3XjjlFy+7tLS03HPlTvkMHToUQ4cOxZ49e/DOO+/gueeew/PPP49169Zh5cqVyM7OLnPvxcXFZfIQQmDXrl1KK3upvPzyy/joo49w1VVX4V//+leZc9OmTUu8vdov8baYLjCQSvw+XnnlFfzqV78KVK7Nz3TbsArfrFkzTJ06FceOHcPKlSvx5ptv4qGHHsKwYcNQu3ZtDBw40DOPJ554Alu2bMHdd9+NO++8s8y58ePH4+WXX1aSKb4zI/WN/MD/gjfJyPYhN8J4pjv+LoWzzjoLr7zySiQvwCSEEBXodBNCrOQXv/gFgJ/ezJ3KkSNHsH79elSvXh3169cvcy7ucNepUwcLFixwfMt58+bNcdVVV6U999///hcHDx5MGIJ5eXkB7sSdbt264fXXX8e6detw3HHHSV+Xn5+feJvw/fffDyFEuTdix43jdJ8dKygoSOwW+Oqrr8qtmsaN5k6dOqndkEa6deuGjz76CEuXLsUvf/lLpWvr1q2L/v37o3///vjmm2/w1ltvYf369WjTpg06d+6MGTNmYOHCheW2yr///vv44YcfcPrpp/uWe8OGDQCACy+8sNy5d955x3e+cbp27YqsrCwsWLAAR44ccd1i3q1bNwA/7YzQ4XS77chIpbi4uNK8SC2ZrKwsdOrUCZ06dUL37t3x85//HLNmzUo43W79UrXtuOUFALVr1wbwU4AmdSyMP2bhhFsfcmPhwoVK7UR1R0Lc4T7zzDPx2muvaXs0iBBCTMLvdBNCrKRVq1Y455xzsH79+nKrhePHj8fevXsxYMCAMp+Ief3113HxxRejdu3aWLBggasT26lTJ/zrX/9K+xffChz/bXIV5YYbbgCAxMpSKjt37kwbeAB+Cga89NJL+NWvfoVJkybhxhtvLHO+du3aiMVi2Lp1a9rrBw8ejCNHjmDkyJEQQiSOr1y5ElOnTkVhYWGZzxDJ0Lx5c8fvAqty3XXXIScnB3/605+wZcuWcuf37t1bxnFYuHBhmfsAfgrQxLdY5+fnAwB+85vfICcnB5MmTSrzfOzhw4cTbyYPsmoaXz1fvHhxmeOLFi3C448/7jvfOA0bNsTFF1+MDRs2pHVudu/enVjZvPDCC9GsWTNMmjQJb7/9drm0R44cKSenE0OGDIEQQvpPRxuIkvg3rqdOneqZdvXq1Wl3jcSPxdsegMS3wtP1S6e28+yzzya2rCfj1cdPOeUUACh3Dy+88AIWLVpULr1sH3JjzJgxSu1EZVX8rrvuwt/+9jf07NmTDjchJKPgSjchxFoeeeQRnH766fjDH/6AmTNnom3btvj444/x1ltvobi4GPfdd18i7eeff44BAwbg0KFDOOuss/Dcc8+Vyy/MFyvJcu6552LUqFG4++670bp1a5x77rkoLi7Gnj17sH79erzzzjv429/+hhNOOCHt9bm5uXjxxRdxySWX4O9//zuEEPj73/8OAKhRowZOOeUUvP3227jiiitw3HHHISsrC1dccQWKi4vx5z//Ga+99hr+85//4LPPPsPZZ5+d+Db0jz/+iMcff1xqW3cy8Rfg6fhebvv27fHII4/g2muvRZs2bXDeeeehVatW2LdvHzZu3IhFixZhyJAhiU9p9e/fHwUFBTjttNNQXFyMI0eOYO7cuVizZg1+/etfJxyaVq1aJb5l3bFjR1x66aWoXr06XnnlFaxduxYXXnghfvvb3/qW+/zzz0fz5s0xYcIErFq1Cu3bt8fatWvx6quvYsCAAXjhhRcC6+aRRx7BqlWrcM8992D27Nno1asXhBD44osv8Oabb2LXrl2oVasW8vLy8MILL6Bv374488wz0atXL3To0AGxWAxffvkl3nnnHdStWzfty/rCZPHixYng2tdff504Fu+v9erVU36EIpVbbrkl8RjHp59+mjgWf3nd73//e/To0SORXqUtz507F7feeivOOOMMHH/88ahbty42btyIWbNmIT8/H8OGDUuk7dWrFyZOnIg//vGPuPjii1G9enUUFxfjiiuuwBVXXIF7770Xf/rTn7BgwQIUFxfjk08+wfz583HRRRfhpZdeKlOuVx+/8MIL0apVK0ydOhVbt25F586d8dlnn+Gtt97CeeedV86Rl+1DUTB16lTcfffdyMnJwamnnlpm/I9z1llnpX1BIiGERE4Yr0gnhBC/bNmyRQwZMkQ0atRIVKlSRTRt2lQMGzZM7Nq1q0y6BQsWaPs0TZBPhu3YscNXvnPnzhXnn3++qF+/vqhSpYpo1KiR6N69u7j77rvFli1bEumSPxmWzOHDh0X//v0FAHHDDTckjq9du1acd955olatWiIWi5X7RND+/fvFqFGjxPHHHy9yc3NFrVq1RN++fcU777xTTsZ0nxhK5rvvvhNZWVnijDPOcNRBKjL1smzZMnH55ZeLoqIiUaVKFVGvXj3RpUsXcfvtt4vPPvsske6RRx4RF1xwgSguLhb5+fmibt264tRTTxWTJ09O+2mtl19+WZx55pmiZs2aIi8vT3To0EHcf//94siRI2XSeX2WKd09bNy4UVx88cWifv36olq1auKUU04R06ZNS7TT0aNHS+uhuLg47ee3SkpKxKhRo0Tbtm1FXl6eKCwsFJ06dRJ33XVXufvdtm2bGD58uDjuuONEXl6eKCgoECeccIL4/e9/L+bPn5+23DDx+hxZ6v3/61//EgDE/fffL11GcXGxaxmpfapz586iZs2aUp/PWrNmjRg+fLjo3LmzqFu3rsjLyxMtW7YUgwcPFqtXry6XfsKECeK4444TVapUKVf3K1asEOecc46oXbu2qFmzpjjzzDPFvHnzHPu+Vx/ftGmT6N+/v6hZs6aoXr26OPvss8UHH3yQtj+r9qEwkfkUWWq/IoQQW4gJkbKPiBBCCPHBq6++ivPPPx+vvfYazjvvvKjFIRWY8ePHY+TIkXjqqadw5ZVXas+/tLQUtWvXxs0334wJEyZoz58QQkjlgs90E0II0cI777yDTp060eEmRjl69CheffVVAPq/GR/n3XffRZUqVXDTTTcZyZ8QQkjlgivdhBBCCLGezz//HE8++SQWLFiADz/8EOeddx5ee+21qMUihBBCPOFKNyGEEEKs5/PPP8f999+PnTt34k9/+hP++9//Ri0SIYQQIgVXugkhhBBCCCGEEENwpZsQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDJETtQAVkWPHjmH79u2oWbMmYrFY1OIQQgghhBBCSKVBCIF9+/ahqKgIWVnRrzPT6TbA9u3b0bRp06jFIIQQQgghhJBKy9atW/Gzn/0sajHodJugZs2aAH6q5IKCgoilIYQQQgghhJDKQ2lpKZo2bZrwy6KGTrcB4lvKCwoK6HQTQgghhBBCSATY8qhv9BvcCSGEEEIIIYSQCgqd7oixJfpCCCGEEFJZsdUei1quePlRy2Eb1AdRhU53RMQ7qxAiso4bi8USf27nTZfv55xpoizfK38bBnrKQAhRJew+a8sYkU6OZEfGNhsgrDnOSy9hEovFIIRIW3YYdeR232HYiV7lJ/+bep1O2bzahtN5E/rx6qNO7UWHPG7Xm7ZPZezysPtIlL6KTuh0G8ZpUksevFIHVKcG5LdROXUSIUTiL1265HNBZUhHurJlz6XiRy63DuxVvqkBP16228DmZhjoksEpP7dgkanJ10m2dO3AhBxeRDXge026thnyYcuQ/K/pcpzORWEYpZYdpnHk5cSFGWROHUtTZTHtbCbnn06OZEfGxDwrc5+pNkD8nJsz4UeG1GPJ955q+zg5eH7qyq3tq9hkMnUkY7N52Rzpyk6uq+TfOp1Pv3pPtZVkrvFK59U2nOQMapOkS5faR9PVi5ussuWkS+Nm5znZpzJjnkrZqXjpX8U29rLv0snk5auk6iJKG8QJOt2GcZrU0qWLn3PqUDKNymsQcyo/+bzbYOE0uMpMBE4DVvK9eekm3fVucjmRblBLndzcyndKo1J+unSpdZBadqphkHrOTcduciT/ljGIUmWRnXy9yk/Nz0s/yXmkDsBu5cgYSMnH/U4Gsoa9n4nJaYJzqj8/5cjoJJV0Y15yGX7KcjrmpF83A1J2jHIqO7Ucp2u8jISg7ULWKHMyjlKvUWkrXvfsNj7KtgvZ8ctNluR/0x2XGetlf6cbq9zGS7d78hrLZctPlcNpjkt3XfL/Zeb3dMfdxnC38tLdVzpHOJ0Myb/d2r6sPeRURjp5vOwSVZvD6Vy6Mc4pr3S2V+oxN12qyBa/1kkmr/bhpyyvOpG1WWXsJ696Sfd/r7p267tO9+RVrtuYlyqTW5t1m7NlZE/XFtz07TZnpfvtpQu3cS4q6HSHTLqBOBmnATbd+dRGlW6yTtfB3cp3MwZSy0rXSdw6vdcA6tZJUuX2mqi9BrZ0g5qXXtxkS/2/l0HgNGj4KVtFL175+pn03M7J6sFLPzLt0ktHbpOzlyyyBk66fuA0CaW7zkvudPUtOyG7OWpO+nCqv+RzMhNzsixO9+RWltvk7KVfJyPMa4xKLdvJePJqE+nSpv4/XV2nyzvdtTLlp8vDSS8yhrLXuJFchpfB5qbHdM5C8u9Uud3GynT6dcrbSxfp7j+dsepUlsxYqtrPZcp304HXden+9eoLqWWqGO/xa2XnNCcd+amLdPmny1Nlvkwnq0rZTuXE0zrVfzodpuvvqfl79V0Z2Zz049aWVcuSKSP+281m9ZJdRiYnXabml6zb+D249ZEg/dbN7vPqX162VTr9pysnWRZZfbu1Py/8XhcGdLotw63TOqWRmfic8pI9L2N4yeQnM3DIyu1lICSnk5lk/ODlBKWmSTeQeA0ubrKpTFheRomqQeRWfjojwMvpc5PBz6TjZsSm/lYx1vwYS26OjNP/0/VnN4fOa6Jxc9RSz3uNMan5qjo7XsaNyuQsK58TTmOUU/vx49R54WSYpeYdpE3KGqcqzovM2KVisHnVu5eB6Hd+c7rWbcyIy5vut+y4KCObbNkyZfjBz9yk03h3w6mtpitbpyGu6ii69T+/ZbilVRmL/NSJrJ3odEzFLvTblmXGBz9jmleZMjpIJ4tXH/EqV/acii3tdU5VJtU2rWpnZQJ0ukNG1QCUzVMWPwOK7CTuZIDI4jboyOQlawA55a9aL15OULo0ToOtzOAiO6F5OdpODpCfyVfWGU9nMMsYJrKoDPCyRoBf41jmGidH2m188GukqQRN3PpMkElOpU/rdhri5asahH7GIVUjQUUHfoxgGWT6jttY53XPKu1GRud+26GqLF7lBnGkVNtCut9uQRO3fFQMdBl01Y/f/GUdOFWH3G0cUpVJVa9eOpTRsYpj6yd/mTJl5ZCZX1QdZD86ih8LEhAJ6mz6KdMkfsd32TbklEeQuTYqXclApzsCgkaaZBuU6oDi19hXSWfSqQoy0fmJtOu6X1mHX3Yw16kXL9yMFtlrnX4no9MRkzUC3GTxE6CRTWvC4ZSVKUj/1BUtDxI8MLFiIoufdmFD2X6NU9nr3K7VMW4k5+mlA7/3ka7cIPel0u91jee65l4/dSYbONYR2PCSIR2q47CXDCqLBF7jsIxO/PZhP+WrImu/evVNWXvWKbik6tjpSK+C6uKK7DmZoJisnZruOr/16ZVH0EC/rdDptgS3AVHHAK8qg0wnV432uqEyScmeDxqBS5fexCDgx+FPRmZFRuZ6VYMoGV2GWZDAj84VFz/GuxsqBo9buw1SRzIyBXEaVccwP8G/ICsQsulljWE/8snm56du/M4TQQwuL7mccAokyug8SPtwk0V1BdVN1iDOfdB5ziv44JWHasBAximWDRz7cbCDOHWqyPYhmfp304lq3unaqmwbUC1fdb4Jovcg/VnmuGpgxc1GVrV3VdqDbLnpzqVrP7K2sVfQw4sgOnJLL+OD2Oqw0+kOCRWHQLWhm1hBkRmMgkSgVQ0cmfy95JGNgLrJJjOZekXuVQYDP5OarB5Sz6saRCoyyTiXskazk35l26PMRODXoXBz2NKhYgi4RYS9rpVF9XoTRpfuCLeqAyJrDLvlr2Pyd5JL9X5Sr/dK52YQyuQrI6NbXqpOn1fZsoEtP/NLkCCX3yCIzHgfJA8T9oRJ/Aab/NhkfnUjs3gSlNS5UHeAMt11Xn1fdTFFt22kek3QoHVqProDhF7lyuYpG5iQtaGczvm5XgYZH8TWcYxOd0i4NY6g0aDUfJwGMadJRrYDBe0oKsEELwMzyOqK1/Eg0bjUyTXVMPMabGWDEUH0omswUpnAUvUga4R4GccqefgxnNz6abpjsg6bznYtW04Qg8avg+BXLpXVFZWgmR9nK/ValaCNTPmqcqnej2rduY1RQYJJQa5VkUVmPPcbVPMqKxmV4IFsYMAvugI/Oq4LYlOEMe8HGSNUZYijGqz1U4ZM+U4yqM71KjKppFddkHIrK+i8I1OOqfkxatzGd5U6T3efpsfCqKHTbQEqHdOt8aXr6G4DmszAIDMgBo16ueHH8FSJYPtFxZD16+S5nZc1JFIJGun1EzhJ9ztoRFYFmXbuN1ihKp/XxKTqrKgY9m4TnZccKk6KjGOp0zBTCZoFaU9BDanUa4OOjbLX6Yz4B3HG/Ti6MvNdEIKOl25pg477OmTzGm+C7iqQuc5NL0EC3Ony1rGSqcse0+mkmQ7AeNWJ6lzvVw6vc6pzuOz4IVNeUPvB7yq6bt2aShvUvnfrAzrH6aih020Y3Y1BZqAImyBGro578GOEBx0kdRmyplc8VQ3BIKuCsZj/T234wdTOCz/5Bgk8ebUBN0PTj5GmugrrdK2XoaLa9mxsOyZlCrIaHMS50LGSoLqbwCmtFzJpddeRW//yOyfokNGPUy8z3usKpDml8xOY9LsrIsj85YfU8mQDaartIV09qayO6wjw6ZhvZeXw68D5DXwFaRexmNyuPZ3twa2PpJNHZdxyyzuonoLiJpct/pAXdLoN49UYgjQUHQ1Nt2wqE6bXYKXikPqZxILIpgsnw1tX2UEcHT+rELomdBmnws3hDLKioTJhecniVo6qHLL5yaYJeo3u1Q/dq/xuaWSDFUGCTH6CUDrkip9XMVBUx2GdBrOsnvzUpR9jVrczoGs8NxW0kul3soE0XfcZJCAVRJag9phsHekYn71Wx92u9UPQVfgg9oEsYdhsusv0Mz646dJtpVjWLtKpxyBtPhU/Y3NhYWHgcnVCpzsE/DQUWcfS5CDjd2LQFV30M6ioEOWqhRthrQj6NQZN3L+q8ebVp3T2C6/gVpRtxQ2TkeWwcBsfZfSu0g5U+4NXO9PZDv04IarzjtOco6pD1fOyelINMnvlKzufBu0DfgI3uoOQqnjNvary6ZDLKxgqazP5rU8/9xw0uGUKlQUNL4L0GT/14yeQFjSdrvatYsOHYWfp7rcmfRS/+igpKdFSvi7odEeMSvTexLYgP6sSsnmrpNF5nSx+9anDMDNxb151I2sAyBjzYRgIJssIY9VE5ToTRmtQZymIIa86MeueyP0Yt2EaPyo6UJXXL7Jzjs75xA2Zeg+6Muk3nQ6nM563jN697lv36rwXskFStzYdVC4ZGVTtKNWgm440ftK6IdM2ndq0roC/roUXHdfokMVk8DRKdOtfx6q/qbxtgU53CIS5SqYz0iS7FUVHGp3XAcGNItPRvCD1LrsDQHX1ODmdLodONRBgCl0BBx3XRBnt1hXkC9I3wyxLB2E4LW7lRH3/qQRpq2E7NbpXr5zKDTNg41aeHxl0rgan4qdN2xrQjbofBgns6EpnYieIHzmCILu7RDYvJ3QHlWTLzRRU7WjdOyCigk53CEThdOpAxjDUsY1IpbP4jbT6XbHxuwUxiHPpVrYTmTLxqQQC/GzLDILflV2Tk2MQZzTKnQKqOgkruACEN66qrlzr3i0TthHiZ9wKipdTHVYwxyuYFeVOKK8xTeeuOqcyVEinMxvnt7DbucnVY5nyVcuLwgmSGVtld5fIEJWt5lZulHajShl+FqpUd87Y6IjT6bYAmYahe1uP3/z9luc2yIWxBcvv6rTf+9PhEEWxNc0L0zsAZHGaOIMM8CYcXJXJXXf0XbZsP05gmCvd6fAK2KkaQ35WRL0CP05GgsrqX5Bgj6lgkK5dMG756Zjv/LRRU/OgqS2xQbChDNn2HbZdo3t+Dlp2EIdCx7yiexuyjByqcruNeaaDLH5tNRNBeS/n1Ot6t7k16h0iqvUb9cJlOiq00z1mzJiEYRT/a9u2rdS106ZNQywWQ//+/X2X7/bWvNTImxemo5c2Ns4gyAwuYaLqlDuhw4kIUlZQIzfIDgAZZJ0tG1dOdEffg6aPus/EcWuHupwdP+3aKfDjp3zd1/t1yMNwNpzGZhvmI9lybVxByUR0zYM6VtNMtD8nOd3kVx2z/ATBTATkdDtkXnKHYeOZHpPC2lHoFoh3ujbogoGfNJWBnKgFME27du0wb968xO+cHO9b3rx5M2655Rb07NkzUNlub80LskqRnEZl25GKDCqyBEkvk4+KPuKoppc9p5JGBtV8UicdWYcpNa1MuX50oLqlM0gduKHTGdJV17pQ7Ru6ypI5p1O2+PU26d4WdI/76XSts20l5xUkyKO7vbttS3TTRdhznJc8YfVFlfL9pJXFbxDbz2qorLzpHBsnOXUF4YNeG0emfwaRw8Q8FcZ4ESQoFMTG0D3HmwpIpGszTvKGpUvbqdAr3cBPTnajRo0Sf/Xq1XNNf/ToUQwaNAhjx45Fy5YtQ5KyLEGjUU6EsTVENvqailvU0skoSv7Xr5yq51TS+JFDZSXYr7Oe/DvIyrPugVUmnyiipUFlMbmqrtsBcStL5pybbKrRcF1tKci1UbQ3mW19YRiwbmO5qp6Cyus2zqu2K5k25scpCqIT1SBhut8qc6jq2JXaFlT0o5JWZ3/zGs9ky5JtuzYHCHX2Tz+7yFLbj1MeUexAM7GyrzpOufURv33XNEGCp14EsQNs0Y8TFd7pXrduHYqKitCyZUsMGjQIW7ZscU3/17/+FQ0aNMBVV12lVQ5dDSGIM6sSDQ5aturE6tdp1t3B3c6H0Zl1RsBtLE9WjmS82rDuenHLz09/8kon49SEgUkDRTZ/He0vyDinoz8EDcYECWaZaEsy8pjulypOnVe9mgpUe+kkaCBap+PkJpvbGBckSOxHrlR0BqVN2w462r+uPuQn2OCU3mthRaavyjpsUdhcuq/zuzCkWq6J4EGY6PJVbA18xanQ28u7deuGqVOnok2bNtixYwfGjh2Lnj17YtWqVahZs2a59IsXL8YTTzyBFStWKJVz6NAhHDp0KPG7tLS0XBrTHS4Zv1uF0m0xVC3bTRav/FXyCpImFdnJ2fbODJjZymciLxVMGk/p7inILoh4fk66ki1PVx1mwja1oKjcl45tlEHyNVG+V542BtJkMTGeZ0peYQZE/QYlnGT02yf9lucnLz9ypR4LMlfIlG2iznX1pzDGFZ1zVype9aurTNN6CtpWVH0KFbyuM+WryJQdFRV6pbtv37645JJL0LFjR/Tp0wezZ8/G3r178fzzz5dLu2/fPlxxxRV4/PHHPbegpzJu3DgUFhYm/po2beqaXmUl2c+qienInVf5TnmGYfBHESm1JVII6DfUMmmbj5/yvKL2fvPTaagEWZlz6n86d2/4ycNpZc1PeSqrYzrGOD/RdbfVDtOrg5mMbfdmeseaSv42zTupBHHck1G9R7+OgWxeYbVHPzoxvTXfVD4yaXTZHl5zgYy9GtbWeFl0B4/T/dbpU4Tlq9g2d8SJCVslM8Qpp5yC3r17Y9y4cWWOr1ixAp07d0Z2dnbi2LFjxwAAWVlZWLt2LVq1apU2z3Qr3U2bNkVJSQkKCgoM3EUwdESATEWRooxOZapeTK0qyGJrRBEwu/IfFJmVlCB56ZQrbBkqSt5B0C1X0PYWVrswtaNJZdVFV562kWny6sLW+47ajrJVL7Lo3rodFibGRJXrbLAXwsq7tLQUhYWF1vhjVm0v/+GHHxCLxZCXl2ck//3792PDhg244ooryp1r27YtPv300zLH7rzzTuzbtw8PPvig6+p1Xl6eNpl1GuJO6NoyE4ZRqBOv/E3pRfV3KjrljtLhDmpM69hqqmuiM7VV269+TI8PMverU1cq2ziDlCObtyw6xzDVevAzTqiUobPc+HXpzvtdxZCRQ7cR6kcnYTg6YYwTfogqsOH3el32WLq2HuS+grT11HR+y7AB2+VzwslOjJ9Ll15nOZngcAOZW79uROp0L1y4EC+//DLeffddrFmzBgcPHgQAVKtWDSeccAJOP/109O/fH2eddZav/G+55Racf/75KC4uxvbt2zF69GhkZ2dj4MCBAIArr7wSTZo0wbhx45Cfn4/27duXub5WrVoAUO54EHQZRqbKV+lEujuE6QnAhNHlVI5TvunK8Zogw5gYTTssshOMbkM1iH6iNJqdyMRyw3CEdRsSfmTwe42u/HUZ8KoBVb/jk+5xWEZuP2OsKkGCEGGM5VGNX34DESYdhLDsMZ0B1nTXOtkVMpgO0ARtb7rm/jCczSDjZpD2oLOcIHknE9XOKtsJ3ek+cuQIHn30UUyaNAmbN29GnTp10KVLF/z2t79F7dq1IYTAd999h02bNuHpp5/GQw89hOLiYtx88824+uqrUaVKFemytm3bhoEDB2LPnj2oX78+evTogaVLl6J+/foAgC1btiArK9zH2k00ojAcZVNb/mSRyTdIZDfqAU+nY6hjRThofl4rlTrlS1ee23VB22lUE0EmT0KmJ9uwDAk3otypE8TRCmJw6949pCOwGha6nRUTQV+V86a36upqJzoDxJk6nqYSxXwmWw9BbTdd/UnFFrAheKeSt465J4xdQCr5BLHJbbaVQn+mu7i4GIcPH8bgwYNx6aWXokuXLq7ply9fjunTp+Pf//43cnNzsXnz5nAEDYDpZwhsblBehLm1xbbIpi1EtcXPhjJkMbH1Tzbya2JVXzZPv3nYVHfpsKH/qtS1bfq0SR4bV2qjksEGmVIJe1dS1DqIunyTqI5PJnQRtn5NLDBFGZC1Oe8g+cvaI7Y90x260/3oo49iyJAhys9AHz58GFOmTMHVV19tSDJ9OFVy1AZe2HnZMGDLYvPEGdX2rEyiMtyjXypKwIR17J8odJfp9WWDA2GjDLY7/jp31WRqICAdpncy6AjsVgR0BtJl8rYRm+Ss9E53ZSBIJZt2lm3qDE6YXhHURdTl2yBD1OXroCLcgx+ivm8/RmCQgJ3JLXgy+dMY84cNAeQwsFk2FWy4DxtkIOnRuejCBQk9RB1cMjk32uZ0V+jvdNtK3NhMd0w2UiiD2zMVsnkEwW8Zss+CmBgsVWQ2sQKhej7qCSPMnRum2qyTAeAmiypBZTdx734MHL84tV1VGZzSy+SjWs+q5QghXPMzOYZFtd06jGtVgzJu51TagMl+rjKW6+r7YeVjw3ga5tiWer0OPavaArr7os75JjUvv2O4W5/xew9R20/pMF0f6fCrB685LxWntGHZ9zYQudOdlZWF7Oxs17/q1aujTZs2uOaaa7Bhw4aoRQ6MagPzGrT8dEgdBqjX9VFsZwxKlMarV9kqW+aixG/5Xg5LmIZUEOdKNb9UogyuqDqNsuhynHRfq1uvuqL+Ksdlz+smyHik4mDKOBgyY6iqse9nnpUNaqu0E119x1SAJ6heZGwfHbaFqm5UAgXJ16v2Cz/9I/W87rFZ57gYRmBR5h5MB0N02c+66sOpfemeJ0yNZUD0tqwJIt9ePmbMGLz88stYvXo1+vbti9atWwMA1q1bhzlz5qBDhw7o1asX1q9fj9mzZyM/Px9vv/02TjrppCjFdsW27QyVFZ3bmCoycX0E2eJDnfrD9JbnMDG5RSxM3PpDRUSm3oJsq1ctOypUZYlKdpm6sUmvYVCR7zfqe4uy/Ci2nOvOxylvQF+Q1qSctvUrVZls88ci/U43ABQVFeGbb77B559/jpYtW5Y5t379epx11lk48cQTcd9992HdunXo3r077rjjDrz22msRSRwutkzs6c6FPbiplhdkK6pTuZk4CHkZZan/JiNreOvUiWkj3qY61GFQyNaRCdK1IyfZosLvuGGD7OnQ1T/i/5dx2PysIMtgk45VZYnKGZCpm6hkC4pfOVTnP78EcQJN3Jts2arn3MoP0x4KW18q+QS5d511qnP+1523ifaR6QHGyLeX33fffRg2bFg5hxsAWrdujWHDhmHcuHEAgOOOOw7XXHMN3nvvvbDFDIzfbRJRNSYZIyuswU01nRM66sBrcpcpT8czMMl46UWXMxTE0Fc5rrrapHptkPx1pfWLn7oOShhbVlXKVCXqCTnK7Xxu15oMoIX5iECmIKvXMO7fbdyMUv8m+qrOPIPMm2EHQ73K1OEwqthDQdOFgYosNtvmMqg+6qHTZjQ1vyfna1O7SiZyp3vbtm3IyXFecM/JycHWrVsTv5s3b45Dhw6FIZpW0jU+3Y3C1kYWR6VDmLgX2TpQLTt1gnOa8PxsKYraYdCBDj2ku142jyBtKUhd+Xn+y5YxQVXHQfKXmfzDeJZOJY2X/Dr050cuGdmCIJtf1KvfKvWjsywdhDHmm9q5kEnYbi/5Qee25aCEtZiiguq8o7M82wi6Iu7nnI6yZfO1oQ+kI3Knu127dpg8eTJ27dpV7tzOnTsxefJktGvXLnFs48aNaNSoUZgiGsNPFEhm1UnWyPDrXPpFpUO43YsOWdzkUHXkvLb7qUyEQaPDYQ7yfgMnJqOxbuWZcM5UV4G92oLJrVjxsmWcMtMTlurk6LYSF9RB97M7wkt+1bFdl1wysgXBlKGmOz+/9eMHv6s5Ya7KRGH82+xwAOEG9mTRaWOFKYOutmx6dTzI2Ohn11tUuzNNY2K1PZ19UhGJ/JnuiRMnJl6g1r9//8SL1NavX4+ZM2fiyJEjePLJJwEAP/zwA6ZOnYq+fftGKbJ23J6jSMWPgSpE+jc/JzsjboaD1/Yor2cqgjxzocM5CeO5krDSutWnyvU6UN3q7KfssLYGysimw3j3cz+y/VO27KBOmcn+LoOfepK91jTpxubU45mKV73LzDcqeepyMMJYdfE67xSg09XPTPRz2TJT80n+rVqGW15BZXaTyc/466edRzUOBB2LdAX6vNpFFHryU6af/hy0TL/oGgOD2ndu7c+0TREmkb+9HAA+/vhjjB49GvPnz8fBgwcBAPn5+ejduzfGjBmDLl26RCyhGra9La+yUZE6aFD8GjVh6jCq+vKa2Csbuu87XX66jNSg2FrHtsqVik1ymm63svnbpJM4JmWy8X6TUR1/KjJBAh3p8ggqg478vPJXKUP3vUWNKXmiajtB8rHNH7PC6Y5z7Ngx7N69GwDQoEEDZGVFvvvdF8mVXFhYaFVnDANdKxkmyrMhX5n8bRvE44S1ymnr/Tthoi5tbx82yKAbG+/JRpncyDR5VfFzf7bOcyrbYMPc4ZKpbUhGbr/tB9Cze6wik6n6CGNMCdsuDxM3eW1zuiPfXp5MVlZWhXleO45pp810GX4Iug3HZHlxot4iC9ixDVb1PsPSWVAjMGwDMEhdOuVvIk9VTG/vDYKJPqzbqNVRD352Y6j2DZ19SZdDEVQOv9d44Se/MOY5mx/fiTKvsJDVv872E6aeMsERs2nHnAo6xzUb5qywCXt3ZhCsWUo+dOgQlixZgpdffhnffPNN1OJoJW5UqJxzuyaOEGaf+ZCRIch1fvPXkVe8k7qdjwqdevEiUw2lMFeBZYxdk/n7zVNHO4p6EgvSR007OrFYzHNsN6U/mXt3ki3dOa/0JpGdx1TbdJAdJjrRkZ9XHlEHicMgjHnRj60WR2UVMWr8yOA235oqUwemy9Wxg0VnmUEDNKZ2jZrGSe7CwkLjZatghdP90EMPoXHjxujRowcuuugirFy5EgDwzTffoF69eokXqWUqujqIiYZrwvHU1blV7jfM1QfbB3FZTAdVTBL2LgFbAzRu2CqXCk6OlkwbVG2nfgJ3Ue5WCeIEyO6sMK1DVXSuuMsGGVLT+WknqnKkC4r4KSNIfcg4+kHKCqpHv2OAX534KV8mn6D5eZEuX532pWxesulU250XQYMhpheHwm4PQfETmNK1684PJSUlgcvWSeRO95QpUzBixAice+65eOKJJ8pUTr169dCrVy9MmzYtQgnNYWrwCFqOSl5RDAwmDG4VdG5b1nmdat2YDqoExaZJJ6q+F4YhoFq2iTxVgxomtnHaavxEtQLtpwydgVRbHPjUdDr17ufREhWC5KPq6Ks4cia25Mo6NLoCZTJpTS8cyJSn0s519TmTq6o65ZSRxW95QeoiSLkqRD23pZKJixuqRO5033///bjwwgvx7LPP4vzzzy93/uSTT8bq1asjkMw8YTUinasxfgwQ3RFhPwa3bSs2gP7696oblW1guqPNfvKy8dEJVYJG94NuFZNF1UDw2z7Cuh83wgp2qsoQpXOtQpBgYZROjc5rdeUVRjAvSsM6zP5uWz8BwpdJdyAjCkwEVJPRvZ3bJDY+MqLDn5CxMdNdUxGI3Olev36963e369Spgz179oQokT3oiq7pzksVG1aQdK7YOBnMQZ4HU0nrd2uYSvTZ73ZGL7mCRn/d8lFJr7NN6nDiwtCB2zUq5cs4TzYYb7ZienXTNH77TpiOls7x0LQcfq4zvc1ex9xs8+NLUdpDpjEpp0pbsVVfOleQo1qZ1WFrRh2M070LxdQ4ppvIne5atWq5vjhtzZo1Gf9G8zCj4DojyzLOXZAOHs8/yqi9nxU7p8Ei+bisk5cOP3qx1WAPsjUz7AnNzZn0I4tpw1V3lDqsPHRMjkF2YkT9eEQYQch4XjYHNnXgpeOoHTibH+GJy20qAKTz3nXXY1Rjp19U+rPJnTkqbcVWmwTQ18aiXgEP+jhBOsK2sXXlnymB7Mid7vPOOw+PPfYY9u7dW+7c6tWr8fjjj+OCCy4IXzCNmHpWJwr8OlFhPkeVDr8rfEEMB7cARVSTZ1D8RFj9Bmr8bC8NspIbtI2aWE0PsgIeNOJtaszRMTnq7reqTryMjnXck98VjXheYW2NVzkvk17XGKG7Hfgtw5b5Oxkb55dkknUWtqwy9RVFQMstsJ8OXWO7Kf3rXnEOcr9hbVlXtQPdMLl7yPROV78EWdCygcid7r/97W84evQo2rdvjzvvvBOxWAxPPfUUfvvb36Jr165o0KAB7rrrLl95jxkzJrHtN/7Xtm1bx/SPP/44evbsidq1a6N27dro3bs3li1b5vfWpF9Vb4MDZqNRoJMoOqZbgMJGI0IGP46pmx50Tzp+t73rwJYIs6rDZftKRZCtdKacN1kdmzSqTARkdMxFOoINUa8gZUq+mY6uoJUO51LVyfcz1+h05oPIaEt7dJNDJRjnNR7rXqwJkn9YdmC6dhc04G+Dn2BL2/VL5E53UVERli9fjnPPPRf//e9/IYTAf/7zH7zyyisYOHAgli5dinr16vnOv127dtixY0fib/HixY5pFy5ciIEDB2LBggVYsmQJmjZtinPOOQdfffWVr7LdXlUfNIobtPFnerTIC92rMbbgd/UytX5tieRHNbDr2uaukygDBrowsUU6iOMZ9bgWxUqzG07GaTpdm6jLoGlswfSjI6rX6nhkIwgmnVuZ8mSdLZOPncjsskq3ihjUFsuE7cC6dpCYGp9kZLC1PzmRrt0FbeNBFgz83lMmzQsyxETUVkkKX3/9NY4dO4b69esjKytYTGDMmDGYOXMmVqxY4ev6o0ePonbt2vi///s/XHnlldLXlZaWorCwECUlJSgoKFAuNxaTf8urSlo/qOavQ57UPNzyjJ/TpQfT+rQdHW3PBh2GIUNlv0+Zsm3QkQoqYw/5HzbNWaqkk0dHO9Cpk6h1FkQfUcselChsoLAxYbfZQFQyyYwpOs5Fia1ypRLUH9NN5CvdqdSvXx8NGzYM7HDHWbduHYqKitCyZUsMGjQIW7Zskb72wIEDOHLkCOrUqeOa7tChQygtLS3zFwS/W1XSEfYzIzqeB1HZMqwrgidTViq6VztU8zOx2qKj7YW1ZcqNMCYDXSvTQVapdN6nzEqNatlRrBSENfZUFnQ//mR6W7xXf5IZ83S0A506CTrWyKyMu10XRB9R7CrSOdboeFzCFlTHeBVkbD8dj7f4kckNEyuwqo/MyJ6zadVX9dEAFWy6T92E7nRnZWUhOztb+c8P3bp1w9SpUzFnzhxMnjwZmzZtQs+ePbFv3z6p62+77TYUFRWhd+/erunGjRuHwsLCxF/Tpk3TpouiIfnpsDoGRF3P6qjk4RdZp8jElnyv53tMbofTlYcOZCZqIHp5dW2T8zofxX2aNFDCyN+rHL+OhyqybVllnA0ydpsKvPoJJgWVQSYA5NWfTDmBYerDCdkAmdtc4zbemr7HMIPnpuvDRFA8aD5BAl6pv/048Cr9OCz8lqkr6K6rTJu2bwd9RCKIbm132EPfXh5/uVkyM2bMwOrVq9GnTx+0adMGAPD555/jzTffRPv27dG/f3+MHj06cNl79+5FcXExJk2ahKuuuso17fjx4zFhwgQsXLgQHTt2dE176NAhHDp0KPG7tLQUTZs2NbKdQXZLhy1bP2yRwyS8x2jRLZuNW+1M9Xub69UJG7eARymDDfdPzGBjW08myKMnOsqzQT+21UlFIq7bMHUcRZlBCENOnWWEpdd4ObZtL88Ju8AxY8aU+f3YY49h9+7dWLVqVcLhjvPZZ5+hV69eKCoq0lJ2rVq1cPzxx2P9+vWu6SZOnIjx48dj3rx5ng43AOTl5SEvL0+LjF7IPvfhN6LptzM4XatzQpS5PopJOOqBOfkeTd1/1PfohtO9y5BugtXRRnUborLXpVuZSqcfNznDIIhhE/UW8HQymx7X3LC5bwbFNsPXtDxe87hb/44CXSuWsvfhpQ+ddo/s8TCCC37kqgjomJOTkdGRV5m26d+kboLaCV5zpV+dqdSjbUT+TPd9992H66+/vpzDDQAnnHACrr/+ekyYMEFLWfv378eGDRvQuHFjxzQTJkzA3XffjTlz5qBr165ayk3FxLZCHVvmTBt+Qbd86ZiU/ZYdNbJ60e2QyOhEx+MIOvBzr7ondZmtdSaQ6dOyhqLfRz1UrlPVe5C2pGtLrM4tmsm4GXc6CZpfFNsXw9KNbJ7pjFKdZQUNQGUqYdazbNm6Agp+8DOP6N5ZFVY+JsYlmf7lt9wo24Uu0t2716KZSl6y18ssovm5zmYid7q3bduGKlWqOJ6vUqUKtm3b5ivvW265BYsWLcLmzZvx3nvvYcCAAcjOzsbAgQMBAFdeeSVGjhyZSH/vvfdi1KhRePLJJ9G8eXPs3LkTO3fuxP79+32V74RKp42vBoVRvgqxWMyKZ0FsLNvEc29hyeanXNn2HMYE7JWfSv5uaXXI6SfIFsYk5BTF90qv03BOvcZkQNDvLoJ06KwfP6uFqvn5CZToKNftOj/Orwx+5VS9xpT8KtgSCA1ati77R2dwRKcOTQWyZO0z0/OJrsUYJ2R2WJooNyhO9aO73zqVY9peyIS8oyJyp7t9+/Z45JFH0n4Le9u2bXjkkUfQoUMHX3lv27YNAwcORJs2bXDppZeibt26WLp0KerXrw8A2LJlC3bs2JFIP3nyZBw+fBi//vWv0bhx48TfxIkT/d2cIpkU1TGxNTUMg8B0GU5bdJJJd960g+dUto4y/O7GUJ0MdAQrVNqs6VVrP8ZCVGOB6V0wOq6xwRiOypnyW7aT06jDGfdLkK2MXvqJcuU0TGyQIRW/Y7upsdbvdX7HpnQBYFM60WGf2bzzL04UOyR02Gqq9eN37EpXjg3zZGUm8u90L168GH369AEADBgwAK1btwbw06e+Zs6cCSEE3nzzTfTo0SNKMZVwe3A/6uduZAZ6Gyds03KZyj81X93luD2HEzQfnQTNX5d8OvKxtY/YTBg601lGZalj2/p9VHoPs+24nY9yfLKtLYRRdkXp5zbfh4xsYdilNusoKCbvTed4opKXrjZh24vUIne6AWDVqlUYNWoU3nzzTRw8eBAAULVqVfTp0wdjx471vdIdFbZVsgpBOm9FH9QAO1cQVAnDEPYzYJpoeza3SZ31kGlObdjYoB+TgaeogqmZ3CaCUhHalOn8TGA6kB1UnkzJOwhO9pAJeaPQr616J96ktk3b/DErnO44x44dw9dffw0AqF+/PrKyIt/97gunSja5WmdyItLpcJpeUQh7Qs6EwbkyRIltMj6DTuRRGy5+ggGA+TfMRq2XMLFNLspjxzhq433btAtJZz6kcupSx8p80PR+MDW2mN45aXpnjm1Ot1VebVZWFho2bIiGDRtmrMPthq5Oly6f1GM6O7hI81yIDOme9xDC+dkU1WdldOrB77MpYUxIQZ+b0SGj7ROvbvmC5Od0rWyeQZx9p+NOk6mO8nWOD27lm2iDfowJleN+8/QT9Aiaxg2d9asjnyjGXdPjqIy+bBiHvfQS9VxqQ9/R1fZ1Eoupv/xWty5V0oWdVxyZew7aj/3ilrepYJ6fe1WRRcU28VuGTVQ8zzZDiTcy0wNSmJOBaieOH1cxsnTdT5RGpRdRDfAyRF1+UPwYIrYaYWE6qzpwC8A5EcTpTU2js05kdzCkOxa0foIaiaaIwolyIln3JttBEMJYCUv+VxbVQLZfIzoKTPQdW1eHVYKjfupLxy6QsMs0gcxikCq6d5Ol4jdf3btpdedrI6E73SeeeCL+/e9/4/Dhw9LXHDp0CFOmTMGJJ55oULLwcHMq/QyKKtEmJ8fWxKQYRsQ7dSt5UFTyiGKbX9QyyJTvtx5kHCrd7dTJENEdUY7CIPFC9b51r+amk8GrjCCBBR27gWS2Hapcq9tBCdO5sUlOL4cyWc+y7cDPCq6J1T5daVVtDB3ypJatayHA65qwbYHktKo2nA5bLMqdNqr5mwgOB2lXpvqiKrptDhvnAl276zKZ0J3uIUOG4KabbkLDhg0xePBg/Oc//8Hq1atx4MCBRJrvv/8eq1atwtSpU/Hb3/4WDRo0wJ///GcMGTIkbHGNoHubmg7jUfdqgq48VcjUbdSyKxCmZNPtaOmOmvpt60EmHb8rl7pQ6Uthrdia2HKvswwgfGM7FZNjkKktd36dySCrZqr36BV40+VQuqES2NE5lptK65cg28lVVwGd5kYvGXQEFFXG3CBbcFVsMVl9qGC6zehypmWd0nSrwn4c2qBtQhXZsUO2zKALbCYWoHTMT7bumpElkhep7du3D0888QSmTp2KlStXJpSYk5MDAPjxxx8B/FRB7du3x9ChQzF06FArHoKXIf7gPqDvOQtbtyzZjJPOVHSZqXr3I3eQe81UPUWNqt5s03OqPF6/M4lMll0GXfdXUcaNTOmLMn0sU+4lDGy5N79ymJJfNt+KNKbbQlyHmaTLTJA1nYy2vUgt8reXb968Ge+99x4+//xz7NmzBwBQt25dtG3bFt27d0eLFi2iFM8X6So5ExpsMm7y6h4wwnKCdcgroxdd6NSLjokzrDYc5L5lro3aiDGJCRlsuK8gRC1/lOOC6rW6xvaodW4jfp2csOWJsu5sbze2yxcnLKdOhz1kk04zYUHGpA1q01wVtIz4cduc7pyoBWjevDmaN28etRjGsWVQkUVmm6kupy2s7XM6DAwZvThNeKoToU69qGxh0yFPMqp6CHLfuvWq0j6C5qtjggojzzBQCaZ43WNUk76p8lVWOVPPy44TUbcZncaaLUa9iXEkCE7lRKmrsMr22yZsaEduxO9LVz/2Qse4F8Xqf1i2qImxR9dck0423QGHMBaobBzH3ODbyyNE9dkEr/ROz/uoHDNJqrHohtu9mJIptWw3ktOkpnea8GQmwqDP24RVpyrl+NGDWzl++40f3ai0WadyvfJ1OxaUIIESk3jl72YMOPU3k/Kknk/+7XcM8Uovk4dXOzKx6yEMdDjtbnnpvA8deUXd3ypKmbKozsFhzbdB89PZb8K4zm8+UazmqtxjPG1U9SGD7gWsOCrzlg1+SdjQ6Y4Q1YYXZJXC7ZhbI3dzLr2OuxF0xSXqwUjFsA3ioKqm07k65Kd8lTxk0OGcmly9U3Ws/ehEtn/K5uPmQMYJc4VEVSdB+puTDnTvFFE1SsIKwgQlqLGb/G9QVPteuvOmxijZvN2Mc51znGknw61Mp/FGx1hoInii0hd1z7em+rxsUNFv+UHG83T5mAxy6LhHU2WYyscN3eOxXz2FNRZGDZ1uCzBpcPldLUl3zu/EY6LDqBi1UUdvdQYOgq6ghRFJdsoj6tV5t3L9GoJ+AwC6rvEzwfndUhbHS1equtTpACXn53bOhi20mRzl9yO7H93LONY6jHwd+NmBodK3TTqcMuWn4ncuCbLjy2vsUt2x4pZXUHQH2022c53l67B3wt4yHCSw7SfwrSOdrmC87vHYrzwyY6GfPhB/qbUt0Ok2TNRGVBTGpYrxEYZDHkZkU3f+skaHahk6DCm/g73uiTTopJMuoBSVLDagalR51aeOnQFBCBqgMo1ssDXK9qMyDukOnjiV4yeNCl7OrerYbCqYpMNRCuIwqDq8KphacTU9pyeXqTvYHsbOKZOYbC/x/PwGMoMEtnWsgJsO2KUrww1d9mfQ62Tzcap7ACgpKdFSti4id7pbt26Nu+++O2oxjCGEMDbI2WrMh70NJ5MmHlnCCpaEMdj7wfREqZugsqgaCzqN6ThhOHwmVxaDluXn/k3UQyp+5XLbiWByx0sUW5md8tTRD4IGcaMay2XK1jlXh9m3ZYhiwcFUkEjnvUTtOAXNz80htGGRyQ86x8yg8jgFeGwmqrr3Q+RvL9+4cSM+/PBDLF++HF988QUKCgpwwgknoGXLllGLpg2vFU0noyqMRuRWjl8ZZK/TdY/xwIaqAeF1TVSDT5jl6qxfnXLLrMjrbrd+ytJVnuyqp8w5nUQ9kbnpNgzZgtS7yX7sNX75XQWJur7dUJXRlnvR0Q5k8rDlfnWgM3irkpdbG9PV38OcJ1VkyCR7T3f6IPaEavuSTe+33KDzpQnbK6wxMB22bS+P/DvdWVlZ5Qa6WCyGdu3a4Y477sDll18epXi+kP0unJ8JQXd12SCDW1lA+m1JQQYGHXJF2W10lR/1fXhhk3w2yQLYJ48sOsebsJzeTNW1DmyeH4IiayB6/Q4qAxDcyTRh7Kr2L1WHAgjmsJh2EnXkY1onMuVF0SeD6sa2ccSPPFEEYUh5bPtOd+TbywGgSpUqGDNmDBYuXIg333wT99xzD3JzczFo0CBcc801UYtnDBMRu3S4bTdxG/Rk05vaYum0ZURGD+kmHhX86EwVv9uD4qtcXtf53X6rc6tnkLxMTkSqcunse0GOmZDHT/le51TGD7f8gqww+DGSdOSjGxNbr2VRGe9lnLQo7yUZlV0CXr/j+fnBaY7TNT6ZcrjT5a1yH073HaQ8WZ2FucqsUpYfnciU52elPyhBdCPrsIeJH1vJyU6Tzdsrfx34zd+v7SqTr6otkmlYsdJ92223Ydy4ceXOPfDAA7jlllvw5JNPYvDgwRFI5w9dkZUwV4WiwGT00BQ2rI74RefWJt2rPaZX0yryzoewyYT79RoLgeic6SA7eCoTQVbLbNGlqdVYHWN5/LgpXUW9Eq27jKjalC1tGbBnJT0IUY//OtAx7kVZbzrrwG0ci8ViKCkp4Up3MlWrVsXPfvaztOduvPFGXHbZZXj44YdDlkovQaLgKnm4RdZ0dq7kMmTvLV26uEwq+tE9SKiu0rutKCSnlVkFCCqbalrVqLtbOTpXWlUjvSadZz99NYwdAzrzV90RkYoNxorfXRzxc0F3wnjhtQIS1i6OTF0hCGoQqs6dftLKXOP3HnTu4vBaBTfVFnXeu+527Ee2qMY91bZsos+7zfthzn86Vlh17S7RQVDfQNY+dctDl0xOONlwunecBN3lERaRO91t27bFa6+95ni+Z8+eWLNmja+8x4wZkzCk439t27Z1vWb69Olo27Yt8vPz0aFDB8yePdtX2cnIVHwQI9JPOtXyncrQIVeUHcOkceN3e66Osk0RdCuUqrOjus0sSNDJayLQFaCRyUsmndekKauLsIMGOraP6W7vfla9kv8Nmp/TNaptLjUf3cEFE0Z/kMBakG2sQdOqXFPRt0z6RXaOVJ0HgsphyrkNmq+MAy6TJozxNqjdqzIu+A2yeeWtY552Sxt0HtNhYzjlqdInTAQe/ZSVCUTudF999dWYM2cO/vSnP+HgwYPlzr/77ruoVq2a7/zbtWuHHTt2JP4WL17smPa9997DwIEDcdVVV+Hjjz9G//790b9/f6xatcpX2W5vzXMz0MOIZgaJkJkmjAiprsnIDTeDN+yV7zAGKlnnzeSko7K1SjWd6dUnWSNDNlBhckLXna/bfQYJXulq907jpY6Aqhte9a9aR14GldcquV8nN0yjzEZ0r8LIjO9hGqcmnA4VhyJo4NBtHpENrMnYFDJ9QzXg5KdvmXDW3PATnNSxU0JmDlHNyyudSp5O6KiDoHpQsa3C2rlluqwwiPyZbuCnbeQPPvgg6tati759+6J9+/bIzc3FvHnz8Prrr2PIkCF44oknlPMdM2YMZs6ciRUrVkilv+yyy/D999/j1VdfTRw77bTT0KlTJ/zzn/+ULjfMt+UF3YanuwwT8rjlGT+XmiYMvegmTJmdyko+7leeoPehQw+29YuKile/i0JHuspk/cqjqqt06cPSt582quOaIGlta4thz/OZVEYmyRFH55zrt2/oGEP8oLsu/OQnY+P6zdsUsjLLpDcJ316ehgceeACLFi1Cz549MXPmTNx+++246aabMHv2bFx44YV44IEHfOe9bt06FBUVoWXLlhg0aBC2bNnimHbJkiXo3bt3mWN9+vTBkiVLfJdvGhMRyyCRJRNb7WQibH5XPIOgIxqpGgXXVb5TlNxta6ps+TZsmQqj/nWVEWSVKozVLJW+6WfFSDe6VhD95hPl9reoyva74i6bh9dKjdcKvVu9+ll99Lvi7zetjh08Mjry2gER/1fVOZJBt+NjugyvsnWsjOruz6p6UbE/VHb/6Nj5oasudY/zfnQpu4oc9g4FN1RXvlVkt8n+0U1O1ALE6dmzJ3r27ImjR49i8+bN2LdvH5o1a4Y6der4zrNbt26YOnUq2rRpgx07dmDs2LHo2bMnVq1ahZo1a5ZLv3PnTjRs2LDMsYYNG2Lnzp2u5Rw6dAiHDh1K/C4tLU2bLuxIj2qkKX7eawVUBreop44BV6cuZfWSmk42qutGEGNLx/0HWYmJYlVeR9vUJYtKOrfrgvQH2T4eZGVO18q1H73pRKZOTPcpmVWLIKsEJvqH3zalsy69DHovw9SvQa97l5fp1bwgxrvbMVmHyvQ8EaQfOOWle8xRcT5l8wqKm22nWr7fvJKvVU1v4xyvOi6Ylj9I8ED3uKWK3zHDrX3atCsgGWuc7jjZ2dlo1aqVlrz69u2b+H/Hjh3RrVs3FBcX4/nnn8dVV12lpQwAGDduHMaOHeuZzs9EnoqsAeQ2+ckY1yrn3NLrdKa9nK9018voWva8DmPOBGEMLqbzV3VK053X1a+CyOI0wQadBEw5XTJ9yit/VRndrvEz+fvVjc668CODU3tTHWe8yg7aP4L2yyBEbTip1LNs/cv2R9Xyo8BJXlPBBS99qJSrakvoKFMWlTYic42JoEIY18rMTboDY6p91OtclLaTzDVufVYmYKCqD5X+E6St2zROJmPF9vKwqFWrFo4//nisX78+7flGjRph165dZY7t2rULjRo1cs135MiRKCkpSfxt3brVNb1bA/M6Jjuo6nSg0+FnO4hMmqByBxnwbN6qIrs1ye82Hb9lu51XkUVHm3QanN2In3cyHL2uk5FB5pwXMs6oyrXp7lsmL7ey/fQ1v0aY1zGn8lTPpUvnRwY/bV9WLlUnwy8y85PsdbLXBtWNLH517UeOIGOEjvJ1ouLk+e0DKtfpdi6D2ixe6JxHdLeNMGyHoGW5OWXpcLOVnNKpnDOJn7aico3fuVVVVzp8FVsdahkqldO9f/9+bNiwAY0bN057vnv37pg/f36ZY3PnzkX37t1d883Ly0NBQUGZP13IDvxRE7RzxonyXsMIRgQxQGXwGtD8lO9XL34MIh3OkVuZskGsIOeC4Pf+dTivbueClJ3uWj/X+A3+eJWn02n1YxiplKe7f6hco9soC+JQ+7nWzYHTNcZ5yaAbVT3YOr+61YuJeVkWv21ehwxB6kp29dN0ezAdEAxz1T2OjnnYaSzKBFs/mUyT1wYqtNN9yy23YNGiRdi8eTPee+89DBgwANnZ2Rg4cCAA4Morr8TIkSMT6YcPH445c+bg/vvvx+eff44xY8bgww8/xPXXX69NJj8dVqeBH8RwTcaU02F6ZcOv0apz0k6Xt+oKh1+5/LQxrzJ0Tl5+tnSFjcm26Nc5tMV4MllemDL4dWBNyxhGIMhrdVE1L5VzQXToda2bAxem8WhinknFxDgfFF1Bw6h2OQQtQ3VMU1lwUQkmq5QvW54bQXdB+hmPTAbDdO3K0xkoVwkm6gz++JFJx+6HTHb2K7TTvW3bNgwcOBBt2rTBpZdeirp162Lp0qWoX78+AGDLli3YsWNHIv3pp5+OZ599Fo899hhOOukkvPDCC5g5cybat2+vRR5dRlmQQUzGuUu3OqvLWde5khfm1j6nCdBrspOZDHVHa/3Ule6VbpkVf5V8vQZ32QFe14TphqltfSZ2I6jgJlfUsnmVE8YkHUb5fg0Z1W2GKis2bgTdeqhC2Nf63e6pohPdY7kbTnO/F7oC9X7zkZHZZDA3yM4MXdeFvfNKxU4MugtS124HWVtJp72rmjZIOwnaD1Xq2i19/Jxs4M/POOp2vzqDxiaw4jvdFY0ovgsnM3mEvVroVJ6qHCrpU9OqbLNS1U1Y+gxaji7DwvS92rSaDehfdTN9f279DYB0v4i6XfsZN/zKHGRs0VU+kN4Q0SFXUPmC5KEzyBy0L/lJD4S/uyIT6tHretvGcT8k30MmtB3dmKxDnXnb2NZMzP3x603db9R69Gu3y8DvdBMAztFZPyvGXsZ2nNRG7ZY2KCqRrnTXyqb3SqsaKQ4jKqmKk2y6VhiC5KF7pcWrDBPtVEWeIKsxQSdd1TKTj6frF051F2a7VlkZcYtuywbWUn+r7rbQWX78uqArvkFXkvyWE2SVO+g462e1ximNbL3oXPU1sSIoW6ZqHn7n1HRlq57zi2qebnaEH335HQ/cjjudU2lzYdoMbnnL3IdsP009F8SWDpLWrX8FaQ/J1/sJ/sigI5AXJJ2OMSZToNMdEU6NzM04cLrej3NrupEHyc+vwalj8g67s6s4lFEMTLIyJacLsjrsVoZq3rKOqooh47e9Ba0rXQ6MV56qATEvvAwgnY6c1/Wy/Uc1ECN7vcrKtapcKmn84NdJdLo+SEDLrb/6cVxl61Qlb68xxZTx7Daf6BpD/PRRN734Cbb6kSFov07OQ8eihZNO3MbEIPNtajBA1jnVEfSWaYte/VLWng1iSyejOuYFHd/9LPzI3Jff+jNh3+gI2IUdwNMNnW6DFBYWJv4fZFD2e30Q/DRsXQOy37ReBrxqBNRk2jhuDmWQOvcjt9cko8NocUP3gBxkIvBjvPupL9W+FNT5CYpsH0tNb3JS9rpetV78GD9uMvgtX/a4StleK0J+AgYyQSsZw1a2jKA7A2TK8Mo/iOOpKodKnaoEKJ2uU703nca57L2oyJAuIBO0b6s4hF79y0snpoKjsmOzXxvFT982hazcqvaDCbvebx+RyU9X3qbt4mRU+r5OG9oUdLoNUlJSkvi/mzGoMkD6RWU1L7k8t06cKr/KwOo1uDnpxu8qePJvr0HPbydWdUi8UNWnitzp0qpMvkEGXZXIutd5v6tWsqhMNH4GfCedBnG8dKxMOOXnJY+pAECQQJ9fmYKuXAQtX6Y81fHLa0XITx8P4mDKrjIF0aHs3BdkbgmC6r3qGvOCjDFB0vuRySm9zHWy7dPNHtM1/uhwlmWu9xs41BmgDDIGBLUR/JTpdlw1GClr2/tpDzpW24PmrdJPdfU1GblUzkUFne4IcXN2/DRG2RXL1GOyk1mQVSxVQ0FVN35R1Uu6c05OpdM9y0aH3c6ny1tl8Ak6+asYeqp6CBoJdpJDJjjkVpZqW1Q1IFUnfBn9pdOlTP9RjfirIBuEkVmJU9WZqgwy6VXbRWqAzC29n5ULXfWle+zVHWQOssrm1ykJIofTeb9tWAU/bUKXA+h0Luj4qHsVy83m0BWgcMLPwkW6Y35sjuS8dAU9/NaNlx7czsuW6ScQ4betBg0W+q0P2TFWZ1BGxb5yWwBTddK9SN5xbAN0ug3jd/DxY0y5NWTVsoKkSyXo4KAqh6pB7accN8PXawJSdeplZUoliB50DPayetAth2xwKJ1+dEb605UT1PGXOe6Vj4yBJKN3L/07GYmyhmGQ+3YyKLwCQW75BUmfek5FB7qdiyC4tXev/qM7yBxkHE1Np1Juujzcxmu/gTmZ8coL1WBSkPL9zHNB8OvohdmfZNu1jE0TJMAmYxMGGdNk0sq036Djqp/AhJMssjKpoDLOBSlX9h5VA34q45VMfqp5u8nrVEbyjmMboNMdIW4NRceECsgN5ioy+JHLhLOuUp6u1TC/6I6Sy8qlGgxQzT/ddX4GZT/tzK0sv0GkdM6QLH4DNG4EXUGTxc0x8BPF97Ni5HVOVjav/IIaBirXBAnieB2TqX+3OpXtcyrGl+7+IzteuY0rfuTx4+zqNMyd8DOeB3FiVPuXznnORL3JoNI3nK53k8npmFcZfm0Yp7yC3KNOOXSXZaIf+plnZK6ztVwvdNuNQcsF3OcernRXMlRXPNyu8+vM+mmsQSOrsqhGLtNNin4nWy+Dw0kvYUTKdTonuvPRHURwamd+J1fd9SNT50EDV7oNedVrddZpkGBB0PRBrlV1bmWCTKacMZn+4VanfgNTXvgNQpgYU73GiDBk8WojKnKYCAq5nfMbtJWVS1X/qvrwM6Y59Q2nVXs/tohb8EjVGdZp+8gEX53u308ASDUoKCOnU/ogaVSD0m7XqdjUfsrVsRjhldZJLqc+ki4/1XHJbwAV4Ep3pSXohCnT6FQHczeCrMipTjwqk4qMwajDOHAaQNyCFKpl6oyop5uo/DqKMu3Fr5yqcvjJU0cwKjU/L1lUJjpdwTI/hkBQQzd+zK9sqsESv8Ent/FSZTVL5714le90XZD+EdQ4VZEnSBDCb5BZRo9O9SobbJZZ0fXTRpzkcBpTvOY1VUdKxUh2u95JHrd2LtMWvOyfIPO811zp1H5SZVO1Rbyu8Uov066DBGu86kSmL7gdl73Wq48FrXtV+0WlraY77xfVclXtdpW2Iqt/2QCMinMtO9cGafthQafbIMnbGmQmqNT/J18jO4jJdn7ZSSYdqsEAr4ifzgi6U/lOeHVSlRWh1IHHazBQmWBTf6crL/VaP0aa1zmnSUjWgZfVg1u+sjpKPSYTHFJ1WFVlccKPc+7HEHAyylSDBn5lSyeXrAHrlodT+bIOl6oOZIxfp/MqjpbTMdmy3fqpTPv0q6cgDpBXOaqyqMwvfoxkWVm9jsn2A9X+otJXg8y96Rwylb4TxEbwCrLJyCpbtow8Tqi0g3TnZGxCLzvAqxy/QTs/NqWKwyTr6KXL081WcpNRxc7xSuMmn1sZsu1BphwvPXjNW075+7ElZec6lXYhGxSKEjrdBknd1uDWSFUdbBlHwstpS73OzaFyulbXoKQaKUs959UxnQYumU4qW4ZXnXoNUunySy5bZUBRMZadyk+nM6d6lB2sVfWgGjhIJ0f8mJsjFj+vMrGoyJKKzGQre0ymz6nK6deIVG1DbnI69bvka1T7pBOqjrXKGCgjg4rD4HesTE2frq+oBBPcypVxklLTyhpxqrJ45R3E0XSSw0kfsnOwTF5O552Oyxj7Tnmr9HMvWdK1Qd1Oc7pzTjLL6s8NVbtLph3IzNnJeak6jU5jgYwtmmoTJsstk0+6ucCtP6jMAenylJmLZcecdPfuVH5y/l73LDM/qtinqnpIxctm99Kpyhih6qu45enVr6OGTneIOE2qcVQMbJlO5NRY3Yx0p86l6ly7TdZuES7ZwdXLoVIZuLw6aVwvskaSE6oOZvIxVQfOq2xVZ0ilzrz04jXwqzi+yedlnR2/E08QWdxkcwtouOk99bfq2OKWzmliUw00yBhwTnKma/tezoxKP1Fxzrxkl3UYg8jgdMxvm0yXp5NDlA6Zct3GFpXghIqD5KQzJ2M5nSyp5Tn96ySH29ijarCrjJeyTr1Mu0o+Jju/qo7FflDtQ04yeM2tskEQFecz9ZibzSEbhJB1qGSdeKdy0smomr9T+1G1Sb2QGSfcZFG9d7dynepHtY+o2qdu16Rrw25tXdX+TNd+ZWx8mbRecvkJMIQJne4QSe4Y6SZxJ0MkdQD3MxHIpncyQFTzc2r4XoOVW/mpBqFM5/XjkDql8VOe7ODt5TCpTDwyMsjo0u16L1Trwc2YdTOY3cqULdfL4E5XhtsEmE4WNx3LONte9+9m8KQ752YcuxkDfpw6t+NeTrTXfbjJ7XVturL8On5+jQSZMd8tX5my3YwQlfFRRk4duBnGQWSJG4Iq9+z1r6ocXv3UyxBXdfhScbMfZMZCWcdB1QFIlsurTC/cxrt0x1LvO/l3qr6c7LRU/Ngh6dKmk82p7cm0DbeyUo971UmqbDLjlh9HKF2/9aqjdGWnsyFVkdVL6jUq+Tsdc8vb6ZzsPToFedxsLzf9q9isXm1Q5VrVsqOATrdBkp/pTtfhk4+lm8ydGrVsR3LroKkDh5MTFj+X6hj4jcqldor4/2XLd9NLunJVJt/UAcZrUpExkpzKSsVrQFWdAP3I4JTOTTYnI8SrDFVjzW3iTdc2VMp1csacZHG7Z6cJX0aWeJlOx93yUQ2cuN2j3+CFm0PsdFzlGhmH2AmVgIRTfrLtwg2/hpFXMMItH7c26XYvMmmdSDdupzvvdF1ymbKyuJXlNI476U6lH6e7zul4qoyp81k62XQZkOlkSC079ZxXkMGrrOTf6e4tOe/kf1PrJKg95OQ8J997qi7SXZtOH37sAjebI7Xs1LJS5XLKy0uuoHWSrn87zcVOtovTvbjpMHVsSb3X1LacTndeOkm9D1W9ONlH6fJKLdttbFK121Pv061sJ/07jUuy+k+tcy97MTV/t3Pp2nxq2bZ9MiwmVGZSIkVpaSkKCwtRUlKCwsJCJWPFjXQNMbnTp/6bfF08rU4Z0uXtdF5X+W4yycqWOrj5kcuPjp2Mu3STg9Mk4ZaXyvl0ab30IiNbumuD3LfMtV7343bcLX8VWZzOxXUhW69e95ScbzzvdGmdzqeeU23HXjpJN7G6GWapZbmVL9O2Uttwanmyhpjbcdkxz6kvyVzv1ubd2q9K2V79wWm+cZIpjp+xQUUnsu3ATRYn/OpM9r6CIDMuqdaJn/JT/+9Uls57l5HHqWzZfq9bJi+5wiLM+1eVAzCvC5lyo9RJqiwVsWwVG1D2elmS/bGCggJfeegkJ2oBKjo6G3RyXun+n/qvaRmcfid3kDA6dGpZ8fKdfuuQzUsPKoa5273Ilp/uvKxRIqsXGdlkBlYnOZLlTpXNrQwvOZ3q3yvYoCKLl5yqZbsZjUHahlN/Tb1Hvzpxk9Orf3o5kEH7j5PTlJqfjA7S3YeMDpxklpErXfogZTvdj1s5TnLKjKUq/SfdPCIri6w8qjKmk0v1voIgO8+5yaWj/Pj/veZ53eV7yePnnEmZwi7bCRtkiFIOmXJt0UlFLVt2HlS5PlOh0020E3UHsWGSsWHyjcrwcCsnignQKb9UgzHMydirbJPGs5Ms6Y6Z0Imso2yi/cqU5ZU2qAxB5dJdtluesnVlAtmxI+zxPer5LU7U85wteiCEkEyBz3QTQgghhBBCCCGGoNNNCCGEEEIIIYQYgk43IYQQQgghhBBiCDrdhBBCCCGEEEKIIfgiNQPEXzBSWloasSSEEEIIIYQQUrmI+2G2vPiRTrcB9uzZAwBo2rRpxJIQQgghhBBCSOVkz549KCwsjFoMOt0mqFOnDgBgy5YtgSr5lFNOwQcffBBIFh152CRLaWkpmjZtiq1btwb60L0t92OLLLr0qkMWm/LQkQ91ay4fm8YDXfnYkodNuq1o9UPdmsmDY625fGxqs7rysUUW6tZcHiUlJWjWrFnCL4saOt0GyMr66VH5wsLCQB0oOzs78MShIw/bZAGAgoIC6taALEH1qksWW/LQmQ91ay4fG8YDXfnYkkccG3Rb0eonDnVrRhaOtebysaHN6srHJlkA6tZEHnHiflnU2CEFScuwYcOsyENXPrpk0YFN92OTLDqw5X5sqh9d2KKXiqZbm+7Hljx0YdP92CSLDmy6H5tk0YEt92NT/ejApvuxSRYd2HQ/tuRhGzFhy9PlFYjS0lIUFhaipKREW5SG/AR1awbq1RzUrTmoW3NQt+agbs1AvZqDujUHdWsO23TLlW4D5OXlYfTo0cjLy4talAoHdWsG6tUc1K05qFtzULfmoG7NQL2ag7o1B3VrDtt0y5VuQgghhBBCCCHEEFzpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ujXzj3/8A82bN0d+fj66deuGZcuWRS1SpLz99ts4//zzUVRUhFgshpkzZ5Y5L4TAXXfdhcaNG6Nq1aro3bs31q1bVybNt99+i0GDBqGgoAC1atXCVVddhf3795dJs3LlSvTs2RP5+flo2rQpJkyYUE6W6dOno23btsjPz0eHDh0we/Zs7fcbFuPGjcMpp5yCmjVrokGDBujfvz/Wrl1bJs0PP/yAYcOGoW7duqhRowYuvvhi7Nq1q0yaLVu2oF+/fqhWrRoaNGiAW2+9FT/++GOZNAsXLkSXLl2Ql5eH1q1bY+rUqeXkqUjtfvLkyejYsWPim5ndu3fH66+/njhPvepj/PjxiMViGDFiROIY9euPMWPGIBaLlflr27Zt4jz1GoyvvvoKv/3tb1G3bl1UrVoVHTp0wIcffpg4z7nMH82bNy/XbmOxWOJzQWy3/jh69ChGjRqFFi1aoGrVqmjVqhXuvvtuJL/GiW3WP/v27cOIESNQXFyMqlWr4vTTT8cHH3yQOE/dypFJPoKMLJ4Ioo1p06aJ3Nxc8eSTT4rVq1eLP/zhD6JWrVpi165dUYsWGbNnzxZ/+ctfxEsvvSQAiBkzZpQ5P378eFFYWChmzpwpPvnkE3HBBReIFi1aiIMHDybSnHvuueKkk04SS5cuFe+8845o3bq1GDhwYOJ8SUmJaNiwoRg0aJBYtWqVeO6550TVqlXFo48+mkjz7rvviuzsbDFhwgSxZs0aceedd4oqVaqITz/91LgOTNCnTx8xZcoUsWrVKrFixQpx3nnniWbNmon9+/cn0lxzzTWiadOmYv78+eLDDz8Up512mjj99NMT53/88UfRvn170bt3b/Hxxx+L2bNni3r16omRI0cm0mzcuFFUq1ZN3HTTTWLNmjXi4YcfFtnZ2WLOnDmJNBWt3c+aNUu89tpr4osvvhBr164Vd9xxh6hSpYpYtWqVEIJ61cWyZctE8+bNRceOHcXw4cMTx6lff4wePVq0a9dO7NixI/H39ddfJ85Tr/759ttvRXFxsRgyZIh4//33xcaNG8Ubb7wh1q9fn0jDucwfu3fvLtNm586dKwCIBQsWCCHYbv1yzz33iLp164pXX31VbNq0SUyfPl3UqFFDPPjgg4k0bLP+ufTSS8WJJ54oFi1aJNatWydGjx4tCgoKxLZt24QQ1K0smeQjyMjiBZ1ujZx66qli2LBhid9Hjx4VRUVFYty4cRFKZQ+pHerYsWOiUaNG4r777ksc27t3r8jLyxPPPfecEEKINWvWCADigw8+SKR5/fXXRSwWE1999ZUQQohHHnlE1K5dWxw6dCiR5rbbbhNt2rRJ/L700ktFv379ysjTrVs3cfXVV2u9x6jYvXu3ACAWLVokhPhJj1WqVBHTp09PpPnss88EALFkyRIhxE+DXVZWlti5c2cizeTJk0VBQUFCl3/+859Fu3btypR12WWXiT59+iR+V4Z2X7t2bfGvf/2LetXEvn37xHHHHSfmzp0rzjzzzITTTf36Z/To0eKkk05Ke456DcZtt90mevTo4Xiec5k+hg8fLlq1aiWOHTvGdhuAfv36iaFDh5Y5dtFFF4lBgwYJIdhmg3DgwAGRnZ0tXn311TLHu3TpIv7yl79Qtz6x2UeQkUUGbi/XxOHDh7F8+XL07t07cSwrKwu9e/fGkiVLIpTMXjZt2oSdO3eW0VlhYSG6deuW0NmSJUtQq1YtdO3aNZGmd+/eyMrKwvvvv59I8/Of/xy5ubmJNH369MHatWvx3XffJdIklxNPU1HqpqSkBABQp04dAMDy5ctx5MiRMvfctm1bNGvWrIxuO3TogIYNGybS9OnTB6WlpVi9enUijZveKnq7P3r0KKZNm4bvv/8e3bt3p141MWzYMPTr16+cDqjfYKxbtw5FRUVo2bIlBg0ahC1btgCgXoMya9YsdO3aFZdccgkaNGiAzp074/HHH0+c51ymh8OHD+Ppp5/G0KFDEYvF2G4DcPrpp2P+/Pn44osvAACffPIJFi9ejL59+wJgmw3Cjz/+iKNHjyI/P7/M8apVq2Lx4sXUrSZs0qOMLDLQ6dbEN998g6NHj5YZ+AGgYcOG2LlzZ0RS2U1cL24627lzJxo0aFDmfE5ODurUqVMmTbo8kstwSlMR6ubYsWMYMWIEzjjjDLRv3x7AT/ebm5uLWrVqlUmbqlu/eistLcXBgwcrbLv/9NNPUaNGDeTl5eGaa67BjBkzcOKJJ1KvGpg2bRo++ugjjBs3rtw56tc/3bp1w9SpUzFnzhxMnjwZmzZtQs+ePbFv3z7qNSAbN27E5MmTcdxxx+GNN97AtddeixtuuAFPPfUUAM5lupg5cyb27t2LIUOGAOB4EITbb78dl19+Odq2bYsqVaqgc+fOGDFiBAYNGgSAbTYINWvWRPfu3XH33Xdj+/btOHr0KJ5++mksWbIEO3bsoG41YZMeZWSRIUc6JSHESoYNG4ZVq1Zh8eLFUYtSYWjTpg1WrFiBkpISvPDCCxg8eDAWLVoUtVgZz9atWzF8+HDMnTu33CoBCUZ8BQsAOnbsiG7duqG4uBjPP/88qlatGqFkmc+xY8fQtWtX/L//9/8AAJ07d8aqVavwz3/+E4MHD45YuorDE088gb59+6KoqChqUTKe559/Hs888wyeffZZtGvXDitWrMCIESNQVFTENquB//znPxg6dCiaNGmC7OxsdOnSBQMHDsTy5cujFo1YDFe6NVGvXj1kZ2eXe6vmrl270KhRo4ikspu4Xtx01qhRI+zevbvM+R9//BHffvttmTTp8kguwylNptfN9ddfj1dffRULFizAz372s8TxRo0a4fDhw9i7d2+Z9Km69au3goICVK1atcK2+9zcXLRu3Ronn3wyxo0bh5NOOgkPPvgg9RqQ5cuXY/fu3ejSpQtycnKQk5ODRYsW4aGHHkJOTg4aNmxI/WqiVq1aOP7447F+/Xq224A0btwYJ554YpljJ5xwQmL7Puey4Hz55ZeYN28efv/73yeOsd3659Zbb02sdnfo0AFXXHEFbrzxxsQOI7bZYLRq1QqLFi3C/v37sXXrVixbtgxHjhxBy5YtqVtN2KRHGVlkoNOtidzcXJx88smYP39+4tixY8cwf/58dO/ePULJ7KVFixZo1KhRGZ2Vlpbi/fffT+ise/fu2Lt3b5no4VtvvYVjx46hW7duiTRvv/02jhw5kkgzd+5ctGnTBrVr106kSS4nniZT60YIgeuvvx4zZszAW2+9hRYtWpQ5f/LJJ6NKlSpl7nnt2rXYsmVLGd1++umnZQasuXPnoqCgIGFgeumtsrT7Y8eO4dChQ9RrQM4++2x8+umnWLFiReKva9euGDRoUOL/1K8e9u/fjw0bNqBx48ZstwE544wzyn2S8YsvvkBxcTEAzmU6mDJlCho0aIB+/foljrHd+ufAgQPIyipr4mdnZ+PYsWMA2GZ1Ub16dTRu3Bjfffcd3njjDVx44YXUrSZs0qOMLFJIv3KNeDJt2jSRl5cnpk6dKtasWSP++Mc/ilq1apV5q2ZlY9++feLjjz8WH3/8sQAgJk2aJD7++GPx5ZdfCiF+egV/rVq1xMsvvyxWrlwpLrzwwrSfA+jcubN4//33xeLFi8Vxxx1X5nMAe/fuFQ0bNhRXXHGFWLVqlZg2bZqoVq1auc8B5OTkiIkTJ4rPPvtMjB49OqM+q5DKtddeKwoLC8XChQvLfG7lwIEDiTTXXHONaNasmXjrrbfEhx9+KLp37y66d++eOB//1Mo555wjVqxYIebMmSPq16+f9lMrt956q/jss8/EP/7xj7SfWqlI7f72228XixYtEps2bRIrV64Ut99+u4jFYuLNN98UQlCvukl+e7kQ1K9fbr75ZrFw4UKxadMm8e6774revXuLevXqid27dwshqNcgLFu2TOTk5Ih77rlHrFu3TjzzzDOiWrVq4umnn06k4Vzmn6NHj4pmzZqJ2267rdw5tlt/DB48WDRp0iTxybCXXnpJ1KtXT/z5z39OpGGb9c+cOXPE66+/LjZu3CjefPNNcdJJJ4lu3bqJw4cPCyGoW1kyyUeQkcULOt2aefjhh0WzZs1Ebm6uOPXUU8XSpUujFilSFixYIACU+xs8eLAQ4qfX8I8aNUo0bNhQ5OXlibPPPlusXbu2TB579uwRAwcOFDVq1BAFBQXid7/7ndi3b1+ZNJ988ono0aOHyMvLE02aNBHjx48vJ8vzzz8vjj/+eJGbmyvatWsnXnvtNWP3bZp0OgUgpkyZkkhz8OBBcd1114natWuLatWqiQEDBogdO3aUyWfz5s2ib9++omrVqqJevXri5ptvFkeOHCmTZsGCBaJTp04iNzdXtGzZskwZcSpSux86dKgoLi4Wubm5on79+uLss89OONxCUK+6SXW6qV9/XHbZZaJx48YiNzdXNGnSRFx22WVlviNNvQbjlVdeEe3btxd5eXmibdu24rHHHitznnOZf9544w0BoJy+hGC79UtpaakYPny4aNasmcjPzxctW7YUf/nLX8p8Nolt1j///e9/RcuWLUVubq5o1KiRGDZsmNi7d2/iPHUrRyb5CDKyeBETQgj5dXFCCCGEEEIIIYTIwme6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQOVELUBE5duwYtm/fjpo1ayIWi0UtDiGEEEIIIYRUGoQQ2LdvH4qKipCVFf06M51uA2zfvh1NmzaNWgxCCCGEEEIIqbRs3boVP/vZz6IWg063CWrWrAngp0ouKCiIWBpCCCGEEEIIqTyUlpaiadOmCb8sauh0GyC+pbygoIBONyGEEEIIIYREgC2P+ka/wZ0QQgghhBBCCKmg0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGn2yCFhYVRi0AIIYQQQgghJELodBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYRYRCwWQywWi1oMQogm6HQbpKSkhAMmIYQQQgiRJtl2jNqOpPNPiB7odBNCCCGEkEpP3MGM0smMly2EgBAiMjmSZUn9PyFEHTrdhBBCCCGEAAlHN0onM9XZjloWG3RiQ0CEkCDQ6SaEEEIIIZWaWCyWcC6jXmFOJipZkvURpRxxWZJloONNMhE63YQQQgghhERMJjiTUcmYGhDJBF0Rkgyd7hDgwEAIIYQQkp6otw6nK1cIEYk86VaUw5bFqawoVrtTV9yjkoOQoNDpNgwHBkIIIYSQ9KRuHY6KqMu3jUzQh01BGkK8oNNNCCGEEEIiI9nBo0NjN2GuuruVE9Wqe3zlnS91I6rQ6SaEEEIIIaGT6rTYtrpqi4OpkqaiYUubSN2RwWfLiSp0uiPGlkhZ1M9TEUIIIaTyEbVTZZPd46aLsPSU7hlqWwn7WXc+W06CQKc7BJwGheRjUX/7EODgQQghhFQWkoPtNjmeQPg2Ee0fdUzXkU1t0ksWm2Ql9kKnOyKSHV0btqjweSpCCCGkcpFsg4SNTW/IJmqEVUc2tQUnWaLsP7TXMws63SES7xzpVpaj7LQ2yEEIIYSQcPDafRcWmWJz0Lmxl6g+7RYVqc52Zbr3TCc0p/uHH37AoUOHwirOOlJXs50mGls6T5SfYWD0jhBCCDELA+5yhKEb2eeobXMwbZLFFDJ1E1a9pO6Sjf9VhnqoCBhzuhcuXIgbb7wRp556KmrUqIHq1aujWrVqqFmzJk499VSMGDECCxcuNFW8lSR3EKfzNhC1HDZstyeEEEJINITpxERt89iEij5M6o32nzO2L9oRZ2JCY685cuQIHn30UUyaNAmbN29GnTp10KVLF7Rs2RK1a9eGEALfffcdNm3ahI8++gjffvstiouLcfPNN+Pqq69GlSpVdIkSKaWlpSgsLERJSQkKCgqUrg1zAnBbdY9iIkotk5MhIYQQohenuT/sOdervDDkkS3DtCwq+ZuURTVvU7LYIodK3mG0EcDd6Q7bf0jGRns9iD9mAq1Od3FxMQ4fPozBgwfj0ksvRZcuXVzTL1++HNOnT8e///1v5ObmYvPmzbpEiZSgTjcQ/XYmG5zuqOQghBBCKio2zP0y5dDpDl8WW5xdP/makMUWfcjkHZb/kK4cW7+CZJvTnaMzszvuuANDhgxBXl6eVPqTTz4ZJ598Mv76179iypQpOkXJWGx5NiMuR5RRMxuwdSAhhBBCSDiEbRNlCtRLONjyXLmTTRwvO8ygXWr5mYDWlW7yE0EjK7ZEmsN2up22uQPRdKi4THS8CSGE6CLZYIxyblM9F5YMYcpiwwqzTau6gHqbtGGF2RY5om4jUe/ICKvPAnIvqLZtpZufDKukZEpkMspPqUUtAyGEkIpF6tuHw97llSlzP2B+5S6TdBEWNujDlnrx0/ZMtFmV/Ez2GZt2pGbqlxfodFuKTY27spLu+XJCCCEkCLbPLWFtUSVEJyYcTlscukyRI4xAWRTl6sKo052VlYXs7GzXv+rVq6NNmza45pprsGHDBpPiZAw2dS5bPtkRZmfKlLcyEkIIyRwyYW4JSx7b7pv4J1McnspElKvtpsnksUPri9RSueuuu/Dyyy9j9erV6Nu3L1q3bg0AWLduHebMmYMOHTqgV69eWL9+PaZMmYLnnnsOb7/9Nk466SSTYpEMI4oBPZM7NSGEEDvh3EJ0Ycs2bGIOP3VsymaO+tl2mXuyvU8YdbqLiorwzTff4PPPP0fLli3LnFu/fj3OOussnHjiibjvvvuwbt06dO/eHXfccQdee+01k2IR4hvbOzQhhJDMI8wXEBF/2PSm7oq6umzLPQWpZ5vaSRSYbJtuOs2EPmF0e/l9992HYcOGlXO4AaB169YYNmwYxo0bBwA47rjjcM011+C9994zKRIBHUc33DpslDqLf4rB9gGFEEJIedzm3TDnlkyb+zPBkA6CLfaYLXIAmddGKzo2tY1Mx6jTvW3bNuTkOC+m5+TkYOvWrYnfzZs3x6FDh0yKlDFU9Ikmjo33aNvgEh/wbJOLEEJIxcTGuVkndCQqLhWl7epYba8oqH7az1aMOt3t2rXD5MmTsWvXrnLndu7cicmTJ6Ndu3aJYxs3bkSjRo2k8h4zZkyZ1b9YLIa2bds6pl+9ejUuvvhiNG/eHLFYDH//+9/LpTl69ChGjRqFFi1aoGrVqmjVqhXuvvvuSj0wh9FxZfRb0QYQv1APhBDiD+4WkiPK7/ySzMQW24RtSy9+6zSq9mB7/Rt9pnvixImJF6j1798/8SK19evXY+bMmThy5AiefPJJAMAPP/yAqVOnom/fvtL5t2vXDvPmzUv8dltVP3DgAFq2bIlLLrkEN954Y9o09957LyZPnoynnnoK7dq1w4cffojf/e53KCwsxA033CAtF6m4hP2sDg0UQggJTrIBGPa4aoMzQioelf3ZYVPo0GlFqpuo76EijZ9Gne6zzjoL7733HkaPHo2XXnoJBw8eBADk5+ejd+/eGDNmDLp06ZI4tn37dqX8c3JypFfGTznlFJxyyikAgNtvvz1tmvfeew8XXngh+vXrB+Cn7e7PPfccli1bpiQXyUwyaYDMJFkJISRKUsfL+Iq3Tc9SVyQjvaLDejJDRXKugsI2VpaKogujTjcAdO7cGbNmzcKxY8ewe/duAECDBg2QlRV8Z/u6detQVFSE/Px8dO/eHePGjUOzZs1853f66afjsccewxdffIHjjz8en3zyCRYvXoxJkya5Xnfo0KEyz6KXlpb6lsE07MiZg9MEZMs2LkIIsR2nb2NXtjGUc78eKmLbsalt2CJHRSBoIC9ou4gykGhTm07GuNMN/OSUfvTRR9i9ezfOOOMMLQ53t27dMHXqVLRp0wY7duzA2LFj0bNnT6xatQo1a9b0leftt9+O0tJStG3bFtnZ2Th69CjuueceDBo0yPW6cePGYezYsb7KdMOmyLcNctikj7Cw8V7jBoeNshFCSCocqwgJBxtstMpoK1ZU/AS4bA6MGX2RGgA89NBDaNy4Mc444wxcdNFFWLlyJQDgm2++Qb169RLPdKvSt29fXHLJJejYsSP69OmD2bNnY+/evXj++ed9y/r888/jmWeewbPPPouPPvoITz31FCZOnIinnnrK9bqRI0eipKQk8Zf8RvaKgKmBi4NiMKIYVFKfiySEkEzEZsPMBmzSj02y6KSi2UAV4V50trNMbrc2yV0R2lUco073lClTMGLECJx77rl48sknyyiuXr166NWrF6ZNm6alrFq1auH444/H+vXrfedx66234vbbb8fll1+ODh064IorrsCNN96Y+Ja4E3l5eSgoKCjzRyouNgykUQ5CyZ8vi1oPhBDihA3jk6pjZYPMprDl3iqas2uLXisKUbcN3e0zyBvIiV6MOt33338/LrzwQjz77LM4//zzy50/+eSTsXr1ai1l7d+/Hxs2bEDjxo1953HgwIFyW9+zs7Nx7NixoOIRy7Ft0rLRKEiVyTb5CCEkFa9xyqaxvzKMqZXhHsOE+iRuRN0+gixS2TQ268Ko071+/XrXT4DVqVMHe/bs8ZX3LbfcgkWLFmHz5s147733MGDAAGRnZ2PgwIEAgCuvvBIjR45MpD98+DBWrFiBFStW4PDhw/jqq6+wYsWKMivj559/Pu655x689tpr2Lx5M2bMmIFJkyZhwIABvmQkmUXUgxMhhJDwqCxjvo1B3EzGht1uFQ0TbdSWOrJFDllsktdvm7C1jxp9kVqtWrXwzTffOJ5fs2aN9Ce/Utm2bRsGDhyIPXv2oH79+ujRoweWLl2K+vXrAwC2bNlSZtV6+/bt6Ny5c+L3xIkTMXHiRJx55plYuHAhAODhhx/GqFGjcN1112H37t0oKirC1VdfjbvuusuXjDrQ+UKIoPnYMHHzBRn/I0xdOJXD+iCEEEJIHBtsAlucLlvkUCXq+quoxIRBzQ4dOhRvvfUWVqxYgaNHj6J+/fqYN28eevXqhdWrV6Nbt24YOnQoHnroIVMiREJpaSkKCwtRUlKi5fnuiuh0R/kZAx15mp5UZPOP2ukOUwZCSGaRamyGOU7YMIb6+dKDDfObKVlsmfd15GVLHvF8AH/9y5b2ZoMcpsYClXwrogxRjYOxWAwlJSVa/bGgGN1e/re//Q1Hjx5F+/btceeddyIWi+Gpp57Cb3/7W3Tt2hUNGjSIdBWZEL+YjF5mYlQ0CmKxWOKPEGIXyYaW7S9eNCkXA5J60DXn2tIGdTo2bGNEFyb6B9vn/zDqdBcVFWH58uU499xz8d///hdCCPznP//BK6+8goEDB2Lp0qWoV6+eSREIyUhsGqRkBuGwDRl+K5wQ+0n34kVbnJ44to0hNm1H1SmLTTuibJGDVB5s6dMyRN0/dOlKCIHCwkIteenC6PbyVL7++mscO3YM9evXL/eW8IqEie3lQPCOwO3levOriNuA/JYRtkGVXB4dcELsw2lMsOGRmCBpTclgSp6g46Mtj7fZlEc8HyB6vQbNryJv61bNO2o5TNoysnnbMBaaGP9s2V5u9EVqqcRfckbUsCnybQN8edf/qIy6SPecKPsHIfYQdX+sbGOiF9SFfmycd2xp95lol9hSl6Z0FnV7zcQ2YYKKu9xMyqCjsUfdaQmJ47SCRgixA6f5xtZ5xEaZCJHFllXuTCaMXYM2Y0N70K2jkpISrfkFRetKd1ZWli+FHT16VKcYxHJs6Ni2YptubJ8k4thqyBNC7MfE+GHbWE7sgW2j8uE1xoRlv2RC27NdviBodbrvuuuucg1nxowZWL16Nfr06YM2bdoAAD7//HO8+eabaN++Pfr3769TBEJCo7Jsl5G5v7B0URn0TUgmI2s8si8TVYLOMwzMVj4yyU4zLaMNixOZUhem0Op0jxkzpszvxx57DLt378aqVasSDneczz77DL169UJRUZFOESosmTRwEFKZSJ7E2D+JLUTZLr3K4ycX3alo871N92KLHKawSdcy2CBvmDLYcL/pCEMuW1b7o8ToM9333Xcfrr/++nIONwCccMIJuP766zFhwgSTIhDiiq0DIFEniihu6htBK8OkQeynsr/Rv7Ledyp8l4t5bNKNbe3eJt3YgFP9hKkn2/uzbW1YN0ad7m3btqFKlSqO56tUqYJt27aZFIHAzKcpiD3YPohWdOJ9q6JPFiQzSHW4OT7IQT0RVTJ5zDe94GCbbmzq2+lkiVJfNjj9NtWPSYw63e3bt8cjjzyCr776qty5bdu24ZFHHkGHDh1MikA0Y8tASgPJPLbtArBRHkJsJKq3+6v00Yo8hts2VhF7qKht3mbc+mLYfTW1rCjaQ7qx14bxygYZTGP0O90PPPAA+vTpg+OPPx4DBgxA69atAQDr1q3DzJkzIYTA008/bVIEQjIGGmqZR2p9VbRnMUnFoCI7uKTykeljrOkV5kzRT6bIqZvU8TgqHUQ5JyTXfWWam4w63T169MD777+PUaNGYcaMGTh48CAAoGrVqujTpw/Gjh3LlW5FMn2QynT5U8mkCS4MbNCFDTIQEgVebZ99g2Q6fgNIbPvhY5N9lE6WKJ29qHUSZfm2rrSHgVGnG/hpi/mMGTNw7NgxfP311wCA+vXrIyvL6M72CglXK4jN2NA+w5LBNuemsk5gRB4b+mc6dPYVWwx88j8qep3Y5FjKYuM4EBapdZVJ9VbRqIzt0LjTHScrKwsNGzYMqzjy/2NiMsjESSYdFeEeTGHbYJhJdRWVc5O8VSuT9FXRiCoAEnWf9VO+bYEAm+Y2ykJMEnVdRv0ss03jTmUk6vYXFVqXm0888UT8+9//xuHDh6WvOXToEKZMmYITTzxRpyikEmCbwRYlJnRRWQfFTIOr3PaQ/ObwKOohyu9jy5RPwoNOsn2EVSc22UZuskQ1Rlb2TyqS6NC60j1kyBDcdNNNGD58OC644AL07t0bXbp0QYsWLVCtWjUAwPfff49Nmzbhww8/xLx58/DKK68gNzcXt956q05RKjScTAmJDluMmWSc3lbNcSJ8Urcush4qFzaOD4SQ/8HxmERFTGhuffv27cMTTzyBqVOnYuXKlYkJKCfnJ//+xx9/BPBTo2/fvj2GDh2KoUOHoqCgQKcYkVJaWorCwkKUlJQYuS8VI86Uwec3XxPfDPebny5ZdORjSx5B87KhvZl2cmTyD8vRcovYR+Hs2fRG1qju3emTMKblka1vU/IEGTN0yWPDOGrDOKxbjiD5mRiHVNtMGH3QpnnBrawoxsfUMhmIJGFh2h9TRbvTnczmzZvx3nvv4fPPP8eePXsAAHXr1kXbtm3RvXt3tGjRwlTRkWKL021ycPUzaJqafG0wSmww1Gy4H1vq2OSkrtL/onS0onqZW5Tb96Lcah9lXajmb0s/1S2PDeOoDeOwbjmC5FcZArGyZUQxJqcLAkbh8PIxKBIFtjndRl+k1rx5czRv3txkEcQDUwMbt02SdLBd2EXYdREvK94Owl7ZSZYhfizMHQdeadgvzEH92gfr5H9U9scO+Cw1IZpfpEbCwaaXZJCKBw0lZ2zqd16yRL2iYsuLxMKqM7f7rej9qSKNGTbNr35lMSG/TXqxFZvG5DjJMkXdT4WI5gWThNgCnW6S0QQxSira4E+jKBxUt/GaJBPacBht0qk/Z4J+guJHvzaOFbbJk+lUhrZvEzbqO/kZavYvQqKHTncFhQMsIdFigxEWhnPlFsCyQQeA2fFQNoBnsi5s0bNfMl3+OBUxmGsrsv3JhjqJ0h5Lvveo9UBIZYdOd4YiM+HY8ixjPB0H/PRQN8741Y2NK3kkGti3CCFh4DbvcFs3ISQ0p3vSpElhFUVCgoP4/6CTR8Ik09qaDSvNtujMFjkq0phVUe6jIlGZg8mpz1ETQggQotP9t7/9LfH/iy++OKxiKyUc5EmUVCRjPhnbjEhZWUzWh0y+Nugs6s/HmZLDhn6m+xNZfrGhnVUGbGhzskQha7rnqNk2CSFAiE73CSecgHvvvRdffPEF5s6dG1axFRpbtzKRzMU2xzLTqagBiGRUvpVL9FNR+qtN92FTv1WVxeQYblMdAfY8ZudWpm06I4REh9HvdCfz7LPPYsyYMejduzcOHDiATp06oUOHDujYsSM6duyIDh06oKioKCxxKhTJk6wthkIyYbzBWcXQoGNJSLiYcmJU+rIt35C3RY44NslCSEWBfYoQkkpMRDAy1KhRA/PmzcPKlSuxcuVKfPrpp/j000+RlZWFb775JmxxtFNaWorCwkKUlJSgoKDAeHmpxmzYVepltIVh1NngdPvNV7c8QfLTJYuOfILmoXtrn031C/j7dFmUcpjod6p52tLXKlo/q2h9zE+eJuc5G+Y3lfzD3FbtJA+3dhNCwvbHvDC60t26dWsMHjwYo0aNKnN8586dqFGjBk477bQyx7dt22ZSnApL8ioSJ5jMgqtM5tC5umpbPanKYmqlWVUOG/Rok8MbtPyosUEGYidh9Q23nSNRjzWEEJKMUad748aN+PDDD7F8+XJ88cUXKCgowAknnICWLVumTf+zn/3MpDgVGk4udhC1IU7sw7btxFGh2/H3o1NbntXV1SaiXmHWKYNfWdi3CCGEZALGn+l+9dVX8eqrr5Z55rhdu3a44447cPnll5sunoQEDR97DHq/2LL1lhDTsG3+D5vGLRtlyaR2Eoa8turF9nfbEEKI8beXV6lSBWPGjMHChQvx5ptv4p577kFubi4GDRqEa665xnTxJASifp47uSwdaUhwbDPIKgpBP6lkw3b7qPugTW0zal2QzMCmYIQX/EwXIYSkx/hK94033ljmme7evXvj9ttvxwMPPIBbbrkF3bt3x+DBg02LQSo4KkYJJ2P7sWklxTZj1xa9+EGX86ArjyhfOBhEFzb0D9v6RZTYUB82EdVnuuhwE0JsxuhKd9WqVR2f077xxhtx2WWX4eGHHzYpAgmJTIrEE6KKrhdvEX0EqRMa5eXx0z6pR2ITQgi2SUKItRh1utu2bYvXXnvN8XzPnj2xZs0akyKQCGH03x1T+mEA5H/Yogv2g7LYUCe2YIMubGqfKn2Wc0w02DKuEkJIJmHU6b766qsxZ84c/OlPf8LBgwfLnX/33XdRrVo1kyKQkIlPxJyQCdGLzuexg15fUVaZ/ehC59hmky5IeTLJubQhAGGDDIQQYitGne4//vGPGD58OP7xj3+gWbNmuPLKKzFhwgT8/e9/x69+9Ss899xzuPDCC33lPWbMmMRLM+J/bdu2dUy/evVqXHzxxWjevDlisRj+/ve/l0sTP5f6N2zYMF8yVjZS3xwa9uTrZSCFYTxlkpGWDI2lzMCWT0xFia7+lamBA5N9NRPHrsqCjXOLbfIQQojNGH+R2gMPPICLLroIDzzwAGbOnImnn346ca5///544IEHfOfdrl07zJs3L/E7J8f5dg4cOICWLVvikksuwY033pg2zQcffICjR48mfq9atQq//OUvcckll/iWsbJhu1Fvu3zErgAAP6NmhqCfHapodWKDDKrbuslP2FB3UZDaXtgmCCHEHeNON/DTs9s9e/bE0aNHsXnzZuzbtw/NmjVDnTp1AuWbk5ODRo0aSaU95ZRTcMoppwAAbr/99rRp6tevX+b3+PHj0apVK5x55pmB5CSkMmLr91yjwsaVKlUyXf5UbKgTG2Twg8l+zbEjc0huu6wvQghxxvh3upPJzs5Gq1at0KlTp8AONwCsW7cORUVFaNmyJQYNGoQtW7ZokPInDh8+jKeffhpDhw7NSIOoMsP6IslkqlNjiqD60GVY21QvNry4K9N0ETWZImcYRBWgSC6TDjchhLgTykq3Cbp164apU6eiTZs22LFjB8aOHYuePXti1apVqFmzZuD8Z86cib1792LIkCGeaQ8dOoRDhw4lfpeWlgYun/jDyZC3zUAzbSRxpahiUZHrUuXeTOjBBudfVoawxo1MIYw+YdNYapMscWyShRBCbCZjne6+ffsm/t+xY0d069YNxcXFeP7553HVVVcFzv+JJ55A3759UVRU5Jl23LhxGDt2bOAyiVnCMg5sNIzcsMnItklvpmSx6R6jxiYnj/UiR5h6sr1ObJePEEKIPYS6vdwktWrVwvHHH4/169cHzuvLL7/EvHnz8Pvf/14q/ciRI1FSUpL427p1a2AZSDBsMeQzBRqO4WCTnlX7iMk+FXV/lamXyrLKbJMcJD2pLzCjrgghxH4qjNO9f/9+bNiwAY0bNw6c15QpU9CgQQP069dPKn1eXh4KCgrK/JHoSDVAbDAgKys2GfA2yOEHE3Lb8NZw1TzDcC5saCNOMtC5+h9R6MKGtgGU7S+2yEQIIcSbjHW6b7nlFixatAibN2/Ge++9hwEDBiA7OxsDBw4EAFx55ZUYOXJkIv3hw4exYsUKrFixAocPH8ZXX32FFStWlFsZP3bsGKZMmYLBgwe7foKMZBY2Gas0lIgqNrVfU0TdL+I6jvKdEDbVs5MebJIxLNLdc9TtNV5+ZawPQgjJRDLWq9y2bRsGDhyIPXv2oH79+ujRoweWLl2a+OzXli1bkJX1v5jC9u3b0blz58TviRMnYuLEiTjzzDOxcOHCxPF58+Zhy5YtGDp0aGj3QvRj+8omDaXy2FRfJp0Lm575l5XDdN3EdeIkT5hOr1NZYdZXqh7C7hu2jJ829ZV0RCWXrfoghBDiTExw9NZOaWkpCgsLUVJSwq3mlRg3B8KWFxGFsVqi4tjZIIdNspiuH1vqJrkcIP0jImE7vXE5olhRjLr8VBniv6MwF9IFIKIyW+Jlc5WZEELsxzZ/LGO3lxNC9FBZDEdbVu9Uifo55jB1lm6LdxR1lipH2H0k6vJTZYiy3yT3Wxv6Lx1uQgghfsjY7eWEZCI2GI1RYPMW0VQySdagyAYiwtRH8lbzKMqPskybyo/LYIuTaYMcUeuAEEJI5kKnmxCDpHPgKpvhlqkrzCaReVbVhscQoqq3ytZHbMaGurBBBkIIISQI3F5OiCFsMRTdPkFkC2E7mOR/uL21O/k8IYQQQgjxB51uQkIiymdT/Z6vaHjdb9h1ZEtAJPX53aif4yWEEEIIqUhwezkhhon62VRbyJRnpcOS0WnbfdQv7yKEEEIIIXrhSjchBkl2ZCqzU2PLs8vJZdpCOlkqc1shhBBCCKlo0OkmxDBCiMidqFTHLlNWnU3gdN9R6CTdtm5CCCGEEFKxoNNNSAXHZuc6Sicz6m9Bx0ndDWFzfRFCCCGEEHXodBNSyYjyM1C2bKVOXWGOSo5keehsE0IIIYRUTOh0E1IJSHV4bXDwot5KzeftCSGEEEJIGPDt5YRUImxwdG1y/qMunxBCCCGEVHzodBNSSbDFwbRFDkIIIYQQQsKA28sJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHyRmgHiL4oqLS2NWBJCCCGEEEIIqVzE/TBbXuBLp9sAe/bsAQA0bdo0YkkIIYQQQgghpHKyZ88eFBYWRi0GnW4T1KlTBwCwZcuWQJV8yimn4IMPPggki448bJKltLQUTZs2xdatW1FQUBCpLBVJt7r0qkMWm/LQkQ91ay4fm8YDXfnYkodNuq1o9UPdmsmDY625fGxqs7rysUUW6tZcHiUlJWjWrFnCL4saOt0GyMr66VH5wsLCQB0oOzs78MShIw/bZAGAgoIC6taALEH1qksWW/LQmQ91ay4fG8YDXfnYkkccG3Rb0eonDnVrRhaOtebysaHN6srHJlkA6tZEHnHiflnU2CEFScuwYcOsyENXPrpk0YFN92OTLDqw5X5sqh9d2KKXiqZbm+7Hljx0YdP92CSLDmy6H5tk0YEt92NT/ejApvuxSRYd2HQ/tuRhGzFhy9PlFYjS0lIUFhaipKREW5SG/AR1awbq1RzUrTmoW3NQt+agbs1AvZqDujUHdWsO23TLlW4D5OXlYfTo0cjLy4talAoHdWsG6tUc1K05qFtzULfmoG7NQL2ag7o1B3VrDtt0y5VuQgghhBBCCCHEEFzpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6dbMP/7xDzRv3hz5+fno1q0bli1bFrVIkfL222/j/PPPR1FREWKxGGbOnFnmvBACd911Fxo3boyqVauid+/eWLduXZk03377LQYNGoSCggLUqlULV111Ffbv318mzcqVK9GzZ0/k5+ejadOmmDBhQjlZpk+fjrZt2yI/Px8dOnTA7Nmztd9vWIwbNw6nnHIKatasiQYNGqB///5Yu3ZtmTQ//PADhg0bhrp166JGjRq4+OKLsWvXrjJptmzZgn79+qFatWpo0KABbr31Vvz4449l0ixcuBBdunRBXl4eWrdujalTp5aTpyK1+8mTJ6Njx44oKChAQUEBunfvjtdffz1xnnrVx/jx4xGLxTBixIjEMerXH2PGjEEsFivz17Zt28R56jUYX331FX7729+ibt26qFq1Kjp06IAPP/wwcZ5zmT+aN29ert3GYrHEN3rZbv1x9OhRjBo1Ci1atEDVqlXRqlUr3H333Uh+dzLbrH/27duHESNGoLi4GFWrVsXpp5+ODz74IHGeupUjk3wEGVk8EUQb06ZNE7m5ueLJJ58Uq1evFn/4wx9ErVq1xK5du6IWLTJmz54t/vKXv4iXXnpJABAzZswoc378+PGisLBQzJw5U3zyySfiggsuEC1atBAHDx5MpDn33HPFSSedJJYuXSreeecd0bp1azFw4MDE+ZKSEtGwYUMxaNAgsWrVKvHcc8+JqlWrikcffTSR5t133xXZ2dliwoQJYs2aNeLOO+8UVapUEZ9++qlxHZigT58+YsqUKWLVqlVixYoV4rzzzhPNmjUT+/fvT6S55pprRNOmTcX8+fPFhx9+KE477TRx+umnJ87/+OOPon379qJ3797i448/FrNnzxb16tUTI0eOTKTZuHGjqFatmrjpppvEmjVrxMMPPyyys7PFnDlzEmkqWrufNWuWeO2118QXX3wh1q5dK+644w5RpUoVsWrVKiEE9aqLZcuWiebNm4uOHTuK4cOHJ45Tv/4YPXq0aNeundixY0fi7+uvv06cp1798+2334ri4mIxZMgQ8f7774uNGzeKN954Q6xfvz6RhnOZP3bv3l2mzc6dO1cAEAsWLBBCsN365Z577hF169YVr776qti0aZOYPn26qFGjhnjwwQcTadhm/XPppZeKE088USxatEisW7dOjB49WhQUFIht27YJIahbWTLJR5CRxQs63Ro59dRTxbBhwxK/jx49KoqKisS4ceMilMoeUjvUsWPHRKNGjcR9992XOLZ3716Rl5cnnnvuOSGEEGvWrBEAxAcffJBI8/rrr4tYLCa++uorIYQQjzzyiKhdu7Y4dOhQIs1tt90m2rRpk/h96aWXin79+pWRp1u3buLqq6/Weo9RsXv3bgFALFq0SAjxkx6rVKkipk+fnkjz2WefCQBiyZIlQoifBrusrCyxc+fORJrJkyeLgoKChC7//Oc/i3bt2pUp67LLLhN9+vRJ/K4M7b527driX//6F/WqiX379onjjjtOzJ07V5x55pkJp5v69c/o0aPFSSedlPYc9RqM2267TfTo0cPxPOcyfQwfPly0atVKHDt2jO02AP369RNDhw4tc+yiiy4SgwYNEkKwzQbhwIEDIjs7W7z66qtljnfp0kX85S9/oW59YrOPICOLDNxeronDhw9j+fLl6N27d+JYVlYWevfujSVLlkQomb1s2rQJO3fuLKOzwsJCdOvWLaGzJUuWoFatWujatWsiTe/evZGVlYX3338/kebnP/85cnNzE2n69OmDtWvX4rvvvkukSS4nnqai1E1JSQkAoE6dOgCA5cuX48iRI2XuuW3btmjWrFkZ3Xbo0AENGzZMpOnTpw9KS0uxevXqRBo3vVX0dn/06FFMmzYN33//Pbp37069amLYsGHo169fOR1Qv8FYt24dioqK0LJlSwwaNAhbtmwBQL0GZdasWejatSsuueQSNGjQAJ07d8bjjz+eOM+5TA+HDx/G008/jaFDhyIWi7HdBuD000/H/Pnz8cUXXwAAPvnkEyxevBh9+/YFwDYbhB9//BFHjx5Ffn5+meNVq1bF4sWLqVtN2KRHGVlkoNOtiW+++QZHjx4tM/ADQMOGDbFz586IpLKbuF7cdLZz5040aNCgzPmcnBzUqVOnTJp0eSSX4ZSmItTNsWPHMGLECJxxxhlo3749gJ/uNzc3F7Vq1SqTNlW3fvVWWlqKgwcPVth2/+mnn6JGjRrIy8vDNddcgxkzZuDEE0+kXjUwbdo0fPTRRxg3bly5c9Svf7p164apU6dizpw5mDx5MjZt2oSePXti37591GtANm7ciMmTJ+O4447DG2+8gWuvvRY33HADnnrqKQCcy3Qxc+ZM7N27F0OGDAHA8SAIt99+Oy6//HK0bdsWVapUQefOnTFixAgMGjQIANtsEGrWrInu3bvj7rvvxvbt23H06FE8/fTTWLJkCXbs2EHdasImPcrIIkOOdEpCiJUMGzYMq1atwuLFi6MWpcLQpk0brFixAiUlJXjhhRcwePBgLFq0KGqxMp6tW7di+PDhmDt3brlVAhKM+AoWAHTs2BHdunVDcXExnn/+eVStWjVCyTKfY8eOoWvXrvh//+//AQA6d+6MVatW4Z///CcGDx4csXQVhyeeeAJ9+/ZFUVFR1KJkPM8//zyeeeYZPPvss2jXrh1WrFiBESNGoKioiG1WA//5z38wdOhQNGnSBNnZ2ejSpQsGDhyI5cuXRy0asRiudGuiXr16yM7OLvdWzV27dqFRo0YRSWU3cb246axRo0bYvXt3mfM//vgjvv322zJp0uWRXIZTmkyvm+uvvx6vvvoqFixYgJ/97GeJ440aNcLhw4exd+/eMulTdetXbwUFBahatWqFbfe5ublo3bo1Tj75ZIwbNw4nnXQSHnzwQeo1IMuXL8fu3bvRpUsX5OTkICcnB4sWLcJDDz2EnJwcNGzYkPrVRK1atXD88cdj/fr1bLcBady4MU488cQyx0444YTE9n3OZcH58ssvMW/ePPz+979PHGO79c+tt96aWO3u0KEDrrjiCtx4442JHUZss8Fo1aoVFi1ahP3792Pr1q1YtmwZjhw5gpYtW1K3mrBJjzKyyECnWxO5ubk4+eSTMX/+/MSxY8eOYf78+ejevXuEktlLixYt0KhRozI6Ky0txfvvv5/QWffu3bF3794y0cO33noLx44dQ7du3RJp3n77bRw5ciSRZu7cuWjTpg1q166dSJNcTjxNptaNEALXX389ZsyYgbfeegstWrQoc/7kk09GlSpVytzz2rVrsWXLljK6/fTTT8sMWHPnzkVBQUHCwPTSW2Vp98eOHcOhQ4eo14CcffbZ+PTTT7FixYrEX9euXTFo0KDE/6lfPezfvx8bNmxA48aN2W4DcsYZZ5T7JOMXX3yB4uJiAJzLdDBlyhQ0aNAA/fr1Sxxju/XPgQMHkJVV1sTPzs7GsWPHALDN6qJ69epo3LgxvvvuO7zxxhu48MILqVtN2KRHGVmkkH7lGvFk2rRpIi8vT0ydOlWsWbNG/PGPfxS1atUq81bNysa+ffvExx9/LD7++GMBQEyaNEl8/PHH4ssvvxRC/PQK/lq1aomXX35ZrFy5Ulx44YVpPwfQuXNn8f7774vFixeL4447rsznAPbu3SsaNmworrjiCrFq1Soxbdo0Ua1atXKfA8jJyRETJ04Un332mRg9enRGfVYhlWuvvVYUFhaKhQsXlvncyoEDBxJprrnmGtGsWTPx1ltviQ8//FB0795ddO/ePXE+/qmVc845R6xYsULMmTNH1K9fP+2nVm699Vbx2WefiX/84x9pP7VSkdr97bffLhYtWiQ2bdokVq5cKW6//XYRi8XEm2++KYSgXnWT/PZyIahfv9x8881i4cKFYtOmTeLdd98VvXv3FvXq1RO7d+8WQlCvQVi2bJnIyckR99xzj1i3bp145plnRLVq1cTTTz+dSMO5zD9Hjx4VzZo1E7fddlu5c2y3/hg8eLBo0qRJ4pNhL730kqhXr57485//nEjDNuufOXPmiNdff11s3LhRvPnmm+Kkk04S3bp1E4cPHxZCULeyZJKPICOLF3S6NfPwww+LZs2aidzcXHHqqaeKpUuXRi1SpCxYsEAAKPc3ePBgIcRPr+EfNWqUaNiwocjLyxNnn322WLt2bZk89uzZIwYOHChq1KghCgoKxO9+9zuxb9++Mmk++eQT0aNHD5GXlyeaNGkixo8fX06W559/Xhx//PEiNzdXtGvXTrz22mvG7ts06XQKQEyZMiWR5uDBg+K6664TtWvXFtWqVRMDBgwQO3bsKJPP5s2bRd++fUXVqlVFvXr1xM033yyOHDlSJs2CBQtEp06dRG5urmjZsmWZMuJUpHY/dOhQUVxcLHJzc0X9+vXF2WefnXC4haBedZPqdFO//rjssstE48aNRW5urmjSpIm47LLLynxHmnoNxiuvvCLat28v8vLyRNu2bcVjjz1W5jznMv+88cYbAkA5fQnBduuX0tJSMXz4cNGsWTORn58vWrZsKf7yl7+U+WwS26x//vvf/4qWLVuK3Nxc0ahRIzFs2DCxd+/exHnqVo5M8hFkZPEiJoQQ8uvihBBCCCGEEEIIkYXPdBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYQQQogh6HQTQgghhBBCCCGGoNNNCCGEEEIIIYQYgk43IYQQQgghhBBiCDrdhBBCCCGEEEKIIeh0E0IIIYQQQgghhqDTTQghhBBCCCGEGIJONyGEEEIIIYQQYgg63YQQQgghhBBCiCHodBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYQQQogh6HQTQgghhBBCCCGGoNNNCCGEEEIIIYQYwlqne8yYMYjFYmX+2rZt65j+8ccfR8+ePVG7dm3Url0bvXv3xrJly8qkeemll3DOOeegbt26iMViWLFiRZnz3377Lf70pz+hTZs2qFq1Kpo1a4YbbrgBJSUlJm6REEIIIYQQQkgFJydqAdxo164d5s2bl/idk+Ms7sKFCzFw4ECcfvrpyM/Px7333otzzjkHq1evRpMmTQAA33//PXr06IFLL70Uf/jDH8rlsX37dmzfvh0TJ07EiSeeiC+//BLXXHMNtm/fjhdeeEFa7mPHjmH79u2oWbMmYrGYwh0TQgghhBBCCAmCEAL79u1DUVERsrKiX2eOCSFE1EKkY8yYMZg5c2a51WhZjh49itq1a+P//u//cOWVV5Y5t3nzZrRo0QIff/wxOnXq5JrP9OnT8dvf/hbff/+9q9OfzLZt29C0aVNfchNCCCGEEEIICc7WrVvxs5/9LGox7F7pXrduHYqKipCfn4/u3btj3LhxaNasmdS1Bw4cwJEjR1CnTp1AMpSUlKCgoMDV4T506BAOHTqU+B2PY2zduhUFBQWByieEEEIIIYQQIk9paSmaNm2KmjVrRi0KAIud7m7dumHq1Klo06YNduzYgbFjx6Jnz55YtWqVlPJuu+02FBUVoXfv3r5l+Oabb3D33Xfjj3/8o2u6cePGYezYseWOFxQU0OkmhBBCCCGEkAiw5VFfa7eXp7J3714UFxdj0qRJuOqqq1zTjh8/HhMmTMDChQvRsWPHcudltpeXlpbil7/8JerUqYNZs2ahSpUqjuWlrnTHIyvxVXJCCCGEEEIIIeFQWlqKwsJCa/wxa1e6U6lVqxaOP/54rF+/3jXdxIkTMX78eMybNy+twy3Dvn37cO6556JmzZqYMWOGq8MNAHl5ecjLy/NVFiGEEEIIIYSQikv0r3KTZP/+/diwYQMaN27smGbChAm4++67MWfOHHTt2tVXOaWlpTjnnHOQm5uLWbNmIT8/36/IhBBCCCGEEEIqOdaudN9yyy04//zzUVxcjO3bt2P06NHIzs7GwIEDAQBXXnklmjRpgnHjxgEA7r33Xtx111149tln0bx5c+zcuRMAUKNGDdSoUQPAT9/h3rJlC7Zv3w4AWLt2LQCgUaNGaNSoUcLhPnDgAJ5++mmUlpaitLQUAFC/fn1kZ2eHqgNCCCGEEEIIIZmNtU73tm3bMHDgQOzZswf169dHjx49sHTpUtSvXx8AsGXLljLfXJs8eTIOHz6MX//612XyGT16NMaMGQMAmDVrFn73u98lzl1++eVl0nz00Ud4//33AQCtW7cuk8+mTZvQvHlz3bdJCCGEEEIIIaQCkzEvUsskbHtwnxBCCCGEEEIqC7b5YxnzTDchhBBCCCGEEOJFYWFh1CKUgU43IYQQQgghhJAKQ0lJSdQilIFONyGEEEIIIYSQCgNXugkhhBBCCCGEEENwpZsQQgghhBBCCDEEV7oJIYQQQgghhBBDcKWbEEIIIYQQQgipJNDpJoQQQgghhBBSYeD2ckIIIYQQQgghxBDcXk4IIYQQQgghhBiCK92EEEIIIYQQQoghuNJNCCGEEEIIIYRUEuh0E0IIIYQQQgipMHB7OSGEEEIIIYQQYghuLyeEEEIIIYQQQgzBlW5CCCGEEEIIIcQQXOkmhBBCCCGEEEIqCXS6CSGEEEIIIYRUCGKxWNQilINONyGEEEIIIYSQCoEQImoRykGnmxBCCCGEEEJIhYAr3YQQQgghhBBCiCG40k0IIYQQQgghhFQitDndP/zwAw4dOqQrO0IIIYQQQgghRIkKtb184cKFuPHGG3HqqaeiRo0aqF69OqpVq4aaNWvi1FNPxYgRI7Bw4UKNohJCCCGEEEIIIc7YuL08JhSkOnLkCB599FFMmjQJmzdvRp06ddClSxe0bNkStWvXhhAC3333HTZt2oSPPvoI3377LYqLi3HzzTfj6quvRpUqVUzeizWUlpaisLAQJSUlKCgoiFocQgghhBBCCKkUxGIxlJSUWOWPKTndxcXFOHz4MAYPHoxLL70UXbp0cU2/fPlyTJ8+Hf/+97+Rm5uLzZs3B5U3I6DTTQghhBBCCCHRYJs/puR0P/rooxgyZAjy8vKUCjl8+DCmTJmCq6++WlnATMS2SiaEEEIIIYSQyoJt/piS003kiFcyYOczBYQQQgghhBBSEbFxezk/GWaQkpKSqEUghBBCCCGEkEqDjYuedLoNEl/tJoQQQgghhBBSOclRvaBXr16O52KxGPLz81FcXIzzzjsPv/rVrwIJl+lwpZsQQgghhBBCwiO+vdwmlJ/pbt++vesHxw8cOICtW7fi6NGj6NOnD15++eVK86mwOHymmxBCCCGEEEKiwbYXqSmvdK9atcozzcGDB/Hoo4/ipptuwoQJE/CXv/zFl3CZjm0RFkIIIYQQQgipyFSIlW4VfvOb3+CTTz7B6tWrTRVhJVzpJoQQQgghhJBosG2l2+iL1M444wxs2rTJZBFWY1uEhRBCCCGEEEJIuBh1ug8cOICcHOUd7BUGvr2cEEIIIYQQQsLB7d1jUWLM6RZCYNasWejQoYOpIqyHK92EEEIIIYQQEg62PtqrvAz97bffup4/ePAg1q5di8mTJ+O9997D008/7Vu4TKewsNDaiieEEEIIIYSQikQsFrPS/1J2uuvVqye1bF+lShXcfffdGDhwoC/BKgJc6SaEEEIIIYSQcLDR4QZ8ON133XWXq9Odn5+P4uJinH322ahfv34g4TIdrnQTQgghhBBCSOXG6CfDAOC7775D7dq1TRZhHba9op4QQgghhBBCKjrx7eW2+WNGXqR26NAhTJ8+Hf3790fjxo1NFJEx2PoGPUIIIYQQQgipSNi6y1ib0y2EwLx58/C73/0ODRs2xGWXXYYlS5bgN7/5ja/8xowZg1gsVuavbdu2jukff/xx9OzZE7Vr10bt2rXRu3dvLFu2rEyal156Ceeccw7q1q2LWCyGFStWlMvnhx9+wLBhw1C3bl3UqFEDF198MXbt2uXrHgB7K54QQgghhBBCKhK2LngGdrqXL1+Om266CU2aNME555yDf//73+jXrx/effdd7Ny5E08++aTvvNu1a4cdO3Yk/hYvXuyYduHChRg4cCAWLFiAJUuWoGnTpjjnnHPw1VdfJdJ8//336NGjB+69917HfG688Ua88sormD59OhYtWoTt27fjoosu8n0PtlY8IYQQQgghhFQkbF3wVH6RGgBs3LgRzzzzDJ555hmsW7cOTZo0waBBg3Dqqafisssuw8UXX4zu3bsHFy4nB40aNZJK+8wzz5T5/a9//Qsvvvgi5s+fjyuvvBIAcMUVVwAANm/enDaPkpISPPHEE3j22WfRq1cvAMCUKVNwwgknYOnSpTjttNOU78HWiieEEEIIIYSQikSF+WRY9+7dsWzZMtSrVw+//vWv8a9//Qs9evQAAGzYsEGrcOvWrUNRURHy8/PRvXt3jBs3Ds2aNZO69sCBAzhy5Ajq1KkjXd7y5ctx5MgR9O7dO3Gsbdu2aNasGZYsWeLodB86dAiHDh1K/C4tLU3839aKJ4QQQgghhJCKhK1+l7LT/f7776NFixaYNGkS+vXrh5wcX4vlnnTr1g1Tp05FmzZtsGPHDowdOxY9e/bEqlWrULNmTc/rb7vtNhQVFZVxoL3YuXMncnNzUatWrTLHGzZsiJ07dzpeN27cOIwdOzbtOVsrnhBCCCGEEEKIeZSf6f6///s/NG7cGAMGDECjRo1w9dVXY8GCBdqdy759++KSSy5Bx44d0adPH8yePRt79+7F888/73nt+PHjMW3aNMyYMQP5+fla5UrHyJEjUVJSkvjbunVr4hyf6SaEEEIIIYQQ89jqeykvU1933XW47rrrsGnTJjzzzDN49tln8fjjj6NRo0b4xS9+kXjTuG5q1aqF448/HuvXr3dNN3HiRIwfPx7z5s1Dx44dlcpo1KgRDh8+jL1795ZZ7d61a5frs+V5eXnIy8tLe44r3YQQQgghhBBiHlt9L99vL2/RogXuvPNOrFmzBh988AEuv/xyLFy4EEIIXHfddfjjH/+IV199FT/88IMWQffv348NGza4fvd7woQJuPvuuzFnzhx07dpVuYyTTz4ZVapUwfz58xPH1q5diy1btvh+MZyt0RZCCCGEEEIIqUjY6nvFhMZwwLFjx/DWW2/h6aefxowZM7Bv3z5Uq1YN+/fvV87rlltuwfnnn4/i4mJs374do0ePxooVK7BmzRrUr18fV155JZo0aYJx48YBAO69917cddddePbZZ3HGGWck8qlRowZq1KgBAPj222+xZcsWbN++Hf369cO0adPQpk0bNGrUKLGSfe2112L27NmYOnUqCgoK8Kc//QkA8N5770nLXlpaisLCQpSUlKCgoED53gkhhBBCCCGE+MM2fyzwd7rLZJaVhd69e2Pq1KnYtWsXnnvuOZx99tm+8tq2bRsGDhyINm3a4NJLL0XdunWxdOlS1K9fHwCwZcsW7NixI5F+8uTJOHz4MH7961+jcePGib+JEycm0syaNQudO3dGv379AACXX345OnfujH/+85+JNA888AB+9atf4eKLL8bPf/5zNGrUCC+99JKvewDsjbYQQgghhBBCSEXCVt9L60o3+QnbIiuEEEIIIYQQUlmwzR9TWuk+8cQT8e9//xuHDx+WvubQoUOYMmUKTjzxRGXhKgK2RlsIIYQQQgghhJhH6e3lQ4YMwU033YThw4fjggsuQO/evdGlSxe0aNEC1apVAwB8//332LRpEz788EPMmzcPr7zyCnJzc3HrrbcauQHb4UYCQgghhBBCCDFLLBaz1vdS3l6+b98+PPHEE5g6dSpWrlyZWMnNyfnJf//xxx8B/ORstm/fHkOHDsXQoUOtWNYPi9TtDDY3AEIIIYQQQgipSNi2vTzQM92bN2/Ge++9h88//xx79uwBANStWxdt27ZF9+7d0aJFC22CZhK2VTIhhBBCCCGEVGSSFzpt88eUtpen0rx5czRv3lyTKBUXrnQTQgghhBBCiDls9re0fjKMpMfmBkAIIYQQQgghmY7NL7Cm0x0CNjcAQgghhBBCCMl0bF7opNMdAjY3AEIIIYQQQgjJdGxe6KTTHQI2NwBCCCGEEEIIyXRsXujU5nRPmjRJV1YVDpsbACGEEEIIIYRkOjYvdGpzuv/2t78l/n/xxRfryrZCYHMDIIQQQgghhJBMx+aFTm1O9wknnIB7770XX3zxBebOnasrW0IIIYQQQgghxBWbFzoDfac7mWeffRZjxoxB7969ceDAAXTq1AkdOnRAx44d0bFjR3To0AFFRUW6issobI66EEIIIYQQQkimY7PPFRMGpKtRowbmzZuHlStXYuXKlfj000/x6f/H3p3HN1Hn/wN/5Wh6UNKD0pbWcsm1XOUorUUBWboC4n2xLCt44argyqIIqFDU71pE3UUF0cWDXVdF8Ce4i4CLUEC0giAIBeTWItCWs3ebtvn8/ogZkjZpk+aYT8Lr+Xjk0XTmnckn85n5zLznM8fevdBqtTh79qy3v046paWliIqKQklJCYxGIzQajdQLARERERERUSCzzbka5mNq81pPt63CwkJERkbiqquushv+yy+/+OLrpMeEm4iIiIiIyHdkzrm8ck23yWRCZWWl8n9kZKTDuCuuuMIbXxeQZL7GgIiIiIiIKFDJnmt51NNdWFiICRMmIDc3F2azGXFxcejbty9SU1OVvz179kRISIi3yktERERERESkkLmXG/Aw6X7iiSewZcsWzJo1C9HR0XjiiSdw6tQpbNq0CWaz2fIFej1qamq8UthAJvuCQEREREREFIhkv4eWR6eXb9iwAQ899BCee+45TJw4EQDw+uuvo6CgAKNGjULfvn3x9NNPe6WggU72Ux6IiIiIiIjI+zxKuktLS9G3b18Alh5twHJ9d7t27bBq1SrU19ejY8eOHheSiIiIiIiIyBGZe7kBD5PulJQUFBYWAgCioqIQHh6uPBIsJCQEd999N/7+9797XsogIPuCQEREREREFIhkP6vYo6R7+PDh+Oqrr5T/e/ToYfd/eHg4Dh065MlXBA3ZFwQiIiIiIqJAJHsHp0c3Unvsscfw7rvvorq6GmFhYZg8eTIefvhh9O7dG1deeSUWLFjA08uJiIiIiIjIZ2S/kZpGeLF0ZrMZd999Nz766CMAQEREBFasWIHRo0d76ysCQmlpKaKiolBSUgKj0QhA/gWBiIiIiIgoGDjKx9Tk1aTb6sCBA/jll1/Qr18/tG3b1tuTl55slUxERERERBSsGnZwypaPeXR6uTO/+c1v8Jvf/MYXkw5Y7OkmIiIiIiK6/Hh0IzVynRCCN1MjIiIiIiLyokDo3GTSTURERERERAFJ9oQbYNJNREREREREASoQziZm0k1ERERERETkI0y6iYiIiIiIKCDx9HIiIiIiIiIiH+Hp5URERERERESXMSbdfsTHhhEREREREV1emHQTERERERER+QiTbiIiIiIiIgo4Go2GN1IjIiIiIiIiupwx6SYiIiIiIiLyESbdRERERERERD7CpNvPeAdzIiIiIiKiyweTbiIiIiKiyxA7goj8Q9qke+7cudBoNHavHj16OI1fsmQJhgwZgpiYGMTExCArKwvbt2+3ixFCYM6cOWjXrh3Cw8ORlZWFw4cP28UcOnQIN998M+Li4mA0GnHNNdcgNzfXJ79RLQ3nq78bXEffz0a/MbXnDeuIiCiwuNpu+7I9d7aN57ZEHg3rgnVD5HvSJt0A0KtXL5w+fVp5bd261Wnspk2bMG7cOOTm5iIvLw8pKSm47rrrcPLkSSVm/vz5eO211/Dmm29i27ZtaNWqFUaOHInq6mol5oYbbkBdXR02btyInTt3IjU1FTfccAMKCwt9+lv9wdqgCiHsXrbj/LEhBtBsGfzV8Mu2U+Ds+31ZpqZ+vxrLSaCQYXkhCjTeWGdcSerUWCdlOJgNNN1uO0u0vFVmZ9v4hi9/zivZlhW1y9FUHTkrn6/LI8t629R4klMg1Y1GSPpgs7lz52LVqlXYvXt3iz5fX1+PmJgYLFy4EBMmTIAQAklJSXj88cfxxBNPAABKSkqQkJCApUuX4ve//z3Onj2Ltm3bYsuWLRgyZAgAoKysDEajEevXr0dWVpZL311aWoqoqCiUlJTAaDQ6jLEmvy3l6ucbLozNfcbRwtvwM54s4K7+Ztvv8PYi6so8cXe+eaMczX1XS+aJu3Xl7/ppajqulN3XzZerZfDn8tpcWfzN3eU4GLnSbjaMa8n88Ue75G4Z3GW7Y99wmDvf7862zNF3uvu9zX1Hw+n6qu1tqgze/D0tqRNPyuDqOuSL6TVVV95cx1yZT+5s91qyH+nq+tNUmRquT57Wue3n/VUXjsrgrbatJd/vy+/wlLfqxNny7+m639R64Eo+5k96tQvQlMOHDyMpKQlhYWHIzMxETk4O2rdv79JnKysrUVtbi9jYWADA8ePHUVhYaJc4R0VFISMjA3l5efj973+PNm3aoHv37vjXv/6FAQMGIDQ0FG+99Rbi4+MxcOBAn/xGdzRcMF1dWd1ZeB0lPt7eGLpTjoZH7xuWranhrkzflfFNlcEZX9ZNc3XiywTQ0XSb+77m5oVtr4ez73A2TX8ku65Mt7m6aSreFc7mq6fLqStasj41NR/cOajkjwN8rnJlOW4u3p3lxJX2zt2dIW8l/d5IkpuaF80tI+6sk84+58n64sp8dHceuVs3vmj73GnXvV2G5toQXx4Qbmqd8veBMlcOJtlO0x+dCM7Wm4bT90YdNbWsNfweT36XozJ4epCnuflg3WY3V+6mxsuyjbd+zpXtvKN6a+43tuSAUiCQNunOyMjA0qVL0b17d5w+fRrPPvsshgwZgvz8fLRu3brZz8+YMQNJSUlKkm09PTwhIcEuLiEhQRmn0Wjw5Zdf4pZbbkHr1q2h1WoRHx+PdevWISYmxul31dTUoKamRvm/tLTUpd/Y3EKlRrKr9vc5+/6mVm5fzyd3EypflMGV6fqiMXaFK/PH0x2N5uId7aCpcdTa1Z1lb+ysupPEuPJd7iRwzbVdrnyPs50PV+dPU8t7cztorh6oa1hGTw5gOhrX1JF/V3YoXdlBdfQZT5I8T9fVpsY7O5jmadvW1Lxzd174op1192CAP9r6pg58q3Fg152DTp6UqSXrlKPP+WoeNde2+mt/yNn3NxXjyTxpanm0He7q+tuSMrhbvpZ+v7vbDlc+7+5BXle4s67Yxrq6TfBHO+Nv0ibdo0ePVt737dsXGRkZ6NChA5YvX47777+/yc/OmzcPy5Ytw6ZNmxAWFubydwohMHnyZMTHx+Orr75CeHg43n77bdx444347rvv0K5dO4efy8nJwbPPPuvy91i/y5UkMlgWNE/JMB9kKENT1C6fmt/vrR4sf/B1mdzpKbAOb/hZT5JqV8rXVB21pHfK2ThnO0Cu7Jj6YzlqyU6XJ9N1NN6dg4n+Xnb9XQfNJeCXQ7LrTnn8paUHSHxRBkf8key6Qu3tnaMDeo5iPP0OV767qeTUH+uvr7X0gKs/eOt7XGl7PO1c8Tepb6RmKzo6Gt26dcORI0eajHv55Zcxb948/O9//0Pfvn2V4YmJiQCAoqIiu/iioiJl3MaNG7F69WosW7YMV199NQYMGIA33ngD4eHh+Oc//+n0O2fNmoWSkhLldeLECZd/l+0C03DBUrsBJQpE1nWH648923libWuctTf+SK78UUe239PcS60yqq25eaLmfPD3dzf8Ptv1xN8Jp6NyNBzuTzKsD82ts2pxtU25HLjbzvriuwH7nu/LqV5kar+9xVlbaDs+UARM0l1eXo6jR4867W0GLHcnf/7557Fu3TqkpaXZjevUqRMSExOxYcMGZVhpaSm2bduGzMxMAJbrwAFAq7WfLVqtFmaz2en3hoaGwmg02r1cIdMGlYguD5fbTgi13OW8bMiSSKn9/USBhuuLRbD9/uaS70AgbdL9xBNPYPPmzfjpp5/wzTff4NZbb4VOp8O4ceMAABMmTMCsWbOU+BdffBGzZ8/Gu+++i44dO6KwsBCFhYUoLy8HYKmgqVOn4v/+7//wn//8B3v37sWECROQlJSEW265BQCQmZmJmJgYTJw4ET/88AMOHTqE6dOn4/jx4xgzZoxPfic3qERERERERE3z51l53ibtNd2//PILxo0bh3PnzqFt27a45ppr8O2336Jt27YAgIKCArse6cWLF8NkMuGOO+6wm052djbmzp0LAHjyySdRUVGBBx98EBcvXsQ111yDdevWKdd9x8XFYd26dXj66afx29/+FrW1tejVqxc+++wzpKam+ueHExERERERUSOBlmxbSfuc7kAm23PhiIiIiIiILhey5WPSnl5OREREREREFOiYdBMRERERERH5iLTXdAcy6xn7paWlKpeEiIiIiIjo8mLNw2S5kppJtw+cO3cOAJCSkqJySYiIiIiIiC5P586dQ1RUlNrFYNLtC7GxsQAsd1j3pJIHDRqE7777zqOyeGMaMpWltLQUKSkpOHHihEc3RZDl98hSFm/NV2+URaZpeGM6nLe+m45M7YG3piPLNGSat8FWP5y3vpkG21rfTUemZdZb05GlLJy3vptGSUkJ2rdvr+RlamPS7QPWR5lFRUV5tALpdDqPNxzemIZsZQEAo9HIeeuDsng6X71VFlmm4c3pcN76bjoytAfemo4s07CSYd4GW/1Ycd76pixsa303HRmWWW9NR6ayAJy3vpiGle0jptUkRynIocmTJ0sxDW9Nx1tl8QaZfo9MZfEGWX6PTPXjLbLMl2CbtzL9Hlmm4S0y/R6ZyuINMv0emcriDbL8Hpnqxxtk+j0ylcUbZPo9skxDNnxOtw/I9ly4YMJ56xucr77Dees7nLe+w3nrO5y3vsH56juct77Dees7ss1b9nT7QGhoKLKzsxEaGqp2UYIO561vcL76Duet73De+g7nre9w3voG56vvcN76Duet78g2b9nTTUREREREROQj7OkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuL1u0aBE6duyIsLAwZGRkYPv27WoXSVVbtmzBjTfeiKSkJGg0GqxatcpuvBACc+bMQbt27RAeHo6srCwcPnzYLub8+fMYP348jEYjoqOjcf/996O8vNwuZs+ePRgyZAjCwsKQkpKC+fPnNyrLihUr0KNHD4SFhaFPnz5Ys2aN13+vv+Tk5GDQoEFo3bo14uPjccstt+DgwYN2MdXV1Zg8eTLatGmDyMhI3H777SgqKrKLKSgowJgxYxAREYH4+HhMnz4ddXV1djGbNm3CgAEDEBoaii5dumDp0qWNyhNMy/3ixYvRt29fGI1GGI1GZGZmYu3atcp4zlfvmTdvHjQaDaZOnaoM4/xtmblz50Kj0di9evTooYznfPXMyZMn8cc//hFt2rRBeHg4+vTpgx07dijjuS1rmY4dOzZabjUajfKMXi63LVNfX4/Zs2ejU6dOCA8Px5VXXonnn38etvdO5jLbcmVlZZg6dSo6dOiA8PBwDB48GN99950ynvPWNYGUI7hSlmYJ8pply5YJg8Eg3n33XbFv3z4xadIkER0dLYqKitQummrWrFkjnn76afHpp58KAGLlypV24+fNmyeioqLEqlWrxA8//CBuuukm0alTJ1FVVaXEjBo1SqSmpopvv/1WfPXVV6JLly5i3LhxyviSkhKRkJAgxo8fL/Lz88VHH30kwsPDxVtvvaXEfP3110Kn04n58+eL/fv3i2eeeUaEhISIvXv3+nwe+MLIkSPFe++9J/Lz88Xu3bvF9ddfL9q3by/Ky8uVmIceekikpKSIDRs2iB07doirrrpKDB48WBlfV1cnevfuLbKyssSuXbvEmjVrRFxcnJg1a5YSc+zYMRERESGmTZsm9u/fL15//XWh0+nEunXrlJhgW+7/85//iM8//1wcOnRIHDx4UDz11FMiJCRE5OfnCyE4X71l+/btomPHjqJv377iscceU4Zz/rZMdna26NWrlzh9+rTyOnPmjDKe87Xlzp8/Lzp06CDuuecesW3bNnHs2DHxxRdfiCNHjigx3Ja1THFxsd0yu379egFA5ObmCiG43LbUX//6V9GmTRuxevVqcfz4cbFixQoRGRkpXn31VSWGy2zL3XXXXaJnz55i8+bN4vDhwyI7O1sYjUbxyy+/CCE4b10VSDmCK2VpDpNuL0pPTxeTJ09W/q+vrxdJSUkiJydHxVLJo+EKZTabRWJionjppZeUYRcvXhShoaHio48+EkIIsX//fgFAfPfdd0rM2rVrhUajESdPnhRCCPHGG2+ImJgYUVNTo8TMmDFDdO/eXfn/rrvuEmPGjLErT0ZGhvjTn/7k1d+oluLiYgFAbN68WQhhmY8hISFixYoVSsyBAwcEAJGXlyeEsDR2Wq1WFBYWKjGLFy8WRqNRmZdPPvmk6NWrl913jR07VowcOVL5/3JY7mNiYsTbb7/N+eolZWVlomvXrmL9+vVi2LBhStLN+dty2dnZIjU11eE4zlfPzJgxQ1xzzTVOx3Nb5j2PPfaYuPLKK4XZbOZy64ExY8aI++67z27YbbfdJsaPHy+E4DLricrKSqHT6cTq1avthg8YMEA8/fTTnLctJHOO4EpZXMHTy73EZDJh586dyMrKUoZptVpkZWUhLy9PxZLJ6/jx4ygsLLSbZ1FRUcjIyFDmWV5eHqKjo5GWlqbEZGVlQavVYtu2bUrM0KFDYTAYlJiRI0fi4MGDuHDhghJj+z3WmGCpm5KSEgBAbGwsAGDnzp2ora21+809evRA+/bt7eZtnz59kJCQoMSMHDkSpaWl2LdvnxLT1HwL9uW+vr4ey5YtQ0VFBTIzMzlfvWTy5MkYM2ZMo3nA+euZw4cPIykpCZ07d8b48eNRUFAAgPPVU//5z3+QlpaGO++8E/Hx8ejfvz+WLFmijOe2zDtMJhP+/e9/47777oNGo+Fy64HBgwdjw4YNOHToEADghx9+wNatWzF69GgAXGY9UVdXh/r6eoSFhdkNDw8Px9atWzlvvUSm+ehKWVzBpNtLzp49i/r6eruGHwASEhJQWFioUqnkZp0vTc2zwsJCxMfH243X6/WIjY21i3E0DdvvcBYTDHVjNpsxdepUXH311ejduzcAy+81GAyIjo62i204b1s630pLS1FVVRW0y/3evXsRGRmJ0NBQPPTQQ1i5ciV69uzJ+eoFy5Ytw/fff4+cnJxG4zh/Wy4jIwNLly7FunXrsHjxYhw/fhxDhgxBWVkZ56uHjh07hsWLF6Nr16744osv8PDDD+PPf/4z/vnPfwLgtsxbVq1ahYsXL+Kee+4BwPbAEzNnzsTvf/979OjRAyEhIejfvz+mTp2K8ePHA+Ay64nWrVsjMzMTzz//PE6dOoX6+nr8+9//Rl5eHk6fPs156yUyzUdXyuIKvcuRRCSlyZMnIz8/H1u3blW7KEGje/fu2L17N0pKSvDJJ59g4sSJ2Lx5s9rFCngnTpzAY489hvXr1zfqJSDPWHuwAKBv377IyMhAhw4dsHz5coSHh6tYssBnNpuRlpaGF154AQDQv39/5Ofn480338TEiRNVLl3weOeddzB69GgkJSWpXZSAt3z5cnzwwQf48MMP0atXL+zevRtTp05FUlISl1kveP/993HfffchOTkZOp0OAwYMwLhx47Bz5061i0YSY0+3l8TFxUGn0zW6q2ZRURESExNVKpXcrPOlqXmWmJiI4uJiu/F1dXU4f/68XYyjadh+h7OYQK+bKVOmYPXq1cjNzcUVV1yhDE9MTITJZMLFixft4hvO25bON6PRiPDw8KBd7g0GA7p06YKBAwciJycHqampePXVVzlfPbRz504UFxdjwIAB0Ov10Ov12Lx5M1577TXo9XokJCRw/npJdHQ0unXrhiNHjnC59VC7du3Qs2dPu2G/+c1vlNP3uS3z3M8//4wvv/wSDzzwgDKMy23LTZ8+Xent7tOnD+6++2785S9/Uc4w4jLrmSuvvBKbN29GeXk5Tpw4ge3bt6O2thadO3fmvPUSmeajK2VxBZNuLzEYDBg4cCA2bNigDDObzdiwYQMyMzNVLJm8OnXqhMTERLt5Vlpaim3btinzLDMzExcvXrQ7erhx40aYzWZkZGQoMVu2bEFtba0Ss379enTv3h0xMTFKjO33WGMCtW6EEJgyZQpWrlyJjRs3olOnTnbjBw4ciJCQELvffPDgQRQUFNjN271799o1WOvXr4fRaFR2MJubb5fLcm82m1FTU8P56qERI0Zg79692L17t/JKS0vD+PHjlfecv95RXl6Oo0ePol27dlxuPXT11Vc3eiTjoUOH0KFDBwDclnnDe++9h/j4eIwZM0YZxuW25SorK6HV2u/i63Q6mM1mAFxmvaVVq1Zo164dLly4gC+++AI333wz562XyDQfXSmLS1y+5Ro1a9myZSI0NFQsXbpU7N+/Xzz44IMiOjra7q6al5uysjKxa9cusWvXLgFA/O1vfxO7du0SP//8sxDCcgv+6Oho8dlnn4k9e/aIm2++2eHjAPr37y+2bdsmtm7dKrp27Wr3OICLFy+KhIQEcffdd4v8/HyxbNkyERER0ehxAHq9Xrz88sviwIEDIjs7O6Aeq9DQww8/LKKiosSmTZvsHrdSWVmpxDz00EOiffv2YuPGjWLHjh0iMzNTZGZmKuOtj1q57rrrxO7du8W6detE27ZtHT5qZfr06eLAgQNi0aJFDh+1EkzL/cyZM8XmzZvF8ePHxZ49e8TMmTOFRqMR//vf/4QQnK/eZnv3ciE4f1vq8ccfF5s2bRLHjx8XX3/9tcjKyhJxcXGiuLhYCMH56ont27cLvV4v/vrXv4rDhw+LDz74QERERIh///vfSgy3ZS1XX18v2rdvL2bMmNFoHJfblpk4caJITk5WHhn26aefiri4OPHkk08qMVxmW27dunVi7dq14tixY+J///ufSE1NFRkZGcJkMgkhOG9dFUg5gitlaQ6Tbi97/fXXRfv27YXBYBDp6eni22+/VbtIqsrNzRUAGr0mTpwohLDchn/27NkiISFBhIaGihEjRoiDBw/aTePcuXNi3LhxIjIyUhiNRnHvvfeKsrIyu5gffvhBXHPNNSI0NFQkJyeLefPmNSrL8uXLRbdu3YTBYBC9evUSn3/+uc9+t685mqcAxHvvvafEVFVViUceeUTExMSIiIgIceutt4rTp0/bTeenn34So0ePFuHh4SIuLk48/vjjora21i4mNzdX9OvXTxgMBtG5c2e777AKpuX+vvvuEx06dBAGg0G0bdtWjBgxQkm4heB89baGSTfnb8uMHTtWtGvXThgMBpGcnCzGjh1r9xxpzlfP/Pe//xW9e/cWoaGhokePHuIf//iH3Xhuy1ruiy++EAAazS8huNy2VGlpqXjsscdE+/btRVhYmOjcubN4+umn7R6bxGW25T7++GPRuXNnYTAYRGJiopg8ebK4ePGiMp7z1jWBlCO4UpbmaIQQwvV+cSIiIiIiIiJyFa/pJiIiIiIiIvIRJt1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEf0ahcgGJnNZpw6dQqtW7eGRqNRuzhERERERESXDSEEysrKkJSUBK1W/X5mJt0+cOrUKaSkpKhdDCIiIiIiosvWiRMncMUVV6hdDCbdvtC6dWsAlko2Go0qlyawvPgi8MILwFNPAX/5iwmvvPIKAODRRx/F66+/DgB4/PHH8fe/G5S4GTPULDEREREREcmktLQUKSkpSl6mNibdPmA9pdxoNDLpdtNf/wqEhQFz5gAhIXUICwsDYJmX1vcLF0bjhRf0eO45YPZsNUtLRERERESykuVSXybdJB1rIj1njh7Dhw/FsGFblHGbNw9Fbi4TbiIiIiIiCgxMuklKs2cD9fV1ePbZ4airq0RGxlZs2jQEmzYNR3Z2HWbP5qJLRERERETyY+ZC0nrqKTO2bMlFbu5GjB79NwCPYPhwDZ566mq1i0ZEREREROQS9e+fTuSEVqvF449XAnj71yFvYPLk81Lc9p+IiIiIiMgVzF5IWnq9Ht9/PwbANcqwb75Jg17PEzSIiIiIiCgwMOkmaT3/vOUu5p07m5Rhf/tbDZ5/XsVCERERERERuYFJN0nJmnA/84wJiYmVyvAHH6zAnDlg4k1ERERERAGBSTdJx5pwZ2fXQa/Pwc8//2wz9k1kZ9cx8SYiIiIiooDAi2NJKtaE+7nngBkzzMjJAerq6pTxdXV1eOopM3Q6SxzA53UTEREREZG8mHSTNGwT7tmzAdOvl3LX19crMdb31kSbiTcREREREcmMSTdJo77+UsJty7an2zYBt8bZDCIiIiIiIpIKk26Sxty5joc76um2Yg83ERERERHJjDdSI+k1vKabiIiIiIgoUDDpJuk11dNNREREREQkMybdJC2tVovU1FSYzWZlWFJSErRaLrZERERERBQYmL2QtPR6PW666Sa7U8p79eoFvZ63IiAiIiIiosDApJukZrI+N+xXNTU1KpWEiIiIiIjIfUy6SVpCCJSVldkNq6yshBBCpRIRERERERG5h0k3Sau2thbz58+3G7Z+/XrU1taqVCIiIiIiIiL3MOkmqTW8WznvXk5ERERERIGESTdJreFzuZl0ExERERFRIGHSTVJrmGQ3TMKJiIiIiIhkxqSbpMaebiIiIiIiCmSXRdK9aNEidOzYEWFhYcjIyMD27dtd+tyyZcug0Whwyy23+LaA5BSv6SYiIiIiokAW9En3xx9/jGnTpiE7Oxvff/89UlNTMXLkSBQXFzf5uZ9++glPPPEEhgwZ4qeSkiPs6SYiIiIiokAW9En33/72N0yaNAn33nsvevbsiTfffBMRERF49913nX6mvr4e48ePx7PPPovOnTv7sbRkS6vV4oorrrAbFhERAa026BdbIiIiIiIKEkGdvZhMJuzcuRNZWVnKMK1Wi6ysLOTl5Tn93HPPPYf4+Hjcf//9Ln1PTU0NSktL7V7kOb1ej4yMDLth8fHx0Ov1KpWIiIiIiIjIPUGddJ89exb19fVISEiwG56QkIDCwkKHn9m6dSveeecdLFmyxOXvycnJQVRUlPJKSUnxqNx0iclkavJ/IiIiIiIimQV10u2usrIy3H333ViyZAni4uJc/tysWbNQUlKivE6cOOHDUl5eamtr7f6vqalRqSRERERERETuC+rzdOPi4qDT6VBUVGQ3vKioCImJiY3ijx49ip9++gk33nijMsxsNgOwnOp88OBBXHnllY0+FxoaitDQUC+XnkwmE5YvX2437MiRIzCZTDAYDCqVioiIiIiIyHVB3dNtMBgwcOBAbNiwQRlmNpuxYcMGZGZmNorv0aMH9u7di927dyuvm266CcOHD8fu3bt52rgK+MgwIiIiIiIKZEHd0w0A06ZNw8SJE5GWlob09HQsWLAAFRUVuPfeewEAEyZMQHJyMnJychAWFobevXvbfT46OhoAGg0n/7CeaRAWFobq6mom3UREREREFFCCPukeO3Yszpw5gzlz5qCwsBD9+vXDunXrlJurFRQU8BFUErMm2eHh4aiurlaScCIiIiIiokCgEUIItQsRbEpLSxEVFYWSkhIYjUa1ixOwTCYTbrrpJnzxxRdITk7GyZMn0aZNG5w6dYrXdBMRERERkUOy5WPs4iWp2fZ02/5PREREREQUCJh0k9Ssp5Nbk26eXk5ERERERIGESTdJS6vVKjeyi4iIUIbxGnwiIiIiIgoUzF5IWnq9Hj169AAAREZGAgB0Oh30+qC//x8REREREQUJJt0ktdraWgCXerqt/xMREREREQUCJt0ktYZJd11dnZrFISIiIiIicguTbpKWyWRCXl4eACinlNfU1MBkMqlZLCIiIiIiIpcx6SapWXu2rT3d9fX14KPliYiIiIgoUDDpJqk1fE637TAiIiIiIiLZMekmqVmfy23t6QZ4XTcREREREQUOJt0kNWuvdlhYmDKMdzAnIiIiIqJAwaSbpOaop5tJNxERERERBQom3SQ19nQTEREREVEgY9JN0tJoNAgNDQUAGAwG6HQ6ALyRGhERERERBQ5pk+6pU6fi7NmzaheDVBQSEoL4+HgAQGRkJAwGg8olIiIiIiIico9e7QI489prryEqKgrV1dWIj4/HmDFj0KNHD7WLRX5mPZU8JCQEer3ebhgREREREZHspO3pBoCPPvoIFRUV2LVrF4YNG4b77rsPJpNJ7WKRH9km3SEhIXbDiIiIiIiIZCdt0q3VavHNN99g4cKF+Pe//43jx4/DZDJhzpw5aheN/MRkMuHEiRMALM/mth5wqaqqUrNYRERERERELpM26U5KSoJWe6l4EREReOONN7Bs2TIVS0X+ZtvTbV0e2NNNRERERESBQtqk+7bbbsMf//hHu5upFRcXo7q6WsVSkb9Zn9PNpJuIiIiIiAKRtEn3vHnz0KlTJ7Rv3x6DBw/GmDFjkJGRgQcffFDtopEfWR8PptfrlaS7rq5OzSIRERERERG5TNq7l4eFhWHRokV4/vnnsWnTJpw/fx7PPPMMMjMz1S4a+ZFtT7f1Od3s6SYiIiIiokAhRdK9du1afPDBBzhx4gRatWqFvn374vbbb8egQYMQGxuL2267Te0ikkqsPd08vZyIiIiIiAKR6qeXL1iwADfccANWrlyJiooKFBcX47XXXsNVV12FMWPGoLCwUO0ikop4TTcREREREQUy1ZPuV199Ff369cPPP/+MHTt2YMeOHbhw4QIWLlyI/Px8pKen4+TJk2oXk1Sg0WgghAAAGAwGhIeHA7jU+01ERERERCQ71ZPuoqIiPPDAA4iLi1OGhYaG4uGHH8aOHTug0Wjw5JNPqlhCUott77bRaERycjIAKIk4ERERERGR7FRPurt3746ioiKH49q2bYtHHnkEa9as8XOpSBa2z+kOCQmxG0ZERERERCQ71ZPuJ598EgsXLsThw4cdjo+IiIBGo/FzqUgWTLqJiIiIiCiQqZ50v/LKK9DpdEhPT8f8+fNx6tQpZdzRo0exaNEi3HnnnSqWkNRSU1Oj3EittrYWJ06cUIYTEREREREFAtWT7qSkJLRq1QqlpaWYOXMmUlJS0LZtWyQmJqJbt24IDw/Hgw8+6FHv5qJFi9CxY0eEhYUhIyMD27dvdxq7ZMkSDBkyBDExMYiJiUFWVlaT8eQ7JpNJea/T6ZQE3HY4ERERERGRzFRPuv/zn//g2LFjKCkpQV5eHt566y2MHz8evXr1QlxcHH744Qekp6ejVatW6NGjB2699VY8/fTTLk//448/xrRp05CdnY3vv/8eqampGDlyJIqLix3Gb9q0CePGjUNubi7y8vKQkpKC6667jndQV4HtgRY+MoyIiIiIiAKRRkh+K+ji4mLs3bsX+fn5yt/9+/ejtLTUpc9nZGRg0KBBWLhwIQDLc59TUlLw6KOPYubMmc1+vr6+HjExMVi4cCEmTJjg0neWlpYiKioKJSUlMBqNLn2GGisqKkJiYiIA4Ny5c7j22muxd+9ezJ8/H9OnT1e5dEREREREJCPZ8jG92gVoTnx8PEaMGIERI0a4/VmTyYSdO3di1qxZyjCtVousrCzk5eW5NI3KykrU1tYiNjbW7e8nzzjr6a6rq1OrSERERERERG6RPun2xNmzZ1FfX4+EhAS74QkJCfjxxx9dmsaMGTOQlJSErKwspzE1NTV2N/dytReemmZNujUaDTQaDZNuIiIiIiIKOKpf0y2zefPmYdmyZVi5ciXCwsKcxuXk5CAqKkp5paSk+LGUwcuadOt0Oru/vJEaEREREREFiqBOuuPi4qDT6VBUVGQ33PZaYWdefvllzJs3D//73//Qt2/fJmNnzZqFkpIS5WV9tBV5xtqjrdfrodVq0bp1awBMuomIiIiIKHAEddJtMBgwcOBAbNiwQRlmNpuxYcMGZGZmOv3c/Pnz8fzzz2PdunVIS0tr9ntCQ0NhNBrtXuQ9ERERiIiIUOqivr5e5RIRERERERG5Jqiv6QaAadOmYeLEiUhLS0N6ejoWLFiAiooK3HvvvQCACRMmIDk5GTk5OQCAF198EXPmzMGHH36Ijh07orCwEAAQGRmJyMhI1X7H5ch6enlISAgAy8ENgD3dREREREQUOII+6R47dizOnDmDOXPmoLCwEP369cO6deuUm6sVFBQoN+gCgMWLF8NkMuGOO+6wm052djbmzp3rz6Jf9hom3QaDAQCTbiIiIiIiChxBn3QDwJQpUzBlyhSH4zZt2mT3/08//eT7ApFLqqqqlL+VlZXYuXMnAKC6ulrNYhEREREREbksqK/ppsBm26NtNpuVZJs93UREREREFCiYdJO0rKeXW0//5yPDiIiIiIgo0DDpJmnxOd1ERERERBTomHSTtNjTTUREREREgY5JN0mrrq4OQOOe7pqaGtXKRERERERE5A4m3SQtZz3d1uFERERERESyY9JN0rIm16GhodBqtTAajQB4ejkREREREQUOJt0kLSEEAODKK69EREQE7rzzTgDs6SYiIiIiosDBpJukZU2uQ0JCAAAGgwEAe7qJiIiIiChwMOkmaTHpJiIiIiKiQMekm6RVXV0NACgoKEBlZSU+//xzAEy6iYiIiIgocDDpJmlZk+uamhqYzWacP3/ebjgREREREZHs9GoXIJhVmCqgM+kaDddpdQjTh9nFOaPVaBEeEt6i2MraSuVmZA1pNBpEhES0KLaqtgpmYXZajlaGVi2Kra6rRr25/tJna6oAWB4VVllbqTwyzGQyNYptKCIkAhqNBgBQU1eDOnOdV2LDQ8Kh1ViOVZnqTaitd35TN3diw/Rh0Gl1bsfW1tfCVO/8IESoPhR6rd7t2DpzHWrqnD8P3aAzIEQX4nZsvbke1XXVTmNDdCEw6Axux5qFGVW1VV6J1Wv1CNWHArDczK+yttIrse6s92wjHMc2t967E8s2woJthPuxbCMs2Ea0LJZthAXbCPdj2UZc4kob0dTvUAOTbh9KeiUJCGs8/Pqu1+PzP3yu/B//crzTlWxYh2HYdM8m5f+Or3bE2cqzDmPTktLw3aTvlP97LuqJn0t+dhjbs21P7Htkn/L/oCWDsP/MfoexHaI64KepPyn/D106FDtO7XAYGxcRhzPTzyj/j/5gNDb/vNlhbERIBCqeurRC3L78dqw5vEb5X7vZsqHRarXo9FonTNJPAmBJuu9eeTc+WfEJcBFABhotyeWzypUV8k+r/4R//vBPh2UAgOInitG2VVsAwLQvpuGNHW84jT3+2HF0jO4IAHh6w9N4Oe9lp7H5D+ejV3wvAMALX72AZzc/6zR2+wPbMSh5EADg1W9fxZNfPuk0NndiLq7teC0A4B87/4Epa6c4jV09bjXGdBsDAPhg7we497N7ncYuv2M57uxluUP8ygMrcdcndzmNfe/m93BPv3sAAF8c+QI3fHSD09iFoxdicvpkAMBXBV9h+D+HO42dnzUf06+eDgD4/vT3SH873Wls9rBszL12LgDgwJkD6L24t9PYJzKfwEvXvQQAKCgpQKdXOzmNfSTtESwaswgAcLbyLOJfjncaOzF1IpbeshSAZWMSmRPpNPaOnndgxZ0rlP+bimUbYdFcG9GQyL60Mb975d34ZP8nTmPZRliwjbBgG2HBNuISthEWbCMs2EZYBFQb4fx4iyqYdJO8fj1oZe3htv6tqamBMAtgFYBaAAUAxqlRQCIiIiIioqZphLN+fmqx0tJSREVF4dSZUzAajY3G85QPx7ENT/V6eubTePXvr+Kqq67CZ2s+w8s5L+OllyxHGQ8dO4RunbsBsCTj58vOK0k5wNPCrHhamPuxPC3MIhDaCE9i2UZYsI1wP5ZthAXbiJbFso2wYBvhfizbiEtcaSNKS0uR1DYJJSUlDvMxf2NPtw+1MrSyWyiainNnmq6yXXi9GWu7snkz1rZxAGDX0x0REmGXVJ84fkJ5X19fj+KTxejSpYvD6YbqQxGKUJfK4E6sQWdQGmC1YkN0IcqGyJuxeq0eeoNrzYM7sTqtzuVl2J1YrUbrk1iNRuOTWMB36/1l1UZ4KZZthPuxbCMs2Ea0LJZthAXbCPdj2UZcIkOszG1EvcH5QTU18O7lJC3rc7pDQy0br9atWyvjDh48aBe7f7/ja0SIiIiIiIjUxKSbpGU2W7q6hw4disjISMyYMUMZ1zDpPnDggF/LRkRERERE5Aom3SStmhrL9T3Wnm6dTget1rLIHjp0CAAQFmY5PYxJNxERERERyYhJN0mrvLwcANCq1aVrSwwGyzVKR48eBQBkZWUBAA4fPuzn0hERERERETWPSTdJy5p07969G5WVlVi6dKlyd9BTp04BAK666ioAl5JwIiIiIiIimTDpJmlZk+6ysjKYzWb8/PPPStJtHZeRkQEAKCoqQllZmToFJSIiIiIicoKPDPOligrA5jFXCp0OCAuzj3NGqwXCw1sWW1kJOHsMu0YDRES0LLaqCjA7f3YebE4Hdyu2uhqov3R7/4pfk+iQkBBL+QDo9faLbOfERLSJjcW58+dxbN8+pPbpYxkREWEpNwDU1AB1zp+Z6VZseLhlPgOAyQTUOn8OpluxYWGXlhV3YmtrLfHOhIYC1nnmTmxdnWVeOGMwACEh7sfW11vq2ZmQEEu8u7Fms2VZ80asXm+ZF4Blnah0/sxMt2LdWe/ZRjiObdBGeBTLNsKCbYT7sWwjLNhGtCyWbYQF2wj3Y9lGXOJKG9HU71CDIK8rKSkRAESJZdFq/Lr+evsPREQ4jgOEGDbMPjYuznlsWpp9bIcOzmN79rSP7dnTeWyHDvaxaWnOY+Pi7GOHDXMeGxFhH3v99XbjuwECgLjnnntEWUSEmDt3roiPjxf4dTgAcREQ6b++/3+20y4vvzTdiROdlwEQorj4UuwjjzQde/z4pdgnnmg6Nj//Umx2dtOx27dfip0/v+nY3NxLsQsXNh27evWl2Pfeazp2+fJLscuXNx373nuXYlevbjp24cJLsbm5TcfOn38pdvv2pmOzsy/F5uc3HfvEE5dijx9vOvaRRy7FFhc3HTtx4qXY8vKmY++4Q9hpKpZthOXVTBvR6GXrjjuajmUbYXmxjbC82EZYXmwjLr3YRlhebCMsL7YRllcAtRElsOQHJSUlQgY8vZykZT0+Zb15GnDpbuWA5TQNI4Auv/5/yF8FIyIiIiIicpFGCCHULkSwKS0tRVRUFEpOnYLRaGwcwFM+HMc2ONUrJjkZF0tKMGXKFOTMno1XFi/Ghx9+qDwuLCE+HoXHjuGFl17C088+i/Fjx+Lf77xj+TBPC7PgaWHux/K0MIsAaCM8imUbYcE2wv1YthEWbCNaFss2woJthPuxbCMucaGNKC0tRVRSEkpKShznY37Ga7p9qVUr+4WiqTh3pukq24XXm7G2K5s3Y20bBwDlv670ISEhSvnCbaYX17Yt0KoV+gwcCADYs3+/4/kTGnqpQWuOO7EGw6UGWK3YkJBLGyJvxur1lzac3ozV6Vxfht2J1Wp9E6vR+CYWkCM2wNsIr8WyjXA/lm2EBduIlsWyjbBgG+F+LNuIS2SIlbmNaOqgmgp4ejlJyWQyoe7XI8XW53SHhIQgwmaFbdOmDQCgb9++AIAff/wRpqaOwBIREREREfkZe7pJKnV1dfjd736H8+fPK8PmzJmDkJAQPPXUU6ipqUFeXh4AIC4uDgDQvn17GI1GlJaW4scff1SScCIiIiIi8g+z2Yy6ujrU1dWhtrbWpb++iq1s6lR9FVwWSfeiRYvw0ksvobCwEKmpqXj99deRnp7uNH7FihWYPXs2fvrpJ3Tt2hUvvvgirr/+ej+W+PK1fft2bNq0SfnfYDBYTi//VXR0tPI+KSkJAKDRaDBw4EDk5uZi8+bNTLqJiIiIiGwIIVBdXY2KigpUVFSgvLzcrffOxlVVVSmJrrmp67Avc0GfdH/88ceYNm0a3nzzTWRkZGDBggUYOXIkDh48iPj4+Ebx33zzDcaNG4ecnBzccMMN+PDDD3HLLbfg+++/R+/evVX4BZeH0tJSmEwmrF+/3m54ZGSk3f8xMTHK+549eyrvR48ejdzcXHz++ed49NFHfVtYIiIiIiIfqK2tbTbRbUlyXFFRoVpSHBISgpCQEOj1+kZ/HQ1zZVxzMXV1dXjuuedU+b2OBP3dyzMyMjBo0CAsXLgQgOW0h5SUFDz66KOYOXNmo/ixY8eioqICq1evVoZdddVV6NevH958802XvlO5e7kkd8uTlRACFy5cgEajQf/+/XHq1CnUNrjbZkxMDBYuXIjbbrsNn376KXbs2IG///3vAIDNmzdj6NChAIADBw6gZ8+eCA0NRUFBgcMDKkREFJzMZjPMZjPq6+vtXg2HWf8HoOysOXrpdDporHejJo/V1dWhpqYGNTU1qK6uVt47ejkbX1tbq9ShtR69/d6duIY7+54kB77+vO17LtfNM5vNqK2tbfJlPY3Z2auystLthNj63h/3JwoLC0OrVq0QGRmJVq1aNXrf1LiG78PDw5tc9nTWO+X7mWz5WFD3dJtMJuzcuROzZs1Shmm1WmRlZSnXBTeUl5eHadOm2Q0bOXIkVq1a5fXyHTt2DD/88IPbn2t4nMTV/61/f/75ZwBASkoK9Ho9zGYzNBoNtFqtsmOi0WiU07qFEDCbzRBCQKPRwGw2w2QyQaPRQAiB+vp66HQ6nD9/HlFRUSgvL0dERATOnTsHo9GIU6dOITY2Fvv27UNSUhLOnj0Lk8mEQ4cOYcuWLU3+Vo1Gg8OHD6Ourg6HDx9GUVGRMs62p7tHjx5IS0vDjh078Nvf/hbdunXD0aNH0a1bN/zmN79BcXExDh06BL1ej9TUVFxxxRUoLS1FSUkJ6urqEBMTo/wW6ysiIgJxcXFo3bo1KisrUV5eDo1Gg7CwMISFhSE8PFw5Vae6uhparVZpYKzTqqurQ319PYQQCAkJsTtd3nptijVOCAGDwaC8tFqtEmMdr9PplJdWq1Xe217nUltbC7PZbBfbMN76nbYbCEefsX1Zf5ejDU59fb0yfdvv0Wq10P76uBPb5bLhMqrRaJRXw/+dvaxxABptCK3LalMvrVbr0vc4+o6mNrjW77f+dtvvsi4jjuats2G2y4G7OwF1dXXKtGw3fo4SDGf/W9d5d3dgW7rja21/bOdBw7+ejBNC2LVptq+Gw6zXptXU1MBkMsFkMinvmxpmXSes67ejl6Nx1h35pnaimxvmyXjb+ePqy7o+N5xvDedRS/63DrPOK2cJtDWJ9jadTmc3jzx5+WI6Wq222aTRlcTS1Zj6+nqYTKYWJc085VQe1jZRtgMCWq3WoyTXm/GyLK86nU5JcFuaEDtLqNVKhC9nQZ10nz17FvX19UhISLAbnpCQgB9//NHhZwoLCx3GFxYWOv0e60bFqrS01KXyrVu3DpMnT3Yp9nLSrVs3DBs2DGvWrMFNN91kN872dHPrjdQAS/K1aNEiXH311di3bx/27dsHANizZ0+j6Tc8hZ2IiIKb9UCO9UAWAOXgh7MdbF8m9JczrVaL0NBQp6+wsDCHw60HhmwP6Dp639x4V943N16j0aC+vt6tmzx5enOoloxzxLpc2+63UvNsDxC48goPD/c4OTYYDDwzIYgEddLtLzk5OXj22Wfd/lxiYiIGDx4MAG6vVA3jXf1fo9EgKioKQgiUlpYqPWEAlB5rnU6n9PBYP2PtpTObzdBqtTAYDMp7nU6H2tpaxMbG4uzZs4iKikJpaSni4uJw7tw5JCcno6ioCF26dMGJEycQGxsLvV4Pk8mEG264ATt37sTw4cORlJSEzz77DDfccANSU1NRU1ODefPm2f2OpKQkLFmyBL/5zW8azZP09HTs2LEDK1asQExMDLp27YoDBw7g+PHjiI6ORq9evVBTU4Ndu3Yp5YyKioJOp8OFCxfsemh1Oh0qKipw7tw5lJWVKQ0gAKVnu6qqClqtFmFhYTD8+jxM61HShtPSaDTKRtB6lkDDnjjr5609PPX19cqRYOs0GvYiWv/a9shYjxg3dYqloyPdDT/j6AXA4cbFuszYfo9t+Rr2TNu+b67XrLnetYZlsvbOOvusox7O5sY5+90NX9Z5af1+6zyxfe+sl9PZsIa9n66Wwfre9k6iDc+uaGqY7ff7asfV2fuGZ4rYvvf0b8MzHGz/d3T2g+3ZJ6Ghoc2+t57N0vDsBVfOcGh4VkNT71syvrnP1NXVuXz2R1Nnp1iTKmfzx53/bduYhu2qo2HOYpraxtqulw3nh6svNT5ju822rkMN1ylv/2+tn6aS4+YSaev2jnzLut2R9YBAw3HWfR5Xtm3ubAe9EWvdryDyRFC3fHFxcdDpdHanJANAUVEREhMTHX4mMTHRrXgAmDVrlt0p6aWlpUhJSWm2fLfddhtuu+22ZuOC3R133KG8t71ZnbMGbsKECUqS21BqaipSU1OV/xv2lBMREdmyJpTWS3+IgoHt2R1EpD6t2gXwJYPBgIEDB2LDhg3KMLPZjA0bNiAzM9PhZzIzM+3iAcvpyM7iASA0NBRGo9HuRURERERERBTUPd0AMG3aNEycOBFpaWlIT0/HggULUFFRgXvvvReApdc0OTkZOTk5AIDHHnsMw4YNwyuvvIIxY8Zg2bJl2LFjB/7xj3+o+TOIiIiIiIgoAAV90j127FicOXMGc+bMQWFhIfr164d169YpN0srKChQbqoCAIMHD8aHH36IZ555Bk899RS6du2KVatWufWMbus1oK7eUI0cs94lFbDMS9v3zk4vJyIiIiKiy5s1D5Pl6dhB/5xuNRw7dgxXXnml2sUgIiIiIiK6bB09ehSdO3dWuxjB39OthtjYWACWXvSoqCiVS0PNsd747sSJE7weP0CwzgIL6yvwsM4CC+sr8LDOAgvrK/CUlJSgffv2Sl6mNibdPmA9XT0qKoorZgDhTfACD+sssLC+Ag/rLLCwvgIP6yywsL4Cj+1lxGqSoxREREREREREQYhJNxEREREREZGPMOn2gdDQUGRnZyM0NFTtopALWF+Bh3UWWFhfgYd1FlhYX4GHdRZYWF+BR7Y6493LiYiIiIiIiHyEPd1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdLtZYsWLULHjh0RFhaGjIwMbN++Xe0iXRbmzp0LjUZj9+rRo4cyvrq6GpMnT0abNm0QGRmJ22+/HUVFRXbTKCgowJgxYxAREYH4+HhMnz4ddXV1djGbNm3CgAEDEBoaii5dumDp0qX++HkBb8uWLbjxxhuRlJQEjUaDVatW2Y0XQmDOnDlo164dwsPDkZWVhcOHD9vFnD9/HuPHj4fRaER0dDTuv/9+lJeX28Xs2bMHQ4YMQVhYGFJSUjB//vxGZVmxYgV69OiBsLAw9OnTB2vWrPH67w0GzdXZPffc02idGzVqlF0M68x/cnJyMGjQILRu3Rrx8fG45ZZbcPDgQbsYf7aD3BY2zZX6uvbaaxutYw899JBdDOvLfxYvXoy+ffvCaDTCaDQiMzMTa9euVcZz/ZJLc/XF9Ut+8+bNg0ajwdSpU5VhAb2eCfKaZcuWCYPBIN59912xb98+MWnSJBEdHS2KiorULlrQy87OFr169RKnT59WXmfOnFHGP/TQQyIlJUVs2LBB7NixQ1x11VVi8ODByvi6ujrRu3dvkZWVJXbt2iXWrFkj4uLixKxZs5SYY8eOiYiICDFt2jSxf/9+8frrrwudTifWrVvn198aiNasWSOefvpp8emnnwoAYuXKlXbj582bJ6KiosSqVavEDz/8IG666SbRqVMnUVVVpcSMGjVKpKamim+//VZ89dVXokuXLmLcuHHK+JKSEpGQkCDGjx8v8vPzxUcffSTCw8PFW2+9pcR8/fXXQqfTifnz54v9+/eLZ555RoSEhIi9e/f6fB4EmubqbOLEiWLUqFF269z58+ftYlhn/jNy5Ejx3nvvifz8fLF7925x/fXXi/bt24vy8nIlxl/tILeFzXOlvoYNGyYmTZpkt46VlJQo41lf/vWf//xHfP755+LQoUPi4MGD4qmnnhIhISEiPz9fCMH1SzbN1RfXL7lt375ddOzYUfTt21c89thjyvBAXs+YdHtRenq6mDx5svJ/fX29SEpKEjk5OSqW6vKQnZ0tUlNTHY67ePGiCAkJEStWrFCGHThwQAAQeXl5QghLgqHVakVhYaESs3jxYmE0GkVNTY0QQognn3xS9OrVy27aY8eOFSNHjvTyrwluDRM4s9ksEhMTxUsvvaQMu3jxoggNDRUfffSREEKI/fv3CwDiu+++U2LWrl0rNBqNOHnypBBCiDfeeEPExMQo9SWEEDNmzBDdu3dX/r/rrrvEmDFj7MqTkZEh/vSnP3n1NwYbZ0n3zTff7PQzrDN1FRcXCwBi8+bNQgj/toPcFrqvYX0JYUkKbHc2G2J9qS8mJka8/fbbXL8ChLW+hOD6JbOysjLRtWtXsX79ert6CvT1jKeXe4nJZMLOnTuRlZWlDNNqtcjKykJeXp6KJbt8HD58GElJSejcuTPGjx+PgoICAMDOnTtRW1trVzc9evRA+/btlbrJy8tDnz59kJCQoMSMHDkSpaWl2LdvnxJjOw1rDOvXM8ePH0dhYaHdvI2KikJGRoZd/URHRyMtLU2JycrKglarxbZt25SYoUOHwmAwKDEjR47EwYMHceHCBSWGdeg9mzZtQnx8PLp3746HH34Y586dU8axztRVUlICAIiNjQXgv3aQ28KWaVhfVh988AHi4uLQu3dvzJo1C5WVlco41pd66uvrsWzZMlRUVCAzM5Prl+Qa1pcV1y85TZ48GWPGjGk0bwN9PdO3+JNk5+zZs6ivr7erZABISEjAjz/+qFKpLh8ZGRlYunQpunfvjtOnT+PZZ5/FkCFDkJ+fj8LCQhgMBkRHR9t9JiEhAYWFhQCAwsJCh3VnHddUTGlpKaqqqhAeHu6jXxfcrPPX0by1nffx8fF24/V6PWJjY+1iOnXq1Gga1nExMTFO69A6DXLdqFGjcNttt6FTp044evQonnrqKYwePRp5eXnQ6XSsMxWZzWZMnToVV199NXr37g0AfmsHL1y4wG2hmxzVFwD84Q9/QIcOHZCUlIQ9e/ZgxowZOHjwID799FMArC817N27F5mZmaiurkZkZCRWrlyJnj17Yvfu3Vy/JOSsvgCuX7JatmwZvv/+e3z33XeNxgX6doxJNwWF0aNHK+/79u2LjIwMdOjQAcuXL2cyTOQDv//975X3ffr0Qd++fXHllVdi06ZNGDFihIolo8mTJyM/Px9bt25VuyjkAmf19eCDDyrv+/Tpg3bt2mHEiBE4evQorrzySn8XkwB0794du3fvRklJCT755BNMnDgRmzdvVrtY5ISz+urZsyfXLwmdOHECjz32GNavX4+wsDC1i+N1PL3cS+Li4qDT6RrdQa+oqAiJiYkqleryFR0djW7duuHIkSNITEyEyWTCxYsX7WJs6yYxMdFh3VnHNRVjNBqZ2HvAOn+bWncSExNRXFxsN76urg7nz5/3Sh1yHfVc586dERcXhyNHjgBgnallypQpWL16NXJzc3HFFVcow/3VDnJb6B5n9eVIRkYGANitY6wv/zIYDOjSpQsGDhyInJwcpKam4tVXX+X6JSln9eUI1y/17dy5E8XFxRgwYAD0ej30ej02b96M1157DXq9HgkJCQG9njHp9hKDwYCBAwdiw4YNyjCz2YwNGzbYXT9C/lFeXo6jR4+iXbt2GDhwIEJCQuzq5uDBgygoKFDqJjMzE3v37rVLEtavXw+j0aicipSZmWk3DWsM69cznTp1QmJiot28LS0txbZt2+zq5+LFi9i5c6cSs3HjRpjNZmVDmZmZiS1btqC2tlaJWb9+Pbp3746YmBglhnXoG7/88gvOnTuHdu3aAWCd+ZsQAlOmTMHKlSuxcePGRqft+6sd5LbQNc3VlyO7d+8GALt1jPWlLrPZjJqaGq5fAcJaX45w/VLfiBEjsHfvXuzevVt5paWlYfz48cr7gF7PWnwLNmpk2bJlIjQ0VCxdulTs379fPPjggyI6OtruDnrkG48//rjYtGmTOH78uPj6669FVlaWiIuLE8XFxUIIyyMG2rdvLzZu3Ch27NghMjMzRWZmpvJ56yMGrrvuOrF7926xbt060bZtW4ePGJg+fbo4cOCAWLRoER8Z5qKysjKxa9cusWvXLgFA/O1vfxO7du0SP//8sxDC8siw6Oho8dlnn4k9e/aIm2++2eEjw/r37y+2bdsmtm7dKrp27Wr3+KmLFy+KhIQEcffdd4v8/HyxbNkyERER0ejxU3q9Xrz88sviwIEDIjs7m4+fcqKpOisrKxNPPPGEyMvLE8ePHxdffvmlGDBggOjatauorq5WpsE685+HH35YREVFiU2bNtk9AqeyslKJ8Vc7yG1h85qrryNHjojnnntO7NixQxw/flx89tlnonPnzmLo0KHKNFhf/jVz5kyxefNmcfz4cbFnzx4xc+ZModFoxP/+9z8hBNcv2TRVX1y/AkfDKHULkgAAcV5JREFUu8wH8nrGpNvLXn/9ddG+fXthMBhEenq6+Pbbb9Uu0mVh7Nixol27dsJgMIjk5GQxduxYceTIEWV8VVWVeOSRR0RMTIyIiIgQt956qzh9+rTdNH766ScxevRoER4eLuLi4sTjjz8uamtr7WJyc3NFv379hMFgEJ07dxbvvfeeP35ewMvNzRUAGr0mTpwohLA8Nmz27NkiISFBhIaGihEjRoiDBw/aTePcuXNi3LhxIjIyUhiNRnHvvfeKsrIyu5gffvhBXHPNNSI0NFQkJyeLefPmNSrL8uXLRbdu3YTBYBC9evUSn3/+uc9+dyBrqs4qKyvFddddJ9q2bStCQkJEhw4dxKRJkxptjFhn/uOorgDYtVH+bAe5LWxac/VVUFAghg4dKmJjY0VoaKjo0qWLmD59ut1zhIVgffnTfffdJzp06CAMBoNo27atGDFihJJwC8H1SzZN1RfXr8DRMOkO5PVMI4QQLe8nJyIiIiIiIiJneE03ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuIiIiIiIiIh9h0k1ERERERETkI0y6iYiIiIiIiHyESTcRERERERGRjzDpJiIiIiIiIvIRJt1EREREREREPqJXuwDByGw249SpU2jdujU0Go3axSEiIiIiIrpsCCFQVlaGpKQkaLXq9zMz6faBU6dOISUlRe1iEBERERERXbZOnDiBK664Qu1iMOn2hdatWwOwVLLRaFS5NIHnxReBF14AnnoK+MtfTHjllVfsxj/++OMwGAx2cTNmqFRYIiIiIiKSSmlpKVJSUpS8TG1Mun3Aekq50Whk0t0Cf/0rEBYGzJkDhITUISwszG680WjEiy8a8MILwHPPAbNnq1RQIiIiIiKSliyX+jLpJilZE+k5c/QYPnwohg3boox74QUtnn2WCTcREREREcmPSTdJa/ZsoL6+Ds8+Oxy1teW46qot2LnzeuTm6plwExERERFRQNAIIYTahQg2paWliIqKQklJCU8v95DJZMKoUV8jN/e3vw65iOzsVpg7l8eLiIiIiIioMdnyMfXvn07UBK1Wiz//uUT5X6fbh2eeUbFAREREREREbmDSTVLT6/XYtm2I8n99vR45OezlJiIiIiKiwMCkm6T2/PPAvHllyv/33luFOXMsw4mIiIiIiGTHpJuk9fzzlseGTZp0Thl2/fVn8Oyzgok3EREREREFBJ6nS1KyJtzZ2XU4ceINZfiyZcvw4Yc3QaMxYM4cyzDexZyIiIiIiGTFpJukY024n3sOmDHDjPvuq1HG1dRY3l96jjfs/iciIiIiIpIJk26Sim3CPXs2YDJdSrQB+/dMvImIiIiISHZMukkq9fWXEm4r20TbZDLZxVvj6uv9UToiIiIiIiL3MOkmqcyd23iYs55uK/ZwExERERGRrHj3cpKebe92w55uIiIiIiIimTHpJuk119NNREREREQkKybdJDWtVotWrVop/4eFhUGr5WJLRERERESBgdkLSU2v1yMuLk75PyIiAno9b0VARERERESBgUk3Sc/2Ou7KykoVS0JEREREROQeJt0kNSFEo0eGCSFULBEREREREZHrmHST1Gpra/Hjjz8q/58+fRq1tbUqloiIiIiIiMh1TLpJevX19cp7s9msYkmIiIiIiIjcw6SbpGebaNsm4ERERERERLJj0k3SY083EREREREFqssi6V60aBE6duyIsLAwZGRkYPv27U5jlyxZgiFDhiAmJgYxMTHIyspqMp58zzbpZk83EREREREFkqBPuj/++GNMmzYN2dnZ+P7775GamoqRI0eiuLjYYfymTZswbtw45ObmIi8vDykpKbjuuutw8uRJP5ecrJh0ExERERFRoNKIIH/+UkZGBgYNGoSFCxcCsJyenJKSgkcffRQzZ85s9vP19fWIiYnBwoULMWHCBJe+s7S0FFFRUSgpKYHRaPSo/Jc7k8mEdu3a4fz58wCAkJAQlJeXw2AwqFwyIiIiIiKSkWz5WFD3dJtMJuzcuRNZWVnKMK1Wi6ysLOTl5bk0jcrKStTW1iI2NtZpTE1NDUpLS+1e5B1arRY6nU7532w2Q6sN6sWWiIiIiIiCSFBnL2fPnkV9fT0SEhLshickJKCwsNClacyYMQNJSUl2iXtDOTk5iIqKUl4pKSkelZsu0ev1CAkJUf6vr6+3S8KJiIiIiIhkFtRJt6fmzZuHZcuWYeXKlQgLC3MaN2vWLJSUlCivEydO+LGUwa+2ttbuf17XTUREREREgUKvdgF8KS4uDjqdDkVFRXbDi4qKkJiY2ORnX375ZcybNw9ffvkl+vbt22RsaGgoQkNDPS4vOWYymez+r62thV4f1IsuEREREREFiaDu6TYYDBg4cCA2bNigDDObzdiwYQMyMzOdfm7+/Pl4/vnnsW7dOqSlpfmjqOSEyWRCRUWF3bCG/xMREREREckq6LsLp02bhokTJyItLQ3p6elYsGABKioqcO+99wIAJkyYgOTkZOTk5AAAXnzxRcyZMwcffvghOnbsqFz7HRkZicjISNV+x+XMbDbb/d/wdHMiIiIiIiJZBX3SPXbsWJw5cwZz5sxBYWEh+vXrh3Xr1ik3VysoKLC7G/bixYthMplwxx132E0nOzsbc+fO9WfRCYAQgkk3EREREREFrKB/TrcaZHsuXCArLy9H69at7YYdOXIEV155pUolIiIiIiIimcmWjwX1Nd0U+GxvoqbRaACwp5uIiIiIiAIHk26Smm3SbX1ed8O7mRMREREREcmKSTdJzbZX2/qYsLq6OrWKQ0RERERE5BYm3SQ1a4Kt1+uVZ6Ez6SYiIiIiokDBpJukZr3PX1hYmHITBN77j4iIiIiIAgWTbpKa9frtkJAQ5Zpu3kiNiIiIiIgCBZNukpo16TYYDEy6iYiIiIgo4DDpJqlVVlYCAKqrq3HhwgW7YURERERERLJj0k1Ss/Z0a7VaPqebiIiIiIgCDpNukpo16dbpdNDpdACYdBMRERERUeBg0k1SsybYWq1WSbr5yDAiIiIiIgoUTLpJarY93VqtZXFlTzcREREREQUKJt0kNWuCzdPLiYiIiIgoEDHpJqnZJt3Wnm5r7zcREREREZHs9GoXgKgp1gS7VatWCA8PB8BruomIiIiIKHBI29O9efNmrFq1Cvv374fZbFa7OKQSIQQAoEOHDujSpQsAcHkgIiIiIqKAIWXS/cgjj+CPf/wj3n//faSmpiI6OhppaWm4//771S4a+Zm1p9tgMCAkJAQAr+kmIiIiIqLAIWXSvWzZMnz77bf4f//v/yEyMhKHDx9GdHQ0jEaj2kUjP7Mm2Ey6iYiIiIgoEEmZdOv1erRr1055Hx8fj3fffRf5+fkql4z8rbKyEgBw+PBh7Nu3DwBQXV2tZpGIiIiIiIhcJmXSPXDgQOTl5QEAOnfujP379yM5ORnbt29XuWTkb7a92tbru9nTTUREREREgULKu5f/4x//QFlZGQBgypQpuPPOO9GpUyf06NFD5ZKRv1kTbK1Wy+d0ExERERFRwJEy6U5JSVHe33333UhISMCePXswfvx4FUtFarDeSM32Od1MuomIiIiIKFConnSvXbsWH3zwAU6cOIFWrVqhb9++uOOOO5CWlqbEXHfddbjuuutULCWpxZpg63Q69nQTEREREVHAUfWa7gULFuCGG27AypUrUVFRgeLiYrz22mvIyMjAmDFjUFhYqGbxSAK2Pd1MuomIiIiIKNComnS/+uqr6NevH37++Wfs2LEDO3bswIULF7Bw4ULk5+cjPT0dJ0+eVLOIpDJHp5fX1dWpWSQiIiIiIiKXqZp0FxUV4YEHHkBcXJwyLDQ0FA8//DB27NgBjUaDJ598UsUSktqsCXZUVBSio6MBXErEiYiIiIiIZKdq0t29e3cUFRU5HNe2bVs88sgjWLNmjZ9LRTKxJt2DBw/GkCFDAAD19fVqFomIiIiIiMhlqibdTz75JBYuXIjDhw87HB8REQGNRuPnUpFMrNdvGwwGhISE2A0jIiIiIiKSnapJ9yuvvAKdTof09HTMnz8fp06dUsYdPXoUixYtwp133qliCUlt1lPJQ0JCmHQTEREREVHAUTXpTkpKQqtWrVBaWoqZM2ciJSUFbdu2RWJiIrp164bw8HA8+OCDTLIuY9XV1QCALVu2IDc3FwCv6SYiIiIiosChatL9n//8B8eOHUNJSQny8vLw1ltvYfz48ejVqxfi4uLwww8/ID09Ha1atUKPHj1w66234umnn3b7exYtWoSOHTsiLCwMGRkZ2L59u9PYffv24fbbb0fHjh2h0WiwYMECD34hecp6wMVkMqGmpkZ5T0REREREFAj0ahcAACIjI5GRkYGMjAy74cXFxdi7dy/y8/OVvxs2bMBf//pXl6f98ccfY9q0aXjzzTeRkZGBBQsWYOTIkTh48CDi4+MbxVdWVqJz586488478Ze//MXj30aecfScbj4yjIiIiIiIAoUUSbcz8fHxGDFiBEaMGNHiafztb3/DpEmTcO+99wIA3nzzTXz++ed49913MXPmzEbxgwYNwqBBgwDA4Xh3VJgqoDPpGg3XaXUI04fZxTmj1WgRHhLeotjK2koIIRzGajQaRIREtCi2qrYKZmF2Wo5WhlYtiq2uq0a92f7O5DUmS++27XO6a2trHcbaigi5dBO+mroa1JmdJ+ruxIaHhEOrsZTDVG9Cbb3zSx/ciQ3Th0Gn1bkdW1tfC1O9857/UH0o9Fq927F15jrU1NU4jTXoDAjRhbgdW2+uR3VdtdPYEF0IDDqD27FmYUZVbZVXYvVaPUL1oQAAIQQqayu9EuvOes82wnFsc+u9O7FsIyzYRrgfyzbCgm1Ey2LZRliwjXA/lm3EJa60EU39DjVInXR7ymQyYefOnZg1a5YyTKvVIisrC3l5eV77npqaGuXUZwAoLS0FACS9kgSENY6/vuv1+PwPnyv/x78c73QlG9ZhGDbds0n5v+OrHXG28qzD2LSkNHw36Tvl/56LeuLnkp8dxvZs2xP7Htmn/D9oySDsP7PfYWyHqA74aepPyv9Dlw7FjlM7HMbGRcThzPQzyv+jPxiNzT9vdhgbERKBiqcurRC3L78daw7bPyJO85NlI9Yw6b575d34ZP8nDqcLAOWzypUV8k+r/4R//vBPp7HFTxSjbau2AIBpX0zDGzvecBp7/LHj6BjdEQDw9Ian8XLey05j8x/OR6/4XgCAF756Ac9uftZp7PYHtmNQsuVgz6vfvoonv3T+fPrcibm4tuO1AIB/7PwHpqyd4jR29bjVGNNtDADgg70f4N7P7nUau/yO5bizl+XGhSsPrMRdn9zlNPa9m9/DPf3uAQB8ceQL3PDRDU5jF45eiMnpkwEAXxV8heH/HO40dn7WfEy/ejoA4PvT3yP97XSnsdnDsjH32rkAgANnDqD34t5OY5/IfAIvXfcSAKCgpACdXu3kNPaRtEewaMwiAMDZyrOIf7nxGTFWE1MnYuktSwFYNiaROZFOY+/oeQdW3LlC+b+pWLYRFq60EbZE9qWNOduIawGwjWAbwTbCFtsIC7YRFmwjLIK2jXB+vEUVql7T7Wtnz55FfX09EhIS7IYnJCSgsLDQa9+Tk5ODqKgo5ZWSkuK1aV/2fj0I3TDpJiIiIiIiCgQa4ayfPwicOnUKycnJ+Oabb5CZmakMf/LJJ7F582Zs27atyc937NgRU6dOxdSpU5uMc9TTnZKSglNnTsFoNDaK5ykfjmMdnep1VdpVyN+bjz/+8Y/QarX417/+hZ49e2LnDzt5Whh4WhhPC2Mb0dJYthEWbCPcj2UbYcE2omWxbCMs2Ea4H8s24hJX2ojS0lIktU1CSUmJw3zM34L69PK4uDjodDoUFRXZDS8qKkJiYqLXvic0NBShoaGNhrcytLJbKJxxJaYlsbYLrzdjbVc2b8baNg5WdbWWDVdsbKxdT7ejWGdC9aEIReP68TTWoDMoDbBasSG6EGVD5M1YvVYPvcG15sGdWJ1W5/Iy7E6sVqP1SaxGo/FJLOC79f5yayO8Ecs2wv1YthEWbCNaFss2woJthPuxbCMukSFW5jai3uD8oJoagvr0coPBgIEDB2LDhg3KMLPZjA0bNtj1fJO8rHcqHzt2LO66y3JtEE8vJyIiIiKiQBHUPd0AMG3aNEycOBFpaWlIT0/HggULUFFRodzNfMKECUhOTkZOTg4Ay83X9u/fr7w/efIkdu/ejcjISHTp0kW133G5sj4yLCQkhNd0ExERERFRwAn6pHvs2LE4c+YM5syZg8LCQvTr1w/r1q1Tbq5WUFCgJHOA5Trw/v37K/+//PLLePnllzFs2DBs2rTJ38W/7FmTboPBoFwvxaSbiIiIiIgCRdAn3QAwZcoUTJni+HEIDRPpjh07Or3In/zPmmCvWLGCSTcREREREQWcyyLppsBl7em2PvscYNJNRERERESBg0k3Sc2adOt0OmUYk24iIiIiIgoUQX33cgpsQgjl+ed6vZ43UiMiIiIiooDDpJukZe3lBixJt7W322w2w2w244033sCsWbN4DT4REREREUmLp5eTtKqrq5X3er3eLrk2mUyYPHkyAOCmm27ic9eJiIiIiEhK7Okmadkm3Tqdzu667uLiYuX94cOH/VouIiIiIiIiV7Gnm6RlTbpDQkIQFRWF+vp6ZdzJkyeV90eOHPF72YiIiIiIiFzBnm6SljXpbtWqFf7yl7/g8ccfV8b98ssvyvv8/Hy/l42IiIiIiMgVTLpJWtakOywsDACg0WiUU8xtk+79+/f7v3BEREREREQuYNJN0rI+LsyadAOWU80B+6S7qKjIvwUjIiIiIiJyEa/pJmlZe7qrq6vxj3/8w26c7TXdJSUlMJvNynO8iYiIiIiIZMGkm6RlTbqFEDh9+jQAyynmgH3SLYRAaWkpoqOj/V5GIiIiIiKipjDp9qWKCsDmMVcKnQ6wOWUaFRXOp6HVAuHhLYutrARsnm1tR6MBIiJaFltVBZjNzsvRqlXLYqurAZs7lFdfvAjA8oxuK+Wa7hMn7CZz4eRJRP966jkAS3l/TdBRUwPU1Tkvgzux4eGW+QwAJhNQW+ud2LCwS8uKO7G1tZZ4Z0JDAev8cye2rs4yL5wxGADr/HYntr7eUs/OhIRY4t2NNZsty5o3YvV6y7wALOtEZaV3Yt1Z79lGOI5t0EZ4FMs2woJthPuxbCMs2Ea0LJZthAXbCPdj2UZc4kob0dTvUIMgryspKREARIll0Wr8uv56+w9ERDiOA4QYNsw+Ni7OeWxamn1shw7OY3v2tI/t2dN5bIcO9rFpac5j4+LsY4cNcx4bEWEfe/31duM/BgQA0aFDBzF37lwxd+5cERMTIwAIg1Yr8Ot4AGJnw2mXl1+a7sSJzssACFFcfCn2kUeajj1+/FLsE080HZuffyk2O7vp2O3bL8XOn990bG7updiFC5uOXb36Uux77zUdu3z5pdjly5uOfe+9S7GrVzcdu3Dhpdjc3KZj58+/FLt9e9Ox2dmXYvPzm4594olLscePNx37yCOXYouLm46dOPFSbHl507F33CHsNBXLNsLyaqaNaPSydccdTceyjbC82EZYXmwjLC+2EZdebCMsL7YRlhfbCMsrgNqIElhyhJKSEiEDXgRL0rIem7Tt6bbeSM3U4IjWRT+ViYiIiIiIyB0aIYRQuxDBprS0FFFRUSg5dQpGo7FxAE/5cBzb4FSvf7z7Lv705z+je/fuGDduHABgyZIldtdzW33y73/j9ltuuTSAp4VZ8LQw92N5WphFALQRHsWyjbBgG+F+LNsIC7YRLYtlG2HBNsL9WLYRl7jQRpSWliIqKQklJSWO8zE/4zXdvtSqlf1C0VScO9N0le3C681Y25XNm7G2jQMAa/PrqKfbqn379igoKMCFqirn8yY09FKD1hx3Yg2GSw2wWrEhIZc2RN6M1esvbTi9GavTub4MuxOr1fomVqPxTSwgR2yAtxFei2Ub4X4s2wgLthEti2UbYcE2wv1YthGXyBArcxvR1EE1FfD0cpKW9e7lYWFhCA8PR3h4uN0zuwFL0g0AF3+96RoREREREZFM2NNN0rIm3QMHDsSTTz4JAPjuu+/w448/KjEpKSkAgAsXLvi/gERERERERM1gTzdJy7an2yqiwakp1p5uJt3kLzU1NXjnnXeQkZGBwYMH47nnnsP27dthburaIyIiIiK6bLGnm6TVXNIdEhKCxMREAEy6yfcuXryIt956CwsWLEBhYaEyPC8vD9nZ2YiLi8PIkSMxevRo3HjjjVLctIOIiIiI1Mek+zJ04sQJnDhxAoMHD0Z1dTV27tyJvn37onXr1moXzY416f7xxx/x7rvvQqPR4Pjx48r41q1bIy4uDgBw9uxZVcpIwa+wsBCvvPIK3nrrLZSVlQEAkpOTMXXqVERHR2Pt2rVYv349zp49iw8++AAffPABkpKSsGLFCgwePFjl0hMRERGR2ph0X4asp2Tv2rULr7zyCv79738DsDyO64EHHlCzaHYqfn1kQUVFBU6cOAEAqLJ5REPr1q3Rtm1bAMCZM2f8X0AKegcPHsRvf/tbnDp1CgDQq1cvTJ8+HePGjYPh1zvDPvDAA6itrcU333yDdevW4eOPP8bx48cxbNgwvPLKK3j00UehsT5KhoiIiIguO7ymOwDs2LED77//vten+/XXXysJNwBMmjTJ69/hCesp4+E2jwKwfWSY0Whk0k0+8+OPP2L48OE4deoUevTogdWrV2PPnj2YOHGiknBbhYSEYNiwYcjJycEPP/yAsWPHoq6uDo899hjGjRuH8vJylX4FEREREamNSXcAGDRoECZMmICvvvpK7aL41fnz5wE4T7ob9nQLIfxbQApaBw4cwLXXXovTp0+jT58+2LJlC8aMGQOttvkms3Xr1vjoo4/w6quvQq/X4+OPP0Z6ejoOHDjgh5ITERERkWyYdAeQQ4cOeTwN28T09ddf93h6vuRO0l1bW4vS0lL/FpCC0v79+3HttdeiqKgIffv2xcaNG5XlzFUajQZ//vOfsXnzZiQlJeHAgQMYNGgQli9f7qNSExEREZGsmHQHEJ1O5/E0ampqlPcHDx70eHq+5ErSHRYWhsjISABAcXGxfwtIQSc/Px/XXnstiouL0a9fP2zcuFG5WV9LDB48GLt27cLw4cNRUVGBsWPHYurUqTCZTF4sNRERERHJjEl3APFG0l1ZWely7IkTJ1RLDoQQzSbd8fHxdn95XTd5Yvfu3Rg+fDjOnDmD/v3748svv0SbNm08nm58fDz+97//YebMmQCAV199FcOHD8fJkyc9njYRERERyY93Lw8g/kq6zWYz9u7di379+mH06NFYs2aNx9/rrsrKSiXhNxqN0Ov10Gg0dgl4v379AABt27bFsWPHmHS7oa6uDt9++y127NiB+vp6AEB0dDSGDh2KLl26XHZ32/76668xZswYlJSUYMCAAVi/fj1iY2O9Nn29Xo+cnBxcddVVmDhxIr755hsMGDAAH330EX7729967XuIiIiISD5MuiVnNpuV954k3VVVVfj888/RpUuXJuPuvfdeLF26VPl/7dq12L59O9LT01FbW2vX09xSX3zxBdq2bYsBAwY4jbH2coeEhGDu3LlKErhlyxalfP379wcA3sHcRWazGV9++SXeeecdfPHFFygpKXEYl5ycjN/+9rcYPnw4hg8fjo4dO/q3oH62bt063HbbbaiqqsI111yD//73v4iOjvbJd918883YsWMHbr/9duzZswe/+93v8Ne//hVPPvmkSzdpIyIiIqLAc1kk3YsWLcJLL72EwsJCpKam4vXXX0d6errT+BUrVmD27Nn46aef0LVrV7z44ou4/vrr/VjiS2prax2+t2UymXDixAkUFBTgqquuwqpVq3Du3DmMGjUKO3fuxBVXXIGZM2di69at+OMf/9jk99km3FYZGRnK+7fffhsmkwmLFi3CP//5T6SmpuLHH39Er169AACrVq3Cjz/+iKlTp9r1Sn/77bf45ZdfkJiYiFGjRkGn0+Gqq65CREQE3nrrLXTq1EmJPXjwIL788ksAQGxsrF2vq+016b179wYAJCUlAQCOHTtmV+6PP/4Yb7zxBl5++WUMGjSoyd8drMxmM3bu3Im1a9fi/fffx5EjR5Rxbdq0wdChQ5Vr4n/++Wd8++23OHnyJN5//33lMXWdOnVSEvCMjAx06NCh0SOzrKqqqnDhwgWEhYUhOjra64lkVVUVTCYTwsPDERIS4nGP/IoVKzB+/HjU1tZi1KhR+H//7/8hIiLCS6V1rEuXLsjLy8PDDz+Mf/3rX5g1axby8vLw9ttvu33DtkBlNptRU1ODmpoaVFdXN3qv1WoRGRmpvFq1agW9/rLYXBEREVEDQghUVVWhrKwMZWVlKC0ttfvr6L21A08WGhHkz1n6+OOPMWHCBLz55pvIyMjAggULsGLFChw8eFC5FtjWN998g6FDhyInJwc33HADPvzwQ7z44ov4/vvvlSSvOaWlpYiKikJJSQmMRqNH5S8pKVF63bp27Ypt27Zh48aN+PDDD/Hpp596NG1vuPnmm/HZZ58BACIiIpTT18PDw5GcnIx169bhiiuuQGJiIi5evOhwGg899BAWL14MwJL4/eY3v0FVVRUAIC0tDd99950SW1lZiUGDBmHw4MFYsmQJAOCdd97BAw88gCFDhmDLli0AgH379in11apVKxw4cAApKSl47733cODAATz66KNISUkBYEnk9u3bh379+rm0Yy+EQEFBAZKSkhr1/AshsHPnTrRt2xYdOnRw+PktW7bgxx9/RHV1Na6//nqHZx+cOXMGeXl52Lt3L/R6PYYNG4aBAwc6PNPAZDJhz5492LFjB3766ScUFhbi9OnTKCwsREFBgd18NxqNmDhxIsaPH4+0tLRGZ09UVlYiLy8PGzduRG5uLr777jvU1dXZxWi1WlxxxRWIi4uDyWRCTU0NqqqqcO7cOaXerHGxsbG44oorcN111+GGG25AZmam28nTsWPH8N///hf//e9/sXnzZqU8Op0OERERSExMxK233orf//736Nevn8uJ+DvvvIMHH3wQZrMZd911F95//32nBxN8QQiBJUuW4NFHH4XJZILBYMCtt96KSZMmYfjw4ar3fAshlLqtqqpCdXW10/fl5eUoKSlp9mWNd3YAsSmhoaF2ibj1FRcXh6SkJIcv6wGlYGA2m1FRUdFoR6O0tBSlpaXKs+BDQkKg1+sREhLi8nvr/6GhoYiKikLr1q1VX/6IiCiwCSFQUVHhVqLcVKz1ckh3eSMf84agT7ozMjIwaNAgLFy4EIBlxyUlJQWPPvqocmMjW2PHjkVFRQVWr16tDLvqqqvQr18/vPnmmy59pydJ9+HDh7Fo0SLs3r0bmzdvduuzMpo8eTJGjBiB2267zWlMTEwMvvvuO2g0Grz00kt28/n1119HbGyscpq9VqvFXXfdZZe4HTp0CN27dwcArFy5EqNGjcIdd9yBzz//XImZMmUKhgwZgrFjxwIAoqKisH37dkRHR2PkyJHYvXs3EhIS8P777+N3v/sdhBBYu3YtTpw4gd/97nfo3LkzAGD79u149NFHsX37dsTFxeHhhx/GM888A4PBgNzcXEyfPh07d+4EAKSnp+PNN99UToO/cOECHnnkESxbtkwpl06nw/jx4zFp0iQMGjQIe/fuxZIlS7B06dJGN7GLjIzEkCFD0L9/f2i1Wly4cAE7duzArl27mrzhXevWrfG73/0ON9xwA+666y60atWqiRqzV15ejq1btyI3Nxe5ubnYt29fs/cF0Gq1dpdF2IqJicHo0aNxww03YOTIkQ6vm66vr8e3336rJNr79+93ubzdu3fHuHHjMGbMGKSmpjY6SFFaWopPP/0UH3zwgXI2xaRJk7B48WKv3DOhJXbs2IE//elP+P7775VhnTt3xv3334977rlHOZPDXVVVVTh16hTOnj2rvM6dO9fo/8rKSqfJtL+EhYUhNDRUeZnNZpSXl6O8vLzFG1nAsuzbJuHt2rVD27ZtlVdcXJzy12g0+vReBmazWTnyfv78eZw7d055b31duHBBSaIb7nSUl5fDX5trjUaDqKgoREVFITo6GtHR0cp7R8Majo+KivLrASy11NbWKuuM7V/rgaW6ujrU1dWhvr5eee/Nl9lshk6ng06ng16vV977cpjtgRrry2AwOB1mvR8LEXmHEAL19fVKG1NbW+vSe3di3f1cTU2Nw0S5vLzc6f6gJ1q3bo3WrVvDaDQ2+V6v12PGjBlMuv3BZDIhIiICn3zyCW655RZl+MSJE3Hx4kWlh9ZW+/btMW3aNEydOlUZlp2djVWrVuGHH35w6XtdTbrLy8vRunVrl39PMPnmm2/Qtm1bXHvttQ7v4jxhwgS0atUK8+bNw9///ne7cbNmzbLboRNCoF27digqKrKL02g0WLx4MR566CGHZYiPj0dlZaXSQwRYeuj/7//+D5988gny8vKU4ffffz+Sk5PxwgsvNOr57d27Nzp16oT//ve/yjRqampgNpsRGhqKv/zlL2jbti1efPFFFBcXQ6fTYfTo0aioqEBubq5deW1Xx549e2LAgAGorKzEpk2bmjxNJjY2Funp6ejevTvatWuHxMRE5e9vfvMbr1yLD1jmdXFxMY4dO4bz588rSVJ4eDhiY2PRpk0bGI1G1NbW4vz58zh79izy8/Px+eefY82aNXa/QafTITMzE8nJycqOWlVVFb788kucPXvWLm7o0KG48cYbccMNN6BDhw6orKxUksXdu3fjo48+wurVq+0uPwgPD8egQYOQmZmJ7t27Y+3atfjvf/9rl0zOnDkTL7zwghQ7hd9//z2WLFmCDz/8UHnmvHVZ6dKlCyIiIhAeHt7o78WLF3Hy5EmcPHkSv/zyi/L+woULXiubVqtFeHg4wsLCEB4e3uh9RESEXZJmfd/wFRERYZdgh4WFNXmZgBACJpNJScArKiqU9+Xl5SgrK8OZM2dw6tSpRq+ysjK3fqPBYEBcXJxdIt62bVsYDAYIIRy+zGazw+FVVVV2yfS5c+dw4cIFr+x86HQ6ZYfC9q+1V9/ZTlFTO0zW/1t6FoIjer0eERERaNWqlcd/tVot6uvrYTabvfa3tra2UbLs7IwOZ+M8OSB0ObEm600l564O12g00Gg00Gq1Dv+6Oswb8a60Bc6Gt+Qz7kzL27y5jfT29lbWslkTY18kwYFGq9W6nCg33LY1HGbdJrjCm2cee0NQJ92nTp1CcnIyvvnmG2RmZirDn3zySWzevBnbtm1r9BmDwYB//vOfGDdunDLsjTfewLPPPtsoqbOyXo9oVVpaipSUlGYrWYYdfTV06dIFhw8fBgD83//9H2bPnm03PjU1Fbt27YJGo4HJZEJOTo7d+IZJNwC8//77eOedd7B7927lBmG33347VqxYgWuuuQbffPMNAOB3v/sdlixZgv79+ytJSUpKCtasWYMZM2bY3ak9PDwcAwYMwNdff233XXfccQf+/ve/Y+vWrZg8ebJdIvnQQw/hueeeQ319PR588EElEbfq3r07/vWvfyn3FPjuu++waNEifPrppygrK0NMTAyGDh2KadOmYciQIcoyYjabsWfPHuTm5uLo0aPKndz79++P9PR0dO7cWfrlydqDvXr1aqxevRr5+flOY6Ojo3H99dfjxhtvxKhRo1y6sVlpaSk+++wzrFixAlu3bnWadPbo0QPjx4/HH/7wB+UMBplUVFTgk08+wZIlSxote+4KDw9HfHw84uLi0KZNGyWptL5iY2MRGRlpl0A7Sq69cf28v5WVleH06dN2ifjp06dx5swZnD17FmfOnFHeV1RU+K1crVq1QmxsrN2rTZs2iI2NVQ5YWHcwHCXXYWFhPqsLIQSqq6tx8eJFlJSU2P11dZjtQczLifXgY1hYmLLO6PV6n740Gg3q6+uVl7VX3dn/3hhme6CmtrYWJpPJ7n8eiCBSh7uXFVnfeyPWYDA0mShHRESosg/BpNuP/JV0z507F88++2yj4c1Vcn5+Pvr06ePOT/KKkpISPPXUU8jPz8eqVavw+OOP491330VcXBxSU1ORnp6OqqoqlJeX48cff0RVVRWEEAgLC0NdXR1iY2NhMplQUVGB5ORkdOjQAUeOHEGnTp1w6NAh3HHHHSgqKkK/fv2wceNGFBQUYNCgQUhLS8OMGTOwaNEi5cZm9fX1+Ne//oXQ0FAcO3YM27Ztw6uvvqokQ64m3VZHjx7FlClT0K1bNzz77LOIjo7G+fPnMXv2bPzyyy9499130aZNG+zbtw85OTkoLi7G22+/jfbt26O6uhqvv/46PvvsM/Tp0wezZ89GUlIStm7dildffRVmsxmjRo3CAw88oDQehYWF+O9//4uzZ89i+PDhuOqqq5SyCCHw4YcfYs2aNTh27Bj+8Ic/4KGHHnLY62y9Jjo5OTngkpuW+vnnn7Fx40aUlZUpO24AkJmZiauvvtqj3nmz2YxDhw7hm2++QV5eHg4cOICMjAyMHz8e/fv3D5h5fODAAXz22WcoKSlRevZte/krKythNBqRnJxs97riiiuQnJyMqKiogPmtaqqqqlIS8YYJeW1trdLDZfuy7flq+AoNDUWbNm2UZNr6iomJQVhYmNo/16fq6upQVlaGyspKVFRUuP3X0TAhBHQ6HbRarUd/bd/r9Xq7A0wN/7ozLjQ0lNfA/8p6FkFTibmjYa7E1NbWOuzdte3lbWqYtz/TXFvQVBvh7mdaMi1v8Waa4O2UQ9ayCSGUg2Mtuc+Gu5/T6XTc1jvApNuP/HV6eUt7uql57ibdRERERER0eZMt6Q7qQ7MGgwEDBw7Ehg0blGFmsxkbNmyw6/m2lZmZaRcPAOvXr3caD1hOK7OeCmh9EREREREREQX9g0+nTZuGiRMnIi0tDenp6ViwYAEqKipw7733ArDcsCs5OVnpTX3ssccwbNgwvPLKKxgzZgyWLVuGHTt24B//+IeaP4OIiIiIiIgCUNAn3WPHjsWZM2cwZ84cFBYWol+/fli3bh0SEhIAAAUFBXbXYg0ePBgffvghnnnmGTz11FPo2rUrVq1a5fIzuoFL14VY70BMLWcymRo9uqi0tJSnlxMRERERkUPWPEyWK6mD+pputRw7dgxXXnml2sUgIiIiIiK6bB09elSKp9UEfU+3GmJjYwFYetGjoqJULg01x3rjuxMnTvB6/ADBOgssrK/AwzoLLKyvwMM6Cyysr8BTUlKC9u3bK3mZ2ph0+4D1dPWoqCiumAGEN8ELPKyzwML6Cjyss8DC+go8rLPAwvoKPLI80lGOUhAREREREREFISbdRERERERERD7CpNsHQkNDkZ2djdDQULWLQi5gfQUe1llgYX0FHtZZYGF9BR7WWWBhfQUe2eqMdy8nIiIiIiIi8hH2dBMRERERERH5CJNuIiIiIiIiIh9h0k1ERERERETkI0y6iYiIiIiIiHyESbeXLVq0CB07dkRYWBgyMjKwfft2tYt0WZg7dy40Go3dq0ePHsr46upqTJ48GW3atEFkZCRuv/12FBUV2U2joKAAY8aMQUREBOLj4zF9+nTU1dXZxWzatAkDBgxAaGgounTpgqVLl/rj5wW8LVu24MYbb0RSUhI0Gg1WrVplN14IgTlz5qBdu3YIDw9HVlYWDh8+bBdz/vx5jB8/HkajEdHR0bj//vtRXl5uF7Nnzx4MGTIEYWFhSElJwfz58xuVZcWKFejRowfCwsLQp08frFmzxuu/Nxg0V2f33HNPo3Vu1KhRdjGsM//JycnBoEGD0Lp1a8THx+OWW27BwYMH7WL82Q5yW9g0V+rr2muvbbSOPfTQQ3YxrC//Wbx4Mfr27Quj0Qij0YjMzEysXbtWGc/1Sy7N1RfXL/nNmzcPGo0GU6dOVYYF9HomyGuWLVsmDAaDePfdd8W+ffvEpEmTRHR0tCgqKlK7aEEvOztb9OrVS5w+fVp5nTlzRhn/0EMPiZSUFLFhwwaxY8cOcdVVV4nBgwcr4+vq6kTv3r1FVlaW2LVrl1izZo2Ii4sTs2bNUmKOHTsmIiIixLRp08T+/fvF66+/LnQ6nVi3bp1ff2sgWrNmjXj66afFp59+KgCIlStX2o2fN2+eiIqKEqtWrRI//PCDuOmmm0SnTp1EVVWVEjNq1CiRmpoqvv32W/HVV1+JLl26iHHjxinjS0pKREJCghg/frzIz88XH330kQgPDxdvvfWWEvP1118LnU4n5s+fL/bv3y+eeeYZERISIvbu3evzeRBomquziRMnilGjRtmtc+fPn7eLYZ35z8iRI8V7770n8vPzxe7du8X1118v2rdvL8rLy5UYf7WD3BY2z5X6GjZsmJg0aZLdOlZSUqKMZ33513/+8x/x+eefi0OHDomDBw+Kp556SoSEhIj8/HwhBNcv2TRXX1y/5LZ9+3bRsWNH0bdvX/HYY48pwwN5PWPS7UXp6eli8uTJyv/19fUiKSlJ5OTkqFiqy0N2drZITU11OO7ixYsiJCRErFixQhl24MABAUDk5eUJISwJhlarFYWFhUrM4sWLhdFoFDU1NUIIIZ588knRq1cvu2mPHTtWjBw50su/Jrg1TODMZrNITEwUL730kjLs4sWLIjQ0VHz00UdCCCH2798vAIjvvvtOiVm7dq3QaDTi5MmTQggh3njjDRETE6PUlxBCzJgxQ3Tv3l35/6677hJjxoyxK09GRob405/+5NXfGGycJd0333yz08+wztRVXFwsAIjNmzcLIfzbDnJb6L6G9SWEJSmw3dlsiPWlvpiYGPH2229z/QoQ1voSguuXzMrKykTXrl3F+vXr7eop0Ncznl7uJSaTCTt37kRWVpYyTKvVIisrC3l5eSqW7PJx+PBhJCUloXPnzhg/fjwKCgoAADt37kRtba1d3fTo0QPt27dX6iYvLw99+vRBQkKCEjNy5EiUlpZi3759SoztNKwxrF/PHD9+HIWFhXbzNioqChkZGXb1Ex0djbS0NCUmKysLWq0W27ZtU2KGDh0Kg8GgxIwcORIHDx7EhQsXlBjWofds2rQJ8fHx6N69Ox5++GGcO3dOGcc6U1dJSQkAIDY2FoD/2kFuC1umYX1ZffDBB4iLi0Pv3r0xa9YsVFZWKuNYX+qpr6/HsmXLUFFRgczMTK5fkmtYX1Zcv+Q0efJkjBkzptG8DfT1TN/iT5Kds2fPor6+3q6SASAhIQE//vijSqW6fGRkZGDp0qXo3r07Tp8+jWeffRZDhgxBfn4+CgsLYTAYEB0dbfeZhIQEFBYWAgAKCwsd1p11XFMxpaWlqKqqQnh4uI9+XXCzzl9H89Z23sfHx9uN1+v1iI2NtYvp1KlTo2lYx8XExDitQ+s0yHWjRo3Cbbfdhk6dOuHo0aN46qmnMHr0aOTl5UGn07HOVGQ2mzF16lRcffXV6N27NwD4rR28cOECt4VuclRfAPCHP/wBHTp0QFJSEvbs2YMZM2bg4MGD+PTTTwGwvtSwd+9eZGZmorq6GpGRkVi5ciV69uyJ3bt3c/2SkLP6Arh+yWrZsmX4/vvv8d133zUaF+jbMSbdFBRGjx6tvO/bty8yMjLQoUMHLF++nMkwkQ/8/ve/V9736dMHffv2xZVXXolNmzZhxIgRKpaMJk+ejPz8fGzdulXtopALnNXXgw8+qLzv06cP2rVrhxEjRuDo0aO48sor/V1MAtC9e3fs3r0bJSUl+OSTTzBx4kRs3rxZ7WKRE87qq2fPnly/JHTixAk89thjWL9+PcLCwtQujtfx9HIviYuLg06na3QHvaKiIiQmJqpUqstXdHQ0unXrhiNHjiAxMREmkwkXL160i7Gtm8TERId1Zx3XVIzRaGRi7wHr/G1q3UlMTERxcbHd+Lq6Opw/f94rdch11HOdO3dGXFwcjhw5AoB1ppYpU6Zg9erVyM3NxRVXXKEM91c7yG2he5zVlyMZGRkAYLeOsb78y2AwoEuXLhg4cCBycnKQmpqKV199leuXpJzVlyNcv9S3c+dOFBcXY8CAAdDr9dDr9di8eTNee+016PV6JCQkBPR6xqTbSwwGAwYOHIgNGzYow8xmMzZs2GB3/Qj5R3l5OY4ePYp27dph4MCBCAkJsaubgwcPoqCgQKmbzMxM7N271y5JWL9+PYxGo3IqUmZmpt00rDGsX8906tQJiYmJdvO2tLQU27Zts6ufixcvYufOnUrMxo0bYTablQ1lZmYmtmzZgtraWiVm/fr16N69O2JiYpQY1qFv/PLLLzh37hzatWsHgHXmb0IITJkyBStXrsTGjRsbnbbvr3aQ20LXNFdfjuzevRsA7NYx1pe6zGYzampquH4FCGt9OcL1S30jRozA3r17sXv3buWVlpaG8ePHK+8Dej1r8S3YqJFly5aJ0NBQsXTpUrF//37x4IMPiujoaLs76JFvPP7442LTpk3i+PHj4uuvvxZZWVkiLi5OFBcXCyEsjxho37692Lhxo9ixY4fIzMwUmZmZyuetjxi47rrrxO7du8W6detE27ZtHT5iYPr06eLAgQNi0aJFfGSYi8rKysSuXbvErl27BADxt7/9TezatUv8/PPPQgjLI8Oio6PFZ599Jvbs2SNuvvlmh48M69+/v9i2bZvYunWr6Nq1q93jpy5evCgSEhLE3XffLfLz88WyZctEREREo8dP6fV68fLLL4sDBw6I7OxsPn7KiabqrKysTDzxxBMiLy9PHD9+XHz55ZdiwIABomvXrqK6ulqZBuvMfx5++GERFRUlNm3aZPcInMrKSiXGX+0gt4XNa66+jhw5Ip577jmxY8cOcfz4cfHZZ5+Jzp07i6FDhyrTYH3518yZM8XmzZvF8ePHxZ49e8TMmTOFRqMR//vf/4QQXL9k01R9cf0KHA3vMh/I6xmTbi97/fXXRfv27YXBYBDp6eni22+/VbtIl4WxY8eKdu3aCYPBIJKTk8XYsWPFkSNHlPFVVVXikUceETExMSIiIkLceuut4vTp03bT+Omnn8To0aNFeHi4iIuLE48//riora21i8nNzRX9+vUTBoNBdO7cWbz33nv++HkBLzc3VwBo9Jo4caIQwvLYsNmzZ4uEhAQRGhoqRowYIQ4ePGg3jXPnzolx48aJyMhIYTQaxb333ivKysrsYn744QdxzTXXiNDQUJGcnCzmzZvXqCzLly8X3bp1EwaDQfTq1Ut8/vnnPvvdgaypOqusrBTXXXedaNu2rQgJCREdOnQQkyZNarQxYp35j6O6AmDXRvmzHeS2sGnN1VdBQYEYOnSoiI2NFaGhoaJLly5i+vTpds8RFoL15U/33Xef6NChgzAYDKJt27ZixIgRSsItBNcv2TRVX1y/AkfDpDuQ1zONEEK0vJ+ciIiIiIiIiJzhNd1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuIiIiIiIiIh/Rq12AYGQ2m3Hq1Cm0bt0aGo1G7eIQERERERFdNoQQKCsrQ1JSErRa9fuZmXT7wKlTp5CSkqJ2MYiIiIiIiC5bJ06cwBVXXKF2MZh0+0Lr1q0BWCrZaDSqXBoiIiIiIqLLR2lpKVJSUpS8TG1Mun3Aekq50Whk0k1ERERERKQCWS71Vf8EdyIiIiIiIqIgxaSbiIiIiBqRpYeIiCjQMekm8pBGo+GOCRERBRWNRgMhBLdvRERewKSbyENCCLWLQEREQUKmJFeGsshQBiIiT/FGakQekGVnwLYcPAhARBS4ZGjDZdm2AZfmh7XnnYgoEDHppoAkw8a3YaKrVplk2jkiIiLPNGzT1d7WAeptc7l9I6JgwdPLKWCpvTEWQigvK7XLJEsZiIgCkdrtpwwJt7UMjrZxauL15UQUyJh0U8Cx3eiqtQG23jzN+v3WXgB/75zY7hwREVHLqX0GlbPtmdqJpu12To3vdfY/EVEgYdJNblF7o+fo+9W4e3jDHgDba878zbYMMiTfDQ9IEBEFChnaLdu2XK0DAbbfqfa2peH2Vs06UusABBEFPibd1KyGGxlubCxknA+2daRG+WScJ0REzWl4BpVavboNk92GZfNXOdTmaH7IciYC94WIqCWYdFOzHF1HpWZCp3bPrnWHzNl3+2veOPoeR73v/uLsLAQiIpnJ0E45a69lOHvJlprzSs37pzi7lEvtXneeVUYUOJh0BwAZGnVn4/zNUULp7+Rbpp0gR2XhBpiIyHVqH8gFmm63/XkDMbVPJbfV1IEImepJ7W2uLPVFRE0L+KR70aJF6NixI8LCwpCRkYHt27c7jd23bx9uv/12dOzYERqNBgsWLPB4mr6m9ulUjpJbGRt4WU6/k6F3We36kWUZUXtHiIgCg7M7hqtxrxBHZNq+ydC2A/6/BKDhgRk1zypriL3dRIEhoJPujz/+GNOmTUN2dja+//57pKamYuTIkSguLnYYX1lZic6dO2PevHlITEz0yjR9Se3rc23LoDZXyqHGBlgtzd21XJa7qMvUG0FE1BCfAHGJLO2m2p0NDTnbB1Pz2m7b75RpXhGRcxoRwGtrRkYGBg0ahIULFwIAzGYzUlJS8Oijj2LmzJlNfrZjx46YOnUqpk6d6rVpWpWWliIqKgolJSUwGo3u/zDI04PpyrXL/ihXcxthmcoiC3/vTDqbL2rML+6QEJErmmq3AP9tU/z1XZ6Wwx9llW0b29xvVmNba/0+buuInPNGPuZNAdvTbTKZsHPnTmRlZSnDtFotsrKykJeXJ800PeHohh2ynGYmG3+d9ubKzoC/6kmW+mnqxnJq9wCoVQYico3tzaBkOk3W3wmMK9sVGcrhL7IsB7IcEHHG9lR3mdYfImosYJPus2fPor6+HgkJCXbDExISUFhY6Ndp1tTUoLS01O7liaaOXMq2I+APsm1EXCmPr+ebq2XwV/3Jcpq7M7ItQ0RkIdMjoKh5am9TbPkryZRlOwY0fxd1mcpKRPYCNumWSU5ODqKiopRXSkqKV6evxs1LZEgs3f0uWTbA/rrTbKBsXP15513bHQ+ZbnRDRI2p3TPXXPvgz7bLFTKVRRYytO2X8wFuGc9SIZJVwCbdcXFx0Ol0KCoqshteVFTk9CZpvprmrFmzUFJSorxOnDjRou8Hmj5a6c/Th9xpwC+XhvZy+Z3uCJR5EijlJLocyfTsY39z9bf6I6ly9Ttkup7bl8uKO9P252VlMiXeDZ9ww+SbyLmATboNBgMGDhyIDRs2KMPMZjM2bNiAzMxMv04zNDQURqPR7hXoZLuRiSt8XV53jmbLMu/8sQGU5bdaObokQ7YeK6LLnaPHdKlxRpcM7ZcMZZAlWXKnrfbHNj/Q+Pu+P7bfJ8PyYyVTWYis9GoXwBPTpk3DxIkTkZaWhvT0dCxYsAAVFRW49957AQATJkxAcnIycnJyAFhulLZ//37l/cmTJ7F7925ERkaiS5cuLk3T1wItObA9sumrDZQ705XpCHywl8Nd/ii3DM+5JSLXyd6WyV4+b3L1t/ry+mGZtm/ulMUf+26ulkeGeaj2NeZq/34iRwI66R47dizOnDmDOXPmoLCwEP369cO6deuUG6EVFBRAq73UmX/q1Cn0799f+f/ll1/Gyy+/jGHDhmHTpk0uTdPXmmss/ZHkWr/HF7HuasnvlGWDo3YZgMA7iOMJtTfyjshYJiJbsrRVVjKVxUqWeWRtz31RFne3+b7aD3F3ejLUi5UMT1Dx1zbf2Q1/1X6EWcPHqcm0fBAF9HO6ZeWP58L5sjFxN1HwdVlkSbpbeq2Z2quYDPUjw7Nd/b0BdnT6LJFs1NoxVXt95Q75JS1pn2XZzspWFl+RrZdb7fW3qe+1JUv9kTr4nG5yytVrqmS7kZqvk393ybTxlaHBl6F+fH29pmy9+Wof7Sdqju32xt/rj2zrqyt8VWYZ5kWgbttseXs+tjT591V9utqDreaBZbXJVh6ihgL69PJg5EqDaY0JxKOw7gj0U6PV7l1uabw7ZFn+XFlW1CprIC/DdPnw9/ZE7V47GdpQmbbhspSjpQK9/M1xZ1nx11l2rp7mrmbdyLSOkX/JuO/Fnm6SWksaS18cbQ7kRluGnVZfc7W+/XmHXtvefdtrIInUpuZyGIjrgK8OAMuyfZOFTGeUyVIOQL51xt2z3PzN12fWuUK2OrvcyDr/mXRLQpajcZ6Uwxend8lCprK4y1c7ae5O09fz0J27zPqSo2vKZDjiT9RQw51Tmdo5f6+nzfFVT7cMWloOWcrvCzJd3hao/Hm2oqNtrNpntwXz+kEtw6RbErIkui0lw5FFW94siyzzGGjZQRGZerp9eb2bzGwvCZFpeaLLj7OdU9tl1Jfc2VbIcomO9TOykKm98+Z8kel3yUaG++zYTl/GunJUJhnLSb4lcycHk25J8Kiq9/ji6GqgHxTxtpYkjzLcSM1fR965XlKg8XePlLdjfU2mU5iDfb60hDfniafTkqF+ZNje+kNz+yL+PtDd8Lt4oF1dJSUlahfBDpPuACZTcultnv4ub/4O2XZyZCDLcmIlS3maWk5kKSNdvprqAbD2Xsm2sy5L2+uLy6dk+G2eXtomw2+wYq+778m2DjfXbqnVKy/Dae5qsrZvarUPss5zJt0SCNaNlqdkWWlkud4eaPk88faBA5lueCPLzqtVc3d0Bfy7nsk2f8hC1nrx9WOPZLg8RoYzlzxJBrw9T2Q5006Wg+2eTsfbl7d5csM9tW8A6I99p+Z+o1rXlauxvbd+n5pJr4zbNVkw6ZaALNfHeOOUKm+tbDLMDytPyuKLZNeTsqhNlmu6fblRkGmDY1sW2/VTpjJebhq2k2reaMgRX26P3N1GyHSWkSzbaV/wdBsnA28uK7KdXt6S6TVM/LxFlvq2kqlTBGg8f9TuZVeDmjfolGV74QyTbgnI1MCrvbJayb7iuMrbGwRZ6qelZOq18hVXkhrA98u4s+kz8VaPbXsg613Dfd07ovb66snvk+UAqky8mejK1MMsk2D9XZ6S6V4usl1apub2xbaNVaO3X+b1hUk3eY1MC7osO0fePs0sWHbUvEmWG7q5s9Po73XF2fdxefIf24MdjnYCZbnBny+XTVkuSWnp6bqybOOC9ayyYCJD2+qL0/896XX3BVm3ubbUuJxMreXP9nttt3NsZyyYdAe4YOxF9dbOjTcaHRk2nFaezhMZfosvNgayLLctOZruqzpxtOGTZT4B6i6Lapza7Yg/T1eW4cCUDO2PJ2Q71d1bvHEdtSzzRZYDETLtl8mwvb1cOgyamjf+/v1qXg5j+93W9/74/YGwjDHploBMO8OekuW3yLTR8xaZEqdguAGQL667c/cGM76uz4anMlu/U43lqOEReDVPebO+VyPpleGav+bItJMsSzm8TZZ6ly2pU5tMv8cbZZFhmxvM90MAmp8n/t7O2H6fP5Pe5shyNpeamHSrjDs3viPLyifTfJWpLGryxXwItB4Af15r1dz15WqQIeFuODyYr6UGPLshVDCRabsvC2/UszeSC28tb96ajjfu+cP7/qjftvprvl0up9EHKibdEpDpVCZPybTSyVQWGciynMhSDm+TZXlz5xoqfyR7zU3bX0l/w6P//r72LViXe3eofWBKloTMG9OS5RKsYFuuZWnHrWSZv95I/r3N3Xnjy8u5XCmLWge4ZdjG+fpsB9nWW2eYdKtMlg0nIE/j7i3eOnLujWkE085NoDRuTZHl5ky+Kodsp7k3/C5/LssNT2f35zXuLTkA4qsyuEOWtgYI/kceqS2Ytk2APGUJhu2krUA/RVztsvvr1GpHv9Nfp5g3t13lGT5MulXnrQ2eLEchZbl2RDayXDen9obHSobfI9PNiLzJ3Q2brzaEDafr6FpmfyyPDa9nd1QWWerPV/ND7QNCnh7kkKXdAoIrSZUpkZJlHfQmT36TN7eRstSxt3hyLxe1+Pq71V5/1P5+QJ52tSlMulUWCAuJuzz5TTLdLMybpzQG0x1iZRFM80PNO8zKcD2xL0/7a2ra/kz6XRVMy7UVDzp6nzfmiSzLmizbfVnmB+DdZNlby4pMnTsyLC+A/KeW+4ss9SE7Jt1BRJYNhiflCMYVV7Ybs3hCpp3fYLk0Q5YeRV+dxqvWqdWu3MDMdpy328+WTM8XZWjpvA3Wa6llIMu2Ohh5uv/hze21LMutDPsgMhxE8OXB3eb4cnlw5zImX3F1HviKLOtac5h0BxFZdvxlEUw7esG28xtMvTRA4JfF22dSWBM2Na9ldnf6Mlzn780DALKc0i1L2yXT9YSy3CtEtjr2BpnOCmM57KldDrUv35GhDVLzjDZXY9yl9jx1B5NuFXlzBZTl9D3A89PLvVkOGa6pkok3lhNZeqmDaYcxGHtX3OGrXmZ3Em5f7BC19ACILEkZIMf6Achxt2/rdGQ5zVYWMiW6MpFlX8hTsuynAp5fJx+sp2CrfYDbnWn74nI6mdaXpjDpVpkMO8jevp5K7YbNthyykGWHUaaeERl2XL2R4Hhj/ZFhWfXV6eWu4jzwPhkObslyIEim64ZlKAcgxzoHqL+eBDsZ2gFv8bQ9keVyLrUEY0+z2t/vDibd5JMdzZZMU82bSTUkU2Pq7YMYMjRQssxbWcjQK6nmacAyJLvePFouwwElWcgyT71JloNsshzMtZLtWlt3yVIOb/N0HyJYttey9IiquT8nw+8H5Nrf9ycm3UQOyLYCy3AjFCA4G2xZfpOnvHEWg9qn3nkzQVNzHZah/fDWmSDBsn7IJFiWj4Zku4mj2jw5COHN3yDLdl/tA8veJMtBDLU7uKzTcneaas8DtTDpDiKBfpTZF6chyrIyyjKPPSXL/ATkKYss5fCUDPd1UPuaP299Xu1LDmSoS1+QZUdXJrJsW2Sbv4F6xo1VsB5YlqksavF23bqznKl9MzlflCGQlikm3SpRuyfG1wJpJXBEplNfgnVHwNN5IstOiSzlAORYzlo6HVnuBeGpYGvXPV03ZOnRCIZly5tkWU59VS9q9wBap9fSaQbreqN2WdS+aaks6523qH05aaDlUky6VSLLQhLMGzxPBOPNJoJJoDW0rpDh+kw1e5q9edduWU5zbSlvzAsZfossiYM3Pm9Lph53Tw5y0SUynW4vG1nWHUCeeSpDGyDDAR0ZOiwCqS1j0h1kWnJdBRPMxmQqvy+OvstAlp5NT9YBmXryvMEbp1Z72pOh9unh3qB2PcqyTMpQF4A8bY0vyiHD77KS4ZRuK5nKEshkaUu8RYa2wJs3UlRznqo9H61kWK5c5feku6amBnl5efjss89w9uxZf399UGvJCujLlUbNGyt4Ug5fkaX3TaaeEVnmiQxHaz0lSzk8IcPG09NLF2SoB5kuefAmGXqXrAI5qQvGM4UaCuTf54uyyzI/1L4ESu1E1cpbN5VryXSsnwuGy9kCjV+T7tdeew3t2rXDNddcg9tuuw179uwBAJw9exZxcXF49913/VkcVcm0I+MLgX56uS940kDKwttHvWX5bcGw8fDWDkkg35CRd8f1DRlOY/TF9Foq0NsLGcogGxluMGUVDOu+L6Yny+nInh60UvvsAetnvHGzT7XnQ6C1ZX5Lut977z1MnToVo0aNwjvvvGM3o+Li4vDb3/4Wy5Yt81dx6FeBtsD6gy+vc5fhTAQZTq+SjSzzI5ATXm/x9GCMmtf+yrKD6u2dOlnOjgmm5dybZJovspQlkLdzsuyX+eKMCLWTNG+R4dp0teeHN5J2NT+vBr8l3a+88gpuvvlmfPjhh7jxxhsbjR84cCD27dvnr+KQH7izQsp2ulswl0WWU7plIlOve6Dy1ml7MtSDJ8uDN++O2xKyXDcs2w67t8lSFvakOufuPoivyDS/3SHTdtHb7ZraSbPaCWewbKsDjd+S7iNHjmD06NFOx8fGxuLcuXP+Kk7Q4krgOVl2pi4Hgd6D5ouk4nJfhwN5/ZMlyQzkeegLsswPWdZtX55KLUui6y5fLiPuzhNfzRd3p+uLA2cy3JdBhvZAhjJ4eqq/TE+UCBR+S7qjo6ObvHHa/v37kZiY6K/iqEqmDY1MZZGFTPOE15k1Fsw9aC39bTLsGHlz+ZClPtQmyzonS30E8inD+P/t3XtwVOX5B/BvLuwmiEnQkE1CCYSLpEK4Qwzqzz/IGJCpUjsVGVQUe5GihWJRUCF21MaxtVMvFKpthfHGpaNUEcE0AhYNIBGECCICClqSeEsCqFyyz+8PZk+zZJPsbvac99nd72dmR9l9c/Y5z/ue95z3PZeFrv5cAzsfahXqBKamM93RWp/RxPRl7p3py7T0gZE4Wx/tOQiVY4Puq666Ck899RQaGhpaffbBBx/g6aefxtVXX+1UOEbZPaMabGPUdEm33XFo2UCjOQ4tbcUuGtYvnDPdkR6IaMhDODT0Z5Hevk2vj4+WfiuaJwsBPbHESxxatp9Q4tASMxDbvyjTmcFeJOI3PeiPBJ7pDp1jg+4HH3wQzc3NGDx4MO677z4kJCRg2bJluOGGGzBq1ChkZWVh4cKFIS930aJF6NOnD1JSUlBUVIRt27a1W37VqlUoKChASkoKCgsLsXbtWr/Pb775Zr/H6SckJGD8+PEhx9UeOw8OQ1m23ZeyapllDnU2XctlZnbSEoeGna+P6cFuZ5g+86/lcv9IMx2H6e/30XD1BaBrsjCc/kILO/v/UNZT035IS07sbiem26GWOu/MrTuxdD+0llvrojWGUDk26M7NzUV1dTXGjx+PFStWQETw7LPP4tVXX8WUKVOwZcsWZGZmhrTMFStWYM6cOSgrK8N7772HoUOHorS0FPX19QHLv/POO5gyZQpuvfVW7NixA5MmTcKkSZNQU1PjV278+PE4evSo9XrxxRfDXu9ANJ3ptpOmDUJLBxcqLfd2hfs3HdF0D7OWgUWoy9QyuIkkDe1CQ/+lpU1qoeUXIMKlpW405UQDDf2NE+y8nD/ahHsMFKl20tlfyYjU08+1PFcnXiSIoS3wiy++gNfrRY8ePZCYGN7Yv6ioCKNHj8aTTz4JAPB6vejVqxfuuOMOzJs3r1X5yZMn48SJE1izZo313iWXXIJhw4ZhyZIlAM6e6W5oaMDq1avDigkAmpqakJ6ejsbGRqSlpbX63IlZ1WCWryUOJ2iJRUscQGixaLk6QxO74g51uXY+7MZkvWhpn8GyK2ca1i3UODT1F1q2UztpyUmotByDOHWmW0POg2VnzFraXzg0xB7JGMJZVqRzYGcMHY3HnObYme5z9ejRAx6PJ+wB96lTp1BdXY2SkhLrvcTERJSUlKCqqirg31RVVfmVB4DS0tJW5Tdu3IisrCwMHDgQM2bMiLqnqpvuEHw0zR6HcrBo96XupJeW9qqB6bZq+vuB0C+VNR2zpitjYp2m/RsQfB1pGDT42B2HpvXUEksotDz4z47tLNxjPdP1aLrPseuKx1BjMF0P4Uo2HUC4vvzySzQ3N8Pj8fi97/F48OGHHwb8m9ra2oDla2trrX+PHz8e1157LfLz83HgwAHcc889mDBhAqqqqpCUlBRwuSdPnsTJkyetfzc1NbUbuxMPDQvmO6K10dpNy4y33R2Llvr3Hbxqice0UM9Y2RWDhjObpvuyaGuTduZBy726GrYPbTRNAGg6qxuN+xUtZ/9jnZZtJtT6iHTcoe7r7cibhrPtTonaQbddrr/+euv/CwsLMWTIEPTr1w8bN27EuHHjAv5NeXk5fve73zkVYoeirSFG68YTDi0dvTbRWP+xfmAU6oFApIX68CFeBqkjXk2DLg0xaKPp7LKG9go4005MTyA6tfxYpqG9xupDS0Nluh7CZezy8s7KzMxEUlIS6urq/N6vq6tr8/e+s7OzQyoPAH379kVmZiY+/vjjNsvMnz8fjY2N1uvIkSMhrEls07JhaOpYojEn0RhzOEI5s6uFhrrRcMmZXUw/mFJLHkI5E6KFlv4C0NVn2CmUy3adGuxGi2iKtTNCaSNabvfTVDeR3m6icaIsWkXtoNvlcmHkyJGorKy03vN6vaisrERxcXHAvykuLvYrDwAVFRVtlgeAzz77DF999RVycnLaLON2u5GWlub3ao+mjTdeRGMnoemAJF7arN339EeaE7dCBFPO9APX7GL6bH8otLRb0+0hXmmZMAzl/mUtkyJObDvRtE04cWtbKJN40ZS7cJjsu7VcfakhBidE7aAbAObMmYOnn34ay5Ytw969ezFjxgycOHECt9xyCwDgpptuwvz5863ys2bNwrp16/Doo4/iww8/xP3334/t27fj9ttvBwAcP34cc+fOxZYtW/DJJ5+gsrIS11xzDfr374/S0lIj6xgODqRa0zTzromW9dXSFrXkQ0scpusl2AMC0/mye7Im2BxomIRx4pklWmIJluntqCUtk7lOTc509B2aJom01I2WOLSxIy+hLlNLW42kUPdd0ZyDqL6ne/Lkyfjiiy+wcOFC1NbWYtiwYVi3bp31sLTDhw/7PR197NixeOGFF3DffffhnnvuwYABA7B69WoMHjwYAJCUlIRdu3Zh2bJlaGhoQG5uLq688ko88MADcLvdEYmZM6rmdLRzdWrnG8z3OHVfpJb7zDTRkA9NB4KmmX7oYDReVm0H0w/VaxmHlqswQn0AkQZO9C1a1hXoeH2jKdZYikPLegI6YgmGXfWi6YqQYGKIlvoKxNjvdMey9n4XTsvATkscTtIUSzRxIm/Bfkc81aGGdWUMHYu2Aze7sb8wE4eWdQWCn1jWEq8WWo7LNLVXO2OJtr7bznhNnwwKpT2EEgN/p5viSjAbsVOzZ9HSsQLOzShqudQs2miZ8TUdhxMxmG5/Ha2fE/ccmq5nHy39RSgHZ3aLppw4RVMsWrYdoP1YtAy444mW5w8Esx/VMkFg+vu1xBAuDrod5lRj0dQo2+tMnHxIRrCdmuk4AF3155Rg6kfLvWZaDqJNXwKooT6cGPSbjiEYGmJwSrCTPVr6USfqJtrqP96OhYKZvHNCMP2Zlv2blu1Gw7al4YFy8TK5bCcOuh3mZKPS0IA1zapqiSMYms7+a3kOgZb6c+oMczAHRnbHoWVgY7Iv05ADLW0/GE71F+y7Wn9HMJNDWiaXNRyfAM7ua7Vsx1ri0NAGNORCS19muj7i4ZYUDrod5uRZXQ2NU0MMGmmYaabo5tTDbjq6JNJuHd17aPL7nYqho8GS6YMlHy1x+GiZENKUFy37FiePhbTkX8s2rCUfHeFEhXM6yrXd25ETJxE04KA7Rmm4LNRHy45GCy2zmtpo2qlpuSXCNC2Td6aZfvqxpjqIlglDLXFoEo850dRfm+5Hgv0uTVfaka5bH6lzOOgm20VDx+rk4ELTZXda7qMONhYnaDkg6ei7TF+y6mQeTB+sapg41DKRaroutNFyeXkwtBxUOx2HlvVuj5YYtcQB6LiKyCnt7Wu19B8m49BQR5HAQXccitcdXkcDGC33djk9M68pL5353CkaBjdO03owYLoutPRtWh7CpGVCymlaYtHUh2oaRGjZfrW0k46Y7td9nJpY1rC+Wq4gChQHr3iLHA66HRaPByVaNlZNByTt0XIGMZQykaClvQJ62kJ7TE8SmZ4YcvoMhekBhJbtQ8u2oemKFJP3QobC6Ti0tBXTVwwF812m+1MTOprA03BZtVMDTt93nBuLk3kItJ5a2gqgpz/pDA66HeT0bFFb3xULDTfSNHUsTtPUHrScRdOCB2ltx6DhDIWG/hzQUT+AnjapJR8+WvJC/kz3Hy1pqTdNOXFSWxO78ebcK1RMXB0Ty3nnoJuMcXoSQtOGrGXmHdCVFw4yg+P0jsn0gZiGGXjTOWgPt43WNNeXnbT0oe3Rsu1qastaJvCcpOmJ1aav5gr0fb7cmOrfTQ2A28pDLOCgO4ZpeACS7/s0bDSaOnhNtJxB6+ihXfFYd1omZ+Ix9+cyfSakvW0gniZgWmK7bE1TTjTFEoiWtqzlVpmOPnMyDsD8sypM3cvsaw9aHlymYTvREEMkcNAdh0zM3mmYRWyPplhIt3h9+I6GGXDfd5rKicm60H4GU8vZSxO0TI5po2ndtfSjbdFyhZuWOtMQh+kYTAy8Ta9zrJ8c46A7xpk+O0OBme7YolG85kz7hJVTWj5oxsT93Od+p5Z+NF4ngQA+tyQQTeuu6eyhBm1NVsbbwMpHw3M52mLy0motOTERi69/MD3BbhcOuh2i4b4Ik2Jtw7GTplxpORgwEYeGA8b24nDSuTtf0wcGps6yB3qYWzzSMHDQRsMT9tuKQxNT7YTPhQiOhvZj+koq00zcy92Sb/9uatwSqwNugINux5g6SA30QAINcZii/YEqJuonGu6j1hKHBqbvM4tXGg7aNYiGPtSEtq5I0bLv03JLhpZ2Aug5LtGUEw00bTcmaFl/DTEAeuKIBA66Ke5pORgBzNzP0t53aunstMRhwrnrrmH2O54PEluehYjndtlSPF8yrJGW7TPQNqKpnWjJkwlarirTgrdx6RHLeeegm4zRNtjVIN6vRNDwdGYfLTthLQeGGgbbvvybbq9afkqlrfecjiPWH37TES23gfhiMb19+ATaTuK5nbRFy35FyyXdJtuIhieH0//6sVirBw66yRGa7ofUshFriQPQMxHB2Xe9zr2nW0McJr87ntuklv5CSxwmvzcYmiZzteRJU05M0BKHVpwcMi8W64CDbodoOatr+tJUHw1nzUzTvv5a2qwpmtrouT/XZRIP1swyXf+asC0GFmi/r+ledxM0bTcaYtEyYXVu29T6s4zkvFisDw66HRLvs++BDgK0xGaybrRMilBrWtrouZNVJmnIh2la2gWg66FhJpw7MaZpokwbU3XG+mhNw/aj+cGQpvOjqY+n2MJBt0Pi/ayhptlMTfeYae7YtcSm6UBaSxxEbIt6+ihAV30E+tUSUzTF0vK7tbQdTfs3DTkxHYPp76fYxkE3xR1NT1PVvLM1eRZN4xUAph+uYvq3O0kP0/2G6e/3OXebNHmGSsvPcwaiJQ5NtLRhgFchEMULDrrjjKYZb1M07Wi05CQQkwcCWh5YpeXMiOZ2Qs5qObDUcmuMlgk6LWdRAW6zPlrycu6EDPcretqoLw5Nx2ZEduCg2wGmB7paOviWtMShjaaDRlM0XY7YkoY4uN0QoOssqobtgtpn+hikZRxsL/64z/dvF1piIrIDB90x7tyDM3ZoZ7Xs4JmT1pgTf1ryoSUOMkvb72LzbJ2uOtG8X9NyhlnLRIQWzAeR/TjodoDpAxKNZ7pNd/AtL8/UdBCgpX5M09JmfduPhnox3VZJDw0DqpZ9qJazdZq2Dw115KNlH2e6rWi8vFwLTdsOUazioNtG6enp1v+bHjgA5jt6098fiMaYTNG40zVdP1oP6Cm+aWiLWrYNDbnw0TKo03aLTssryzTVlylacmB6EoQo3nDQHUdMd/RaDkgoMI07X9PthGeXSSvT7dJ3wG6639ByybCG79eIfWhrLbcb07nRsh372onpfBDZiYPuOKDtARUa4tAQA7VN0wy8hgMSIgpMy5VcgH8sGuLRQssA08d0/WjJg4+WeLjNUKzjoNsB7EjO0pQHLTsZTYNL4H8HI6bz44tBS25M54OI2qaln9ASB+A/AcD+qzXmRB/WCcU6DrrjgOnfdG1Jy0GJlsFlS6Zj0dROND3ADNDTbom00bKNAuZjaTlRaDoWTX2W6Vz4mD7D3ZKWnACcmCFyCgfdNmpsbARgvnPlTqY1TfcOaYlDIw1tl/VDFJiWq1E09edaaJpE1dBGAB250Ih5IXIGB90207CzYYeqn4Z2oo2mdqspFiJNNGwbWvpPnjEMTNN991poOeuuJQ6ieMBBdxzR0rHyoKQ1TTnR0k54AEtEwdB0xl1bv6UhL9poqh8iih8cdDuAO73/0XJwBLBeAuHBCBFFI/ZdrWmaANAUiwZacqElDqJ4EPWD7kWLFqFPnz5ISUlBUVERtm3b1m75VatWoaCgACkpKSgsLMTatWv9PhcRLFy4EDk5OUhNTUVJSQn2798fdnxa7jXTssPTFIcWjCUwDe2EiChUmvpR8sf9ij+2VSLnRPWge8WKFZgzZw7Kysrw3nvvYejQoSgtLUV9fX3A8u+88w6mTJmCW2+9FTt27MCkSZMwadIk1NTUWGUeeeQRPP7441iyZAm2bt2K8847D6Wlpfj++++dWq2YpmWHpyUOHy07Pi2TRERE0Uhb/6ll30L+tNQL9/lEzkmQKN7aioqKMHr0aDz55JMAAK/Xi169euGOO+7AvHnzWpWfPHkyTpw4gTVr1ljvXXLJJRg2bBiWLFkCEUFubi7uvPNO/Pa3vwVw9gnkHo8HS5cuxfXXXx9UXE1NTUhPT0djYyPS0tIisKadp+UMsxaa8qHlJ2aIiCh2aNvPaYlFC+aEyF7axmNRe6b71KlTqK6uRklJifVeYmIiSkpKUFVVFfBvqqqq/MoDQGlpqVX+0KFDqK2t9SuTnp6OoqKiNpcJACdPnkRTU5PfSxt27P405UNTLERERJHG/Zw/TQNuLWfdiWJd1A66v/zySzQ3N8Pj8fi97/F4UFtbG/Bvamtr2y3v+28oywSA8vJypKenW69evXqFvD4U37TsfImIKDZwv6KXprrRFAtRLIvaQbcm8+fPR2Njo/U6cuSI6ZCIiIiIiIhIgagddGdmZiIpKQl1dXV+79fV1SE7Ozvg32RnZ7db3vffUJYJAG63G2lpaX4vIiIiIiIioqgddLtcLowcORKVlZXWe16vF5WVlSguLg74N8XFxX7lAaCiosIqn5+fj+zsbL8yTU1N2Lp1a5vLJCIiIiIiImpLsukAOmPOnDmYNm0aRo0ahTFjxuDPf/4zTpw4gVtuuQUAcNNNN6Fnz54oLy8HAMyaNQtXXHEFHn30UUycOBHLly/H9u3b8dRTTwE4+zCJ2bNn48EHH8SAAQOQn5+PBQsWIDc3F5MmTQo6Lt/9MRofqEZERERERBTLfOMwNc8tkCj3xBNPSF5enrhcLhkzZoxs2bLF+uyKK66QadOm+ZVfuXKlXHTRReJyuWTQoEHy2muv+X3u9XplwYIF4vF4xO12y7hx42Tfvn0hxXTgwAEBwBdffPHFF1988cUXX3zxxZeh14EDB8IeZ0ZSVP9Ot1YNDQ3o3r07Dh8+jPT09LCXM3r0aLz77rudiiUSy9AUS1NTE3r16oUjR4506t55LeujJZZI5TUSsWhaRiSWw9zatxxN/UGklqNlGZpyG2v1w9zaswz2tfYtR1ObjdRytMTC3Nq3jMbGRuTl5eGbb75BRkZGp5YVCVF9eblWiYlnb5VPT0/v1AaUlJTU6R1HJJahLRYAnX5gnab10RRLJB4EqGV9NNUPwNzauRwN/UGklqNlGT4achtr9ePD3NoTC/ta+5ajoc1GajmaYgGYWzuW4eMbl5mmIwoKaObMmSqWEanlRCqWSNC0PppiiQQt66OpfiJFS15iLbea1kfLMiJF0/poiiUSNK2PplgiQcv6aKqfSNC0PppiiQRN66NlGdrw8nIbNDU1IT09HY2Njfz5sAhjbu3BvNqHubUPc2sf5tY+zK09mFf7MLf2YW7toy23PNNtA7fbjbKyMrjdbtOhxBzm1h7Mq32YW/swt/Zhbu3D3NqDebUPc2sf5tY+2nLLM91ERERERERENuGZbiIiIiIiIiKbcNBNREREREREZBMOuomIiIiIiIhswkE3ERERERERkU046I6wRYsWoU+fPkhJSUFRURG2bdtmOiSj3nrrLfzoRz9Cbm4uEhISsHr1ar/PRQQLFy5ETk4OUlNTUVJSgv379/uV+frrrzF16lSkpaUhIyMDt956K44fP+5XZteuXbj88suRkpKCXr164ZFHHmkVy6pVq1BQUICUlBQUFhZi7dq1EV9fp5SXl2P06NE4//zzkZWVhUmTJmHfvn1+Zb7//nvMnDkTF154Ibp164af/OQnqKur8ytz+PBhTJw4EV27dkVWVhbmzp2LM2fO+JXZuHEjRowYAbfbjf79+2Pp0qWt4omldr948WIMGTIEaWlpSEtLQ3FxMV5//XXrc+Y1ch5++GEkJCRg9uzZ1nvMb3juv/9+JCQk+L0KCgqsz5nXzvn8889xww034MILL0RqaioKCwuxfft263Puy8LTp0+fVu02ISHB+o1ettvwNDc3Y8GCBcjPz0dqair69euHBx54AC2fncw2G75jx45h9uzZ6N27N1JTUzF27Fi8++671ufMbXCiaYwQTCwdEoqY5cuXi8vlkn/84x/ywQcfyM9//nPJyMiQuro606EZs3btWrn33nvlpZdeEgDy8ssv+33+8MMPS3p6uqxevVref/99ufrqqyU/P1++++47q8z48eNl6NChsmXLFvnPf/4j/fv3lylTplifNzY2isfjkalTp0pNTY28+OKLkpqaKn/961+tMm+//bYkJSXJI488Inv27JH77rtPunTpIrt377Y9B3YoLS2VZ555RmpqamTnzp1y1VVXSV5enhw/ftwqc9ttt0mvXr2ksrJStm/fLpdccomMHTvW+vzMmTMyePBgKSkpkR07dsjatWslMzNT5s+fb5U5ePCgdO3aVebMmSN79uyRJ554QpKSkmTdunVWmVhr96+88oq89tpr8tFHH8m+ffvknnvukS5dukhNTY2IMK+Rsm3bNunTp48MGTJEZs2aZb3P/IanrKxMBg0aJEePHrVeX3zxhfU58xq+r7/+Wnr37i0333yzbN26VQ4ePCjr16+Xjz/+2CrDfVl46uvr/dpsRUWFAJANGzaICNttuB566CG58MILZc2aNXLo0CFZtWqVdOvWTR577DGrDNts+K677jq5+OKLZdOmTbJ//34pKyuTtLQ0+eyzz0SEuQ1WNI0RgomlIxx0R9CYMWNk5syZ1r+bm5slNzdXysvLDUalx7kblNfrlezsbPnDH/5gvdfQ0CBut1tefPFFERHZs2ePAJB3333XKvP6669LQkKCfP755yIi8pe//EW6d+8uJ0+etMrcfffdMnDgQOvf1113nUycONEvnqKiIvnlL38Z0XU0pb6+XgDIpk2bRORsHrt06SKrVq2yyuzdu1cASFVVlYic7ewSExOltrbWKrN48WJJS0uzcnnXXXfJoEGD/L5r8uTJUlpaav07Htp99+7d5W9/+xvzGiHHjh2TAQMGSEVFhVxxxRXWoJv5DV9ZWZkMHTo04GfMa+fcfffdctlll7X5OfdlkTNr1izp16+feL1etttOmDhxokyfPt3vvWuvvVamTp0qImyznfHtt99KUlKSrFmzxu/9ESNGyL333svchknzGCGYWILBy8sj5NSpU6iurkZJSYn1XmJiIkpKSlBVVWUwMr0OHTqE2tpav5ylp6ejqKjIyllVVRUyMjIwatQoq0xJSQkSExOxdetWq8z//d//weVyWWVKS0uxb98+fPPNN1aZlt/jKxMrddPY2AgAuOCCCwAA1dXVOH36tN86FxQUIC8vzy+3hYWF8Hg8VpnS0lI0NTXhgw8+sMq0l7dYb/fNzc1Yvnw5Tpw4geLiYuY1QmbOnImJEye2ygHz2zn79+9Hbm4u+vbti6lTp+Lw4cMAmNfOeuWVVzBq1Cj89Kc/RVZWFoYPH46nn37a+pz7ssg4deoUnnvuOUyfPh0JCQlst50wduxYVFZW4qOPPgIAvP/++9i8eTMmTJgAgG22M86cOYPm5makpKT4vZ+amorNmzcztxGiKY/BxBIMDroj5Msvv0Rzc7Nfxw8AHo8HtbW1hqLSzZeX9nJWW1uLrKwsv8+Tk5NxwQUX+JUJtIyW39FWmVioG6/Xi9mzZ+PSSy/F4MGDAZxdX5fLhYyMDL+y5+Y23Lw1NTXhu+++i9l2v3v3bnTr1g1utxu33XYbXn75ZVx88cXMawQsX74c7733HsrLy1t9xvyGr6ioCEuXLsW6deuwePFiHDp0CJdffjmOHTvGvHbSwYMHsXjxYgwYMADr16/HjBkz8Otf/xrLli0DwH1ZpKxevRoNDQ24+eabAbA/6Ix58+bh+uuvR0FBAbp06YLhw4dj9uzZmDp1KgC22c44//zzUVxcjAceeAD//e9/0dzcjOeeew5VVVU4evQocxshmvIYTCzBSA66JBGpNHPmTNTU1GDz5s2mQ4kZAwcOxM6dO9HY2Ih//vOfmDZtGjZt2mQ6rKh35MgRzJo1CxUVFa3OElDn+M5gAcCQIUNQVFSE3r17Y+XKlUhNTTUYWfTzer0YNWoUfv/73wMAhg8fjpqaGixZsgTTpk0zHF3s+Pvf/44JEyYgNzfXdChRb+XKlXj++efxwgsvYNCgQdi5cydmz56N3NxcttkIePbZZzF9+nT07NkTSUlJGDFiBKZMmYLq6mrToZFiPNMdIZmZmUhKSmr1VM26ujpkZ2cbiko3X17ay1l2djbq6+v9Pj9z5gy+/vprvzKBltHyO9oqE+11c/vtt2PNmjXYsGEDfvCDH1jvZ2dn49SpU2hoaPArf25uw81bWloaUlNTY7bdu1wu9O/fHyNHjkR5eTmGDh2Kxx57jHntpOrqatTX12PEiBFITk5GcnIyNm3ahMcffxzJycnweDzMb4RkZGTgoosuwscff8x220k5OTm4+OKL/d774Q9/aF2+z31Z53366af497//jZ/97GfWe2y34Zs7d651truwsBA33ngjfvOb31hXGLHNdk6/fv2wadMmHD9+HEeOHMG2bdtw+vRp9O3bl7mNEE15DCaWYHDQHSEulwsjR45EZWWl9Z7X60VlZSWKi4sNRqZXfn4+srOz/XLW1NSErVu3WjkrLi5GQ0OD3+zhm2++Ca/Xi6KiIqvMW2+9hdOnT1tlKioqMHDgQHTv3t0q0/J7fGWitW5EBLfffjtefvllvPnmm8jPz/f7fOTIkejSpYvfOu/btw+HDx/2y+3u3bv9OqyKigqkpaVZB5gd5S1e2r3X68XJkyeZ104aN24cdu/ejZ07d1qvUaNGYerUqdb/M7+Rcfz4cRw4cAA5OTlst5106aWXtvpJxo8++gi9e/cGwH1ZJDzzzDPIysrCxIkTrffYbsP37bffIjHR/xA/KSkJXq8XANtspJx33nnIycnBN998g/Xr1+Oaa65hbiNEUx6DiSUoQT9yjTq0fPlycbvdsnTpUtmzZ4/84he/kIyMDL+nasabY8eOyY4dO2THjh0CQP70pz/Jjh075NNPPxWRs4/gz8jIkH/961+ya9cuueaaawL+HMDw4cNl69atsnnzZhkwYIDfzwE0NDSIx+ORG2+8UWpqamT58uXStWvXVj8HkJycLH/84x9l7969UlZWFlU/q3CuGTNmSHp6umzcuNHv51a+/fZbq8xtt90meXl58uabb8r27duluLhYiouLrc99P7Vy5ZVXys6dO2XdunXSo0ePgD+1MnfuXNm7d68sWrQo4E+txFK7nzdvnmzatEkOHToku3btknnz5klCQoK88cYbIsK8RlrLp5eLML/huvPOO2Xjxo1y6NAhefvtt6WkpEQyMzOlvr5eRJjXzti2bZskJyfLQw89JPv375fnn39eunbtKs8995xVhvuy8DU3N0teXp7cfffdrT5juw3PtGnTpGfPntZPhr300kuSmZkpd911l1WGbTZ869atk9dff10OHjwob7zxhgwdOlSKiork1KlTIsLcBiuaxgjBxNIRDroj7IknnpC8vDxxuVwyZswY2bJli+mQjNqwYYMAaPWaNm2aiJx9DP+CBQvE4/GI2+2WcePGyb59+/yW8dVXX8mUKVOkW7dukpaWJrfccoscO3bMr8z7778vl112mbjdbunZs6c8/PDDrWJZuXKlXHTRReJyuWTQoEHy2muv2bbedguUUwDyzDPPWGW+++47+dWvfiXdu3eXrl27yo9//GM5evSo33I++eQTmTBhgqSmpkpmZqbceeedcvr0ab8yGzZskGHDhonL5ZK+ffv6fYdPLLX76dOnS+/evcXlckmPHj1k3Lhx1oBbhHmNtHMH3cxveCZPniw5OTnicrmkZ8+eMnnyZL/fkWZeO+fVV1+VwYMHi9vtloKCAnnqqaf8Pue+LHzr168XAK3yJcJ2G66mpiaZNWuW5OXlSUpKivTt21fuvfdev59NYpsN34oVK6Rv377icrkkOztbZs6cKQ0NDdbnzG1wommMEEwsHUkQEQn+vDgRERERERERBYv3dBMRERERERHZhINuIiIiIiIiIptw0E1ERERERERkEw66iYiIiIiIiGzCQTcRERERERGRTTjoJiIiIiIiIrIJB91ERERERERENuGgm4iIiIiIiMgmHHQTERERERER2YSDbiIiIiIiIiKbcNBNREREREREZBMOuomIiIiIiIhs8v9+n+Ua/8mTpwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sim.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, Hektor is trojan of Jupiter, and it is in the 1J-1 resonance. It is not trapped in 4J-2S-1. By default, only the resonant images are plotted. However, we can update this by setting up the `plot` parameter when creating the simulation. `plot` can be one of: `False` (no plots), `all` (all plots), `resonant` (only resonant plots), `nonzero` (resonant and controversial cases), `candidates` (only candidates/controversial cases)." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "sim = resonances.Simulation(name=\"custom\", date='2023-02-25', plot='all')\n", + "sim.create_solar_system()\n", + "sim.add_body(elems, ['1J-1', '4J-2S-1'], name='624 Hektor')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZgVxfX//74zw8ywzbAvQ2DYFJRFQBRRiAaJiEQFjQshCsEkLhjBLYoRgRi/ICJG/USiRsHEhYgKoiIKCCgKoigioMgqIJuizIAgINTvD3/35s6d291V3VXddWfer+eZB253ddXpU9s5p6q7Y0IIAUIIIYQQQgghhGgnK2oBCCGEEEIIIYSQigqdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgjJIKZOnYpYLIapU6dGLQohhBBCCJGATjchxHpmzJiBX/7yl6hbty7y8/PRokULDBw4EFu3bk2kOXLkCF588UUMHjwYJ5xwAmrUqIGaNWuiW7dumDx5Mo4ePSpV1nnnnYdYLIb8/HwlGc866yzEYjHs3LnTMU3z5s2V8w3C5s2bEYvFMGTIkNDKJMQPb7/9Nm655Rb84he/QGFhoWe7jQefxo8fL5X/gQMHcP/99+M3v/kN2rZti6ysLMRiMWzevFnPDSgwZMgQbWVXpj6+Z88ePPbYY7jgggvQsmVL5OXloV69eujbty/eeOONqMUjhBBXcqIWgBBCnBBC4JprrsFjjz2GVq1a4fLLL0fNmjWxfft2LFq0CF9++SWaNm0KANiwYQN+/etfo0aNGjj77LNxwQUXoKSkBK+88gquu+46zJ49G7NmzUIsFnMs7/HHH8cbb7yB/Px8CCHCuk1CKj1PPvkknnrqKVSrVg3NmjVDaWmp1vx3796NW265BQBQXFyM2rVr49tvv9VaBjHL9OnTce2116KoqAhnn302mjRpgm3btuHFF1/EnDlzMGHCBNx6661Ri0kIIWmh000IsZaHHnoIjz32GK677jo89NBDyM7OLnP+xx9/TPy/Zs2a+Mc//oHBgwejevXqieP3338/zjrrLLz66qt44YUXcMkll6Qta/Pmzbj55ptx0003Yfr06a4r1oQQvVx//fW49dZb0bZtW3zwwQfo3r271vzr1auHN998EyeffDLq1KmDc889l6ujGcbxxx+PWbNmoV+/fsjK+t9GzTvvvBPdunXDX/7yFwwaNAhFRUURSkkIIenh9nJCiJUcPHgQY8eORcuWLfHggw+Wc7gBICfnf3HDJk2a4LrrrivjcANA9erVcdNNNwEAFi1alLYsIQSGDh2Kxo0b469//avGu5Dn5Zdfxtlnn43atWsjPz8f7du3x8SJE6W3xW/btg3t27dHfn4+XnzxRUydOhUtWrQAADz11FOIxWKJv4ULFyau+/777zF69Gi0bdsW+fn5qFOnDvr164d33323XBljxoxJXD916lR06dIF1apVw1lnneX7vmOxGM466yx89dVXuPLKK9GoUSNkZWWVkfHtt9/G+eefj3r16iEvLw/HHXcc7rzzThw4cKBcfi+++CLOPPNMNGjQAPn5+SgqKkLv3r3x4osvlkv7yiuvJLYzV61aFSeddBImTZpUJpgDlN3Cu379egwYMAC1a9dG9erV0bt3b3zyySfl8l6wYAGGDh2KNm3aoEaNGqhRowa6du2Kxx57zFUPu3btwuDBg1GvXj1UrVoVp512WhldJLNv3z6MHTsWHTt2RLVq1VBYWIjOnTtj1KhROHLkSJm0mzZtwu9//3s0a9YMeXl5aNy4MYYMGYIvv/wybd5h07VrV7Rr1y5tP9dBjRo18Mtf/hJ16tQxkj8A7NixA8OHD8dxxx2HqlWrolatWjjhhBNwzTXXoKSkBMBPj5g89dRTAIAWLVok+mRyH5oxYwYGDhyI1q1bJ+q1Z8+e5dqwTB9328qe3J+TUelDYdKrVy+cf/75ZRxuAGjTpg0uu+wyHDlyBO+9915E0hFCiDtc6SaEWMmbb76J7777Dr/73e9w9OhRzJo1C1988QVq1aqF3r17o3Xr1tJ5ValSBUBZJz2Zhx9+GIsWLcLbb7+NqlWrapFfhZEjR2L8+PFo0qQJLrroIhQWFuKdd97Brbfeivfffx/Tp093vf6zzz5Dnz59UFJSgjlz5uCss87CihUrMHz4cDz44IM46aST0L9//0T65s2bAwB++OEH9OrVC8uWLUOXLl0wYsQI7Nq1C//973/xxhtv4Lnnnku7M+C+++7DggULcOGFF+Kcc84J7Cjt2bMH3bt3R506dXD55Zfjhx9+QEFBAQBg8uTJGDZsGGrVqoXzzz8fDRo0wIcffoh77rkHCxYswIIFC5Cbm5tIe91116Fx48YYMGAA6tati507d2LZsmWYMWMGLr744kSZkyZNws0334w6dergN7/5DapXr45Zs2bh5ptvxjvvvIOXXnqp3KMImzdvxmmnnYZ27dph6NCh2LBhA15++WX84he/wGeffYaGDRsm0t57771Yv349TjvtNAwYMAB79+7FnDlzcPXVV2Pt2rW4//77y+lh79696NGjBwoLC3HFFVdg9+7d+O9//4s+ffpg+fLlaN++fSLt7t27ceaZZ+Lzzz9Hp06dcO211+LYsWP4/PPPce+99+Lmm29GrVq1AADvv/8++vTpg++//x6/+tWvcNxxx2Hz5s145pln8Prrr2PJkiVo2bJloDqs7Bw4cABnnHEGNm/ejHPOOQcDBgzA4cOHsWnTJvznP//BLbfcgsLCQowYMQJTp07FJ598guHDhyfqKN4ngZ/Gg9zcXPTo0QONGzfG119/jVmzZuHXv/41HnroIfzpT38CAHTq1Mmzj6ui0odswmuMJ4SQqOHoRAixkuXLlwMAsrOz0bFjR3zxxReJc1lZWbjxxhsxceJEqbyefPJJAMA555xT7ty6deswcuRI3HDDDTjjjDMCyz1x4kTUqFEj7bm9e/eWOzZ37lyMHz8effr0wYsvvphYqRdC4LrrrsM///lPvPjii47G7tKlS9GvXz/k5ubi7bffxkknnQTgJ4N8xIgRePDBB9GpUyeMGTOm3LUTJkzAsmXLMGjQIPznP/9JOJk33HADTjvtNPzxj3/Eueeei5o1a5a5btGiRXj//ffRoUMHWbW4smrVKvzud7/D448/XsaBX7NmDW644QZ07NgR8+fPR926dRPnxo8fj5EjR+Lhhx/GzTffDAD417/+hdzcXKxYsQINGjQoU8aePXsS/9+wYQNuu+22hAMffy/APffcg969e2PmzJl4+umnccUVV5S77/Hjx+O2225LHBs1ahT+9re/YcqUKbj99tsTxydPnpxYhYzz448/4rzzzsODDz6I4cOHo1mzZmXOf/LJJ7juuuvw8MMPJ1bzevXqhd///vf4v//7P/zzn/9MpL3uuuvw+eef44477sA999xTJp9du3Yl2uCRI0dw+eWX49ixY1i2bBk6d+6cSLd48WKcddZZGD58OF555RV4sWLFCsycOdMzXZxatWphxIgR0ukzmfnz52PTpk0YMWIEHnjggTLn9u/fn3AKR4wYgRUrVuCTTz7BiBEj0jrHs2fPLhcE2b9/P04//XSMGjUKV111FapVqybVx1WR7UNuLFy40HF3RjqaN28e6EVwpaWleOGFF5Cfn4+ePXv6zocQQowiCCHEQq6++moBQGRnZ4tTTjlFLFu2TOzbt0+8/fbbom3btgKAeOSRRzzzefTRRwUA0atXr3Lnjh49Krp37y5atWolvv/++8Tx4uJikZeXpyTvmWeeKQB4/qXme8EFFwgA4ssvvyyX5969e0UsFhMXX3xx4tiUKVMEADFlyhTx2muviWrVqonWrVuLjRs3lrt+06ZNAoAYPHhwWplbtmwpqlSpIrZu3Vru3B/+8AcBQPz73/9OHBs9erQAIG688UZZtXgCQOTm5oqvv/663LkbbrhBABBvv/12uXNHjx4V9evXFyeffHLiWJcuXUT16tXFt99+61rmX//6VwFA3HvvveXOvfvuu+XaS1yPLVq0EEePHi2TPn7uoosu8rxXIYR48cUXBQAxderUMscBiOrVq4t9+/aVOX7kyBGRk5MjunTpkji2Y8cOEYvFRKtWrcThw4ddy3vppZcEAPHXv/417fmLLrpIZGVliZKSEk/Z421P9q+4uNgzz3QsWbLEtd0myzJu3DhfZfTp00cAEJs2bfJ1fSqzZs0SAMTIkSM90w4ePNhX2ffff78AIBYuXJg45tXH3cqK9+cFCxYkjsn2ITfi+cr+nXnmmb7LEkKIgQMHurZxQgixAa50E0Ks5NixYwCA3NxczJw5M/FynJ49e2L69Ok46aSTcP/99+Paa691zOPVV1/F9ddfj+LiYjz99NPlzt93331YunQpFixYgGrVqmmRe8eOHWjUqFHac82bNy/3gralS5eievXqidX4VKpWrYrPP/+83PHp06fjzTffRMeOHfH666+XW5XyorS0FBs3bsQJJ5yAn/3sZ+XO/+IXv8Djjz+OFStWlFvxPfXUU5XK8qJFixaoV69eueNLly4FALzxxhuYP39+ufNVqlQpo5vLL78cf/7zn9G+fXv85je/wS9+8Qv06NEjsVU9zscffwwAaZ9F7969O/Lz87FixYpy5zp16lTuedK47lJ3Mezbtw8TJ07EzJkzsWHDBnz//fdlzm/fvr1c/scff3y5XRI5OTlo2LBhmfw//PBDCCHwi1/8IrGC6kRch2vXrk27Erpz504cO3YMX3zxBbp27eqa15AhQ6z9NFW6VfigK6gq/PznP0fjxo0xfvx4fPLJJ/jVr36FM888EyeccILrFxPSsXv3bowfPx6vv/46vvzySxw8eLDM+XRtRxeyfciNMWPGaFl1l2HkyJF47rnncO655+KOO+4IpUxCCPEDnW5CiJUUFhYC+OkFS6lvo23fvj1atmyJ9evXY+/evYnnIpOZPXs2fv3rX6Nhw4Z466230Lhx4zLnv/jiC4wePRrXXXcdzjzzTGP34cW3336LH3/8EWPHjnVMk+qwAcCSJUvw448/omfPnsoON4DEJ5mSn0NOJq6vdJ9ucrrGL075xT/plLp92olbbrkFdevWxeTJk3H//fdj4sSJyMnJQb9+/fDAAw8ktnu73XssFkPDhg3x1VdflTuXzvGIP0Oa/MK7w4cP46yzzsJHH32Ezp0744orrkDdunWRk5ODzZs346mnnsKhQ4ek8o+XkZx//KVcTZo0cdRFnLgOn3nmGdd06dpYJrFixYpyfejMM88MzekuLCzE0qVLcdddd+GVV17B7NmzAQBNmzbF7bffjuuuu04qn2+//RannHIKtmzZgjPOOAO9e/dGrVq1kJ2djRUrVuDll19O23Z0IduHbGDUqFEYP348evXqhZdeesnYS/gIIUQHdLoJIVbSpk0bAEjrUCcfP3jwYLk0r732Gi6++GLUq1cPCxYsSPuSqDVr1uDQoUP4xz/+gX/84x9py4ivUH333XeOcgSloKAAsVgM33zzjdJ1/+///T/MmjULDz74IHJycqSfb08uF/jp+d90xFfk0zmCqit3XjjlFy+7tLS03HPlTvkMHToUQ4cOxZ49e/DOO+/gueeew/PPP49169Zh5cqVyM7OLnPvxcXFZfIQQmDXrl1KK3upvPzyy/joo49w1VVX4V//+leZc9OmTUu8vdov8baYLjCQSvw+XnnlFfzqV78KVK7Nz3TbsArfrFkzTJ06FceOHcPKlSvx5ptv4qGHHsKwYcNQu3ZtDBw40DOPJ554Alu2bMHdd9+NO++8s8y58ePH4+WXX1aSKb4zI/WN/MD/gjfJyPYhN8J4pjv+LoWzzjoLr7zySiQvwCSEEBXodBNCrOQXv/gFgJ/ezJ3KkSNHsH79elSvXh3169cvcy7ucNepUwcLFixwfMt58+bNcdVVV6U999///hcHDx5MGIJ5eXkB7sSdbt264fXXX8e6detw3HHHSV+Xn5+feJvw/fffDyFEuTdix43jdJ8dKygoSOwW+Oqrr8qtmsaN5k6dOqndkEa6deuGjz76CEuXLsUvf/lLpWvr1q2L/v37o3///vjmm2/w1ltvYf369WjTpg06d+6MGTNmYOHCheW2yr///vv44YcfcPrpp/uWe8OGDQCACy+8sNy5d955x3e+cbp27YqsrCwsWLAAR44ccd1i3q1bNwA/7YzQ4XS77chIpbi4uNK8SC2ZrKwsdOrUCZ06dUL37t3x85//HLNmzUo43W79UrXtuOUFALVr1wbwU4AmdSyMP2bhhFsfcmPhwoVK7UR1R0Lc4T7zzDPx2muvaXs0iBBCTMLvdBNCrKRVq1Y455xzsH79+nKrhePHj8fevXsxYMCAMp+Ief3113HxxRejdu3aWLBggasT26lTJ/zrX/9K+xffChz/bXIV5YYbbgCAxMpSKjt37kwbeAB+Cga89NJL+NWvfoVJkybhxhtvLHO+du3aiMVi2Lp1a9rrBw8ejCNHjmDkyJEQQiSOr1y5ElOnTkVhYWGZzxDJ0Lx5c8fvAqty3XXXIScnB3/605+wZcuWcuf37t1bxnFYuHBhmfsAfgrQxLdY5+fnAwB+85vfICcnB5MmTSrzfOzhw4cTbyYPsmoaXz1fvHhxmeOLFi3C448/7jvfOA0bNsTFF1+MDRs2pHVudu/enVjZvPDCC9GsWTNMmjQJb7/9drm0R44cKSenE0OGDIEQQvpPRxuIkvg3rqdOneqZdvXq1Wl3jcSPxdsegMS3wtP1S6e28+yzzya2rCfj1cdPOeUUACh3Dy+88AIWLVpULr1sH3JjzJgxSu1EZVX8rrvuwt/+9jf07NmTDjchJKPgSjchxFoeeeQRnH766fjDH/6AmTNnom3btvj444/x1ltvobi4GPfdd18i7eeff44BAwbg0KFDOOuss/Dcc8+Vyy/MFyvJcu6552LUqFG4++670bp1a5x77rkoLi7Gnj17sH79erzzzjv429/+hhNOOCHt9bm5uXjxxRdxySWX4O9//zuEEPj73/8OAKhRowZOOeUUvP3227jiiitw3HHHISsrC1dccQWKi4vx5z//Ga+99hr+85//4LPPPsPZZ5+d+Db0jz/+iMcff1xqW3cy8Rfg6fhebvv27fHII4/g2muvRZs2bXDeeeehVatW2LdvHzZu3IhFixZhyJAhiU9p9e/fHwUFBTjttNNQXFyMI0eOYO7cuVizZg1+/etfJxyaVq1aJb5l3bFjR1x66aWoXr06XnnlFaxduxYXXnghfvvb3/qW+/zzz0fz5s0xYcIErFq1Cu3bt8fatWvx6quvYsCAAXjhhRcC6+aRRx7BqlWrcM8992D27Nno1asXhBD44osv8Oabb2LXrl2oVasW8vLy8MILL6Bv374488wz0atXL3To0AGxWAxffvkl3nnnHdStWzfty/rCZPHixYng2tdff504Fu+v9erVU36EIpVbbrkl8RjHp59+mjgWf3nd73//e/To0SORXqUtz507F7feeivOOOMMHH/88ahbty42btyIWbNmIT8/H8OGDUuk7dWrFyZOnIg//vGPuPjii1G9enUUFxfjiiuuwBVXXIF7770Xf/rTn7BgwQIUFxfjk08+wfz583HRRRfhpZdeKlOuVx+/8MIL0apVK0ydOhVbt25F586d8dlnn+Gtt97CeeedV86Rl+1DUTB16lTcfffdyMnJwamnnlpm/I9z1llnpX1BIiGERE4Yr0gnhBC/bNmyRQwZMkQ0atRIVKlSRTRt2lQMGzZM7Nq1q0y6BQsWaPs0TZBPhu3YscNXvnPnzhXnn3++qF+/vqhSpYpo1KiR6N69u7j77rvFli1bEumSPxmWzOHDh0X//v0FAHHDDTckjq9du1acd955olatWiIWi5X7RND+/fvFqFGjxPHHHy9yc3NFrVq1RN++fcU777xTTsZ0nxhK5rvvvhNZWVnijDPOcNRBKjL1smzZMnH55ZeLoqIiUaVKFVGvXj3RpUsXcfvtt4vPPvsske6RRx4RF1xwgSguLhb5+fmibt264tRTTxWTJ09O+2mtl19+WZx55pmiZs2aIi8vT3To0EHcf//94siRI2XSeX2WKd09bNy4UVx88cWifv36olq1auKUU04R06ZNS7TT0aNHS+uhuLg47ee3SkpKxKhRo0Tbtm1FXl6eKCwsFJ06dRJ33XVXufvdtm2bGD58uDjuuONEXl6eKCgoECeccIL4/e9/L+bPn5+23DDx+hxZ6v3/61//EgDE/fffL11GcXGxaxmpfapz586iZs2aUp/PWrNmjRg+fLjo3LmzqFu3rsjLyxMtW7YUgwcPFqtXry6XfsKECeK4444TVapUKVf3K1asEOecc46oXbu2qFmzpjjzzDPFvHnzHPu+Vx/ftGmT6N+/v6hZs6aoXr26OPvss8UHH3yQtj+r9qEwkfkUWWq/IoQQW4gJkbKPiBBCCPHBq6++ivPPPx+vvfYazjvvvKjFIRWY8ePHY+TIkXjqqadw5ZVXas+/tLQUtWvXxs0334wJEyZoz58QQkjlgs90E0II0cI777yDTp060eEmRjl69CheffVVAPq/GR/n3XffRZUqVXDTTTcZyZ8QQkjlgivdhBBCCLGezz//HE8++SQWLFiADz/8EOeddx5ee+21qMUihBBCPOFKNyGEEEKs5/PPP8f999+PnTt34k9/+hP++9//Ri0SIYQQIgVXugkhhBBCCCGEEENwpZsQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDJETtQAVkWPHjmH79u2oWbMmYrFY1OIQQgghhBBCSKVBCIF9+/ahqKgIWVnRrzPT6TbA9u3b0bRp06jFIIQQQgghhJBKy9atW/Gzn/0sajHodJugZs2aAH6q5IKCgoilIYQQQgghhJDKQ2lpKZo2bZrwy6KGTrcB4lvKCwoK6HQTQgghhBBCSATY8qhv9BvcCSGEEEIIIYSQCgqd7oixJfpCCCGEEFJZsdUei1quePlRy2Eb1AdRhU53RMQ7qxAiso4bi8USf27nTZfv55xpoizfK38bBnrKQAhRJew+a8sYkU6OZEfGNhsgrDnOSy9hEovFIIRIW3YYdeR232HYiV7lJ/+bep1O2bzahtN5E/rx6qNO7UWHPG7Xm7ZPZezysPtIlL6KTuh0G8ZpUksevFIHVKcG5LdROXUSIUTiL1265HNBZUhHurJlz6XiRy63DuxVvqkBP16228DmZhjoksEpP7dgkanJ10m2dO3AhBxeRDXge026thnyYcuQ/K/pcpzORWEYpZYdpnHk5cSFGWROHUtTZTHtbCbnn06OZEfGxDwrc5+pNkD8nJsz4UeG1GPJ955q+zg5eH7qyq3tq9hkMnUkY7N52Rzpyk6uq+TfOp1Pv3pPtZVkrvFK59U2nOQMapOkS5faR9PVi5ussuWkS+Nm5znZpzJjnkrZqXjpX8U29rLv0snk5auk6iJKG8QJOt2GcZrU0qWLn3PqUDKNymsQcyo/+bzbYOE0uMpMBE4DVvK9eekm3fVucjmRblBLndzcyndKo1J+unSpdZBadqphkHrOTcduciT/ljGIUmWRnXy9yk/Nz0s/yXmkDsBu5cgYSMnH/U4Gsoa9n4nJaYJzqj8/5cjoJJV0Y15yGX7KcjrmpF83A1J2jHIqO7Ucp2u8jISg7ULWKHMyjlKvUWkrXvfsNj7KtgvZ8ctNluR/0x2XGetlf6cbq9zGS7d78hrLZctPlcNpjkt3XfL/Zeb3dMfdxnC38tLdVzpHOJ0Myb/d2r6sPeRURjp5vOwSVZvD6Vy6Mc4pr3S2V+oxN12qyBa/1kkmr/bhpyyvOpG1WWXsJ696Sfd/r7p267tO9+RVrtuYlyqTW5t1m7NlZE/XFtz07TZnpfvtpQu3cS4q6HSHTLqBOBmnATbd+dRGlW6yTtfB3cp3MwZSy0rXSdw6vdcA6tZJUuX2mqi9BrZ0g5qXXtxkS/2/l0HgNGj4KVtFL175+pn03M7J6sFLPzLt0ktHbpOzlyyyBk66fuA0CaW7zkvudPUtOyG7OWpO+nCqv+RzMhNzsixO9+RWltvk7KVfJyPMa4xKLdvJePJqE+nSpv4/XV2nyzvdtTLlp8vDSS8yhrLXuJFchpfB5qbHdM5C8u9Uud3GynT6dcrbSxfp7j+dsepUlsxYqtrPZcp304HXden+9eoLqWWqGO/xa2XnNCcd+amLdPmny1Nlvkwnq0rZTuXE0zrVfzodpuvvqfl79V0Z2Zz049aWVcuSKSP+281m9ZJdRiYnXabml6zb+D249ZEg/dbN7vPqX162VTr9pysnWRZZfbu1Py/8XhcGdLotw63TOqWRmfic8pI9L2N4yeQnM3DIyu1lICSnk5lk/ODlBKWmSTeQeA0ubrKpTFheRomqQeRWfjojwMvpc5PBz6TjZsSm/lYx1vwYS26OjNP/0/VnN4fOa6Jxc9RSz3uNMan5qjo7XsaNyuQsK58TTmOUU/vx49R54WSYpeYdpE3KGqcqzovM2KVisHnVu5eB6Hd+c7rWbcyIy5vut+y4KCObbNkyZfjBz9yk03h3w6mtpitbpyGu6ii69T+/ZbilVRmL/NSJrJ3odEzFLvTblmXGBz9jmleZMjpIJ4tXH/EqV/acii3tdU5VJtU2rWpnZQJ0ukNG1QCUzVMWPwOK7CTuZIDI4jboyOQlawA55a9aL15OULo0ToOtzOAiO6F5OdpODpCfyVfWGU9nMMsYJrKoDPCyRoBf41jmGidH2m188GukqQRN3PpMkElOpU/rdhri5asahH7GIVUjQUUHfoxgGWT6jttY53XPKu1GRud+26GqLF7lBnGkVNtCut9uQRO3fFQMdBl01Y/f/GUdOFWH3G0cUpVJVa9eOpTRsYpj6yd/mTJl5ZCZX1QdZD86ih8LEhAJ6mz6KdMkfsd32TbklEeQuTYqXclApzsCgkaaZBuU6oDi19hXSWfSqQoy0fmJtOu6X1mHX3Yw16kXL9yMFtlrnX4no9MRkzUC3GTxE6CRTWvC4ZSVKUj/1BUtDxI8MLFiIoufdmFD2X6NU9nr3K7VMW4k5+mlA7/3ka7cIPel0u91jee65l4/dSYbONYR2PCSIR2q47CXDCqLBF7jsIxO/PZhP+WrImu/evVNWXvWKbik6tjpSK+C6uKK7DmZoJisnZruOr/16ZVH0EC/rdDptgS3AVHHAK8qg0wnV432uqEyScmeDxqBS5fexCDgx+FPRmZFRuZ6VYMoGV2GWZDAj84VFz/GuxsqBo9buw1SRzIyBXEaVccwP8G/ICsQsulljWE/8snm56du/M4TQQwuL7mccAokyug8SPtwk0V1BdVN1iDOfdB5ziv44JWHasBAximWDRz7cbCDOHWqyPYhmfp304lq3unaqmwbUC1fdb4Jovcg/VnmuGpgxc1GVrV3VdqDbLnpzqVrP7K2sVfQw4sgOnJLL+OD2Oqw0+kOCRWHQLWhm1hBkRmMgkSgVQ0cmfy95JGNgLrJJjOZekXuVQYDP5OarB5Sz6saRCoyyTiXskazk35l26PMRODXoXBz2NKhYgi4RYS9rpVF9XoTRpfuCLeqAyJrDLvlr2Pyd5JL9X5Sr/dK52YQyuQrI6NbXqpOn1fZsoEtP/NLkCCX3yCIzHgfJA8T9oRJ/Aab/NhkfnUjs3gSlNS5UHeAMt11Xn1fdTFFt22kek3QoHVqProDhF7lyuYpG5iQtaGczvm5XgYZH8TWcYxOd0i4NY6g0aDUfJwGMadJRrYDBe0oKsEELwMzyOqK1/Eg0bjUyTXVMPMabGWDEUH0omswUpnAUvUga4R4GccqefgxnNz6abpjsg6bznYtW04Qg8avg+BXLpXVFZWgmR9nK/ValaCNTPmqcqnej2rduY1RQYJJQa5VkUVmPPcbVPMqKxmV4IFsYMAvugI/Oq4LYlOEMe8HGSNUZYijGqz1U4ZM+U4yqM71KjKppFddkHIrK+i8I1OOqfkxatzGd5U6T3efpsfCqKHTbQEqHdOt8aXr6G4DmszAIDMgBo16ueHH8FSJYPtFxZD16+S5nZc1JFIJGun1EzhJ9ztoRFYFmXbuN1ihKp/XxKTqrKgY9m4TnZccKk6KjGOp0zBTCZoFaU9BDanUa4OOjbLX6Yz4B3HG/Ti6MvNdEIKOl25pg477OmTzGm+C7iqQuc5NL0EC3Ony1rGSqcse0+mkmQ7AeNWJ6lzvVw6vc6pzuOz4IVNeUPvB7yq6bt2aShvUvnfrAzrH6aih020Y3Y1BZqAImyBGro578GOEBx0kdRmyplc8VQ3BIKuCsZj/T234wdTOCz/5Bgk8ebUBN0PTj5GmugrrdK2XoaLa9mxsOyZlCrIaHMS50LGSoLqbwCmtFzJpddeRW//yOyfokNGPUy8z3usKpDml8xOY9LsrIsj85YfU8mQDaartIV09qayO6wjw6ZhvZeXw68D5DXwFaRexmNyuPZ3twa2PpJNHZdxyyzuonoLiJpct/pAXdLoN49UYgjQUHQ1Nt2wqE6bXYKXikPqZxILIpgsnw1tX2UEcHT+rELomdBmnws3hDLKioTJhecniVo6qHLL5yaYJeo3u1Q/dq/xuaWSDFUGCTH6CUDrkip9XMVBUx2GdBrOsnvzUpR9jVrczoGs8NxW0kul3soE0XfcZJCAVRJag9phsHekYn71Wx92u9UPQVfgg9oEsYdhsusv0Mz646dJtpVjWLtKpxyBtPhU/Y3NhYWHgcnVCpzsE/DQUWcfS5CDjd2LQFV30M6ioEOWqhRthrQj6NQZN3L+q8ebVp3T2C6/gVpRtxQ2TkeWwcBsfZfSu0g5U+4NXO9PZDv04IarzjtOco6pD1fOyelINMnvlKzufBu0DfgI3uoOQqnjNvary6ZDLKxgqazP5rU8/9xw0uGUKlQUNL4L0GT/14yeQFjSdrvatYsOHYWfp7rcmfRS/+igpKdFSvi7odEeMSvTexLYgP6sSsnmrpNF5nSx+9anDMDNxb151I2sAyBjzYRgIJssIY9VE5ToTRmtQZymIIa86MeueyP0Yt2EaPyo6UJXXL7Jzjs75xA2Zeg+6Muk3nQ6nM563jN697lv36rwXskFStzYdVC4ZGVTtKNWgm440ftK6IdM2ndq0roC/roUXHdfokMVk8DRKdOtfx6q/qbxtgU53CIS5SqYz0iS7FUVHGp3XAcGNItPRvCD1LrsDQHX1ODmdLodONRBgCl0BBx3XRBnt1hXkC9I3wyxLB2E4LW7lRH3/qQRpq2E7NbpXr5zKDTNg41aeHxl0rgan4qdN2xrQjbofBgns6EpnYieIHzmCILu7RDYvJ3QHlWTLzRRU7WjdOyCigk53CEThdOpAxjDUsY1IpbP4jbT6XbHxuwUxiHPpVrYTmTLxqQQC/GzLDILflV2Tk2MQZzTKnQKqOgkruACEN66qrlzr3i0TthHiZ9wKipdTHVYwxyuYFeVOKK8xTeeuOqcyVEinMxvnt7DbucnVY5nyVcuLwgmSGVtld5fIEJWt5lZulHajShl+FqpUd87Y6IjT6bYAmYahe1uP3/z9luc2yIWxBcvv6rTf+9PhEEWxNc0L0zsAZHGaOIMM8CYcXJXJXXf0XbZsP05gmCvd6fAK2KkaQ35WRL0CP05GgsrqX5Bgj6lgkK5dMG756Zjv/LRRU/OgqS2xQbChDNn2HbZdo3t+Dlp2EIdCx7yiexuyjByqcruNeaaDLH5tNRNBeS/n1Ot6t7k16h0iqvUb9cJlOiq00z1mzJiEYRT/a9u2rdS106ZNQywWQ//+/X2X7/bWvNTImxemo5c2Ns4gyAwuYaLqlDuhw4kIUlZQIzfIDgAZZJ0tG1dOdEffg6aPus/EcWuHupwdP+3aKfDjp3zd1/t1yMNwNpzGZhvmI9lybVxByUR0zYM6VtNMtD8nOd3kVx2z/ATBTATkdDtkXnKHYeOZHpPC2lHoFoh3ujbogoGfNJWBnKgFME27du0wb968xO+cHO9b3rx5M2655Rb07NkzUNlub80LskqRnEZl25GKDCqyBEkvk4+KPuKoppc9p5JGBtV8UicdWYcpNa1MuX50oLqlM0gduKHTGdJV17pQ7Ru6ypI5p1O2+PU26d4WdI/76XSts20l5xUkyKO7vbttS3TTRdhznJc8YfVFlfL9pJXFbxDbz2qorLzpHBsnOXUF4YNeG0emfwaRw8Q8FcZ4ESQoFMTG0D3HmwpIpGszTvKGpUvbqdAr3cBPTnajRo0Sf/Xq1XNNf/ToUQwaNAhjx45Fy5YtQ5KyLEGjUU6EsTVENvqailvU0skoSv7Xr5yq51TS+JFDZSXYr7Oe/DvIyrPugVUmnyiipUFlMbmqrtsBcStL5pybbKrRcF1tKci1UbQ3mW19YRiwbmO5qp6Cyus2zqu2K5k25scpCqIT1SBhut8qc6jq2JXaFlT0o5JWZ3/zGs9ky5JtuzYHCHX2Tz+7yFLbj1MeUexAM7GyrzpOufURv33XNEGCp14EsQNs0Y8TFd7pXrduHYqKitCyZUsMGjQIW7ZscU3/17/+FQ0aNMBVV12lVQ5dDSGIM6sSDQ5aturE6tdp1t3B3c6H0Zl1RsBtLE9WjmS82rDuenHLz09/8kon49SEgUkDRTZ/He0vyDinoz8EDcYECWaZaEsy8pjulypOnVe9mgpUe+kkaCBap+PkJpvbGBckSOxHrlR0BqVN2w462r+uPuQn2OCU3mthRaavyjpsUdhcuq/zuzCkWq6J4EGY6PJVbA18xanQ28u7deuGqVOnok2bNtixYwfGjh2Lnj17YtWqVahZs2a59IsXL8YTTzyBFStWKJVz6NAhHDp0KPG7tLS0XBrTHS4Zv1uF0m0xVC3bTRav/FXyCpImFdnJ2fbODJjZymciLxVMGk/p7inILoh4fk66ki1PVx1mwja1oKjcl45tlEHyNVG+V542BtJkMTGeZ0peYQZE/QYlnGT02yf9lucnLz9ypR4LMlfIlG2iznX1pzDGFZ1zVype9aurTNN6CtpWVH0KFbyuM+WryJQdFRV6pbtv37645JJL0LFjR/Tp0wezZ8/G3r178fzzz5dLu2/fPlxxxRV4/PHHPbegpzJu3DgUFhYm/po2beqaXmUl2c+qienInVf5TnmGYfBHESm1JVII6DfUMmmbj5/yvKL2fvPTaagEWZlz6n86d2/4ycNpZc1PeSqrYzrGOD/RdbfVDtOrg5mMbfdmeseaSv42zTupBHHck1G9R7+OgWxeYbVHPzoxvTXfVD4yaXTZHl5zgYy9GtbWeFl0B4/T/dbpU4Tlq9g2d8SJCVslM8Qpp5yC3r17Y9y4cWWOr1ixAp07d0Z2dnbi2LFjxwAAWVlZWLt2LVq1apU2z3Qr3U2bNkVJSQkKCgoM3EUwdESATEWRooxOZapeTK0qyGJrRBEwu/IfFJmVlCB56ZQrbBkqSt5B0C1X0PYWVrswtaNJZdVFV562kWny6sLW+47ajrJVL7Lo3rodFibGRJXrbLAXwsq7tLQUhYWF1vhjVm0v/+GHHxCLxZCXl2ck//3792PDhg244ooryp1r27YtPv300zLH7rzzTuzbtw8PPvig6+p1Xl6eNpl1GuJO6NoyE4ZRqBOv/E3pRfV3KjrljtLhDmpM69hqqmuiM7VV269+TI8PMverU1cq2ziDlCObtyw6xzDVevAzTqiUobPc+HXpzvtdxZCRQ7cR6kcnYTg6YYwTfogqsOH3el32WLq2HuS+grT11HR+y7AB2+VzwslOjJ9Ll15nOZngcAOZW79uROp0L1y4EC+//DLeffddrFmzBgcPHgQAVKtWDSeccAJOP/109O/fH2eddZav/G+55Racf/75KC4uxvbt2zF69GhkZ2dj4MCBAIArr7wSTZo0wbhx45Cfn4/27duXub5WrVoAUO54EHQZRqbKV+lEujuE6QnAhNHlVI5TvunK8Zogw5gYTTssshOMbkM1iH6iNJqdyMRyw3CEdRsSfmTwe42u/HUZ8KoBVb/jk+5xWEZuP2OsKkGCEGGM5VGNX34DESYdhLDsMZ0B1nTXOtkVMpgO0ARtb7rm/jCczSDjZpD2oLOcIHknE9XOKtsJ3ek+cuQIHn30UUyaNAmbN29GnTp10KVLF/z2t79F7dq1IYTAd999h02bNuHpp5/GQw89hOLiYtx88824+uqrUaVKFemytm3bhoEDB2LPnj2oX78+evTogaVLl6J+/foAgC1btiArK9zH2k00ojAcZVNb/mSRyTdIZDfqAU+nY6hjRThofl4rlTrlS1ee23VB22lUE0EmT0KmJ9uwDAk3otypE8TRCmJw6949pCOwGha6nRUTQV+V86a36upqJzoDxJk6nqYSxXwmWw9BbTdd/UnFFrAheKeSt465J4xdQCr5BLHJbbaVQn+mu7i4GIcPH8bgwYNx6aWXokuXLq7ply9fjunTp+Pf//43cnNzsXnz5nAEDYDpZwhsblBehLm1xbbIpi1EtcXPhjJkMbH1Tzbya2JVXzZPv3nYVHfpsKH/qtS1bfq0SR4bV2qjksEGmVIJe1dS1DqIunyTqI5PJnQRtn5NLDBFGZC1Oe8g+cvaI7Y90x260/3oo49iyJAhys9AHz58GFOmTMHVV19tSDJ9OFVy1AZe2HnZMGDLYvPEGdX2rEyiMtyjXypKwIR17J8odJfp9WWDA2GjDLY7/jp31WRqICAdpncy6AjsVgR0BtJl8rYRm+Ss9E53ZSBIJZt2lm3qDE6YXhHURdTl2yBD1OXroCLcgx+ivm8/RmCQgJ3JLXgy+dMY84cNAeQwsFk2FWy4DxtkIOnRuejCBQk9RB1cMjk32uZ0V+jvdNtK3NhMd0w2UiiD2zMVsnkEwW8Zss+CmBgsVWQ2sQKhej7qCSPMnRum2qyTAeAmiypBZTdx734MHL84tV1VGZzSy+SjWs+q5QghXPMzOYZFtd06jGtVgzJu51TagMl+rjKW6+r7YeVjw3ga5tiWer0OPavaArr7os75JjUvv2O4W5/xew9R20/pMF0f6fCrB685LxWntGHZ9zYQudOdlZWF7Oxs17/q1aujTZs2uOaaa7Bhw4aoRQ6MagPzGrT8dEgdBqjX9VFsZwxKlMarV9kqW+aixG/5Xg5LmIZUEOdKNb9UogyuqDqNsuhynHRfq1uvuqL+Ksdlz+smyHik4mDKOBgyY6iqse9nnpUNaqu0E119x1SAJ6heZGwfHbaFqm5UAgXJ16v2Cz/9I/W87rFZ57gYRmBR5h5MB0N02c+66sOpfemeJ0yNZUD0tqwJIt9ePmbMGLz88stYvXo1+vbti9atWwMA1q1bhzlz5qBDhw7o1asX1q9fj9mzZyM/Px9vv/02TjrppCjFdsW27QyVFZ3bmCoycX0E2eJDnfrD9JbnMDG5RSxM3PpDRUSm3oJsq1ctOypUZYlKdpm6sUmvYVCR7zfqe4uy/Ci2nOvOxylvQF+Q1qSctvUrVZls88ci/U43ABQVFeGbb77B559/jpYtW5Y5t379epx11lk48cQTcd9992HdunXo3r077rjjDrz22msRSRwutkzs6c6FPbiplhdkK6pTuZk4CHkZZan/JiNreOvUiWkj3qY61GFQyNaRCdK1IyfZosLvuGGD7OnQ1T/i/5dx2PysIMtgk45VZYnKGZCpm6hkC4pfOVTnP78EcQJN3Jts2arn3MoP0x4KW18q+QS5d511qnP+1523ifaR6QHGyLeX33fffRg2bFg5hxsAWrdujWHDhmHcuHEAgOOOOw7XXHMN3nvvvbDFDIzfbRJRNSYZIyuswU01nRM66sBrcpcpT8czMMl46UWXMxTE0Fc5rrrapHptkPx1pfWLn7oOShhbVlXKVCXqCTnK7Xxu15oMoIX5iECmIKvXMO7fbdyMUv8m+qrOPIPMm2EHQ73K1OEwqthDQdOFgYosNtvmMqg+6qHTZjQ1vyfna1O7SiZyp3vbtm3IyXFecM/JycHWrVsTv5s3b45Dhw6FIZpW0jU+3Y3C1kYWR6VDmLgX2TpQLTt1gnOa8PxsKYraYdCBDj2ku142jyBtKUhd+Xn+y5YxQVXHQfKXmfzDeJZOJY2X/Dr050cuGdmCIJtf1KvfKvWjsywdhDHmm9q5kEnYbi/5Qee25aCEtZiiguq8o7M82wi6Iu7nnI6yZfO1oQ+kI3Knu127dpg8eTJ27dpV7tzOnTsxefJktGvXLnFs48aNaNSoUZgiGsNPFEhm1UnWyPDrXPpFpUO43YsOWdzkUHXkvLb7qUyEQaPDYQ7yfgMnJqOxbuWZcM5UV4G92oLJrVjxsmWcMtMTlurk6LYSF9RB97M7wkt+1bFdl1wysgXBlKGmOz+/9eMHv6s5Ya7KRGH82+xwAOEG9mTRaWOFKYOutmx6dTzI2Ohn11tUuzNNY2K1PZ19UhGJ/JnuiRMnJl6g1r9//8SL1NavX4+ZM2fiyJEjePLJJwEAP/zwA6ZOnYq+fftGKbJ23J6jSMWPgSpE+jc/JzsjboaD1/Yor2cqgjxzocM5CeO5krDSutWnyvU6UN3q7KfssLYGysimw3j3cz+y/VO27KBOmcn+LoOfepK91jTpxubU45mKV73LzDcqeepyMMJYdfE67xSg09XPTPRz2TJT80n+rVqGW15BZXaTyc/466edRzUOBB2LdAX6vNpFFHryU6af/hy0TL/oGgOD2ndu7c+0TREmkb+9HAA+/vhjjB49GvPnz8fBgwcBAPn5+ejduzfGjBmDLl26RCyhGra9La+yUZE6aFD8GjVh6jCq+vKa2Csbuu87XX66jNSg2FrHtsqVik1ymm63svnbpJM4JmWy8X6TUR1/KjJBAh3p8ggqg478vPJXKUP3vUWNKXmiajtB8rHNH7PC6Y5z7Ngx7N69GwDQoEEDZGVFvvvdF8mVXFhYaFVnDANdKxkmyrMhX5n8bRvE44S1ymnr/Tthoi5tbx82yKAbG+/JRpncyDR5VfFzf7bOcyrbYMPc4ZKpbUhGbr/tB9Cze6wik6n6CGNMCdsuDxM3eW1zuiPfXp5MVlZWhXleO45pp810GX4Iug3HZHlxot4iC9ixDVb1PsPSWVAjMGwDMEhdOuVvIk9VTG/vDYKJPqzbqNVRD352Y6j2DZ19SZdDEVQOv9d44Se/MOY5mx/fiTKvsJDVv872E6aeMsERs2nHnAo6xzUb5qywCXt3ZhCsWUo+dOgQlixZgpdffhnffPNN1OJoJW5UqJxzuyaOEGaf+ZCRIch1fvPXkVe8k7qdjwqdevEiUw2lMFeBZYxdk/n7zVNHO4p6EgvSR007OrFYzHNsN6U/mXt3ki3dOa/0JpGdx1TbdJAdJjrRkZ9XHlEHicMgjHnRj60WR2UVMWr8yOA235oqUwemy9Wxg0VnmUEDNKZ2jZrGSe7CwkLjZatghdP90EMPoXHjxujRowcuuugirFy5EgDwzTffoF69eokXqWUqujqIiYZrwvHU1blV7jfM1QfbB3FZTAdVTBL2LgFbAzRu2CqXCk6OlkwbVG2nfgJ3Ue5WCeIEyO6sMK1DVXSuuMsGGVLT+WknqnKkC4r4KSNIfcg4+kHKCqpHv2OAX534KV8mn6D5eZEuX532pWxesulU250XQYMhpheHwm4PQfETmNK1684PJSUlgcvWSeRO95QpUzBixAice+65eOKJJ8pUTr169dCrVy9MmzYtQgnNYWrwCFqOSl5RDAwmDG4VdG5b1nmdat2YDqoExaZJJ6q+F4YhoFq2iTxVgxomtnHaavxEtQLtpwydgVRbHPjUdDr17ufREhWC5KPq6Ks4cia25Mo6NLoCZTJpTS8cyJSn0s519TmTq6o65ZSRxW95QeoiSLkqRD23pZKJixuqRO5033///bjwwgvx7LPP4vzzzy93/uSTT8bq1asjkMw8YTUinasxfgwQ3RFhPwa3bSs2gP7696oblW1guqPNfvKy8dEJVYJG94NuFZNF1UDw2z7Cuh83wgp2qsoQpXOtQpBgYZROjc5rdeUVRjAvSsM6zP5uWz8BwpdJdyAjCkwEVJPRvZ3bJDY+MqLDn5CxMdNdUxGI3Olev36963e369Spgz179oQokT3oiq7pzksVG1aQdK7YOBnMQZ4HU0nrd2uYSvTZ73ZGL7mCRn/d8lFJr7NN6nDiwtCB2zUq5cs4TzYYb7ZienXTNH77TpiOls7x0LQcfq4zvc1ex9xs8+NLUdpDpjEpp0pbsVVfOleQo1qZ1WFrRh2M070LxdQ4ppvIne5atWq5vjhtzZo1Gf9G8zCj4DojyzLOXZAOHs8/yqi9nxU7p8Ei+bisk5cOP3qx1WAPsjUz7AnNzZn0I4tpw1V3lDqsPHRMjkF2YkT9eEQYQch4XjYHNnXgpeOoHTibH+GJy20qAKTz3nXXY1Rjp19U+rPJnTkqbcVWmwTQ18aiXgEP+jhBOsK2sXXlnymB7Mid7vPOOw+PPfYY9u7dW+7c6tWr8fjjj+OCCy4IXzCNmHpWJwr8OlFhPkeVDr8rfEEMB7cARVSTZ1D8RFj9Bmr8bC8NspIbtI2aWE0PsgIeNOJtaszRMTnq7reqTryMjnXck98VjXheYW2NVzkvk17XGKG7Hfgtw5b5Oxkb55dkknUWtqwy9RVFQMstsJ8OXWO7Kf3rXnEOcr9hbVlXtQPdMLl7yPROV78EWdCygcid7r/97W84evQo2rdvjzvvvBOxWAxPPfUUfvvb36Jr165o0KAB7rrrLl95jxkzJrHtN/7Xtm1bx/SPP/44evbsidq1a6N27dro3bs3li1b5vfWpF9Vb4MDZqNRoJMoOqZbgMJGI0IGP46pmx50Tzp+t73rwJYIs6rDZftKRZCtdKacN1kdmzSqTARkdMxFOoINUa8gZUq+mY6uoJUO51LVyfcz1+h05oPIaEt7dJNDJRjnNR7rXqwJkn9YdmC6dhc04G+Dn2BL2/VL5E53UVERli9fjnPPPRf//e9/IYTAf/7zH7zyyisYOHAgli5dinr16vnOv127dtixY0fib/HixY5pFy5ciIEDB2LBggVYsmQJmjZtinPOOQdfffWVr7LdXlUfNIobtPFnerTIC92rMbbgd/UytX5tieRHNbDr2uaukygDBrowsUU6iOMZ9bgWxUqzG07GaTpdm6jLoGlswfSjI6rX6nhkIwgmnVuZ8mSdLZOPncjsskq3ihjUFsuE7cC6dpCYGp9kZLC1PzmRrt0FbeNBFgz83lMmzQsyxETUVkkKX3/9NY4dO4b69esjKytYTGDMmDGYOXMmVqxY4ev6o0ePonbt2vi///s/XHnlldLXlZaWorCwECUlJSgoKFAuNxaTf8urSlo/qOavQ57UPNzyjJ/TpQfT+rQdHW3PBh2GIUNlv0+Zsm3QkQoqYw/5HzbNWaqkk0dHO9Cpk6h1FkQfUcselChsoLAxYbfZQFQyyYwpOs5Fia1ypRLUH9NN5CvdqdSvXx8NGzYM7HDHWbduHYqKitCyZUsMGjQIW7Zskb72wIEDOHLkCOrUqeOa7tChQygtLS3zFwS/W1XSEfYzIzqeB1HZMqwrgidTViq6VztU8zOx2qKj7YW1ZcqNMCYDXSvTQVapdN6nzEqNatlRrBSENfZUFnQ//mR6W7xXf5IZ83S0A506CTrWyKyMu10XRB9R7CrSOdboeFzCFlTHeBVkbD8dj7f4kckNEyuwqo/MyJ6zadVX9dEAFWy6T92E7nRnZWUhOztb+c8P3bp1w9SpUzFnzhxMnjwZmzZtQs+ePbFv3z6p62+77TYUFRWhd+/erunGjRuHwsLCxF/Tpk3TpouiIfnpsDoGRF3P6qjk4RdZp8jElnyv53tMbofTlYcOZCZqIHp5dW2T8zofxX2aNFDCyN+rHL+OhyqybVllnA0ydpsKvPoJJgWVQSYA5NWfTDmBYerDCdkAmdtc4zbemr7HMIPnpuvDRFA8aD5BAl6pv/048Cr9OCz8lqkr6K6rTJu2bwd9RCKIbm132EPfXh5/uVkyM2bMwOrVq9GnTx+0adMGAPD555/jzTffRPv27dG/f3+MHj06cNl79+5FcXExJk2ahKuuuso17fjx4zFhwgQsXLgQHTt2dE176NAhHDp0KPG7tLQUTZs2NbKdQXZLhy1bP2yRwyS8x2jRLZuNW+1M9Xub69UJG7eARymDDfdPzGBjW08myKMnOsqzQT+21UlFIq7bMHUcRZlBCENOnWWEpdd4ObZtL88Ju8AxY8aU+f3YY49h9+7dWLVqVcLhjvPZZ5+hV69eKCoq0lJ2rVq1cPzxx2P9+vWu6SZOnIjx48dj3rx5ng43AOTl5SEvL0+LjF7IPvfhN6LptzM4XatzQpS5PopJOOqBOfkeTd1/1PfohtO9y5BugtXRRnUborLXpVuZSqcfNznDIIhhE/UW8HQymx7X3LC5bwbFNsPXtDxe87hb/44CXSuWsvfhpQ+ddo/s8TCCC37kqgjomJOTkdGRV5m26d+kboLaCV5zpV+dqdSjbUT+TPd9992H66+/vpzDDQAnnHACrr/+ekyYMEFLWfv378eGDRvQuHFjxzQTJkzA3XffjTlz5qBr165ayk3FxLZCHVvmTBt+Qbd86ZiU/ZYdNbJ60e2QyOhEx+MIOvBzr7ondZmtdSaQ6dOyhqLfRz1UrlPVe5C2pGtLrM4tmsm4GXc6CZpfFNsXw9KNbJ7pjFKdZQUNQGUqYdazbNm6Agp+8DOP6N5ZFVY+JsYlmf7lt9wo24Uu0t2716KZSl6y18ssovm5zmYid7q3bduGKlWqOJ6vUqUKtm3b5ivvW265BYsWLcLmzZvx3nvvYcCAAcjOzsbAgQMBAFdeeSVGjhyZSH/vvfdi1KhRePLJJ9G8eXPs3LkTO3fuxP79+32V74RKp42vBoVRvgqxWMyKZ0FsLNvEc29hyeanXNn2HMYE7JWfSv5uaXXI6SfIFsYk5BTF90qv03BOvcZkQNDvLoJ06KwfP6uFqvn5CZToKNftOj/Orwx+5VS9xpT8KtgSCA1ati77R2dwRKcOTQWyZO0z0/OJrsUYJ2R2WJooNyhO9aO73zqVY9peyIS8oyJyp7t9+/Z45JFH0n4Le9u2bXjkkUfQoUMHX3lv27YNAwcORJs2bXDppZeibt26WLp0KerXrw8A2LJlC3bs2JFIP3nyZBw+fBi//vWv0bhx48TfxIkT/d2cIpkU1TGxNTUMg8B0GU5bdJJJd960g+dUto4y/O7GUJ0MdAQrVNqs6VVrP8ZCVGOB6V0wOq6xwRiOypnyW7aT06jDGfdLkK2MXvqJcuU0TGyQIRW/Y7upsdbvdX7HpnQBYFM60WGf2bzzL04UOyR02Gqq9eN37EpXjg3zZGUm8u90L168GH369AEADBgwAK1btwbw06e+Zs6cCSEE3nzzTfTo0SNKMZVwe3A/6uduZAZ6Gyds03KZyj81X93luD2HEzQfnQTNX5d8OvKxtY/YTBg601lGZalj2/p9VHoPs+24nY9yfLKtLYRRdkXp5zbfh4xsYdilNusoKCbvTed4opKXrjZh24vUIne6AWDVqlUYNWoU3nzzTRw8eBAAULVqVfTp0wdjx471vdIdFbZVsgpBOm9FH9QAO1cQVAnDEPYzYJpoeza3SZ31kGlObdjYoB+TgaeogqmZ3CaCUhHalOn8TGA6kB1UnkzJOwhO9pAJeaPQr616J96ktk3b/DErnO44x44dw9dffw0AqF+/PrKyIt/97gunSja5WmdyItLpcJpeUQh7Qs6EwbkyRIltMj6DTuRRGy5+ggGA+TfMRq2XMLFNLspjxzhq433btAtJZz6kcupSx8p80PR+MDW2mN45aXpnjm1Ot1VebVZWFho2bIiGDRtmrMPthq5Oly6f1GM6O7hI81yIDOme9xDC+dkU1WdldOrB77MpYUxIQZ+b0SGj7ROvbvmC5Od0rWyeQZx9p+NOk6mO8nWOD27lm2iDfowJleN+8/QT9Aiaxg2d9asjnyjGXdPjqIy+bBiHvfQS9VxqQ9/R1fZ1Eoupv/xWty5V0oWdVxyZew7aj/3ilrepYJ6fe1WRRcU28VuGTVQ8zzZDiTcy0wNSmJOBaieOH1cxsnTdT5RGpRdRDfAyRF1+UPwYIrYaYWE6qzpwC8A5EcTpTU2js05kdzCkOxa0foIaiaaIwolyIln3JttBEMJYCUv+VxbVQLZfIzoKTPQdW1eHVYKjfupLxy6QsMs0gcxikCq6d5Ol4jdf3btpdedrI6E73SeeeCL+/e9/4/Dhw9LXHDp0CFOmTMGJJ55oULLwcHMq/QyKKtEmJ8fWxKQYRsQ7dSt5UFTyiGKbX9QyyJTvtx5kHCrd7dTJENEdUY7CIPFC9b51r+amk8GrjCCBBR27gWS2Hapcq9tBCdO5sUlOL4cyWc+y7cDPCq6J1T5daVVtDB3ypJatayHA65qwbYHktKo2nA5bLMqdNqr5mwgOB2lXpvqiKrptDhvnAl276zKZ0J3uIUOG4KabbkLDhg0xePBg/Oc//8Hq1atx4MCBRJrvv/8eq1atwtSpU/Hb3/4WDRo0wJ///GcMGTIkbHGNoHubmg7jUfdqgq48VcjUbdSyKxCmZNPtaOmOmvpt60EmHb8rl7pQ6Uthrdia2HKvswwgfGM7FZNjkKktd36dySCrZqr36BV40+VQuqES2NE5lptK65cg28lVVwGd5kYvGXQEFFXG3CBbcFVsMVl9qGC6zehypmWd0nSrwn4c2qBtQhXZsUO2zKALbCYWoHTMT7bumpElkhep7du3D0888QSmTp2KlStXJpSYk5MDAPjxxx8B/FRB7du3x9ChQzF06FArHoKXIf7gPqDvOQtbtyzZjJPOVHSZqXr3I3eQe81UPUWNqt5s03OqPF6/M4lMll0GXfdXUcaNTOmLMn0sU+4lDGy5N79ymJJfNt+KNKbbQlyHmaTLTJA1nYy2vUgt8reXb968Ge+99x4+//xz7NmzBwBQt25dtG3bFt27d0eLFi2iFM8X6So5ExpsMm7y6h4wwnKCdcgroxdd6NSLjokzrDYc5L5lro3aiDGJCRlsuK8gRC1/lOOC6rW6xvaodW4jfp2csOWJsu5sbze2yxcnLKdOhz1kk04zYUHGpA1q01wVtIz4cduc7pyoBWjevDmaN28etRjGsWVQkUVmm6kupy2s7XM6DAwZvThNeKoToU69qGxh0yFPMqp6CHLfuvWq0j6C5qtjggojzzBQCaZ43WNUk76p8lVWOVPPy44TUbcZncaaLUa9iXEkCE7lRKmrsMr22yZsaEduxO9LVz/2Qse4F8Xqf1i2qImxR9dck0423QGHMBaobBzH3ODbyyNE9dkEr/ROz/uoHDNJqrHohtu9mJIptWw3ktOkpnea8GQmwqDP24RVpyrl+NGDWzl++40f3ai0WadyvfJ1OxaUIIESk3jl72YMOPU3k/Kknk/+7XcM8Uovk4dXOzKx6yEMdDjtbnnpvA8deUXd3ypKmbKozsFhzbdB89PZb8K4zm8+UazmqtxjPG1U9SGD7gWsOCrzlg1+SdjQ6Y4Q1YYXZJXC7ZhbI3dzLr2OuxF0xSXqwUjFsA3ioKqm07k65Kd8lTxk0OGcmly9U3Ws/ehEtn/K5uPmQMYJc4VEVSdB+puTDnTvFFE1SsIKwgQlqLGb/G9QVPteuvOmxijZvN2Mc51znGknw61Mp/FGx1hoInii0hd1z7em+rxsUNFv+UHG83T5mAxy6LhHU2WYyscN3eOxXz2FNRZGDZ1uCzBpcPldLUl3zu/EY6LDqBi1UUdvdQYOgq6ghRFJdsoj6tV5t3L9GoJ+AwC6rvEzwfndUhbHS1equtTpACXn53bOhi20mRzl9yO7H93LONY6jHwd+NmBodK3TTqcMuWn4ncuCbLjy2vsUt2x4pZXUHQH2022c53l67B3wt4yHCSw7SfwrSOdrmC87vHYrzwyY6GfPhB/qbUt0Ok2TNRGVBTGpYrxEYZDHkZkU3f+skaHahk6DCm/g73uiTTopJMuoBSVLDagalR51aeOnQFBCBqgMo1ssDXK9qMyDukOnjiV4yeNCl7OrerYbCqYpMNRCuIwqDq8KphacTU9pyeXqTvYHsbOKZOYbC/x/PwGMoMEtnWsgJsO2KUrww1d9mfQ62Tzcap7ACgpKdFSti4id7pbt26Nu+++O2oxjCGEMDbI2WrMh70NJ5MmHlnCCpaEMdj7wfREqZugsqgaCzqN6ThhOHwmVxaDluXn/k3UQyp+5XLbiWByx0sUW5md8tTRD4IGcaMay2XK1jlXh9m3ZYhiwcFUkEjnvUTtOAXNz80htGGRyQ86x8yg8jgFeGwmqrr3Q+RvL9+4cSM+/PBDLF++HF988QUKCgpwwgknoGXLllGLpg2vFU0noyqMRuRWjl8ZZK/TdY/xwIaqAeF1TVSDT5jl6qxfnXLLrMjrbrd+ytJVnuyqp8w5nUQ9kbnpNgzZgtS7yX7sNX75XQWJur7dUJXRlnvR0Q5k8rDlfnWgM3irkpdbG9PV38OcJ1VkyCR7T3f6IPaEavuSTe+33KDzpQnbK6wxMB22bS+P/DvdWVlZ5Qa6WCyGdu3a4Y477sDll18epXi+kP0unJ8JQXd12SCDW1lA+m1JQQYGHXJF2W10lR/1fXhhk3w2yQLYJ48sOsebsJzeTNW1DmyeH4IiayB6/Q4qAxDcyTRh7Kr2L1WHAgjmsJh2EnXkY1onMuVF0SeD6sa2ccSPPFEEYUh5bPtOd+TbywGgSpUqGDNmDBYuXIg333wT99xzD3JzczFo0CBcc801UYtnDBMRu3S4bTdxG/Rk05vaYum0ZURGD+kmHhX86EwVv9uD4qtcXtf53X6rc6tnkLxMTkSqcunse0GOmZDHT/le51TGD7f8gqww+DGSdOSjGxNbr2VRGe9lnLQo7yUZlV0CXr/j+fnBaY7TNT6ZcrjT5a1yH073HaQ8WZ2FucqsUpYfnciU52elPyhBdCPrsIeJH1vJyU6Tzdsrfx34zd+v7SqTr6otkmlYsdJ92223Ydy4ceXOPfDAA7jlllvw5JNPYvDgwRFI5w9dkZUwV4WiwGT00BQ2rI74RefWJt2rPaZX0yryzoewyYT79RoLgeic6SA7eCoTQVbLbNGlqdVYHWN5/LgpXUW9Eq27jKjalC1tGbBnJT0IUY//OtAx7kVZbzrrwG0ci8ViKCkp4Up3MlWrVsXPfvaztOduvPFGXHbZZXj44YdDlkovQaLgKnm4RdZ0dq7kMmTvLV26uEwq+tE9SKiu0rutKCSnlVkFCCqbalrVqLtbOTpXWlUjvSadZz99NYwdAzrzV90RkYoNxorfXRzxc0F3wnjhtQIS1i6OTF0hCGoQqs6dftLKXOP3HnTu4vBaBTfVFnXeu+527Ee2qMY91bZsos+7zfthzn86Vlh17S7RQVDfQNY+dctDl0xOONlwunecBN3lERaRO91t27bFa6+95ni+Z8+eWLNmja+8x4wZkzCk439t27Z1vWb69Olo27Yt8vPz0aFDB8yePdtX2cnIVHwQI9JPOtXyncrQIVeUHcOkceN3e66Osk0RdCuUqrOjus0sSNDJayLQFaCRyUsmndekKauLsIMGOraP6W7vfla9kv8Nmp/TNaptLjUf3cEFE0Z/kMBakG2sQdOqXFPRt0z6RXaOVJ0HgsphyrkNmq+MAy6TJozxNqjdqzIu+A2yeeWtY552Sxt0HtNhYzjlqdInTAQe/ZSVCUTudF999dWYM2cO/vSnP+HgwYPlzr/77ruoVq2a7/zbtWuHHTt2JP4WL17smPa9997DwIEDcdVVV+Hjjz9G//790b9/f6xatcpX2W5vzXMz0MOIZgaJkJkmjAiprsnIDTeDN+yV7zAGKlnnzeSko7K1SjWd6dUnWSNDNlBhckLXna/bfQYJXulq907jpY6Aqhte9a9aR14GldcquV8nN0yjzEZ0r8LIjO9hGqcmnA4VhyJo4NBtHpENrMnYFDJ9QzXg5KdvmXDW3PATnNSxU0JmDlHNyyudSp5O6KiDoHpQsa3C2rlluqwwiPyZbuCnbeQPPvgg6tati759+6J9+/bIzc3FvHnz8Prrr2PIkCF44oknlPMdM2YMZs6ciRUrVkilv+yyy/D999/j1VdfTRw77bTT0KlTJ/zzn/+ULjfMt+UF3YanuwwT8rjlGT+XmiYMvegmTJmdyko+7leeoPehQw+29YuKile/i0JHuspk/cqjqqt06cPSt582quOaIGlta4thz/OZVEYmyRFH55zrt2/oGEP8oLsu/OQnY+P6zdsUsjLLpDcJ316ehgceeACLFi1Cz549MXPmTNx+++246aabMHv2bFx44YV44IEHfOe9bt06FBUVoWXLlhg0aBC2bNnimHbJkiXo3bt3mWN9+vTBkiVLfJdvGhMRyyCRJRNb7WQibH5XPIOgIxqpGgXXVb5TlNxta6ps+TZsmQqj/nWVEWSVKozVLJW+6WfFSDe6VhD95hPl9reoyva74i6bh9dKjdcKvVu9+ll99Lvi7zetjh08Mjry2gER/1fVOZJBt+NjugyvsnWsjOruz6p6UbE/VHb/6Nj5oasudY/zfnQpu4oc9g4FN1RXvlVkt8n+0U1O1ALE6dmzJ3r27ImjR49i8+bN2LdvH5o1a4Y6der4zrNbt26YOnUq2rRpgx07dmDs2LHo2bMnVq1ahZo1a5ZLv3PnTjRs2LDMsYYNG2Lnzp2u5Rw6dAiHDh1K/C4tLU2bLuxIj2qkKX7eawVUBreop44BV6cuZfWSmk42qutGEGNLx/0HWYmJYlVeR9vUJYtKOrfrgvQH2T4eZGVO18q1H73pRKZOTPcpmVWLIKsEJvqH3zalsy69DHovw9SvQa97l5fp1bwgxrvbMVmHyvQ8EaQfOOWle8xRcT5l8wqKm22nWr7fvJKvVU1v4xyvOi6Ylj9I8ED3uKWK3zHDrX3atCsgGWuc7jjZ2dlo1aqVlrz69u2b+H/Hjh3RrVs3FBcX4/nnn8dVV12lpQwAGDduHMaOHeuZzs9EnoqsAeQ2+ckY1yrn3NLrdKa9nK9018voWva8DmPOBGEMLqbzV3VK053X1a+CyOI0wQadBEw5XTJ9yit/VRndrvEz+fvVjc668CODU3tTHWe8yg7aP4L2yyBEbTip1LNs/cv2R9Xyo8BJXlPBBS99qJSrakvoKFMWlTYic42JoEIY18rMTboDY6p91OtclLaTzDVufVYmYKCqD5X+E6St2zROJmPF9vKwqFWrFo4//nisX78+7flGjRph165dZY7t2rULjRo1cs135MiRKCkpSfxt3brVNb1bA/M6Jjuo6nSg0+FnO4hMmqByBxnwbN6qIrs1ye82Hb9lu51XkUVHm3QanN2In3cyHL2uk5FB5pwXMs6oyrXp7lsmL7ey/fQ1v0aY1zGn8lTPpUvnRwY/bV9WLlUnwy8y85PsdbLXBtWNLH517UeOIGOEjvJ1ouLk+e0DKtfpdi6D2ixe6JxHdLeNMGyHoGW5OWXpcLOVnNKpnDOJn7aico3fuVVVVzp8FVsdahkqldO9f/9+bNiwAY0bN057vnv37pg/f36ZY3PnzkX37t1d883Ly0NBQUGZP13IDvxRE7RzxonyXsMIRgQxQGXwGtD8lO9XL34MIh3OkVuZskGsIOeC4Pf+dTivbueClJ3uWj/X+A3+eJWn02n1YxiplKe7f6hco9soC+JQ+7nWzYHTNcZ5yaAbVT3YOr+61YuJeVkWv21ehwxB6kp29dN0ezAdEAxz1T2OjnnYaSzKBFs/mUyT1wYqtNN9yy23YNGiRdi8eTPee+89DBgwANnZ2Rg4cCAA4Morr8TIkSMT6YcPH445c+bg/vvvx+eff44xY8bgww8/xPXXX69NJj8dVqeBH8RwTcaU02F6ZcOv0apz0k6Xt+oKh1+5/LQxrzJ0Tl5+tnSFjcm26Nc5tMV4MllemDL4dWBNyxhGIMhrdVE1L5VzQXToda2bAxem8WhinknFxDgfFF1Bw6h2OQQtQ3VMU1lwUQkmq5QvW54bQXdB+hmPTAbDdO3K0xkoVwkm6gz++JFJx+6HTHb2K7TTvW3bNgwcOBBt2rTBpZdeirp162Lp0qWoX78+AGDLli3YsWNHIv3pp5+OZ599Fo899hhOOukkvPDCC5g5cybat2+vRR5dRlmQQUzGuUu3OqvLWde5khfm1j6nCdBrspOZDHVHa/3Ule6VbpkVf5V8vQZ32QFe14TphqltfSZ2I6jgJlfUsnmVE8YkHUb5fg0Z1W2GKis2bgTdeqhC2Nf63e6pohPdY7kbTnO/F7oC9X7zkZHZZDA3yM4MXdeFvfNKxU4MugtS124HWVtJp72rmjZIOwnaD1Xq2i19/Jxs4M/POOp2vzqDxiaw4jvdFY0ovgsnM3mEvVroVJ6qHCrpU9OqbLNS1U1Y+gxaji7DwvS92rSaDehfdTN9f279DYB0v4i6XfsZN/zKHGRs0VU+kN4Q0SFXUPmC5KEzyBy0L/lJD4S/uyIT6tHretvGcT8k30MmtB3dmKxDnXnb2NZMzP3x603db9R69Gu3y8DvdBMAztFZPyvGXsZ2nNRG7ZY2KCqRrnTXyqb3SqsaKQ4jKqmKk2y6VhiC5KF7pcWrDBPtVEWeIKsxQSdd1TKTj6frF051F2a7VlkZcYtuywbWUn+r7rbQWX78uqArvkFXkvyWE2SVO+g462e1ximNbL3oXPU1sSIoW6ZqHn7n1HRlq57zi2qebnaEH335HQ/cjjudU2lzYdoMbnnL3IdsP009F8SWDpLWrX8FaQ/J1/sJ/sigI5AXJJ2OMSZToNMdEU6NzM04cLrej3NrupEHyc+vwalj8g67s6s4lFEMTLIyJacLsjrsVoZq3rKOqooh47e9Ba0rXQ6MV56qATEvvAwgnY6c1/Wy/Uc1ECN7vcrKtapcKmn84NdJdLo+SEDLrb/6cVxl61Qlb68xxZTx7Daf6BpD/PRRN734Cbb6kSFov07OQ8eihZNO3MbEIPNtajBA1jnVEfSWaYte/VLWng1iSyejOuYFHd/9LPzI3Jff+jNh3+gI2IUdwNMNnW6DFBYWJv4fZFD2e30Q/DRsXQOy37ReBrxqBNRk2jhuDmWQOvcjt9cko8NocUP3gBxkIvBjvPupL9W+FNT5CYpsH0tNb3JS9rpetV78GD9uMvgtX/a4StleK0J+AgYyQSsZw1a2jKA7A2TK8Mo/iOOpKodKnaoEKJ2uU703nca57L2oyJAuIBO0b6s4hF79y0snpoKjsmOzXxvFT982hazcqvaDCbvebx+RyU9X3qbt4mRU+r5OG9oUdLoNUlJSkvi/mzGoMkD6RWU1L7k8t06cKr/KwOo1uDnpxu8qePJvr0HPbydWdUi8UNWnitzp0qpMvkEGXZXIutd5v6tWsqhMNH4GfCedBnG8dKxMOOXnJY+pAECQQJ9fmYKuXAQtX6Y81fHLa0XITx8P4mDKrjIF0aHs3BdkbgmC6r3qGvOCjDFB0vuRySm9zHWy7dPNHtM1/uhwlmWu9xs41BmgDDIGBLUR/JTpdlw1GClr2/tpDzpW24PmrdJPdfU1GblUzkUFne4IcXN2/DRG2RXL1GOyk1mQVSxVQ0FVN35R1Uu6c05OpdM9y0aH3c6ny1tl8Ak6+asYeqp6CBoJdpJDJjjkVpZqW1Q1IFUnfBn9pdOlTP9RjfirIBuEkVmJU9WZqgwy6VXbRWqAzC29n5ULXfWle+zVHWQOssrm1ykJIofTeb9tWAU/bUKXA+h0Luj4qHsVy83m0BWgcMLPwkW6Y35sjuS8dAU9/NaNlx7czsuW6ScQ4betBg0W+q0P2TFWZ1BGxb5yWwBTddK9SN5xbAN0ug3jd/DxY0y5NWTVsoKkSyXo4KAqh6pB7accN8PXawJSdeplZUoliB50DPayetAth2xwKJ1+dEb605UT1PGXOe6Vj4yBJKN3L/07GYmyhmGQ+3YyKLwCQW75BUmfek5FB7qdiyC4tXev/qM7yBxkHE1Np1Juujzcxmu/gTmZ8coL1WBSkPL9zHNB8OvohdmfZNu1jE0TJMAmYxMGGdNk0sq036Djqp/AhJMssjKpoDLOBSlX9h5VA34q45VMfqp5u8nrVEbyjmMboNMdIW4NRceECsgN5ioy+JHLhLOuUp6u1TC/6I6Sy8qlGgxQzT/ddX4GZT/tzK0sv0GkdM6QLH4DNG4EXUGTxc0x8BPF97Ni5HVOVjav/IIaBirXBAnieB2TqX+3OpXtcyrGl+7+IzteuY0rfuTx4+zqNMyd8DOeB3FiVPuXznnORL3JoNI3nK53k8npmFcZfm0Yp7yC3KNOOXSXZaIf+plnZK6ztVwvdNuNQcsF3OcernRXMlRXPNyu8+vM+mmsQSOrsqhGLtNNin4nWy+Dw0kvYUTKdTonuvPRHURwamd+J1fd9SNT50EDV7oNedVrddZpkGBB0PRBrlV1bmWCTKacMZn+4VanfgNTXvgNQpgYU73GiDBk8WojKnKYCAq5nfMbtJWVS1X/qvrwM6Y59Q2nVXs/tohb8EjVGdZp+8gEX53u308ASDUoKCOnU/ogaVSD0m7XqdjUfsrVsRjhldZJLqc+ki4/1XHJbwAV4Ep3pSXohCnT6FQHczeCrMipTjwqk4qMwajDOHAaQNyCFKpl6oyop5uo/DqKMu3Fr5yqcvjJU0cwKjU/L1lUJjpdwTI/hkBQQzd+zK9sqsESv8Ent/FSZTVL5714le90XZD+EdQ4VZEnSBDCb5BZRo9O9SobbJZZ0fXTRpzkcBpTvOY1VUdKxUh2u95JHrd2LtMWvOyfIPO811zp1H5SZVO1Rbyu8Uov066DBGu86kSmL7gdl73Wq48FrXtV+0WlraY77xfVclXtdpW2Iqt/2QCMinMtO9cGafthQafbIMnbGmQmqNT/J18jO4jJdn7ZSSYdqsEAr4ifzgi6U/lOeHVSlRWh1IHHazBQmWBTf6crL/VaP0aa1zmnSUjWgZfVg1u+sjpKPSYTHFJ1WFVlccKPc+7HEHAyylSDBn5lSyeXrAHrlodT+bIOl6oOZIxfp/MqjpbTMdmy3fqpTPv0q6cgDpBXOaqyqMwvfoxkWVm9jsn2A9X+otJXg8y96Rwylb4TxEbwCrLJyCpbtow8Tqi0g3TnZGxCLzvAqxy/QTs/NqWKwyTr6KXL081WcpNRxc7xSuMmn1sZsu1BphwvPXjNW075+7ElZec6lXYhGxSKEjrdBknd1uDWSFUdbBlHwstpS73OzaFyulbXoKQaKUs959UxnQYumU4qW4ZXnXoNUunySy5bZUBRMZadyk+nM6d6lB2sVfWgGjhIJ0f8mJsjFj+vMrGoyJKKzGQre0ymz6nK6deIVG1DbnI69bvka1T7pBOqjrXKGCgjg4rD4HesTE2frq+oBBPcypVxklLTyhpxqrJ45R3E0XSSw0kfsnOwTF5O552Oyxj7Tnmr9HMvWdK1Qd1Oc7pzTjLL6s8NVbtLph3IzNnJeak6jU5jgYwtmmoTJsstk0+6ucCtP6jMAenylJmLZcecdPfuVH5y/l73LDM/qtinqnpIxctm99Kpyhih6qu45enVr6OGTneIOE2qcVQMbJlO5NRY3Yx0p86l6ly7TdZuES7ZwdXLoVIZuLw6aVwvskaSE6oOZvIxVQfOq2xVZ0ilzrz04jXwqzi+yedlnR2/E08QWdxkcwtouOk99bfq2OKWzmliUw00yBhwTnKma/tezoxKP1Fxzrxkl3UYg8jgdMxvm0yXp5NDlA6Zct3GFpXghIqD5KQzJ2M5nSyp5Tn96ySH29ijarCrjJeyTr1Mu0o+Jju/qo7FflDtQ04yeM2tskEQFecz9ZibzSEbhJB1qGSdeKdy0smomr9T+1G1Sb2QGSfcZFG9d7dynepHtY+o2qdu16Rrw25tXdX+TNd+ZWx8mbRecvkJMIQJne4QSe4Y6SZxJ0MkdQD3MxHIpncyQFTzc2r4XoOVW/mpBqFM5/XjkDql8VOe7ODt5TCpTDwyMsjo0u16L1Trwc2YdTOY3cqULdfL4E5XhtsEmE4WNx3LONte9+9m8KQ752YcuxkDfpw6t+NeTrTXfbjJ7XVturL8On5+jQSZMd8tX5my3YwQlfFRRk4duBnGQWSJG4Iq9+z1r6ocXv3UyxBXdfhScbMfZMZCWcdB1QFIlsurTC/cxrt0x1LvO/l3qr6c7LRU/Ngh6dKmk82p7cm0DbeyUo971UmqbDLjlh9HKF2/9aqjdGWnsyFVkdVL6jUq+Tsdc8vb6ZzsPToFedxsLzf9q9isXm1Q5VrVsqOATrdBkp/pTtfhk4+lm8ydGrVsR3LroKkDh5MTFj+X6hj4jcqldor4/2XLd9NLunJVJt/UAcZrUpExkpzKSsVrQFWdAP3I4JTOTTYnI8SrDFVjzW3iTdc2VMp1csacZHG7Z6cJX0aWeJlOx93yUQ2cuN2j3+CFm0PsdFzlGhmH2AmVgIRTfrLtwg2/hpFXMMItH7c26XYvMmmdSDdupzvvdF1ymbKyuJXlNI476U6lH6e7zul4qoyp81k62XQZkOlkSC079ZxXkMGrrOTf6e4tOe/kf1PrJKg95OQ8J997qi7SXZtOH37sAjebI7Xs1LJS5XLKy0uuoHWSrn87zcVOtovTvbjpMHVsSb3X1LacTndeOkm9D1W9ONlH6fJKLdttbFK121Pv061sJ/07jUuy+k+tcy97MTV/t3Pp2nxq2bZ9MiwmVGZSIkVpaSkKCwtRUlKCwsJCJWPFjXQNMbnTp/6bfF08rU4Z0uXtdF5X+W4yycqWOrj5kcuPjp2Mu3STg9Mk4ZaXyvl0ab30IiNbumuD3LfMtV7343bcLX8VWZzOxXUhW69e95ScbzzvdGmdzqeeU23HXjpJN7G6GWapZbmVL9O2Uttwanmyhpjbcdkxz6kvyVzv1ubd2q9K2V79wWm+cZIpjp+xQUUnsu3ATRYn/OpM9r6CIDMuqdaJn/JT/+9Uls57l5HHqWzZfq9bJi+5wiLM+1eVAzCvC5lyo9RJqiwVsWwVG1D2elmS/bGCggJfeegkJ2oBKjo6G3RyXun+n/qvaRmcfid3kDA6dGpZ8fKdfuuQzUsPKoa5273Ilp/uvKxRIqsXGdlkBlYnOZLlTpXNrQwvOZ3q3yvYoCKLl5yqZbsZjUHahlN/Tb1Hvzpxk9Orf3o5kEH7j5PTlJqfjA7S3YeMDpxklpErXfogZTvdj1s5TnLKjKUq/SfdPCIri6w8qjKmk0v1voIgO8+5yaWj/Pj/veZ53eV7yePnnEmZwi7bCRtkiFIOmXJt0UlFLVt2HlS5PlOh0020E3UHsWGSsWHyjcrwcCsnignQKb9UgzHMydirbJPGs5Ms6Y6Z0Imso2yi/cqU5ZU2qAxB5dJdtluesnVlAtmxI+zxPer5LU7U85wteiCEkEyBz3QTQgghhBBCCCGGoNNNCCGEEEIIIYQYgk43IYQQQgghhBBiCDrdhBBCCCGEEEKIIfgiNQPEXzBSWloasSSEEEIIIYQQUrmI+2G2vPiRTrcB9uzZAwBo2rRpxJIQQgghhBBCSOVkz549KCwsjFoMOt0mqFOnDgBgy5YtgSr5lFNOwQcffBBIFh152CRLaWkpmjZtiq1btwb60L0t92OLLLr0qkMWm/LQkQ91ay4fm8YDXfnYkodNuq1o9UPdmsmDY625fGxqs7rysUUW6tZcHiUlJWjWrFnCL4saOt0GyMr66VH5wsLCQB0oOzs78MShIw/bZAGAgoIC6taALEH1qksWW/LQmQ91ay4fG8YDXfnYkkccG3Rb0eonDnVrRhaOtebysaHN6srHJlkA6tZEHnHiflnU2CEFScuwYcOsyENXPrpk0YFN92OTLDqw5X5sqh9d2KKXiqZbm+7Hljx0YdP92CSLDmy6H5tk0YEt92NT/ejApvuxSRYd2HQ/tuRhGzFhy9PlFYjS0lIUFhaipKREW5SG/AR1awbq1RzUrTmoW3NQt+agbs1AvZqDujUHdWsO23TLlW4D5OXlYfTo0cjLy4talAoHdWsG6tUc1K05qFtzULfmoG7NQL2ag7o1B3VrDtt0y5VuQgghhBBCCCHEEFzpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ujXzj3/8A82bN0d+fj66deuGZcuWRS1SpLz99ts4//zzUVRUhFgshpkzZ5Y5L4TAXXfdhcaNG6Nq1aro3bs31q1bVybNt99+i0GDBqGgoAC1atXCVVddhf3795dJs3LlSvTs2RP5+flo2rQpJkyYUE6W6dOno23btsjPz0eHDh0we/Zs7fcbFuPGjcMpp5yCmjVrokGDBujfvz/Wrl1bJs0PP/yAYcOGoW7duqhRowYuvvhi7Nq1q0yaLVu2oF+/fqhWrRoaNGiAW2+9FT/++GOZNAsXLkSXLl2Ql5eH1q1bY+rUqeXkqUjtfvLkyejYsWPim5ndu3fH66+/njhPvepj/PjxiMViGDFiROIY9euPMWPGIBaLlflr27Zt4jz1GoyvvvoKv/3tb1G3bl1UrVoVHTp0wIcffpg4z7nMH82bNy/XbmOxWOJzQWy3/jh69ChGjRqFFi1aoGrVqmjVqhXuvvtuJL/GiW3WP/v27cOIESNQXFyMqlWr4vTTT8cHH3yQOE/dypFJPoKMLJ4Ioo1p06aJ3Nxc8eSTT4rVq1eLP/zhD6JWrVpi165dUYsWGbNnzxZ/+ctfxEsvvSQAiBkzZpQ5P378eFFYWChmzpwpPvnkE3HBBReIFi1aiIMHDybSnHvuueKkk04SS5cuFe+8845o3bq1GDhwYOJ8SUmJaNiwoRg0aJBYtWqVeO6550TVqlXFo48+mkjz7rvviuzsbDFhwgSxZs0aceedd4oqVaqITz/91LgOTNCnTx8xZcoUsWrVKrFixQpx3nnniWbNmon9+/cn0lxzzTWiadOmYv78+eLDDz8Up512mjj99NMT53/88UfRvn170bt3b/Hxxx+L2bNni3r16omRI0cm0mzcuFFUq1ZN3HTTTWLNmjXi4YcfFtnZ2WLOnDmJNBWt3c+aNUu89tpr4osvvhBr164Vd9xxh6hSpYpYtWqVEIJ61cWyZctE8+bNRceOHcXw4cMTx6lff4wePVq0a9dO7NixI/H39ddfJ85Tr/759ttvRXFxsRgyZIh4//33xcaNG8Ubb7wh1q9fn0jDucwfu3fvLtNm586dKwCIBQsWCCHYbv1yzz33iLp164pXX31VbNq0SUyfPl3UqFFDPPjgg4k0bLP+ufTSS8WJJ54oFi1aJNatWydGjx4tCgoKxLZt24QQ1K0smeQjyMjiBZ1ujZx66qli2LBhid9Hjx4VRUVFYty4cRFKZQ+pHerYsWOiUaNG4r777ksc27t3r8jLyxPPPfecEEKINWvWCADigw8+SKR5/fXXRSwWE1999ZUQQohHHnlE1K5dWxw6dCiR5rbbbhNt2rRJ/L700ktFv379ysjTrVs3cfXVV2u9x6jYvXu3ACAWLVokhPhJj1WqVBHTp09PpPnss88EALFkyRIhxE+DXVZWlti5c2cizeTJk0VBQUFCl3/+859Fu3btypR12WWXiT59+iR+V4Z2X7t2bfGvf/2LetXEvn37xHHHHSfmzp0rzjzzzITTTf36Z/To0eKkk05Ke456DcZtt90mevTo4Xiec5k+hg8fLlq1aiWOHTvGdhuAfv36iaFDh5Y5dtFFF4lBgwYJIdhmg3DgwAGRnZ0tXn311TLHu3TpIv7yl79Qtz6x2UeQkUUGbi/XxOHDh7F8+XL07t07cSwrKwu9e/fGkiVLIpTMXjZt2oSdO3eW0VlhYSG6deuW0NmSJUtQq1YtdO3aNZGmd+/eyMrKwvvvv59I8/Of/xy5ubmJNH369MHatWvx3XffJdIklxNPU1HqpqSkBABQp04dAMDy5ctx5MiRMvfctm1bNGvWrIxuO3TogIYNGybS9OnTB6WlpVi9enUijZveKnq7P3r0KKZNm4bvv/8e3bt3p141MWzYMPTr16+cDqjfYKxbtw5FRUVo2bIlBg0ahC1btgCgXoMya9YsdO3aFZdccgkaNGiAzp074/HHH0+c51ymh8OHD+Ppp5/G0KFDEYvF2G4DcPrpp2P+/Pn44osvAACffPIJFi9ejL59+wJgmw3Cjz/+iKNHjyI/P7/M8apVq2Lx4sXUrSZs0qOMLDLQ6dbEN998g6NHj5YZ+AGgYcOG2LlzZ0RS2U1cL24627lzJxo0aFDmfE5ODurUqVMmTbo8kstwSlMR6ubYsWMYMWIEzjjjDLRv3x7AT/ebm5uLWrVqlUmbqlu/eistLcXBgwcrbLv/9NNPUaNGDeTl5eGaa67BjBkzcOKJJ1KvGpg2bRo++ugjjBs3rtw56tc/3bp1w9SpUzFnzhxMnjwZmzZtQs+ePbFv3z7qNSAbN27E5MmTcdxxx+GNN97AtddeixtuuAFPPfUUAM5lupg5cyb27t2LIUOGAOB4EITbb78dl19+Odq2bYsqVaqgc+fOGDFiBAYNGgSAbTYINWvWRPfu3XH33Xdj+/btOHr0KJ5++mksWbIEO3bsoG41YZMeZWSRIUc6JSHESoYNG4ZVq1Zh8eLFUYtSYWjTpg1WrFiBkpISvPDCCxg8eDAWLVoUtVgZz9atWzF8+HDMnTu33CoBCUZ8BQsAOnbsiG7duqG4uBjPP/88qlatGqFkmc+xY8fQtWtX/L//9/8AAJ07d8aqVavwz3/+E4MHD45YuorDE088gb59+6KoqChqUTKe559/Hs888wyeffZZtGvXDitWrMCIESNQVFTENquB//znPxg6dCiaNGmC7OxsdOnSBQMHDsTy5cujFo1YDFe6NVGvXj1kZ2eXe6vmrl270KhRo4ikspu4Xtx01qhRI+zevbvM+R9//BHffvttmTTp8kguwylNptfN9ddfj1dffRULFizAz372s8TxRo0a4fDhw9i7d2+Z9Km69au3goICVK1atcK2+9zcXLRu3Ronn3wyxo0bh5NOOgkPPvgg9RqQ5cuXY/fu3ejSpQtycnKQk5ODRYsW4aGHHkJOTg4aNmxI/WqiVq1aOP7447F+/Xq224A0btwYJ554YpljJ5xwQmL7Puey4Hz55ZeYN28efv/73yeOsd3659Zbb02sdnfo0AFXXHEFbrzxxsQOI7bZYLRq1QqLFi3C/v37sXXrVixbtgxHjhxBy5YtqVtN2KRHGVlkoNOtidzcXJx88smYP39+4tixY8cwf/58dO/ePULJ7KVFixZo1KhRGZ2Vlpbi/fffT+ise/fu2Lt3b5no4VtvvYVjx46hW7duiTRvv/02jhw5kkgzd+5ctGnTBrVr106kSS4nniZT60YIgeuvvx4zZszAW2+9hRYtWpQ5f/LJJ6NKlSpl7nnt2rXYsmVLGd1++umnZQasuXPnoqCgIGFgeumtsrT7Y8eO4dChQ9RrQM4++2x8+umnWLFiReKva9euGDRoUOL/1K8e9u/fjw0bNqBx48ZstwE544wzyn2S8YsvvkBxcTEAzmU6mDJlCho0aIB+/foljrHd+ufAgQPIyipr4mdnZ+PYsWMA2GZ1Ub16dTRu3Bjfffcd3njjDVx44YXUrSZs0qOMLFJIv3KNeDJt2jSRl5cnpk6dKtasWSP++Mc/ilq1apV5q2ZlY9++feLjjz8WH3/8sQAgJk2aJD7++GPx5ZdfCiF+egV/rVq1xMsvvyxWrlwpLrzwwrSfA+jcubN4//33xeLFi8Vxxx1X5nMAe/fuFQ0bNhRXXHGFWLVqlZg2bZqoVq1auc8B5OTkiIkTJ4rPPvtMjB49OqM+q5DKtddeKwoLC8XChQvLfG7lwIEDiTTXXHONaNasmXjrrbfEhx9+KLp37y66d++eOB//1Mo555wjVqxYIebMmSPq16+f9lMrt956q/jss8/EP/7xj7SfWqlI7f72228XixYtEps2bRIrV64Ut99+u4jFYuLNN98UQlCvukl+e7kQ1K9fbr75ZrFw4UKxadMm8e6774revXuLevXqid27dwshqNcgLFu2TOTk5Ih77rlHrFu3TjzzzDOiWrVq4umnn06k4Vzmn6NHj4pmzZqJ2267rdw5tlt/DB48WDRp0iTxybCXXnpJ1KtXT/z5z39OpGGb9c+cOXPE66+/LjZu3CjefPNNcdJJJ4lu3bqJw4cPCyGoW1kyyUeQkcULOt2aefjhh0WzZs1Ebm6uOPXUU8XSpUujFilSFixYIACU+xs8eLAQ4qfX8I8aNUo0bNhQ5OXlibPPPlusXbu2TB579uwRAwcOFDVq1BAFBQXid7/7ndi3b1+ZNJ988ono0aOHyMvLE02aNBHjx48vJ8vzzz8vjj/+eJGbmyvatWsnXnvtNWP3bZp0OgUgpkyZkkhz8OBBcd1114natWuLatWqiQEDBogdO3aUyWfz5s2ib9++omrVqqJevXri5ptvFkeOHCmTZsGCBaJTp04iNzdXtGzZskwZcSpSux86dKgoLi4Wubm5on79+uLss89OONxCUK+6SXW6qV9/XHbZZaJx48YiNzdXNGnSRFx22WVlviNNvQbjlVdeEe3btxd5eXmibdu24rHHHitznnOZf9544w0BoJy+hGC79UtpaakYPny4aNasmcjPzxctW7YUf/nLX8p8Nolt1j///e9/RcuWLUVubq5o1KiRGDZsmNi7d2/iPHUrRyb5CDKyeBETQgj5dXFCCCGEEEIIIYTIwme6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQdLoJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6SaEEEIIIYQQQgxBp5sQQgghhBBCCDEEnW5CCCGEEEIIIcQQOVELUBE5duwYtm/fjpo1ayIWi0UtDiGEEEIIIYRUGoQQ2LdvH4qKipCVFf06M51uA2zfvh1NmzaNWgxCCCGEEEIIqbRs3boVP/vZz6IWg063CWrWrAngp0ouKCiIWBpCCCGEEEIIqTyUlpaiadOmCb8sauh0GyC+pbygoIBONyGEEEIIIYREgC2P+ka/wZ0QQgghhBBCCKmg0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHS6CSGEEEIIIYQQQ9DpJoQQQgghhBBCDEGn2yCFhYVRi0AIIYQQQgghJELodBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYRYRCwWQywWi1oMQogm6HQbpKSkhAMmIYQQQgiRJtl2jNqOpPNPiB7odBNCCCGEkEpP3MGM0smMly2EgBAiMjmSZUn9PyFEHTrdhBBCCCGEAAlHN0onM9XZjloWG3RiQ0CEkCDQ6SaEEEIIIZWaWCyWcC6jXmFOJipZkvURpRxxWZJloONNMhE63YQQQgghhERMJjiTUcmYGhDJBF0Rkgyd7hDgwEAIIYQQkp6otw6nK1cIEYk86VaUw5bFqawoVrtTV9yjkoOQoNDpNgwHBkIIIYSQ9KRuHY6KqMu3jUzQh01BGkK8oNNNCCGEEEIiI9nBo0NjN2GuuruVE9Wqe3zlnS91I6rQ6SaEEEIIIaGT6rTYtrpqi4OpkqaiYUubSN2RwWfLiSp0uiPGlkhZ1M9TEUIIIaTyEbVTZZPd46aLsPSU7hlqWwn7WXc+W06CQKc7BJwGheRjUX/7EODgQQghhFQWkoPtNjmeQPg2Ee0fdUzXkU1t0ksWm2Ql9kKnOyKSHV0btqjweSpCCCGkcpFsg4SNTW/IJmqEVUc2tQUnWaLsP7TXMws63SES7xzpVpaj7LQ2yEEIIYSQcPDafRcWmWJz0Lmxl6g+7RYVqc52Zbr3TCc0p/uHH37AoUOHwirOOlJXs50mGls6T5SfYWD0jhBCCDELA+5yhKEb2eeobXMwbZLFFDJ1E1a9pO6Sjf9VhnqoCBhzuhcuXIgbb7wRp556KmrUqIHq1aujWrVqqFmzJk499VSMGDECCxcuNFW8lSR3EKfzNhC1HDZstyeEEEJINITpxERt89iEij5M6o32nzO2L9oRZ2JCY685cuQIHn30UUyaNAmbN29GnTp10KVLF7Rs2RK1a9eGEALfffcdNm3ahI8++gjffvstiouLcfPNN+Pqq69GlSpVdIkSKaWlpSgsLERJSQkKCgqUrg1zAnBbdY9iIkotk5MhIYQQohenuT/sOdervDDkkS3DtCwq+ZuURTVvU7LYIodK3mG0EcDd6Q7bf0jGRns9iD9mAq1Od3FxMQ4fPozBgwfj0ksvRZcuXVzTL1++HNOnT8e///1v5ObmYvPmzbpEiZSgTjcQ/XYmG5zuqOQghBBCKio2zP0y5dDpDl8WW5xdP/makMUWfcjkHZb/kK4cW7+CZJvTnaMzszvuuANDhgxBXl6eVPqTTz4ZJ598Mv76179iypQpOkXJWGx5NiMuR5RRMxuwdSAhhBBCSDiEbRNlCtRLONjyXLmTTRwvO8ygXWr5mYDWlW7yE0EjK7ZEmsN2up22uQPRdKi4THS8CSGE6CLZYIxyblM9F5YMYcpiwwqzTau6gHqbtGGF2RY5om4jUe/ICKvPAnIvqLZtpZufDKukZEpkMspPqUUtAyGEkIpF6tuHw97llSlzP2B+5S6TdBEWNujDlnrx0/ZMtFmV/Ez2GZt2pGbqlxfodFuKTY27spLu+XJCCCEkCLbPLWFtUSVEJyYcTlscukyRI4xAWRTl6sKo052VlYXs7GzXv+rVq6NNmza45pprsGHDBpPiZAw2dS5bPtkRZmfKlLcyEkIIyRwyYW4JSx7b7pv4J1McnspElKvtpsnksUPri9RSueuuu/Dyyy9j9erV6Nu3L1q3bg0AWLduHebMmYMOHTqgV69eWL9+PaZMmYLnnnsOb7/9Nk466SSTYpEMI4oBPZM7NSGEEDvh3EJ0Ycs2bGIOP3VsymaO+tl2mXuyvU8YdbqLiorwzTff4PPPP0fLli3LnFu/fj3OOussnHjiibjvvvuwbt06dO/eHXfccQdee+01k2IR4hvbOzQhhJDMI8wXEBF/2PSm7oq6umzLPQWpZ5vaSRSYbJtuOs2EPmF0e/l9992HYcOGlXO4AaB169YYNmwYxo0bBwA47rjjcM011+C9994zKRIBHUc33DpslDqLf4rB9gGFEEJIedzm3TDnlkyb+zPBkA6CLfaYLXIAmddGKzo2tY1Mx6jTvW3bNuTkOC+m5+TkYOvWrYnfzZs3x6FDh0yKlDFU9Ikmjo33aNvgEh/wbJOLEEJIxcTGuVkndCQqLhWl7epYba8oqH7az1aMOt3t2rXD5MmTsWvXrnLndu7cicmTJ6Ndu3aJYxs3bkSjRo2k8h4zZkyZ1b9YLIa2bds6pl+9ejUuvvhiNG/eHLFYDH//+9/LpTl69ChGjRqFFi1aoGrVqmjVqhXuvvvuSj0wh9FxZfRb0QYQv1APhBDiD+4WkiPK7/ySzMQW24RtSy9+6zSq9mB7/Rt9pnvixImJF6j1798/8SK19evXY+bMmThy5AiefPJJAMAPP/yAqVOnom/fvtL5t2vXDvPmzUv8dltVP3DgAFq2bIlLLrkEN954Y9o09957LyZPnoynnnoK7dq1w4cffojf/e53KCwsxA033CAtF6m4hP2sDg0UQggJTrIBGPa4aoMzQioelf3ZYVPo0GlFqpuo76EijZ9Gne6zzjoL7733HkaPHo2XXnoJBw8eBADk5+ejd+/eGDNmDLp06ZI4tn37dqX8c3JypFfGTznlFJxyyikAgNtvvz1tmvfeew8XXngh+vXrB+Cn7e7PPfccli1bpiQXyUwyaYDMJFkJISRKUsfL+Iq3Tc9SVyQjvaLDejJDRXKugsI2VpaKogujTjcAdO7cGbNmzcKxY8ewe/duAECDBg2QlRV8Z/u6detQVFSE/Px8dO/eHePGjUOzZs1853f66afjsccewxdffIHjjz8en3zyCRYvXoxJkya5Xnfo0KEyz6KXlpb6lsE07MiZg9MEZMs2LkIIsR2nb2NXtjGUc78eKmLbsalt2CJHRSBoIC9ou4gykGhTm07GuNMN/OSUfvTRR9i9ezfOOOMMLQ53t27dMHXqVLRp0wY7duzA2LFj0bNnT6xatQo1a9b0leftt9+O0tJStG3bFtnZ2Th69CjuueceDBo0yPW6cePGYezYsb7KdMOmyLcNctikj7Cw8V7jBoeNshFCSCocqwgJBxtstMpoK1ZU/AS4bA6MGX2RGgA89NBDaNy4Mc444wxcdNFFWLlyJQDgm2++Qb169RLPdKvSt29fXHLJJejYsSP69OmD2bNnY+/evXj++ed9y/r888/jmWeewbPPPouPPvoITz31FCZOnIinnnrK9bqRI0eipKQk8Zf8RvaKgKmBi4NiMKIYVFKfiySEkEzEZsPMBmzSj02y6KSi2UAV4V50trNMbrc2yV0R2lUco073lClTMGLECJx77rl48sknyyiuXr166NWrF6ZNm6alrFq1auH444/H+vXrfedx66234vbbb8fll1+ODh064IorrsCNN96Y+Ja4E3l5eSgoKCjzRyouNgykUQ5CyZ8vi1oPhBDihA3jk6pjZYPMprDl3iqas2uLXisKUbcN3e0zyBvIiV6MOt33338/LrzwQjz77LM4//zzy50/+eSTsXr1ai1l7d+/Hxs2bEDjxo1953HgwIFyW9+zs7Nx7NixoOIRy7Ft0rLRKEiVyTb5CCEkFa9xyqaxvzKMqZXhHsOE+iRuRN0+gixS2TQ268Ko071+/XrXT4DVqVMHe/bs8ZX3LbfcgkWLFmHz5s147733MGDAAGRnZ2PgwIEAgCuvvBIjR45MpD98+DBWrFiBFStW4PDhw/jqq6+wYsWKMivj559/Pu655x689tpr2Lx5M2bMmIFJkyZhwIABvmQkmUXUgxMhhJDwqCxjvo1B3EzGht1uFQ0TbdSWOrJFDllsktdvm7C1jxp9kVqtWrXwzTffOJ5fs2aN9Ce/Utm2bRsGDhyIPXv2oH79+ujRoweWLl2K+vXrAwC2bNlSZtV6+/bt6Ny5c+L3xIkTMXHiRJx55plYuHAhAODhhx/GqFGjcN1112H37t0oKirC1VdfjbvuusuXjDrQ+UKIoPnYMHHzBRn/I0xdOJXD+iCEEEJIHBtsAlucLlvkUCXq+quoxIRBzQ4dOhRvvfUWVqxYgaNHj6J+/fqYN28eevXqhdWrV6Nbt24YOnQoHnroIVMiREJpaSkKCwtRUlKi5fnuiuh0R/kZAx15mp5UZPOP2ukOUwZCSGaRamyGOU7YMIb6+dKDDfObKVlsmfd15GVLHvF8AH/9y5b2ZoMcpsYClXwrogxRjYOxWAwlJSVa/bGgGN1e/re//Q1Hjx5F+/btceeddyIWi+Gpp57Cb3/7W3Tt2hUNGjSIdBWZEL+YjF5mYlQ0CmKxWOKPEGIXyYaW7S9eNCkXA5J60DXn2tIGdTo2bGNEFyb6B9vn/zDqdBcVFWH58uU499xz8d///hdCCPznP//BK6+8goEDB2Lp0qWoV6+eSREIyUhsGqRkBuGwDRl+K5wQ+0n34kVbnJ44to0hNm1H1SmLTTuibJGDVB5s6dMyRN0/dOlKCIHCwkIteenC6PbyVL7++mscO3YM9evXL/eW8IqEie3lQPCOwO3levOriNuA/JYRtkGVXB4dcELsw2lMsOGRmCBpTclgSp6g46Mtj7fZlEc8HyB6vQbNryJv61bNO2o5TNoysnnbMBaaGP9s2V5u9EVqqcRfckbUsCnybQN8edf/qIy6SPecKPsHIfYQdX+sbGOiF9SFfmycd2xp95lol9hSl6Z0FnV7zcQ2YYKKu9xMyqCjsUfdaQmJ47SCRgixA6f5xtZ5xEaZCJHFllXuTCaMXYM2Y0N70K2jkpISrfkFRetKd1ZWli+FHT16VKcYxHJs6Ni2YptubJ8k4thqyBNC7MfE+GHbWE7sgW2j8uE1xoRlv2RC27NdviBodbrvuuuucg1nxowZWL16Nfr06YM2bdoAAD7//HO8+eabaN++Pfr3769TBEJCo7Jsl5G5v7B0URn0TUgmI2s8si8TVYLOMwzMVj4yyU4zLaMNixOZUhem0Op0jxkzpszvxx57DLt378aqVasSDneczz77DL169UJRUZFOESosmTRwEFKZSJ7E2D+JLUTZLr3K4ycX3alo871N92KLHKawSdcy2CBvmDLYcL/pCEMuW1b7o8ToM9333Xcfrr/++nIONwCccMIJuP766zFhwgSTIhDiiq0DIFEniihu6htBK8OkQeynsr/Rv7Ledyp8l4t5bNKNbe3eJt3YgFP9hKkn2/uzbW1YN0ad7m3btqFKlSqO56tUqYJt27aZFIHAzKcpiD3YPohWdOJ9q6JPFiQzSHW4OT7IQT0RVTJ5zDe94GCbbmzq2+lkiVJfNjj9NtWPSYw63e3bt8cjjzyCr776qty5bdu24ZFHHkGHDh1MikA0Y8tASgPJPLbtArBRHkJsJKq3+6v00Yo8hts2VhF7qKht3mbc+mLYfTW1rCjaQ7qx14bxygYZTGP0O90PPPAA+vTpg+OPPx4DBgxA69atAQDr1q3DzJkzIYTA008/bVIEQjIGGmqZR2p9VbRnMUnFoCI7uKTykeljrOkV5kzRT6bIqZvU8TgqHUQ5JyTXfWWam4w63T169MD777+PUaNGYcaMGTh48CAAoGrVqujTpw/Gjh3LlW5FMn2QynT5U8mkCS4MbNCFDTIQEgVebZ99g2Q6fgNIbPvhY5N9lE6WKJ29qHUSZfm2rrSHgVGnG/hpi/mMGTNw7NgxfP311wCA+vXrIyvL6M72CglXK4jN2NA+w5LBNuemsk5gRB4b+mc6dPYVWwx88j8qep3Y5FjKYuM4EBapdZVJ9VbRqIzt0LjTHScrKwsNGzYMqzjy/2NiMsjESSYdFeEeTGHbYJhJdRWVc5O8VSuT9FXRiCoAEnWf9VO+bYEAm+Y2ykJMEnVdRv0ss03jTmUk6vYXFVqXm0888UT8+9//xuHDh6WvOXToEKZMmYITTzxRpyikEmCbwRYlJnRRWQfFTIOr3PaQ/ObwKOohyu9jy5RPwoNOsn2EVSc22UZuskQ1Rlb2TyqS6NC60j1kyBDcdNNNGD58OC644AL07t0bXbp0QYsWLVCtWjUAwPfff49Nmzbhww8/xLx58/DKK68gNzcXt956q05RKjScTAmJDluMmWSc3lbNcSJ8Urcush4qFzaOD4SQ/8HxmERFTGhuffv27cMTTzyBqVOnYuXKlYkJKCfnJ//+xx9/BPBTo2/fvj2GDh2KoUOHoqCgQKcYkVJaWorCwkKUlJQYuS8VI86Uwec3XxPfDPebny5ZdORjSx5B87KhvZl2cmTyD8vRcovYR+Hs2fRG1qju3emTMKblka1vU/IEGTN0yWPDOGrDOKxbjiD5mRiHVNtMGH3QpnnBrawoxsfUMhmIJGFh2h9TRbvTnczmzZvx3nvv4fPPP8eePXsAAHXr1kXbtm3RvXt3tGjRwlTRkWKL021ycPUzaJqafG0wSmww1Gy4H1vq2OSkrtL/onS0onqZW5Tb96Lcah9lXajmb0s/1S2PDeOoDeOwbjmC5FcZArGyZUQxJqcLAkbh8PIxKBIFtjndRl+k1rx5czRv3txkEcQDUwMbt02SdLBd2EXYdREvK94Owl7ZSZYhfizMHQdeadgvzEH92gfr5H9U9scO+Cw1IZpfpEbCwaaXZJCKBw0lZ2zqd16yRL2iYsuLxMKqM7f7rej9qSKNGTbNr35lMSG/TXqxFZvG5DjJMkXdT4WI5gWThNgCnW6S0QQxSira4E+jKBxUt/GaJBPacBht0qk/Z4J+guJHvzaOFbbJk+lUhrZvEzbqO/kZavYvQqKHTncFhQMsIdFigxEWhnPlFsCyQQeA2fFQNoBnsi5s0bNfMl3+OBUxmGsrsv3JhjqJ0h5Lvveo9UBIZYdOd4YiM+HY8ixjPB0H/PRQN8741Y2NK3kkGti3CCFh4DbvcFs3ISQ0p3vSpElhFUVCgoP4/6CTR8Ik09qaDSvNtujMFjkq0phVUe6jIlGZg8mpz1ETQggQotP9t7/9LfH/iy++OKxiKyUc5EmUVCRjPhnbjEhZWUzWh0y+Nugs6s/HmZLDhn6m+xNZfrGhnVUGbGhzskQha7rnqNk2CSFAiE73CSecgHvvvRdffPEF5s6dG1axFRpbtzKRzMU2xzLTqagBiGRUvpVL9FNR+qtN92FTv1WVxeQYblMdAfY8ZudWpm06I4REh9HvdCfz7LPPYsyYMejduzcOHDiATp06oUOHDujYsSM6duyIDh06oKioKCxxKhTJk6wthkIyYbzBWcXQoGNJSLiYcmJU+rIt35C3RY44NslCSEWBfYoQkkpMRDAy1KhRA/PmzcPKlSuxcuVKfPrpp/j000+RlZWFb775JmxxtFNaWorCwkKUlJSgoKDAeHmpxmzYVepltIVh1NngdPvNV7c8QfLTJYuOfILmoXtrn031C/j7dFmUcpjod6p52tLXKlo/q2h9zE+eJuc5G+Y3lfzD3FbtJA+3dhNCwvbHvDC60t26dWsMHjwYo0aNKnN8586dqFGjBk477bQyx7dt22ZSnApL8ioSJ5jMgqtM5tC5umpbPanKYmqlWVUOG/Rok8MbtPyosUEGYidh9Q23nSNRjzWEEJKMUad748aN+PDDD7F8+XJ88cUXKCgowAknnICWLVumTf+zn/3MpDgVGk4udhC1IU7sw7btxFGh2/H3o1NbntXV1SaiXmHWKYNfWdi3CCGEZALGn+l+9dVX8eqrr5Z55rhdu3a44447cPnll5sunoQEDR97DHq/2LL1lhDTsG3+D5vGLRtlyaR2Eoa8turF9nfbEEKI8beXV6lSBWPGjMHChQvx5ptv4p577kFubi4GDRqEa665xnTxJASifp47uSwdaUhwbDPIKgpBP6lkw3b7qPugTW0zal2QzMCmYIQX/EwXIYSkx/hK94033ljmme7evXvj9ttvxwMPPIBbbrkF3bt3x+DBg02LQSo4KkYJJ2P7sWklxTZj1xa9+EGX86ArjyhfOBhEFzb0D9v6RZTYUB82EdVnuuhwE0JsxuhKd9WqVR2f077xxhtx2WWX4eGHHzYpAgmJTIrEE6KKrhdvEX0EqRMa5eXx0z6pR2ITQgi2SUKItRh1utu2bYvXXnvN8XzPnj2xZs0akyKQCGH03x1T+mEA5H/Yogv2g7LYUCe2YIMubGqfKn2Wc0w02DKuEkJIJmHU6b766qsxZ84c/OlPf8LBgwfLnX/33XdRrVo1kyKQkIlPxJyQCdGLzuexg15fUVaZ/ehC59hmky5IeTLJubQhAGGDDIQQYitGne4//vGPGD58OP7xj3+gWbNmuPLKKzFhwgT8/e9/x69+9Ss899xzuPDCC33lPWbMmMRLM+J/bdu2dUy/evVqXHzxxWjevDlisRj+/ve/l0sTP5f6N2zYMF8yVjZS3xwa9uTrZSCFYTxlkpGWDI2lzMCWT0xFia7+lamBA5N9NRPHrsqCjXOLbfIQQojNGH+R2gMPPICLLroIDzzwAGbOnImnn346ca5///544IEHfOfdrl07zJs3L/E7J8f5dg4cOICWLVvikksuwY033pg2zQcffICjR48mfq9atQq//OUvcckll/iWsbJhu1Fvu3zErgAAP6NmhqCfHapodWKDDKrbuslP2FB3UZDaXtgmCCHEHeNON/DTs9s9e/bE0aNHsXnzZuzbtw/NmjVDnTp1AuWbk5ODRo0aSaU95ZRTcMoppwAAbr/99rRp6tevX+b3+PHj0apVK5x55pmB5CSkMmLr91yjwsaVKlUyXf5UbKgTG2Twg8l+zbEjc0huu6wvQghxxvh3upPJzs5Gq1at0KlTp8AONwCsW7cORUVFaNmyJQYNGoQtW7ZokPInDh8+jKeffhpDhw7NSIOoMsP6IslkqlNjiqD60GVY21QvNry4K9N0ETWZImcYRBWgSC6TDjchhLgTykq3Cbp164apU6eiTZs22LFjB8aOHYuePXti1apVqFmzZuD8Z86cib1792LIkCGeaQ8dOoRDhw4lfpeWlgYun/jDyZC3zUAzbSRxpahiUZHrUuXeTOjBBudfVoawxo1MIYw+YdNYapMscWyShRBCbCZjne6+ffsm/t+xY0d069YNxcXFeP7553HVVVcFzv+JJ55A3759UVRU5Jl23LhxGDt2bOAyiVnCMg5sNIzcsMnItklvpmSx6R6jxiYnj/UiR5h6sr1ObJePEEKIPYS6vdwktWrVwvHHH4/169cHzuvLL7/EvHnz8Pvf/14q/ciRI1FSUpL427p1a2AZSDBsMeQzBRqO4WCTnlX7iMk+FXV/lamXyrLKbJMcJD2pLzCjrgghxH4qjNO9f/9+bNiwAY0bNw6c15QpU9CgQQP069dPKn1eXh4KCgrK/JHoSDVAbDAgKys2GfA2yOEHE3Lb8NZw1TzDcC5saCNOMtC5+h9R6MKGtgGU7S+2yEQIIcSbjHW6b7nlFixatAibN2/Ge++9hwEDBiA7OxsDBw4EAFx55ZUYOXJkIv3hw4exYsUKrFixAocPH8ZXX32FFStWlFsZP3bsGKZMmYLBgwe7foKMZBY2Gas0lIgqNrVfU0TdL+I6jvKdEDbVs5MebJIxLNLdc9TtNV5+ZawPQgjJRDLWq9y2bRsGDhyIPXv2oH79+ujRoweWLl2a+OzXli1bkJX1v5jC9u3b0blz58TviRMnYuLEiTjzzDOxcOHCxPF58+Zhy5YtGDp0aGj3QvRj+8omDaXy2FRfJp0Lm575l5XDdN3EdeIkT5hOr1NZYdZXqh7C7hu2jJ829ZV0RCWXrfoghBDiTExw9NZOaWkpCgsLUVJSwq3mlRg3B8KWFxGFsVqi4tjZIIdNspiuH1vqJrkcIP0jImE7vXE5olhRjLr8VBniv6MwF9IFIKIyW+Jlc5WZEELsxzZ/LGO3lxNC9FBZDEdbVu9Uifo55jB1lm6LdxR1lipH2H0k6vJTZYiy3yT3Wxv6Lx1uQgghfsjY7eWEZCI2GI1RYPMW0VQySdagyAYiwtRH8lbzKMqPskybyo/LYIuTaYMcUeuAEEJI5kKnmxCDpHPgKpvhlqkrzCaReVbVhscQoqq3ytZHbMaGurBBBkIIISQI3F5OiCFsMRTdPkFkC2E7mOR/uL21O/k8IYQQQgjxB51uQkIiymdT/Z6vaHjdb9h1ZEtAJPX53aif4yWEEEIIqUhwezkhhon62VRbyJRnpcOS0WnbfdQv7yKEEEIIIXrhSjchBkl2ZCqzU2PLs8vJZdpCOlkqc1shhBBCCKlo0OkmxDBCiMidqFTHLlNWnU3gdN9R6CTdtm5CCCGEEFKxoNNNSAXHZuc6Sicz6m9Bx0ndDWFzfRFCCCGEEHXodBNSyYjyM1C2bKVOXWGOSo5keehsE0IIIYRUTOh0E1IJSHV4bXDwot5KzeftCSGEEEJIGPDt5YRUImxwdG1y/qMunxBCCCGEVHzodBNSSbDFwbRFDkIIIYQQQsKA28sJIYQQQgghhBBD0OkmhBBCCCGEEEIMQaebEEIIIYQQQggxBJ1uQgghhBBCCCHEEHyRmgHiL4oqLS2NWBJCCCGEEEIIqVzE/TBbXuBLp9sAe/bsAQA0bdo0YkkIIYQQQgghpHKyZ88eFBYWRi0GnW4T1KlTBwCwZcuWQJV8yimn4IMPPggki448bJKltLQUTZs2xdatW1FQUBCpLBVJt7r0qkMWm/LQkQ91ay4fm8YDXfnYkodNuq1o9UPdmsmDY625fGxqs7rysUUW6tZcHiUlJWjWrFnCL4saOt0GyMr66VH5wsLCQB0oOzs78MShIw/bZAGAgoIC6taALEH1qksWW/LQmQ91ay4fG8YDXfnYkkccG3Rb0eonDnVrRhaOtebysaHN6srHJlkA6tZEHnHiflnU2CEFScuwYcOsyENXPrpk0YFN92OTLDqw5X5sqh9d2KKXiqZbm+7Hljx0YdP92CSLDmy6H5tk0YEt92NT/ejApvuxSRYd2HQ/tuRhGzFhy9PlFYjS0lIUFhaipKREW5SG/AR1awbq1RzUrTmoW3NQt+agbs1AvZqDujUHdWsO23TLlW4D5OXlYfTo0cjLy4talAoHdWsG6tUc1K05qFtzULfmoG7NQL2ag7o1B3VrDtt0y5VuQgghhBBCCCHEEFzpJoQQQgghhBBCDEGnmxBCCCGEEEIIMQSdbkIIIYQQQgghxBB0ugkhhBBCCCGEEEPQ6dbMP/7xDzRv3hz5+fno1q0bli1bFrVIkfL222/j/PPPR1FREWKxGGbOnFnmvBACd911Fxo3boyqVauid+/eWLduXZk03377LQYNGoSCggLUqlULV111Ffbv318mzcqVK9GzZ0/k5+ejadOmmDBhQjlZpk+fjrZt2yI/Px8dOnTA7Nmztd9vWIwbNw6nnHIKatasiQYNGqB///5Yu3ZtmTQ//PADhg0bhrp166JGjRq4+OKLsWvXrjJptmzZgn79+qFatWpo0KABbr31Vvz4449l0ixcuBBdunRBXl4eWrdujalTp5aTpyK1+8mTJ6Njx44oKChAQUEBunfvjtdffz1xnnrVx/jx4xGLxTBixIjEMerXH2PGjEEsFivz17Zt28R56jUYX331FX7729+ibt26qFq1Kjp06IAPP/wwcZ5zmT+aN29ert3GYrHEN3rZbv1x9OhRjBo1Ci1atEDVqlXRqlUr3H333Uh+dzLbrH/27duHESNGoLi4GFWrVsXpp5+ODz74IHGeupUjk3wEGVk8EUQb06ZNE7m5ueLJJ58Uq1evFn/4wx9ErVq1xK5du6IWLTJmz54t/vKXv4iXXnpJABAzZswoc378+PGisLBQzJw5U3zyySfiggsuEC1atBAHDx5MpDn33HPFSSedJJYuXSreeecd0bp1azFw4MDE+ZKSEtGwYUMxaNAgsWrVKvHcc8+JqlWrikcffTSR5t133xXZ2dliwoQJYs2aNeLOO+8UVapUEZ9++qlxHZigT58+YsqUKWLVqlVixYoV4rzzzhPNmjUT+/fvT6S55pprRNOmTcX8+fPFhx9+KE477TRx+umnJ87/+OOPon379qJ3797i448/FrNnzxb16tUTI0eOTKTZuHGjqFatmrjpppvEmjVrxMMPPyyys7PFnDlzEmkqWrufNWuWeO2118QXX3wh1q5dK+644w5RpUoVsWrVKiEE9aqLZcuWiebNm4uOHTuK4cOHJ45Tv/4YPXq0aNeundixY0fi7+uvv06cp1798+2334ri4mIxZMgQ8f7774uNGzeKN954Q6xfvz6RhnOZP3bv3l2mzc6dO1cAEAsWLBBCsN365Z577hF169YVr776qti0aZOYPn26qFGjhnjwwQcTadhm/XPppZeKE088USxatEisW7dOjB49WhQUFIht27YJIahbWTLJR5CRxQs63Ro59dRTxbBhwxK/jx49KoqKisS4ceMilMoeUjvUsWPHRKNGjcR9992XOLZ3716Rl5cnnnvuOSGEEGvWrBEAxAcffJBI8/rrr4tYLCa++uorIYQQjzzyiKhdu7Y4dOhQIs1tt90m2rRpk/h96aWXin79+pWRp1u3buLqq6/Weo9RsXv3bgFALFq0SAjxkx6rVKkipk+fnkjz2WefCQBiyZIlQoifBrusrCyxc+fORJrJkyeLgoKChC7//Oc/i3bt2pUp67LLLhN9+vRJ/K4M7b527driX//6F/WqiX379onjjjtOzJ07V5x55pkJp5v69c/o0aPFSSedlPYc9RqM2267TfTo0cPxPOcyfQwfPly0atVKHDt2jO02AP369RNDhw4tc+yiiy4SgwYNEkKwzQbhwIEDIjs7W7z66qtljnfp0kX85S9/oW59YrOPICOLDNxeronDhw9j+fLl6N27d+JYVlYWevfujSVLlkQomb1s2rQJO3fuLKOzwsJCdOvWLaGzJUuWoFatWujatWsiTe/evZGVlYX3338/kebnP/85cnNzE2n69OmDtWvX4rvvvkukSS4nnqai1E1JSQkAoE6dOgCA5cuX48iRI2XuuW3btmjWrFkZ3Xbo0AENGzZMpOnTpw9KS0uxevXqRBo3vVX0dn/06FFMmzYN33//Pbp37069amLYsGHo169fOR1Qv8FYt24dioqK0LJlSwwaNAhbtmwBQL0GZdasWejatSsuueQSNGjQAJ07d8bjjz+eOM+5TA+HDx/G008/jaFDhyIWi7HdBuD000/H/Pnz8cUXXwAAPvnkEyxevBh9+/YFwDYbhB9//BFHjx5Ffn5+meNVq1bF4sWLqVtN2KRHGVlkoNOtiW+++QZHjx4tM/ADQMOGDbFz586IpLKbuF7cdLZz5040aNCgzPmcnBzUqVOnTJp0eSSX4ZSmItTNsWPHMGLECJxxxhlo3749gJ/uNzc3F7Vq1SqTNlW3fvVWWlqKgwcPVth2/+mnn6JGjRrIy8vDNddcgxkzZuDEE0+kXjUwbdo0fPTRRxg3bly5c9Svf7p164apU6dizpw5mDx5MjZt2oSePXti37591GtANm7ciMmTJ+O4447DG2+8gWuvvRY33HADnnrqKQCcy3Qxc+ZM7N27F0OGDAHA8SAIt99+Oy6//HK0bdsWVapUQefOnTFixAgMGjQIANtsEGrWrInu3bvj7rvvxvbt23H06FE8/fTTWLJkCXbs2EHdasImPcrIIkOOdEpCiJUMGzYMq1atwuLFi6MWpcLQpk0brFixAiUlJXjhhRcwePBgLFq0KGqxMp6tW7di+PDhmDt3brlVAhKM+AoWAHTs2BHdunVDcXExnn/+eVStWjVCyTKfY8eOoWvXrvh//+//AQA6d+6MVatW4Z///CcGDx4csXQVhyeeeAJ9+/ZFUVFR1KJkPM8//zyeeeYZPPvss2jXrh1WrFiBESNGoKioiG1WA//5z38wdOhQNGnSBNnZ2ejSpQsGDhyI5cuXRy0asRiudGuiXr16yM7OLvdWzV27dqFRo0YRSWU3cb246axRo0bYvXt3mfM//vgjvv322zJp0uWRXIZTmkyvm+uvvx6vvvoqFixYgJ/97GeJ440aNcLhw4exd+/eMulTdetXbwUFBahatWqFbfe5ublo3bo1Tj75ZIwbNw4nnXQSHnzwQeo1IMuXL8fu3bvRpUsX5OTkICcnB4sWLcJDDz2EnJwcNGzYkPrVRK1atXD88cdj/fr1bLcBady4MU488cQyx0444YTE9n3OZcH58ssvMW/ePPz+979PHGO79c+tt96aWO3u0KEDrrjiCtx4442JHUZss8Fo1aoVFi1ahP3792Pr1q1YtmwZjhw5gpYtW1K3mrBJjzKyyECnWxO5ubk4+eSTMX/+/MSxY8eOYf78+ejevXuEktlLixYt0KhRozI6Ky0txfvvv5/QWffu3bF3794y0cO33noLx44dQ7du3RJp3n77bRw5ciSRZu7cuWjTpg1q166dSJNcTjxNptaNEALXX389ZsyYgbfeegstWrQoc/7kk09GlSpVytzz2rVrsWXLljK6/fTTT8sMWHPnzkVBQUHCwPTSW2Vp98eOHcOhQ4eo14CcffbZ+PTTT7FixYrEX9euXTFo0KDE/6lfPezfvx8bNmxA48aN2W4DcsYZZ5T7JOMXX3yB4uJiAJzLdDBlyhQ0aNAA/fr1Sxxju/XPgQMHkJVV1sTPzs7GsWPHALDN6qJ69epo3LgxvvvuO7zxxhu48MILqVtN2KRHGVmkkH7lGvFk2rRpIi8vT0ydOlWsWbNG/PGPfxS1atUq81bNysa+ffvExx9/LD7++GMBQEyaNEl8/PHH4ssvvxRC/PQK/lq1aomXX35ZrFy5Ulx44YVpPwfQuXNn8f7774vFixeL4447rsznAPbu3SsaNmworrjiCrFq1Soxbdo0Ua1atXKfA8jJyRETJ04Un332mRg9enRGfVYhlWuvvVYUFhaKhQsXlvncyoEDBxJprrnmGtGsWTPx1ltviQ8//FB0795ddO/ePXE+/qmVc845R6xYsULMmTNH1K9fP+2nVm699Vbx2WefiX/84x9pP7VSkdr97bffLhYtWiQ2bdokVq5cKW6//XYRi8XEm2++KYSgXnWT/PZyIahfv9x8881i4cKFYtOmTeLdd98VvXv3FvXq1RO7d+8WQlCvQVi2bJnIyckR99xzj1i3bp145plnRLVq1cTTTz+dSMO5zD9Hjx4VzZo1E7fddlu5c2y3/hg8eLBo0qRJ4pNhL730kqhXr57485//nEjDNuufOXPmiNdff11s3LhRvPnmm+Kkk04S3bp1E4cPHxZCULeyZJKPICOLF3S6NfPwww+LZs2aidzcXHHqqaeKpUuXRi1SpCxYsEAAKPc3ePBgIcRPr+EfNWqUaNiwocjLyxNnn322WLt2bZk89uzZIwYOHChq1KghCgoKxO9+9zuxb9++Mmk++eQT0aNHD5GXlyeaNGkixo8fX06W559/Xhx//PEiNzdXtGvXTrz22mvG7ts06XQKQEyZMiWR5uDBg+K6664TtWvXFtWqVRMDBgwQO3bsKJPP5s2bRd++fUXVqlVFvXr1xM033yyOHDlSJs2CBQtEp06dRG5urmjZsmWZMuJUpHY/dOhQUVxcLHJzc0X9+vXF2WefnXC4haBedZPqdFO//rjssstE48aNRW5urmjSpIm47LLLynxHmnoNxiuvvCLat28v8vLyRNu2bcVjjz1W5jznMv+88cYbAkA5fQnBduuX0tJSMXz4cNGsWTORn58vWrZsKf7yl7+U+WwS26x//vvf/4qWLVuK3Nxc0ahRIzFs2DCxd+/exHnqVo5M8hFkZPEiJoQQ8uvihBBCCCGEEEIIkYXPdBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYQQQogh6HQTQgghhBBCCCGGoNNNCCGEEEIIIYQYgk43IYQQQgghhBBiCDrdhBBCCCGEEEKIIeh0E0IIIYQQQgghhqDTTQghhBBCCCGEGIJONyGEEEIIIYQQYgg63YQQQgghhBBCiCHodBNCCCGEEEIIIYag000IIYQQQgghhBiCTjchhBBCCCGEEGIIOt2EEEIIIYQQQogh6HQTQgghhBBCCCGGoNNNCCGEEEIIIYQYwlqne8yYMYjFYmX+2rZt65j+8ccfR8+ePVG7dm3Url0bvXv3xrJly8qkeemll3DOOeegbt26iMViWLFiRZnz3377Lf70pz+hTZs2qFq1Kpo1a4YbbrgBJSUlJm6REEIIIYQQQkgFJydqAdxo164d5s2bl/idk+Ms7sKFCzFw4ECcfvrpyM/Px7333otzzjkHq1evRpMmTQAA33//PXr06IFLL70Uf/jDH8rlsX37dmzfvh0TJ07EiSeeiC+//BLXXHMNtm/fjhdeeEFa7mPHjmH79u2oWbMmYrGYwh0TQgghhBBCCAmCEAL79u1DUVERsrKiX2eOCSFE1EKkY8yYMZg5c2a51WhZjh49itq1a+P//u//cOWVV5Y5t3nzZrRo0QIff/wxOnXq5JrP9OnT8dvf/hbff/+9q9OfzLZt29C0aVNfchNCCCGEEEIICc7WrVvxs5/9LGox7F7pXrduHYqKipCfn4/u3btj3LhxaNasmdS1Bw4cwJEjR1CnTp1AMpSUlKCgoMDV4T506BAOHTqU+B2PY2zduhUFBQWByieEEEIIIYQQIk9paSmaNm2KmjVrRi0KAIud7m7dumHq1Klo06YNduzYgbFjx6Jnz55YtWqVlPJuu+02FBUVoXfv3r5l+Oabb3D33Xfjj3/8o2u6cePGYezYseWOFxQU0OkmhBBCCCGEkAiw5VFfa7eXp7J3714UFxdj0qRJuOqqq1zTjh8/HhMmTMDChQvRsWPHcudltpeXlpbil7/8JerUqYNZs2ahSpUqjuWlrnTHIyvxVXJCCCGEEEIIIeFQWlqKwsJCa/wxa1e6U6lVqxaOP/54rF+/3jXdxIkTMX78eMybNy+twy3Dvn37cO6556JmzZqYMWOGq8MNAHl5ecjLy/NVFiGEEEIIIYSQikv0r3KTZP/+/diwYQMaN27smGbChAm4++67MWfOHHTt2tVXOaWlpTjnnHOQm5uLWbNmIT8/36/IhBBCCCGEEEIqOdaudN9yyy04//zzUVxcjO3bt2P06NHIzs7GwIEDAQBXXnklmjRpgnHjxgEA7r33Xtx111149tln0bx5c+zcuRMAUKNGDdSoUQPAT9/h3rJlC7Zv3w4AWLt2LQCgUaNGaNSoUcLhPnDgAJ5++mmUlpaitLQUAFC/fn1kZ2eHqgNCCCGEEEIIIZmNtU73tm3bMHDgQOzZswf169dHjx49sHTpUtSvXx8AsGXLljLfXJs8eTIOHz6MX//612XyGT16NMaMGQMAmDVrFn73u98lzl1++eVl0nz00Ud4//33AQCtW7cuk8+mTZvQvHlz3bdJCCGEEEIIIaQCkzEvUsskbHtwnxBCCCGEEEIqC7b5YxnzTDchhBBCCCGEEOJFYWFh1CKUgU43IYQQQgghhJAKQ0lJSdQilIFONyGEEEIIIYSQCgNXugkhhBBCCCGEEENwpZsQQgghhBBCCDEEV7oJIYQQQgghhBBDcKWbEEIIIYQQQgipJNDpJoQQQgghhBBSYeD2ckIIIYQQQgghxBDcXk4IIYQQQgghhBiCK92EEEIIIYQQQoghuNJNCCGEEEIIIYRUEuh0E0IIIYQQQgipMHB7OSGEEEIIIYQQYghuLyeEEEIIIYQQQgzBlW5CCCGEEEIIIcQQXOkmhBBCCCGEEEIqCXS6CSGEEEIIIYRUCGKxWNQilINONyGEEEIIIYSQCoEQImoRykGnmxBCCCGEEEJIhYAr3YQQQgghhBBCiCG40k0IIYQQQgghhFQitDndP/zwAw4dOqQrO0IIIYQQQgghRIkKtb184cKFuPHGG3HqqaeiRo0aqF69OqpVq4aaNWvi1FNPxYgRI7Bw4UKNohJCCCGEEEIIIc7YuL08JhSkOnLkCB599FFMmjQJmzdvRp06ddClSxe0bNkStWvXhhAC3333HTZt2oSPPvoI3377LYqLi3HzzTfj6quvRpUqVUzeizWUlpaisLAQJSUlKCgoiFocQgghhBBCCKkUxGIxlJSUWOWPKTndxcXFOHz4MAYPHoxLL70UXbp0cU2/fPlyTJ8+Hf/+97+Rm5uLzZs3B5U3I6DTTQghhBBCCCHRYJs/puR0P/rooxgyZAjy8vKUCjl8+DCmTJmCq6++WlnATMS2SiaEEEIIIYSQyoJt/piS003kiFcyYOczBYQQQgghhBBSEbFxezk/GWaQkpKSqEUghBBCCCGEkEqDjYuedLoNEl/tJoQQQgghhBBSOclRvaBXr16O52KxGPLz81FcXIzzzjsPv/rVrwIJl+lwpZsQQgghhBBCwiO+vdwmlJ/pbt++vesHxw8cOICtW7fi6NGj6NOnD15++eVK86mwOHymmxBCCCGEEEKiwbYXqSmvdK9atcozzcGDB/Hoo4/ipptuwoQJE/CXv/zFl3CZjm0RFkIIIYQQQgipyFSIlW4VfvOb3+CTTz7B6tWrTRVhJVzpJoQQQgghhJBosG2l2+iL1M444wxs2rTJZBFWY1uEhRBCCCGEEEJIuBh1ug8cOICcHOUd7BUGvr2cEEIIIYQQQsLB7d1jUWLM6RZCYNasWejQoYOpIqyHK92EEEIIIYQQEg62PtqrvAz97bffup4/ePAg1q5di8mTJ+O9997D008/7Vu4TKewsNDaiieEEEIIIYSQikQsFrPS/1J2uuvVqye1bF+lShXcfffdGDhwoC/BKgJc6SaEEEIIIYSQcLDR4QZ8ON133XWXq9Odn5+P4uJinH322ahfv34g4TIdrnQTQgghhBBCSOXG6CfDAOC7775D7dq1TRZhHba9op4QQgghhBBCKjrx7eW2+WNGXqR26NAhTJ8+Hf3790fjxo1NFJEx2PoGPUIIIYQQQgipSNi6y1ib0y2EwLx58/C73/0ODRs2xGWXXYYlS5bgN7/5ja/8xowZg1gsVuavbdu2jukff/xx9OzZE7Vr10bt2rXRu3dvLFu2rEyal156Ceeccw7q1q2LWCyGFStWlMvnhx9+wLBhw1C3bl3UqFEDF198MXbt2uXrHgB7K54QQgghhBBCKhK2LngGdrqXL1+Om266CU2aNME555yDf//73+jXrx/effdd7Ny5E08++aTvvNu1a4cdO3Yk/hYvXuyYduHChRg4cCAWLFiAJUuWoGnTpjjnnHPw1VdfJdJ8//336NGjB+69917HfG688Ua88sormD59OhYtWoTt27fjoosu8n0PtlY8IYQQQgghhFQkbF3wVH6RGgBs3LgRzzzzDJ555hmsW7cOTZo0waBBg3Dqqafisssuw8UXX4zu3bsHFy4nB40aNZJK+8wzz5T5/a9//Qsvvvgi5s+fjyuvvBIAcMUVVwAANm/enDaPkpISPPHEE3j22WfRq1cvAMCUKVNwwgknYOnSpTjttNOU78HWiieEEEIIIYSQikSF+WRY9+7dsWzZMtSrVw+//vWv8a9//Qs9evQAAGzYsEGrcOvWrUNRURHy8/PRvXt3jBs3Ds2aNZO69sCBAzhy5Ajq1KkjXd7y5ctx5MgR9O7dO3Gsbdu2aNasGZYsWeLodB86dAiHDh1K/C4tLU3839aKJ4QQQgghhJCKhK1+l7LT/f7776NFixaYNGkS+vXrh5wcX4vlnnTr1g1Tp05FmzZtsGPHDowdOxY9e/bEqlWrULNmTc/rb7vtNhQVFZVxoL3YuXMncnNzUatWrTLHGzZsiJ07dzpeN27cOIwdOzbtOVsrnhBCCCGEEEKIeZSf6f6///s/NG7cGAMGDECjRo1w9dVXY8GCBdqdy759++KSSy5Bx44d0adPH8yePRt79+7F888/73nt+PHjMW3aNMyYMQP5+fla5UrHyJEjUVJSkvjbunVr4hyf6SaEEEIIIYQQ89jqeykvU1933XW47rrrsGnTJjzzzDN49tln8fjjj6NRo0b4xS9+kXjTuG5q1aqF448/HuvXr3dNN3HiRIwfPx7z5s1Dx44dlcpo1KgRDh8+jL1795ZZ7d61a5frs+V5eXnIy8tLe44r3YQQQgghhBBiHlt9L99vL2/RogXuvPNOrFmzBh988AEuv/xyLFy4EEIIXHfddfjjH/+IV199FT/88IMWQffv348NGza4fvd7woQJuPvuuzFnzhx07dpVuYyTTz4ZVapUwfz58xPH1q5diy1btvh+MZyt0RZCCCGEEEIIqUjY6nvFhMZwwLFjx/DWW2/h6aefxowZM7Bv3z5Uq1YN+/fvV87rlltuwfnnn4/i4mJs374do0ePxooVK7BmzRrUr18fV155JZo0aYJx48YBAO69917cddddePbZZ3HGGWck8qlRowZq1KgBAPj222+xZcsWbN++Hf369cO0adPQpk0bNGrUKLGSfe2112L27NmYOnUqCgoK8Kc//QkA8N5770nLXlpaisLCQpSUlKCgoED53gkhhBBCCCGE+MM2fyzwd7rLZJaVhd69e2Pq1KnYtWsXnnvuOZx99tm+8tq2bRsGDhyINm3a4NJLL0XdunWxdOlS1K9fHwCwZcsW7NixI5F+8uTJOHz4MH7961+jcePGib+JEycm0syaNQudO3dGv379AACXX345OnfujH/+85+JNA888AB+9atf4eKLL8bPf/5zNGrUCC+99JKvewDsjbYQQgghhBBCSEXCVt9L60o3+QnbIiuEEEIIIYQQUlmwzR9TWuk+8cQT8e9//xuHDx+WvubQoUOYMmUKTjzxRGXhKgK2RlsIIYQQQgghhJhH6e3lQ4YMwU033YThw4fjggsuQO/evdGlSxe0aNEC1apVAwB8//332LRpEz788EPMmzcPr7zyCnJzc3HrrbcauQHb4UYCQgghhBBCCDFLLBaz1vdS3l6+b98+PPHEE5g6dSpWrlyZWMnNyfnJf//xxx8B/ORstm/fHkOHDsXQoUOtWNYPi9TtDDY3AEIIIYQQQgipSNi2vTzQM92bN2/Ge++9h88//xx79uwBANStWxdt27ZF9+7d0aJFC22CZhK2VTIhhBBCCCGEVGSSFzpt88eUtpen0rx5czRv3lyTKBUXrnQTQgghhBBCiDls9re0fjKMpMfmBkAIIYQQQgghmY7NL7Cm0x0CNjcAQgghhBBCCMl0bF7opNMdAjY3AEIIIYQQQgjJdGxe6KTTHQI2NwBCCCGEEEIIyXRsXujU5nRPmjRJV1YVDpsbACGEEEIIIYRkOjYvdGpzuv/2t78l/n/xxRfryrZCYHMDIIQQQgghhJBMx+aFTm1O9wknnIB7770XX3zxBebOnasrW0IIIYQQQgghxBWbFzoDfac7mWeffRZjxoxB7969ceDAAXTq1AkdOnRAx44d0bFjR3To0AFFRUW6issobI66EEIIIYQQQkimY7PPFRMGpKtRowbmzZuHlStXYuXKlfj000/x6f/H3p3HN1Hn/wN/5Wh6UNKD0pbWcsm1XOUorUUBWboC4n2xLCt44argyqIIqFDU71pE3UUF0cWDXVdF8Ce4i4CLUEC0giAIBeTWItCWs3ebtvn8/ogZkjZpk+aYT8Lr+Xjk0XTmnckn85n5zLznM8fevdBqtTh79qy3v046paWliIqKQklJCYxGIzQajdQLARERERERUSCzzbka5mNq81pPt63CwkJERkbiqquushv+yy+/+OLrpMeEm4iIiIiIyHdkzrm8ck23yWRCZWWl8n9kZKTDuCuuuMIbXxeQZL7GgIiIiIiIKFDJnmt51NNdWFiICRMmIDc3F2azGXFxcejbty9SU1OVvz179kRISIi3yktERERERESkkLmXG/Aw6X7iiSewZcsWzJo1C9HR0XjiiSdw6tQpbNq0CWaz2fIFej1qamq8UthAJvuCQEREREREFIhkv4eWR6eXb9iwAQ899BCee+45TJw4EQDw+uuvo6CgAKNGjULfvn3x9NNPe6WggU72Ux6IiIiIiIjI+zxKuktLS9G3b18Alh5twHJ9d7t27bBq1SrU19ejY8eOHheSiIiIiIiIyBGZe7kBD5PulJQUFBYWAgCioqIQHh6uPBIsJCQEd999N/7+9797XsogIPuCQEREREREFIhkP6vYo6R7+PDh+Oqrr5T/e/ToYfd/eHg4Dh065MlXBA3ZFwQiIiIiIqJAJHsHp0c3Unvsscfw7rvvorq6GmFhYZg8eTIefvhh9O7dG1deeSUWLFjA08uJiIiIiIjIZ2S/kZpGeLF0ZrMZd999Nz766CMAQEREBFasWIHRo0d76ysCQmlpKaKiolBSUgKj0QhA/gWBiIiIiIgoGDjKx9Tk1aTb6sCBA/jll1/Qr18/tG3b1tuTl55slUxERERERBSsGnZwypaPeXR6uTO/+c1v8Jvf/MYXkw5Y7OkmIiIiIiK6/Hh0IzVynRCCN1MjIiIiIiLyokDo3GTSTURERERERAFJ9oQbYNJNREREREREASoQziZm0k1ERERERETkI0y6iYiIiIiIKCDx9HIiIiIiIiIiH+Hp5URERERERESXMSbdfsTHhhEREREREV1emHQTERERERER+QiTbiIiIiIiIgo4Go2GN1IjIiIiIiIiupwx6SYiIiIiIiLyESbdRERERERERD7CpNvPeAdzIiIiIiKiyweTbiIiIiKiyxA7goj8Q9qke+7cudBoNHavHj16OI1fsmQJhgwZgpiYGMTExCArKwvbt2+3ixFCYM6cOWjXrh3Cw8ORlZWFw4cP28UcOnQIN998M+Li4mA0GnHNNdcgNzfXJ79RLQ3nq78bXEffz0a/MbXnDeuIiCiwuNpu+7I9d7aN57ZEHg3rgnVD5HvSJt0A0KtXL5w+fVp5bd261Wnspk2bMG7cOOTm5iIvLw8pKSm47rrrcPLkSSVm/vz5eO211/Dmm29i27ZtaNWqFUaOHInq6mol5oYbbkBdXR02btyInTt3IjU1FTfccAMKCwt9+lv9wdqgCiHsXrbj/LEhBtBsGfzV8Mu2U+Ds+31ZpqZ+vxrLSaCQYXkhCjTeWGdcSerUWCdlOJgNNN1uO0u0vFVmZ9v4hi9/zivZlhW1y9FUHTkrn6/LI8t629R4klMg1Y1GSPpgs7lz52LVqlXYvXt3iz5fX1+PmJgYLFy4EBMmTIAQAklJSXj88cfxxBNPAABKSkqQkJCApUuX4ve//z3Onj2Ltm3bYsuWLRgyZAgAoKysDEajEevXr0dWVpZL311aWoqoqCiUlJTAaDQ6jLEmvy3l6ucbLozNfcbRwtvwM54s4K7+Ztvv8PYi6so8cXe+eaMczX1XS+aJu3Xl7/ppajqulN3XzZerZfDn8tpcWfzN3eU4GLnSbjaMa8n88Ue75G4Z3GW7Y99wmDvf7862zNF3uvu9zX1Hw+n6qu1tqgze/D0tqRNPyuDqOuSL6TVVV95cx1yZT+5s91qyH+nq+tNUmRquT57Wue3n/VUXjsrgrbatJd/vy+/wlLfqxNny7+m639R64Eo+5k96tQvQlMOHDyMpKQlhYWHIzMxETk4O2rdv79JnKysrUVtbi9jYWADA8ePHUVhYaJc4R0VFISMjA3l5efj973+PNm3aoHv37vjXv/6FAQMGIDQ0FG+99Rbi4+MxcOBAn/xGdzRcMF1dWd1ZeB0lPt7eGLpTjoZH7xuWranhrkzflfFNlcEZX9ZNc3XiywTQ0XSb+77m5oVtr4ez73A2TX8ku65Mt7m6aSreFc7mq6fLqStasj41NR/cOajkjwN8rnJlOW4u3p3lxJX2zt2dIW8l/d5IkpuaF80tI+6sk84+58n64sp8dHceuVs3vmj73GnXvV2G5toQXx4Qbmqd8veBMlcOJtlO0x+dCM7Wm4bT90YdNbWsNfweT36XozJ4epCnuflg3WY3V+6mxsuyjbd+zpXtvKN6a+43tuSAUiCQNunOyMjA0qVL0b17d5w+fRrPPvsshgwZgvz8fLRu3brZz8+YMQNJSUlKkm09PTwhIcEuLiEhQRmn0Wjw5Zdf4pZbbkHr1q2h1WoRHx+PdevWISYmxul31dTUoKamRvm/tLTUpd/Y3EKlRrKr9vc5+/6mVm5fzyd3EypflMGV6fqiMXaFK/PH0x2N5uId7aCpcdTa1Z1lb+ysupPEuPJd7iRwzbVdrnyPs50PV+dPU8t7cztorh6oa1hGTw5gOhrX1JF/V3YoXdlBdfQZT5I8T9fVpsY7O5jmadvW1Lxzd174op1192CAP9r6pg58q3Fg152DTp6UqSXrlKPP+WoeNde2+mt/yNn3NxXjyTxpanm0He7q+tuSMrhbvpZ+v7vbDlc+7+5BXle4s67Yxrq6TfBHO+Nv0ibdo0ePVt737dsXGRkZ6NChA5YvX47777+/yc/OmzcPy5Ytw6ZNmxAWFubydwohMHnyZMTHx+Orr75CeHg43n77bdx444347rvv0K5dO4efy8nJwbPPPuvy91i/y5UkMlgWNE/JMB9kKENT1C6fmt/vrR4sf/B1mdzpKbAOb/hZT5JqV8rXVB21pHfK2ThnO0Cu7Jj6YzlqyU6XJ9N1NN6dg4n+Xnb9XQfNJeCXQ7LrTnn8paUHSHxRBkf8key6Qu3tnaMDeo5iPP0OV767qeTUH+uvr7X0gKs/eOt7XGl7PO1c8Tepb6RmKzo6Gt26dcORI0eajHv55Zcxb948/O9//0Pfvn2V4YmJiQCAoqIiu/iioiJl3MaNG7F69WosW7YMV199NQYMGIA33ngD4eHh+Oc//+n0O2fNmoWSkhLldeLECZd/l+0C03DBUrsBJQpE1nWH648923libWuctTf+SK78UUe239PcS60yqq25eaLmfPD3dzf8Ptv1xN8Jp6NyNBzuTzKsD82ts2pxtU25HLjbzvriuwH7nu/LqV5kar+9xVlbaDs+UARM0l1eXo6jR4867W0GLHcnf/7557Fu3TqkpaXZjevUqRMSExOxYcMGZVhpaSm2bduGzMxMAJbrwAFAq7WfLVqtFmaz2en3hoaGwmg02r1cIdMGlYguD5fbTgi13OW8bMiSSKn9/USBhuuLRbD9/uaS70AgbdL9xBNPYPPmzfjpp5/wzTff4NZbb4VOp8O4ceMAABMmTMCsWbOU+BdffBGzZ8/Gu+++i44dO6KwsBCFhYUoLy8HYKmgqVOn4v/+7//wn//8B3v37sWECROQlJSEW265BQCQmZmJmJgYTJw4ET/88AMOHTqE6dOn4/jx4xgzZoxPfic3qERERERERE3z51l53ibtNd2//PILxo0bh3PnzqFt27a45ppr8O2336Jt27YAgIKCArse6cWLF8NkMuGOO+6wm052djbmzp0LAHjyySdRUVGBBx98EBcvXsQ111yDdevWKdd9x8XFYd26dXj66afx29/+FrW1tejVqxc+++wzpKam+ueHExERERERUSOBlmxbSfuc7kAm23PhiIiIiIiILhey5WPSnl5OREREREREFOiYdBMRERERERH5iLTXdAcy6xn7paWlKpeEiIiIiIjo8mLNw2S5kppJtw+cO3cOAJCSkqJySYiIiIiIiC5P586dQ1RUlNrFYNLtC7GxsQAsd1j3pJIHDRqE7777zqOyeGMaMpWltLQUKSkpOHHihEc3RZDl98hSFm/NV2+URaZpeGM6nLe+m45M7YG3piPLNGSat8FWP5y3vpkG21rfTUemZdZb05GlLJy3vptGSUkJ2rdvr+RlamPS7QPWR5lFRUV5tALpdDqPNxzemIZsZQEAo9HIeeuDsng6X71VFlmm4c3pcN76bjoytAfemo4s07CSYd4GW/1Ycd76pixsa303HRmWWW9NR6ayAJy3vpiGle0jptUkRynIocmTJ0sxDW9Nx1tl8QaZfo9MZfEGWX6PTPXjLbLMl2CbtzL9Hlmm4S0y/R6ZyuINMv0emcriDbL8Hpnqxxtk+j0ylcUbZPo9skxDNnxOtw/I9ly4YMJ56xucr77Dees7nLe+w3nrO5y3vsH56juct77Dees7ss1b9nT7QGhoKLKzsxEaGqp2UYIO561vcL76Duet73De+g7nre9w3voG56vvcN76Duet78g2b9nTTUREREREROQj7OkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuL1u0aBE6duyIsLAwZGRkYPv27WoXSVVbtmzBjTfeiKSkJGg0GqxatcpuvBACc+bMQbt27RAeHo6srCwcPnzYLub8+fMYP348jEYjoqOjcf/996O8vNwuZs+ePRgyZAjCwsKQkpKC+fPnNyrLihUr0KNHD4SFhaFPnz5Ys2aN13+vv+Tk5GDQoEFo3bo14uPjccstt+DgwYN2MdXV1Zg8eTLatGmDyMhI3H777SgqKrKLKSgowJgxYxAREYH4+HhMnz4ddXV1djGbNm3CgAEDEBoaii5dumDp0qWNyhNMy/3ixYvRt29fGI1GGI1GZGZmYu3atcp4zlfvmTdvHjQaDaZOnaoM4/xtmblz50Kj0di9evTooYznfPXMyZMn8cc//hFt2rRBeHg4+vTpgx07dijjuS1rmY4dOzZabjUajfKMXi63LVNfX4/Zs2ejU6dOCA8Px5VXXonnn38etvdO5jLbcmVlZZg6dSo6dOiA8PBwDB48GN99950ynvPWNYGUI7hSlmYJ8pply5YJg8Eg3n33XbFv3z4xadIkER0dLYqKitQummrWrFkjnn76afHpp58KAGLlypV24+fNmyeioqLEqlWrxA8//CBuuukm0alTJ1FVVaXEjBo1SqSmpopvv/1WfPXVV6JLly5i3LhxyviSkhKRkJAgxo8fL/Lz88VHH30kwsPDxVtvvaXEfP3110Kn04n58+eL/fv3i2eeeUaEhISIvXv3+nwe+MLIkSPFe++9J/Lz88Xu3bvF9ddfL9q3by/Ky8uVmIceekikpKSIDRs2iB07doirrrpKDB48WBlfV1cnevfuLbKyssSuXbvEmjVrRFxcnJg1a5YSc+zYMRERESGmTZsm9u/fL15//XWh0+nEunXrlJhgW+7/85//iM8//1wcOnRIHDx4UDz11FMiJCRE5OfnCyE4X71l+/btomPHjqJv377iscceU4Zz/rZMdna26NWrlzh9+rTyOnPmjDKe87Xlzp8/Lzp06CDuuecesW3bNnHs2DHxxRdfiCNHjigx3Ja1THFxsd0yu379egFA5ObmCiG43LbUX//6V9GmTRuxevVqcfz4cbFixQoRGRkpXn31VSWGy2zL3XXXXaJnz55i8+bN4vDhwyI7O1sYjUbxyy+/CCE4b10VSDmCK2VpDpNuL0pPTxeTJ09W/q+vrxdJSUkiJydHxVLJo+EKZTabRWJionjppZeUYRcvXhShoaHio48+EkIIsX//fgFAfPfdd0rM2rVrhUajESdPnhRCCPHGG2+ImJgYUVNTo8TMmDFDdO/eXfn/rrvuEmPGjLErT0ZGhvjTn/7k1d+oluLiYgFAbN68WQhhmY8hISFixYoVSsyBAwcEAJGXlyeEsDR2Wq1WFBYWKjGLFy8WRqNRmZdPPvmk6NWrl913jR07VowcOVL5/3JY7mNiYsTbb7/N+eolZWVlomvXrmL9+vVi2LBhStLN+dty2dnZIjU11eE4zlfPzJgxQ1xzzTVOx3Nb5j2PPfaYuPLKK4XZbOZy64ExY8aI++67z27YbbfdJsaPHy+E4DLricrKSqHT6cTq1avthg8YMEA8/fTTnLctJHOO4EpZXMHTy73EZDJh586dyMrKUoZptVpkZWUhLy9PxZLJ6/jx4ygsLLSbZ1FRUcjIyFDmWV5eHqKjo5GWlqbEZGVlQavVYtu2bUrM0KFDYTAYlJiRI0fi4MGDuHDhghJj+z3WmGCpm5KSEgBAbGwsAGDnzp2ora21+809evRA+/bt7eZtnz59kJCQoMSMHDkSpaWl2LdvnxLT1HwL9uW+vr4ey5YtQ0VFBTIzMzlfvWTy5MkYM2ZMo3nA+euZw4cPIykpCZ07d8b48eNRUFAAgPPVU//5z3+QlpaGO++8E/Hx8ejfvz+WLFmijOe2zDtMJhP+/e9/47777oNGo+Fy64HBgwdjw4YNOHToEADghx9+wNatWzF69GgAXGY9UVdXh/r6eoSFhdkNDw8Px9atWzlvvUSm+ehKWVzBpNtLzp49i/r6eruGHwASEhJQWFioUqnkZp0vTc2zwsJCxMfH243X6/WIjY21i3E0DdvvcBYTDHVjNpsxdepUXH311ejduzcAy+81GAyIjo62i204b1s630pLS1FVVRW0y/3evXsRGRmJ0NBQPPTQQ1i5ciV69uzJ+eoFy5Ytw/fff4+cnJxG4zh/Wy4jIwNLly7FunXrsHjxYhw/fhxDhgxBWVkZ56uHjh07hsWLF6Nr16744osv8PDDD+PPf/4z/vnPfwLgtsxbVq1ahYsXL+Kee+4BwPbAEzNnzsTvf/979OjRAyEhIejfvz+mTp2K8ePHA+Ay64nWrVsjMzMTzz//PE6dOoX6+nr8+9//Rl5eHk6fPs156yUyzUdXyuIKvcuRRCSlyZMnIz8/H1u3blW7KEGje/fu2L17N0pKSvDJJ59g4sSJ2Lx5s9rFCngnTpzAY489hvXr1zfqJSDPWHuwAKBv377IyMhAhw4dsHz5coSHh6tYssBnNpuRlpaGF154AQDQv39/5Ofn480338TEiRNVLl3weOeddzB69GgkJSWpXZSAt3z5cnzwwQf48MMP0atXL+zevRtTp05FUlISl1kveP/993HfffchOTkZOp0OAwYMwLhx47Bz5061i0YSY0+3l8TFxUGn0zW6q2ZRURESExNVKpXcrPOlqXmWmJiI4uJiu/F1dXU4f/68XYyjadh+h7OYQK+bKVOmYPXq1cjNzcUVV1yhDE9MTITJZMLFixft4hvO25bON6PRiPDw8KBd7g0GA7p06YKBAwciJycHqampePXVVzlfPbRz504UFxdjwIAB0Ov10Ov12Lx5M1577TXo9XokJCRw/npJdHQ0unXrhiNHjnC59VC7du3Qs2dPu2G/+c1vlNP3uS3z3M8//4wvv/wSDzzwgDKMy23LTZ8+Xent7tOnD+6++2785S9/Uc4w4jLrmSuvvBKbN29GeXk5Tpw4ge3bt6O2thadO3fmvPUSmeajK2VxBZNuLzEYDBg4cCA2bNigDDObzdiwYQMyMzNVLJm8OnXqhMTERLt5Vlpaim3btinzLDMzExcvXrQ7erhx40aYzWZkZGQoMVu2bEFtba0Ss379enTv3h0xMTFKjO33WGMCtW6EEJgyZQpWrlyJjRs3olOnTnbjBw4ciJCQELvffPDgQRQUFNjN271799o1WOvXr4fRaFR2MJubb5fLcm82m1FTU8P56qERI0Zg79692L17t/JKS0vD+PHjlfecv95RXl6Oo0ePol27dlxuPXT11Vc3eiTjoUOH0KFDBwDclnnDe++9h/j4eIwZM0YZxuW25SorK6HV2u/i63Q6mM1mAFxmvaVVq1Zo164dLly4gC+++AI333wz562XyDQfXSmLS1y+5Ro1a9myZSI0NFQsXbpU7N+/Xzz44IMiOjra7q6al5uysjKxa9cusWvXLgFA/O1vfxO7du0SP//8sxDCcgv+6Oho8dlnn4k9e/aIm2++2eHjAPr37y+2bdsmtm7dKrp27Wr3OICLFy+KhIQEcffdd4v8/HyxbNkyERER0ehxAHq9Xrz88sviwIEDIjs7O6Aeq9DQww8/LKKiosSmTZvsHrdSWVmpxDz00EOiffv2YuPGjWLHjh0iMzNTZGZmKuOtj1q57rrrxO7du8W6detE27ZtHT5qZfr06eLAgQNi0aJFDh+1EkzL/cyZM8XmzZvF8ePHxZ49e8TMmTOFRqMR//vf/4QQnK/eZnv3ciE4f1vq8ccfF5s2bRLHjx8XX3/9tcjKyhJxcXGiuLhYCMH56ont27cLvV4v/vrXv4rDhw+LDz74QERERIh///vfSgy3ZS1XX18v2rdvL2bMmNFoHJfblpk4caJITk5WHhn26aefiri4OPHkk08qMVxmW27dunVi7dq14tixY+J///ufSE1NFRkZGcJkMgkhOG9dFUg5gitlaQ6Tbi97/fXXRfv27YXBYBDp6eni22+/VbtIqsrNzRUAGr0mTpwohLDchn/27NkiISFBhIaGihEjRoiDBw/aTePcuXNi3LhxIjIyUhiNRnHvvfeKsrIyu5gffvhBXHPNNSI0NFQkJyeLefPmNSrL8uXLRbdu3YTBYBC9evUSn3/+uc9+t685mqcAxHvvvafEVFVViUceeUTExMSIiIgIceutt4rTp0/bTeenn34So0ePFuHh4SIuLk48/vjjora21i4mNzdX9OvXTxgMBtG5c2e777AKpuX+vvvuEx06dBAGg0G0bdtWjBgxQkm4heB89baGSTfnb8uMHTtWtGvXThgMBpGcnCzGjh1r9xxpzlfP/Pe//xW9e/cWoaGhokePHuIf//iH3Xhuy1ruiy++EAAazS8huNy2VGlpqXjsscdE+/btRVhYmOjcubN4+umn7R6bxGW25T7++GPRuXNnYTAYRGJiopg8ebK4ePGiMp7z1jWBlCO4UpbmaIQQwvV+cSIiIiIiIiJyFa/pJiIiIiIiIvIRJt1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEf0ahcgGJnNZpw6dQqtW7eGRqNRuzhERERERESXDSEEysrKkJSUBK1W/X5mJt0+cOrUKaSkpKhdDCIiIiIiosvWiRMncMUVV6hdDCbdvtC6dWsAlko2Go0qlyawvPgi8MILwFNPAX/5iwmvvPIKAODRRx/F66+/DgB4/PHH8fe/G5S4GTPULDEREREREcmktLQUKSkpSl6mNibdPmA9pdxoNDLpdtNf/wqEhQFz5gAhIXUICwsDYJmX1vcLF0bjhRf0eO45YPZsNUtLRERERESykuVSXybdJB1rIj1njh7Dhw/FsGFblHGbNw9Fbi4TbiIiIiIiCgxMuklKs2cD9fV1ePbZ4airq0RGxlZs2jQEmzYNR3Z2HWbP5qJLRERERETyY+ZC0nrqKTO2bMlFbu5GjB79NwCPYPhwDZ566mq1i0ZEREREROQS9e+fTuSEVqvF449XAnj71yFvYPLk81Lc9p+IiIiIiMgVzF5IWnq9Ht9/PwbANcqwb75Jg17PEzSIiIiIiCgwMOkmaT3/vOUu5p07m5Rhf/tbDZ5/XsVCERERERERuYFJN0nJmnA/84wJiYmVyvAHH6zAnDlg4k1ERERERAGBSTdJx5pwZ2fXQa/Pwc8//2wz9k1kZ9cx8SYiIiIiooDAi2NJKtaE+7nngBkzzMjJAerq6pTxdXV1eOopM3Q6SxzA53UTEREREZG8mHSTNGwT7tmzAdOvl3LX19crMdb31kSbiTcREREREcmMSTdJo77+UsJty7an2zYBt8bZDCIiIiIiIpIKk26Sxty5joc76um2Yg83ERERERHJjDdSI+k1vKabiIiIiIgoUDDpJuk11dNNREREREQkMybdJC2tVovU1FSYzWZlWFJSErRaLrZERERERBQYmL2QtPR6PW666Sa7U8p79eoFvZ63IiAiIiIiosDApJukZrI+N+xXNTU1KpWEiIiIiIjIfUy6SVpCCJSVldkNq6yshBBCpRIRERERERG5h0k3Sau2thbz58+3G7Z+/XrU1taqVCIiIiIiIiL3MOkmqTW8WznvXk5ERERERIGESTdJreFzuZl0ExERERFRIGHSTVJrmGQ3TMKJiIiIiIhkxqSbpMaebiIiIiIiCmSXRdK9aNEidOzYEWFhYcjIyMD27dtd+tyyZcug0Whwyy23+LaA5BSv6SYiIiIiokAW9En3xx9/jGnTpiE7Oxvff/89UlNTMXLkSBQXFzf5uZ9++glPPPEEhgwZ4qeSkiPs6SYiIiIiokAW9En33/72N0yaNAn33nsvevbsiTfffBMRERF49913nX6mvr4e48ePx7PPPovOnTv7sbRkS6vV4oorrrAbFhERAa026BdbIiIiIiIKEkGdvZhMJuzcuRNZWVnKMK1Wi6ysLOTl5Tn93HPPPYf4+Hjcf//9Ln1PTU0NSktL7V7kOb1ej4yMDLth8fHx0Ov1KpWIiIiIiIjIPUGddJ89exb19fVISEiwG56QkIDCwkKHn9m6dSveeecdLFmyxOXvycnJQVRUlPJKSUnxqNx0iclkavJ/IiIiIiIimQV10u2usrIy3H333ViyZAni4uJc/tysWbNQUlKivE6cOOHDUl5eamtr7f6vqalRqSRERERERETuC+rzdOPi4qDT6VBUVGQ3vKioCImJiY3ijx49ip9++gk33nijMsxsNgOwnOp88OBBXHnllY0+FxoaitDQUC+XnkwmE5YvX2437MiRIzCZTDAYDCqVioiIiIiIyHVB3dNtMBgwcOBAbNiwQRlmNpuxYcMGZGZmNorv0aMH9u7di927dyuvm266CcOHD8fu3bt52rgK+MgwIiIiIiIKZEHd0w0A06ZNw8SJE5GWlob09HQsWLAAFRUVuPfeewEAEyZMQHJyMnJychAWFobevXvbfT46OhoAGg0n/7CeaRAWFobq6mom3UREREREFFCCPukeO3Yszpw5gzlz5qCwsBD9+vXDunXrlJurFRQU8BFUErMm2eHh4aiurlaScCIiIiIiokCgEUIItQsRbEpLSxEVFYWSkhIYjUa1ixOwTCYTbrrpJnzxxRdITk7GyZMn0aZNG5w6dYrXdBMRERERkUOy5WPs4iWp2fZ02/5PREREREQUCJh0k9Ssp5Nbk26eXk5ERERERIGESTdJS6vVKjeyi4iIUIbxGnwiIiIiIgoUzF5IWnq9Hj169AAAREZGAgB0Oh30+qC//x8REREREQUJJt0ktdraWgCXerqt/xMREREREQUCJt0ktYZJd11dnZrFISIiIiIicguTbpKWyWRCXl4eACinlNfU1MBkMqlZLCIiIiIiIpcx6SapWXu2rT3d9fX14KPliYiIiIgoUDDpJqk1fE637TAiIiIiIiLZMekmqVmfy23t6QZ4XTcREREREQUOJt0kNWuvdlhYmDKMdzAnIiIiIqJAwaSbpOaop5tJNxERERERBQom3SQ19nQTEREREVEgY9JN0tJoNAgNDQUAGAwG6HQ6ALyRGhERERERBQ5pk+6pU6fi7NmzaheDVBQSEoL4+HgAQGRkJAwGg8olIiIiIiIico9e7QI489prryEqKgrV1dWIj4/HmDFj0KNHD7WLRX5mPZU8JCQEer3ebhgREREREZHspO3pBoCPPvoIFRUV2LVrF4YNG4b77rsPJpNJ7WKRH9km3SEhIXbDiIiIiIiIZCdt0q3VavHNN99g4cKF+Pe//43jx4/DZDJhzpw5aheN/MRkMuHEiRMALM/mth5wqaqqUrNYRERERERELpM26U5KSoJWe6l4EREReOONN7Bs2TIVS0X+ZtvTbV0e2NNNRERERESBQtqk+7bbbsMf//hHu5upFRcXo7q6WsVSkb9Zn9PNpJuIiIiIiAKRtEn3vHnz0KlTJ7Rv3x6DBw/GmDFjkJGRgQcffFDtopEfWR8PptfrlaS7rq5OzSIRERERERG5TNq7l4eFhWHRokV4/vnnsWnTJpw/fx7PPPMMMjMz1S4a+ZFtT7f1Od3s6SYiIiIiokAhRdK9du1afPDBBzhx4gRatWqFvn374vbbb8egQYMQGxuL2267Te0ikkqsPd08vZyIiIiIiAKR6qeXL1iwADfccANWrlyJiooKFBcX47XXXsNVV12FMWPGoLCwUO0ikop4TTcREREREQUy1ZPuV199Ff369cPPP/+MHTt2YMeOHbhw4QIWLlyI/Px8pKen4+TJk2oXk1Sg0WgghAAAGAwGhIeHA7jU+01ERERERCQ71ZPuoqIiPPDAA4iLi1OGhYaG4uGHH8aOHTug0Wjw5JNPqlhCUott77bRaERycjIAKIk4ERERERGR7FRPurt3746ioiKH49q2bYtHHnkEa9as8XOpSBa2z+kOCQmxG0ZERERERCQ71ZPuJ598EgsXLsThw4cdjo+IiIBGo/FzqUgWTLqJiIiIiCiQqZ50v/LKK9DpdEhPT8f8+fNx6tQpZdzRo0exaNEi3HnnnSqWkNRSU1Oj3EittrYWJ06cUIYTEREREREFAtWT7qSkJLRq1QqlpaWYOXMmUlJS0LZtWyQmJqJbt24IDw/Hgw8+6FHv5qJFi9CxY0eEhYUhIyMD27dvdxq7ZMkSDBkyBDExMYiJiUFWVlaT8eQ7JpNJea/T6ZQE3HY4ERERERGRzFRPuv/zn//g2LFjKCkpQV5eHt566y2MHz8evXr1QlxcHH744Qekp6ejVatW6NGjB2699VY8/fTTLk//448/xrRp05CdnY3vv/8eqampGDlyJIqLix3Gb9q0CePGjUNubi7y8vKQkpKC6667jndQV4HtgRY+MoyIiIiIiAKRRkh+K+ji4mLs3bsX+fn5yt/9+/ejtLTUpc9nZGRg0KBBWLhwIQDLc59TUlLw6KOPYubMmc1+vr6+HjExMVi4cCEmTJjg0neWlpYiKioKJSUlMBqNLn2GGisqKkJiYiIA4Ny5c7j22muxd+9ezJ8/H9OnT1e5dEREREREJCPZ8jG92gVoTnx8PEaMGIERI0a4/VmTyYSdO3di1qxZyjCtVousrCzk5eW5NI3KykrU1tYiNjbW7e8nzzjr6a6rq1OrSERERERERG6RPun2xNmzZ1FfX4+EhAS74QkJCfjxxx9dmsaMGTOQlJSErKwspzE1NTV2N/dytReemmZNujUaDTQaDZNuIiIiIiIKOKpf0y2zefPmYdmyZVi5ciXCwsKcxuXk5CAqKkp5paSk+LGUwcuadOt0Oru/vJEaEREREREFiqBOuuPi4qDT6VBUVGQ33PZaYWdefvllzJs3D//73//Qt2/fJmNnzZqFkpIS5WV9tBV5xtqjrdfrodVq0bp1awBMuomIiIiIKHAEddJtMBgwcOBAbNiwQRlmNpuxYcMGZGZmOv3c/Pnz8fzzz2PdunVIS0tr9ntCQ0NhNBrtXuQ9ERERiIiIUOqivr5e5RIRERERERG5Jqiv6QaAadOmYeLEiUhLS0N6ejoWLFiAiooK3HvvvQCACRMmIDk5GTk5OQCAF198EXPmzMGHH36Ijh07orCwEAAQGRmJyMhI1X7H5ch6enlISAgAy8ENgD3dREREREQUOII+6R47dizOnDmDOXPmoLCwEP369cO6deuUm6sVFBQoN+gCgMWLF8NkMuGOO+6wm052djbmzp3rz6Jf9hom3QaDAQCTbiIiIiIiChxBn3QDwJQpUzBlyhSH4zZt2mT3/08//eT7ApFLqqqqlL+VlZXYuXMnAKC6ulrNYhEREREREbksqK/ppsBm26NtNpuVZJs93UREREREFCiYdJO0rKeXW0//5yPDiIiIiIgo0DDpJmnxOd1ERERERBTomHSTtNjTTUREREREgY5JN0mrrq4OQOOe7pqaGtXKRERERERE5A4m3SQtZz3d1uFERERERESyY9JN0rIm16GhodBqtTAajQB4ejkREREREQUOJt0kLSEEAODKK69EREQE7rzzTgDs6SYiIiIiosDBpJukZU2uQ0JCAAAGgwEAe7qJiIiIiChwMOkmaTHpJiIiIiKiQMekm6RVXV0NACgoKEBlZSU+//xzAEy6iYiIiIgocDDpJmlZk+uamhqYzWacP3/ebjgREREREZHs9GoXIJhVmCqgM+kaDddpdQjTh9nFOaPVaBEeEt6i2MraSuVmZA1pNBpEhES0KLaqtgpmYXZajlaGVi2Kra6rRr25/tJna6oAWB4VVllbqTwyzGQyNYptKCIkAhqNBgBQU1eDOnOdV2LDQ8Kh1ViOVZnqTaitd35TN3diw/Rh0Gl1bsfW1tfCVO/8IESoPhR6rd7t2DpzHWrqnD8P3aAzIEQX4nZsvbke1XXVTmNDdCEw6Axux5qFGVW1VV6J1Wv1CNWHArDczK+yttIrse6s92wjHMc2t967E8s2woJthPuxbCMs2Ea0LJZthAXbCPdj2UZc4kob0dTvUAOTbh9KeiUJCGs8/Pqu1+PzP3yu/B//crzTlWxYh2HYdM8m5f+Or3bE2cqzDmPTktLw3aTvlP97LuqJn0t+dhjbs21P7Htkn/L/oCWDsP/MfoexHaI64KepPyn/D106FDtO7XAYGxcRhzPTzyj/j/5gNDb/vNlhbERIBCqeurRC3L78dqw5vEb5X7vZsqHRarXo9FonTNJPAmBJuu9eeTc+WfEJcBFABhotyeWzypUV8k+r/4R//vBPh2UAgOInitG2VVsAwLQvpuGNHW84jT3+2HF0jO4IAHh6w9N4Oe9lp7H5D+ejV3wvAMALX72AZzc/6zR2+wPbMSh5EADg1W9fxZNfPuk0NndiLq7teC0A4B87/4Epa6c4jV09bjXGdBsDAPhg7we497N7ncYuv2M57uxluUP8ygMrcdcndzmNfe/m93BPv3sAAF8c+QI3fHSD09iFoxdicvpkAMBXBV9h+D+HO42dnzUf06+eDgD4/vT3SH873Wls9rBszL12LgDgwJkD6L24t9PYJzKfwEvXvQQAKCgpQKdXOzmNfSTtESwaswgAcLbyLOJfjncaOzF1IpbeshSAZWMSmRPpNPaOnndgxZ0rlP+bimUbYdFcG9GQyL60Mb975d34ZP8nTmPZRliwjbBgG2HBNuISthEWbCMs2EZYBFQb4fx4iyqYdJO8fj1oZe3htv6tqamBMAtgFYBaAAUAxqlRQCIiIiIioqZphLN+fmqx0tJSREVF4dSZUzAajY3G85QPx7ENT/V6eubTePXvr+Kqq67CZ2s+w8s5L+OllyxHGQ8dO4RunbsBsCTj58vOK0k5wNPCrHhamPuxPC3MIhDaCE9i2UZYsI1wP5ZthAXbiJbFso2wYBvhfizbiEtcaSNKS0uR1DYJJSUlDvMxf2NPtw+1MrSyWyiainNnmq6yXXi9GWu7snkz1rZxAGDX0x0REmGXVJ84fkJ5X19fj+KTxejSpYvD6YbqQxGKUJfK4E6sQWdQGmC1YkN0IcqGyJuxeq0eeoNrzYM7sTqtzuVl2J1YrUbrk1iNRuOTWMB36/1l1UZ4KZZthPuxbCMs2Ea0LJZthAXbCPdj2UZcIkOszG1EvcH5QTU18O7lJC3rc7pDQy0br9atWyvjDh48aBe7f7/ja0SIiIiIiIjUxKSbpGU2W7q6hw4disjISMyYMUMZ1zDpPnDggF/LRkRERERE5Aom3SStmhrL9T3Wnm6dTget1rLIHjp0CAAQFmY5PYxJNxERERERyYhJN0mrvLwcANCq1aVrSwwGyzVKR48eBQBkZWUBAA4fPuzn0hERERERETWPSTdJy5p07969G5WVlVi6dKlyd9BTp04BAK666ioAl5JwIiIiIiIimTDpJmlZk+6ysjKYzWb8/PPPStJtHZeRkQEAKCoqQllZmToFJSIiIiIicoKPDPOligrA5jFXCp0OCAuzj3NGqwXCw1sWW1kJOHsMu0YDRES0LLaqCjA7f3YebE4Hdyu2uhqov3R7/4pfk+iQkBBL+QDo9faLbOfERLSJjcW58+dxbN8+pPbpYxkREWEpNwDU1AB1zp+Z6VZseLhlPgOAyQTUOn8OpluxYWGXlhV3YmtrLfHOhIYC1nnmTmxdnWVeOGMwACEh7sfW11vq2ZmQEEu8u7Fms2VZ80asXm+ZF4Blnah0/sxMt2LdWe/ZRjiObdBGeBTLNsKCbYT7sWwjLNhGtCyWbYQF2wj3Y9lGXOJKG9HU71CDIK8rKSkRAESJZdFq/Lr+evsPREQ4jgOEGDbMPjYuznlsWpp9bIcOzmN79rSP7dnTeWyHDvaxaWnOY+Pi7GOHDXMeGxFhH3v99XbjuwECgLjnnntEWUSEmDt3roiPjxf4dTgAcREQ6b++/3+20y4vvzTdiROdlwEQorj4UuwjjzQde/z4pdgnnmg6Nj//Umx2dtOx27dfip0/v+nY3NxLsQsXNh27evWl2Pfeazp2+fJLscuXNx373nuXYlevbjp24cJLsbm5TcfOn38pdvv2pmOzsy/F5uc3HfvEE5dijx9vOvaRRy7FFhc3HTtx4qXY8vKmY++4Q9hpKpZthOXVTBvR6GXrjjuajmUbYXmxjbC82EZYXmwjLr3YRlhebCMsL7YRllcAtRElsOQHJSUlQgY8vZykZT0+Zb15GnDpbuWA5TQNI4Auv/5/yF8FIyIiIiIicpFGCCHULkSwKS0tRVRUFEpOnYLRaGwcwFM+HMc2ONUrJjkZF0tKMGXKFOTMno1XFi/Ghx9+qDwuLCE+HoXHjuGFl17C088+i/Fjx+Lf77xj+TBPC7PgaWHux/K0MIsAaCM8imUbYcE2wv1YthEWbCNaFss2woJthPuxbCMucaGNKC0tRVRSEkpKShznY37Ga7p9qVUr+4WiqTh3pukq24XXm7G2K5s3Y20bBwDlv670ISEhSvnCbaYX17Yt0KoV+gwcCADYs3+/4/kTGnqpQWuOO7EGw6UGWK3YkJBLGyJvxur1lzac3ozV6Vxfht2J1Wp9E6vR+CYWkCM2wNsIr8WyjXA/lm2EBduIlsWyjbBgG+F+LNuIS2SIlbmNaOqgmgp4ejlJyWQyoe7XI8XW53SHhIQgwmaFbdOmDQCgb9++AIAff/wRpqaOwBIREREREfkZe7pJKnV1dfjd736H8+fPK8PmzJmDkJAQPPXUU6ipqUFeXh4AIC4uDgDQvn17GI1GlJaW4scff1SScCIiIiIi8g+z2Yy6ujrU1dWhtrbWpb++iq1s6lR9FVwWSfeiRYvw0ksvobCwEKmpqXj99deRnp7uNH7FihWYPXs2fvrpJ3Tt2hUvvvgirr/+ej+W+PK1fft2bNq0SfnfYDBYTi//VXR0tPI+KSkJAKDRaDBw4EDk5uZi8+bNTLqJiIiIiGwIIVBdXY2KigpUVFSgvLzcrffOxlVVVSmJrrmp67Avc0GfdH/88ceYNm0a3nzzTWRkZGDBggUYOXIkDh48iPj4+Ebx33zzDcaNG4ecnBzccMMN+PDDD3HLLbfg+++/R+/evVX4BZeH0tJSmEwmrF+/3m54ZGSk3f8xMTHK+549eyrvR48ejdzcXHz++ed49NFHfVtYIiIiIiIfqK2tbTbRbUlyXFFRoVpSHBISgpCQEOj1+kZ/HQ1zZVxzMXV1dXjuuedU+b2OBP3dyzMyMjBo0CAsXLgQgOW0h5SUFDz66KOYOXNmo/ixY8eioqICq1evVoZdddVV6NevH958802XvlO5e7kkd8uTlRACFy5cgEajQf/+/XHq1CnUNrjbZkxMDBYuXIjbbrsNn376KXbs2IG///3vAIDNmzdj6NChAIADBw6gZ8+eCA0NRUFBgcMDKkREFJzMZjPMZjPq6+vtXg2HWf8HoOysOXrpdDporHejJo/V1dWhpqYGNTU1qK6uVt47ejkbX1tbq9ShtR69/d6duIY7+54kB77+vO17LtfNM5vNqK2tbfJlPY3Z2auystLthNj63h/3JwoLC0OrVq0QGRmJVq1aNXrf1LiG78PDw5tc9nTWO+X7mWz5WFD3dJtMJuzcuROzZs1Shmm1WmRlZSnXBTeUl5eHadOm2Q0bOXIkVq1a5fXyHTt2DD/88IPbn2t4nMTV/61/f/75ZwBASkoK9Ho9zGYzNBoNtFqtsmOi0WiU07qFEDCbzRBCQKPRwGw2w2QyQaPRQAiB+vp66HQ6nD9/HlFRUSgvL0dERATOnTsHo9GIU6dOITY2Fvv27UNSUhLOnj0Lk8mEQ4cOYcuWLU3+Vo1Gg8OHD6Ourg6HDx9GUVGRMs62p7tHjx5IS0vDjh078Nvf/hbdunXD0aNH0a1bN/zmN79BcXExDh06BL1ej9TUVFxxxRUoLS1FSUkJ6urqEBMTo/wW6ysiIgJxcXFo3bo1KisrUV5eDo1Gg7CwMISFhSE8PFw5Vae6uhparVZpYKzTqqurQ319PYQQCAkJsTtd3nptijVOCAGDwaC8tFqtEmMdr9PplJdWq1Xe217nUltbC7PZbBfbMN76nbYbCEefsX1Zf5ejDU59fb0yfdvv0Wq10P76uBPb5bLhMqrRaJRXw/+dvaxxABptCK3LalMvrVbr0vc4+o6mNrjW77f+dtvvsi4jjuats2G2y4G7OwF1dXXKtGw3fo4SDGf/W9d5d3dgW7rja21/bOdBw7+ejBNC2LVptq+Gw6zXptXU1MBkMsFkMinvmxpmXSes67ejl6Nx1h35pnaimxvmyXjb+ePqy7o+N5xvDedRS/63DrPOK2cJtDWJ9jadTmc3jzx5+WI6Wq222aTRlcTS1Zj6+nqYTKYWJc085VQe1jZRtgMCWq3WoyTXm/GyLK86nU5JcFuaEDtLqNVKhC9nQZ10nz17FvX19UhISLAbnpCQgB9//NHhZwoLCx3GFxYWOv0e60bFqrS01KXyrVu3DpMnT3Yp9nLSrVs3DBs2DGvWrMFNN91kN872dHPrjdQAS/K1aNEiXH311di3bx/27dsHANizZ0+j6Tc8hZ2IiIKb9UCO9UAWAOXgh7MdbF8m9JczrVaL0NBQp6+wsDCHw60HhmwP6Dp639x4V943N16j0aC+vt6tmzx5enOoloxzxLpc2+63UvNsDxC48goPD/c4OTYYDDwzIYgEddLtLzk5OXj22Wfd/lxiYiIGDx4MAG6vVA3jXf1fo9EgKioKQgiUlpYqPWEAlB5rnU6n9PBYP2PtpTObzdBqtTAYDMp7nU6H2tpaxMbG4uzZs4iKikJpaSni4uJw7tw5JCcno6ioCF26dMGJEycQGxsLvV4Pk8mEG264ATt37sTw4cORlJSEzz77DDfccANSU1NRU1ODefPm2f2OpKQkLFmyBL/5zW8azZP09HTs2LEDK1asQExMDLp27YoDBw7g+PHjiI6ORq9evVBTU4Ndu3Yp5YyKioJOp8OFCxfsemh1Oh0qKipw7tw5lJWVKQ0gAKVnu6qqClqtFmFhYTD8+jxM61HShtPSaDTKRtB6lkDDnjjr5609PPX19cqRYOs0GvYiWv/a9shYjxg3dYqloyPdDT/j6AXA4cbFuszYfo9t+Rr2TNu+b67XrLnetYZlsvbOOvusox7O5sY5+90NX9Z5af1+6zyxfe+sl9PZsIa9n66Wwfre9k6iDc+uaGqY7ff7asfV2fuGZ4rYvvf0b8MzHGz/d3T2g+3ZJ6Ghoc2+t57N0vDsBVfOcGh4VkNT71syvrnP1NXVuXz2R1Nnp1iTKmfzx53/bduYhu2qo2HOYpraxtqulw3nh6svNT5ju822rkMN1ylv/2+tn6aS4+YSaev2jnzLut2R9YBAw3HWfR5Xtm3ubAe9EWvdryDyRFC3fHFxcdDpdHanJANAUVEREhMTHX4mMTHRrXgAmDVrlt0p6aWlpUhJSWm2fLfddhtuu+22ZuOC3R133KG8t71ZnbMGbsKECUqS21BqaipSU1OV/xv2lBMREdmyJpTWS3+IgoHt2R1EpD6t2gXwJYPBgIEDB2LDhg3KMLPZjA0bNiAzM9PhZzIzM+3iAcvpyM7iASA0NBRGo9HuRURERERERBTUPd0AMG3aNEycOBFpaWlIT0/HggULUFFRgXvvvReApdc0OTkZOTk5AIDHHnsMw4YNwyuvvIIxY8Zg2bJl2LFjB/7xj3+o+TOIiIiIiIgoAAV90j127FicOXMGc+bMQWFhIfr164d169YpN0srKChQbqoCAIMHD8aHH36IZ555Bk899RS6du2KVatWufWMbus1oK7eUI0cs94lFbDMS9v3zk4vJyIiIiKiy5s1D5Pl6dhB/5xuNRw7dgxXXnml2sUgIiIiIiK6bB09ehSdO3dWuxjB39OthtjYWACWXvSoqCiVS0PNsd747sSJE7weP0CwzgIL6yvwsM4CC+sr8LDOAgvrK/CUlJSgffv2Sl6mNibdPmA9XT0qKoorZgDhTfACD+sssLC+Ag/rLLCwvgIP6yywsL4Cj+1lxGqSoxREREREREREQYhJNxEREREREZGPMOn2gdDQUGRnZyM0NFTtopALWF+Bh3UWWFhfgYd1FlhYX4GHdRZYWF+BR7Y6493LiYiIiIiIiHyEPd1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdLtZYsWLULHjh0RFhaGjIwMbN++Xe0iXRbmzp0LjUZj9+rRo4cyvrq6GpMnT0abNm0QGRmJ22+/HUVFRXbTKCgowJgxYxAREYH4+HhMnz4ddXV1djGbNm3CgAEDEBoaii5dumDp0qX++HkBb8uWLbjxxhuRlJQEjUaDVatW2Y0XQmDOnDlo164dwsPDkZWVhcOHD9vFnD9/HuPHj4fRaER0dDTuv/9+lJeX28Xs2bMHQ4YMQVhYGFJSUjB//vxGZVmxYgV69OiBsLAw9OnTB2vWrPH67w0GzdXZPffc02idGzVqlF0M68x/cnJyMGjQILRu3Rrx8fG45ZZbcPDgQbsYf7aD3BY2zZX6uvbaaxutYw899JBdDOvLfxYvXoy+ffvCaDTCaDQiMzMTa9euVcZz/ZJLc/XF9Ut+8+bNg0ajwdSpU5VhAb2eCfKaZcuWCYPBIN59912xb98+MWnSJBEdHS2KiorULlrQy87OFr169RKnT59WXmfOnFHGP/TQQyIlJUVs2LBB7NixQ1x11VVi8ODByvi6ujrRu3dvkZWVJXbt2iXWrFkj4uLixKxZs5SYY8eOiYiICDFt2jSxf/9+8frrrwudTifWrVvn198aiNasWSOefvpp8emnnwoAYuXKlXbj582bJ6KiosSqVavEDz/8IG666SbRqVMnUVVVpcSMGjVKpKamim+//VZ89dVXokuXLmLcuHHK+JKSEpGQkCDGjx8v8vPzxUcffSTCw8PFW2+9pcR8/fXXQqfTifnz54v9+/eLZ555RoSEhIi9e/f6fB4EmubqbOLEiWLUqFF269z58+ftYlhn/jNy5Ejx3nvvifz8fLF7925x/fXXi/bt24vy8nIlxl/tILeFzXOlvoYNGyYmTZpkt46VlJQo41lf/vWf//xHfP755+LQoUPi4MGD4qmnnhIhISEiPz9fCMH1SzbN1RfXL7lt375ddOzYUfTt21c89thjyvBAXs+YdHtRenq6mDx5svJ/fX29SEpKEjk5OSqW6vKQnZ0tUlNTHY67ePGiCAkJEStWrFCGHThwQAAQeXl5QghLgqHVakVhYaESs3jxYmE0GkVNTY0QQognn3xS9OrVy27aY8eOFSNHjvTyrwluDRM4s9ksEhMTxUsvvaQMu3jxoggNDRUfffSREEKI/fv3CwDiu+++U2LWrl0rNBqNOHnypBBCiDfeeEPExMQo9SWEEDNmzBDdu3dX/r/rrrvEmDFj7MqTkZEh/vSnP3n1NwYbZ0n3zTff7PQzrDN1FRcXCwBi8+bNQgj/toPcFrqvYX0JYUkKbHc2G2J9qS8mJka8/fbbXL8ChLW+hOD6JbOysjLRtWtXsX79ert6CvT1jKeXe4nJZMLOnTuRlZWlDNNqtcjKykJeXp6KJbt8HD58GElJSejcuTPGjx+PgoICAMDOnTtRW1trVzc9evRA+/btlbrJy8tDnz59kJCQoMSMHDkSpaWl2LdvnxJjOw1rDOvXM8ePH0dhYaHdvI2KikJGRoZd/URHRyMtLU2JycrKglarxbZt25SYoUOHwmAwKDEjR47EwYMHceHCBSWGdeg9mzZtQnx8PLp3746HH34Y586dU8axztRVUlICAIiNjQXgv3aQ28KWaVhfVh988AHi4uLQu3dvzJo1C5WVlco41pd66uvrsWzZMlRUVCAzM5Prl+Qa1pcV1y85TZ48GWPGjGk0bwN9PdO3+JNk5+zZs6ivr7erZABISEjAjz/+qFKpLh8ZGRlYunQpunfvjtOnT+PZZ5/FkCFDkJ+fj8LCQhgMBkRHR9t9JiEhAYWFhQCAwsJCh3VnHddUTGlpKaqqqhAeHu6jXxfcrPPX0by1nffx8fF24/V6PWJjY+1iOnXq1Gga1nExMTFO69A6DXLdqFGjcNttt6FTp044evQonnrqKYwePRp5eXnQ6XSsMxWZzWZMnToVV199NXr37g0AfmsHL1y4wG2hmxzVFwD84Q9/QIcOHZCUlIQ9e/ZgxowZOHjwID799FMArC817N27F5mZmaiurkZkZCRWrlyJnj17Yvfu3Vy/JOSsvgCuX7JatmwZvv/+e3z33XeNxgX6doxJNwWF0aNHK+/79u2LjIwMdOjQAcuXL2cyTOQDv//975X3ffr0Qd++fXHllVdi06ZNGDFihIolo8mTJyM/Px9bt25VuyjkAmf19eCDDyrv+/Tpg3bt2mHEiBE4evQorrzySn8XkwB0794du3fvRklJCT755BNMnDgRmzdvVrtY5ISz+urZsyfXLwmdOHECjz32GNavX4+wsDC1i+N1PL3cS+Li4qDT6RrdQa+oqAiJiYkqleryFR0djW7duuHIkSNITEyEyWTCxYsX7WJs6yYxMdFh3VnHNRVjNBqZ2HvAOn+bWncSExNRXFxsN76urg7nz5/3Sh1yHfVc586dERcXhyNHjgBgnallypQpWL16NXJzc3HFFVcow/3VDnJb6B5n9eVIRkYGANitY6wv/zIYDOjSpQsGDhyInJwcpKam4tVXX+X6JSln9eUI1y/17dy5E8XFxRgwYAD0ej30ej02b96M1157DXq9HgkJCQG9njHp9hKDwYCBAwdiw4YNyjCz2YwNGzbYXT9C/lFeXo6jR4+iXbt2GDhwIEJCQuzq5uDBgygoKFDqJjMzE3v37rVLEtavXw+j0aicipSZmWk3DWsM69cznTp1QmJiot28LS0txbZt2+zq5+LFi9i5c6cSs3HjRpjNZmVDmZmZiS1btqC2tlaJWb9+Pbp3746YmBglhnXoG7/88gvOnTuHdu3aAWCd+ZsQAlOmTMHKlSuxcePGRqft+6sd5LbQNc3VlyO7d+8GALt1jPWlLrPZjJqaGq5fAcJaX45w/VLfiBEjsHfvXuzevVt5paWlYfz48cr7gF7PWnwLNmpk2bJlIjQ0VCxdulTs379fPPjggyI6OtruDnrkG48//rjYtGmTOH78uPj6669FVlaWiIuLE8XFxUIIyyMG2rdvLzZu3Ch27NghMjMzRWZmpvJ56yMGrrvuOrF7926xbt060bZtW4ePGJg+fbo4cOCAWLRoER8Z5qKysjKxa9cusWvXLgFA/O1vfxO7du0SP//8sxDC8siw6Oho8dlnn4k9e/aIm2++2eEjw/r37y+2bdsmtm7dKrp27Wr3+KmLFy+KhIQEcffdd4v8/HyxbNkyERER0ejxU3q9Xrz88sviwIEDIjs7m4+fcqKpOisrKxNPPPGEyMvLE8ePHxdffvmlGDBggOjatauorq5WpsE685+HH35YREVFiU2bNtk9AqeyslKJ8Vc7yG1h85qrryNHjojnnntO7NixQxw/flx89tlnonPnzmLo0KHKNFhf/jVz5kyxefNmcfz4cbFnzx4xc+ZModFoxP/+9z8hBNcv2TRVX1y/AkfDKHULkgAAcV5JREFUu8wH8nrGpNvLXn/9ddG+fXthMBhEenq6+Pbbb9Uu0mVh7Nixol27dsJgMIjk5GQxduxYceTIEWV8VVWVeOSRR0RMTIyIiIgQt956qzh9+rTdNH766ScxevRoER4eLuLi4sTjjz8uamtr7WJyc3NFv379hMFgEJ07dxbvvfeeP35ewMvNzRUAGr0mTpwohLA8Nmz27NkiISFBhIaGihEjRoiDBw/aTePcuXNi3LhxIjIyUhiNRnHvvfeKsrIyu5gffvhBXHPNNSI0NFQkJyeLefPmNSrL8uXLRbdu3YTBYBC9evUSn3/+uc9+dyBrqs4qKyvFddddJ9q2bStCQkJEhw4dxKRJkxptjFhn/uOorgDYtVH+bAe5LWxac/VVUFAghg4dKmJjY0VoaKjo0qWLmD59ut1zhIVgffnTfffdJzp06CAMBoNo27atGDFihJJwC8H1SzZN1RfXr8DRMOkO5PVMI4QQLe8nJyIiIiIiIiJneE03ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuIiIiIiIiIh9h0k1ERERERETkI0y6iYiIiIiIiHyESTcRERERERGRjzDpJiIiIiIiIvIRJt1EREREREREPqJXuwDByGw249SpU2jdujU0Go3axSEiIiIiIrpsCCFQVlaGpKQkaLXq9zMz6faBU6dOISUlRe1iEBERERERXbZOnDiBK664Qu1iMOn2hdatWwOwVLLRaFS5NIHnxReBF14AnnoK+MtfTHjllVfsxj/++OMwGAx2cTNmqFRYIiIiIiKSSmlpKVJSUpS8TG1Mun3Aekq50Whk0t0Cf/0rEBYGzJkDhITUISwszG680WjEiy8a8MILwHPPAbNnq1RQIiIiIiKSliyX+jLpJilZE+k5c/QYPnwohg3boox74QUtnn2WCTcREREREcmPSTdJa/ZsoL6+Ds8+Oxy1teW46qot2LnzeuTm6plwExERERFRQNAIIYTahQg2paWliIqKQklJCU8v95DJZMKoUV8jN/e3vw65iOzsVpg7l8eLiIiIiIioMdnyMfXvn07UBK1Wiz//uUT5X6fbh2eeUbFAREREREREbmDSTVLT6/XYtm2I8n99vR45OezlJiIiIiKiwMCkm6T2/PPAvHllyv/33luFOXMsw4mIiIiIiGTHpJuk9fzzlseGTZp0Thl2/fVn8Oyzgok3EREREREFBJ6nS1KyJtzZ2XU4ceINZfiyZcvw4Yc3QaMxYM4cyzDexZyIiIiIiGTFpJukY024n3sOmDHDjPvuq1HG1dRY3l96jjfs/iciIiIiIpIJk26Sim3CPXs2YDJdSrQB+/dMvImIiIiISHZMukkq9fWXEm4r20TbZDLZxVvj6uv9UToiIiIiIiL3MOkmqcyd23iYs55uK/ZwExERERGRrHj3cpKebe92w55uIiIiIiIimTHpJuk119NNREREREQkKybdJDWtVotWrVop/4eFhUGr5WJLRERERESBgdkLSU2v1yMuLk75PyIiAno9b0VARERERESBgUk3Sc/2Ou7KykoVS0JEREREROQeJt0kNSFEo0eGCSFULBEREREREZHrmHST1Gpra/Hjjz8q/58+fRq1tbUqloiIiIiIiMh1TLpJevX19cp7s9msYkmIiIiIiIjcw6SbpGebaNsm4ERERERERLJj0k3SY083EREREREFqssi6V60aBE6duyIsLAwZGRkYPv27U5jlyxZgiFDhiAmJgYxMTHIyspqMp58zzbpZk83EREREREFkqBPuj/++GNMmzYN2dnZ+P7775GamoqRI0eiuLjYYfymTZswbtw45ObmIi8vDykpKbjuuutw8uRJP5ecrJh0ExERERFRoNKIIH/+UkZGBgYNGoSFCxcCsJyenJKSgkcffRQzZ85s9vP19fWIiYnBwoULMWHCBJe+s7S0FFFRUSgpKYHRaPSo/Jc7k8mEdu3a4fz58wCAkJAQlJeXw2AwqFwyIiIiIiKSkWz5WFD3dJtMJuzcuRNZWVnKMK1Wi6ysLOTl5bk0jcrKStTW1iI2NtZpTE1NDUpLS+1e5B1arRY6nU7532w2Q6sN6sWWiIiIiIiCSFBnL2fPnkV9fT0SEhLshickJKCwsNClacyYMQNJSUl2iXtDOTk5iIqKUl4pKSkelZsu0ev1CAkJUf6vr6+3S8KJiIiIiIhkFtRJt6fmzZuHZcuWYeXKlQgLC3MaN2vWLJSUlCivEydO+LGUwa+2ttbuf17XTUREREREgUKvdgF8KS4uDjqdDkVFRXbDi4qKkJiY2ORnX375ZcybNw9ffvkl+vbt22RsaGgoQkNDPS4vOWYymez+r62thV4f1IsuEREREREFiaDu6TYYDBg4cCA2bNigDDObzdiwYQMyMzOdfm7+/Pl4/vnnsW7dOqSlpfmjqOSEyWRCRUWF3bCG/xMREREREckq6LsLp02bhokTJyItLQ3p6elYsGABKioqcO+99wIAJkyYgOTkZOTk5AAAXnzxRcyZMwcffvghOnbsqFz7HRkZicjISNV+x+XMbDbb/d/wdHMiIiIiIiJZBX3SPXbsWJw5cwZz5sxBYWEh+vXrh3Xr1ik3VysoKLC7G/bixYthMplwxx132E0nOzsbc+fO9WfRCYAQgkk3EREREREFrKB/TrcaZHsuXCArLy9H69at7YYdOXIEV155pUolIiIiIiIimcmWjwX1Nd0U+GxvoqbRaACwp5uIiIiIiAIHk26Smm3SbX1ed8O7mRMREREREcmKSTdJzbZX2/qYsLq6OrWKQ0RERERE5BYm3SQ1a4Kt1+uVZ6Ez6SYiIiIiokDBpJukZr3PX1hYmHITBN77j4iIiIiIAgWTbpKa9frtkJAQ5Zpu3kiNiIiIiIgCBZNukpo16TYYDEy6iYiIiIgo4DDpJqlVVlYCAKqrq3HhwgW7YURERERERLJj0k1Ss/Z0a7VaPqebiIiIiIgCDpNukpo16dbpdNDpdACYdBMRERERUeBg0k1SsybYWq1WSbr5yDAiIiIiIgoUTLpJarY93VqtZXFlTzcREREREQUKJt0kNWuCzdPLiYiIiIgoEDHpJqnZJt3Wnm5r7zcREREREZHs9GoXgKgp1gS7VatWCA8PB8BruomIiIiIKHBI29O9efNmrFq1Cvv374fZbFa7OKQSIQQAoEOHDujSpQsAcHkgIiIiIqKAIWXS/cgjj+CPf/wj3n//faSmpiI6OhppaWm4//771S4a+Zm1p9tgMCAkJAQAr+kmIiIiIqLAIWXSvWzZMnz77bf4f//v/yEyMhKHDx9GdHQ0jEaj2kUjP7Mm2Ey6iYiIiIgoEEmZdOv1erRr1055Hx8fj3fffRf5+fkql4z8rbKyEgBw+PBh7Nu3DwBQXV2tZpGIiIiIiIhcJmXSPXDgQOTl5QEAOnfujP379yM5ORnbt29XuWTkb7a92tbru9nTTUREREREgULKu5f/4x//QFlZGQBgypQpuPPOO9GpUyf06NFD5ZKRv1kTbK1Wy+d0ExERERFRwJEy6U5JSVHe33333UhISMCePXswfvx4FUtFarDeSM32Od1MuomIiIiIKFConnSvXbsWH3zwAU6cOIFWrVqhb9++uOOOO5CWlqbEXHfddbjuuutULCWpxZpg63Q69nQTEREREVHAUfWa7gULFuCGG27AypUrUVFRgeLiYrz22mvIyMjAmDFjUFhYqGbxSAK2Pd1MuomIiIiIKNComnS/+uqr6NevH37++Wfs2LEDO3bswIULF7Bw4ULk5+cjPT0dJ0+eVLOIpDJHp5fX1dWpWSQiIiIiIiKXqZp0FxUV4YEHHkBcXJwyLDQ0FA8//DB27NgBjUaDJ598UsUSktqsCXZUVBSio6MBXErEiYiIiIiIZKdq0t29e3cUFRU5HNe2bVs88sgjWLNmjZ9LRTKxJt2DBw/GkCFDAAD19fVqFomIiIiIiMhlqibdTz75JBYuXIjDhw87HB8REQGNRuPnUpFMrNdvGwwGhISE2A0jIiIiIiKSnapJ9yuvvAKdTof09HTMnz8fp06dUsYdPXoUixYtwp133qliCUlt1lPJQ0JCmHQTEREREVHAUTXpTkpKQqtWrVBaWoqZM2ciJSUFbdu2RWJiIrp164bw8HA8+OCDTLIuY9XV1QCALVu2IDc3FwCv6SYiIiIiosChatL9n//8B8eOHUNJSQny8vLw1ltvYfz48ejVqxfi4uLwww8/ID09Ha1atUKPHj1w66234umnn3b7exYtWoSOHTsiLCwMGRkZ2L59u9PYffv24fbbb0fHjh2h0WiwYMECD34hecp6wMVkMqGmpkZ5T0REREREFAj0ahcAACIjI5GRkYGMjAy74cXFxdi7dy/y8/OVvxs2bMBf//pXl6f98ccfY9q0aXjzzTeRkZGBBQsWYOTIkTh48CDi4+MbxVdWVqJz586488478Ze//MXj30aecfScbj4yjIiIiIiIAoUUSbcz8fHxGDFiBEaMGNHiafztb3/DpEmTcO+99wIA3nzzTXz++ed49913MXPmzEbxgwYNwqBBgwDA4Xh3VJgqoDPpGg3XaXUI04fZxTmj1WgRHhLeotjK2koIIRzGajQaRIREtCi2qrYKZmF2Wo5WhlYtiq2uq0a92f7O5DUmS++27XO6a2trHcbaigi5dBO+mroa1JmdJ+ruxIaHhEOrsZTDVG9Cbb3zSx/ciQ3Th0Gn1bkdW1tfC1O9857/UH0o9Fq927F15jrU1NU4jTXoDAjRhbgdW2+uR3VdtdPYEF0IDDqD27FmYUZVbZVXYvVaPUL1oQAAIQQqayu9EuvOes82wnFsc+u9O7FsIyzYRrgfyzbCgm1Ey2LZRliwjXA/lm3EJa60EU39DjVInXR7ymQyYefOnZg1a5YyTKvVIisrC3l5eV77npqaGuXUZwAoLS0FACS9kgSENY6/vuv1+PwPnyv/x78c73QlG9ZhGDbds0n5v+OrHXG28qzD2LSkNHw36Tvl/56LeuLnkp8dxvZs2xP7Htmn/D9oySDsP7PfYWyHqA74aepPyv9Dlw7FjlM7HMbGRcThzPQzyv+jPxiNzT9vdhgbERKBiqcurRC3L78daw7bPyJO85NlI9Yw6b575d34ZP8nDqcLAOWzypUV8k+r/4R//vBPp7HFTxSjbau2AIBpX0zDGzvecBp7/LHj6BjdEQDw9Ian8XLey05j8x/OR6/4XgCAF756Ac9uftZp7PYHtmNQsuVgz6vfvoonv3T+fPrcibm4tuO1AIB/7PwHpqyd4jR29bjVGNNtDADgg70f4N7P7nUau/yO5bizl+XGhSsPrMRdn9zlNPa9m9/DPf3uAQB8ceQL3PDRDU5jF45eiMnpkwEAXxV8heH/HO40dn7WfEy/ejoA4PvT3yP97XSnsdnDsjH32rkAgANnDqD34t5OY5/IfAIvXfcSAKCgpACdXu3kNPaRtEewaMwiAMDZyrOIf7nxGTFWE1MnYuktSwFYNiaROZFOY+/oeQdW3LlC+b+pWLYRFq60EbZE9qWNOduIawGwjWAbwTbCFtsIC7YRFmwjLIK2jXB+vEUVql7T7Wtnz55FfX09EhIS7IYnJCSgsLDQa9+Tk5ODqKgo5ZWSkuK1aV/2fj0I3TDpJiIiIiIiCgQa4ayfPwicOnUKycnJ+Oabb5CZmakMf/LJJ7F582Zs27atyc937NgRU6dOxdSpU5uMc9TTnZKSglNnTsFoNDaK5ykfjmMdnep1VdpVyN+bjz/+8Y/QarX417/+hZ49e2LnDzt5Whh4WhhPC2Mb0dJYthEWbCPcj2UbYcE2omWxbCMs2Ea4H8s24hJX2ojS0lIktU1CSUmJw3zM34L69PK4uDjodDoUFRXZDS8qKkJiYqLXvic0NBShoaGNhrcytLJbKJxxJaYlsbYLrzdjbVc2b8baNg5WdbWWDVdsbKxdT7ejWGdC9aEIReP68TTWoDMoDbBasSG6EGVD5M1YvVYPvcG15sGdWJ1W5/Iy7E6sVqP1SaxGo/FJLOC79f5yayO8Ecs2wv1YthEWbCNaFss2woJthPuxbCMukSFW5jai3uD8oJoagvr0coPBgIEDB2LDhg3KMLPZjA0bNtj1fJO8rHcqHzt2LO66y3JtEE8vJyIiIiKiQBHUPd0AMG3aNEycOBFpaWlIT0/HggULUFFRodzNfMKECUhOTkZOTg4Ay83X9u/fr7w/efIkdu/ejcjISHTp0kW133G5sj4yLCQkhNd0ExERERFRwAn6pHvs2LE4c+YM5syZg8LCQvTr1w/r1q1Tbq5WUFCgJHOA5Trw/v37K/+//PLLePnllzFs2DBs2rTJ38W/7FmTboPBoFwvxaSbiIiIiIgCRdAn3QAwZcoUTJni+HEIDRPpjh07Or3In/zPmmCvWLGCSTcREREREQWcyyLppsBl7em2PvscYNJNRERERESBg0k3Sc2adOt0OmUYk24iIiIiIgoUQX33cgpsQgjl+ed6vZ43UiMiIiIiooDDpJukZe3lBixJt7W322w2w2w244033sCsWbN4DT4REREREUmLp5eTtKqrq5X3er3eLrk2mUyYPHkyAOCmm27ic9eJiIiIiEhK7Okmadkm3Tqdzu667uLiYuX94cOH/VouIiIiIiIiV7Gnm6RlTbpDQkIQFRWF+vp6ZdzJkyeV90eOHPF72YiIiIiIiFzBnm6SljXpbtWqFf7yl7/g8ccfV8b98ssvyvv8/Hy/l42IiIiIiMgVTLpJWtakOywsDACg0WiUU8xtk+79+/f7v3BEREREREQuYNJN0rI+LsyadAOWU80B+6S7qKjIvwUjIiIiIiJyEa/pJmlZe7qrq6vxj3/8w26c7TXdJSUlMJvNynO8iYiIiIiIZMGkm6RlTbqFEDh9+jQAyynmgH3SLYRAaWkpoqOj/V5GIiIiIiKipjDp9qWKCsDmMVcKnQ6wOWUaFRXOp6HVAuHhLYutrARsnm1tR6MBIiJaFltVBZjNzsvRqlXLYqurAZs7lFdfvAjA8oxuK+Wa7hMn7CZz4eRJRP966jkAS3l/TdBRUwPU1Tkvgzux4eGW+QwAJhNQW+ud2LCwS8uKO7G1tZZ4Z0JDAev8cye2rs4yL5wxGADr/HYntr7eUs/OhIRY4t2NNZsty5o3YvV6y7wALOtEZaV3Yt1Z79lGOI5t0EZ4FMs2woJthPuxbCMs2Ea0LJZthAXbCPdj2UZc4kob0dTvUIMgryspKREARIll0Wr8uv56+w9ERDiOA4QYNsw+Ni7OeWxamn1shw7OY3v2tI/t2dN5bIcO9rFpac5j4+LsY4cNcx4bEWEfe/31duM/BgQA0aFDBzF37lwxd+5cERMTIwAIg1Yr8Ot4AGJnw2mXl1+a7sSJzssACFFcfCn2kUeajj1+/FLsE080HZuffyk2O7vp2O3bL8XOn990bG7updiFC5uOXb36Uux77zUdu3z5pdjly5uOfe+9S7GrVzcdu3Dhpdjc3KZj58+/FLt9e9Ox2dmXYvPzm4594olLscePNx37yCOXYouLm46dOPFSbHl507F33CHsNBXLNsLyaqaNaPSydccdTceyjbC82EZYXmwjLC+2EZdebCMsL7YRlhfbCMsrgNqIElhyhJKSEiEDXgRL0rIem7Tt6bbeSM3U4IjWRT+ViYiIiIiIyB0aIYRQuxDBprS0FFFRUSg5dQpGo7FxAE/5cBzb4FSvf7z7Lv705z+je/fuGDduHABgyZIldtdzW33y73/j9ltuuTSAp4VZ8LQw92N5WphFALQRHsWyjbBgG+F+LNsIC7YRLYtlG2HBNsL9WLYRl7jQRpSWliIqKQklJSWO8zE/4zXdvtSqlf1C0VScO9N0le3C681Y25XNm7G2jQMAa/PrqKfbqn379igoKMCFqirn8yY09FKD1hx3Yg2GSw2wWrEhIZc2RN6M1esvbTi9GavTub4MuxOr1fomVqPxTSwgR2yAtxFei2Ub4X4s2wgLthEti2UbYcE2wv1YthGXyBArcxvR1EE1FfD0cpKW9e7lYWFhCA8PR3h4uN0zuwFL0g0AF3+96RoREREREZFM2NNN0rIm3QMHDsSTTz4JAPjuu+/w448/KjEpKSkAgAsXLvi/gERERERERM1gTzdJy7an2yqiwakp1p5uJt3kLzU1NXjnnXeQkZGBwYMH47nnnsP27dthburaIyIiIiK6bLGnm6TVXNIdEhKCxMREAEy6yfcuXryIt956CwsWLEBhYaEyPC8vD9nZ2YiLi8PIkSMxevRo3HjjjVLctIOIiIiI1Mek+zJ04sQJnDhxAoMHD0Z1dTV27tyJvn37onXr1moXzY416f7xxx/x7rvvQqPR4Pjx48r41q1bIy4uDgBw9uxZVcpIwa+wsBCvvPIK3nrrLZSVlQEAkpOTMXXqVERHR2Pt2rVYv349zp49iw8++AAffPABkpKSsGLFCgwePFjl0hMRERGR2ph0X4asp2Tv2rULr7zyCv79738DsDyO64EHHlCzaHYqfn1kQUVFBU6cOAEAqLJ5REPr1q3Rtm1bAMCZM2f8X0AKegcPHsRvf/tbnDp1CgDQq1cvTJ8+HePGjYPh1zvDPvDAA6itrcU333yDdevW4eOPP8bx48cxbNgwvPLKK3j00UehsT5KhoiIiIguO7ymOwDs2LED77//vten+/XXXysJNwBMmjTJ69/hCesp4+E2jwKwfWSY0Whk0k0+8+OPP2L48OE4deoUevTogdWrV2PPnj2YOHGiknBbhYSEYNiwYcjJycEPP/yAsWPHoq6uDo899hjGjRuH8vJylX4FEREREamNSXcAGDRoECZMmICvvvpK7aL41fnz5wE4T7ob9nQLIfxbQApaBw4cwLXXXovTp0+jT58+2LJlC8aMGQOttvkms3Xr1vjoo4/w6quvQq/X4+OPP0Z6ejoOHDjgh5ITERERkWyYdAeQQ4cOeTwN28T09ddf93h6vuRO0l1bW4vS0lL/FpCC0v79+3HttdeiqKgIffv2xcaNG5XlzFUajQZ//vOfsXnzZiQlJeHAgQMYNGgQli9f7qNSExEREZGsmHQHEJ1O5/E0ampqlPcHDx70eHq+5ErSHRYWhsjISABAcXGxfwtIQSc/Px/XXnstiouL0a9fP2zcuFG5WV9LDB48GLt27cLw4cNRUVGBsWPHYurUqTCZTF4sNRERERHJjEl3APFG0l1ZWely7IkTJ1RLDoQQzSbd8fHxdn95XTd5Yvfu3Rg+fDjOnDmD/v3748svv0SbNm08nm58fDz+97//YebMmQCAV199FcOHD8fJkyc9njYRERERyY93Lw8g/kq6zWYz9u7di379+mH06NFYs2aNx9/rrsrKSiXhNxqN0Ov10Gg0dgl4v379AABt27bFsWPHmHS7oa6uDt9++y127NiB+vp6AEB0dDSGDh2KLl26XHZ32/76668xZswYlJSUYMCAAVi/fj1iY2O9Nn29Xo+cnBxcddVVmDhxIr755hsMGDAAH330EX7729967XuIiIiISD5MuiVnNpuV954k3VVVVfj888/RpUuXJuPuvfdeLF26VPl/7dq12L59O9LT01FbW2vX09xSX3zxBdq2bYsBAwY4jbH2coeEhGDu3LlKErhlyxalfP379wcA3sHcRWazGV9++SXeeecdfPHFFygpKXEYl5ycjN/+9rcYPnw4hg8fjo4dO/q3oH62bt063HbbbaiqqsI111yD//73v4iOjvbJd918883YsWMHbr/9duzZswe/+93v8Ne//hVPPvmkSzdpIyIiIqLAc1kk3YsWLcJLL72EwsJCpKam4vXXX0d6errT+BUrVmD27Nn46aef0LVrV7z44ou4/vrr/VjiS2prax2+t2UymXDixAkUFBTgqquuwqpVq3Du3DmMGjUKO3fuxBVXXIGZM2di69at+OMf/9jk99km3FYZGRnK+7fffhsmkwmLFi3CP//5T6SmpuLHH39Er169AACrVq3Cjz/+iKlTp9r1Sn/77bf45ZdfkJiYiFGjRkGn0+Gqq65CREQE3nrrLXTq1EmJPXjwIL788ksAQGxsrF2vq+016b179wYAJCUlAQCOHTtmV+6PP/4Yb7zxBl5++WUMGjSoyd8drMxmM3bu3Im1a9fi/fffx5EjR5Rxbdq0wdChQ5Vr4n/++Wd8++23OHnyJN5//33lMXWdOnVSEvCMjAx06NCh0SOzrKqqqnDhwgWEhYUhOjra64lkVVUVTCYTwsPDERIS4nGP/IoVKzB+/HjU1tZi1KhR+H//7/8hIiLCS6V1rEuXLsjLy8PDDz+Mf/3rX5g1axby8vLw9ttvu33DtkBlNptRU1ODmpoaVFdXN3qv1WoRGRmpvFq1agW9/rLYXBEREVEDQghUVVWhrKwMZWVlKC0ttfvr6L21A08WGhHkz1n6+OOPMWHCBLz55pvIyMjAggULsGLFChw8eFC5FtjWN998g6FDhyInJwc33HADPvzwQ7z44ov4/vvvlSSvOaWlpYiKikJJSQmMRqNH5S8pKVF63bp27Ypt27Zh48aN+PDDD/Hpp596NG1vuPnmm/HZZ58BACIiIpTT18PDw5GcnIx169bhiiuuQGJiIi5evOhwGg899BAWL14MwJL4/eY3v0FVVRUAIC0tDd99950SW1lZiUGDBmHw4MFYsmQJAOCdd97BAw88gCFDhmDLli0AgH379in11apVKxw4cAApKSl47733cODAATz66KNISUkBYEnk9u3bh379+rm0Yy+EQEFBAZKSkhr1/AshsHPnTrRt2xYdOnRw+PktW7bgxx9/RHV1Na6//nqHZx+cOXMGeXl52Lt3L/R6PYYNG4aBAwc6PNPAZDJhz5492LFjB3766ScUFhbi9OnTKCwsREFBgd18NxqNmDhxIsaPH4+0tLRGZ09UVlYiLy8PGzduRG5uLr777jvU1dXZxWi1WlxxxRWIi4uDyWRCTU0NqqqqcO7cOaXerHGxsbG44oorcN111+GGG25AZmam28nTsWPH8N///hf//e9/sXnzZqU8Op0OERERSExMxK233orf//736Nevn8uJ+DvvvIMHH3wQZrMZd911F95//32nBxN8QQiBJUuW4NFHH4XJZILBYMCtt96KSZMmYfjw4ar3fAshlLqtqqpCdXW10/fl5eUoKSlp9mWNd3YAsSmhoaF2ibj1FRcXh6SkJIcv6wGlYGA2m1FRUdFoR6O0tBSlpaXKs+BDQkKg1+sREhLi8nvr/6GhoYiKikLr1q1VX/6IiCiwCSFQUVHhVqLcVKz1ckh3eSMf84agT7ozMjIwaNAgLFy4EIBlxyUlJQWPPvqocmMjW2PHjkVFRQVWr16tDLvqqqvQr18/vPnmmy59pydJ9+HDh7Fo0SLs3r0bmzdvduuzMpo8eTJGjBiB2267zWlMTEwMvvvuO2g0Grz00kt28/n1119HbGyscpq9VqvFXXfdZZe4HTp0CN27dwcArFy5EqNGjcIdd9yBzz//XImZMmUKhgwZgrFjxwIAoqKisH37dkRHR2PkyJHYvXs3EhIS8P777+N3v/sdhBBYu3YtTpw4gd/97nfo3LkzAGD79u149NFHsX37dsTFxeHhhx/GM888A4PBgNzcXEyfPh07d+4EAKSnp+PNN99UToO/cOECHnnkESxbtkwpl06nw/jx4zFp0iQMGjQIe/fuxZIlS7B06dJGN7GLjIzEkCFD0L9/f2i1Wly4cAE7duzArl27mrzhXevWrfG73/0ON9xwA+666y60atWqiRqzV15ejq1btyI3Nxe5ubnYt29fs/cF0Gq1dpdF2IqJicHo0aNxww03YOTIkQ6vm66vr8e3336rJNr79+93ubzdu3fHuHHjMGbMGKSmpjY6SFFaWopPP/0UH3zwgXI2xaRJk7B48WKv3DOhJXbs2IE//elP+P7775VhnTt3xv3334977rlHOZPDXVVVVTh16hTOnj2rvM6dO9fo/8rKSqfJtL+EhYUhNDRUeZnNZpSXl6O8vLzFG1nAsuzbJuHt2rVD27ZtlVdcXJzy12g0+vReBmazWTnyfv78eZw7d055b31duHBBSaIb7nSUl5fDX5trjUaDqKgoREVFITo6GtHR0cp7R8Majo+KivLrASy11NbWKuuM7V/rgaW6ujrU1dWhvr5eee/Nl9lshk6ng06ng16vV977cpjtgRrry2AwOB1mvR8LEXmHEAL19fVKG1NbW+vSe3di3f1cTU2Nw0S5vLzc6f6gJ1q3bo3WrVvDaDQ2+V6v12PGjBlMuv3BZDIhIiICn3zyCW655RZl+MSJE3Hx4kWlh9ZW+/btMW3aNEydOlUZlp2djVWrVuGHH35w6XtdTbrLy8vRunVrl39PMPnmm2/Qtm1bXHvttQ7v4jxhwgS0atUK8+bNw9///ne7cbNmzbLboRNCoF27digqKrKL02g0WLx4MR566CGHZYiPj0dlZaXSQwRYeuj/7//+D5988gny8vKU4ffffz+Sk5PxwgsvNOr57d27Nzp16oT//ve/yjRqampgNpsRGhqKv/zlL2jbti1efPFFFBcXQ6fTYfTo0aioqEBubq5deW1Xx549e2LAgAGorKzEpk2bmjxNJjY2Funp6ejevTvatWuHxMRE5e9vfvMbr1yLD1jmdXFxMY4dO4bz588rSVJ4eDhiY2PRpk0bGI1G1NbW4vz58zh79izy8/Px+eefY82aNXa/QafTITMzE8nJycqOWlVVFb788kucPXvWLm7o0KG48cYbccMNN6BDhw6orKxUksXdu3fjo48+wurVq+0uPwgPD8egQYOQmZmJ7t27Y+3atfjvf/9rl0zOnDkTL7zwghQ7hd9//z2WLFmCDz/8UHnmvHVZ6dKlCyIiIhAeHt7o78WLF3Hy5EmcPHkSv/zyi/L+woULXiubVqtFeHg4wsLCEB4e3uh9RESEXZJmfd/wFRERYZdgh4WFNXmZgBACJpNJScArKiqU9+Xl5SgrK8OZM2dw6tSpRq+ysjK3fqPBYEBcXJxdIt62bVsYDAYIIRy+zGazw+FVVVV2yfS5c+dw4cIFr+x86HQ6ZYfC9q+1V9/ZTlFTO0zW/1t6FoIjer0eERERaNWqlcd/tVot6uvrYTabvfa3tra2UbLs7IwOZ+M8OSB0ObEm600l564O12g00Gg00Gq1Dv+6Oswb8a60Bc6Gt+Qz7kzL27y5jfT29lbWslkTY18kwYFGq9W6nCg33LY1HGbdJrjCm2cee0NQJ92nTp1CcnIyvvnmG2RmZirDn3zySWzevBnbtm1r9BmDwYB//vOfGDdunDLsjTfewLPPPtsoqbOyXo9oVVpaipSUlGYrWYYdfTV06dIFhw8fBgD83//9H2bPnm03PjU1Fbt27YJGo4HJZEJOTo7d+IZJNwC8//77eOedd7B7927lBmG33347VqxYgWuuuQbffPMNAOB3v/sdlixZgv79+ytJSUpKCtasWYMZM2bY3ak9PDwcAwYMwNdff233XXfccQf+/ve/Y+vWrZg8ebJdIvnQQw/hueeeQ319PR588EElEbfq3r07/vWvfyn3FPjuu++waNEifPrppygrK0NMTAyGDh2KadOmYciQIcoyYjabsWfPHuTm5uLo0aPKndz79++P9PR0dO7cWfrlydqDvXr1aqxevRr5+flOY6Ojo3H99dfjxhtvxKhRo1y6sVlpaSk+++wzrFixAlu3bnWadPbo0QPjx4/HH/7wB+UMBplUVFTgk08+wZIlSxote+4KDw9HfHw84uLi0KZNGyWptL5iY2MRGRlpl0A7Sq69cf28v5WVleH06dN2ifjp06dx5swZnD17FmfOnFHeV1RU+K1crVq1QmxsrN2rTZs2iI2NVQ5YWHcwHCXXYWFhPqsLIQSqq6tx8eJFlJSU2P11dZjtQczLifXgY1hYmLLO6PV6n740Gg3q6+uVl7VX3dn/3hhme6CmtrYWJpPJ7n8eiCBSh7uXFVnfeyPWYDA0mShHRESosg/BpNuP/JV0z507F88++2yj4c1Vcn5+Pvr06ePOT/KKkpISPPXUU8jPz8eqVavw+OOP491330VcXBxSU1ORnp6OqqoqlJeX48cff0RVVRWEEAgLC0NdXR1iY2NhMplQUVGB5ORkdOjQAUeOHEGnTp1w6NAh3HHHHSgqKkK/fv2wceNGFBQUYNCgQUhLS8OMGTOwaNEi5cZm9fX1+Ne//oXQ0FAcO3YM27Ztw6uvvqokQ64m3VZHjx7FlClT0K1bNzz77LOIjo7G+fPnMXv2bPzyyy9499130aZNG+zbtw85OTkoLi7G22+/jfbt26O6uhqvv/46PvvsM/Tp0wezZ89GUlIStm7dildffRVmsxmjRo3CAw88oDQehYWF+O9//4uzZ89i+PDhuOqqq5SyCCHw4YcfYs2aNTh27Bj+8Ic/4KGHHnLY62y9Jjo5OTngkpuW+vnnn7Fx40aUlZUpO24AkJmZiauvvtqj3nmz2YxDhw7hm2++QV5eHg4cOICMjAyMHz8e/fv3D5h5fODAAXz22WcoKSlRevZte/krKythNBqRnJxs97riiiuQnJyMqKiogPmtaqqqqlIS8YYJeW1trdLDZfuy7flq+AoNDUWbNm2UZNr6iomJQVhYmNo/16fq6upQVlaGyspKVFRUuP3X0TAhBHQ6HbRarUd/bd/r9Xq7A0wN/7ozLjQ0lNfA/8p6FkFTibmjYa7E1NbWOuzdte3lbWqYtz/TXFvQVBvh7mdaMi1v8Waa4O2UQ9ayCSGUg2Mtuc+Gu5/T6XTc1jvApNuP/HV6eUt7uql57ibdRERERER0eZMt6Q7qQ7MGgwEDBw7Ehg0blGFmsxkbNmyw6/m2lZmZaRcPAOvXr3caD1hOK7OeCmh9EREREREREQX9g0+nTZuGiRMnIi0tDenp6ViwYAEqKipw7733ArDcsCs5OVnpTX3ssccwbNgwvPLKKxgzZgyWLVuGHTt24B//+IeaP4OIiIiIiIgCUNAn3WPHjsWZM2cwZ84cFBYWol+/fli3bh0SEhIAAAUFBXbXYg0ePBgffvghnnnmGTz11FPo2rUrVq1a5fIzuoFL14VY70BMLWcymRo9uqi0tJSnlxMRERERkUPWPEyWK6mD+pputRw7dgxXXnml2sUgIiIiIiK6bB09elSKp9UEfU+3GmJjYwFYetGjoqJULg01x3rjuxMnTvB6/ADBOgssrK/AwzoLLKyvwMM6Cyysr8BTUlKC9u3bK3mZ2ph0+4D1dPWoqCiumAGEN8ELPKyzwML6Cjyss8DC+go8rLPAwvoKPLI80lGOUhAREREREREFISbdRERERERERD7CpNsHQkNDkZ2djdDQULWLQi5gfQUe1llgYX0FHtZZYGF9BR7WWWBhfQUe2eqMdy8nIiIiIiIi8hH2dBMRERERERH5CJNuIiIiIiIiIh9h0k1ERERERETkI0y6iYiIiIiIiHyESbeXLVq0CB07dkRYWBgyMjKwfft2tYt0WZg7dy40Go3dq0ePHsr46upqTJ48GW3atEFkZCRuv/12FBUV2U2joKAAY8aMQUREBOLj4zF9+nTU1dXZxWzatAkDBgxAaGgounTpgqVLl/rj5wW8LVu24MYbb0RSUhI0Gg1WrVplN14IgTlz5qBdu3YIDw9HVlYWDh8+bBdz/vx5jB8/HkajEdHR0bj//vtRXl5uF7Nnzx4MGTIEYWFhSElJwfz58xuVZcWKFejRowfCwsLQp08frFmzxuu/Nxg0V2f33HNPo3Vu1KhRdjGsM//JycnBoEGD0Lp1a8THx+OWW27BwYMH7WL82Q5yW9g0V+rr2muvbbSOPfTQQ3YxrC//Wbx4Mfr27Quj0Qij0YjMzEysXbtWGc/1Sy7N1RfXL/nNmzcPGo0GU6dOVYYF9HomyGuWLVsmDAaDePfdd8W+ffvEpEmTRHR0tCgqKlK7aEEvOztb9OrVS5w+fVp5nTlzRhn/0EMPiZSUFLFhwwaxY8cOcdVVV4nBgwcr4+vq6kTv3r1FVlaW2LVrl1izZo2Ii4sTs2bNUmKOHTsmIiIixLRp08T+/fvF66+/LnQ6nVi3bp1ff2sgWrNmjXj66afFp59+KgCIlStX2o2fN2+eiIqKEqtWrRI//PCDuOmmm0SnTp1EVVWVEjNq1CiRmpoqvv32W/HVV1+JLl26iHHjxinjS0pKREJCghg/frzIz88XH330kQgPDxdvvfWWEvP1118LnU4n5s+fL/bv3y+eeeYZERISIvbu3evzeRBomquziRMnilGjRtmtc+fPn7eLYZ35z8iRI8V7770n8vPzxe7du8X1118v2rdvL8rLy5UYf7WD3BY2z5X6GjZsmJg0aZLdOlZSUqKMZ33513/+8x/x+eefi0OHDomDBw+Kp556SoSEhIj8/HwhBNcv2TRXX1y/5LZ9+3bRsWNH0bdvX/HYY48pwwN5PWPS7UXp6eli8uTJyv/19fUiKSlJ5OTkqFiqy0N2drZITU11OO7ixYsiJCRErFixQhl24MABAUDk5eUJISwJhlarFYWFhUrM4sWLhdFoFDU1NUIIIZ588knRq1cvu2mPHTtWjBw50su/Jrg1TODMZrNITEwUL730kjLs4sWLIjQ0VHz00UdCCCH2798vAIjvvvtOiVm7dq3QaDTi5MmTQggh3njjDRETE6PUlxBCzJgxQ3Tv3l35/6677hJjxoyxK09GRob405/+5NXfGGycJd0333yz08+wztRVXFwsAIjNmzcLIfzbDnJb6L6G9SWEJSmw3dlsiPWlvpiYGPH2229z/QoQ1voSguuXzMrKykTXrl3F+vXr7eop0Ncznl7uJSaTCTt37kRWVpYyTKvVIisrC3l5eSqW7PJx+PBhJCUloXPnzhg/fjwKCgoAADt37kRtba1d3fTo0QPt27dX6iYvLw99+vRBQkKCEjNy5EiUlpZi3759SoztNKwxrF/PHD9+HIWFhXbzNioqChkZGXb1Ex0djbS0NCUmKysLWq0W27ZtU2KGDh0Kg8GgxIwcORIHDx7EhQsXlBjWofds2rQJ8fHx6N69Ox5++GGcO3dOGcc6U1dJSQkAIDY2FoD/2kFuC1umYX1ZffDBB4iLi0Pv3r0xa9YsVFZWKuNYX+qpr6/HsmXLUFFRgczMTK5fkmtYX1Zcv+Q0efJkjBkzptG8DfT1TN/iT5Kds2fPor6+3q6SASAhIQE//vijSqW6fGRkZGDp0qXo3r07Tp8+jWeffRZDhgxBfn4+CgsLYTAYEB0dbfeZhIQEFBYWAgAKCwsd1p11XFMxpaWlqKqqQnh4uI9+XXCzzl9H89Z23sfHx9uN1+v1iI2NtYvp1KlTo2lYx8XExDitQ+s0yHWjRo3Cbbfdhk6dOuHo0aN46qmnMHr0aOTl5UGn07HOVGQ2mzF16lRcffXV6N27NwD4rR28cOECt4VuclRfAPCHP/wBHTp0QFJSEvbs2YMZM2bg4MGD+PTTTwGwvtSwd+9eZGZmorq6GpGRkVi5ciV69uyJ3bt3c/2SkLP6Arh+yWrZsmX4/vvv8d133zUaF+jbMSbdFBRGjx6tvO/bty8yMjLQoUMHLF++nMkwkQ/8/ve/V9736dMHffv2xZVXXolNmzZhxIgRKpaMJk+ejPz8fGzdulXtopALnNXXgw8+qLzv06cP2rVrhxEjRuDo0aO48sor/V1MAtC9e3fs3r0bJSUl+OSTTzBx4kRs3rxZ7WKRE87qq2fPnly/JHTixAk89thjWL9+PcLCwtQujtfx9HIviYuLg06na3QHvaKiIiQmJqpUqstXdHQ0unXrhiNHjiAxMREmkwkXL160i7Gtm8TERId1Zx3XVIzRaGRi7wHr/G1q3UlMTERxcbHd+Lq6Opw/f94rdch11HOdO3dGXFwcjhw5AoB1ppYpU6Zg9erVyM3NxRVXXKEM91c7yG2he5zVlyMZGRkAYLeOsb78y2AwoEuXLhg4cCBycnKQmpqKV199leuXpJzVlyNcv9S3c+dOFBcXY8CAAdDr9dDr9di8eTNee+016PV6JCQkBPR6xqTbSwwGAwYOHIgNGzYow8xmMzZs2GB3/Qj5R3l5OY4ePYp27dph4MCBCAkJsaubgwcPoqCgQKmbzMxM7N271y5JWL9+PYxGo3IqUmZmpt00rDGsX8906tQJiYmJdvO2tLQU27Zts6ufixcvYufOnUrMxo0bYTablQ1lZmYmtmzZgtraWiVm/fr16N69O2JiYpQY1qFv/PLLLzh37hzatWsHgHXmb0IITJkyBStXrsTGjRsbnbbvr3aQ20LXNFdfjuzevRsA7NYx1pe6zGYzampquH4FCGt9OcL1S30jRozA3r17sXv3buWVlpaG8ePHK+8Dej1r8S3YqJFly5aJ0NBQsXTpUrF//37x4IMPiujoaLs76JFvPP7442LTpk3i+PHj4uuvvxZZWVkiLi5OFBcXCyEsjxho37692Lhxo9ixY4fIzMwUmZmZyuetjxi47rrrxO7du8W6detE27ZtHT5iYPr06eLAgQNi0aJFfGSYi8rKysSuXbvErl27BADxt7/9TezatUv8/PPPQgjLI8Oio6PFZ599Jvbs2SNuvvlmh48M69+/v9i2bZvYunWr6Nq1q93jpy5evCgSEhLE3XffLfLz88WyZctEREREo8dP6fV68fLLL4sDBw6I7OxsPn7KiabqrKysTDzxxBMiLy9PHD9+XHz55ZdiwIABomvXrqK6ulqZBuvMfx5++GERFRUlNm3aZPcInMrKSiXGX+0gt4XNa66+jhw5Ip577jmxY8cOcfz4cfHZZ5+Jzp07i6FDhyrTYH3518yZM8XmzZvF8ePHxZ49e8TMmTOFRqMR//vf/4QQXL9k01R9cf0KHA3vMh/I6xmTbi97/fXXRfv27YXBYBDp6eni22+/VbtIl4WxY8eKdu3aCYPBIJKTk8XYsWPFkSNHlPFVVVXikUceETExMSIiIkLceuut4vTp03bT+Omnn8To0aNFeHi4iIuLE48//riora21i8nNzRX9+vUTBoNBdO7cWbz33nv++HkBLzc3VwBo9Jo4caIQwvLYsNmzZ4uEhAQRGhoqRowYIQ4ePGg3jXPnzolx48aJyMhIYTQaxb333ivKysrsYn744QdxzTXXiNDQUJGcnCzmzZvXqCzLly8X3bp1EwaDQfTq1Ut8/vnnPvvdgaypOqusrBTXXXedaNu2rQgJCREdOnQQkyZNarQxYp35j6O6AmDXRvmzHeS2sGnN1VdBQYEYOnSoiI2NFaGhoaJLly5i+vTpds8RFoL15U/33Xef6NChgzAYDKJt27ZixIgRSsItBNcv2TRVX1y/AkfDpDuQ1zONEEK0vJ+ciIiIiIiIiJzhNd1EREREREREPsKkm4iIiIiIiMhHmHQTERERERER+QiTbiIiIiIiIiIfYdJNRERERERE5CNMuomIiIiIiIh8hEk3ERERERERkY8w6SYiIiIiIiLyESbdRERERERERD7CpJuIiIiIiIjIR5h0ExEREREREfkIk24iIiIiIiIiH2HSTUREREREROQjTLqJiIiIiIiIfIRJNxEREREREZGPMOkmIiIiIiIi8hEm3UREREREREQ+wqSbiIiIiIiIyEeYdBMRERERERH5CJNuIiIiIiIiIh/Rq12AYGQ2m3Hq1Cm0bt0aGo1G7eIQERERERFdNoQQKCsrQ1JSErRa9fuZmXT7wKlTp5CSkqJ2MYiIiIiIiC5bJ06cwBVXXKF2MZh0+0Lr1q0BWCrZaDSqXBoiIiIiIqLLR2lpKVJSUpS8TG1Mun3Aekq50Whk0k1ERERERKQCWS71Vf8EdyIiIiIiIqIgxaSbiIiIiBqRpYeIiCjQMekm8pBGo+GOCRERBRWNRgMhBLdvRERewKSbyENCCLWLQEREQUKmJFeGsshQBiIiT/FGakQekGVnwLYcPAhARBS4ZGjDZdm2AZfmh7XnnYgoEDHppoAkw8a3YaKrVplk2jkiIiLPNGzT1d7WAeptc7l9I6JgwdPLKWCpvTEWQigvK7XLJEsZiIgCkdrtpwwJt7UMjrZxauL15UQUyJh0U8Cx3eiqtQG23jzN+v3WXgB/75zY7hwREVHLqX0GlbPtmdqJpu12To3vdfY/EVEgYdJNblF7o+fo+9W4e3jDHgDba878zbYMMiTfDQ9IEBEFChnaLdu2XK0DAbbfqfa2peH2Vs06UusABBEFPibd1KyGGxlubCxknA+2daRG+WScJ0REzWl4BpVavboNk92GZfNXOdTmaH7IciYC94WIqCWYdFOzHF1HpWZCp3bPrnWHzNl3+2veOPoeR73v/uLsLAQiIpnJ0E45a69lOHvJlprzSs37pzi7lEvtXneeVUYUOJh0BwAZGnVn4/zNUULp7+Rbpp0gR2XhBpiIyHVqH8gFmm63/XkDMbVPJbfV1IEImepJ7W2uLPVFRE0L+KR70aJF6NixI8LCwpCRkYHt27c7jd23bx9uv/12dOzYERqNBgsWLPB4mr6m9ulUjpJbGRt4WU6/k6F3We36kWUZUXtHiIgCg7M7hqtxrxBHZNq+ydC2A/6/BKDhgRk1zypriL3dRIEhoJPujz/+GNOmTUN2dja+//57pKamYuTIkSguLnYYX1lZic6dO2PevHlITEz0yjR9Se3rc23LoDZXyqHGBlgtzd21XJa7qMvUG0FE1BCfAHGJLO2m2p0NDTnbB1Pz2m7b75RpXhGRcxoRwGtrRkYGBg0ahIULFwIAzGYzUlJS8Oijj2LmzJlNfrZjx46YOnUqpk6d6rVpWpWWliIqKgolJSUwGo3u/zDI04PpyrXL/ihXcxthmcoiC3/vTDqbL2rML+6QEJErmmq3AP9tU/z1XZ6Wwx9llW0b29xvVmNba/0+buuInPNGPuZNAdvTbTKZsHPnTmRlZSnDtFotsrKykJeXJ800PeHohh2ynGYmG3+d9ubKzoC/6kmW+mnqxnJq9wCoVQYico3tzaBkOk3W3wmMK9sVGcrhL7IsB7IcEHHG9lR3mdYfImosYJPus2fPor6+HgkJCXbDExISUFhY6Ndp1tTUoLS01O7liaaOXMq2I+APsm1EXCmPr+ebq2XwV/3Jcpq7M7ItQ0RkIdMjoKh5am9TbPkryZRlOwY0fxd1mcpKRPYCNumWSU5ODqKiopRXSkqKV6evxs1LZEgs3f0uWTbA/rrTbKBsXP15513bHQ+ZbnRDRI2p3TPXXPvgz7bLFTKVRRYytO2X8wFuGc9SIZJVwCbdcXFx0Ol0KCoqshteVFTk9CZpvprmrFmzUFJSorxOnDjRou8Hmj5a6c/Th9xpwC+XhvZy+Z3uCJR5EijlJLocyfTsY39z9bf6I6ly9Ttkup7bl8uKO9P252VlMiXeDZ9ww+SbyLmATboNBgMGDhyIDRs2KMPMZjM2bNiAzMxMv04zNDQURqPR7hXoZLuRiSt8XV53jmbLMu/8sQGU5bdaObokQ7YeK6LLnaPHdKlxRpcM7ZcMZZAlWXKnrfbHNj/Q+Pu+P7bfJ8PyYyVTWYis9GoXwBPTpk3DxIkTkZaWhvT0dCxYsAAVFRW49957AQATJkxAcnIycnJyAFhulLZ//37l/cmTJ7F7925ERkaiS5cuLk3T1wItObA9sumrDZQ705XpCHywl8Nd/ii3DM+5JSLXyd6WyV4+b3L1t/ry+mGZtm/ulMUf+26ulkeGeaj2NeZq/34iRwI66R47dizOnDmDOXPmoLCwEP369cO6deuUG6EVFBRAq73UmX/q1Cn0799f+f/ll1/Gyy+/jGHDhmHTpk0uTdPXmmss/ZHkWr/HF7HuasnvlGWDo3YZgMA7iOMJtTfyjshYJiJbsrRVVjKVxUqWeWRtz31RFne3+b7aD3F3ejLUi5UMT1Dx1zbf2Q1/1X6EWcPHqcm0fBAF9HO6ZeWP58L5sjFxN1HwdVlkSbpbeq2Z2quYDPUjw7Nd/b0BdnT6LJFs1NoxVXt95Q75JS1pn2XZzspWFl+RrZdb7fW3qe+1JUv9kTr4nG5yytVrqmS7kZqvk393ybTxlaHBl6F+fH29pmy9+Wof7Sdqju32xt/rj2zrqyt8VWYZ5kWgbttseXs+tjT591V9utqDreaBZbXJVh6ihgL69PJg5EqDaY0JxKOw7gj0U6PV7l1uabw7ZFn+XFlW1CprIC/DdPnw9/ZE7V47GdpQmbbhspSjpQK9/M1xZ1nx11l2rp7mrmbdyLSOkX/JuO/Fnm6SWksaS18cbQ7kRluGnVZfc7W+/XmHXtvefdtrIInUpuZyGIjrgK8OAMuyfZOFTGeUyVIOQL51xt2z3PzN12fWuUK2OrvcyDr/mXRLQpajcZ6Uwxend8lCprK4y1c7ae5O09fz0J27zPqSo2vKZDjiT9RQw51Tmdo5f6+nzfFVT7cMWloOWcrvCzJd3hao/Hm2oqNtrNpntwXz+kEtw6RbErIkui0lw5FFW94siyzzGGjZQRGZerp9eb2bzGwvCZFpeaLLj7OdU9tl1Jfc2VbIcomO9TOykKm98+Z8kel3yUaG++zYTl/GunJUJhnLSb4lcycHk25J8Kiq9/ji6GqgHxTxtpYkjzLcSM1fR965XlKg8XePlLdjfU2mU5iDfb60hDfniafTkqF+ZNje+kNz+yL+PtDd8Lt4oF1dJSUlahfBDpPuACZTcultnv4ub/4O2XZyZCDLcmIlS3maWk5kKSNdvprqAbD2Xsm2sy5L2+uLy6dk+G2eXtomw2+wYq+778m2DjfXbqnVKy/Dae5qsrZvarUPss5zJt0SCNaNlqdkWWlkud4eaPk88faBA5lueCPLzqtVc3d0Bfy7nsk2f8hC1nrx9WOPZLg8RoYzlzxJBrw9T2Q5006Wg+2eTsfbl7d5csM9tW8A6I99p+Z+o1rXlauxvbd+n5pJr4zbNVkw6ZaALNfHeOOUKm+tbDLMDytPyuKLZNeTsqhNlmu6fblRkGmDY1sW2/VTpjJebhq2k2reaMgRX26P3N1GyHSWkSzbaV/wdBsnA28uK7KdXt6S6TVM/LxFlvq2kqlTBGg8f9TuZVeDmjfolGV74QyTbgnI1MCrvbJayb7iuMrbGwRZ6qelZOq18hVXkhrA98u4s+kz8VaPbXsg613Dfd07ovb66snvk+UAqky8mejK1MMsk2D9XZ6S6V4usl1apub2xbaNVaO3X+b1hUk3eY1MC7osO0fePs0sWHbUvEmWG7q5s9Po73XF2fdxefIf24MdjnYCZbnBny+XTVkuSWnp6bqybOOC9ayyYCJD2+qL0/896XX3BVm3ubbUuJxMreXP9nttt3NsZyyYdAe4YOxF9dbOjTcaHRk2nFaezhMZfosvNgayLLctOZruqzpxtOGTZT4B6i6Lapza7Yg/T1eW4cCUDO2PJ2Q71d1bvHEdtSzzRZYDETLtl8mwvb1cOgyamjf+/v1qXg5j+93W9/74/YGwjDHploBMO8OekuW3yLTR8xaZEqdguAGQL667c/cGM76uz4anMlu/U43lqOEReDVPebO+VyPpleGav+bItJMsSzm8TZZ6ly2pU5tMv8cbZZFhmxvM90MAmp8n/t7O2H6fP5Pe5shyNpeamHSrjDs3viPLyifTfJWpLGryxXwItB4Af15r1dz15WqQIeFuODyYr6UGPLshVDCRabsvC2/UszeSC28tb96ajjfu+cP7/qjftvprvl0up9EHKibdEpDpVCZPybTSyVQWGciynMhSDm+TZXlz5xoqfyR7zU3bX0l/w6P//r72LViXe3eofWBKloTMG9OS5RKsYFuuZWnHrWSZv95I/r3N3Xnjy8u5XCmLWge4ZdjG+fpsB9nWW2eYdKtMlg0nIE/j7i3eOnLujWkE085NoDRuTZHl5ky+Kodsp7k3/C5/LssNT2f35zXuLTkA4qsyuEOWtgYI/kceqS2Ytk2APGUJhu2krUA/RVztsvvr1GpHv9Nfp5g3t13lGT5MulXnrQ2eLEchZbl2RDayXDen9obHSobfI9PNiLzJ3Q2brzaEDafr6FpmfyyPDa9nd1QWWerPV/ND7QNCnh7kkKXdAoIrSZUpkZJlHfQmT36TN7eRstSxt3hyLxe1+Pq71V5/1P5+QJ52tSlMulUWCAuJuzz5TTLdLMybpzQG0x1iZRFM80PNO8zKcD2xL0/7a2ra/kz6XRVMy7UVDzp6nzfmiSzLmizbfVnmB+DdZNlby4pMnTsyLC+A/KeW+4ss9SE7Jt1BRJYNhiflCMYVV7Ybs3hCpp3fYLk0Q5YeRV+dxqvWqdWu3MDMdpy328+WTM8XZWjpvA3Wa6llIMu2Ohh5uv/hze21LMutDPsgMhxE8OXB3eb4cnlw5zImX3F1HviKLOtac5h0BxFZdvxlEUw7esG28xtMvTRA4JfF22dSWBM2Na9ldnf6Mlzn780DALKc0i1L2yXT9YSy3CtEtjr2BpnOCmM57KldDrUv35GhDVLzjDZXY9yl9jx1B5NuFXlzBZTl9D3A89PLvVkOGa6pkok3lhNZeqmDaYcxGHtX3OGrXmZ3Em5f7BC19ACILEkZIMf6Achxt2/rdGQ5zVYWMiW6MpFlX8hTsuynAp5fJx+sp2CrfYDbnWn74nI6mdaXpjDpVpkMO8jevp5K7YbNthyykGWHUaaeERl2XL2R4Hhj/ZFhWfXV6eWu4jzwPhkObslyIEim64ZlKAcgxzoHqL+eBDsZ2gFv8bQ9keVyLrUEY0+z2t/vDibd5JMdzZZMU82bSTUkU2Pq7YMYMjRQssxbWcjQK6nmacAyJLvePFouwwElWcgyT71JloNsshzMtZLtWlt3yVIOb/N0HyJYttey9IiquT8nw+8H5Nrf9ycm3UQOyLYCy3AjFCA4G2xZfpOnvHEWg9qn3nkzQVNzHZah/fDWmSDBsn7IJFiWj4Zku4mj2jw5COHN3yDLdl/tA8veJMtBDLU7uKzTcneaas8DtTDpDiKBfpTZF6chyrIyyjKPPSXL/ATkKYss5fCUDPd1UPuaP299Xu1LDmSoS1+QZUdXJrJsW2Sbv4F6xo1VsB5YlqksavF23bqznKl9MzlflCGQlikm3SpRuyfG1wJpJXBEplNfgnVHwNN5IstOiSzlAORYzlo6HVnuBeGpYGvXPV03ZOnRCIZly5tkWU59VS9q9wBap9fSaQbreqN2WdS+aaks6523qH05aaDlUky6VSLLQhLMGzxPBOPNJoJJoDW0rpDh+kw1e5q9edduWU5zbSlvzAsZfossiYM3Pm9Lph53Tw5y0SUynW4vG1nWHUCeeSpDGyDDAR0ZOiwCqS1j0h1kWnJdBRPMxmQqvy+OvstAlp5NT9YBmXryvMEbp1Z72pOh9unh3qB2PcqyTMpQF4A8bY0vyiHD77KS4ZRuK5nKEshkaUu8RYa2wJs3UlRznqo9H61kWK5c5feku6amBnl5efjss89w9uxZf399UGvJCujLlUbNGyt4Ug5fkaX3TaaeEVnmiQxHaz0lSzk8IcPG09NLF2SoB5kuefAmGXqXrAI5qQvGM4UaCuTf54uyyzI/1L4ESu1E1cpbN5VryXSsnwuGy9kCjV+T7tdeew3t2rXDNddcg9tuuw179uwBAJw9exZxcXF49913/VkcVcm0I+MLgX56uS940kDKwttHvWX5bcGw8fDWDkkg35CRd8f1DRlOY/TF9Foq0NsLGcogGxluMGUVDOu+L6Yny+nInh60UvvsAetnvHGzT7XnQ6C1ZX5Lut977z1MnToVo0aNwjvvvGM3o+Li4vDb3/4Wy5Yt81dx6FeBtsD6gy+vc5fhTAQZTq+SjSzzI5ATXm/x9GCMmtf+yrKD6u2dOlnOjgmm5dybZJovspQlkLdzsuyX+eKMCLWTNG+R4dp0teeHN5J2NT+vBr8l3a+88gpuvvlmfPjhh7jxxhsbjR84cCD27dvnr+KQH7izQsp2ulswl0WWU7plIlOve6Dy1ml7MtSDJ8uDN++O2xKyXDcs2w67t8lSFvakOufuPoivyDS/3SHTdtHb7ZraSbPaCWewbKsDjd+S7iNHjmD06NFOx8fGxuLcuXP+Kk7Q4krgOVl2pi4Hgd6D5ouk4nJfhwN5/ZMlyQzkeegLsswPWdZtX55KLUui6y5fLiPuzhNfzRd3p+uLA2cy3JdBhvZAhjJ4eqq/TE+UCBR+S7qjo6ObvHHa/v37kZiY6K/iqEqmDY1MZZGFTPOE15k1Fsw9aC39bTLsGHlz+ZClPtQmyzonS30E8inD+P/t3XtwVOX5B/BvLuwmiEnQkE1CCYSLpEK4Qwzqzz/IGJCpUjsVGVQUe5GihWJRUCF21MaxtVMvFKpthfHGpaNUEcE0AhYNIBGECCICClqSeEsCqFyyz+8PZk+zZJPsbvac99nd72dmR9l9c/Y5z/ue95z3PZeFrv5cAzsfahXqBKamM93RWp/RxPRl7p3py7T0gZE4Wx/tOQiVY4Puq666Ck899RQaGhpaffbBBx/g6aefxtVXX+1UOEbZPaMabGPUdEm33XFo2UCjOQ4tbcUuGtYvnDPdkR6IaMhDODT0Z5Hevk2vj4+WfiuaJwsBPbHESxxatp9Q4tASMxDbvyjTmcFeJOI3PeiPBJ7pDp1jg+4HH3wQzc3NGDx4MO677z4kJCRg2bJluOGGGzBq1ChkZWVh4cKFIS930aJF6NOnD1JSUlBUVIRt27a1W37VqlUoKChASkoKCgsLsXbtWr/Pb775Zr/H6SckJGD8+PEhx9UeOw8OQ1m23ZeyapllDnU2XctlZnbSEoeGna+P6cFuZ5g+86/lcv9IMx2H6e/30XD1BaBrsjCc/kILO/v/UNZT035IS07sbiem26GWOu/MrTuxdD+0llvrojWGUDk26M7NzUV1dTXGjx+PFStWQETw7LPP4tVXX8WUKVOwZcsWZGZmhrTMFStWYM6cOSgrK8N7772HoUOHorS0FPX19QHLv/POO5gyZQpuvfVW7NixA5MmTcKkSZNQU1PjV278+PE4evSo9XrxxRfDXu9ANJ3ptpOmDUJLBxcqLfd2hfs3HdF0D7OWgUWoy9QyuIkkDe1CQ/+lpU1qoeUXIMKlpW405UQDDf2NE+y8nD/ahHsMFKl20tlfyYjU08+1PFcnXiSIoS3wiy++gNfrRY8ePZCYGN7Yv6ioCKNHj8aTTz4JAPB6vejVqxfuuOMOzJs3r1X5yZMn48SJE1izZo313iWXXIJhw4ZhyZIlAM6e6W5oaMDq1avDigkAmpqakJ6ejsbGRqSlpbX63IlZ1WCWryUOJ2iJRUscQGixaLk6QxO74g51uXY+7MZkvWhpn8GyK2ca1i3UODT1F1q2UztpyUmotByDOHWmW0POg2VnzFraXzg0xB7JGMJZVqRzYGcMHY3HnObYme5z9ejRAx6PJ+wB96lTp1BdXY2SkhLrvcTERJSUlKCqqirg31RVVfmVB4DS0tJW5Tdu3IisrCwMHDgQM2bMiLqnqpvuEHw0zR6HcrBo96XupJeW9qqB6bZq+vuB0C+VNR2zpitjYp2m/RsQfB1pGDT42B2HpvXUEksotDz4z47tLNxjPdP1aLrPseuKx1BjMF0P4Uo2HUC4vvzySzQ3N8Pj8fi97/F48OGHHwb8m9ra2oDla2trrX+PHz8e1157LfLz83HgwAHcc889mDBhAqqqqpCUlBRwuSdPnsTJkyetfzc1NbUbuxMPDQvmO6K10dpNy4y33R2Llvr3Hbxqice0UM9Y2RWDhjObpvuyaGuTduZBy726GrYPbTRNAGg6qxuN+xUtZ/9jnZZtJtT6iHTcoe7r7cibhrPtTonaQbddrr/+euv/CwsLMWTIEPTr1w8bN27EuHHjAv5NeXk5fve73zkVYoeirSFG68YTDi0dvTbRWP+xfmAU6oFApIX68CFeBqkjXk2DLg0xaKPp7LKG9go4005MTyA6tfxYpqG9xupDS0Nluh7CZezy8s7KzMxEUlIS6urq/N6vq6tr8/e+s7OzQyoPAH379kVmZiY+/vjjNsvMnz8fjY2N1uvIkSMhrEls07JhaOpYojEn0RhzOEI5s6uFhrrRcMmZXUw/mFJLHkI5E6KFlv4C0NVn2CmUy3adGuxGi2iKtTNCaSNabvfTVDeR3m6icaIsWkXtoNvlcmHkyJGorKy03vN6vaisrERxcXHAvykuLvYrDwAVFRVtlgeAzz77DF999RVycnLaLON2u5GWlub3ao+mjTdeRGMnoemAJF7arN339EeaE7dCBFPO9APX7GL6bH8otLRb0+0hXmmZMAzl/mUtkyJObDvRtE04cWtbKJN40ZS7cJjsu7VcfakhBidE7aAbAObMmYOnn34ay5Ytw969ezFjxgycOHECt9xyCwDgpptuwvz5863ys2bNwrp16/Doo4/iww8/xP3334/t27fj9ttvBwAcP34cc+fOxZYtW/DJJ5+gsrIS11xzDfr374/S0lIj6xgODqRa0zTzromW9dXSFrXkQ0scpusl2AMC0/mye7Im2BxomIRx4pklWmIJluntqCUtk7lOTc509B2aJom01I2WOLSxIy+hLlNLW42kUPdd0ZyDqL6ne/Lkyfjiiy+wcOFC1NbWYtiwYVi3bp31sLTDhw/7PR197NixeOGFF3DffffhnnvuwYABA7B69WoMHjwYAJCUlIRdu3Zh2bJlaGhoQG5uLq688ko88MADcLvdEYmZM6rmdLRzdWrnG8z3OHVfpJb7zDTRkA9NB4KmmX7oYDReVm0H0w/VaxmHlqswQn0AkQZO9C1a1hXoeH2jKdZYikPLegI6YgmGXfWi6YqQYGKIlvoKxNjvdMey9n4XTsvATkscTtIUSzRxIm/Bfkc81aGGdWUMHYu2Aze7sb8wE4eWdQWCn1jWEq8WWo7LNLVXO2OJtr7bznhNnwwKpT2EEgN/p5viSjAbsVOzZ9HSsQLOzShqudQs2miZ8TUdhxMxmG5/Ha2fE/ccmq5nHy39RSgHZ3aLppw4RVMsWrYdoP1YtAy444mW5w8Esx/VMkFg+vu1xBAuDrod5lRj0dQo2+tMnHxIRrCdmuk4AF3155Rg6kfLvWZaDqJNXwKooT6cGPSbjiEYGmJwSrCTPVr6USfqJtrqP96OhYKZvHNCMP2Zlv2blu1Gw7al4YFy8TK5bCcOuh3mZKPS0IA1zapqiSMYms7+a3kOgZb6c+oMczAHRnbHoWVgY7Iv05ADLW0/GE71F+y7Wn9HMJNDWiaXNRyfAM7ua7Vsx1ri0NAGNORCS19muj7i4ZYUDrod5uRZXQ2NU0MMGmmYaabo5tTDbjq6JNJuHd17aPL7nYqho8GS6YMlHy1x+GiZENKUFy37FiePhbTkX8s2rCUfHeFEhXM6yrXd25ETJxE04KA7Rmm4LNRHy45GCy2zmtpo2qlpuSXCNC2Td6aZfvqxpjqIlglDLXFoEo850dRfm+5Hgv0uTVfaka5bH6lzOOgm20VDx+rk4ELTZXda7qMONhYnaDkg6ei7TF+y6mQeTB+sapg41DKRaroutNFyeXkwtBxUOx2HlvVuj5YYtcQB6LiKyCnt7Wu19B8m49BQR5HAQXccitcdXkcDGC33djk9M68pL5353CkaBjdO03owYLoutPRtWh7CpGVCymlaYtHUh2oaRGjZfrW0k46Y7td9nJpY1rC+Wq4gChQHr3iLHA66HRaPByVaNlZNByTt0XIGMZQykaClvQJ62kJ7TE8SmZ4YcvoMhekBhJbtQ8u2oemKFJP3QobC6Ti0tBXTVwwF812m+1MTOprA03BZtVMDTt93nBuLk3kItJ5a2gqgpz/pDA66HeT0bFFb3xULDTfSNHUsTtPUHrScRdOCB2ltx6DhDIWG/hzQUT+AnjapJR8+WvJC/kz3Hy1pqTdNOXFSWxO78ebcK1RMXB0Ty3nnoJuMcXoSQtOGrGXmHdCVFw4yg+P0jsn0gZiGGXjTOWgPt43WNNeXnbT0oe3Rsu1qastaJvCcpOmJ1aav5gr0fb7cmOrfTQ2A28pDLOCgO4ZpeACS7/s0bDSaOnhNtJxB6+ihXfFYd1omZ+Ix9+cyfSakvW0gniZgWmK7bE1TTjTFEoiWtqzlVpmOPnMyDsD8sypM3cvsaw9aHlymYTvREEMkcNAdh0zM3mmYRWyPplhIt3h9+I6GGXDfd5rKicm60H4GU8vZSxO0TI5po2ndtfSjbdFyhZuWOtMQh+kYTAy8Ta9zrJ8c46A7xpk+O0OBme7YolG85kz7hJVTWj5oxsT93Od+p5Z+NF4ngQA+tyQQTeuu6eyhBm1NVsbbwMpHw3M52mLy0motOTERi69/MD3BbhcOuh2i4b4Ik2Jtw7GTplxpORgwEYeGA8b24nDSuTtf0wcGps6yB3qYWzzSMHDQRsMT9tuKQxNT7YTPhQiOhvZj+koq00zcy92Sb/9uatwSqwNugINux5g6SA30QAINcZii/YEqJuonGu6j1hKHBqbvM4tXGg7aNYiGPtSEtq5I0bLv03JLhpZ2Aug5LtGUEw00bTcmaFl/DTEAeuKIBA66Ke5pORgBzNzP0t53aunstMRhwrnrrmH2O54PEluehYjndtlSPF8yrJGW7TPQNqKpnWjJkwlarirTgrdx6RHLeeegm4zRNtjVIN6vRNDwdGYfLTthLQeGGgbbvvybbq9afkqlrfecjiPWH37TES23gfhiMb19+ATaTuK5nbRFy35FyyXdJtuIhieH0//6sVirBw66yRGa7ofUshFriQPQMxHB2Xe9zr2nW0McJr87ntuklv5CSxwmvzcYmiZzteRJU05M0BKHVpwcMi8W64CDbodoOatr+tJUHw1nzUzTvv5a2qwpmtrouT/XZRIP1swyXf+asC0GFmi/r+ledxM0bTcaYtEyYXVu29T6s4zkvFisDw66HRLvs++BDgK0xGaybrRMilBrWtrouZNVJmnIh2la2gWg66FhJpw7MaZpokwbU3XG+mhNw/aj+cGQpvOjqY+n2MJBt0Pi/ayhptlMTfeYae7YtcSm6UBaSxxEbIt6+ihAV30E+tUSUzTF0vK7tbQdTfs3DTkxHYPp76fYxkE3xR1NT1PVvLM1eRZN4xUAph+uYvq3O0kP0/2G6e/3OXebNHmGSsvPcwaiJQ5NtLRhgFchEMULDrrjjKYZb1M07Wi05CQQkwcCWh5YpeXMiOZ2Qs5qObDUcmuMlgk6LWdRAW6zPlrycu6EDPcretqoLw5Nx2ZEduCg2wGmB7paOviWtMShjaaDRlM0XY7YkoY4uN0QoOssqobtgtpn+hikZRxsL/64z/dvF1piIrIDB90x7tyDM3ZoZ7Xs4JmT1pgTf1ryoSUOMkvb72LzbJ2uOtG8X9NyhlnLRIQWzAeR/TjodoDpAxKNZ7pNd/AtL8/UdBCgpX5M09JmfduPhnox3VZJDw0DqpZ9qJazdZq2Dw115KNlH2e6rWi8vFwLTdsOUazioNtG6enp1v+bHjgA5jt6098fiMaYTNG40zVdP1oP6Cm+aWiLWrYNDbnw0TKo03aLTssryzTVlylacmB6EoQo3nDQHUdMd/RaDkgoMI07X9PthGeXSSvT7dJ3wG6639ByybCG79eIfWhrLbcb07nRsh372onpfBDZiYPuOKDtARUa4tAQA7VN0wy8hgMSIgpMy5VcgH8sGuLRQssA08d0/WjJg4+WeLjNUKzjoNsB7EjO0pQHLTsZTYNL4H8HI6bz44tBS25M54OI2qaln9ASB+A/AcD+qzXmRB/WCcU6DrrjgOnfdG1Jy0GJlsFlS6Zj0dROND3ADNDTbom00bKNAuZjaTlRaDoWTX2W6Vz4mD7D3ZKWnACcmCFyCgfdNmpsbARgvnPlTqY1TfcOaYlDIw1tl/VDFJiWq1E09edaaJpE1dBGAB250Ih5IXIGB90207CzYYeqn4Z2oo2mdqspFiJNNGwbWvpPnjEMTNN991poOeuuJQ6ieMBBdxzR0rHyoKQ1TTnR0k54AEtEwdB0xl1bv6UhL9poqh8iih8cdDuAO73/0XJwBLBeAuHBCBFFI/ZdrWmaANAUiwZacqElDqJ4EPWD7kWLFqFPnz5ISUlBUVERtm3b1m75VatWoaCgACkpKSgsLMTatWv9PhcRLFy4EDk5OUhNTUVJSQn2798fdnxa7jXTssPTFIcWjCUwDe2EiChUmvpR8sf9ij+2VSLnRPWge8WKFZgzZw7Kysrw3nvvYejQoSgtLUV9fX3A8u+88w6mTJmCW2+9FTt27MCkSZMwadIk1NTUWGUeeeQRPP7441iyZAm2bt2K8847D6Wlpfj++++dWq2YpmWHpyUOHy07Pi2TRERE0Uhb/6ll30L+tNQL9/lEzkmQKN7aioqKMHr0aDz55JMAAK/Xi169euGOO+7AvHnzWpWfPHkyTpw4gTVr1ljvXXLJJRg2bBiWLFkCEUFubi7uvPNO/Pa3vwVw9gnkHo8HS5cuxfXXXx9UXE1NTUhPT0djYyPS0tIisKadp+UMsxaa8qHlJ2aIiCh2aNvPaYlFC+aEyF7axmNRe6b71KlTqK6uRklJifVeYmIiSkpKUFVVFfBvqqqq/MoDQGlpqVX+0KFDqK2t9SuTnp6OoqKiNpcJACdPnkRTU5PfSxt27P405UNTLERERJHG/Zw/TQNuLWfdiWJd1A66v/zySzQ3N8Pj8fi97/F4UFtbG/Bvamtr2y3v+28oywSA8vJypKenW69evXqFvD4U37TsfImIKDZwv6KXprrRFAtRLIvaQbcm8+fPR2Njo/U6cuSI6ZCIiIiIiIhIgagddGdmZiIpKQl1dXV+79fV1SE7Ozvg32RnZ7db3vffUJYJAG63G2lpaX4vIiIiIiIioqgddLtcLowcORKVlZXWe16vF5WVlSguLg74N8XFxX7lAaCiosIqn5+fj+zsbL8yTU1N2Lp1a5vLJCIiIiIiImpLsukAOmPOnDmYNm0aRo0ahTFjxuDPf/4zTpw4gVtuuQUAcNNNN6Fnz54oLy8HAMyaNQtXXHEFHn30UUycOBHLly/H9u3b8dRTTwE4+zCJ2bNn48EHH8SAAQOQn5+PBQsWIDc3F5MmTQo6Lt/9MRofqEZERERERBTLfOMwNc8tkCj3xBNPSF5enrhcLhkzZoxs2bLF+uyKK66QadOm+ZVfuXKlXHTRReJyuWTQoEHy2muv+X3u9XplwYIF4vF4xO12y7hx42Tfvn0hxXTgwAEBwBdffPHFF1988cUXX3zxxZeh14EDB8IeZ0ZSVP9Ot1YNDQ3o3r07Dh8+jPT09LCXM3r0aLz77rudiiUSy9AUS1NTE3r16oUjR4506t55LeujJZZI5TUSsWhaRiSWw9zatxxN/UGklqNlGZpyG2v1w9zaswz2tfYtR1ObjdRytMTC3Nq3jMbGRuTl5eGbb75BRkZGp5YVCVF9eblWiYlnb5VPT0/v1AaUlJTU6R1HJJahLRYAnX5gnab10RRLJB4EqGV9NNUPwNzauRwN/UGklqNlGT4achtr9ePD3NoTC/ta+5ajoc1GajmaYgGYWzuW4eMbl5mmIwoKaObMmSqWEanlRCqWSNC0PppiiQQt66OpfiJFS15iLbea1kfLMiJF0/poiiUSNK2PplgiQcv6aKqfSNC0PppiiQRN66NlGdrw8nIbNDU1IT09HY2Njfz5sAhjbu3BvNqHubUPc2sf5tY+zK09mFf7MLf2YW7toy23PNNtA7fbjbKyMrjdbtOhxBzm1h7Mq32YW/swt/Zhbu3D3NqDebUPc2sf5tY+2nLLM91ERERERERENuGZbiIiIiIiIiKbcNBNREREREREZBMOuomIiIiIiIhswkE3ERERERERkU046I6wRYsWoU+fPkhJSUFRURG2bdtmOiSj3nrrLfzoRz9Cbm4uEhISsHr1ar/PRQQLFy5ETk4OUlNTUVJSgv379/uV+frrrzF16lSkpaUhIyMDt956K44fP+5XZteuXbj88suRkpKCXr164ZFHHmkVy6pVq1BQUICUlBQUFhZi7dq1EV9fp5SXl2P06NE4//zzkZWVhUmTJmHfvn1+Zb7//nvMnDkTF154Ibp164af/OQnqKur8ytz+PBhTJw4EV27dkVWVhbmzp2LM2fO+JXZuHEjRowYAbfbjf79+2Pp0qWt4omldr948WIMGTIEaWlpSEtLQ3FxMV5//XXrc+Y1ch5++GEkJCRg9uzZ1nvMb3juv/9+JCQk+L0KCgqsz5nXzvn8889xww034MILL0RqaioKCwuxfft263Puy8LTp0+fVu02ISHB+o1ettvwNDc3Y8GCBcjPz0dqair69euHBx54AC2fncw2G75jx45h9uzZ6N27N1JTUzF27Fi8++671ufMbXCiaYwQTCwdEoqY5cuXi8vlkn/84x/ywQcfyM9//nPJyMiQuro606EZs3btWrn33nvlpZdeEgDy8ssv+33+8MMPS3p6uqxevVref/99ufrqqyU/P1++++47q8z48eNl6NChsmXLFvnPf/4j/fv3lylTplifNzY2isfjkalTp0pNTY28+OKLkpqaKn/961+tMm+//bYkJSXJI488Inv27JH77rtPunTpIrt377Y9B3YoLS2VZ555RmpqamTnzp1y1VVXSV5enhw/ftwqc9ttt0mvXr2ksrJStm/fLpdccomMHTvW+vzMmTMyePBgKSkpkR07dsjatWslMzNT5s+fb5U5ePCgdO3aVebMmSN79uyRJ554QpKSkmTdunVWmVhr96+88oq89tpr8tFHH8m+ffvknnvukS5dukhNTY2IMK+Rsm3bNunTp48MGTJEZs2aZb3P/IanrKxMBg0aJEePHrVeX3zxhfU58xq+r7/+Wnr37i0333yzbN26VQ4ePCjr16+Xjz/+2CrDfVl46uvr/dpsRUWFAJANGzaICNttuB566CG58MILZc2aNXLo0CFZtWqVdOvWTR577DGrDNts+K677jq5+OKLZdOmTbJ//34pKyuTtLQ0+eyzz0SEuQ1WNI0RgomlIxx0R9CYMWNk5syZ1r+bm5slNzdXysvLDUalx7kblNfrlezsbPnDH/5gvdfQ0CBut1tefPFFERHZs2ePAJB3333XKvP6669LQkKCfP755yIi8pe//EW6d+8uJ0+etMrcfffdMnDgQOvf1113nUycONEvnqKiIvnlL38Z0XU0pb6+XgDIpk2bRORsHrt06SKrVq2yyuzdu1cASFVVlYic7ewSExOltrbWKrN48WJJS0uzcnnXXXfJoEGD/L5r8uTJUlpaav07Htp99+7d5W9/+xvzGiHHjh2TAQMGSEVFhVxxxRXWoJv5DV9ZWZkMHTo04GfMa+fcfffdctlll7X5OfdlkTNr1izp16+feL1etttOmDhxokyfPt3vvWuvvVamTp0qImyznfHtt99KUlKSrFmzxu/9ESNGyL333svchknzGCGYWILBy8sj5NSpU6iurkZJSYn1XmJiIkpKSlBVVWUwMr0OHTqE2tpav5ylp6ejqKjIyllVVRUyMjIwatQoq0xJSQkSExOxdetWq8z//d//weVyWWVKS0uxb98+fPPNN1aZlt/jKxMrddPY2AgAuOCCCwAA1dXVOH36tN86FxQUIC8vzy+3hYWF8Hg8VpnS0lI0NTXhgw8+sMq0l7dYb/fNzc1Yvnw5Tpw4geLiYuY1QmbOnImJEye2ygHz2zn79+9Hbm4u+vbti6lTp+Lw4cMAmNfOeuWVVzBq1Cj89Kc/RVZWFoYPH46nn37a+pz7ssg4deoUnnvuOUyfPh0JCQlst50wduxYVFZW4qOPPgIAvP/++9i8eTMmTJgAgG22M86cOYPm5makpKT4vZ+amorNmzcztxGiKY/BxBIMDroj5Msvv0Rzc7Nfxw8AHo8HtbW1hqLSzZeX9nJWW1uLrKwsv8+Tk5NxwQUX+JUJtIyW39FWmVioG6/Xi9mzZ+PSSy/F4MGDAZxdX5fLhYyMDL+y5+Y23Lw1NTXhu+++i9l2v3v3bnTr1g1utxu33XYbXn75ZVx88cXMawQsX74c7733HsrLy1t9xvyGr6ioCEuXLsW6deuwePFiHDp0CJdffjmOHTvGvHbSwYMHsXjxYgwYMADr16/HjBkz8Otf/xrLli0DwH1ZpKxevRoNDQ24+eabAbA/6Ix58+bh+uuvR0FBAbp06YLhw4dj9uzZmDp1KgC22c44//zzUVxcjAceeAD//e9/0dzcjOeeew5VVVU4evQocxshmvIYTCzBSA66JBGpNHPmTNTU1GDz5s2mQ4kZAwcOxM6dO9HY2Ih//vOfmDZtGjZt2mQ6rKh35MgRzJo1CxUVFa3OElDn+M5gAcCQIUNQVFSE3r17Y+XKlUhNTTUYWfTzer0YNWoUfv/73wMAhg8fjpqaGixZsgTTpk0zHF3s+Pvf/44JEyYgNzfXdChRb+XKlXj++efxwgsvYNCgQdi5cydmz56N3NxcttkIePbZZzF9+nT07NkTSUlJGDFiBKZMmYLq6mrToZFiPNMdIZmZmUhKSmr1VM26ujpkZ2cbiko3X17ay1l2djbq6+v9Pj9z5gy+/vprvzKBltHyO9oqE+11c/vtt2PNmjXYsGEDfvCDH1jvZ2dn49SpU2hoaPArf25uw81bWloaUlNTY7bdu1wu9O/fHyNHjkR5eTmGDh2Kxx57jHntpOrqatTX12PEiBFITk5GcnIyNm3ahMcffxzJycnweDzMb4RkZGTgoosuwscff8x220k5OTm4+OKL/d774Q9/aF2+z31Z53366af497//jZ/97GfWe2y34Zs7d651truwsBA33ngjfvOb31hXGLHNdk6/fv2wadMmHD9+HEeOHMG2bdtw+vRp9O3bl7mNEE15DCaWYHDQHSEulwsjR45EZWWl9Z7X60VlZSWKi4sNRqZXfn4+srOz/XLW1NSErVu3WjkrLi5GQ0OD3+zhm2++Ca/Xi6KiIqvMW2+9hdOnT1tlKioqMHDgQHTv3t0q0/J7fGWitW5EBLfffjtefvllvPnmm8jPz/f7fOTIkejSpYvfOu/btw+HDx/2y+3u3bv9OqyKigqkpaVZB5gd5S1e2r3X68XJkyeZ104aN24cdu/ejZ07d1qvUaNGYerUqdb/M7+Rcfz4cRw4cAA5OTlst5106aWXtvpJxo8++gi9e/cGwH1ZJDzzzDPIysrCxIkTrffYbsP37bffIjHR/xA/KSkJXq8XANtspJx33nnIycnBN998g/Xr1+Oaa65hbiNEUx6DiSUoQT9yjTq0fPlycbvdsnTpUtmzZ4/84he/kIyMDL+nasabY8eOyY4dO2THjh0CQP70pz/Jjh075NNPPxWRs4/gz8jIkH/961+ya9cuueaaawL+HMDw4cNl69atsnnzZhkwYIDfzwE0NDSIx+ORG2+8UWpqamT58uXStWvXVj8HkJycLH/84x9l7969UlZWFlU/q3CuGTNmSHp6umzcuNHv51a+/fZbq8xtt90meXl58uabb8r27duluLhYiouLrc99P7Vy5ZVXys6dO2XdunXSo0ePgD+1MnfuXNm7d68sWrQo4E+txFK7nzdvnmzatEkOHToku3btknnz5klCQoK88cYbIsK8RlrLp5eLML/huvPOO2Xjxo1y6NAhefvtt6WkpEQyMzOlvr5eRJjXzti2bZskJyfLQw89JPv375fnn39eunbtKs8995xVhvuy8DU3N0teXp7cfffdrT5juw3PtGnTpGfPntZPhr300kuSmZkpd911l1WGbTZ869atk9dff10OHjwob7zxhgwdOlSKiork1KlTIsLcBiuaxgjBxNIRDroj7IknnpC8vDxxuVwyZswY2bJli+mQjNqwYYMAaPWaNm2aiJx9DP+CBQvE4/GI2+2WcePGyb59+/yW8dVXX8mUKVOkW7dukpaWJrfccoscO3bMr8z7778vl112mbjdbunZs6c8/PDDrWJZuXKlXHTRReJyuWTQoEHy2muv2bbedguUUwDyzDPPWGW+++47+dWvfiXdu3eXrl27yo9//GM5evSo33I++eQTmTBhgqSmpkpmZqbceeedcvr0ab8yGzZskGHDhonL5ZK+ffv6fYdPLLX76dOnS+/evcXlckmPHj1k3Lhx1oBbhHmNtHMH3cxveCZPniw5OTnicrmkZ8+eMnnyZL/fkWZeO+fVV1+VwYMHi9vtloKCAnnqqaf8Pue+LHzr168XAK3yJcJ2G66mpiaZNWuW5OXlSUpKivTt21fuvfdev59NYpsN34oVK6Rv377icrkkOztbZs6cKQ0NDdbnzG1wommMEEwsHUkQEQn+vDgRERERERERBYv3dBMRERERERHZhINuIiIiIiIiIptw0E1ERERERERkEw66iYiIiIiIiGzCQTcRERERERGRTTjoJiIiIiIiIrIJB91ERERERERENuGgm4iIiIiIiMgmHHQTERERERER2YSDbiIiIiIiIiKbcNBNREREREREZBMOuomIiIiIiIhs8v9+n+Ua/8mTpwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPZCAYAAAAMX0mQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gVRdr27zMMEwgz5CgZBJEgiOCIaZEVkRdF3VURFcRdRVHBnAXXdcG4q77KGlZYdRHXACaCqAQDQVBUgggCgiCgKDOIMMBMfX/4zXnPnOnTXVVd1d1n5v5dF5dOd3XVU+mpJ/Q5JyaEECCEEEIIIYQQQohxMsIWgBBCCCGEEEIIqazQ6SaEEEIIIYQQQixBp5sQQgghhBBCCLEEnW5CCCGEEEIIIcQSdLoJIYQQQgghhBBL0OkmhBBCCCGEEEIsQaebEEIIIYQQQgixBJ1uQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoSQAJkyZQpisRimTJkStiiEEEIIISQA6HQTQqwzffp0/P73v0f9+vWRk5ODNm3aYOjQodiyZUu8zMGDB/Hqq69i+PDhOOKII1CrVi3Url0bffr0waRJk1BSUiLV1umnn45YLIacnBwlGU8++WTEYjFs3749ZZnWrVsr1+uHTZs2IRaLYcSIEYG1SYgJFi1ahGrVqiEWi2HixIkV7pcFn5zuObFixQrceeedOPbYY9GoUSNkZ2ejbdu2uPLKK7F161bHZw4dOoT//d//RUFBAfLz85GVlYWmTZuiT58+uPbaa/HZZ59J92fnzp2YMGEC/vCHP6BNmzaIxWKIxWLSz5ukTFeZYP78+YjFYhg/fryR+tKBTz75BKeffjrq1KmDmjVr4thjj8V///vfsMUihFRyMsMWgBBSeRFCYNSoUXjqqafQrl07nH/++ahduza2bduGBQsW4Ntvv0WLFi0AAN988w3+8Ic/oFatWjjllFNwxhlnoLCwEG+++SauvPJKzJw5E2+88Yarsfn0009jzpw5yMnJgRAiqG4SQhL49ddfMXz4cOTm5mLv3r1G6hw1ahSWLFmC3r174/zzz0d2djaWLFmCSZMm4eWXX8YHH3yATp06xcuXlJRg4MCBePfdd9GsWTP88Y9/ROPGjbF79258+umnePTRR1GzZk306NFDqv3Vq1fjtttuQywWQ4cOHVCjRg38+uuvRvpGgmPevHkYMGAAcnJy4ufRq6++ivPOOw9btmzB9ddfH7aIhJBKCp1uQog1Hn30UTz11FO48sor8eijj6JatWrl7h86dCj+/7Vr18bjjz+O4cOHo2bNmvHrDz30EE4++WS89dZbeOWVV/DHP/7Rsa1Nmzbh+uuvx3XXXYeXX37ZNWNNCLHHzTffjJ07d+LWW2/FHXfcYaTOYcOG4YUXXkD79u3LXb/vvvtwyy234Prrr8fbb78dvz516lS8++67OO200/DGG2+gevXq5Z7bvn07tm3bJt3+EUccgQULFqBHjx6oXbs2OnXqhLVr1/rrFAmUQ4cO4c9//jMyMjKwcOFCHHXUUQCAu+66C71798Ztt92GP/zhD2jVqlW4ghJCKiV8vZwQYoV9+/bh7rvvRtu2bfHII49UcLgBIDPz/+J+zZs3x5VXXlnO4QaAmjVr4rrrrgMALFiwwLEtIQRGjhyJpk2b4i9/+YvBXsjz+uuv45RTTkHdunWRk5ODLl264MEHH5R+Lf67775Dly5dkJOTg1dffRVTpkxBmzZtAAD//ve/46+zxmIxzJ8/P/7c3r17MW7cOHTq1Ak5OTmoV68eBg0ahI8++qhCG+PHj48/P2XKFPTs2RM1atTAySefrN3vWCyGk08+GVu3bsXFF1+MJk2aICMjo5yMCxcuxODBg9GgQQNkZ2ejQ4cOuOOOOxwzha+++ipOOukkNGrUCDk5OWjWrBn69++PV199tULZN998E7/73e+Qn5+P3NxcdO/eHQ8//HC5YA5Q/jX99evX46yzzkLdunVRs2ZN9O/fH59//nmFuufNm4eRI0eiY8eOqFWrFmrVqoVevXrhqaeech2HHTt2YPjw4WjQoAFyc3Nx7LHHlhuLRPbs2YO7774b3bp1Q40aNZCfn48ePXrgzjvvxMGDB8uV3bhxI/70pz+hZcuWyM7ORtOmTTFixAh8++23jnWHxbx58/D444/j4YcfRvPmzY3Ve/XVV1dwuAHghhtuQG5ubgXdsGjRIgDA5ZdfXsHhBoAmTZqgZ8+e0u03btwYJ554ImrXrq0ouTzr1q3DJZdcgjZt2iA7Oxv16tVD9+7dMXbs2PibO7FYLN7XRJ2Q+BGUZ599FmeeeWb84zD16tXDgAEDMG/evHLtjR8/Hr/73e8AAHfffXe5+jZt2gTA/VX2ESNGlCsLAKWlpXjmmWfQu3dv1KtXD7m5uTjssMMwePDglPsgKN5//3188803uOCCC+IONwDk5+fjtttuw4EDB/Dvf/87PAEJIZUaZroJIVZ455138PPPP+OSSy5BSUkJ3njjDXz99deoU6cO+vfv72hAp6LMaE500hN57LHHsGDBAixcuBC5ublG5Ffh1ltvxcSJE9G8eXOcffbZyM/PxwcffIAbb7wRS5Yswcsvv+z6/Jo1azBgwAAUFhZi9uzZOPnkk7FixQqMGTMGjzzyCLp3744hQ4bEy7du3RoAsH//fvTr1w9Lly5Fz549MXbsWOzYsQMvvfQS5syZgxdffNHxzYAHHngA8+bNw5lnnolTTz3VMSCiwq5du1BQUIB69erh/PPPx/79+5GXlwcAmDRpEkaPHo06depg8ODBaNSoEZYtW4Z7770X8+bNw7x585CVlRUve+WVV6Jp06Y466yzUL9+fWzfvh1Lly7F9OnTcc4558TbfPjhh3H99dejXr16uOCCC1CzZk288cYbuP766/HBBx/gtddeq+AsbNq0CcceeyyOPPJIjBw5Et988w1ef/11/O53v8OaNWvQuHHjeNn77rsP69evx7HHHouzzjoLu3fvxuzZs3H55Zdj7dq1eOihhyqMw+7du3H88ccjPz8fF110EXbu3ImXXnoJAwYMwPLly9GlS5d42Z07d+Kkk07CV199haOOOgpXXHEFSktL8dVXX+G+++7D9ddfjzp16gAAlixZggEDBmDv3r34n//5H3To0AGbNm3Cf/7zH8yaNQuLFi1C27Ztfc2hCfbs2YNLLrkEp556KkaOHBnIlwXGYjFUr169wlzXr18fAPD1119bl8EE27ZtQ+/evbF3714MGjQI5513Hvbu3Yt169bhiSeewIMPPojMzEyMGzcOU6ZMwbfffotx48bFn090IkePHo3u3bujf//+aNiwIbZu3YoZM2agf//+eO2113DmmWcC+M2h3rRpE/7973/jpJNOKhd8K1t7qtx66624//770a5dO1xwwQWoXbs2tm7dig8//BDvvvuurwCfX8qc/lNPPbXCvQEDBgBIHdglhBC/0OkmhFhh+fLlAIBq1aqhW7du5YzfjIwMXHvttXjwwQel6nr22WcBOBtL69atw6233oprrrkGffv29S33gw8+iFq1ajne2717d4Vrc+fOxcSJEzFgwAC8+uqr8Uy9EAJXXnkl/vnPf+LVV18t5zAmsnjxYgwaNAhZWVlYuHAhunfvDuA3I3rs2LF45JFHcNRRRzl+0dH999+PpUuXYtiwYXj++efjjsc111yDY489FpdddhlOO+20Ctm5BQsWYMmSJejatavssLiycuVKXHLJJXj66afLOfCrV6/GNddcg27duuG9996LO0IAMHHiRNx666147LHH4p+jfOaZZ5CVlYUVK1agUaNG5drYtWtX/P+/+eYb3HzzzXEHvux7Ae699170798fM2bMwAsvvICLLrqoQr8nTpyIm2++OX7tzjvvxF//+ldMnjwZt9xyS/z6pEmT4m8alHHo0CGcfvrpeOSRRzBmzBi0bNmy3P3PP/8cV155JR577DFkZPz2Ilm/fv3wpz/9Cf/7v/+Lf/7zn/GyV155Jb766ivcdtttuPfee8vVs2PHjvgaPHjwIM4//3yUlpZi6dKl5T6D/OGHH+Lkk0/GmDFj8Oabb8KLFStWYMaMGZ7lyqhTpw7Gjh0rXf7aa6/Fzz//jKefflr6Gb+88sorKCoqqhBcOuusszBx4kTceeed2LBhAwYNGoRevXqhadOmgcmmwquvvordu3fjH//4B8aMGVPu3k8//RQPOI4fPx7z58/Ht99+m/LLz1avXl1h7X7//ffo1asXbrzxxnJON/DbmzQnn3yykS9Te+aZZ9CsWTN88cUXqFGjRoV+yDBjxgysWLFCus2jjjqqXFAyFevWrQMAdOjQocK9Jk2aoFatWvEyhBBiHEEIIRa4/PLLBQBRrVo1ccwxx4ilS5eKPXv2iIULF4pOnToJAOKJJ57wrOfJJ58UAES/fv0q3CspKREFBQWiXbt2Yu/evfHrrVq1EtnZ2UrynnTSSQKA57/kes844wwBQHz77bcV6ty9e7eIxWLinHPOiV+bPHmyACAmT54s3n77bVGjRg3Rvn17sWHDhgrPb9y4UQAQw4cPd5S5bdu2onr16mLLli0V7v35z38WAMRzzz0XvzZu3DgBQFx77bWyw+IJAJGVlSV++OGHCveuueYaAUAsXLiwwr2SkhLRsGFDcfTRR8ev9ezZU9SsWVP89NNPrm3+5S9/EQDEfffdV+HeRx99VGG9lI1jmzZtRElJSbnyZffOPvtsz74KIcSrr74qAIgpU6aUuw5A1KxZU+zZs6fc9YMHD4rMzEzRs2fP+LXvv/9exGIx0a5dO3HgwAHX9l577TUBQPzlL39xvH/22WeLjIwMUVhY6Cl72dqT/deqVSvPOsuYOXOmACCefPLJCu1NmDAhpSxO92TZvHmzaNy4scjNzRVfffVVhfv/+c9/RIMGDcr16bDDDhMjRowQy5Yt025XCCE6duwoTJpQjz76aIXxS0WZrlLl6quvFgDEpk2b4tfmzZsnAIhx48YptzV8+HABQGzcuDF+rV69eqJ169Zi//79yvIl1yv7L5V+TOb3v/+9ACDWrVvneL9Zs2YiLy9PW25CCHGDmW5CiBVKS0sBAFlZWZgxYwaaNWsGADjhhBPw8ssvo3v37njooYdwxRVXpKzjrbfewlVXXYVWrVrhhRdeqHD/gQcewOLFizFv3rwKWRVdvv/+ezRp0sTxXuvWrSt8QdvixYtRs2bNeDY+mdzcXHz11VcVrr/88st455130K1bN8yaNatCZteLoqIibNiwAUcccQQOO+ywCvd/97vf4emnn8aKFSsqZHx79+6t1JYXbdq0QYMGDSpcX7x4MQBgzpw5eO+99yrcr169ermxOf/883HTTTehS5cuuOCCC/C73/0Oxx9/fPxV9TLKfurJ6VXVgoIC5OTkOGbKjjrqqHgGuoyysUt+i2HPnj148MEHMWPGDHzzzTcVvoXb6Uu4Dj/88ApvSWRmZsa/NbuMZcuWQQiB3/3ud46fN06kbAzXrl3rmIncvn07SktL8fXXX6NXr16udY0YMcLKz8/9/PPP+NOf/oRTTjkFl112mVYdTln41q1bp5R3165dOP3007Fz504899xz6NixY4UyF1xwAc4++2zMnTsXH374IZYvX46PP/4YU6ZMwXPPPYfHH38co0aNAvDbq8fJnzmWzaCaYPDgwbj11lsxevRovPfeezjttNNw0kknaX1sYMOGDZgwYQLef/99bN26FcXFxeXub9u2zdqXhZ1//vl44okn0KVLF5x//vn43e9+h4KCAqWP/UyZMiWQjyYQQkiQ0OkmhFghPz8fANCrV6+4w11Gly5d0LZtW6xfvx67d+92/PzgzJkz8Yc//AGNGzfG+++/X+G10K+//hrjxo3DlVdeiZNOOslaP7z46aefcOjQIdx9990pyzj9bNKiRYtw6NAhnHDCCcoON/Cb0w2g3OeQEykbr7JyiaR6RpdU9ZW9Tpr8+nQqbrjhBtSvXx+TJk3CQw89FP8c66BBg/D3v/89/sqsW99jsRgaN27s+NvNyc478H/fE5D4hXcHDhzAySefjE8//RQ9evTARRddhPr16yMzMzP+GdhkRyZV/WVtJNZfWFgIAFJfNFY2hv/5z39cy5n6aS4drrvuOhQWFuKZZ57RrmPFihUV9tBJJ53k6HTv2rULp5xyClatWoVJkybhwgsvTFlvTk4OBg8ejMGDBwP47XsQHnzwQdx5550YM2YMhgwZgiZNmmD+/PkV2h8+fHhgTnfr1q2xePFijB8/HjNnzoz/bnSnTp3wl7/8JeWvNiSzfv169O7dG0VFRfjd736HwYMHIy8vL/7lhgsWLHBcu6Z45JFH0KZNG0yePBl//etf8de//hU5OTk499xz8dBDDzkG54Ki7Ewq23/JFBUVoW7dukGKRAipQtDpJoRYoSzzlOoLecqu79u3r0KZt99+G+eccw4aNGiAefPmOWZ7Vq9ejeLiYjz++ON4/PHHHdso+4zzzz//rP3FQF7k5eUhFovhxx9/VHrub3/7G9544w088sgjyMzMlP58e2K7wG+f/3WiLCPv5Ai6/da5DqnqK2u7qKhI6lufY7EYRo4ciZEjR2LXrl344IMP8OKLL+K///0v1q1bhy+++ALVqlUr1/fkjJ0QAjt27EjpAMvw+uuv49NPP8Wll15awZGcNm2a7284LluLToGBZMr68eabb+J//ud/fLVr6zPdn332Gfbu3Vvhc8Rl3Hrrrbj11lsxZswY/OMf/3AsI5uFL3O4P//8czz++OO4/PLLPZ9JJCcnB3fccQfmzp2LhQsX4qOPPsI555yD8ePHG/lMsx+6dOmCV155BQcPHsTy5csxa9YsPProozjvvPPQrFkzqe+s+Pvf/46ff/4Zzz//fIVgxKhRo5S/KKzszZBDhw5V+CJLJ+c1MzMTN9xwA2644QZs27YNCxYswOTJk/Hcc89h+/btmDNnjmebtj7TXfZZ7nXr1uHoo48ud2/79u345ZdfjL8FRAghZdDpJoRYoeynaNasWVPh3sGDB7F+/XrUrFkTDRs2LHevzOGuV68e5s2bl/Jbzlu3bo1LL73U8d5LL72Effv2xY347OxsHz1xp0+fPpg1axbWrVvn+AU9qcjJyYl/I/dDDz0EIUSFb8Qu+1Iyp58dy8vLi78tsHXr1gpZ07JXZRO/1Tho+vTpg08//RSLFy/G73//e6Vn69evjyFDhmDIkCH48ccf8f7772P9+vXo2LEjevTogenTp2P+/PkVjOQlS5Zg//79OO6447Tl/uabbwAg/oVTiXzwwQfa9ZbRq1cvZGRkYN68eTh48KDrK+Z9+vQB8NubESacbrc3MpJp1aqVlNN99tlnO77avm7dOixcuBDHHHMMunXrhoKCAhVxK5DocD/22GO48sortetK9WWJUaB69eo49thjceyxx6J9+/a4+OKL8dZbb8Wd7kS9kPzLA6nWrhDC8WcE3XQMgHjmd+vWreUCXKWlpY4/tZdIs2bNMHToUJx33nno2LEj3n33Xezbt8/zVfMZM2YoBbZk30g46aSTMGHCBLzzzjs4//zzy90rCwaE+dYUIaSSE+5HygkhlZlTTz1VABBPP/10uetlX4R14YUXlrs+c+ZMkZ2dLZo0aeL4xUiy+Pkite+//16p3lmzZgkA4vjjjxc//vhjhWe+//57sXr16vjfiV+kJoQQxcXF4n/+538EADF27Nhyz+7Zs0fEYjFx0kknOcpz9913CwDioosuEqWlpfHrn3/+ucjOzhb5+fmiqKgofr3si9TmzZvn2kckfTmSGwBSyvfll1+KzMxM0bFjR8cvmvv555/Fp59+Gv973rx55fohhBAHDhwQRx11VLkvgFq/fr3IzMwUjRs3Flu3bo2XLS4uFieeeGKFL5Dz+kK65D5MnTpVABA33XRTuXLz588X1atXd/ziKbdxaNWqVYUvJfvjH/8oAIjbb7+9QvkdO3aIgwcPCiGE2L9/v2jZsqXIyckRCxYsqFD2wIED4oMPPnBsN2xMfpHarl274uvgkUce8Sz/4osvivfee6/CehJCiEWLFonc3FyRmZkpvvvuO6n2k5H5IrUyneK238pYtmyZ45fhPfDAAwKAGD9+fPzaH/7wh5R79LLLLhMAxMyZM8td/9vf/hb/4rFEeVauXOm6NyZMmFCh/US5EuXYv3+/+OijjyrUUVRUJJo0aSKys7N9fcGaXw4ePCjatm0rsrOzxWeffRa/vnv3bnH44YeLrKwsab1HCCGqMNNNCLHGE088geOOOw5//vOfMWPGDHTq1AmfffYZ3n//fbRq1QoPPPBAvOxXX32Fs846C8XFxTj55JPx4osvVqjP7YuVwuK0007DnXfeiXvuuQft27fHaaedhlatWmHXrl1Yv349PvjgA/z1r3/FEUcc4fh8VlYWXn31Vfzxj3/EP/7xDwgh4q/g1qpVC8cccwwWLlyIiy66CB06dEBGRgYuuugitGrVCjfddBPefvttPP/881izZg1OOeWU+G9DHzp0CE8//bTUa92JlH0BXqrfRFehS5cueOKJJ3DFFVegY8eOOP3009GuXTvs2bMHGzZswIIFCzBixIj4T2kNGTIEeXl5OPbYY9GqVSscPHgQc+fOxerVq/GHP/whnmlr165d/Lesu3XrhnPPPRc1a9bEm2++ibVr1+LMM890/ZyvF4MHD0br1q1x//33Y+XKlejSpQvWrl2Lt956C2eddRZeeeUV32PzxBNPYOXKlbj33nsxc+ZM9OvXD0IIfP3113jnnXewY8cO1KlTB9nZ2XjllVcwcOBAnHTSSejXrx+6du2KWCyGb7/9Fh988AHq16/v+GV9lYmzzz4bK1asQKdOnfDTTz85vgo+duzY+Kv7ixcvxiOPPILmzZvjxBNPRMuWLXHgwAGsWbMG77zzDkpLSzFx4kSpz9WXkah7vv/++wrXbrnlFnTq1Cn+t8peev755/Hkk0/ixBNPRLt27ZCXl4fVq1dj5syZqFevHi655JJ42X79+uGVV17BOeecg4EDByInJwfdu3fH4MGDMWrUKEyePBnnnHMOzj33XNSvXx+LFy/Gp59+ikGDBuHtt98u126nTp3QrFkzTJs2DdnZ2TjssMMQi8Vw9dVXIz8/H5dccgnuv/9+jB8/HitWrEC7du2wbNkyrFy5EieddFK519X37duHvn374vDDD8fRRx+Nli1b4pdffsFbb72F7du344YbbrD61pEXmZmZeOaZZzBgwACceOKJOP/881G7dm28+uqr+Pbbb/Hggw+idevWoclHCKnkhO31E0IqN5s3bxYjRowQTZo0EdWrVxctWrQQo0ePFjt27ChXruyna9z+pcokJhNkpruMuXPnisGDB4uGDRuK6tWriyZNmoiCggJxzz33iM2bN8fLJWe6yzhw4IAYMmSIACCuueaa+PW1a9eK008/XdSpU0fEYrEKmapffvlF3HnnnfFMTZ06dcTAgQMds59eme6ff/5ZZGRkiL59+6Ycg2Rk5mXp0qXi/PPPF82aNRPVq1cXDRo0ED179hS33HKLWLNmTbzcE088Ic444wzRqlUrkZOTI+rXry969+4tJk2a5PjTWq+//ro46aSTRO3atUV2drbo2rWreOihh+JZ4jJUM91CCLFhwwZxzjnniIYNG4oaNWqIY445RkybNi3lTyy5jYNTplsIIQoLC8Wdd94pOnXqFH8z4aijjhJ33XVXhf5+9913YsyYMaJDhw4iOztb5OXliSOOOEL86U9/Eu+9955ju2Hjls1+5plnBADx0EMPSdVV9gaG27/ELOXmzZvFY489JgYPHizat28vatasKbKyskTLli3FH//4R60x82o/cV+VlpbGfz4reT06sXjxYnH55ZeLLl26iDp16ojc3FzRoUMHcdVVV1V4S+TgwYPipptuEi1bthSZmZkV1va8efNE3759Re3atUWdOnXE6aefLpYvX55y/y9evDi+j5zGcsWKFeKUU04RNWrUEHl5eeLMM88U69atq/CTYQcOHBD33XefOPXUU8Vhhx0msrKyROPGjcWJJ54opk6d6vjWQRgsWbJEnHbaaSIvL0/k5uaK3r17i2nTpoUtFiGkkhMTQghrHj0hhJC04a233sLgwYPx9ttv4/TTTw9bHFKJmThxIm699Vb8+9//xsUXXxy2OMZZuXIlunbtiscff9zXZ88JIYRUDjK8ixBCCKkKfPDBBzjqqKPocBOrlJSU4K233gJg/jfjo8IHH3yAxo0bY+TIkWGLQgghJAIw000IIYQQ63z11Vd49tlnMW/ePCxbtgynn356hc8YE0IIIZURZroJIYQQYp2vvvoKDz30ELZv346rr74aL730UtgiEUIIIYHATDchhBBCCCGEEGIJZroJIYQQQgghhBBL0OkmhBBCCCGEEEIsQaebEEIIIYQQQgixBJ1uQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoQQQgghhBBCLEGnmxBCCCGEEEIIsQSdbkIIIYQQQgghxBKZYQtQGSktLcW2bdtQu3ZtxGKxsMUhhBBCCCGEkCqDEAJ79uxBs2bNkJERfp6ZTrcFtm3bhhYtWoQtBiGEEEIIIYRUWbZs2YLDDjssbDHodNugdu3aAH6b5Ly8vJClIYQQQgghhJCqQ1FREVq0aBH3y8KGTrcFyl4pz8vLo9NNCCGEEEIIISEQlY/6hv+COyGEEEIIIYQQUkmh002sEZXIUpRJpzEKWtZ0GhuiTlDz69QO1xapaoS95v20H9azpCIcz8pLZZnbKPeDTncAqBp9sgsmrIVV1q5X+0KICuWivBlkMC1/2RiFhUp/VGWVnfdU98IeG1Oorhm/aywKe0xGhqDm16kdG20n9znooILsOSOrv2XaVClru7103jdBtG1rv6naA1716Dzrp10dkvsctI0TZgA86HNZt69Rt6OjJgPgPre2ZTThE5URZduRTrcDW7duxYUXXoj69esjNzcXXbt2xbJly5Tryc/PB6Bu9Dk5q2X4VX66BpBTu7KHaGK5VM+oGo6q6NTh9EyUN7MKTnPjVVb1nsy8J96LysHjhckDQGWNyc5DEA6lFyoyhJnxNklyn03Mg0rwwu2c8dLfNudX9rzQbU9FlyU/I9tGqmf8YHrPpjpDTQQ93NrTmV8nJ9VWUFe3TjeS+yx71vlt160Nv+PhZnv5WZ9+50bXEZSV2eZZpbqebNRtClkZdYMdMjai07MmnfUgoNOdxM8//4y+ffuievXqmDVrFlavXo2HHnoIdevWVa6rsLCw3N8mFKubsjWZXUquU0cpmDLMvA6YVDgZNTLZqOQ+6ygRneCB7ai5ipEnW9aPoSRbl+y46aK7lkygs0f81KM7Vm6Hnl/CzHiHhaoxZtNwlbmfjI2svq5zqGM06wQcZOZCRZeYdjJTnaHJ100ZrKaCKLr1yNYhs65MOJeqyJ4psvOlOqap6vKSS3d/2nBYdde06rpXXR8y5WVsRLd+qeowWwGDZFSDHTo6SDWhEyX47eVJ3HfffWjRogUmT54cv9amTRsjdfuNFqZ6XifSLGuEhbVo3foLlN+wXuPihld2SAihFTF1kk9nzJ3qceuzUznZfqjIKltPMjaCN6n6a6p+2TKJuM2DV3m3a36RWUMyMkTtMDM5VjbGPRnV+pMNLJW9bJJkXaLSjqxO9yu3qv5RlV81I5O891M5Ml46wutccJPZqx6v9mR1q64OVkFXv+vMm592ZeVKhdN6M9F+qnWsaqeorj239SS7T7xk8npOV8f4Le+1D1NdM+FcqtqxMnWaxO++dCMWi1VIfoYNM91JvPHGG+jVqxf++Mc/olGjRujRoweefvpp12eKi4tRVFRU7l8iqplStyi2TUxkFP3WoRpRTGXAqJQ3UTZVu6bmTUf5qh4wOrI6rVmvA0ClXhVMGe2yqGYdko2OVOXdrunI4iWfSjkTukwX3X1tc83ZrCcViUavVxlZZOdL11D3I5MqsmeC3z0jk11TdWRMG8ZuOscLJ51uox+yma4gstFObbi1azN76KefQdiSKmsv1b1U/03ExN5VeV53fGTrtNEfN2TOC1lZbI67DFENHKhApzuJDRs2YNKkSejQoQPmzJmDK664Atdccw3+/e9/p3xmwoQJyM/Pj/9r0aJFufuyi96k06Bi9MoeZqqGlY7CN9H3sDZaFDe4KrqGqKoTp2rcJ69nE4dU0AeA7LN+Ag46darcU51n2fIyfdY1enVltv16nd+1LNOObN2m5stkUMakLH6DWk64BUJN6idTRrDqeEYt0+XXGUoeK1n7REY+nWSCytzZPpdtYuqcddvPtoLOyTitJROJolTPujnofvps48xxk0tXp9gMAIRFTERhV0aIrKws9OrVCx9//HH82jXXXINPPvkEixYtcnymuLgYxcXF8b+LiorQokULFBYWIi8vT1sWnVcpgijvtx0br27ZeF62Tr9t65LYrpsMOvJ5PRNWn2VRXas2+2Oy7qD2ienxsLHnw5DBTZfJ7EHZfepUPgp6xs/zQckfpf1GnPFzvnBOvJGxudzKE39jErTO00VGPq9zSbdut7pMjltRURHy8/N9+2OmYKY7iaZNm6Jz587lrh1xxBHYvHlzymeys7ORl5dX7p8XJjM0QZdXzTgll3eL9KlGr0xF5b2ij6rRO5tROKd2ZbMFsgTxRoIKJiP9bhkO3Xlzi/KajO66Rfhl3gZw66dXZtBLXlm53bI+MpF9L9lTXfOSQYbk8VPdg246xakuE5k+XUzpNz9ZN7e5TyWD3wx54j3ZNarThonyKnXKjJ3NNhPxc76YmN8g8HuW+EHG5kq+L9uu23qykZlUlUu13lSy+9G3qjrP75zr7nGZ7LfbuaRqFzvVq5L5rwzQ6U6ib9++WLt2bblrX3/9NVq1auW7biej1vTBENZBI/PaSfLfqg6Kk0Lxuzllx0tWMcjI5XeOdJ04mwad7WdNzrPMvMkYD051mjgsZJwcN6dPRhYTB12yDKoBDqdrTuMv0y+355zwGwiR2d9e6zsI3eXH0VIZP9lAiCpuc28q0Oq2n91kUWnDC93zzGt+EzNGXmMnE/CSJdVYmWxDdn/pBElMnGsycymrH206tW7tupXzChKq1u83iKY63irnpdPzJvFrL/rZ4zIyqDxjw2E2qTfChk53Etdeey0WL16Mv/3tb1i/fj2mTp2Kp556CqNHj/Zdt+oC1YnwBRkh0nFYUxkBqvX46aef8TJhSKeKLtqK6Lpl2VLVJRvFljVs/Dyrg2rU2i0zkKou02vHDdXMhSn8Bsh05bTxnJ/9peNomZ6jVOtQ1pCSMeZ116hqUNIkqQJSstiaLx0Z/DynGniSkcF0xs5kGzpBPln5dPqro/N0HV2vdv3uZ1tBNDdkAjQyuGV9TQXqVGVRxVaCLkwdlwq3teo2bzJ7IooOOZ3uJI455hhMnz4dL774Irp06YJ77rkH//jHPzBs2DAj9etm90wpEtWF6VbeZkTLtAOqY4j4Nb5T1ZGqPtlIsAkDyM0RTyWXahRb9uBwU5oq2Ao+parLZObQqV7bB4ZuBF3meRvGid8sj8mMSRikkkvV2Pab7fGDajZJZ15NBF7c8KubVK+pymBzDr1kthlITW7DSQbV4Gry87I4tWcqESCDV7t+97NMAMfPmwkm9XWq53SzviYDDrrnoK0EnUz5oB1Vt7WqG8CKQiA1FfwiNQv4/eB+YjY4yGdtkSiTjnxR7JMXTjKr9KOsbGXpu59yQdVtCzdZVPeGbF1RIWoy6exBW20EscejNv5l+NWPtmQIoo4g++nljNq2NWT0VVR1ehDtRXV/msSvzo3imWdCx0d97m2ff36RbYdfpEY8UXkdKtWzfqPxJjMCfqPBshE+UxFKE/WYitq5RWhNvw1gCpsZRdmIteo+sDFGbgav7t6QedtAtc9BZ6VMYuttA6+yJjKNqtF4nXky/caBSnbIDRuZHNtnpQk9k/iMVxuq2fFU8rm9CeFn7cn0Q0Zfqe6XoM4zG2dI8vzafitDBl17R1ZXqPTRTS94rcEg7RwTOt6k7Db6rvJ2gNNztm2vKAcs3KDTHRKyC83k60Fesph+VUrnlR4Tr1m5vRKlWqdqPUE6MrYcULe63MrYdFzdrssYdl7IRq1lZEtVp991KYstpy+ZIOc7FTJrOyiDxBbJ+tTGPi7Dq1+p1rSsbLqy6wSkTJ+xssa/H7zOYLdrKmOkep6p9k+lvNuZaTqgqrL+VNe26hpV2Wu6doXXmKZy/P0GgJ3u6+4bpzVocg8GfY7Z0B+6gTybgUqZt2BkylU26HSHhKzD5FchmFCeydhwNvw6AG7tJxOWQ5wKk/KYcEBVyvsJ1PhR3KYUtcohlNymLUM0aAfSDTedpBqoMHFQ6zynq2t1DVw/cyRjkKk6l34zD373hJv+N+HIyDwblI5NxkS7YToFQRjEstlAlXupyqn0R1Xf2wy469pHTnsg1XiY1ltusqigui5MvHWTqi7VwJBqe6rIyOeWmLJx3jrhtDd0Eh1O14K2ifxCp9syfrMMQWQ3VLEZ9U7ElvOhI49NR0h3jk3KEEZ7Om9jmMbUIWTDqPcbEXdyeFUdLxmDR9Ypc3PI/I6faj0yulbVKHAyjGXkcqpDJQBr4m0ONxlsZmFsBOpMZ5L8BMNNODU2HF8TQSqbpJshDbg7xjoZdj+oOjmpMt6ymAgom8LkfnELvMi8CWH6zYTkv3UTASaDFjLPyewNWb3tN/kRNnS6LSOEMOqgeKFjMPpRDEFEd73u+ZFBNhPnpFjdxlpHpiAPPb9GgEnDTCWjbuMQk5XBDRn5TEbg3ep3y2i4OQG6GUk/a0Emg5PcL7f5U33LRXVtJ5f3ai9ZLl3DQqYtP9jOJvl9XuVc8+PI+5kfP3LJnkNuRCnQbioQ7acdLxm8zgaTzm+q/qieRSb1qlubuuPqJZ+JBIMXsjaO34ypjPOnGnQzFQyWbc+pvMpaSETXDlC1TVTJz8/XftYGdLoDwNZi8mpLtqwfh17H2LXVZ7+GkMxhJ1vej0xe+Aky6MilenDLHso6WSs/a9XUoaXqgMrcU8Utk6FraJnIfrmNu9tzTveS69LVV4moRslTyWAiwJSO2bwyZJwI3X0iW1436+1Wt+r86ugI0zLoPKdrkMs6MqnWucmgZHI7KvdS3Zc938uQdTJ177uVN5FZTfW8bJBQ93wOIoDopTN0nVmnulTk0kU1GGOqvGo9bsF7WVTOaS/9UlhYqCWDLeh0B4yNja6ifP0oZVOZWFnjwMahoosNhyn5/2Wf8+PQ2zDIkp+TNYR0slZ+oq6qRpTMIWTLePUqYzKoY8KBVLlmcn24YWJsTBkibnWY1GkyTo2O3pXFxPyZdNx1HSe/zoNukEBHhuR5VRkX1bG26cj6Oc/8BKJl23DCxDyrPOPmNJqQRzUoaUOHpcJPG257w2+GNgqYCGKaajeocVFNhEUFOt0hoets6xi6KkrZplOWjI5C1zV2/TqSJpBREm7Gg+6acRs/t3ZU38pwq9tGVkqmDtvRaFWjQ8VZ1nXubRv3lQGbmUzbBpDbGnfT705rz4SeSVWPbnm/WV/VuTVtqKVqX9XRlW3DTwDOj8FqSh/4WTvJfVc9H2SQdcr8rCc/QR7T2XRAPeFhag+57Q0/55TJLHFlwK895vf8NIGJwHcY0OkOCdkF7abIZetQUcrJhoEfhWTK0VU9kEwqURPZGpW6ko0HP1kpGUNE5p6uMSFr0Jl860M1Um8Kk8Egv+vXVp/91hulg9BGJtMJVeNGJfAkezbo7n8/GbIwy8s6XmHtE1W9qNNGEJg4oxLrkSmbXF6VVM+aCNTYtItM6E6/+9mkLZTKvlQNuMnaym7YTuSovIXh940N1eC/ro4xYZM7oZM0SbegCZ3ukJBd0LqOpN9FZyJy7NfR1VU8uhlCt2dUlaGp165MR7FNRfpNolK/kzNh25mzOYdOa9XU+g0qGq26J6IgS1CovtFgyrlUDdKq1u+GrnGpalzLtOvUju4bOW7lZJ7THX8d+fyU8SqvGhRXcXTddHpYWTPVciaDDCYDRLrnrI12dd/4KsNpXGzYKTL2t+x8y+xnt3ExEZDSTWglP28iSOVEqqRJ1AOQKtDpThOCWlhBGWY26vYb8ZKJYttWarrIKkPTjmoUjCOTrxmZjJqa2Es6basYNF7lbGeekttR3V+6+83Eukg3TKxjv+sheZ5ljWaZcrp6248MMutWdT+akC8Rt0ClznlhKtCr2hc/gSSdc8pvsES1rOzZYzIbqjM3XnXKXNO1G2T2m6q+8qvTVNelajZfRgY3dPeu23o0GaQKsp4oQKc7JFQj/ar16mLSgLb9TDI6svsxJmRlUOmbrjNgQhmqZJCc6tGNytt03L2MmuR9qOuA2jKYdOZEFtWDXiW751RONVotM6YyRouTjnXLOoQZeHGrw+ZacMNkNqkyGU+AneyhaadKNRhhcv2rPquqY1SzjSpy+Q2WyMilIk9yOd0Ao8p+Vs3Ee9lTbrLrZr3dyvitU9c28eOI67RnMhNs8u0Kt/q9rvmtM6rQ6Q4J1Ui/rHPu5WR41a2LX+fVdBRbtryJA1XnwPcqK9snk4oxuS6/rwbptusmi5+1KmsEqET/3YwOtzr8jqmJwIab4ynTpm0jUcUQ0c1kOt2T1aHJa1J2jN3qcvrba/yEEMYyOonldOvUDc7YwGY20O2eH8c1qMy4zPNOmFxrXm2bPnuCWItOe9dm4N2EDLoZb9350iVoXaIaHPDr/MqcIapBZNtymgiU+dU5OvssLNLe6d6/fz+Ki4vDFsM6Ogep10J0Mm79ZlpN4ia/26Gi4gSbcNhtHPh+I58mZDGR9VVxWmRkUXWIVO8ltqEil+o+8LPudHDrk5NuURk/P33RdU50DRiZe27tuO1/Wcffad2rrCO/YyarT3XnQaYvftazyvozkeWRnVfZdtPBMHTDz/4Msu86+8REFk7FUfMTnDElg4k2gzrPTNqZps4xU0kcr+dlEnWqekvXjnOzGbzOOjf5UpWXtfuc6szPz09ZPgzSzumeP38+rr32WvTu3Ru1atVCzZo1UaNGDdSuXRu9e/fG2LFjMX/+/LDFLIesE2ILFcNANdsehLKWlVMnQ6Aqv05/TRuffoIGTnXIInu4qCp+t/7oGtRudfrNnpgwlHTLu42PWyRctV23tep20LsdsqoOTfJzssjoJhNZRBkZ3NaKqv6VKWNSn5oK9KjeS0WqrI5JB9d2pi5VG277RWceZJ/RsU1k9niqa7JOr4mgjM5c6u7JxHb9tieLibHy024ips6zVNd0UXH6ZM+x5PIm10fQcylrJ/kNwKraHSbPjsLCQqXytomJIE4Znxw8eBBPPvkkHn74YWzatAn16tVDz5490bZtW9StWxdCCPz888/YuHEjPv30U/z0009o1aoVrr/+elx++eWoXr16oPIWFRUhPz8fhYWFyMvLcywTizl/1koXt/oS78m2G1a5oOoJs12ZuoLsp1dbqrKYrq8yE4WxiIIMiURNHiCaMqliQ4c51WlSXwR1bui2k67rIkpy68iSvP5s9seP/SSz7gAo9UF3v/gdoyisGRMyRKEfOgRta4eBiuxu+zLxbxl/LEjSwulu1aoVDhw4gOHDh+Pcc89Fz549XcsvX74cL7/8Mp577jlkZWVh06ZNwQj6/1Gd5Cgd+EFs2CCUh+yhbPrQ84ub8jBx2AZhpKjKFzUZ3ObAb9265U0/bxJbstjUi1EaP9sE4dSawISuMylDlJ9zqqMyBKTTBR1H3KueoJ6V2VuqaypK9oTq3NiWXceeCEIumXbc7OYg7R0/0OnW4Mknn8SIESOQnZ2t9NyBAwcwefJkXH755ZYkc8bkJJtwmNLNwI/SIW7yYNON4umS7m8XeOG0H6JokJuuI8rtuRH02yJh1JWqbtuGlq5hJ1tnlNaRX0w4qTq63GS7spl7U05HWI6lzTaitr7TJTjmhslsvcwajsIcRm1uom4D2WzbqQyd7iqA7iRHQYGo4qYY09XpM2nQyNRnmrCCLH7Wb7qsdy/87IOggwhuMpDyuM1rOo6ZDZnDzPZGWRYTROksDdqJDmufRe0NHr/t2bTRZNuN6v7ywtbY2UzEBGWfBuXk67YTNac77b5IrTKTuKCCVkyxmN6XcpTJmZxlSb7m1JZqG14k1qvahkp7Tn12a1dW8fkh8Xm/7XkFHGSeS1SUMugayFEqD8jvA7d1EpQeUF2ryeVl95vfta2KjfacxsVND6iion9N9M9P1lK2TqeyTmtGJ0PpdV23f256y+2ajTVnoj/JmBhrVd2uUndyG4n/r2MHqNxzk0G3r07rw2v8TOtVt/GzaZvInmc2zwdTa1R37LxkUalD16ZyWk8mdYvqGlJZ02H6RLZIS6c7IyMD1apVc/1Xs2ZNdOzYEaNGjcI333wTmqw2jCjZ8joHjImFLeu0miYKG9SvsaeKruHqZlCoOuS6DrwTKvtFt8+yB4DNw0jVoDNp9OnKkNwf2f2m6oypyCRr1Mo4R0EHBxJJ1r+6a8JEH/w61qnKJl8z7RibNOhljWy3oLMbMuvQb/ZJtayqQW5TP/qxiWzIrBtoUHF4nebd5vg7ta3aTtABQFsJG7/Pu+2h5Lq8+uB1348NZjKApfK8bODFxJsDUSctXy8fP348Xn/9daxatQoDBw5E+/btAQDr1q3D7Nmz0bVrV/Tr1w/r16/HzJkzkZOTg4ULF6J79+6ByBfm6wymXvWw+cqIUzte7bndd7oXlPwqbam8KhOk/DptBi2fn/ZkntWtP4x5CqJdlbWqU6fqteR7JmRyqyv5Xljz7CVn0DKYLqtS3rYOMPms6bkKc+510TmXTfbThg5TbTuIdnX0qun9bHKsbZzXJnWMjTlVtW9tyiLbTvI1k3Niss98vdwAzZo1w48//oivvvoKr7/+Oh566CE89NBDeOONN7B69Wrs2LEDnTt3xvTp07Fy5UpUr14dt912m1ZbEydORCwWw9ixY432QTbb5vasV/ZKt/5U9bjVqRNZT2zHqz23KKFbFFkmGySTBZORTaWcbH+dsJXhUlFkppww2Xuq69or85mMU6ZKZo27ZVVt4pVZ85vR1c1I+sl8prqmoy9kkMlCybTntF7cMh+q+sZUn93WqNca8qsbdDNpTuVsnGdlyJ4vftuznbELQgfpZOT8nHuq2NBhqm0H4RDp6FWd/ayaTVVFJdup2oaOjZYok5+2ddr1c0/Xn3B7XsbGVrVJbPTZqd38/PyUdYVBWjrdDzzwAEaPHo22bdtWuNe+fXuMHj0aEyZMAAB06NABo0aNwscff6zczieffIInn3wS3bp18y1z8qLwo6RsGGGquG042WdVSG5H1WB1u6Y6nrpOuq6zLKOs/Iypyn0TfS7DTUmrHLyqh4RsvanWidszKu34wcshUh0bp3p1yvhxjFK1Y9vh0A0YluG0Xtycdjd9oztuuoEUtzE2eb6oBi3csKnr/KxflWeS25GVTyfQaMsB9zKy/RBE0CBVOybXqimZgnjWC9m9oat/TZ4dKu26teknWOe3vN8kkKo+1T1vdYPpTvjts1PfCwsLteq0RVo63d999x0yMzNT3s/MzMSWLVvif7du3RrFxcVKbfzyyy8YNmwYnn76adStW1db1jJMOMq62atUbZowZm0ppeRnVBwg3fZVDRrVvusqIpN9VcleORlVun32OuCCyGKZIgoGpqzDZiMjINO2X8deVhYTz+kGDG0Yh377bCuD6haA82uwBpEVVM2w2shuuz0jK59qBkgIYfyMdpp30w6T7D7z8wZJYjsm3joxEaROVbdTnTazsG7ntepekmlD9XnVtep0zS0Iqdqe7plj4g0g0zLZRrfPOvs6iqSl033kkUdi0qRJ2LFjR4V727dvx6RJk3DkkUfGr23YsAFNmjRRamP06NEYNGgQ+vfv71teL2QPC93sVar2ZMvIOlymFYjJjWMjc2qybRlMONO62TW/h4psJjj5nskIst+6TOwDpzKm9q6pA0sHXcdVF5uZAllsZ+B16rLlDLgFDG0YOKoOlN+3FXSRyZbZwlRGVDWg6jbvumtBVa+5nSs6+tRE8MltPGTOJVU70OZbGbLntYk2UtUvuyZk5kTVPlINNOiie/YHrWvcsBXo9XouSmOgQup0cYR58MEH41+gNmTIkPgXqa1fvx4zZszAwYMH8eyzzwIA9u/fjylTpmDgwIHS9U+bNg2ffvopPvnkE6nyxcXF5TLpRUVFCr1RPyxsRsBisViF6LiqXGV1eLWhe1+GsjpU6nLqu9vzOv3w03cdZ1pmTlRkVJ2boCOOsgeqTkbX5D5QXZOqa9Nve1HA7/iZ7nOqcrrryY9MMoEfk86Rjj71g8yZmNxHWd1q6pxKlk9lTkygqs+cnk3+fzdszn1YWTkT7frd+8lrXVXH64yFzT3sdFbp4DYOqvotqPXlZvPJ2mMyMqmeV1HauzbbjZL9koq0dLpPPvlkfPzxxxg3bhxee+017Nu3DwCQk5OD/v37Y/z48ejZs2f82rZt26Tr3rJlC8aMGYO5c+ciJydH6pkJEybg7rvvdrynuwiCNnLK0DXqE8t7bXSvNtw2k6xDqBrISFXWj+HrVp/X2JhQmDqGlVfZoIIlNtsLaj85rXPZQzm5DhOOk6rMOpjUV7bXWnI7uo6uDafFr9Fnem3o6FPd80NVplR/my6fiM1grkxdsnKqtOV15ph0RFTkUi2vMzcm6zRZly2nKdWZYyLgrmu/ydTppt9s2B+quJ3Ttu0aN1n8tidjv3hhal+aSGaESVr+ZFgipaWl2LlzJwCgUaNGyMjw98b8jBkzcNZZZ6FatWrxayUlJYjFYsjIyEBxcXG5e4BzprtFixbWv6I+iIwxSY2TkRKFMTdp0PktG8R42G7DtvMgU4ftOQ16/ZpqR/ZwjsK+lEHVqAlir6vWqTonYcliui5bjpHJuk3rMh25oqqTUrUfJZlSIbPnoiZzkNjUMbbq94vq3vXjUKuWDZKo/WRY2jvdptmzZw++/fbbctcuueQSdOrUCTfffDO6dOniWYfTJKtEk8Ig7A1jq/2w+2UbE4rfr2K1kQWw4WjItmMzC2ADG/MuMy6yay+oKLltw8pmnVFyLJzu+137YWUK/TwXVsAwHc+sKMnspp/SRU9HaTx1iVJg3i+2glW6elX1DJaVyzSy9pXNwHLUnO60fL28jOLiYnz66afYuXMn+vbtiwYNGvius3bt2hUc65o1a6J+/fpSDncqZDZgUJvBaRE7tW1rE8di//clF7p9l21XpV+2lYBuHW5lE68HsX6c2jB5sJaVcTOWTKwVt7pS3XNr18/Y+11PquMvs+dkxkV27TmVT5bBy0BWWTsmM60yQRfVoILsHlIJ+qiUUWlXZvxlxtqErnNatypjpLo+dPdk4vnmhao+tWk0+6lb134wKUOyLE76SUUv+EFHh5lae0EGF9z0qWz7MjrTq20/ZWSQ1TGyfU9l56Rq0+t5r7pk6lRFZmxl7SsbtlUQ61+HtPz2cgB49NFH0bRpUxx//PE4++yz8cUXXwAAfvzxRzRo0CD+RWpRJvlwLvtb9fnE/3erQ8UYkJUrWRl5lS97xo8Dlapdt/Kpnk113ZaDlaoO2TGWKa+6jsJy1hNJJbOKwZLqb6d17FbeSybZ52Tnwa9xL3NPdm2rtpOqrIwOSPW3X8PTTW/JtuP1rNN1LwfK7750q0tVtzshU4dKH3RkUdW7KoaqbhuqqDgciciMrQ1d4bdu1fpUzzqbqJ79sjjpBBWdqHr2JPdD97x1K+tlS5kOVsmOl659KnPmq5wDXvfcUNW5pm1yL1THwS9+5U0kPz/fWF0mSEune/LkyRg7dixOO+00/Otf/yo3+Q0aNEC/fv0wbdo0Y+3Nnz8f//jHP4zU5eQMpPrbC1WFp+LoecnltgltbkbVzIDMYWrTkJF9VjayK1Ne9tDSkd+EEneqw++aSe6z1zqR2XsyRqNsJNcvJg5/3SCCSj9s6wCbTp/setQN2OjqXyd0zw6/Dk9QTpHs2JgyKv3I4Od5VR3oFjh0Ky+7nnXHU+U5W0E/nfkyEaRStaNUxkh2v+rajiqyqLZnMsio8pxXOdkgqUrdNpC1ZdxQOY/d1rPJoIBNHeFUd2FhoVJdtklLp/uhhx7CmWeeialTp2Lw4MEV7h999NFYtWpVCJJ5Y2ITqx68qZ63ZZR6PStzPVU5G8aVLDqOcqo6ZA695D6rGtZejpeK/LqRdNVovO78msj0yRKGQ2nCyFFxqsLcZ06oZkGSn5NB18jTNYpMZqNkn08eP5OBQ90yTuVtGJUy7TrVrTtGMoaqiUC7U70q9asG7/1kWFPVIyOfaubTtg5L7rOfJIZKWZP9kgksm647XbGh79wIevx0damfRFgyfhMDTln+qJGWTvf69etdf3e7Xr162LVrV4ASmUPm1Rc/EU6vZ/wa/sl1eB3+bgeWk4NoIjKtUlY3+5Xqnkok1aQS1DHy/ARZdKPjQckXpSCOytzI6gW/6NZlK4iWat+oGuLphN85cOu7CX1qI4hj8m2AZNzeUNA1EnUxWafpc9ILv/aH07My56dTeVNr20QQz3YQza0dv8Fqm234fdZUeyoJDidM2i9+7Y8ojKdOGa9yKoFKE0mGMEhLp7tOnTr48ccfU95fvXo1mjRpEqBE5lB59UUW3WyPrmKQOZTdHA4TToSb4y+TdVc9uE05urbQceii8GqViSCQ27M2DDOn8rrGocyc6ATD/GBiTkw5B372ZzJ+5lelDttv96gE9lSxmfVVfU5XBj96WWV+3Zx8lfq8yunqMJsBDdWyqkEP02846OgRv/tStx63ulXXk0qQSzewnepZ0+eRV3s2EhxeMnnJF5Re9HsumQg4qDrNXvVHwa7WIS2d7tNPPx1PPfUUdu/eXeHeqlWr8PTTT+OMM84IXjAXwoxo6S5OXUUkI7NucEHWaHBz/L2y7n5QzYybNMx00VGGtmUKImOjip83DnT3kMnXpUyNZZTmxCQm3iixYZzoGmYymHIc/MjiZ43L6E+39lTbcNKRqQJjMueOH2dPZ7xldZJTG6acgKCDhG51qWbbUz3rBx07Qacut3IywQcTukLWPkr1nFsyxeS68pspd9pnqoEHmfIm14XNwIhT/bprzUSgMkzS8ne6t23bhj59+kAIgcGDB+Opp57ChRdeiJKSErz66qto2rQpli5dauQnxHTw87twsZje7wE6PadaV2XArc8q46E7DzbxaiN5LQQ1/7Lt2ZQn6LUus86C2pOqa97PNT+y+CFKa6ey6lXZdeSn/7LP6rYhowODXqN+zqR0W2tB6zedZ02tQb9r1G8ZHUzVa8rOSiyf/Fy6rX2/2LDbZMbUpF1sU3Y/9QCIzO90p2Wmu1mzZli+fDlOO+00vPTSSxBC4Pnnn8ebb76JoUOHYvHixaE53KmQjdzoZlucIvBuSlFFPlmiEFlyGz+b0fggDgevNpLXQhBBAJX2VDLpMu36qVtXBpn5dhsP25lCmXtuusLtmpvecMvM+4laq+wv3XZUZU6VJZKVz5b+9YtbpkM2Q5r4jFc9pjKnTs/p7sFETGT2vNrzWnsmDViT5VI9ZyNb5ufcUJl/N10mW3eqOlXqlS0j27aN9aS6pmXqUsmEJhK07pQ5I3Rws+X91ummf2XmS3Z/y5yNstf8jkOisx0l0jLTncwPP/yA0tJSNGzYEBkZ4ccR/GS6y4hC5tSpnOkorYkMit+xMpENCStbFqUMb1SfdavHaf2FtQ5120vHNaC656KkG0yi2meTWYlU5UzqsqAyn0Fnh9KNMM6nVHUEuaeiZEcFUXeYZ0Fl2Cd+CXO+wrIHgka1fyb8MZOE76EaoGHDhmjcuHEkHO5kdKNitg8llTbcshxuEarE+6n6r5JBSdWm34ioiYyk6nyZiuLpZJ1k63ZCtZ+qUdBUz+s6XF4yOK0/1UMzVd3J903jFhk3kU1V2S+yyGQgVfaXVz/d1pxKFsarzVT3vNqQyRg59UdXdplyurrM7Z6JfeCmC3T3rBN+xyMoVMbU5Jz6rcNtTZjM7qWSwVaGUrYNr2yiV91Oz+iek7FYzNd4yNpvKm2o6mjZupKvmToPE9HN8qu262bbmFjzKraZ7vO62LB5gyR6XqoDGRkZqFatmvK/KKBqGOti04Fx2/Redek4Ml4y6Bpyfhw3v/Wkqk+3Ll2D2kmWVDJ5ja/fQ0WmD7YcPFlSGSWq61+2LT94GUBhGN5eqO4vmf3jZnT4Mchl5jx575gwgGT6KFunrsGp01Yift6McKtDNciRXI+qcRklgy4KwQBTDpvbNaf2TLdrGp1zT0cuv2ecEMJzPzitf5u2l2oiRjZJkKyTVZM1YZ2fbvvEhB0oU172nFYdK1P61OuciBKZYQsgw1133VVhcqZPn45Vq1ZhwIAB6NixIwDgq6++wjvvvIMuXbpgyJAhIUjqjU5mNxmnV3psODBudZtwop02tsqBpLKxhdB77cZ0G34dQBNrJlmW5LWUfN/reT8yyNwz1YZOeVMGkkzfgzosZMcoVTmv51XmQHV/hRmk0jUc/dSj016yLkqcDydjTVU/2lynybKoBrV09bvs2WNKt6ief07l3OZNZe+6XZPVj042iQqqa89P30zJotueikyq4+r3HPWys/w6+arI9Ed2fHTHMepOXBAE5dwnojJPbvogPz9fSSbbpIXTPX78+HJ/P/XUU9i5cydWrlwZd7jLWLNmDfr164dmzZoFKKF53BS6CcddhqDr9nNoy7Tlt34Zw0y3XqdnVQ1QJzmTn/XqQ6r7qsrRzUlXvSeDrlMW1IHqdiioGJBOdamOmd8D1JQRpIJbn03rCz/YkEV3fmV1kq7uSpbLRFDNlKFra0+oIKPvEu+r7ku3AIqM7eAkS6o2nOpKVYfOOaU7/l516OgI2bPOqW6VNa4qi+wZLkMQDrwJVOwOWV1keo68sGFv6tZtYk5NJk9U5kk12Vh2r7CwMFKOd1q8Xp7MAw88gKuuuqqCww0ARxxxBK666ircf//9IUjmn2TDWva1CZXXNNzKOt3TeQWk7BmdZ5OVp1cbqvd0lY6OUeoli1vdqYwqlbrcjCNZOVTak6lH9l5yX93WptN+kUXnGRN1pzJoU91TMZp1ZTJRvgwVA9BP3TLtRKnPqnX7cUhsoqJb3PanqTPHSxY/Z1KqumTq99LfJteMiqOhuydsBdJUZFCtw81JSFW3bD0mnBgVZBwxr3r9Op6yMrvJ4tdmddMpNm011b577b1U9dkIDsiuHd06/MojY+PptBMl0tLp/u6771C9evWU96tXr47vvvsuQInMkaxIdA4VLwXnVtbrUFE9/FWjXm5tm7qXqq3E6yYMM9kxUBnfIJSNbt+DNvKdrpkKGnihawSrzq+NMfUTxLGBn4CJ7HOmjRM/qI5/0MFFr3ZkgmEqMtlwZNza9lO3V1BMVga3ulWfU0E2iO9HBlMJAKcyJsYhFou5GvJONoCtQE2yDE5ldZ3yoHSYiixOcxm0o+c0tjJj5scmd6tDZRzCsLFMEVZQK2qkpdPdpUsXPPHEE9i6dWuFe9999x2eeOIJdO3aNQTJUqPqzPlRJDJR3eSyJuSykZ1ww8bh6HZIqMjkt32ddkxljGy/CWBrD+i241VeNRgkG62VwW/Qyut+EIes7flWmQsTe0Q3e6Orf00anG7IymAi0BUkukELJ2Qyxn7Xsex5puPc2nz7pAyVwKFJJ8cNlTlycsBM2D0q/TCZ1fNaT37mWtUOcXOqgnI6dcdWdg24nQ86utwrUCFzHgWdSPHqe7JcNoMJUXq1HEB6/k73hx9+iAEDBgAAzjrrLLRv3x4AsG7dOsyYMQNCCLzzzjs4/vjjQ5FP9XfhYjE7n51JrNdWG7IyhNW+bYLun247Os95PWO776nqdWtPVha/42ir70HUJ3tNpl4T69FUn6OwLkwQts600a7qmovCeeG0Rm3KFaW156dur7HyI6+JeQh6bZnQtzrPRHGt2m4nCnMbxTrd2vG7PmXtRBvI1B213+lOS6cbAFauXIk777wT77zzDvbt2wcAyM3NxYABA3D33XeHmumO2iS7EQWlZtuRkW0/yPqCcDSiShSCQcQZt7kxMVd+9U26GSRe9dt8TlWf2nCMTQZ4nK5FUX+EtWbTEVtnv5/60smhN01V7nsiUQ8I6mI74BXFYEzU/LG0dbrLKC0txQ8//AAAaNiwITIywn9j3mmSo+DcmsR25ijoOlXaivrc+CHMqKUXtrKqUQyAqDg0tteoqnNlMgtuo7zf51TrtumkhxkASFWPrXGNokFH0oOgs21hJg5sBhp097jf88wWYWdhTcgSdmA67Dq8iJrTHb6H6pOMjAw0btwYjRs3joTDnYrkTZH4X9nyTiTek6lX5r4MsvIlHgSm0K3Taaxk20p8RiXTJHMtaJzWic54qD7rt+86hkTyc051OBlMqerSlU+17zJ9LSujukZtypJKLhlU95dT24n1qD5nAtk1l1zei1R16I6xnzpSoTvvqvU7oatbnHShTDsm9biJupLlSlWnjs6XKRf0uabaDxl7RdeekDlTZNtSHWs3faPSH9k9q7vHZWRyq9vP+nLbG7KBBh1U50FXvyU/F1TAwkQ7pnS6jh8UFtH1UisxqorLafO6KVsvpSXrMDs9r2u0mYiIparThpHtxzjVOYxNB1bc6nBaJ15rUkXpJ5dXdQT9Kktd560MXcdctU4bqO5Fv86K3zKJmDqAdQ1e3fZU2vZbPhWy+8dkENSGUWNq3GUDz7pnsUljPXlOdJzhZLncgjTJffdqT8VhSixnUqe7tadjB8jaE6rnniypdLCMDpQN6OlmTZP/30bCRKb9xL9VbS+dvZEKvzraxHlk0n6QtTVttSFbXmZfq/pBUSAtnO7OnTvjueeew4EDB6SfKS4uxuTJk9G5c2eLkgWLrLL1etbpuld2z/RCVnUy/RwuOg60H8dEx0FzmwdVhaI6fjL4aU8mcu1WXubwV41ee9Xhdk2lDbcoexQisrrOg4pzb6J/foMebnXJloli5Fw20+W231KV8UJ3Tvw4b151yuo7k2tTpQ2Z4LXseWYqqKjanpdT6hbUTVW3LH6cYNkzQvXs8pLLC9vzrRuwVLU1VO/LnCuq55OqnapzBtsKIJlKNsi2p3pPBZOBDVnbOF1IC6d7xIgRuO6669C4cWMMHz4czz//PFatWoVff/01Xmbv3r1YuXIlpkyZggsvvBCNGjXCTTfdhBEjRoQnuAYmDHEdBeJk7PhZ0F79cDvM/AQXkuvyU0cYz5vIQvrJAphqT/YZlYCE6mFhItPqN0rtFmV365duNNrGPPsxurye1yUMp1ilHyYcULfyqsFI1UCDzhpT3fuy5VRkV12rQWSQTGdhdNa+H+fWzREydTaqvpmgs9dN6Qy3c8Km/tWdQ9U50nXS3e773XtugQ4TCRLdrKrNtwBM2C+6dQVtY8jUn44OthNp80Vqe/bswb/+9S9MmTIFX3zxRXxiMjMzAQCHDh0C8NvEdOnSBSNHjsTIkSND+eC81wf3Y7H0/YKFsjp06jLRvg25ZOu2RdTGMox2ZHCa4yjJZwIbezZdMKXnTNTvtsZs6BqvusJeBzbODpv72NZ4OdUr05bftR3kWqus+Om3yfUfBaIkS5ikGgcT+thNz+n6AGHb8KptmCrn5/mofZFa2jjdiWzatAkff/wxvvrqK+zatQsAUL9+fXTq1AkFBQVo06ZNqPJFbZLTjTAPBLe2Ze8FodRk5bJZV2U5uE3Pl65h7qe8LrrrPSgZgm6vKsuiS1BBSRO6WadupzqiFoiNggEt+5yXfvQ73yZkD5sgg0ZB1xl28MMGJgKIUeqbDZtSd4z8yhI1fywzbAF0aN26NVq3bm2l7gkTJuC1117DV199hdzcXBx33HG477770LFjR2NthHFgB7GhTWVrwnT63OqTvVf2/0EpUBlFJqvwVGQ2YYSG9fZD4jW/85Vcv1M9qnX7lcXLiC37f7c1EZQRodKOCQPPzREwOe5ByGLS+dA9N2zrOZn9KbO/det2um/bIdLVFzaMWdW6vdavl37UmW+/5ZLxG4j1e6656QVZO0tW3yTLq9p3VZ3hxzYN0inVlUs20ORWh9fzsvacrt53q1s1iOm0n1XqNOFTRIm0+Ex3kCxYsACjR4/G4sWLMXfuXBw8eBCnnnoq9u7dq1VfLJb62xQTryX+f6o6ZNtSMfpl65bBzwEnc82tPZP9UCHodp3WUxmqQQHddtzqN7FWk8vo4ma8mWxXt+8mSR5PLyM2WWZdA9etL6p6Tqa8qiyy5f0e3G5rzWmMZcbBCZXxcCon267O/nSaN13d7lXeqw4/86mq+0xh4jxT6bfbWvVTt6o+VC1r8tlU6AY/VPe6DZl0ZFcNerjtSd2AkRuqZ6tXeVX7Ulcembpk6nYLniTvN69zTeUMcbOdnPS936ChE6o2Q9RJy9fLg+SHH35Ao0aNsGDBApx44olSz9h6nUE10qwSAfOTMQk62mQ6+mwie+anXGLZIMcyrCi+7Tp1I782skS6uO2zMNpWeUY3um4SE/PsR8ag9rFq9kv1nkzbVZUo6QtSHr86zE89qm2p6k6/7YVdt2qmNGj5TD8ftXbCas8NWzY4EL3Xy5np9qCwsBAAUK9evdBkUI0gykSb3CJnMjKYzBLJtJuIW/ROJ1JvIzKbXM4rW6MaITSRVVWJMKvOt2x2SmVtq2bdTd5LHgcbmQwvWZLXiIksomzbXvvLKfLuJpduBkkW3Xl2Kqczpqr72G9mUzb7pXpPpU7T+0CnviAzHjqZRJN71kQ2T7c9Vf0eBH5tEjed69We6j5OpS919WIQb36kasdPYDJVXSZ1i8ze07VNTNhhyXLqYvKMVB0rv3LJ2Axe5ZOfi2r2m063C6WlpRg7diz69u2LLl26pCxXXFyMoqKicv/cMLE5gl5Yqk56GX7lkzV8dV9rSYWfA9WpDrdghU2j3sk5VGlPNxjg1K6sUePl2Jk86GRxGweTRodKOTdZTI+RjMMv87yuLDLt2tKFblkZN1SMDZP61MTZYFMnqdYnYxj7DYYF5eD71YGpntNxhkw5ijLXTO1Nv0FkkziNR1AZUZvtugVITbSjIrNqwin5Oad2ZWWRaTOIAK4sJuZGxlbzYwvKlE9uT5Ug96IOael0t2/fHvfcc4/1dkaPHo2VK1di2rRpruUmTJiA/Pz8+L8WLVq4ljdhYAXhZJpA12CVrUcGv8aRSWUjcy3ZGDKV0XDrh6k595MtkCmf6r5bPX4cUBvBLdnDKFU5k1FzvwdbELoiVRlTh7Qsqu3ZkEdljPxkaIJ2HtyuyRjGqg6fm7MuK7PXHvATIFLNjKvsx+Q+B3G2etkBsvaH3yCyKqry+WlDtpzOfKmsxTCD28mo7ks/Y2Qak28FBIVJ+VTrSrXuopqx1iUtP9OdkZGBwYMH46677sLXX3+NvLw8HHHEEWjbtq2xNq666iq8/vrrWLhwoedPkBUXF6O4uDj+d1FREVq0aOH5GYJYLNqf4fAqb1p+k/XZkD3o+fJDWLLaaNetzqDbUy1fdk92PabTGlPBxpjqtpHOY6wre1B9jvI6Dvo8c6o7iuPiRTrLnohfvaHSRpC2TJRJlF2mHypl0mlckmW1OS46Mui0p4rfOp2elxnHqH2mO22d7uSIViwWw5FHHonbbrsN559/vnbdQghcffXVmD59OubPn48OHToo15E4yfn5+b6NTVUlo6uUonRQhGVcViZn1URbUXRkohrsieJYyRJFmWSxrSuC0kVBGEF+zhCbMtiYi3Re006YMs5ly9qyB3TmurLNpV9014JNh7WyzFGUdIyKo6xbp27ZdLF3ouZ0p+Xr5QBQvXp1jB8/HvPnz8c777yDe++9F1lZWRg2bBhGjRqlXe/o0aPxwgsvYOrUqahduza2b9+O7du3Y9++fcp1qTrcgJnPUqiWd2vbDdnXwHRI9aqJ7HMqJLahoox0rzlhypg13ZaXUaZTpyyp+mO6LVP1JR+OtttzI7F9N1ncXseTWU+q+9PPHkmF7p51mi+ncXMyXFXkkhl/r/IyMsjIJWOoJ5ZLLK87DqnqVpFLppzb/KpgY42aQKY/bgayan0qY62C6hq0IYvXMzbmW0WfepVVXQtu+9pLFllkzz/ZPvqRx8T6TK7DbQ+ZXC9udpXsOe02xipnvds68aOzdddAZSBtM90333wzJkyYUOHe3//+d9xwww149tlnMXz4cOW6Uy2CyZMnY8SIEVJ16GS6g46Y2ag76IhW0JFwP214RQwBKPfF5hsNuhHWIGVSqVOmP0FlNP3WH3S0W6a8ifGM6pyYWpuqYxh2hiAVQWfdnZ6JQqbO9Hw56auorYGoyeOFyTnRfTYI2ysMorpGk7FpW5g8s4LG9tkalTOYmW4D5Obm4rDDDnO8d+211+K8887DY489plW3EMLxn6zD7VRfMk5RHhORR7eIl0wEXCb65BY5M5lZkMEpEm4zgq2bDUz1bOI92ai+U52q4y4zVjIRVj8y6WSlZCPpTuWT++wn25bcvo7jkFyHG7pz4RapV80c6WTF/MyXl96SrctE1lJlbcruKZkxjqrhprtP/NST/IwpGdzkkc02qqxV2fHQ1e262UCTGVadev2gmtVTQdaucHtW9SyUwW3N+alPpR6/dp9KW37qlDnrdG0oVTvCVkZcp36/Z6tTu042hok+q9qHUSYtne5OnTrh7bffTnn/hBNOwOrVqwOUSA2/zpLKfZVnZOTyGzVWrVNVseiMkVedOvXpkKy4TDgMbugaiUEpURvPm3BY/bSf+KzfIJWXcavixOk65LYdGhkZ3O656UQT61h3XZgyllWfky1rSs+YMED9ymJbV6jUb9swVAl0mXDyVeqVDYjrBsVUg3w6bXih65ybDATq6BYTQVPVPugGrk0kOkwFylQxda6lqissx1M3CJGIqXG2GeAzQVo63Zdffjlmz56Nq6++2vGz1h999BFq1KgRgmTumDTydAyWVP8fFDqHopOBbGMT21ZWbo5SsgyqCszmXJpQ7KqHiUqdskEBv0aNjKMW1J5yWh9+jWZdB0N3PZoIWvitV1WPqGbS/L7RIIuK4Sg7XyqBCd39ZsOpjYrBlUoOP+e3KjbPNB0HWTYgbuJ81+m7n7F22l9B2h+qb2Woovomj0qdTpie2+Q6VYLAQWWuZc410/rNS0/JltFpIxmdM8dJTltjZYrMsAXQ4bLLLsOaNWvwyCOPYNq0aRg4cCC6dOmCrKwsvPvuu5g1a5b26+A2cdrofl9r8arDyTB3ksULp3bKrvnph1d7Zf9VOYhNRu2dZEluRwY3R8kvXodCssw68+XnGbcxSzZSVA1x2aBAEGNty8j1M29hILse3UguF2bfdfWJaT3khdsYpXK2vXSrjOymAnMyOlblvFNpN5UMqnWkkiN5rGXXtmw53bNJt6+q/VBBth7T+0p1zLxsDb9ryK1McnmTASxVPWIDP461zhjZDHiqYmL8/e4hp3Hzu+ZUZXLT/zL2dFRtpbT8IrUyPvjgA/z973/Hu+++i19++SV+fciQIZgyZUpoH5o3/cH9oA1O00Z+2M5CmO2bcnBVD2VbsgVRZxTksunoqjoYujKkm7MeNOm4Vv0a51FbC0GsbRNB0ygh249U96LUd1X5dc9GXRlMtiNTV5BzE5adp7IPZc9FvzrT73Oy/YiqDoqSLKaJ2heppbXTXUZJSQk2bdqEPXv2oGXLlqhXr16o8uhMso3DRJUgDpUo4TXmJpW1zfEw0V4U5suPIRIF+Z1QXU9h7nldB8apLpNyqcigK0vQ+zNd2rFhJKbzuZZYn47DoNuWbUw4v2GjMh9BONqmnFobDqXfdmWfNak/bK8504GQMANEQdUfJT2QSpaoOd1p+Xp5MtWqVUO7du3CFkOL5NclEhdO0JFQvwo28f/DVFKyh51TBijxmq5B5XTdZnTTrT0/dSTiJyLtVwaZOkxFpP3gtQ9M9sMUuvKprjlTa8FLBpnnTZQPu26n8bSxB1TXh4zuDWqN655FsueGk043dX77OUd1UN1LQespmXFTua+z/nV1mE4dXuvIST63enQCAH72jZPsfu1Z22tOR1/p2oGydSTf8zMnpnSz7NoMmijJ4kZafpFaZULVcErcQKlIvOdWTuZ5GVQcVdl6nK7J9llGIcRiMa2xSW5DdqzL7qlGEf3c99NG8nUdg8e0EnQaa9Ux0llPsug4KFHEhlwyektXFtk6ndaMbl9l159Keyr3/OytIAIMqYxLmWumZTHxnJucKvte19kLChNrVaacHxsjCJzkMyGDjJNsqq3Eevw6SaZtmzJ0zgXb+0Fmzbr12eTaVrUjks8lJ93kV7eo9tnkmW/SHggLOt1piuxG9aMITWNjs8vcS1Xe7zglP2dSPplndB0ZmTbcFKuuw+sXrwPE65lU92QP01SoOGCysqm063Vf1tlJ7rtfw9rpnpMOcDP0ZcbIrU6vYFxy/bKBHadsp4x8bu257bmgnA6ZOVExfLz6p7vWgjKsZMffZnDb1H5UdZxUdadbOdnrMnW6YWp9hJU108lkBoFp2yZVHTL9sT1GMmvW9nio6Fgduyi5vN9gsOzZ5XY+q9aViqhnvOl0WyQ/P9/xuolMiyn8ZB/8HHB+HPAwx8+k0WdKdhPOt0o7qg6vrEK3Kb+pTJWMA2ZKLq9nZMffaR5k3kzQycrp3DMR/EpVp04wLlVdsmuoDF0D0mueUpU3kVGQmRMVw8fEGvJTrwqygQI3uVTmwE9GXUUWGX1hIuhsCj/nmcqeVUVmnwVtm4TppNvon415kw3w+G3TZhZWVTcFlW1XDSK7nc+2AxlRgU63RQoLCwG4Z29MKhlT2WPZzWzKADJhGDvhFlDQHW+TRp/p7ImsTFEwDGQyKyYPMVP7zE+wyKu+VKhkf00Y7W71yhiculHzMPDrJLnV57bmTM6TjE5yyyj4yaAGMZ8mjWGZcfezT4I+C03VGQVnTEXP2awjFTLrw69t5yfhIaN/hRBa8th2+pKRqdurDTfZndpJ1aaqjSFbJrlet7G1FcT0i+p+sxGYMJkICwI63QGgmylxQlcJpqpHtZxXdD5KC98tw5fKwbMlv079utkzlXq91qat8ZA5VHVfJTK5z3TbNpF1TG5Hxpk14Vi7yaCauU5Vxo8sJp/3G4yR0Y+qgU3VNmXu+8lcu60t08adl+zJ5VT3aZQyJqq6wq283/Vrwzk18ZxqkM+Po64zhrrnRKp6ZIO6bplCr/ZS6Ty3vSdbt4315CWTbDndgLmtvqjq4bCQDVrIoGvTpZIpsbwte9k0dLoDRHdTuS0wXUdbNWIm68iYcvxVI7hudchEMFU3rqqhpJtFSe67H6fF7VqqedaV16kuWWfB7z4x+RaC6trTnWe/h5GJrIPfcfOTMU0li27W3Mb4m3zODa/x8dJnpmXSyV6Y1tWpZDLRV1U9Zao93eyVycCO3/PI6V6q53TG1W+Qz00eE/X41VPJ9XhdM0my7CbPTVnCylKGobeDbEc3oOd0zaSu9YvMWvUbhLMNne6IYDKa5FSv33psGDey7aluetlDxESGR9dAlmk38XndvnvNv0q0VUaR+8momRor2fIy+D1wTGaldOsJ6uBRdR5Uy+oEhKIW6TadGfN6Loj+23IYdBwZHSNTN+MkE2A0eZ6b0iV+HES3rKGXg+xnfZp2zoRQe83aSZbk+tzakqnD7brbfb9jkiyfySCaV12pzledoI6OnDL1mzhnTephlWCanzNZ1saVLaNSLlVZG4HEoKHTHQAqhpafTKZbvSp1mlAQTgaJ39dpgnAyVJ04HUPCS7mbDI6YVEB+s/W6yERhZXFz4mzgZZyaMIC90DWYTNSl245TGR0jwOQYua3DoAMgJgIcQax/P+Oi82aHn0CqW3mvOrzk8ePIyAR//dYjcy8VNoP5qtk2lUy8apbaxPnsVYfX+AeRETfRhm5wJvl5Wf3vtj786mavAI3MPadxCCvLn4hqIkWnjG5iJKwgsm3odAeAbubC70ZQxcRrJCoGSfIzyf+fSj5VWVTumxhX3Yxu0G8TmMTmvJk2NEwYT7JtJCLTD9UDSkYGNydfN2tjIhuie5jbiHb7lcXk3pXVh35RdTxlDDS3vRt0/5za010XsnWoBJhtvBmiW4+qI+4XW0Eqt/2YStfKjouJNxR06rBlF/jNOqpiqu+qgXOTNp3beSmrb5LXqNveMxkAlwlW2NDHqs6zTrBVtu4oQKc7IqgeyjoLK4hn/CpWkwEKm4rEiaBesXErY9ORTG5P1RCVRSd7Y7p+3TXj11CVOaD8BKlknAE33Bz5oLOqqk6c3zm1jZMRpqPDTMsrYyQml5XNRpkMpKZy+IMIpKqW8yKot03cUA3KqNwLWleoyuCGifNMZsxMOFW6+joZ0wkPU9iQy238dbPtqqjoWjdk3xRQqdMEqoET3bqjCJ1ui6T6nW4TeC1aU1ncKClbt8NCRzl5ZWFkZNFxeFUMaZ2simzduuVVDxebStBWFiDVHHntNRuGnJujbLI9GSdWNVuv65DLONKqTpxMRsFLb/p13HWft2EgqzpLuhluVVmilAUJOhMvo9Nt6lPTQUydvWNap5tONsj2ye861s3yy14zNS6q+j5MZOQy5fB6YSoI7DT+qray36Cun4ST25sClRE63QEiu1h1I6kyxr+MkSmLX2VrO2Ks0qauI+lH+fodK5OGWZiHpKksnqwjmYybESWTGTaxLoM2pGVee9OVy+t5tzF2Wr86MrgZ3U560qnvusEYt4Cc0/N+zwBdXe4mi6nApqxctrLfbu241aOrR/0GL20b+rIyqSBrU5ioWxaV9aQaQJctZ+Jc0MFmcMOGrk6sK9Xfss/Jlklnx04mCG/S/lM9r2UD2Knu6e4brzM4KtDptkhhYSGAigvTSWmbyJbpRPF0DiRTytZPxFW1XTfl4PWM17UgkB0rE1muVPdVFZnb2nHbAyYzXW7OlMqhoLoWbBrrTs/pHnQmUTX2bMrqpptUA2sy92QNH1ndqZPZVt37qnpcd43aygqZDvSacB6ikOEzndn1QtWmUGlPd22rlNUNuKvIYHqtugXtTDm+XjLI6ArdAICJuZANIJqy6UwG2k3amX7rkjmv3QLMJpCxEU0EH4KATncA6GbLnAja6VONxutEmHQOMVVSjbnqAWkiCqeCiQNVJWPndl/XOJFVhqYUpWxgQsex8bqWLINscEPXUNUxeHXakcFkdD2RVPKEYZiYMmBk0Ql+eRnPNrIhtvEbmEh+Jqj5tlWn6SCbqhPi17E3nQV2S2ykwkTQ361er2uJ6GYFE/9ftR8ytoXf4JNuIFAW1aBAUIFeFbwSWsll3K6ZlEulnqCSDG5JlHSBTnea4Xex2TY2VDaFbmbMZL9NHDQy5WUzrX5lSW4jsQ6dAyeKkcJkTEX6ZeqWRdbo8Ov4q6K75sJ0PlL120Yk3VQ5U+joJyddY0tuGw6aHz0vi+p8mzw3TThJyfrFVFA3sU43/Dr2fup0e1tKtS6ddpP/3+lvVdx0ri3nKlV5Pw6eLqnWs2wA3eQY+e2rn4y3yllnI6ARlANrch7SwUZNhE53BJFVerYitabr1jGaZbJ6Xsg6nir1qJbT6YeJQ083MyuDm/Ghck1WFtMHr4pMMhFnW9g4JHUj0jYOtqCi4zbWhe4zJtePLecoLBmS15qJgKPbNZl7ZcgGu1X0hcngrt83ZZzKqep22bd6vK55PSu7PpLlMukY6zr5KjKEldVzsx1Mt++VDAkjGOo3AOIVtPZjC+mgMpa6a82mD6JDlLPfdLojgpeDqHvg+s0CBhFFknm9Rqc+L8czlSJUHbPk9mTnLRUmopo28YrM+j20ZQwaE6+J2cjWyCBruIblVMnI4NeJ0UE3AGJyXai8MWNCFl1UAzY2AxOqWStVZPS17ts+ssFuP+vClrOaalxk50H2PNN5q0f2nPdjDyTLlUp/BLUPkmXQ0ZMmAud+ghB+3grQPePc6la9r3s26QYCndavH1vIqW5bmHxbxFTgSxabCUm/0OlOweOPP47WrVsjJycHffr0wdKlS62258fRUq0XsJOhTCyvUpfM6zUqcsk6aX5lSFVetw8mo5q2M6DJ2HKAbNcDBJMJTXxO1XA1mfE2ddD7zbol1uXXEPKqw08mzq3N5Gf87l9ZQ1UG1YCNzJy7GctucqqubVOGku3AnMqZ4SfjrWsbCOH8nSVhBd5VnC0TwXcvnNalqv71Y6+Y7ptuUKUMW2eIV/BDtg2nNaE6rjaD1KpBBb+ymLCVTdoWbrgF8myeAUEFuVWg0+3ASy+9hOuuuw7jxo3Dp59+iu7du2PAgAHYuXOnUj26v9NtwtHVySr4zVAmllcxFPxEXP04e34MJZOKSEYeVVmCVjam29NxZnQj/arrQNVB8WtAyhiCqkasm4PnVxZZZI0wmeCUjHHjJbvfNx9U9q9XH3QMVROoOs0qZZzaMRFsTlXez5iZzpCYDkQFHeQ0gUqWV9chNIVfvZCqDpn51Q20uTmlfoOtsuX8BqTd2jChK3SSQl7Y1NUycnqVcdtLKsFZ20EZmTajmLlWhU63Aw8//DD+/Oc/45JLLkHnzp3xz3/+EzVq1MCzzz6rVE/ZT4aVYeuglI3YpsKEQtbZDCai2bqZXZW6ve6ZOmhkZZFxGm3LZFv56axlv5H+RGQOJrfItqr8uplM2WCMW4DHSWadtekWcFANosjKLvO8G7JrQGU8ZIICsmMdhG5JxKQ+1c0Qyo5HqnImsjcqTpIJknW5TvbbtCx+nks1brpnvk5//cyZiSyibpZT13lzc16CcJRTtWPS4VeRxa0dGUfPdtLFrS6ZoKRq4NKvvej1nMre1j2fbdr7QUGnO4kDBw5g+fLl6N+/f/xaRkYG+vfvj0WLFjk+U1xcjKKionL/nDDpHJmsw8QB7jdLJIObwWXikNRFNxKo8pyXY5dKJtX6VR1X3Wi8DWdCNdKvetilKhPU/tHN8HrV4fasjvPt5dCrjK3TvVR/ez0vi1MdKpk3VQNX1zjXlUGmrrDOhMTnvMbKT4ZbNZCne77YzkibOs/csrKyeO17U+gGGv3W7UQUggdh2X+qtoJNTCaF3Nau7Pmim1BxuyZTxkYQyAmbZ6QMsn2PonNOpzuJH3/8ESUlJWjcuHG5640bN8b27dsdn5kwYQLy8/Pj/1q0aCHdXpjGTbqhm8lPVYdpVA05lef8yK1Tv25fZMvbmD/VSL/Jwy4IwtAVQfdVZX5158+PDH7bMTmeUa3LFFGUyQtdPWqqPZP12JDd9v60YcyHjZdMYcscdvsy2NwnNttTJah2o2gnBaXD/EKn2wC33norCgsL4/+2bNkStkiEEEIIIYQQQiJAZtgCRI0GDRqgWrVq2LFjR7nrO3bsQJMmTRyfyc7ORnZ2dhDiEUIIIYQQQghJI5jpTiIrKwtHH3003nvvvfi10tJSvPfeeygoKAhRMkIIIYQQQggh6QYz3Q5cd911GD58OHr16oXevXvjH//4B/bu3YtLLrkkbNEIIYQQQgghhKQRdLodOO+88/DDDz/grrvuwvbt23HUUUdh9uzZFb5cLRVlH95P9S3mhBBCCCGEEELsUOaHReVL1WIiKpJUIjZs2IB27dqFLQYhhBBCCCGEVFm++eYbtG3bNmwxmOm2Qb169QAAmzdvRn5+vnY9xxxzDD755BNfspioI0qyFBUVoUWLFtiyZQvy8vJClaUyja2pcTUhS5TqMFEPx9ZePVHSB6bqiUodURrbyjY/HFs7dVDX2qsnSmvWVD1RkYVja6+OwsJCtGzZMu6XhQ2dbgtkZPz2/XT5+fm+NlC1atV8Hxwm6oiaLACQl5fHsbUgi99xNSVLVOowWQ/H1l49UdAHpuqJSh1lRGFsK9v8lMGxtSMLda29eqKwZk3VEyVZAI6tjTrKKPPLwiYaUhBHRo8eHYk6TNVjShYTRKk/UZLFBFHpT5TmxxRRGZfKNrZR6k9U6jBFlPoTJVlMEKX+REkWE0SlP1GaHxNEqT9RksUEUepPVOqIGvxMtwWKioqQn5+PwsJCY1Ea8hscWztwXO3BsbUHx9YeHFt7cGztwHG1B8fWHhxbe0RtbJnptkB2djbGjRuH7OzssEWpdHBs7cBxtQfH1h4cW3twbO3BsbUDx9UeHFt7cGztEbWxZaabEEIIIYQQQgixBDPdhBBCCCGEEEKIJeh0E0IIIYQQQgghlqDTTQghhBBCCCGEWIJOt2Eef/xxtG7dGjk5OejTpw+WLl0atkihsnDhQgwePBjNmjVDLBbDjBkzyt0XQuCuu+5C06ZNkZubi/79+2PdunXlyvz0008YNmwY8vLyUKdOHVx66aX45ZdfypX54osvcMIJJyAnJwctWrTA/fffX0GWl19+GZ06dUJOTg66du2KmTNnGu9vUEyYMAHHHHMMateujUaNGmHIkCFYu3ZtuTL79+/H6NGjUb9+fdSqVQvnnHMOduzYUa7M5s2bMWjQINSoUQONGjXCjTfeiEOHDpUrM3/+fPTs2RPZ2dlo3749pkyZUkGeyrTuJ02ahG7dusV/M7OgoACzZs2K3+e4mmPixImIxWIYO3Zs/BrHV4/x48cjFouV+9epU6f4fY6rP7Zu3YoLL7wQ9evXR25uLrp27Yply5bF7/Ms06N169YV1m0sFov/XBDXrR4lJSW488470aZNG+Tm5qJdu3a45557kPg1Tlyz+uzZswdjx45Fq1atkJubi+OOOw6ffPJJ/D7HVo508hFkZPFEEGNMmzZNZGVliWeffVasWrVK/PnPfxZ16tQRO3bsCFu00Jg5c6a4/fbbxWuvvSYAiOnTp5e7P3HiRJGfny9mzJghPv/8c3HGGWeINm3aiH379sXLnHbaaaJ79+5i8eLF4oMPPhDt27cXQ4cOjd8vLCwUjRs3FsOGDRMrV64UL774osjNzRVPPvlkvMxHH30kqlWrJu6//36xevVqcccdd4jq1auLL7/80voY2GDAgAFi8uTJYuXKlWLFihXi9NNPFy1bthS//PJLvMyoUaNEixYtxHvvvSeWLVsmjj32WHHcccfF7x86dEh06dJF9O/fX3z22Wdi5syZokGDBuLWW2+Nl9mwYYOoUaOGuO6668Tq1avFY489JqpVqyZmz54dL1PZ1v0bb7wh3n77bfH111+LtWvXittuu01Ur15drFy5UgjBcTXF0qVLRevWrUW3bt3EmDFj4tc5vnqMGzdOHHnkkeL777+P//vhhx/i9zmu+vz000+iVatWYsSIEWLJkiViw4YNYs6cOWL9+vXxMjzL9Ni5c2e5NTt37lwBQMybN08IwXWry7333ivq168v3nrrLbFx40bx8ssvi1q1aolHHnkkXoZrVp9zzz1XdO7cWSxYsECsW7dOjBs3TuTl5YnvvvtOCMGxlSWdfAQZWbyg022Q3r17i9GjR8f/LikpEc2aNRMTJkwIUarokLyhSktLRZMmTcQDDzwQv7Z7926RnZ0tXnzxRSGEEKtXrxYAxCeffBIvM2vWLBGLxcTWrVuFEEI88cQTom7duqK4uDhe5uabbxYdO3aM/33uueeKQYMGlZOnT58+4vLLLzfax7DYuXOnACAWLFgghPhtHKtXry5efvnleJk1a9YIAGLRokVCiN+UXUZGhti+fXu8zKRJk0ReXl58LG+66SZx5JFHlmvrvPPOEwMGDIj/XRXWfd26dcUzzzzDcTXEnj17RIcOHcTcuXPFSSedFHe6Ob76jBs3TnTv3t3xHsfVHzfffLM4/vjjU97nWWaOMWPGiHbt2onS0lKuWx8MGjRIjBw5sty1s88+WwwbNkwIwTXrh19//VVUq1ZNvPXWW+Wu9+zZU9x+++0cW02i7CPIyCIDXy83xIEDB7B8+XL0798/fi0jIwP9+/fHokWLQpQsumzcuBHbt28vN2b5+fno06dPfMwWLVqEOnXqoFevXvEy/fv3R0ZGBpYsWRIvc+KJJyIrKyteZsCAAVi7di1+/vnneJnEdsrKVJa5KSwsBADUq1cPALB8+XIcPHiwXJ87deqEli1blhvbrl27onHjxvEyAwYMQFFREVatWhUv4zZulX3dl5SUYNq0adi7dy8KCgo4roYYPXo0Bg0aVGEMOL7+WLduHZo1a4a2bdti2LBh2Lx5MwCOq1/eeOMN9OrVC3/84x/RqFEj9OjRA08//XT8Ps8yMxw4cAAvvPACRo4ciVgsxnXrg+OOOw7vvfcevv76awDA559/jg8//BADBw4EwDXrh0OHDqGkpAQ5OTnlrufm5uLDDz/k2BoiSuMoI4sMdLoN8eOPP6KkpKSc4geAxo0bY/v27SFJFW3KxsVtzLZv345GjRqVu5+ZmYl69eqVK+NUR2IbqcpUhrkpLS3F2LFj0bdvX3Tp0gXAb/3NyspCnTp1ypVNHlvdcSsqKsK+ffsq7br/8ssvUatWLWRnZ2PUqFGYPn06OnfuzHE1wLRp0/Dpp59iwoQJFe5xfPXp06cPpkyZgtmzZ2PSpEnYuHEjTjjhBOzZs4fj6pMNGzZg0qRJ6NChA+bMmYMrrrgC11xzDf79738D4FlmihkzZmD37t0YMWIEAOoDP9xyyy04//zz0alTJ1SvXh09evTA2LFjMWzYMABcs36oXbs2CgoKcM8992Dbtm0oKSnBCy+8gEWLFuH777/n2BoiSuMoI4sMmdIlCSGRZPTo0Vi5ciU+/PDDsEWpNHTs2BErVqxAYWEhXnnlFQwfPhwLFiwIW6y0Z8uWLRgzZgzmzp1bIUtA/FGWwQKAbt26oU+fPmjVqhX++9//Ijc3N0TJ0p/S0lL06tULf/vb3wAAPXr0wMqVK/HPf/4Tw4cPD1m6ysO//vUvDBw4EM2aNQtblLTnv//9L/7zn/9g6tSpOPLII7FixQqMHTsWzZo145o1wPPPP4+RI0eiefPmqFatGnr27ImhQ4di+fLlYYtGIgwz3YZo0KABqlWrVuFbNXfs2IEmTZqEJFW0KRsXtzFr0qQJdu7cWe7+oUOH8NNPP5Ur41RHYhupyqT73Fx11VV46623MG/ePBx22GHx602aNMGBAwewe/fucuWTx1Z33PLy8pCbm1tp131WVhbat2+Po48+GhMmTED37t3xyCOPcFx9snz5cuzcuRM9e/ZEZmYmMjMzsWDBAjz66KPIzMxE48aNOb6GqFOnDg4//HCsX7+e69YnTZs2RefOnctdO+KII+Kv7/Ms88+3336Ld999F3/605/i17hu9bnxxhvj2e6uXbvioosuwrXXXht/w4hr1h/t2rXDggUL8Msvv2DLli1YunQpDh48iLZt23JsDRGlcZSRRQY63YbIysrC0Ucfjffeey9+rbS0FO+99x4KCgpClCy6tGnTBk2aNCk3ZkVFRViyZEl8zAoKCrB79+5y0cP3338fpaWl6NOnT7zMwoULcfDgwXiZuXPnomPHjqhbt268TGI7ZWXSdW6EELjqqqswffp0vP/++2jTpk25+0cffTSqV69ers9r167F5s2by43tl19+WU5hzZ07F3l5eXED02vcqsq6Ly0tRXFxMcfVJ6eccgq+/PJLrFixIv6vV69eGDZsWPz/Ob5m+OWXX/DNN9+gadOmXLc+6du3b4WfZPz666/RqlUrADzLTDB58mQ0atQIgwYNil/jutXn119/RUZGeRO/WrVqKC0tBcA1a4qaNWuiadOm+PnnnzFnzhyceeaZHFtDRGkcZWSRQvor14gn06ZNE9nZ2WLKlCli9erV4rLLLhN16tQp962aVY09e/aIzz77THz22WcCgHj44YfFZ599Jr799lshxG9fwV+nTh3x+uuviy+++EKceeaZjj8H0KNHD7FkyRLx4Ycfig4dOpT7OYDdu3eLxo0bi4suukisXLlSTJs2TdSoUaPCzwFkZmaKBx98UKxZs0aMGzcurX5WIZkrrrhC5Ofni/nz55f7uZVff/01XmbUqFGiZcuW4v333xfLli0TBQUFoqCgIH6/7KdWTj31VLFixQoxe/Zs0bBhQ8efWrnxxhvFmjVrxOOPP+74UyuVad3fcsstYsGCBWLjxo3iiy++ELfccouIxWLinXfeEUJwXE2T+O3lQnB8dbn++uvF/PnzxcaNG8VHH30k+vfvLxo0aCB27twphOC4+mHp0qUiMzNT3HvvvWLdunXiP//5j6hRo4Z44YUX4mV4lulTUlIiWrZsKW6++eYK97hu9Rg+fLho3rx5/CfDXnvtNdGgQQNx0003xctwzeoze/ZsMWvWLLFhwwbxzjvviO7du4s+ffqIAwcOCCE4trKkk48gI4sXdLoN89hjj4mWLVuKrKws0bt3b7F48eKwRQqVefPmCQAV/g0fPlwI8dvX8N95552icePGIjs7W5xyyili7dq15erYtWuXGDp0qKhVq5bIy8sTl1xyidizZ0+5Mp9//rk4/vjjRXZ2tmjevLmYOHFiBVn++9//isMPP1xkZWWJI488Urz99tvW+m0bpzEFICZPnhwvs2/fPnHllVeKunXriho1aoizzjpLfP/99+Xq2bRpkxg4cKDIzc0VDRo0ENdff704ePBguTLz5s0TRx11lMjKyhJt27Yt10YZlWndjxw5UrRq1UpkZWWJhg0bilNOOSXucAvBcTVNstPN8dXjvPPOE02bNhVZWVmiefPm4rzzziv3O9IcV3+8+eabokuXLiI7O1t06tRJPPXUU+Xu8yzTZ86cOQJAhfESgutWl6KiIjFmzBjRsmVLkZOTI9q2bStuv/32cj+bxDWrz0svvSTatm0rsrKyRJMmTcTo0aPF7t274/c5tnKkk48gI4sXMSGEkM+LE0IIIYQQQgghRBZ+ppsQQgghhBBCCLEEnW5CCCGEEEIIIcQSdLoJIYQQQgghhBBL0OkmhBBCCCGEEEIsQaebEEIIIYQQQgixBJ1uQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoQQQgghhBBCLEGnmxBCCCGEEEIIsQSdbkIIIYQQQgghxBJ0ugkhhBBCCCGEEEvQ6SaEEEIIIYQQQixBp5sQQgghhBBCCLEEnW5CCCGEEEIIIcQSdLoJIYQQQgghhBBL0OkmhBBCCCGEEEIsQaebEEIIIYQQQgixBJ1uQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoQQQgghhBBCLJEZtgCVkdLSUmzbtg21a9dGLBYLWxxCCCGEEEIIqTIIIbBnzx40a9YMGRnh55npdFtg27ZtaNGiRdhiEEIIIYQQQkiVZcuWLTjssMPCFoNOtw1q164N4LdJzsvLC1kaQgghhBBCCKk6FBUVoUWLFnG/LGzodFug7JXyvLw8Ot2EEEIIIYQQEgJR+ahv+C+4E0IIIYQQQgghlRQ63YQQQgghlZSoZHkIIaQqQ6ebBAYPfkIIISQ4ys5dnr+EEBIudLpJIPDgJ4QQQoJHCBG2CIQQUuWh000Cgwc/IYQQEgyxWIznLiGERAQ63YQQQgghlRy+aUYIIeFBp5sQQgghpBLDjDchhIQLnW5incRX3IQQjLYTQgghhBBCqgx0ugkhhBBCCCGEEEvQ6SaEEEIIqUTwS9QIISRa0OkmhBBCCCGEEEIsQaebBA6j74QQQkiw8OwlhJDwqNRO96RJk9CtWzfk5eUhLy8PBQUFmDVrltSz06ZNQywWw5AhQ+wKWQXhF6kRQgghwcKzlxBCwqNSO92HHXYYJk6ciOXLl2PZsmXo168fzjzzTKxatcr1uU2bNuGGG27ACSecEJCkhBBCCCH+SfV5bv56CCGEhEeldroHDx6M008/HR06dMDhhx+Oe++9F7Vq1cLixYtTPlNSUoJhw4bh7rvvRtu2bQOUtvLCV9oIIYQQQgghVZVK7XQnUlJSgmnTpmHv3r0oKChIWe4vf/kLGjVqhEsvvTRA6So3yZF1OuGEEEIIIYSQqkJm2ALY5ssvv0RBQQH279+PWrVqYfr06ejcubNj2Q8//BD/+te/sGLFCqU2iouLUVxcHP+7qKjIj8iVCqfX3PhTJoQQQgghhJCqQqXPdHfs2BErVqzAkiVLcMUVV2D48OFYvXp1hXJ79uzBRRddhKeffhoNGjRQamPChAnIz8+P/2vRooUp8SsldLgJIYQQ8zCoTQgh0SQmqph27t+/P9q1a4cnn3yy3PUVK1agR48eqFatWvxaaWkpACAjIwNr165Fu3btHOt0ynS3aNEChYWFyMvLs9CL9CGVAUDDgBBCCDGL19nKs5cQUlUoKipCfn5+ZPyxSv96eTKlpaXlHOQyOnXqhC+//LLctTvuuAN79uzBI4884pq9zs7ORnZ2tnFZKwM83AkhhJBowDOZEELCoVI73bfeeisGDhyIli1bYs+ePZg6dSrmz5+POXPmAAAuvvhiNG/eHBMmTEBOTg66dOlS7vk6deoAQIXrRB63ny4hhBBCSHAw000IIeFQqZ3unTt34uKLL8b333+P/Px8dOvWDXPmzMHvf/97AMDmzZuRkVHpP9YeSXjwE0IIIeaQ+Q3ust/q5vlLCCHBUuU+0x0EUfsMQRThoU8IIYSYQ/Zc5flLCKkKRM0fY5qXWCVV5J0HPiGEEBI8PH8JISR4IuN079+/3/ELzkjlROY1OEIIIYSYhecvIYQET2if6Z4/fz5ef/11fPTRR1i9ejX27dsHAKhRowaOOOIIHHfccRgyZAhOPvnksEQkPuErbIQQQgghhJCqTqCf6T548CCefPJJPPzww9i0aRPq1auHnj17om3btqhbty6EEPj555+xceNGfPrpp/jpp5/QqlUrXH/99bj88stRvXr1oET1RdQ+Q0AIIYSQyguD3IQQUp6o+WOBOt2tWrXCgQMHMHz4cJx77rno2bOna/nly5fj5ZdfxnPPPYesrCxs2rQpGEF9ErVJDgs3I4AGAiGEEGIGlTOV5y8hpCoQNX8sUKf7ySefxIgRI5Cdna303IEDBzB58mRcfvnlliQzS9QmOSy8DnYe/IQQQoh/6HQTQkh5ouaP8SfDLBC1SSaEEEJI5YWONCGElCdq/lhkvr2cVD68viGV36BKCCGEBAvPXpKKWCzG9UGIJeh0E2sw6k4IIYREC57N0SDKDm5U5SIknQnV6c7IyEC1atVc/9WsWRMdO3bEqFGj8M0334QpLoHaIUGlTQgh4RJlw56YQefVcq6JcIni+JetIwZlCLFDaL/TDQB33XUXXn/9daxatQoDBw5E+/btAQDr1q3D7Nmz0bVrV/Tr1w/r16/H5MmT8eKLL2LhwoXo3r17mGITQgghkafMsBdC8DO/hFgicZ+pULYvCSFVg1Cd7mbNmuHHH3/EV199hbZt25a7t379epx88sno3LkzHnjgAaxbtw4FBQW47bbb8Pbbb4ckcdVG1YDze58QQog/qGeJE1wX5qlMgS0G6ggxT6ivlz/wwAMYPXp0BYcbANq3b4/Ro0djwoQJAIAOHTpg1KhR+Pjjj4MWkySgooD5RWqEEFJ54avr6QvnzQy6We6oQQebEPuE6nR/9913yMxMnWzPzMzEli1b4n+3bt0axcXFQYhGfFKZFDgNS0JIumP6VVbqxPSmspzPUcDvWHIvEVI1CNXpPvLIIzFp0iTs2LGjwr3t27dj0qRJOPLII+PXNmzYgCZNmgQpYuiUOXzpppRlDqF0+DxT1OUjhBAnggh8ln3pEvVk+sE5iwZRDn5wbxNillA/0/3ggw/Gv0BtyJAh8S9SW79+PWbMmIGDBw/i2WefBQDs378fU6ZMwcCBA8MUORTSUfFVpkx32fine58S11A694MQQkxQWV4NJulFutsShBA9QnW6Tz75ZHz88ccYN24cXnvtNezbtw8AkJOTg/79+2P8+PHo2bNn/Nq2bdvCFDdwouRoJx8SVe1LNtIx8OFEZekHISRapNt5kKgH0032RHRlj1J/K1Pww8SXzBJCKiehOt0A0KNHD7zxxhsoLS3Fzp07AQCNGjVCRkaob75bQedgKSubbk5uushZVUmntUQIMYeJvZ8qCJtulPUhHWX3SxTPgCjK5IbuPohaP73kiZq8hKQrkfBsi4uLsWTJEixZsgSZmZmV0uEuI12NE1V0+piun193Imr94KvlhBDufVKG6lqwdaZVpix3ZaQyz0vU7LSqTFWZh9C920cffRRNmzZF3759cfbZZ+OLL74AAPz4449o0KBB/DPdOkyaNAndunVDXl4e8vLyUFBQgFmzZqUs//TTT+OEE05A3bp1UbduXfTv3x9Lly7Vbj+RqhYplO1rchAiSmNU2eYsan2pTEEWkh5UlfVW2XQXMY/KPkh+Fd80UQkAkNSYGO+ozlsUZapKlI1/VZiHUJ3uyZMnY+zYsTjttNPw7LPPllO8DRo0QL9+/TBt2jTt+g877DBMnDgRy5cvx7Jly9CvXz+ceeaZWLVqlWP5+fPnY+jQoZg3bx4WLVqEFi1a4NRTT8XWrVu1ZaiqqG6e5PLpvPkSDd507kcQeH37cVQPaR0qU1/SEY59+ERlDipTUEK3H6pv3ZXp6rCxHQAIguRxjPobkCbnXaWvNgPzfMMiGiTPQ/L+dpr/dLalYiLEFdelSxd06NAB06dPx65du9CwYUO8++676NevHwDgvvvuw6OPPmrU6a1Xrx4eeOABXHrppZ5lS0pKULduXfzv//4vLr74Yuk2ioqKkJ+fj8LCQuTl5QGoeMjrfIYmTENBVR4VWZ2UXxSMIt05SHa6w+6HkxxRkMtrnJKVatjy+kX2jQ4aA3YoW2NVYXxN6WaV+mXOtDLCHns/52vU1k8QutzmmeYUpJa1jcI+x0zYCCrP2UJWZkB/3evMW6LONj02UVpHUSJo/eZkmyaSfGar2oVO/liYhJrpXr9+vetPgNWrVw+7du0y0lZJSQmmTZuGvXv3oqCgQOqZX3/9FQcPHkS9evV8tW0qIhNWNDSVQjIlT1Qi6FWJsCPrboo1+XplWBuqB1nY81OZqQzryQ9+15af86Cqj70bYWRvdNqzqZu4PqKL6bf3bGWvdeu1KU+6nOVReEuzzOZLtP2cgnLpqitC/fbyOnXq4Mcff0x5f/Xq1WjSpImvNr788ksUFBRg//79qFWrFqZPn47OnTtLPXvzzTejWbNm6N+/v2u54uJiFBcXx/8uKiqqUCZdF4guVa2/lQ2drJSOYynTflnZdI9Gy7xpkO59JOHDNRQMquPs9fYBELyeU8k2RoEoOS9ewaewM/CJ8piirG9++ycTuElsQ2ZMk19LVpHPdiDJxJgFSRSD/lHda6qEmuk+/fTT8dRTT2H37t0V7q1atQpPP/00zjjjDF9tdOzYEStWrMCSJUtwxRVXYPjw4Vi9erXncxMnTsS0adMwffp05OTkuJadMGEC8vPz4/9atGjhS+agMb25TGW/o7bpZYiizLpKSSXimXzg6ZA85+mkSFVQNdQJSXecDOh0pKwfqrqprL9u/dbRd34NznScB6+PITkRdLbRa05SORBeqPTDVsYy7EyoG7J7M2hHLV1tGdtzHMU1ZJtQP9O9bds29OnTB0IIDB48GE899RQuvPBClJSU4NVXX0XTpk2xdOlSNGjQwFib/fv3R7t27fDkk0+mLPPggw/ir3/9K95991306tXLs06nTHeLFi3inyHQ/fxbEJkwGSdH9fOBpmQMO4Jlat6i2A+368n3VD+jJhuRTiVTGVEbRz84fW5JZk50smlA+h7ytvA7rumC7Pz76b/qeeB0Pczx93O26n4OtKys0/wkX1PZwyacbt21YmIOVc9L3fPVhl7U2Qdu92RtCxvncRABHycdAMjbnSr9iJJ9raMvwiAM29WWDkmEn+lOoFmzZli+fDlOO+00vPTSSxBC4Pnnn8ebb76JoUOHYvHixUYdbgAoLS0t5yAnc//99+Oee+7B7NmzpRxuAMjOzo7/LFnZP5uYig7RQHenKoyL01oysb686kg1tmWRardXidINtwNeppxKO0SOdF5LidmuxL+joM/TdVx1kc2yJmb5nZ5LnLOqlIELov1kx0fluXRcy1GU2elsU3WK3XRLFB3aVE4sMUu6nTmhfqYbABo1aoRnnnkGzzzzDH744QeUlpaiYcOGyMjwHw+49dZbMXDgQLRs2RJ79uzB1KlTMX/+fMyZMwcAcPHFF6N58+aYMGECgN++Lf2uu+7C1KlT0bp1a2zfvh0AUKtWLdSqVUtLhlTKQDZimeo5UyS/8mci0hU15adLFBW5SdzWkk52VaZe8hu2xqis3sq+dqsiiU61Xydb9/zRwe86V838lqF7tso+p7uHE5/zOza2s0S2cXOuTMulMl+J5Uw7T7pZ5cTnvcanqut+P2vI1p6Isl0UVbkqI6E73Yk0bNjQaH07d+7ExRdfjO+//x75+fno1q0b5syZg9///vcAgM2bN5dz7idNmoQDBw7gD3/4Q7l6xo0bh/HjxxuVzY2wD0K/pLv8gPlgSTrDQz69iPLhXhXw4/h5kZwxTReCcqwS67b5qqip+gB/cxnmWRT0WRh0X72y47qy6NoWuu3ZDmKYrjfMs6sqn520d4MhUk63af71r3+53p8/f365vzdt2mRPmIAIMtIfJYJ8tbIyZ/5NHTgm35yozCR+Ts+JqO1Jmw5lZaKyGm9Br0Xdz2lGZfzdHCw3gtr3XvVHSfeERdR0cGVD9dVzE+3JlLElQ9TWUlh6Mgr6OQwCdbozMjK0BrqkpMSCNJUXGYPD1MYPImMhYxgEiWp/o6Zkk0mWL8qyAtEfT1mS92nUM17JrzenC0Fn42zVmy6ZKiA6ezRZjnRat0FgYp781BFFG8TEGgnqYxtR2GN+SD5LdMbe9EcgbZ5vqeoOMmmU2F6iXF7lbdn4pkiX/RCo033XXXdVmOzp06dj1apVGDBgADp27AgA+Oqrr/DOO++gS5cuGDJkSJAiGiU/Pz+0rIDT37r1pAOy2RDV+io7fg+YMF75SyfDWea1/HToT7JRwOxPatJtjEzLmLimo/D6s9N1k6TDHKfCr9xRPz9063d6xuutJNl2TQYaVNp1IoprV+a8lJHZr/51+yy/yUSQ1/cH2EK2nXSwUdxkzM/PD1gadwJ1upM/F/3UU09h586dWLlyZdzhLmPNmjXo168fmjVrFqCE6YGMMtHdKFExmMJGp+9R/By4Srs2FGvy66GkImG+JaJapw2CjvKT/6NsnaTLHKRa025r3abuDdMgDTtLbaOeMpL1V9hv5qnuE7d2KoNjXIbMeKZj4Dlxvp3sF5k5URmTxDaiGoiK8jpMJ0L9ybAHHngAV111VQWHGwCOOOIIXHXVVbj//vtDkCwYoqhsytCVK+iNGdXxSze8jAmdtZoqAEHUieo6NyVXGLowyvo3SIQQjoal3zr91mXiYy9hvlpu+yy0mTHVkUM3yJ8uJL7Bkm5EXdeV6SCdRIctnBxhHRlT1VtWd6p7iW2HPXfpuOaB38avsLAwbDHKEarT/d1336F69eop71evXh3fffddgBKFj58olKmyppRLUCQbZmErqCgh+xqWTTgf/ojqPoxihixMbK3zoMbIhuMdlQyXaobS6fmg16nX+JicJ517yeV05jPdzgZTgQ6iT/I6sx3YSqXHTAQVy9pwupd8Pwp7xZQMUehLWITqdHfp0gVPPPEEtm7dWuHed999hyeeeAJdu3YNQTIzBB1hSd68boegaUVV2TZRZTkYZefFVpDF9OuBZXVWtvUWZfwEAqMQpQ8S1ddGozY+fl4TDYvKFkQOGtOOvcozXnMS9P4I4tVeN1TONp6D4WEi251KJzm93WNqTfpZ36b3hY36kj8CEEVC/cmwv//97xgwYAAOP/xwnHXWWWjfvj0AYN26dZgxYwaEEHjhhRfCFDGy6H42yaYslQm3sY3S2IeJ7BhU9XGyTZTXotNn47zKmuxL2GPj1SeV8QmSqMnjRTrJWplRsQVUPuvL+fUm3fasH3TXWbqMUSoZ00X+oN5E8EIIgaKiotDadyJUp/v444/HkiVLcOedd2L69OnYt28fACA3NxcDBgzA3XffndaZ7qCobA5vImE4uOmi2IKGwQY1KpsD6USqNZF86Eblld2oIDM+YRE1eRKJog5ykimq4+dElA18ldfbneYgbPn9YnIdJY+RqfEJa0/KBvxt7sUg+x0VvaySbAkjoByFMXIjVKcb+O0V8+nTp6O0tBQ//PADAKBhw4bIyAj1zffA8KuwZCLBQS36KG2uynDgpoLR/6qHzoHrpluCWENOjngU12xYckVxLKJCVNeKCukif1Vb/+kyL2Wkm7yJVIZ9nIqwgsnJgZNEeWwjY4eEGVBOh7djQne6y8jIyEDjxo3DFiNUVDerzIJ2+pyDzc/uBk2qz8T42ei6n1+VeVVOpm6vL9iIAlGRg+gjsyZNfllTFNeMKblM6NVUbwyEpVuDaNtU0LkyU1kdl7D6FVS7Tmvb9udYSeUmMXvsdC0KybcymVK1bXu9Rl1XBppO7ty5M5577jkcOHBA+pni4mJMnjwZnTt3tihZ+iIEvyDGNGEeYjJfBFE25zIRRxtrIwqRRBob+uhkzFXr93rG6y2VyoRscDRKRMn5dyLIDE+Y6zEo59B0fTJjFmagPlWG0jYqn0NWRXY8k522qoDN15yDHkunIE6UdHMyqRJjVZVAM90jRozAddddhzFjxuCMM85A//790bNnT7Rp0wY1atQAAOzduxcbN27EsmXL8O677+LNN99EVlYWbrzxxiBFDRzbGzdqRhNJTaqIYBQOSjq74WLqs6MmdYFstjK5nI23VBKJqs6LqlzpQhg6SPYNpaDm1WRblT3jrEIU5FH9LKzu25FR6GsQ2NQXYdlD6TZ3tBv/j5gIePb27NmDf/3rX5gyZQq++OKL+ERkZv7m/x86dAjAb5PUpUsXjBw5EiNHjkReXl6QYvqiqKgI+fn5KCwslJY7qM+BRPGg88Ltc6mp+hLk52pMtZd8GDr97eRwhTUGYeM1/0C4h5ON8Vddd07joFKHykciUq1TL3l021SRyUQ5P3XIjI/MXAVNEBllndfqbe9v2fXs9IzpObP9sYMg9FQQ7frVa1HQ14nlgPRyrqL28ZigcHp1OopBrCB0hlv/wxobHX/MJoE73Yls2rQJH3/8Mb766ivs2rULAFC/fn106tQJBQUFaNOmTVii+SJqkwykpxIvI5Xstpxu046GbL2pDq1EghqDdMBL8QN217vXAWPrVTZVI85rnZpyusuw7cDaqMfJcCrDhPOQuFZkxzsKOjsIGWwEMP1SlZxulXaDeNYPKsG/KDvd6UhVdrqBaPyyQlD2oE4iLCyi5o+F+kVqrVu3RuvWrcMUocqQzq93OMkepc1tc1wT+x6V/kaJVOtA1WDWJQoHbRQIW78kO/26sqR628QvZTKprpWw11UQ7VemPWRjDwQxPmGMv802o7ieoiiTTapKf8M++2SoKnORDkTm28uJfarSpgvakLPt2JGKpArGhCVHlB2UIMYlrHWanGnQDVJFIbiVDgYccaYy6ekg9FllGi9C6NgSGarGj2ETokDYr8WpQCO9IkHMXxQOWFkZEsukeivAaQ2F1UedNV0mpxAi/k/1eafnvGRRkVNVrrDXV9AkBkyigM6bCUEQpTFKhcwettUPmXqT5bM1zzyfqwY6Z046w3WtD51uQhJQVSSqRndQiiqKxmJYBJXlLWsniPZ0nNLKuB6icPCbHtfKOldueAWGgiYKMrgRdflksOXk2qrbD1HQU0FQVfoZVcJ0hmlzykGnmxBNonrAVzXcnF3ZuTGVZQviFWXdbG5lJag3G4hduKZTU9kyS7a/ByWKRFUuUyR/YRwhpCKRcboffvhh43VOmjQJ3bp1Q15eHvLy8lBQUIBZs2a5PvPyyy+jU6dOyMnJQdeuXTFz5kzjcpHoovNaKgkPp9eB/SBjLKQqQ2e4cuL2bbCk8hLFvcw1l35EcR3ZJArfjUH+D2ago0VknO6//vWv8f8/55xzjNR52GGHYeLEiVi+fDmWLVuGfv364cwzz8SqVascy3/88ccYOnQoLr30Unz22WcYMmQIhgwZgpUrVxqRh+iT/PquSgZThXQ1atJVbhP4zQLpGAmV7RBLx0xaFOStbOuARJfK9GZVVPoQ1c/tpyscx2gQ9EfqiDyh/k53In379sUZZ5yBs846C7169UJRUZGVdurVq4cHHngAl156aYV75513Hvbu3Yu33norfu3YY4/FUUcdhX/+85/SbUTtd+EqCzq/g6p6oIbx0ywm2qxKvweqitdYyP62q2x96YrqONiWBXA34oKU0emnxCrjGiBVF53zVaY+1XtBwqwsqYwEdZab1hk2iJo/FplM99SpU/HVV1+hf//++PXXX3HUUUfhoosuwgMPPIA5c+Zg27ZtvuovKSnBtGnTsHfvXhQUFDiWWbRoEfr371/u2oABA7Bo0SJfbRMSJIw+VkRlTDh+4SMT+AgSfl6REDXc9nBUDPSq9uo3qVpE8UtdqzqR+Z3uVq1aYfLkyQCAWrVq4Z///Ce++OILfPHFF3jrrbfw5ZdfIiMjAz/++KNSvV9++SUKCgqwf/9+1KpVC9OnT0fnzp0dy27fvh2NGzcud61x48bYvn27axvFxcUoLi6O/20rS0+iEyGPIoljwzH6P1Reg6rqr0yl0/4KQ05mxgiRIx0y3YRUVoL6UleiRqhOd/v27TF8+HDceeed5a5v374dtWrVwrHHHlvu+nfffafcRseOHbFixQoUFhbilVdewfDhw7FgwYKUjrcOEyZMwN13322sPuJMEBs8XZVIVXcWg6IyG4vpsobC/P1wQogcbq+dci8RYg/ur+gSqtO9YcMGLFu2DMuXL8fXX3+NvLw8HHHEEWjbtq1j+cMOO0y5jaysLLRv3x4AcPTRR+OTTz7BI488gieffLJC2SZNmmDHjh3lru3YsQNNmjRxbePWW2/FddddF/+7qKgILVq0UJaVhI9tgz7ZEDHdXjo4TVGiMjvRukRpTJy+q4AQYoeg9leUdAwhhARF6J/pfuutt9C7d28MGzYMgwcPRocOHdCtWzdMmzbNSnulpaXlXgVPpKCgAO+99165a3Pnzk35GfAysrOz4z9LVvaPRAdZQyLdDQH+ZBXxS5TWj9MXDjpdJ4T4J8iPJnEPE0KqIqF/prt69eq4/fbbcdJJJ+HAgQNYtmwZXnnlFQwbNgzz589X+tbwZG699VYMHDgQLVu2xJ49ezB16lTMnz8fc+bMAQBcfPHFaN68OSZMmAAAGDNmDE466SQ89NBDGDRoEKZNm4Zly5bhqaeeMtJXEjzp8sossYvKN2xG/ds4qyJ0uAmxj+n9xc90E0LI/xG6033ttdeW+0x3//79ccstt+Dvf/87brjhBhQUFGD48OFade/cuRMXX3wxvv/+e+Tn56Nbt26YM2cOfv/73wMANm/ejIyM/0v2H3fccZg6dSruuOMO3HbbbejQoQNmzJiBLl26+OskIUnQ6Eg/OGfBkxg049gTkl5QZxJCyP8R6u9016xZE/fffz9Gjx7teP+CCy7A119/jWXLlgUsmT+i9rtwVR3Zgz/M3/0l9lH5jXRbv6dOCCFVBepMQkiYRM0fC/Uz3Z06dcLbb7+d8v4JJ5yA1atXBygRIaSqQIOQEEKChR/3IoRUVUJ1ui+//HLMnj0bV199Nfbt21fh/kcffYQaNWqEIBmpigTpgEXpC6uqErq/101DkRBCCCGE6BLqZ7ovu+wyrFmzBo888gimTZuGgQMHokuXLsjKysK7776LWbNmYcSIEWGKSCoBsl+Mxcxn5cbvl+pxbRBCiDxOZy/1KCGkqhLqZ7rL+OCDD/D3v/8d7777Ln755Zf49SFDhmDKlCmReA9fhah9hoDIOdR0uis/ZXMs85l6m7+nTgghVRHqUkJIUETNHwv928uB3z67fcIJJ6CkpASbNm3Cnj170LJlS9SrVy9s0QghlQyVL7Hja+WEEKIPnWxCCPmNSDjdZVSrVg3t2rULWwxSBaFhUDXQ+b3usv8nhBDiD+pSQkhVJdQvUiOEkKBRMfr4hXeEEGIOvj1ECKmq0OkmhBBCCCGEEEIsQaebVAn8fnM1IYQQQtTgm0KEEPIbdLoJIYQQQohxkoPddMIJIVUVOt2EEEIIIcQ6fOOMEFJVodNNCCGEEEKswl8JIYRUZeh0kyoPDQFCCCHEPPw+FUII+Q063aRKwcOfEEIIIYQQEiR0ukmVgdlsQgghhBBCSNDQ6SaEEEIIIYQQQixBp5sQQgghhBBCCLEEnW5CCCGEEGINfmEpIaSqQ6ebVCmSv0mVhgAhhBBiDyEEz1lCSJWnUjvdEyZMwDHHHIPatWujUaNGGDJkCNauXev53D/+8Q907NgRubm5aNGiBa699lrs378/AIkJIYQQQgghhFQmKrXTvWDBAowePRqLFy/G3LlzcfDgQZx66qnYu3dvymemTp2KW265BePGjcOaNWvwr3/9Cy+99BJuu+22ACUnhBBCCCGEEFIZyAxbAJvMnj273N9TpkxBo0aNsHz5cpx44omOz3z88cfo27cvLrjgAgBA69atMXToUCxZssS6vIQQQgghhBBCKheVOtOdTGFhIQCgXr16Kcscd9xxWL58OZYuXQoA2LBhA2bOnInTTz89EBlJMCR+rpsQQgghhBBCbFGpM92JlJaWYuzYsejbty+6dOmSstwFF1yAH3/8EccffzyEEDh06BBGjRrl+np5cXExiouL438XFRUZlZ2YpezL1PglaoQQQgghhBDbVJlM9+jRo7Fy5UpMmzbNtdz8+fPxt7/9DU888QQ+/fRTvPbaa3j77bdxzz33pHxmwoQJyM/Pj/9r0aKFafEJIYQQQgghhKQhMVEFUn1XXXUVXn/9dSxcuBBt2rRxLXvCCSfg2GOPxQMPPBC/9sILL+Cyyy7DL7/8goyMinEKp0x3ixYtUFhYiLy8PHMdIYQQQgghhBDiSlFREfLz8yPjj1Xq18uFELj66qsxffp0zJ8/39PhBoBff/21gmNdrVq1eH1OZGdnIzs727/AhBBCCCGEEEIqFZXa6R49ejSmTp2K119/HbVr18b27dsBAPn5+cjNzQUAXHzxxWjevDkmTJgAABg8eDAefvhh9OjRA3369MH69etx5513YvDgwXHnmxBCCCGEEEIIkaFSO92TJk0CAJx88snlrk+ePBkjRowAAGzevLlcZvuOO+5ALBbDHXfcga1bt6Jhw4YYPHgw7r333qDEJoQQQgghhBBSSagSn+kOmqh9hoAQQgghhBBCqgpR88cqdaY7LMriGPzpMEIIIYQQQggJljI/LCr5ZTrdFti1axcA8KfDCCGEEEIIISQkdu3ahfz8/LDFoNNtg3r16gH47fPifib5mGOOwSeffOJLFhN1REmWsp9j27Jli69XRaLSn6jIYmpcTcgSpTpM1MOxtVdPlPSBqXqiUkeUxrayzQ/H1k4d1LX26onSmjVVT1Rk4djaq6OwsBAtW7aM+2VhQ6fbAmVfzJafn+9rA1WrVs33wWGijqjJAgB5eXkcWwuy+B1XU7JEpQ6T9XBs7dUTBX1gqp6o1FFGFMa2ss1PGRxbO7JQ19qrJwpr1lQ9UZIF4NjaqKOM5J+CDotoSEEcGT16dCTqMFWPKVlMEKX+REkWE0SlP1GaH1NEZVwq29hGqT9RqcMUUepPlGQxQZT6EyVZTBCV/kRpfkwQpf5ESRYTRKk/UakjavDbyy0QtW/Lq0xwbO3AcbUHx9YeHFt7cGztwbG1A8fVHhxbe3Bs7RG1sWWm2wLZ2dkYN24csrOzwxal0sGxtQPH1R4cW3twbO3BsbUHx9YOHFd7cGztwbG1R9TGlpluQgghhBBCCCHEEsx0E0IIIYQQQgghlqDTTQghhBBCCCGEWIJONyGEEEIIIYQQYgk63YQQQgghhBBCiCXodBvm8ccfR+vWrZGTk4M+ffpg6dKlYYsUKgsXLsTgwYPRrFkzxGIxzJgxo9x9IQTuuusuNG3aFLm5uejfvz/WrVtXrsxPP/2EYcOGIS8vD3Xq1MGll16KX375pVyZL774AieccAJycnLQokUL3H///RVkefnll9GpUyfk5OSga9eumDlzpvH+BsWECRNwzDHHoHbt2mjUqBGGDBmCtWvXliuzf/9+jB49GvXr10etWrVwzjnnYMeOHeXKbN68GYMGDUKNGjXQqFEj3HjjjTh06FC5MvPnz0fPnj2RnZ2N9u3bY8qUKRXkqUzrftKkSejWrRvy8vKQl5eHgoICzJo1K36f42qOiRMnIhaLYezYsfFrHF89xo8fj1gsVu5fp06d4vc5rv7YunUrLrzwQtSvXx+5ubno2rUrli1bFr/Ps0yP1q1bV1i3sVgs/hu9XLd6lJSU4M4770SbNm2Qm5uLdu3a4Z577kHidydzzeqzZ88ejB07Fq1atUJubi6OO+44fPLJJ/H7HFs50slHkJHFE0GMMW3aNJGVlSWeffZZsWrVKvHnP/9Z1KlTR+zYsSNs0UJj5syZ4vbbbxevvfaaACCmT59e7v7EiRNFfn6+mDFjhvj888/FGWecIdq0aSP27dsXL3PaaaeJ7t27i8WLF4sPPvhAtG/fXgwdOjR+v7CwUDRu3FgMGzZMrFy5Urz44osiNzdXPPnkk/EyH330kahWrZq4//77xerVq8Udd9whqlevLr788kvrY2CDAQMGiMmTJ4uVK1eKFStWiNNPP120bNlS/PLLL/Eyo0aNEi1atBDvvfeeWLZsmTj22GPFcccdF79/6NAh0aVLF9G/f3/x2WefiZkzZ4oGDRqIW2+9NV5mw4YNokaNGuK6664Tq1evFo899pioVq2amD17drxMZVv3b7zxhnj77bfF119/LdauXStuu+02Ub16dbFy5UohBMfVFEuXLhWtW7cW3bp1E2PGjIlf5/jqMW7cOHHkkUeK77//Pv7vhx9+iN/nuOrz008/iVatWokRI0aIJUuWiA0bNog5c+aI9evXx8vwLNNj586d5dbs3LlzBQAxb948IQTXrS733nuvqF+/vnjrrbfExo0bxcsvvyxq1aolHnnkkXgZrll9zj33XNG5c2exYMECsW7dOjFu3DiRl5cnvvvuOyEEx1aWdPIRZGTxgk63QXr37i1Gjx4d/7ukpEQ0a9ZMTJgwIUSpokPyhiotLRVNmjQRDzzwQPza7t27RXZ2tnjxxReFEEKsXr1aABCffPJJvMysWbNELBYTW7duFUII8cQTT4i6deuK4uLieJmbb75ZdOzYMf73ueeeKwYNGlROnj59+ojLL7/caB/DYufOnQKAWLBggRDit3GsXr26ePnll+Nl1qxZIwCIRYsWCSF+U3YZGRli+/bt8TKTJk0SeXl58bG86aabxJFHHlmurfPOO08MGDAg/ndVWPd169YVzzzzDMfVEHv27BEdOnQQc+fOFSeddFLc6eb46jNu3DjRvXt3x3scV3/cfPPN4vjjj095n2eZOcaMGSPatWsnSktLuW59MGjQIDFy5Mhy184++2wxbNgwIQTXrB9+/fVXUa1aNfHWW2+Vu96zZ09x++23c2w1ibKPICOLDHy93BAHDhzA8uXL0b9///i1jIwM9O/fH4sWLQpRsuiyceNGbN++vdyY5efno0+fPvExW7RoEerUqYNevXrFy/Tv3x8ZGRlYsmRJvMyJJ56IrKyseJkBAwZg7dq1+Pnnn+NlEtspK1NZ5qawsBAAUK9ePQDA8uXLcfDgwXJ97tSpE1q2bFlubLt27YrGjRvHywwYMABFRUVYtWpVvIzbuFX2dV9SUoJp06Zh7969KCgo4LgaYvTo0Rg0aFCFMeD4+mPdunVo1qwZ2rZti2HDhmHz5s0AOK5+eeONN9CrVy/88Y9/RKNGjdCjRw88/fTT8fs8y8xw4MABvPDCCxg5ciRisRjXrQ+OO+44vPfee/j6668BAJ9//jk+/PBDDBw4EADXrB8OHTqEkpIS5OTklLuem5uLDz/8kGNriCiNo4wsMtDpNsSPP/6IkpKScoofABo3bozt27eHJFW0KRsXtzHbvn07GjVqVO5+ZmYm6tWrV66MUx2JbaQqUxnmprS0FGPHjkXfvn3RpUsXAL/1NysrC3Xq1ClXNnlsdcetqKgI+/btq7Tr/ssvv0StWrWQnZ2NUaNGYfr06ejcuTPH1QDTpk3Dp59+igkTJlS4x/HVp0+fPpgyZQpmz56NSZMmYePGjTjhhBOwZ88ejqtPNmzYgEmTJqFDhw6YM2cOrrjiClxzzTX497//DYBnmSlmzJiB3bt3Y8SIEQCoD/xwyy234Pzzz0enTp1QvXp19OjRA2PHjsWwYcMAcM36oXbt2igoKMA999yDbdu2oaSkBC+88AIWLVqE77//nmNriCiNo4wsMmRKlySERJLRo0dj5cqV+PDDD8MWpdLQsWNHrFixAoWFhXjllVcwfPhwLFiwIGyx0p4tW7ZgzJgxmDt3boUsAfFHWQYLALp164Y+ffqgVatW+O9//4vc3NwQJUt/SktL0atXL/ztb38DAPTo0QMrV67EP//5TwwfPjxk6SoP//rXvzBw4EA0a9YsbFHSnv/+97/4z3/+g6lTp+LII4/EihUrMHbsWDRr1oxr1gDPP/88Ro4ciebNm6NatWro2bMnhg4diuXLl4ctGokwzHQbokGDBqhWrVqFb9XcsWMHmjRpEpJU0aZsXNzGrEmTJti5c2e5+4cOHcJPP/1UroxTHYltpCqT7nNz1VVX4a233sK8efNw2GGHxa83adIEBw4cwO7du8uVTx5b3XHLy8tDbm5upV33WVlZaN++PY4++mhMmDAB3bt3xyOPPMJx9cny5cuxc+dO9OzZE5mZmcjMzMSCBQvw6KOPIjMzE40bN+b4GqJOnTo4/PDDsX79eq5bnzRt2hSdO3cud+2II46Iv77Ps8w/3377Ld5991386U9/il/jutXnxhtvjGe7u3btiosuugjXXntt/A0jrll/tGvXDgsWLMAvv/yCLVu2YOnSpTh48CDatm3LsTVElMZRRhYZ6HQbIisrC0cffTTee++9+LXS0lK89957KCgoCFGy6NKmTRs0adKk3JgVFRVhyZIl8TErKCjA7t27y0UP33//fZSWlqJPnz7xMgsXLsTBgwfjZebOnYuOHTuibt268TKJ7ZSVSde5EULgqquuwvTp0/H++++jTZs25e4fffTRqF69erk+r127Fps3by43tl9++WU5hTV37lzk5eXFDUyvcasq6760tBTFxcUcV5+ccsop+PLLL7FixYr4v169emHYsGHx/+f4muGXX37BN998g6ZNm3Ld+qRv374VfpLx66+/RqtWrQDwLDPB5MmT0ahRIwwaNCh+jetWn19//RUZGeVN/GrVqqG0tBQA16wpatasiaZNm+Lnn3/GnDlzcOaZZ3JsDRGlcZSRRQrpr1wjnkybNk1kZ2eLKVOmiNWrV4vLLrtM1KlTp9y3alY19uzZIz777DPx2WefCQDi4YcfFp999pn49ttvhRC/fQV/nTp1xOuvvy6++OILceaZZzr+HECPHj3EkiVLxIcffig6dOhQ7ucAdu/eLRo3biwuuugisXLlSjFt2jRRo0aNCj8HkJmZKR588EGxZs0aMW7cuLT6WYVkrrjiCpGfny/mz59f7udWfv3113iZUaNGiZYtW4r3339fLFu2TBQUFIiCgoL4/bKfWjn11FPFihUrxOzZs0XDhg0df2rlxhtvFGvWrBGPP/6440+tVKZ1f8stt4gFCxaIjRs3ii+++ELccsstIhaLiXfeeUcIwXE1TeK3lwvB8dXl+uuvF/PnzxcbN24UH330kejfv79o0KCB2LlzpxCC4+qHpUuXiszMTHHvvfeKdevWif/85z+iRo0a4oUXXoiX4VmmT0lJiWjZsqW4+eabK9zjutVj+PDhonnz5vGfDHvttddEgwYNxE033RQvwzWrz+zZs8WsWbPEhg0bxDvvvCO6d+8u+vTpIw4cOCCE4NjKkk4+gowsXtDpNsxjjz0mWrZsKbKyskTv3r3F4sWLwxYpVObNmycAVPg3fPhwIcRvX8N/5513isaNG4vs7GxxyimniLVr15arY9euXWLo0KGiVq1aIi8vT1xyySViz5495cp8/vnn4vjjjxfZ2dmiefPmYuLEiRVk+e9//ysOP/xwkZWVJY488kjx9ttvW+u3bZzGFICYPHlyvMy+ffvElVdeKerWrStq1KghzjrrLPH999+Xq2fTpk1i4MCBIjc3VzRo0EBcf/314uDBg+XKzJs3Txx11FEiKytLtG3btlwbZVSmdT9y5EjRqlUrkZWVJRo2bChOOeWUuMMtBMfVNMlON8dXj/POO080bdpUZGVliebNm4vzzjuv3O9Ic1z98eabb4ouXbqI7Oxs0alTJ/HUU0+Vu8+zTJ85c+YIABXGSwiuW12KiorEmDFjRMuWLUVOTo5o27atuP3228v9bBLXrD4vvfSSaNu2rcjKyhJNmjQRo0ePFrt3747f59jKkU4+gowsXsSEEEI+L04IIYQQQgghhBBZ+JluQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoQQQgghhBBCLEGnmxBCCCGEEEIIsQSdbkIIIYQQQgghxBJ0ugkhhBBCCCGEEEvQ6SaEEEIIIYQQQixBp5sQQgghhBBCCLEEnW5CCCGEEEIIIcQSdLoJIYQQQgghhBBL0OkmhBBCCCGEEEIsQaebEEIIIYQQQgixBJ1uQgghhBBCCCHEEnS6CSGEEEIIIYQQS9DpJoQQQgghhBBCLEGnmxBCCCGEEEIIsQSdbkIIIYQQQgghxBJ0ugkhhBBCCCGEEEtE1ukeP348YrFYuX+dOnVKWf7pp5/GCSecgLp166Ju3bro378/li5dWq7Ma6+9hlNPPRX169dHLBbDihUryt3/6aefcPXVV6Njx47Izc1Fy5Ytcc0116CwsNBGFwkhhBBCCCGEVHIywxbAjSOPPBLvvvtu/O/MzNTizp8/H0OHDsVxxx2HnJwc3HfffTj11FOxatUqNG/eHACwd+9eHH/88Tj33HPx5z//uUId27Ztw7Zt2/Dggw+ic+fO+PbbbzFq1Chs27YNr7zyirTcpaWl2LZtG2rXro1YLKbQY0IIIYQQQgghfhBCYM+ePWjWrBkyMsLPM8eEECJsIZwYP348ZsyYUSEbLUtJSQnq1q2L//3f/8XFF19c7t6mTZvQpk0bfPbZZzjqqKNc63n55Zdx4YUXYu/eva5OfyLfffcdWrRooSU3IYQQQgghhBD/bNmyBYcddljYYkQ7071u3To0a9YMOTk5KCgowIQJE9CyZUupZ3/99VccPHgQ9erV8yVDYWEh8vLyXB3u4uJiFBcXx/8ui2Ns2bIFeXl5vtonhBBCCCGEECJPUVERWrRogdq1a4ctCoAIO919+vTBlClT0LFjR3z//fe4++67ccIJJ2DlypVSg3fzzTejWbNm6N+/v7YMP/74I+655x5cdtllruUmTJiAu+++u8L1vLw8Ot2EEEIIIYQQEgJR+ahvZF8vT2b37t1o1aoVHn74YVx66aWuZSdOnIj7778f8+fPR7du3Srcl3m9vKioCL///e9Rr149vPHGG6hevXrK9pIz3WWRlbIsOSGEEEIIIYSQYCgqKkJ+fn5k/LHIZrqTqVOnDg4//HCsX7/etdyDDz6IiRMn4t1333V0uGXYs2cPTjvtNNSuXRvTp093dbgBIDs7G9nZ2VptEUIIIYQQQgipvIT/VW6S/PLLL/jmm2/QtGnTlGXuv/9+3HPPPZg9ezZ69eql1U5RURFOPfVUZGVl4Y033kBOTo6uyIQQQgghhBBCqjiRzXTfcMMNGDx4MFq1aoVt27Zh3LhxqFatGoYOHQoAuPjii9G8eXNMmDABAHDffffhrrvuwtSpU9G6dWts374dAFCrVi3UqlULwG+/w71582Zs27YNALB27VoAQJMmTdCkSZO4w/3rr7/ihRdeQFFREYqKigAADRs2RLVq1QIdA0IIIYQQQggh6U1kne7vvvsOQ4cOxa5du9CwYUMcf/zxWLx4MRo2bAgA2Lx5c7nfXJs0aRIOHDiAP/zhD+XqGTduHMaPHw8AeOONN3DJJZfE751//vnlynz66adYsmQJAKB9+/bl6tm4cSNat25tupuEEEIIIYQQQioxafNFaulE1D64TwghhBBCCCFVhaj5Y2nzmW5CCCGEEEIIIcSL/Pz8sEUoB51uQgghhBBCCCGVhsLCwrBFKAedbkIIIYQQQgghlQZmugkhhBBCCCGEEEsw000IIYQQQgghhFiCmW5CCCGEEEIIIcQSzHQTQgghhBBCCCFVBDrdhBBCCCGEEEIqDXy9nBBCCCGEEEIIsQRfLyeEEEIIIYQQQizBTDchhBBCCCGEEGIJZroJIYQQQgghhJAqAp1uQgghhBBCCCGVBr5eTgghhBBCCCGEWIKvlxNCCCGEEEIIIZZgppsQQgghhBBCCLEEM92EEEIIIYQQQkgVgU43IYQQQgghhJBKQSwWC1uECtDpJoQQQgghhBBSKRBChC1CBeh0E0IIIYQQQgipFDDTTQghhBBCCCGEWIKZbkIIIYQQQgghpAphzOnev38/iouLTVVHCCGEEEIIIYQoUaleL58/fz6uvfZa9O7dG7Vq1ULNmjVRo0YN1K5dG71798bYsWMxf/58g6ISQgghhBBCCCGpieLr5TGhINXBgwfx5JNP4uGHH8amTZtQr1499OzZE23btkXdunUhhMDPP/+MjRs34tNPP8VPP/2EVq1a4frrr8fll1+O6tWr2+xLZCgqKkJ+fj4KCwuRl5cXtjiEEEIIIYQQUiWIxWIoLCyMlD+m5HS3atUKBw4cwPDhw3HuueeiZ8+eruWXL1+Ol19+Gc899xyysrKwadMmv/KmBXS6CSGEEEIIISQcouaPKTndTz75JEaMGIHs7GylRg4cOIDJkyfj8ssvVxYwHYnaJBNCCCGEEEJIVSFq/piS003kKJtkIJqfKSCEEEIIIYSQykgUXy/nT4ZZpLCwMGwRCCGEEEIIIaTKEMWkJ51ui5RluwkhhBBCCCGEVE0yVR/o169fynuxWAw5OTlo1aoVTj/9dPzP//yPL+HSHWa6CSGEEEIIISQ4yl4vjxLKn+nu0qWL6w+O//rrr9iyZQtKSkowYMAAvP7661Xmp8LK4Ge6CSGEEEIIISQcovZFasqZ7pUrV3qW2bdvH5588klcd911uP/++3H77bdrCZfuRC3CQgghhBBCCCGVmUqR6VbhggsuwOeff45Vq1bZaiKSMNNNCCGEEEIIIeEQtUy31S9S69u3LzZu3GiziUgTtQgLIYQQQgghhJBgsep0//rrr8jMVH6DvdLAby8nhBBCCCGEkGBw++6xMLHmdAsh8MYbb6Br1662mog8zHQTQgghhBBCSDBE9aO9ymnon376yfX+vn37sHbtWkyaNAkff/wxXnjhBW3h0p38/PzITjwhhBBCCCGEVCZisVgk/S9lp7tBgwZSafvq1avjnnvuwdChQ7UEqwww000IIYQQQgghwRBFhxvQcLrvuusuV6c7JycHrVq1wimnnIKGDRv6Ei7dYaabEEIIIeT/sXffYVEc/x/A33dwNJGiKIhi7wrYCYklRr72WGKPiS2xm2g09gi2BHtM7FFjSTREjS1GTRSxRdSAFXtBsYEdBJRyN78/+N3KUQ+44wrv1/PwcLc7tzs7W+4+O7MzRERFm16HDAOAFy9ewNnZWZ+rMDrG1kU9ERERERGRuVM3Lze2eEwvHaklJSVh69at6NKlC8qUKaOPVZgMY+1Bj4iIiIiIyJwYaytjnQXdQggcPHgQAwcOhKurK3r16oXQ0FB8/PHH+Vre9OnTIZPJNP5q1qyZbfrVq1ejWbNmcHZ2hrOzM/z8/HD69GmNNNu3b0fr1q1RsmRJyGQynDt3LtNy3rx5g5EjR6JkyZKwt7dHt27dEBMTk69tAIx3xxMREREREZkTY63wLHDQHR4ejrFjx6Js2bJo3bo1Nm7ciA4dOuDff/9FdHQ0fv7553wvu06dOnj06JH0d/z48WzTHj58GH369EFISAhCQ0Ph4eGB1q1b48GDB1KahIQENG3aFHPnzs12OV999RX+/PNPbN26FUeOHMHDhw/x0Ucf5XsbjHXHExERERERmRNjrfDMc0dqAHD79m1s2rQJmzZtwo0bN1C2bFn07dsXTZo0Qa9evdCtWzf4+voWPHOWlnBzc9Mq7aZNmzTer1mzBn/88QeCg4PRr18/AMCnn34KALhz506Wy4iNjcXatWuxefNmfPDBBwCAdevWoVatWjh58iTeeeedPG+Dse54IiIiIiIic2I2Q4b5+vri9OnTcHFxQffu3bFmzRo0bdoUAHDr1i2dZu7GjRtwd3eHjY0NfH19ERgYiPLly2v12cTERKSkpKBEiRJary88PBwpKSnw8/OTptWsWRPly5dHaGhotkF3UlISkpKSpPdxcXHSa2Pd8URERERERObEWOOuPAfdp06dQqVKlbBo0SJ06NABlpb5qizPlY+PD9avX48aNWrg0aNHmDFjBpo1a4aIiAgUL148189PnDgR7u7uGgF0bqKjo2FlZQUnJyeN6a6uroiOjs72c4GBgZgxY0aW84x1xxMREREREZH+5fmZ7qVLl6JMmTLo2rUr3NzcMHToUISEhOg8uGzXrh169OgBLy8vtGnTBnv37sXLly+xZcuWXD87Z84cBAUFYceOHbCxsdFpvrIyefJkxMbGSn/37t2T5vGZbiIiIiIiIv0z1tgrz9XUI0aMwIgRIxAZGYlNmzZh8+bNWL16Ndzc3NCyZUupp3Fdc3JyQvXq1XHz5s0c0y1YsABz5szBwYMH4eXllad1uLm5ITk5GS9fvtSo7Y6Jicnx2XJra2tYW1tnOY813URERERERPpnrLFXvnsvr1SpEr755htcvnwZ//33H3r37o3Dhw9DCIERI0ZgyJAh2LNnD968eaOTjMbHx+PWrVs5jvs9b948zJo1C/v370ejRo3yvI6GDRtCoVAgODhYmnbt2jVERUXlu2M4Y73bQkREREREZE6MNfaSCR3eDlCpVDh06BB+/fVX7NixA69evYKdnR3i4+PzvKyvv/4aH374ISpUqICHDx8iICAA586dw+XLl1GqVCn069cPZcuWRWBgIABg7ty58Pf3x+bNm/Hee+9Jy7G3t4e9vT0A4Pnz54iKisLDhw/RoUMHBAUFoUaNGnBzc5NqsocPH469e/di/fr1cHBwwBdffAEAOHHihNZ5j4uLg6OjI2JjY+Hg4JDnbSciIiIiIqL8MbZ4rMDjdGssTC6Hn58f1q9fj5iYGPz2229o1apVvpZ1//599OnTBzVq1EDPnj1RsmRJnDx5EqVKlQIAREVF4dGjR1L6FStWIDk5Gd27d0eZMmWkvwULFkhpdu/ejfr166NDhw4AgN69e6N+/fpYuXKllOb7779Hx44d0a1bNzRv3hxubm7Yvn17vrYBMN67LURERERERObEWGMvndZ0Uxpju7NCRERERERUVBhbPJanmu7atWtj48aNSE5O1vozSUlJWLduHWrXrp3nzJkDY73bQkRERERERPqXp97LBwwYgLFjx2L06NHo1KkT/Pz80KBBA1SqVAl2dnYAgISEBERGRiIsLAwHDx7En3/+CSsrK4wfP14vG2Ds2JCAiIiIiIhIv2QymdHGXnluXv7q1SusXbsW69evx4ULF6SaXEvLtPg9NTUVQFqwWbduXQwaNAiDBg0yimr9wpKxOYMxHwBERERERETmxNialxfome47d+7gxIkTuHr1Kp49ewYAKFmyJGrWrAlfX19UqlRJZxk1Jca2k4mIiIiIiMxZ+opOY4vH8tS8PKOKFSuiYsWKOsqK+WJNNxERERERkf4Yc7yl0yHDKGvGfAAQERERERGZOmPuwJpBdyEw5gOAiIiIiIjI1BlzRSeD7kJgzAcAERERERGRqTPmik4G3YXAmA8AIiIiIiIiU2fMFZ06C7oXLVqkq0WZHWM+AIiIiIiIiEydMVd06izonj17tvS6W7duulqsWTDmA4CIiIiIiMjUGXNFp86C7lq1amHu3Lm4fv06Dhw4oKvFEhEREREREeXImCs6CzROd3qbN2/G9OnT4efnh8TERNSrVw+enp7w8vKCl5cXPD094e7urqvVmRRjvutCRERERERk6ow55pIJPeTO3t4eBw8exIULF3DhwgVcvHgRFy9ehFwux9OnT3W9OqMTFxcHR0dHxMbGwsHBATKZzKgPAiIiIiIiIlOWPubKGI8Zms5qutOLjo6Gvb093nnnHY3p9+/f18fqjB4DbiIiIiIiIv0x5phLJ890JycnIzExUXpvb2+fZbpy5crpYnUmyZifMSAiIiIiIjJVxh5rFaimOzo6Gv369UNISAhUKhVcXFzg5eUFb29v6X/t2rWhUCh0lV8iIiIiIiIiiTHXcgMFDLq//vprHD16FJMnT4aTkxO+/vprPHz4EIcPH4ZKpUpbgaUlkpKSdJJZU2bsBwIREREREZEpMvY+tArUvDw4OBjDhg3DzJkz0b9/fwDAkiVLEBUVhbZt28LLywtTp07VSUZNnbE3eSAiIiIiIiLdK1DQHRcXBy8vLwBpNdpA2vPdZcqUwc6dO6FUKlGxYsUCZ5KIiIiIiIgoK8Zcyw0UMOj28PBAdHQ0AMDR0RG2trbSkGAKhQKffvopvv/++4Ln0gwY+4FARERERERkioy9VXGBgu6WLVvi2LFj0vuaNWtqvLe1tcX169cLsgqzYewHAhERERERkSky9grOAnWkNnr0aPz888948+YNbGxsMHLkSAwfPhx169ZFlSpVsHjxYjYvJyIiIiIiIr0x9o7UZEKHuVOpVPj000/x22+/AQDs7OywdetWtGvXTlerMAlxcXFwdHREbGwsHBwcABj/gUBERERERGQOsorHDEmnQbfalStXcP/+fdSrVw+lSpXS9eKNnrHtZCIiIiIiInOVsYLT2OKxAjUvz06tWrVQq1YtfSzaZLGmm4iIiIiIqOgpUEdqpD0hBDtTIyIiIiIi0iFTqNxk0E1EREREREQmydgDboBBNxEREREREZkoU2hNzKCbiIiIiIiISE8YdBMREREREZFJYvNyIiIiIiIiIj1h83IiIiIiIiKiIoxBdyHisGFERERERERFC4NuIiIiIiIiIj1h0E1EREREREQmRyaTsSM1IiIiIiIioqKMQTcRERERERGRnjDoJiIiIiIiItITBt2FjD2YExERERERFR0MuomIiIiIiiBWBBEVDqMNuqdPnw6ZTKbxV7NmzWzTr169Gs2aNYOzszOcnZ3h5+eH06dPa6QRQsDf3x9lypSBra0t/Pz8cOPGDY00169fR+fOneHi4gIHBwc0bdoUISEhetlGQ8lYroV9wc1q/bzoZ2bosuE+IiIyLdpet/V5Pc/uO57fJcYj477gviHSP6MNugGgTp06ePTokfR3/PjxbNMePnwYffr0QUhICEJDQ+Hh4YHWrVvjwYMHUpp58+bhxx9/xMqVK3Hq1CkUK1YMbdq0wZs3b6Q0HTt2RGpqKg4dOoTw8HB4e3ujY8eOiI6O1uu2Fgb1BVUIofGXfl5hfBEDyDUPhXXhN7YfBdmtX595ymn7DXGcmApjOF6ITI0uzhltgjpDnJPGcDMbyPm6nV2gpas8Z/cdn/GvMMvK2I4VQ+cjp32UXf70nR9jOW9zmk/GyZT2jUwY6cBm06dPx86dO3Hu3Ll8fV6pVMLZ2RlLly5Fv379IISAu7s7xo0bh6+//hoAEBsbC1dXV6xfvx69e/fG06dPUapUKRw9ehTNmjUDALx69QoODg44cOAA/Pz8tFp3XFwcHB0dERsbCwcHhyzTqIPf/NL28xkPxtw+k9XBm/EzBTnAtd3m9OvQ9SGqTZnktdx0kY/c1pWfMsnrvirs/ZPTcrTJu74vX9rmoTCP19zyUtjyehybI22umxnT5ad8CuO6lNc85FX6H/YZp+Vl/Xn5LstqnXldb27ryLhcfV17c8qDLrcnP/ukIHnQ9hzSx/Jy2le6PMe0Kae8fO/l53ektudPTnnKeD4VdJ+n/3xh7Yus8qCra1t+1q/PdRSUrvZJdsd/Qc/9nM4DbeKxwmRp6Azk5MaNG3B3d4eNjQ18fX0RGBiI8uXLa/XZxMREpKSkoESJEgCAyMhIREdHawTOjo6O8PHxQWhoKHr37o2SJUuiRo0a2LhxIxo0aABra2usWrUKpUuXRsOGDfWyjXmR8cDU9mTNy8GbVeCj6y/DvOQj4937jHnLabo2y9dmfk55yI4+901u+0SfAWBWy81tfbmVRfpaj+zWkd0yCyPY1Wa5ue2bnNJrI7tyLehxqo38nE85lUNebioVxg0+bWlzHOeWPi/HiTbXu7z+GNJV0K+LIDmnssjtGMnLOZnd5wpyvmhTjnkto7zuG31c+/JyXdd1HnK7hujzhnBO51Rh3yjT5mZS+mUWRiVCdudNxuXrYh/ldKxlXE9BtiurPBT0Jk9u5aD+zs4t3znNN5bvePXntPmez2q/5baN+bmhZAqMNuj28fHB+vXrUaNGDTx69AgzZsxAs2bNEBERgeLFi+f6+YkTJ8Ld3V0KstXNw11dXTXSubq6SvNkMhkOHjyILl26oHjx4pDL5ShdujT2798PZ2fnbNeVlJSEpKQk6X1cXJxW25jbQWWIYNfQ68tu/Tmd3Poup7wGVPrIgzbL1cfFWBvalE9Bf2jklj6rH2iGuGut7Y9lXfxYzUsQo8268hLA5Xbt0mY92f340LZ8cjrec/uBpu2Nuox5LMgNzKzm5XTnX5sflNr8QM3qMwUJ8gp6ruY0P7ubaQW9tuVUdnktC31cZ/N6M6AwrvU53fg2xI3dvNx0Kkie8nNOZfU5fZVRbtfWwvo9lN36c0pTkDLJ6XhMP13b8zc/echr/vK7/rx+d2jz+bze5NVGXs6V9Gm1/U4ojOtMYTPaoLtdu3bSay8vL/j4+KBChQrYsmULPvvssxw/O2fOHAQFBeHw4cOwsbHRep1CCIwcORKlS5fGsWPHYGtrizVr1uDDDz/Ef//9hzJlymT5ucDAQMyYMUPr9ajXpU0QaS4HWkEZQzkYQx5yYuj8GXL9uqrBKgz6zlNeagrU0zN+tiBBtTb5y2kf5ad2Krt52f0A0uaHaWEcR/n50VWQ5WY1Py83Ewv72C3sfZBbAF4Ugt285Kew5PcGiT7ykJXCCHa1Yejvu6xu6GWVpqDr0GbdOQWnhXH+6lt+b7gWBl2tR5trT0ErVwqbUXeklp6TkxOqV6+Omzdv5phuwYIFmDNnDv755x94eXlJ093c3AAAMTExGuljYmKkeYcOHcKePXsQFBSE9957Dw0aNMDy5ctha2uLDRs2ZLvOyZMnIzY2Vvq7d++e1tuV/oDJeGAZ+gJKZIrU5w7PH03py0R9rcnuelMYwVVh7KP068ntz1B5NLTcysSQ5VDY6864vvTnSWEHnFnlI+P0wmQM50Nu56yhaHtNKQryep3Vx7oBzZrvorRfjOn6rSvZXQvTzzcVJhN0x8fH49atW9nWNgNpvZPPmjUL+/fvR6NGjTTmVapUCW5ubggODpamxcXF4dSpU/D19QWQ9hw4AMjlmsUil8uhUqmyXa+1tTUcHBw0/rRhTF+oRFQ0FLUfIZR/RfnYMJZAytDrJzI1PF/SmNv25xZ8mwKjDbq//vprHDlyBHfu3MGJEyfQtWtXWFhYoE+fPgCAfv36YfLkyVL6uXPnYtq0afj5559RsWJFREdHIzo6GvHx8QDSdtCYMWMwe/Zs7N69GxcvXkS/fv3g7u6OLl26AAB8fX3h7OyM/v374/z587h+/TrGjx+PyMhIdOjQQS/byS9UIiIiIiKinBVmqzxdM9pnuu/fv48+ffrg2bNnKFWqFJo2bYqTJ0+iVKlSAICoqCiNGukVK1YgOTkZ3bt311hOQEAApk+fDgCYMGECEhISMGTIELx8+RJNmzbF/v37pee+XVxcsH//fkydOhUffPABUlJSUKdOHezatQve3t6Fs+FERERERESUiakF22pGO063KTO2ceGIiIiIiIiKCmOLx4y2eTkRERERERGRqWPQTURERERERKQnRvtMtylTt9iPi4szcE6IiIiIiIiKFnUcZixPUjPo1oNnz54BADw8PAycEyIiIiIioqLp2bNncHR0NHQ2GHTrQ4kSJQCk9bBekJ3cuHFj/PfffwXKiy6WYUx5iYuLg4eHB+7du1egThGMZXuMJS+6Kldd5MWYlqGL5bBs9bccY7oe6Go5xrIMYypbc9s/LFv9LIPXWv0tx5iOWV0tx1jywrLV3zJiY2NRvnx5KS4zNAbdeqAeyszR0bFAJ5CFhUWBvzh0sQxjywsAODg4sGz1kJeClquu8mIsy9Dlcli2+luOMVwPdLUcY1mGmjGUrbntHzWWrX7ywmut/pZjDMesrpZjTHkBWLb6WIZa+iGmDck4ckFZGjlypFEsQ1fL0VVedMGYtseY8qILxrI9xrR/dMVYysXcytaYtsdYlqErxrQ9xpQXXTCm7TGmvOiCsWyPMe0fXTCm7TGmvOiCMW2PsSzD2HCcbj0wtnHhzAnLVj9YrvrDstUflq3+sGz1h2WrHyxX/WHZ6g/LVn+MrWxZ060H1tbWCAgIgLW1taGzYnZYtvrBctUflq3+sGz1h2WrPyxb/WC56g/LVn9YtvpjbGXLmm4iIiIiIiIiPWFNNxEREREREZGeMOgmIiIiIiIi0hMG3URERERERER6wqCbiIiIiIiISE8YdOvYsmXLULFiRdjY2MDHxwenT582dJYM6ujRo/jwww/h7u4OmUyGnTt3aswXQsDf3x9lypSBra0t/Pz8cOPGDY00z58/R9++feHg4AAnJyd89tlniI+P10hz4cIFNGvWDDY2NvDw8MC8efMy5WXr1q2oWbMmbGxs4Onpib179+p8ewtLYGAgGjdujOLFi6N06dLo0qULrl27ppHmzZs3GDlyJEqWLAl7e3t069YNMTExGmmioqLQoUMH2NnZoXTp0hg/fjxSU1M10hw+fBgNGjSAtbU1qlativXr12fKjzkd9ytWrICXlxccHBzg4OAAX19f7Nu3T5rPctWdOXPmQCaTYcyYMdI0lm/+TJ8+HTKZTOOvZs2a0nyWa8E8ePAAn3zyCUqWLAlbW1t4enoiLCxMms/vsvypWLFipuNWJpNJY/TyuM0fpVKJadOmoVKlSrC1tUWVKlUwa9YspO87mcds/r169QpjxoxBhQoVYGtri3fffRf//fefNJ9lqx1TihG0yUuuBOlMUFCQsLKyEj///LO4dOmSGDx4sHBychIxMTGGzprB7N27V0ydOlVs375dABA7duzQmD9nzhzh6Ogodu7cKc6fPy86deokKlWqJF6/fi2ladu2rfD29hYnT54Ux44dE1WrVhV9+vSR5sfGxgpXV1fRt29fERERIX777Tdha2srVq1aJaX5999/hYWFhZg3b564fPmy+Oabb4RCoRAXL17UexnoQ5s2bcS6detERESEOHfunGjfvr0oX768iI+Pl9IMGzZMeHh4iODgYBEWFibeeecd8e6770rzU1NTRd26dYWfn584e/as2Lt3r3BxcRGTJ0+W0ty+fVvY2dmJsWPHisuXL4slS5YICwsLsX//fimNuR33u3fvFn/99Ze4fv26uHbtmpgyZYpQKBQiIiJCCMFy1ZXTp0+LihUrCi8vLzF69GhpOss3fwICAkSdOnXEo0ePpL8nT55I81mu+ff8+XNRoUIFMWDAAHHq1Clx+/Zt8ffff4ubN29Kafhdlj+PHz/WOGYPHDggAIiQkBAhBI/b/Pr2229FyZIlxZ49e0RkZKTYunWrsLe3Fz/88IOUhsds/vXs2VPUrl1bHDlyRNy4cUMEBAQIBwcHcf/+fSEEy1ZbphQjaJOX3DDo1qEmTZqIkSNHSu+VSqVwd3cXgYGBBsyV8ch4QqlUKuHm5ibmz58vTXv58qWwtrYWv/32mxBCiMuXLwsA4r///pPS7Nu3T8hkMvHgwQMhhBDLly8Xzs7OIikpSUozceJEUaNGDel9z549RYcOHTTy4+PjI4YOHarTbTSUx48fCwDiyJEjQoi0clQoFGLr1q1SmitXrggAIjQ0VAiRdrGTy+UiOjpaSrNixQrh4OAgleWECRNEnTp1NNbVq1cv0aZNG+l9UTjunZ2dxZo1a1iuOvLq1StRrVo1ceDAAdGiRQsp6Gb55l9AQIDw9vbOch7LtWAmTpwomjZtmu18fpfpzujRo0WVKlWESqXicVsAHTp0EIMGDdKY9tFHH4m+ffsKIXjMFkRiYqKwsLAQe/bs0ZjeoEEDMXXqVJZtPhlzjKBNXrTB5uU6kpycjPDwcPj5+UnT5HI5/Pz8EBoaasCcGa/IyEhER0drlJmjoyN8fHykMgsNDYWTkxMaNWokpfHz84NcLsepU6ekNM2bN4eVlZWUpk2bNrh27RpevHghpUm/HnUac9k3sbGxAIASJUoAAMLDw5GSkqKxzTVr1kT58uU1ytbT0xOurq5SmjZt2iAuLg6XLl2S0uRUbuZ+3CuVSgQFBSEhIQG+vr4sVx0ZOXIkOnTokKkMWL4Fc+PGDbi7u6Ny5cro27cvoqKiALBcC2r37t1o1KgRevTogdKlS6N+/fpYvXq1NJ/fZbqRnJyMX3/9FYMGDYJMJuNxWwDvvvsugoODcf36dQDA+fPncfz4cbRr1w4Aj9mCSE1NhVKphI2NjcZ0W1tbHD9+nGWrI8ZUjtrkRRsMunXk6dOnUCqVGhd+AHB1dUV0dLSBcmXc1OWSU5lFR0ejdOnSGvMtLS1RokQJjTRZLSP9OrJLYw77RqVSYcyYMXjvvfdQt25dAGnba2VlBScnJ420Gcs2v+UWFxeH169fm+1xf/HiRdjb28Pa2hrDhg3Djh07ULt2bZarDgQFBeHMmTMIDAzMNI/lm38+Pj5Yv3499u/fjxUrViAyMhLNmjXDq1evWK4FdPv2baxYsQLVqlXD33//jeHDh+PLL7/Ehg0bAPC7TFd27tyJly9fYsCAAQB4PSiISZMmoXfv3qhZsyYUCgXq16+PMWPGoG/fvgB4zBZE8eLF4evri1mzZuHhw4dQKpX49ddfERoaikePHrFsdcSYylGbvGjDUuuURGSURo4ciYiICBw/ftzQWTEbNWrUwLlz5xAbG4tt27ahf//+OHLkiKGzZfLu3buH0aNH48CBA5lqCahg1DVYAODl5QUfHx9UqFABW7Zsga2trQFzZvpUKhUaNWqE7777DgBQv359REREYOXKlejfv7+Bc2c+1q5di3bt2sHd3d3QWTF5W7ZswaZNm7B582bUqVMH586dw5gxY+Du7s5jVgd++eUXDBo0CGXLloWFhQUaNGiAPn36IDw83NBZIyPGmm4dcXFxgYWFRaZeNWNiYuDm5magXBk3dbnkVGZubm54/PixxvzU1FQ8f/5cI01Wy0i/juzSmPq+GTVqFPbs2YOQkBCUK1dOmu7m5obk5GS8fPlSI33Gss1vuTk4OMDW1tZsj3srKytUrVoVDRs2RGBgILy9vfHDDz+wXAsoPDwcjx8/RoMGDWBpaQlLS0scOXIEP/74IywtLeHq6sry1REnJydUr14dN2/e5HFbQGXKlEHt2rU1ptWqVUtqvs/vsoK7e/cuDh48iM8//1yaxuM2/8aPHy/Vdnt6euLTTz/FV199JbUw4jFbMFWqVMGRI0cQHx+Pe/fu4fTp00hJSUHlypVZtjpiTOWoTV60waBbR6ysrNCwYUMEBwdL01QqFYKDg+Hr62vAnBmvSpUqwc3NTaPM4uLicOrUKanMfH198fLlS427h4cOHYJKpYKPj4+U5ujRo0hJSZHSHDhwADVq1ICzs7OUJv161GlMdd8IITBq1Cjs2LEDhw4dQqVKlTTmN2zYEAqFQmObr127hqioKI2yvXjxosYF68CBA3BwcJB+YOZWbkXluFepVEhKSmK5FlCrVq1w8eJFnDt3Tvpr1KgR+vbtK71m+epGfHw8bt26hTJlyvC4LaD33nsv05CM169fR4UKFQDwu0wX1q1bh9KlS6NDhw7SNB63+ZeYmAi5XPMnvoWFBVQqFQAes7pSrFgxlClTBi9evMDff/+Nzp07s2x1xJjKUZu8aEXrLtcoV0FBQcLa2lqsX79eXL58WQwZMkQ4OTlp9KpZ1Lx69UqcPXtWnD17VgAQixYtEmfPnhV3794VQqR1we/k5CR27dolLly4IDp37pzlcAD169cXp06dEsePHxfVqlXTGA7g5cuXwtXVVXz66aciIiJCBAUFCTs7u0zDAVhaWooFCxaIK1euiICAAJMaViGj4cOHC0dHR3H48GGN4VYSExOlNMOGDRPly5cXhw4dEmFhYcLX11f4+vpK89VDrbRu3VqcO3dO7N+/X5QqVSrLoVbGjx8vrly5IpYtW5blUCvmdNxPmjRJHDlyRERGRooLFy6ISZMmCZlMJv755x8hBMtV19L3Xi4Eyze/xo0bJw4fPiwiIyPFv//+K/z8/ISLi4t4/PixEILlWhCnT58WlpaW4ttvvxU3btwQmzZtEnZ2duLXX3+V0vC7LP+USqUoX768mDhxYqZ5PG7zp3///qJs2bLSkGHbt28XLi4uYsKECVIaHrP5t3//frFv3z5x+/Zt8c8//whvb2/h4+MjkpOThRAsW22ZUoygTV5yw6Bbx5YsWSLKly8vrKysRJMmTcTJkycNnSWDCgkJEQAy/fXv318IkdYN/7Rp04Srq6uwtrYWrVq1EteuXdNYxrNnz0SfPn2Evb29cHBwEAMHDhSvXr3SSHP+/HnRtGlTYW1tLcqWLSvmzJmTKS9btmwR1atXF1ZWVqJOnTrir7/+0tt261tWZQpArFu3Tkrz+vVrMWLECOHs7Czs7OxE165dxaNHjzSWc+fOHdGuXTtha2srXFxcxLhx40RKSopGmpCQEFGvXj1hZWUlKleurLEONXM67gcNGiQqVKggrKysRKlSpUSrVq2kgFsIlquuZQy6Wb7506tXL1GmTBlhZWUlypYtK3r16qUxjjTLtWD+/PNPUbduXWFtbS1q1qwpfvrpJ435/C7Lv7///lsAyFReQvC4za+4uDgxevRoUb58eWFjYyMqV64spk6dqjFsEo/Z/Pv9999F5cqVhZWVlXBzcxMjR44UL1++lOazbLVjSjGCNnnJjUwIIbSvFyciIiIiIiIibfGZbiIiIiIiIiI9YdBNREREREREpCcMuomIiIiIiIj0hEE3ERERERERkZ4w6CYiIiIiIiLSEwbdRERERERERHrCoJuIiIiIiIhITxh0ExEREREREekJg24iIiIiIiIiPWHQTURERERERKQnDLqJiIiIiIiI9IRBNxEREREREZGeMOgmIiIiIiIi0hMG3URERERERER6wqCbiIiIiIiISE8YdBMRERERERHpCYNuIiIiIiIiIj1h0E1ERERERESkJwy6iYiIiIiIiPTE0tAZMEcqlQoPHz5E8eLFIZPJDJ0dIiIiIiKiIkMIgVevXsHd3R1yueHrmRl068HDhw/h4eFh6GwQEREREREVWffu3UO5cuUMnQ0G3fpQvHhxAGk72cHBQS/rmDsX+O47YMoUYOJEID4+HkuWLAEAfPHFF7C3t88yHWknOTkZCxcuBACMGzcOVlZW+UpjDHSRT1PZVnNT1Mq9qG0vERER6UdcXBw8PDykuMzQGHTrgbpJuYODg96C7m+/BWxsAH//tP9ffSWHjY2NtF57e3vMmpUWcM+cCUybppdsmK3k5GSN8swu6M4tjTHQRT5NZVvNTVEr96K2vURERKRfxvKoL4NuE6YOpP39geRkBSzT7c1Zs9KmM+AmIiIiIiIyHAbdJu5t4G0NX98aqFv3EObOVWD2bAbcREREREREhsag2wxMmwYkJydh9uw+CA0FgImYObMKA24iIiIiIiIDY9BtJqZOFZg9O+21peUlTJtWxbAZMnFyuRyNGjWSXuc3jTHQRT5NZVvNTVEr96K2vURERFQ0yIQQwtCZMDdxcXFwdHREbGys3jpSy2jmTIGAAPWP1IOYObMVa7qJiIiIiKjIMUQ8lhNWJZiBWbOAgIC3904GDrSAv3/adCIiIiIiIjIcBt0mTt1LeUCAUpr2yScqzJwJBt4FIIRAQkICEhISkF1jEG3SGANd5NNUttXcFLVyL2rbS0REREUDg24Tln5YsDFjEqTpSUlJmDYNDLwLICUlBQsWLMCCBQuQkpKS7zTGQBf5NJVtNTdFrdyL2vYSERFR0cCO1ExUxnG4X7x4WyukHgQ+/Tje6d8TERERERFR4WDQbYIyBtwAsm2KycCbiIiIiIjIcBh0myClUjPgBrIPuoG36ZTKbJMQERERERGRHjDoNkHTp2eellunQ6zhJiIiIiIiKnzsSM1MsKdfIiIiIiIi48Og20ww6CYiIiIiIjI+bF5uJiwsLKTXlpbcrQUll8vh7e0tvc5vGmOgi3yayraam6JW7kVte4mIiKhokAlWkepcXFwcHB0dERsbCwcHh0JZZ3x8PIoXLw4AOHLkCJo3b14o6yUiIiIiIjImhojHcsKqBDOR/t6JepxuIiIiIiIiMiy2QzYTynTjgalUKgPmxDwIIZCSkgIAUCgUWd7I0CaNMdBFPk1lW81NUSv3ora9REREVDSwpttMJCQkSK/fvHljwJyYh5SUFAQGBiIwMFAKAvKTxhjoIp+msq3mpqiVe1HbXiIiIioaGHSbCTYvJyIiIiIiMj4Mus0Em5QTEREREREZHwbdZoI13URERERERMaHQbeZ4MhvRERERERExodBt5lgTTcREREREZHxYdBthljrTUREREREZBw4TreZkMvlWb6m/JHL5ahdu7b0Or9pjIEu8mkq22puilq5F7XtJSIioqJBJky8WnTZsmWYP38+oqOj4e3tjSVLlqBJkyZZpr106RL8/f0RHh6Ou3fv4vvvv8eYMWMKtMysxMXFwdHREbGxsXBwcMjvpuVJdHQ0ypQpAwA4duwYmjZtWijrJSIiIiIiMiaGiMdyYtJVCb///jvGjh2LgIAAnDlzBt7e3mjTpg0eP36cZfrExERUrlwZc+bMgZubm06WaSzS3zsx8fsoREREREREZsOkg+5FixZh8ODBGDhwIGrXro2VK1fCzs4OP//8c5bpGzdujPnz56N3796wtrbWyTKNBYNuIiIiIiIi42Oyz3QnJycjPDwckydPlqbJ5XL4+fkhNDTUKJaZkJwAi2SLTNMt5BawsbTRSJcduUwOW4VtrmmfvHgivU5MTEz7n5KYbQAuk8lgp7B7+5k8pH2d8hoqoco2z8WsiuUr7ZvUN1CqlDpJa6ewk3pxT0pNQqoqNU9pk5OT8ePCHwEAX477ElZWVgAAW4Ut5LK0e1Xxr+OxcN7CTGnU0qdNViYjRZmSbR5sLG1gIbfIc9oUZQqSlcnZprW2tIYqVYXAwMBs85k+raU87ZKQqkpFUmqSNC9jedjb2kNhocgybUZWFlZSWqVKiTepb7JNq7BQwMrCKs9pVUKF1ymvdZLWUm4Ja8u0m3JCCCSmJOokbV7Oe3Xa5OTkXPedtteIrNIa2zUiq/POWK8R2cnLeW8s1wj1eZ+XtHk573mN0N81Qpu05nSNyC0trxG8RvAakfe05nqNyGk7DMFkg+6nT59CqVTC1dVVY7qrqyuuXr1aqMtMSkpCUtLbi0VcXBwAwH2hO2CTOX37au3x18d/Se9LLyid7UnWokILHB5wWHpf8YeKeJr4NFM6m9jMK6q9rDbuxt7Ncrm1S9XGpRGXpPeNVzfG5SeXs0xbwbEC7oy5I71vvr45wh6GZZnWxc4FT8a/vQHQblM7HLl7JMu0dgo7JEx5e0J029INe2/szTItAIiAtyfqpzs+xbbL27JNGz85Xjohh+4Zig3nN2Sb9vHXj1GqWCkAwNi/x2J52HIooMBUTAUAuC50RQrSvrwiR0eiolNFAMCMwzNgD/tMadQihkegTuk6AIDvjn2HGUdmZJuH05+fRuOyjQEAP5z8ARMOTsg2bUj/ELxf8X0AwE/hP2HUvlHZpt3TZw/+V/F/0vus8qm2pfsW9KjTAwCw48oO9NzWU5qXsTx+6vwTBtQbAAD4++bf6Phbx2zzsLTdUoxsMhIAcCzqGFpuaJlt2nl+8zD+vfEAgDOPzqDJmuz7UghoEYDp708HAFx5cgV1V9TNNu3Xvl9jfuv5AICo2ChU+qFStmlHNBqBZR2WAQCeJj5F6QWls03b37s/1ndZDyDty8Q+0D7btN1rd8fWHlul9zmlzXiNALLfd9peIwCgkXsj/Df4P+m9sV0jMh5nCoXCaK8R2Ul/jZgaPBULQhdkm9ZYrhEdqncAAGy6uAkDdw3MNm1O14iM1nVex2sECu8aoYvfEYDxXyMyMubfEdnhNSINrxFpeI1Io5drRPb3WwzCpJuXG4vAwEA4OjpKfx4eHgbND5uXExERERERGQeT7b08OTkZdnZ22LZtG7p06SJN79+/P16+fIldu3bl+PmKFStizJgxGr2X53eZWdV0e3h44OGTh1n2lqePJh/Xrl1DQ6+GAIC//voL7du3N+omH1mlNaZmYWxezublgOGbhbF5OZuXq7HpaBpeI/Ke1pyuEbml5TWC1wheI/Ke1lyvEXFxcXAv5W40vZebbPNyKysrNGzYEMHBwVKArFKpEBwcjFGjsm8mo49lWltbZ9kxWzGrYhoHRXa0SZNbWhuLzM3L0x+8uclL2vQnmy7Tpr846DKttaU1rJF1x3nZpVVAIU0rZlUsy2BHffHNKU36tOnT5yQvaRUWCumLKDvJePsFmVs+1SzllrC0ent5yFge6deZMW1OLOQWWh/veUkrl8n1klYmk+klLZC3816dXpt9l5flGts1IrfzzpiuEdrQ13mv62tEftLm5bznNSLvaQHd/DYoaFpju0bkhteIvKflNSINrxH5S2vM1wilVfY31QzBZINuABg7diz69++PRo0aoUmTJli8eDESEhIwcGDa8yb9+vVD2bJlpZqi5ORkXL58WXr94MEDnDt3Dvb29qhatapWyzRW7L2ciIiIiIjI+Jh00N2rVy88efIE/v7+iI6ORr169bB//36pI7SoqCjI5W8fW3/48CHq168vvV+wYAEWLFiAFi1a4PDhw1ot01gx6CYiIiIiIjI+Jh10A8CoUaOybfqtDqTVKlasqFVAmtMyjZWFxduhydLfaKD8kcvlqFatmvQ6v2mMgS7yaSrbam6KWrkXte0lIiKiosFkO1IzZnFxcXB0dCzUB/dv3bolNZE/cOAA/Pz8CmW9RERERERExsQQ8VhOWJVgJti8nIiIiIiIyPgw6DYTDLqJiIiIiIiMj8k/001p4uPjpdeJidmP8UfaSU5OxoIFCwAAX3/9dZZDNWmTxhjoIp+msq3mpqiVe1HbXiIiIioaGHSbCdZu615KSopO0hgDXeTTVLbV3BS1ci9q20tERETmj83LzQSblxMVTdOnA7Nm5e0zs2alfY6IiIiI9I9Bt5lg0E1UNFlYAP7+2gfes2alpU83yiARERER6RGbl5sJBt1ERdO0aWn//f0132dFHXDPnJlzOiIiIiLSHQbdZoKBNlHRpU3gzYCbiIiIyDAYdJsJ1nQTFW05Bd4MuImIiIgMh0G3GZLJZIbOgsmTyWSoUKGC9Dq/aYyBLvJpKttqbvJa7ukDb5VKhS5dLmLHjjqYMcPSJAJuHmdERERkjmTCANWiY8aMwTfffAMXF5fCXnWhiIuLg6OjI2JjY+Hg4FAo6zx//jzq1asHAPjzzz/RsWPHQlkvERmfgIBkzJzZE8AuAHXQr9/32LDhf4bOFhEREVGhMEQ8lhOD1HT/+OOPcHR0xJs3b1C6dGl06NABNWvWNERWzAablxMRkDbO9cWLvZEWcAPAJWzc2BovXnyIhQsXolq1aobMHhEREVGRY7Ahw3777TckJCTg7NmzaNGiBQYNGoTk5GRDZcfkMegmopSUFHz88cfYsWMHACtYWAQBGA253BJ//vkn6tSpg3HjxuHly5cGzikRERFR0WGQoFsul+PEiRNYunQpfv31V0RGRiI5ORn+6h6AKM8SEhKk14mJiQbMiXlITk7G/PnzMX/+/GxvBmmTxhjoIp+msq3mJi/lnpqaik8++QTbtm0DYIVPPtmB1NRemDlzMVSqi6hWrT1SUlKwaNEiVKtWDatWrYJSqSycDdESjzMiIiIyRwYJut3d3SGXv121nZ0dli9fjqCgIENkxyywdlv3EhMTc72BoU0aY6CLfJrKtpobbco9NTUV/fr1w5YtWwAo0LfvH/jll/YA0jpPmzmzJm7c+AuffroPNWvWxNOnTzFs2DA0aNAA58+fL4St0B6PMyIiIjI3Bgm6P/roI3zyySd4+vSpNO3x48d48+aNIbJjFti8nKhoUiqVGDBgAH777TcAlujTZyt+/VWzI8W0wBv45Ze26NXrAn744Qc4OzvjwoUL8PPzw9WrVw2TeSIiIqIiwCBB95w5c1CpUiWUL18e7777Ljp06AAfHx8MGTLEENkxCwy6dWvWLAscOdI8j58Bpk/XT36IsqJUKjFo0CBs2rQJgCV6996CzZs7Z5lWHXjPmKFAbOyXuHHjBho1aoSnT5+idevWuHfvXuFmnoiIiKiIMEjQbWNjg2XLluH+/fv4+uuv0bVrV+zZswczZ840RHbMAoNu3bKwEAgJaal14P3dd3L4+wMWFnrOGNH/E0Jg8ODB2LhxIwAL9OoVhN9+65rjZ9SBt78/sHx5Sezduxc1atTAvXv30Lp1a43WR0RERESkG3ofMmzfvn3YtGkT7t27h2LFisHLywvdunVD48aNUaJECXz00Uf6zkKRwEBbt6ZMUeHo0RCEhLTEd9+l5liDfeRIc4SEWGLmzLSghqgw7Nu3D+vWrYNMZoEePTYjKKibVp9TH6NKJVCqVCkcOHAA7733Hq5evYp27drh0KFDKF68uB5zTkRERFS06LWme/HixejYsSN27NiBhIQEPH78GD/++CPeeecddOjQAdHR0fpcfZHCoFv3WrQ4ipYtQzBjhiVmzco6TVrA3RIBAakMuKlQrVixAgAwevQX+P33nnn67LRpbx+F8PDwwD///AMXFxeEhYWhc+fO7F+DiIiISIf0GnT/8MMPqFevHu7evYuwsDCEhYXhxYsXWLp0KSIiItCkSRM8ePBAn1koMmQymaGzYFZkMhnc3d3Rp89NBAQo4e+PTIH3d99ZICSkJTp1CsPUqcZ700O9Le7u7hrHyfTpmbcpt2WcOdMBs2axDX1hyW7f3b17F3/99RcAYNiwYQVeT82aNbFv3z7Y29sjJCQEffr0QWpqaoGXm1fZbS8RERGRKdNr8/KYmBhMmDABLi4u0jRra2sMHz4c3bt3R6NGjTBhwoT/7wSICsLa2lp6bWVlZcCcmAeFQoHBgwdL7y0s0p6DBdJqCWfNAmbMsPj/JuWNDJRL7WTcFrWM25TbMqKjB2P3bqCRcW+uWclu361evRpCCHzwwQeoUaOGTtbVqFEj7N69G+3atcPOnTsxZMgQrF27tlCD3+y2l4iIiMiU6bWmu0aNGoiJiclyXqlSpTBixAjs3btXn1koMti8XL/SmuOq4O//DeTy9vD3jzX5Z7jTd6qVW433rFlp6Ux9m81BSkoK1qxZAwAYPny4TpfdsmVLBAUFQS6XY926dZgwYQKvLUREREQFpNege8KECVi6dClu3LiR5Xw7Ozs2IdQR9l6uX0II3LnzGYBvIcQ+WFisMovgU5vAmwG3cdm5cydiYmLg5uaGzp2zHh6sILp06YK1a9cCABYsWIA5c+bofB1ERERERYleg+6FCxfCwsICTZo0wbx58/Dw4UNp3q1bt7Bs2TL06NFDn1koMl6/fi29ZidIBZeSkoLFixdj8eLFSElJwZkzZ7B+/XppvlK5BNOmvdFIY6wybktGOQXe6oA7IECJ4sWNf1vNTVb7buXKlQCAzz77DAqFQi/rHTBgABYuXAgAmDJlCnr16oVnz57pZV3p5XasEhEREZkivQbd7u7uKFasGOLi4jBp0iR4eHigVKlScHNzQ/Xq1WFra4shQ4bwx5UOKJVK6TVrugtOCIHY2FjExsZCCIFvvjkKAKhc2Q+lSpUCcB+zZ+/G7t3eUhpjlXFbspI+8A4ISEJqaqpGDfeUKcpcl0G6l3HfXbt2DYcOHYJcLseQIUP0uu6xY8di3rx5sLS0xJYtW1C3bl29Pw6kzbFKREREZGr0GnTv3r0bt2/fRmxsLEJDQ7Fq1Sr07dsXderUgYuLC86fP48mTZqgWLFiqFmzJrp27YqpU6fqM0tFAn+s6tZ338mxf/9xAMCQIX4YNGgQAMDbew9CQlriyJHmhsyeTsTExMDGZj4qV/bDzJkOUChqwd8/kU3KjcyqVasAAO3bt0f58uX1vr7x48cjNDQUtWrVQnR0NDp06IChQ4ciPj5e7+smIiIiMhd6DbrV7O3t4ePjg88//xyLFy9GcHAwYmJiEB0djX/++Qfz589H06ZN8ejRIyxZsiRPy162bBkqVqwIGxsb+Pj44PTp0zmm37p1K2rWrAkbGxt4enpmqrkZMGAAZDKZxl/btm3zvM2Fjc9068eRI80xY4YFihU7BgBo1qwZGjZsCACwsbmOli1DEBLSEt99Vyinkl4kJibC19cXEyZMwO3bwQCSAdyEhUUQA24j8vr1a+kRB113oJaTRo0aITw8HF999RUA4KeffoK3tzeOHz9eaHkgIiIiMmUGjRRKly6NVq1aYfTo0VizZg1OnjyJuLg4rT//+++/Y+zYsQgICMCZM2fg7e2NNm3a4PHjx1mmP3HiBPr06YPPPvsMZ8+eRZcuXdClSxdERERopGvbti0ePXok/f32228F2s7CwKBb944caY6QkJYYNeoKEhKewNraGg0bNpSGaLp+/TqaNz+Cli1DMGOGpdZjXhubwMBAREZGwt3dHe3b/wBgHIC059ZnzuSxZCy2bduGFy9eoEKFCmjTpk2hrtvW1haLFi3CoUOHUL58edy+fRvNmzfHxIkTkZSUVKh5ISIiIjI1pls9B2DRokUYPHgwBg4ciNq1a2PlypWws7PDzz//nGX6H374AW3btsX48eNRq1YtzJo1Cw0aNMDSpUs10llbW8PNzU36c3Z2LozNKRCVSmXoLJiV776TIySkJVq2DIGX178AAB8fH1hbW6Nq1aoAgBcvXiAxMREtWhxFQECqVkNvGZubN29i3rx5AIDmzZdg794vMWnSZNjY2AA4h4CAUJPbJnO1evVqAMDQoUNhYWFhkDy0bNkSFy9exMCBAyGEwLx589CoUSOcO3fOIPkhIiIiMgWWhs5AfiUnJyM8PByTJ0+Wpsnlcvj5+SE0NDTLz4SGhmLs2LEa09q0aYOdO3dqTDt8+DBKly4NZ2dnfPDBB5g9ezZKliyZ90wmJABZ/Ti2sABsbDTTZUcuB2xtc00r0vVeLtV0JyYC2dV6y2SAnd3b93lJ+/o1kFOQX6xY/tK+eQOk6xCuQGnt7NLyDQBJSUBqap7SKl/L0bLlMbRocRQ3Lr8EAHjXrg2oVLCzs0P58uURFRWFZ8+eoVixYpgy+hUslMWgfA0g4f87BrS1Tdt/AJCcDOTUYaCNzdtjJS9pU1LS0mfH2lrzfUKCxrK/+vJLJCcno0qlVggK6vr/z3CXRMyjXli3YQO86iyBv/+7UL5WQmadbhkyGaDuOTs1Na3csmNl9TatUpm277KjUKSlz2talSrtWNNFWkvLt+UmRNq5oYu0eTnvM6R99OgRTp06BYVCgUG9eml+VstrRJZp83GNcLCwwM9LlqBzmzYYPGoUIiIi0KhRIwwYMAD+/v5pz5rn9xqR/lhWH6tGeo3IVl7Oe2O5Rlha5j1tXs57XiO0S1uAa4QufkdkmZa/I9Je8xqR97S8RqS95jUif2l1cY3IaTsMQZioBw8eCADixIkTGtPHjx8vmjRpkuVnFAqF2Lx5s8a0ZcuWidKlS0vvf/vtN7Fr1y5x4cIFsWPHDlGrVi3RuHFjkZqamm1e3rx5I2JjY6W/e/fuCQAiNu3QyvzXvr3mAuzssk4HCNGihWZaF5cs0+22shIABACxZs2atLQVKmS/3Nq1NZdbu3b2aStU0EzbqFH2aV1cNNO2aJF9Wjs7zbTt22efNuOh2r17zmnj49+m7d8/57SPH79NO2KEEIBIVijEshEjxLIRI0QvmUwAEAsAISIjhRBC/O9//xMARN+WLcWyESNEskKRebkREW+XGxCQcx5On36bdt68nNOGhLxNu3Rpzmn37BHJycli2bJlYtm332rkc8//Hy9yyAVwRczseVFabPicOQKAUABiPMYIQIiOTXa/3dZ1697mYc+enPOwdOnbtCEhOaedN+9t2tOnc04bEPA2bUREzmm//vpt2sjInNOOGPE27ePHOaft3/9t2vj4nNN27655DOeU9v+vEep917ROHQFA9MoqrZbXCAGknbvpFfAaEQOIbv9/HAEQVlZW4osvvhCPvL2zX24O14j0512yQmHU14hs//7/GiGESDvuckprJNcIybp1OafdsuVt2i1bck7La0Tan56vERId/I4QgM6vEdJfEfwdke0frxFpf7xGpP3xGpH2p4drRCzSfpvExsYKY2CyNd360rt3b+m1p6cnvLy8UKVKFRw+fBitWrXK8jOBgYGYMWNGYWUxS9bp7jxaqe/EUb4pUlIwYvlyAMCv/z+tQrr51atXx4EDB1AuJAQjQkIKPX95oVAoMGLECGD9eunOtwCgHidAhbGYiU2Y1t0LQF0AQIPKleELIBRAcSzGTNjD//QsNDl9GgpwiL/ColAo8Mknn2DCyJEAgGEGzk9GpQFsA3DC1RXf1K6NkJAQLFmyBGvkcnwBYAKAvLQRSn/epU3QzzjkRERERIVJJoQQhs5EfiQnJ8POzg7btm1Dly5dpOn9+/fHy5cvsWvXrkyfKV++PMaOHYsxY8ZI0wICArBz506cP38+23WVKlUKs2fPxtChQ7Ocn5SUpNGZUFxcHDw8PBD78CEcHBwyf0APTT7+PngQbf+/HDZu3IhPP/3UuJt8ZJXWSJuFla1WDQ8fPcLpI0fQuGlTQC7HkiVL8OWXX6JLx47YERSU9XKNuFnYnn378GGPHgDsMWncDQTOKJ6pWdjmX35B30GDUNbdHVFXr+Lbedbwn22Fmd8kY5o/m5fnOW0+m4WtWLECI0aMQM3q1XE5PBwy9bGqZkTNwoKDgzF16lScOnUKAODg4ICxo0bhq1GjNK+FZnaN0MCmo2nYdDTvadl09C1eI/KelteINLxG5D2tmV4j4uLi4OjujtjY2KzjscJm6Kr2gmjSpIkYNWqU9F6pVIqyZcuKwMDALNP37NlTdOzYUWOar6+vGDp0aLbruHfvnpDJZGLXrl1a5ys2NrbQmzPs27dP4P+bUWzYsKHQ1mvukpKShOz/m5fHxMRI0//++28BQNSqVcuAucsflUol3nnnHQFAvPfe+GzTvXnzRtja2goA4vLly0IIIWbO1GyNRfqlUqmEp6enACAWL15s6OxoRaVSiT///FN4e3tL16QSJUqIuXPnioSEBENnj4iIiIoAQ8RjOTHp3svHjh2L1atXY8OGDbhy5QqGDx+OhIQEDBw4EADQr18/jY7WRo8ejf3792PhwoW4evUqpk+fjrCwMIwaNQoAEB8fj/Hjx+PkyZO4c+cOgoOD0blzZ1StWrXQh+jJq9fp7ri9yemuHmklJSUFy5cvR2BgIIQQsLW1RalSpaT51apVAwDcuHEDy5YtQ0pOd5QNTL0ty5cvR0pKCkJCQnDy5ElYW1tj27ax2X7O2toaPj4+AIAjR45g+fLlKFlyOaZONd5tNTfHjh3DxYsXoVAo0KdPH0NnRysymQwdO3bEmTNnsGXLFtSsWRPPnz/HxIkT4e3tjbNnz2b72YzHKhEREZE5MOmgu1evXliwYAH8/f1Rr149nDt3Dvv374erqysAICoqCo8ePZLSv/vuu9i8eTN++ukneHt7Y9u2bdi5cyfq1k17jtXCwgIXLlxAp06dUL16dXz22Wdo2LAhjh07BuuMvUAbmfRDhnH4sIITQuDJkye4ffs2gLRHE9I363V3dwcApKamIioqCsKIn9JQb8uTJ08ghMC3334LAPj888/h5uaW42ebNm0KIG2M+/TLoMKxYcMGAECdOnXg5ORk2MzkkVwuR48ePRAREYENGzagXLlyuHnzJt555x0sX748y+Mo47FKREREZA5MviO1UaNGSTXVGR0+fDjTtB49eqBHjx5Zpre1tcXff/+ty+wVGkP9QJ09ezZOnz6NLVu2/P/Yzubl5cuXAIAKFSpoTLe2toaLiwuePn2KuLg4A+Qsf8LDw3Ho0CFYWlpiwoQJuaZXB93//vsvqlSpou/sUTpJSUnYsWMHAMDb29vAuck/CwsL9OvXDx07dsTAgQOxe/dujBw5EocOHcKaNWtM7mYCERERUV6ZdE03vZU+6C7MAHzatGn4888/sX79+kJbZ2GKjY0FkDnoBt7Wdr969apQ81QQmzdvBgB07949bTzlXPj6+kIul+P27dsmtZ3m4O+//8aLFy9gb2+f5fFnakqUKIGdO3di8eLFUCgU+OOPP1C/fn2cPn3a0FkjIiIi0isG3WbCEEF3+mbs586dy9cyEhISsGHDBqP94Z1dTTcAlClTBkDhBN1ff/01mjVrhjlz5khN3vNKpVLhjz/+AAB8/PHHWn3GwcEBnp6eANIe16DCo75BUrduXcjl5nGplslkGD16NP79919UqlQJd+7cQdOmTfH999+zOTkRERGZLfP4JUd6+8F6//59LFy4EAlZDB+grgUG8j82+MyZMzFgwAC0aNHCKDuAUzcdz6pWuLBquh88eICFCxfi+PHjmDx5MmrWrInIyMg8L0fdx4GTkxNat26t9efUTcwZdBee+Ph47N69GwCkmx7mpHHjxjh79iy6d++OlJQUjB07Fp07d8azZ88MnTUiIiIinWPQbSb0VdM9evRofP3112jXrl2mec+fP5dep+Y0JmUOLl26BCCtx/U7d+7kaxn6FB8fDwBZdjhWWEH3wYMHAQCVKlVCxYoVkZKSkq++ByIiIgAAXbt2zVPHgAy6C9+uXbvw+vVrVK1aVTrOzI2joyO2bNmC5cuXw9raGn/++Sd8fHx4nBEREZHZYdBtJtL3rJ3+dUFt374dQNrQRRmlD7rTD1mWF3fv3pVe56f2Vl9kMhkcHR2RmJgIIOeg+/Xr1zot84wOHDgAAOjTpw8GDBgAADh69KjWn5fJZLC3t8eVK1cAAL17987T+tVBd3R0NKytrfW6rZRG3bS8V69ecHJygqOj7EpNbwAArEZJREFUo1mWu0wmw/Dhw3Hy5ElUq1YN9+7dw/r16xEeHm7orBERERHpDINuM5G+ebdCoSiUdaav4VUHp3khhDDaoFuhUGDkyJFSs/qsgm51k3MbGxu9lblKpZKC7v/9739o3rw5gLSgW9sWDQqFAp6enkhISICLiws++OCDPOWhXLlyqFChAoQQaNSoUaEdX0XV06dP8c8//wAAPvnkE4wZMwZjxowx63KvV68ewsPD8fHHH0OlUuHPP//Ed999Z+hsEREREekEg24zYYhOiNI/552fmu4XL15oBO757SBMXx4/fgwgbcijkiVLZpqvrul++PCh3vJw8eJFPH78GMWKFYOvry98fHygUCjw4MGDPN2k+P333wGk9VpuaZn3kQLVtd3Hjx/P82cpb7Zt24bU1FQ0aNAANWvWNHR2Ck3x4sXx66+/Yv78+QCAGTNmYNasWQbOFREREVHBMeg2E7p+plsIIXXklJ30tduvX7/GDz/8gHfeeUej2XlOYmJiNN4/efIk7xnVo+joaACAq6trlr1Hq4PumJiYbJ9pP3r0KG7dupXvPKhruVu0aAFra2vY2dmhcePG0rK1oVKpsGvXLgBpzZXzI/143aRf6qblffr0MXBOCp9MJsPXX3+NefPmAQD8/f1Z401EREQmj0G3mUjf83dSUlKBl7d9+3Z07tw5xzTpg+7ExESMGTMGp06dwqpVq7RaR8bgXNtgvTCkpKRIY4+XLl06yzTOzs6Qy+VQqVS4f/9+pvmXL1/G+++/j4YNG+Lq1av5ykf6puVq6ZuYayM8PBzPnj2DtbU1mjRpkq98qD937NixfD+/T7mLiorCsWPHIJPJ0Lt3b6SkpGD16tVYvXo1UlJSDJ09vVNvr5OTE2bPng0AmDp1KubOnWvgnBERERHlH4NuM5F+zOz0r/Prr7/+yjVN+ubl6qG1AO07cjPmoFsIIfWi7OrqmmUadQdlQNqwXhnt27cPQgjExsaiY8eOed6+5ORkKbBOH3S3aNECgPZBd0hICIC0Z9Dz07QcAGrXrg1ra2skJSXh/Pnz+VoG5U79GEDz5s1Rrlw5CCHw8OFDPHz4sEiMY51+e8ePHy8F3pMmTcKCBQsMnDsiIiKi/GHQbSZ0/YM8OTk51zTpa7qvXbsmvS5WrJhW61AHoTY2NgBgdGP05jRcmFrx4sUBZP1cd3BwMIC04PzWrVv44Ycf8rT+y5cv482bN3ByckLt2rWl6e+++y7kcjlu3bqVZbCfkTrorlSpUp7Wn55cLpc6jmMTc/1RNy3/+OOPDZwT4zB16lTMmDEDADB+/Hh8//33Bs6R8UlKSsIff/yB/v37Y/z48dizZw9evnxp6GwRERFROgy6zUT6oDvjs9L5kVUTdaVSqfE+fU13+qav6lrv+Ph4LFmyBC9evMhyHeogu1q1agCMq6YbeBt0Z1fTDQAODg4AMtd0p6+lHjp0KAAgNDQ0T+s/e/YsgLSendO3HnBwcED9+vUBZD2UW3opKSlS52cFCbqBt721nzhxokDLoaxduXIF586dg6WlJbp162bo7BgNf39/+Pv7AwDGjh2b55tX5kgIgdDQUAwfPhxubm7o3r07Nm7ciAULFuDDDz9EiRIlUL9+fYwePRrbt283uv4yiIiIipr8tTUlo5M+6A4MDNRL50Nv3rzRqMXObpgwddDdt29f7N69G//++y+CgoIypVMH2VWrVsXFixfx/PlzCCGMZjxibYJuR0dHAMC9e/c0pp8+fVoaomvQoEFYuXIlwsLC8rR96qBbHWCn5+Pjg/DwcISHh+c47vZ///2H+Ph42Nra5rgd2kgfdBvTfjIXv/32GwCgbdu2WfaWX5RNnz4dSqUS3377LcaMGQMLCwuMGjXK0NkqdJGRkfj111+xceNG3Lx5U5perlw59O7dG7GxsThy5AiuX7+Oc+fO4dy5c/jxxx8BALVq1UKLFi3QvHlztGjRQuoIkkyPEAKXLl3C1atXkZqaitTUVCiVSp3/zzhNCIFKlSrBy8sLnp6eqFu3rvSIFRER5YxBt5nQdfNyCwuLTNNev36tEXSnr+lOLzY2FgCk3s9///33XINuIK0m/dWrV1LtcWH566+/EBQUhB9++AElSpSQpuelpjtj0K1uWv7BBx/Ay8sLVlZWePHiBSIjI1G5cmWt8pVT0N2gQQONNNk5dOgQgLRa7qx6YM8Ld3d3WFhYIDo6Grdv30aVKlUKtDx6SwjBpuU5kMlkmDVrFpRKJebMmYMvvvgCFhYWGD58uKGzpnexsbHYtm0bNm7cqNGPQ7FixdC9e3f069cPLVq00LhmR0dH4+jRozh69CiOHDmCiIgIXLlyBVeuXMHKlSsBAFWqVNEIwitUqMAbaUbs1atXCA4Oxr59+7Bv375M3zmGUrlyZXh6esLT01MKxqtWrZrv/kOIiMwVr4pmQtdBd1YBWsZeq3Oq6c5uCK301EF32bJlYWNjgzdv3uDZs2eFGnQfPHgQHTt2BJAWyH711VfSPPVNBW1qujP2Xn7kyBEAaUG3tbU1vLy8EBYWhrCwMK2CbpVKhXPnzgHIOuhWTztz5kyOtc7q4L+gTcsBQKFQwN3dHffu3cPx48cZdOvQf//9h1u3bsHOzg6dOnUydHaMkkwmw3fffQelUon58+djxIgRsLCwwJAhQwydNZ1LTU3FgQMHsHHjRuzcuVManUImk8HPzw/9+vVD165ds+0/w83NDT179kTPnj0BpD3Kc+zYMSkQP3v2LG7duoVbt27h559/BgB4eHigVatWGD9+vEYfEmQYQghcuXIFe/fuxb59+3Ds2DGNx7hsbGzQoEED2NjYwNLSEhYWFrn+1yZNTv+VSiWuX7+OCxcu4OLFi3j06BFu376N27dvS8NSqvNWu3ZtjUDc09MTrq6uvLFDREUWg24zoYsey9PL6osxL0G3eoxrteTkZFhZWWlMUwfdJUqUQMmSJfHgwQM8f/5cChB37dqFyZMn48cff4Sfn1++tyUnU6ZMkV6fPHlSY542Nd3qeRlrHSIiIgBAGlO7UaNGCAsLw3///Sf9EM7JrVu3EB8fDxsbG9SsWTPT/Dp16kChUODFixeIiopChQoVMqV5/fq19Px17dq1YWdnl+t6c2JnZ4cqVarg3r17+Pfff9G/f/8CLc/Y7N69GzNmzECxYsXQrl07tG/fHl5eXoXyI1HdtLxz586ZAqmC7jdTk9P2ymQyzJ07F0qlEosWLcLQoUMhl8vx+eefF2IO9efChQvYuHEjNm3apHENrVWrFvr374++ffuiXLlyeV5uyZIl0aVLF3Tp0gVAWu35v//+K9WEh4WF4d69e1i/fj02btyIzz//HNOnT0eZMmV0tWmkhfj4eBw6dEgKtNUjaKhVqVIF7du3R7t27fD+++/D1tbWQDlN8/TpU1y8eFH6u3DhAiIiIpCYmIgzZ87gzJkzGuldXFw0gnAvLy/UqVOnyF3jiKiIEqRzsbGxAoCIjY0ttHVu3LhRAJD+Cqpbt24aywMgzp07p5Gmffv2mdIAEE2bNhUnT57UmPbo0aNM62jYsKEAIPbs2SM8PT0FAPHPP/9I8ytXrix9Pj4+vsDblJFSqRS2trbSOqpUqSLNi4uLk6a/evUq22U8fPhQABByuVykpKQIIYR48uRJpnyvXbtWABDvv/++VnkLCgoSAETjxo2zTVOvXj0BQGzfvj3L+QcOHBAARLly5YRKpdJqvbnZtWuXACBq1aqlk+UZg9jYWDFo0KAsj+WyZcuKzz//XOO41LXU1FTh5uYmAIg///xTb+sxJyqVSowePVraTytXrjR0lgokJiZGdO7cWePYc3FxEV9++aUICwvT2fmbnfj4eHHgwAHRpUsXaf12dnbC399fxMXF6XXdRZlKpRKXL18WCxcuFH5+fsLKykrjGLC2thZt2rQRP/zwg7h+/bqhs6sVpVIpbt68KbZv3y5mzJghunfvLqpXry7kcnmW11iZTCaqVq0qPvroIxEQECC2bdsmrl+/LlJTUw29KURk4gwRj+WENd1mQui4ebm6OWN658+fh1wuh6enJ4Cca7ozNrd+/vx5pqG31L2XlyhRQnqWWl37/fjxY9y+fVtj3e+++24+tyZr9+/f16i9v3XrFp49eybVugNpz2zn1FGMq6srFAoFUlJS8PDhQ5QvXx5XrlwBAFSoUEGqtWzUqBEAIDw8HCqVKtfnq9XPaquf3c5KgwYNcO7cOZw9exZdu3bNNP/gwYMA0pq466q2Vr0Prly5gqdPn8LFxUUnyzWUw4cPY8CAAbh79y5kMhnGjRuHypUrY+/evTh06BAePHiANWvWYM2aNVi5cqXUE70uBQcHIzo6Gs7OzmjdurXOl2+OZDIZvv/+e8hkMixevBjDhg1DcnIyvvjiC0NnLc/27t2LgQMH4vHjx1AoFOjcuTP69euHtm3bQqFQFEoeihUrBj8/P/j5+eH48eMYP348Tp48iZkzZ2LVqlWYPn06Pvvss0LLjzlLSEjAoUOHpGez79y5ozG/cuXKUkub999/3+RqgeVyOapUqYIqVapofC+9fv0aly9flpqmq2vGHz9+jJs3b+LmzZvYvn27lN7W1hZ16tTRqBn39vY2+e8cIiq6GHSbiYIE3UIIDB48GHfv3sXevXuhUCgyNSUHgP79+8PS0hJPnjyBk5NTth2pZRV0ZzUGtzrALlmypNRbszrdqVOnNNJeunRJ50H31atXAQA1a9aESqXC9evX8d9//6Ft27ZS0F22bNkclyGXy1GuXDlERkbi3r17GkF3+ucia9euDVtbW7x69QrXr1/Pssl4ejl1oqaW/rnurPzzzz8AgDZt2uS4rrxwcXFBrVq1cOXKFZw4ccJknz9OSkrC5MmTpXGfK1WqhA0bNqBZs2YAgOHDh+PNmzc4evQofvnlF/z6668YOXIkqlSpotNHHYQQmD17NoC03v4zPoJB2ZPJZFi0aBEUCgXmz5+PL7/8EikpKRg7dqyhs6aVxMREjB8/HsuXLweQ9sjIpk2b4O3tbdB8NW3aFCdOnMD27dsxadIk3Lx5E8OHD8fixYsxZ84cdO7cmc/l5oEQAtevX5eajB85cgTJycnSfCsrK7z//vto164d2rVrh+rVq5tl+dra2qJhw4Zo2LChxvTHjx9LAbj6/6VLl/D69WupH5T0KlSogEaNGqFhw4bS//QdoBIRGSsG3WYiq5ppbd27dw9r164FkFaD6eXlle3yUlNTcfjwYTg4OEjPPGcUGxubZU13eikpKdLQYlnVdKsDYjX1M9K6dO3aNQBpQXexYsVw/fp1hIeHo23btrh79y6AtB/2KSkpWdbwpKSkYNOmTVKgFBUVhffeew+XL18GkPYcppqlpSXq16+PEydOICwsLMegWwihVdCtrgXPKuh+/PixtIwWLVpg/fr1ANICu/zUVqm3FUir7b5y5QqOHz9ukkF3cnIyPvroI+zduxcAMHjwYCxcuBDFixfXSGdjY4PWrVvjf//7H4QQ2LRpE7p3746TJ0/metNEW//88w+OHTsGa2trTJo0KdP89OWe331nSvK6vepnvK2srPDtt99i3LhxSE5OzrIsjUl4eDj69u0rXYPGjBmDwMBA2NjYGDhnaWQyGbp164ZOnTph1apVmDFjBq5du4auXbvivffew/z58+Hr62vobBqtxMREhISEYN++fdi7dy8iIyM15lesWFF6Nrtly5bZdohXFJQuXRqtWrVCq1atpGlKpRK3bt3KVCt+69Yt3L17F3fv3sUff/whpa9cuTIaNWok/TVo0EDq5JSIyFgw6DYTBelI7eXLl9Jr9XBfOQXxWTVlTi8uLi5Tx2IZa7rTr9PJySlT0K3+MVq+fHlERUXh0qVLOW9EPqgD+xo1akg9pl+/fh0ApJpuhUKRbSsCIQTu3r0La2trAG87U1PXdKcPuoG0JubqoPuTTz7JNl83b97EkydPYGVlJTXlz4q6k69Hjx4hOjpao/n+gQMHAKQF7aVKlZJuIuS3RYR6W4G0oHvt2rU4fvx4vpZlSCkpKejduzf27t0LW1tbBAUF5XrjQCaTYc2aNYiMjMSJEyfQsWNHnDx5ssDNHIUQ+OabbwAAI0aMyLJVRfpy1/UjJMYoP9srk8kwe/ZsWFlZISAgAJMnT0ZycjL8/f31mdV8USqVmDdvHvz9/ZGamgp3d3esX78e//vf/wydtSwpFAqMGjUK/fr1w7x587Bo0SL8+++/ePfdd9GtWzcEBgaiWrVqhs6mUUhJScH+/fuxceNG7NmzR+M7VKFQoEWLFlKz8Ro1aphlbbauWFhYoHr16qhevTq6d+8uTY+NjcXZs2elGvDw8HDcvHlT6kF9y5YtUtpq1appBOL169fPdGOViKgwMeg2EwX5Qf7q1SvptTZBd26USiVu3LgBIK3pXHJycqagWx1cOzo6wtLSUgq61enUAfGHH36IZcuW4datW/nOT3Yy1nQDkPKd/pnu3KjTqHuazap5OfC2J/OMzeUyUo+t/c477+TYO629vT1q1KiBq1ev4uzZs2jXrp00T920XB/PCKub+YeFheH169cG70FXW0qlEv369cOOHTtgbW2NXbt2aR3s2NjYYOfOnfDx8cGtW7fw0Ucf4cCBA9INl/zYtWsXwsLCUKxYMaOvmTUF/v7+UCgUmDJlCgICApCSkoKZM2caTXBz584d9OvXD8eOHQMAdOvWDatWrZIerTFmDg4OmD17NoYPH46AgACsW7cOf/zxB3bt2oWhQ4fC398fpUuXNnQ2C50QAmFhYfjll1/w22+/4enTp9K88uXLS7XZH3zwQY59g5B2HB0d8f777+P999+Xpr148QJnzpyRAvGwsDDcuXMHN27cwI0bN6SRIWQyGWrWrCkF4Q0bNkS9evWKdCsDIipcOffmRCajIEF3+mbi6qA7q2e6s5PVjwl1E2svLy8AmZuXpx8uDID0w1P9o0UddKsDyXv37mk19ndepK/prlq1KoC3QffDhw8BQKs74+pmbFFRUXj16pVU451VTTeQ1hw8p20JCQkBkNYBWm6yamIuhNBr0F2pUiWULVsWKSkp2Ldvn86Xrw8qlQqfffYZgoKCoFAosG3btjzXLpYqVQp//vknHBwccOzYMQwdOjTf551SqcS0adMAAKNHjy6SAYs+TJ48GQsWLAAAzJ49G5MmTTJ4CwEhBH799Vd4e3vj2LFjsLe3x7p167B161aTCLjTK1u2LNasWYNz586hffv2SE1NxbJly1ClShXMnj07234+zM3du3fx3XffoVatWmjSpAmWLFmCp0+fwtXVFV999RXOnDmDO3fuYMWKFejUqRMDbj1ydnZGq1atMHHiRGzduhWRkZF48uQJ9u/fj9mzZ6Nr167w8PCQxj3/5ZdfMHr0aDRt2hQODg7w9PTEwIEDsWzZMpw6dSpPv32IiPKCQbeZ0FVNt7rZd15qurNqZqv+vDrozq6mWx10q4OOJ0+e4OnTp1L6Fi1awNraGkqlMlOT9byIiIjAnj17pPevXr2SarPTB91Pnz7Fy5cvpaBbm5puJycnAGk13OpA3tXVFc7OzhrpqlevjuLFi+P169dSbXhGQggp6G7ZsmWu627SpAkASM8nq7c1Ojoatra2eO+993JdRl7JZDKpefzq1at1vnxdE0Jg+PDh2LBhAywsLBAUFISOHTvma1l16tTBli1bIJfLsWHDBsydOzdfy9myZQsiIiLg6OiIr7/+Ol/LoKyNGzcOP/74IwBg3rx5GDt2rMEC7xcvXqBPnz749NNPERcXB19fX5w/fx4DBgwwmhr4/PD09MRff/2F4OBgNGzYEPHx8Zg2bRqqV6+OtWvXQqlUGjqLOhcXF4eff/4ZLVu2RMWKFTF16lRcu3YNNjY26NOnD/bu3Yv79+9j0aJFqF+/vknvX1Pn4uKCNm3aYOrUqdi+fTuioqIQHR2Nv/76CzNmzMCHH34INzc3qFQqREREYP369Rg1ahTeeecdODg4oF69evj888+xcuVKhIWFISkpydCbRERmgEG3mdD2R2VqamqmtFnVdBc06AbSgrO6desCSAuyQ0NDsX37dgghNIYLA9KCVACIiYnReJ7b3t4eFStWBACNIcTyIjIyEu+99x4+/PBDqQZY/ex2qVKlUKJECRQvXlx6JvrmzZt5qun28PCApaUlbt68KXVIV69evUzp5HK51HNrdk3ML1++jMePH8PW1hY+Pj65rrtnz56wsLDAiRMnpEBevY3vv/9+gZo/5+Tzzz8HAPz999/SM7jauH37Ni5cuFBoP2KePn2Krl274qeffoJMJsMvv/yCjz76qEDLbNOmjRTUTZ48WWOYG22kpqYiICAAADB+/PhMN2eo4L744gusWLECALB48WKMGjWqQP1e5EdISAi8vLzw+++/w8LCAjNnzsTRo0dRuXLlQs2HPn3wwQc4ffo0Nm/ejIoVK+Lhw4f4/PPPUbduXcyZM0cvjwUVptTUVOzduxd9+vSBq6srPvvsMxw+fBhA2vX1559/RkxMDDZv3ox27drB0pJP7BkrV1dXtG/fHv7+/ti9ezcePXqEBw8eYNeuXfD390f79u1RqlQppKam4vz581i7di2GDx+Oxo0bo3jx4mjUqBGGDRsmtfRISUkx9CYRkYlh0G0mMgbSQghcuHBBI3h+9uwZPDw8ULx4cfTo0QNPnjwBUPCgO7smkq6urlIge/XqVbRs2RLdunXDwoULs63pfvz4sRQ8qnuIrlSpEgBk6gFWWyNGjJB6Sp81axaAt89z16hRQ0qn7hDoypUriImJAaBdTbeNjY3Uk+9PP/0EANkGduom5tkF3epa7vfee0+rgLlMmTJo3749AGDdunUQQkhBoD7HfK5atSpatWoFIYR0oyEnL1++xLBhw1ClShV4e3ujWLFiqF27Nnr27KlRS69LwcHB8PLywq5du6BQKLB+/Xr06dNHJ8seOXKkNCb0J598gvDwcK0/u2HDBty4cQMuLi748ssvdZIfymzYsGFYu3YtZDIZli9fjmHDhhVK4J2UlITx48ejVatWuH//PqpWrYoTJ05g2rRpZhmUyeVy9OnTB1evXsWiRYvg7OyMq1evYvLkyahatSoaNGiAwMBA3Lx509BZ1Yp69IivvvoK5cqVQ4cOHRAUFIQ3b96gZs2a+O6773D37l2EhIRg4MCBWn1HkHFyd3dHp06dMGPGDPz111+IiYlBVFQUtm/fjilTpqB169YoUaIEUlJSEB4ejlWrVmHw4MGoX7++1KdKmzZtMHToUMyZMwdBQUE4deoUYmJiDP5YCxEZH/P7BUAAgG3btqFnz57o1KkTdu3aBQCYMWMGoqOjpfnqZwvTNy9/9uwZUlNTpeeafv/9dwQFBWHHjh1ZrkehUGRbG1yuXDkpIE/f+/jy5cvRt29fAG8DdnXQ/ebNGykgVQfE1apVw/79+6VAWU0Igb1796Jy5coaz0/fv38fpUuXhpWVFZ49eybV/ALA8ePHceHCBY0xutWqVq2KY8eO4ciRI1CpVJDL5VLT8eyohzRq3bo1jh07BiEELCwscg26T58+neV8dSdq2jzPrfbZZ5/hzz//xIYNG1CyZEmcOHEC1tbW6NKlS6Z8FkTGZQwZMgTBwcFYu3Yt/P39swwohBD4448/8MUXX0jHnoODA+Li4nDlyhVcuXIFW7duRdu2bbFo0aJMz8Hnh7rn6nnz5kEIgZo1a2Lz5s05Dr+WH4sWLcKNGzewf/9+dOrUCadPn851XPekpCTMnDkTQFotuTYtKcx9mLCMdLm9gwYNgkKhwIABA7B69WqkpKRg5cqVemkB8uTJE6xbtw6rVq2SWuUMHjwYixYtKhLP9FpbW+Orr77CwIEDsWXLFmzduhUhISE4e/Yszp49iylTpqBevXro0aMHevToYXS9nt+/fx+bNm3CL7/8ovF95eLigj59+qBfv35o2LAhm42bMZlMBg8PD3h4eEijtAghcOfOHYSHh2t01hYbG4vr169LreYysrW1RcWKFVGxYkVUqlQp0+uSJUvyWCIqagTpXGxsrAAgYmNjC22dK1asEACkP09PT+m1EEKoVCqN+QDE+++/L4QQYtKkSZnmqf+SkpLE5cuXhZWVlahVq1am+U5OTqJfv37Sezs7O+l1ly5dxIULF7Jcbtu2bQUA8c0330jbUKxYMQFAWs+yZcs0tq19+/Ya2zxu3DgBQNjb24tLly6JN2/eiK5duwoA4n//+59QKpXil19+EQCEl5eXaN++vQAgFixYIHr27CkAiPnz50vLmzt3rgAgihcvLgCIevXqaV3+Z86ckbatdevW2aa7f/++kMlkAoCIjIzUmBcbGyscHBwEABEaGqr1upOTk4Wrq6tG+S5fvlzrz+dXUlKSKFWqlAAgdu3alWW+PvnkEylP1atXFyEhIUKlUon79++L/fv3i6+++kooFAoBQFhYWIgvv/xSPHr0KF/5iYmJEStWrBDe3t7SOocOHSoSEhIKuqnZevnypahTp44AIOrXry9evXqVY/olS5YIAMLd3V0kJibqLV+kafPmzcLCwkIAEM7OzmLEiBHi9OnTQqVSFWi5KpVKHD58WPTu3Vs6jgGIUqVKiZ07d+oo96br8ePH4qeffhL/+9//pPJX/3l7e4vZs2eLa9euGSx/r169Ehs2bBCtWrWSrssAhLW1tejRo4f4888/RXJyssHyR8ZJqVSKyMhIcejQIfHzzz+LadOmiU8//VQ0bdpUlCtXTuNYyu7P3t5e1K1bV3Ts2FF88cUXYuHCheKPP/4QZ86cEc+fPzf0JhIZjEqlEq9fvxbPnz8XDx48EDdu3BAXLlwQp06dEocPHxb79u0T27dvF5s2bRJr1qwRP/74o5g7d66YPn26mDhxovjyyy/F4MGDxSeffCI6depU6PFYTkw+6F66dKmoUKGCsLa2Fk2aNBGnTp3KMf2WLVtEjRo1hLW1tahbt67466+/NOarVCoxbdo04ebmJmxsbESrVq3E9evX85QnQwTdy5cvz/biLoQQX375ZabprVu3Fq9evcrxi0EtJSVFHD16NNP8EiVKiKFDh0rv69atK70eOXKkeP78eY7LX7hwobSOypUra8wLDg4WQghx5MgRAUBUrFhRSnv16lWNtC1atBDLli3TmLZ69WrRvXt3AUBMmTJFLFq0SAr4vby8BADx559/SssMDw/X+Py4ceO0Ln+lUikFvmvWrMkx7QcffCAAiFmzZmlMnzFjhnTTITU1Vet1CyHEhAkTpHx369atwMGEtsaPHy8AiA4dOmhMT0xMFB06dBAAhKWlpZg2bZp4/fp1lsu4ceOG6Ny5s5R/S0tL0b17d3Hw4EGhVCqzXXdKSoq4du2aWLVqlWjVqpWQy+Uax+X27dt1uq3ZuX37tnTzoXPnztnmOSEhQbi5uRXaTRHStGPHDlG2bFmNc7x27dpi3rx54uHDh3la1rNnz8T3338vatasqbG8xo0bi7Vr14r4+Hg9bYXpevLkiVi9erVo3bp1pgDcy8tLzJo1S1y9elUv61YqlSImJkacO3dO7Nu3T6xdu1Z88sknGjeJAYhmzZqJn376Sbx48UIv+aCiISkpSdy4cUMcOHBArF69WkyZMkV8/PHHwtfXV5QpUybXgByAcHR0FN7e3qJz585izJgxYvHixWLXrl3i/PnzRhNAkPlTKpUiISFBPHv2TDx48EDcunVLXL58WZw5c0acOHFCHDp0SOzdu1f88ccf4tdffxWrV6/WCIInTJggvvjiC/H555+Lvn37io8++ki0a9dOvP/++8LHx0d4enqKqlWrirJly4oSJUoIW1tbrW5a5fXPWM4ZmRCm++DJ77//jn79+mHlypXw8fHB4sWLsXXrVly7di3LIXhOnDiB5s2bIzAwEB07dsTmzZsxd+5cnDlzRurwa+7cuQgMDMSGDRtQqVIlTJs2DRcvXsTly5dhY2OjVb7i4uLg6OiI2NjYQnveq0GDBjh79myW8xITE2FnZ5dpesOGDeHp6Yn169dnu9z0h8elS5ekclIrWbIkBg4cKA3T07dvX2zatAlAWgdGX375JeTyt10HfP7551izZo30ftu2bejWrRsA4H//+x8OHjwozbt//z7Kli2Lp0+folSpUgDSeh23t7fHiBEjsGLFCtSvXx8REREanZpUqFABd+/ehaWlpTQ0V3h4OBQKhdSbulpUVBQ8PDykbS1XrpzUidq+ffvQtm3bbMsmo927dyM4OBhz587N8VjZuHEj+vfvj2rVquHatWuQyWR48eIFKlWqhNjYWPz+++/o2bOn1usF0jp/8/T0RJkyZRAeHl5onXNdv34dNWrUgFwux44dO9CyZUsIIfDhhx/i6NGjsLW1xR9//KExhnh2Dh48iICAAJw4cUKaVqVKFdSuXRv29vawt7eHnZ0dHj58iCtXruD69etITk7WWEbjxo3Rs2dPfPrpp1LnfIXhxIkT+OCDD5CUlIQJEyZo9Gr+5s0bREVFYc2aNZg/fz4qVqyIa9euwcrKqtDyR2mUSiWCg4OxYcMGbN++Xeq7Qi6Xo23btujfvz86deqU5fkrhMDJkyexcuVKbNmyRfpssWLF0LdvXwwdOlQawo9y9uzZM+zcuRNbt25FcHCwxhCKnp6eUhP09I//ZEWpVOLJkyd4+PAhHj16hEePHmX5Ojo6OtthGqtWrYp+/frhk08+kfoPIdKnN2/e4O7du7hz5w4iIyNx584djdePHz/OdRklSpTI1GQ9fTN2jj9uHlJTU/HmzRut/pKSkrROq+1nDN1hoIWFBWxtbbP8s7Ozy3ae+g9I67C2MOOxnJh00O3j44PGjRtj6dKlANLG4vXw8MAXX3yBSZMmZUrfq1cvJCQkaAwd9c4776BevXpYuXIlhBBwd3fHuHHjpGF8YmNj4erqivXr16N3795a5UsfQbcQAt9//z1cXV2l56HVQkJC8vQMsLa+/fZbTJkyRXqfPvhVK1GiBL788ktMnz4dADB//nyMHz8eQFrP1q1bt9Z4bumvv/5Chw4dpPcXL16UAvmvvvoKixcvBpDWq3hMTIz02UqVKuHOnTv4448/0KJFC5QvXx6JiYk4dOgQtmzZgpUrVwJIew789OnTqF27tjQkWJMmTXDq1CkIIeDh4SFNf+eddxAaGqqxPUOGDMHq1auhUCiwcuVK2NjYoGfPnlk+r5yamootW7YAQLZpshIfHw9XV1ckJibixIkTeOeddzBu3Dh8//33qFu3Ls6fP69xo0JbUVFRcHBwyPQcen7zqe0yPvjgA6kDOLlcjhIlSuDp06dwcHDAnj170KxZszyt6+LFi1i1ahV++eUXqQO87Nja2sLLywtdu3ZFz549DfqjefPmzdK52a5dOzx79gx3796VOuVTW7duHQYMGKDVMnWx70xJYW5vbGwstmzZgg0bNuDff/+Vpjs5OaFPnz4YMGAAGjdujFevXuHXX3/FypUrcfHiRSmdt7c3hg0bho8//tgovsxN1bNnz7Br1y5s3boVBw8e1AiO69atix49esDV1VUjmFYH1DExMXnqHK906dIoU6YMypQpgxo1aqB3797w8fHhs7VkVBISEnIMyjMOwZoVR0dH2NrawsbGBjY2NrC2tpZeZ/Wny/kWFhaFUEr5I4RASkoKUlNTdfI/p3lJSUn5CoTTB8PGNPyiXC7XOKYy7nttA+G8pCloHy+GqATNicn+gktOTkZ4eDgmT54sTZPL5fDz88sUSKmFhoZi7NixGtPatGmDnTt3AkjrHTs6Ohp+fn7SfEdHR/j4+CA0NFTroFtbt2/fxrlz56T36i9+lUqFly9f4ttvv8XEiRMhl8sxZMgQKd0nn3yCTp06Yffu3TrND5B2V+nChQuoVatWph8i6p7G06tevbpGp0Tpa3rUnYYtX74cI0aMwPDhw9G0aVONz6vHxwbSajjUPvjgA431q3s9HzFiBEqVKoXExER4e3vj/fffxzvvvIOkpCSEhYVhy5YtcHBwwOLFi9G3b18kJydjwoQJANLK95tvvsHw4cMBIMuerHv16oXVq1ejVatW0rjg2f2oU6lUuHHjRo5psmJvb49u3brhl19+Qbdu3VCnTh2phn/mzJn5CriBtCHWdJlPbZexYsUKfPfddzh27BgiIyPx9OlTuLi44O+//85XzZ+npyeWLl2KuXPn4p9//sGzZ88QHx+PhIQExMfHw8XFBbVq1ULt2rVRvnz5fJeXrn388ce4du0aZs6ciX379mnMs7OzQ4UKFdCsWTNpjHNt6GLfmZLC3F5HR0cMHjwYgwcPxo0bN7BhwwZs3LgR9+7dw4oVK7BixQpUq1YNDx8+REJCAoC0kQp69+6NYcOGoUmTJgzWdKBkyZIYNGgQBg0ahOfPn0sB+IEDBxAREYGIiIgcPy+Xy+Hq6ioF0+7u7lm+dnV1LXKdEpJpUo/uUbt27Sznx8XFZQrK0wfnL1++RGxsrDQaTWGztLTMV9CuUCgKFORq89+Ygti8UigU+bohktuftp8395v+hcFkS/Dp06dQKpWZmpC6urpKPVNnFB0dnWV6da/K6v85pcmK+m6WWm61c2r79+/HyJEjc0wzbNiwLKfnN+Du378/VCoVfvnll0zz1q5dC09Pz2wv9OmDmy+//BJHjhzBzJkz8fLlS2l6y5YtsXXrVnh7e0tB+vDhw+Hn54fy5cvD2tpaumHQtGlTjWacTZs2hYWFBZRKJTp16qSx7oEDB2LJkiWIiYlBTEwM7Ozs8MMPP0Amk8HW1hY///yzRvru3bujdevWePr0qca4uJ9//jnWrVuHyMjILG+itGrVCqdPn4aHhwdWrVqVQ0kWzDfffIOjR4/i7t27ePToERQKBQIDAzV6HDcVNWrUwIYNGwAADx48wH///YeGDRtKzfbzq1ixYlIPsqZi+vTpKF++PF69eoUKFSqgfPnyqFChAnuqNXLVqlXD7NmzMXPmTISEhGD9+vX4448/pBsAtWrVwrBhw/Dpp59yXHU9KlGiBAYOHIiBAwfixYsX2LVrF3bv3g2lUpltQF26dGmjrlkj0jUHBwd4enpqVFSk9/LlS0RHR2vUsuZU46qLeelbqKSmpiI+Pl5jOFpjp1AoYGlpqdP/2gaz2qSztrbmdc4MmGzQbUwCAwMxY8aMPH+uTJkyUs1vxlb+6uaOzs7OcHJy0mqM6lq1aqFu3bq4cuUK2rRpg7CwMBw5cgQA8O6772LYsGHo3r07bG1t0aFDB2zbtg0eHh6wtbWFq6srBg4cmGtgcPToUVy5cgWDBw/WqJkfN24cfH19IZPJ0L1790yfSz88zNKlS9G2bVt8/PHHGmmqV6+O69ev4969e2jevLnGvDp16uC///7Dtm3b4OLigvbt22vUkmfFwcEhU3MSS0tLHDt2DCqVKtvnrhs3bpzpWWFdq169Oq5du4a1a9fi6NGjmDhxos6HtDKEsmXL5jpsljmTyWT47LPPDJ0Nyie5XI5WrVqhVatWWLZsGf755x+4ubnhvffe402TQubs7IwBAwZo/SgGEaVxcnLKdbhTXUtNTS1wkJ+SkqKX4De3/3K5nNd3KhQmG3S7uLjAwsIi0/OSMTExcHNzy/Izbm5uOaZX/4+JiUGZMmU00tSrVy/bvEyePFmj2XpcXJxWtXxdu3bVWU1efHw8Fi5cCAD4+eefcx0XtlevXujVq1ee19OsWbNMz+jK5XKpIzVteHh4SE28M6pcubJGzXR6Xl5emTpCyw9j6cDK2toaI0aMwIgRIwydFSLKwMHBIcsbiEREpMnS0hKWlpbswI0oB8bxMGQ+WFlZoWHDhggODpamqVQqBAcHw9fXN8vP+Pr6aqQHgAMHDkjpK1WqBDc3N400cXFxOHXqVLbLBNKCJ3Wtala1q0RERERERFQ0mWxNNwCMHTsW/fv3R6NGjdCkSRMsXrwYCQkJGDhwIACgX79+KFu2LAIDAwEAo0ePRosWLbBw4UJ06NABQUFBCAsLw08//QQgrWnomDFjMHv2bFSrVk0aMszd3d0kn7UlIiIiIiIiwzLpoLtXr1548uQJ/P39ER0djXr16mH//v1SR2hRUVEanX+9++672Lx5M7755htMmTIF1apVw86dOzXGnp4wYQISEhIwZMgQvHz5Ek2bNsX+/fu1HqMbePt8trYdqulCfHy8NG5sXFxckejpWJ+Sk5M1yjOrJunapDEGusinqWyruSlq5V7UtpeIiIj0Qx2HGcvo2CY9Trexun37NqpUqWLobBARERERERVZt27dyra/qMJk0jXdxko9VFZUVBQcHR0NnBvKjbrju3v37vF5fBPBfWZauL9MD/eZaeH+Mj3cZ6aF+8v0xMbGonz58lJcZmgMuvVA3aTd0dGRJ6YJYSd4pof7zLRwf5ke7jPTwv1lerjPTAv3l+lJ/6ixIRlHLoiIiIiIiIjMEINuIiIiIiIiIj1h0K0H1tbWCAgIgLW1taGzQlrg/jI93GemhfvL9HCfmRbuL9PDfWZauL9Mj7HtM/ZeTkRERERERKQnrOkmIiIiIiIi0hMG3URERERERER6wqCbiIiIiIiISE8YdBMRERERERHpCYNuHVu2bBkqVqwIGxsb+Pj44PTp04bOUpEwffp0yGQyjb+aNWtK89+8eYORI0eiZMmSsLe3R7du3RATE6OxjKioKHTo0AF2dnYoXbo0xo8fj9TUVI00hw8fRoMGDWBtbY2qVati/fr1hbF5Ju/o0aP48MMP4e7uDplMhp07d2rMF0LA398fZcqUga2tLfz8/HDjxg2NNM+fP0ffvn3h4OAAJycnfPbZZ4iPj9dIc+HCBTRr1gw2Njbw8PDAvHnzMuVl69atqFmzJmxsbODp6Ym9e/fqfHvNQW77bMCAAZnOubZt22qk4T4rPIGBgWjcuDGKFy+O0qVLo0uXLrh27ZpGmsK8DvK7MGfa7K/3338/0zk2bNgwjTTcX4VnxYoV8PLygoODAxwcHODr64t9+/ZJ83l+GZfc9hfPL+M3Z84cyGQyjBkzRppm0ueZIJ0JCgoSVlZW4ueffxaXLl0SgwcPFk5OTiImJsbQWTN7AQEBok6dOuLRo0fS35MnT6T5w4YNEx4eHiI4OFiEhYWJd955R7z77rvS/NTUVFG3bl3h5+cnzp49K/bu3StcXFzE5MmTpTS3b98WdnZ2YuzYseLy5ctiyZIlwsLCQuzfv79Qt9UU7d27V0ydOlVs375dABA7duzQmD9nzhzh6Ogodu7cKc6fPy86deokKlWqJF6/fi2ladu2rfD29hYnT54Ux44dE1WrVhV9+vSR5sfGxgpXV1fRt29fERERIX777Tdha2srVq1aJaX5999/hYWFhZg3b564fPmy+Oabb4RCoRAXL17UexmYmtz2Wf/+/UXbtm01zrnnz59rpOE+Kzxt2rQR69atExEREeLcuXOiffv2onz58iI+Pl5KU1jXQX4X5k6b/dWiRQsxePBgjXMsNjZWms/9Vbh2794t/vrrL3H9+nVx7do1MWXKFKFQKERERIQQgueXscltf/H8Mm6nT58WFStWFF5eXmL06NHSdFM+zxh061CTJk3EyJEjpfdKpVK4u7uLwMBAA+aqaAgICBDe3t5Zznv58qVQKBRi69at0rQrV64IACI0NFQIkRZgyOVyER0dLaVZsWKFcHBwEElJSUIIISZMmCDq1KmjsexevXqJNm3a6HhrzFvGAE6lUgk3Nzcxf/58adrLly+FtbW1+O2334QQQly+fFkAEP/995+UZt++fUImk4kHDx4IIYRYvny5cHZ2lvaXEEJMnDhR1KhRQ3rfs2dP0aFDB438+Pj4iKFDh+p0G81NdkF3586ds/0M95lhPX78WAAQR44cEUIU7nWQ34V5l3F/CZEWFKT/sZkR95fhOTs7izVr1vD8MhHq/SUEzy9j9urVK1GtWjVx4MABjf1k6ucZm5frSHJyMsLDw+Hn5ydNk8vl8PPzQ2hoqAFzVnTcuHED7u7uqFy5Mvr27YuoqCgAQHh4OFJSUjT2Tc2aNVG+fHlp34SGhsLT0xOurq5SmjZt2iAuLg6XLl2S0qRfhjoN92/BREZGIjo6WqNsHR0d4ePjo7F/nJyc0KhRIymNn58f5HI5Tp06JaVp3rw5rKyspDRt2rTBtWvX8OLFCykN96HuHD58GKVLl0aNGjUwfPhwPHv2TJrHfWZYsbGxAIASJUoAKLzrIL8L8yfj/lLbtGkTXFxcULduXUyePBmJiYnSPO4vw1EqlQgKCkJCQgJ8fX15fhm5jPtLjeeXcRo5ciQ6dOiQqWxN/TyzzPcnScPTp0+hVCo1djIAuLq64urVqwbKVdHh4+OD9evXo0aNGnj06BFmzJiBZs2aISIiAtHR0bCysoKTk5PGZ1xdXREdHQ0AiI6OznLfqefllCYuLg6vX7+Gra2tnrbOvKnLN6uyTV/2pUuX1phvaWmJEiVKaKSpVKlSpmWo5zk7O2e7D9XLIO21bdsWH330ESpVqoRbt25hypQpaNeuHUJDQ2FhYcF9ZkAqlQpjxozBe++9h7p16wJAoV0HX7x4we/CPMpqfwHAxx9/jAoVKsDd3R0XLlzAxIkTce3aNWzfvh0A95chXLx4Eb6+vnjz5g3s7e2xY8cO1K5dG+fOneP5ZYSy218Azy9jFRQUhDNnzuC///7LNM/Uv8cYdJNZaNeunfTay8sLPj4+qFChArZs2cJgmEgPevfuLb329PSEl5cXqlSpgsOHD6NVq1YGzBmNHDkSEREROH78uKGzQlrIbn8NGTJEeu3p6YkyZcqgVatWuHXrFqpUqVLY2SQANWrUwLlz5xAbG4tt27ahf//+OHLkiKGzRdnIbn/Vrl2b55cRunfvHkaPHo0DBw7AxsbG0NnROTYv1xEXFxdYWFhk6kEvJiYGbm5uBspV0eXk5ITq1avj5s2bcHNzQ3JyMl6+fKmRJv2+cXNzy3LfqefllMbBwYGBfQGoyzenc8fNzQ2PHz/WmJ+amornz5/rZB/yHC24ypUrw8XFBTdv3gTAfWYoo0aNwp49exASEoJy5cpJ0wvrOsjvwrzJbn9lxcfHBwA0zjHur8JlZWWFqlWromHDhggMDIS3tzd++OEHnl9GKrv9lRWeX4YXHh6Ox48fo0GDBrC0tISlpSWOHDmCH3/8EZaWlnB1dTXp84xBt45YWVmhYcOGCA4OlqapVCoEBwdrPD9ChSM+Ph63bt1CmTJl0LBhQygUCo19c+3aNURFRUn7xtfXFxcvXtQIEg4cOAAHBwepKZKvr6/GMtRpuH8LplKlSnBzc9Mo27i4OJw6dUpj/7x8+RLh4eFSmkOHDkGlUklflL6+vjh69ChSUlKkNAcOHECNGjXg7OwspeE+1I/79+/j2bNnKFOmDADus8ImhMCoUaOwY8cOHDp0KFOz/cK6DvK7UDu57a+snDt3DgA0zjHuL8NSqVRISkri+WUi1PsrKzy/DK9Vq1a4ePEizp07J/01atQIffv2lV6b9HmW7y7YKJOgoCBhbW0t1q9fLy5fviyGDBkinJycNHrQI/0YN26cOHz4sIiMjBT//vuv8PPzEy4uLuLx48dCiLQhBsqXLy8OHTokwsLChK+vr/D19ZU+rx5ioHXr1uLcuXNi//79olSpUlkOMTB+/Hhx5coVsWzZMg4ZpqVXr16Js2fPirNnzwoAYtGiReLs2bPi7t27Qoi0IcOcnJzErl27xIULF0Tnzp2zHDKsfv364tSpU+L48eOiWrVqGsNPvXz5Uri6uopPP/1UREREiKCgIGFnZ5dp+ClLS0uxYMECceXKFREQEMDhp7KR0z579eqV+Prrr0VoaKiIjIwUBw8eFA0aNBDVqlUTb968kZbBfVZ4hg8fLhwdHcXhw4c1hsBJTEyU0hTWdZDfhbnLbX/dvHlTzJw5U4SFhYnIyEixa9cuUblyZdG8eXNpGdxfhWvSpEniyJEjIjIyUly4cEFMmjRJyGQy8c8//wgheH4Zm5z2F88v05Gxl3lTPs8YdOvYkiVLRPny5YWVlZVo0qSJOHnypKGzVCT06tVLlClTRlhZWYmyZcuKXr16iZs3b0rzX79+LUaMGCGcnZ2FnZ2d6Nq1q3j06JHGMu7cuSPatWsnbG1thYuLixg3bpxISUnRSBMSEiLq1asnrKysROXKlcW6desKY/NMXkhIiACQ6a9///5CiLRhw6ZNmyZcXV2FtbW1aNWqlbh27ZrGMp49eyb69Okj7O3thYODgxg4cKB49eqVRprz58+Lpk2bCmtra1G2bFkxZ86cTHnZsmWLqF69urCyshJ16tQRf/31l96225TltM8SExNF69atRalSpYRCoRAVKlQQgwcPzvRlxH1WeLLaVwA0rlGFeR3kd2HOcttfUVFRonnz5qJEiRLC2tpaVK1aVYwfP15jHGEhuL8K06BBg0SFChWElZWVKFWqlGjVqpUUcAvB88vY5LS/eH6ZjoxBtymfZzIhhMh/PTkRERERERERZYfPdBMRERERERHpCYNuIiIiIiIiIj1h0E1ERERERESkJwy6iYiIiIiIiPSEQTcRERERERGRnjDoJiIiIiIiItITBt1EREREREREesKgm4iIiIiIiEhPGHQTERERERER6QmDbiIiIiIiIiI9YdBNREREREREpCcMuomIiIiIiIj0hEE3ERERERERkZ4w6CYiIiIiIiLSEwbdRERERERERHrCoJuIiIiIiIhITxh0ExEREREREekJg24iIiIiIiIiPWHQTURERERERKQnlobOgDlSqVR4+PAhihcvDplMZujsEBERERERFRlCCLx69Qru7u6Qyw1fz8ygWw8ePnwIDw8PQ2eDiIiIiIioyLp37x7KlStn6Gww6NaH4sWLA0jbyQ4ODgbOjemZOxf47jtgyhTgq6+SsXDhQo3548aNg5WVlUa6iRMNlFkiIiIiIjIqcXFx8PDwkOIyQ2PQrQfqJuUODg4MuvPh228BGxvA3x9QKFJhY2OjMd/BwQFz51rhu++AmTOBadMMlFEiIiIiIjJaxvKoL4NuMkrqQNrf3xItWzZHixZHpXnffSfHjBkMuImIiIiIyPgx6CajNW0aoFSmYsaMlkhJicc77xxFeHh7hIRYMuAmIiIiIiKTIBNCCENnwtzExcXB0dERsbGxbF5eQMnJyWjb9l+EhHzw/1NeIiCgGKZP5/0iIiIiIiLKzNjiMcP3n06UA7lcji+/jJXeW1hcwjffGDBDREREREREecCgm4yapaUlTp1qJr1XKi0RGMhabiIiIiIiMg0MusmozZoFzJnzSno/cOBr+PunTSciIiIiIjJ2DLrJaM2alTZs2ODBz6Rp7ds/wYwZgoE3ERERERGZBLbTJaOkDrgDAlJx795yaXpQUBA2b+4EmcwK/v5p09iLORERERERGSsG3WR01AH3zJnAxIkqDBqUJM1LSkp7/XYcb2i8JyIiIiIiMiYMusmopA+4p00DkpPfBtqA5msG3kREREREZOwYdJNRUSrfBtxq6QPt5ORkjfTqdEplYeSOiIiIiIgobxh0k1GZPj3ztOxqutVYw01ERERERMaKvZeT0Utfu52xppuIiIiIiMiYMegmo5dbTTcREREREZGxYtBNRk0ul6NYsWLSexsbG8jlPGyJiIiIiMg0MHoho2ZpaQkXFxfpvZ2dHSwt2RUBERERERGZBgbdZPTSP8edmJhowJwQERERERHlDYNuMmpCiExDhgkhDJgjIiIiIiIi7THoJqOWkpKCq1evSu8fPXqElJQUA+aIiIiIiIhIewy6yegplUrptUqlMmBOiIiIiIiI8oZBNxm99IF2+gCciIiIiIjI2DHoJqPHmm4iIiIiIjJVRSLoXrZsGSpWrAgbGxv4+Pjg9OnT2aZdvXo1mjVrBmdnZzg7O8PPzy/H9KR/6YNu1nQTEREREZEpMfug+/fff8fYsWMREBCAM2fOwNvbG23atMHjx4+zTH/48GH06dMHISEhCA0NhYeHB1q3bo0HDx4Ucs5JjUE3ERERERGZKpkw8/GXfHx80LhxYyxduhRAWvNkDw8PfPHFF5g0aVKun1cqlXB2dsbSpUvRr18/rdYZFxcHR0dHxMbGwsHBoUD5L+qSk5NRpkwZPH/+HACgUCgQHx8PKysrA+eMiIiIiIiMkbHFY2Zd052cnIzw8HD4+flJ0+RyOfz8/BAaGqrVMhITE5GSkoISJUpkmyYpKQlxcXEaf6QbcrkcFhYW0nuVSgW53KwPWyIiIiIiMiNmHb08ffoUSqUSrq6uGtNdXV0RHR2t1TImTpwId3d3jcA9o8DAQDg6Okp/Hh4eBco3vWVpaQmFQiG9VyqVGkE4ERERERGRMTProLug5syZg6CgIOzYsQM2NjbZpps8eTJiY2Olv3v37hViLs1fSkqKxns+101ERERERKbC0tAZ0CcXFxdYWFggJiZGY3pMTAzc3Nxy/OyCBQswZ84cHDx4EF5eXjmmtba2hrW1dYHzS1lLTk7WeJ+SkgJLS7M+dImIiIiIyEyYdU23lZUVGjZsiODgYGmaSqVCcHAwfH19s/3cvHnzMGvWLOzfvx+NGjUqjKxSNpKTk5GQkKAxLeN7IiIiIiIiY2X21YVjx45F//790ahRIzRp0gSLFy9GQkICBg4cCADo168fypYti8DAQADA3Llz4e/vj82bN6NixYrSs9/29vawt7c32HYUZSqVSuN9xubmRERERERExsrsg+5evXrhyZMn8Pf3R3R0NOrVq4f9+/dLnatFRUVp9Ia9YsUKJCcno3v37hrLCQgIwPTp0wsz6wRACMGgm4iIiIiITJbZj9NtCMY2Lpwpi4+PR/HixTWm3bx5E1WqVDFQjoiIiIiIyJgZWzxm1s90k+lL34maTCYDwJpuIiIiIiIyHQy6yailD7rV43Vn7M2ciIiIiIjIWDHoJqOWvlZbPUxYamqqobJDRERERESUJwy6yaipA2xLS0tpLHQG3UREREREZCoYdJNRU/fzZ2NjI3WCwL7/iIiIiIjIVDDoJqOmfn5boVBIz3SzIzUiIiIiIjIVDLrJqKmDbisrKwbdRERERERkchh0k1FLTEwEALx58wYvXrzQmEZERERERGTsGHSTUVPXdMvlco7TTUREREREJodBNxk1ddBtYWEBCwsLAAy6iYiIiIjIdDDoJqOmDrDlcrkUdHPIMCIiIiIiMhUMusmopa/plsvTDlfWdBMRERERkalg0E1GTR1gs3k5ERERERGZIgbdZNTSB93qmm517TcREREREZGxszR0Bohyog6wixUrBltbWwB8ppuIiIiIiEyH0dZ0HzlyBDt37sTly5ehUqkMnR0yECEEAKBChQqoWrUqAPB4ICIiIiIik2GUQfeIESPwySef4JdffoG3tzecnJzQqFEjfPbZZ4bOGhUydU23lZUVFAoFAD7TTUREREREpsMog+6goCCcPHkSf/zxB+zt7XHjxg04OTnBwcHB0FmjQqYOsBl0ExERERGRKTLKoNvS0hJlypSRXpcuXRo///wzIiIiDJwzKmyJiYkAgBs3buDSpUsAgDdv3hgyS0RERERERFozyqC7YcOGCA0NBQBUrlwZly9fRtmyZXH69GkD54wKW/pabfXz3azpJiIiIiIiU2GUvZf/9NNPePXqFQBg1KhR6NGjBypVqoSaNWsaOGdU2NQBtlwu5zjdRERERERkcowy6Pbw8JBef/rpp3B1dcWFCxfQt29fA+aKDEHdkVr6cboZdBMRERERkakweNC9b98+bNq0Cffu3UOxYsXg5eWF7t27o1GjRlKa1q1bo3Xr1gbMJRmKOsC2sLBgTTcREREREZkcgz7TvXjxYnTs2BE7duxAQkICHj9+jB9//BE+Pj7o0KEDoqOjDZk9MgLpa7oZdBMRERERkakxaND9ww8/oF69erh79y7CwsIQFhaGFy9eYOnSpYiIiECTJk3w4MEDQ2aRDCyr5uWpqamGzBIREREREZHWDBp0x8TE4PPPP4eLi4s0zdraGsOHD0dYWBhkMhkmTJhgwBySoakDbEdHRzg5OQF4G4gTEREREREZO4MG3TVq1EBMTEyW80qVKoURI0Zg7969hZwrMibqoPvdd99Fs2bNAABKpdKQWSIiIiIiItKaQYPuCRMmYOnSpbhx40aW8+3s7CCTyQo5V2RM1M9vW1lZQaFQaEwjIiIiIiIydgYNuhcuXAgLCws0adIE8+bNw8OHD6V5t27dwrJly9CjRw8D5pAMTd2UXKFQMOgmIiIiIiKTY9Cg293dHcWKFUNcXBwmTZoEDw8PlCpVCm5ubqhevTpsbW0xZMgQBllF2Js3bwAAR48eRUhICAA+001ERERERKbDoEH37t27cfv2bcTGxiI0NBSrVq1C3759UadOHbi4uOD8+fNo0qQJihUrhpo1a6Jr166YOvX/2rvz8Kiq+3/g72yTBUgCBBISwyYIZd9DqIKWaEC0WrUipRU3rIoWikXBDe0W69KvVhEVF6xVWfwpVjaLYbFI2CIIYZNNQSCELXtIQub8/kjnMpPMJDOZu3xm8n49zzxJZk7unHvOuefezz3n3vu4z98zZ84cdO7cGVFRUUhLS8PmzZs9pt21axduvvlmdO7cGSEhIXjppZf8WEPyl+OES1VVFSorK7XfiYiIiIiIAkG41RkAgJYtWyItLQ1paWku7xcUFGDnzp3Iy8vTfmZnZ+Mvf/mL18teuHAhpk+fjtdffx1paWl46aWXkJmZiX379qF9+/b10peXl6Nr16745S9/id///vd+rxv5x91zuvnIMCIiIiIiChQigm5P2rdvj9GjR2P06NFNXsbf//53TJ48GXfeeScA4PXXX8eyZcvwzjvvYObMmfXSDx06FEOHDgUAt5/7oqyqDGFVYfXeDwsNQ1R4lEs6T0JDQhEdEd2ktOXV5VBKuU0bEhKCmIiYJqWtqK6AXdk95qOFrUWT0p6/cB41dtc7k1dW1Y5uOz+nu7q62m1aZzERF2/CV3mhEhfsngN1X9JGR0QjNKQ2H1U1Vaiu8Xzpgy9po8KjEBYa5nPa6ppqVNV4HvmPDI9EeGi4z2kv2C+g8kKlx7S2MBsiwiJ8Tltjr8H5C+c9po0Ii4AtzOZzWruyo6K6Qpe04aHhiAyPBAAopVBeXa5LWl+2e/YR7tM2tt37kpZ9RC32Eb6nZR9Ri31E09Kyj6jFPsL3tOwjLvKmj2hoPawgOuj2V1VVFXJzczFr1iztvdDQUGRkZCAnJ0e376msrNSmPgNAcXExACD5xWQgqn76a7tfi2W/Wqb93f6F9h43slGdRmHtHWu1vzu/3Bmny0+7TTskeQi2TN6i/d1rTi/8UPSD27S92vXCrgd2aX8PnTcUu0/tdpu2U1wnfD/te+3vkfNHYuvxrW7TJsQk4NSMU9rfYz8Yi3U/rHObNiYiBmWPXdwgbl50M5bvd31EXMj3tTuxukH3bz79DT7e/bHb5QJA6axSbYP87dLf4r1v3/OYtuAPBWjXoh0AYPoX0/Ha1tc8pj089TA6x3cGADye/TheyHnBY9q8+/PQu31vAMBf//tXPLPuGY9pN9+zGUNTak/2vLzxZTzypefn06+ZtAZXdr4SAPBm7pt4cMWDHtMunbAU4y4bBwD4YOcHuPOzOz2mXXTLIvyyd+2NCz/d8ylu/fhWj2nfveFd3DHgDgDAFwe+wHUfXecx7atjX8WUYVMAAP898l9c9d5VHtM+l/EcZvx0BgDgmxPfYNhbwzymnT1qNp6+8mkAwJ5Te9Bnbh+Paf+Q/gc8f83zAIAjRUfQ5eUuHtM+MOQBzBk3BwBwuvw02r9Qf0aMw6T+kzD/xvkAancmLbNaekx7S69bsPiXi7W/G0rLPqKWN32EMzX74s6cfcSVANhHsI9gH+GMfUQt9hG12EfUCto+wvP5FktYek230U6fPo2amhokJia6vJ+YmIj8/HzdvicrKwtxcXHaKzU1VbdlN3v/OwldN+gmIiIiIiIKBCHK0zh/EDh+/DhSUlKwYcMGpKena+8/8sgjWLduHTZt2tTg/3fu3BnTpk3DtGnTGkznbqQ7NTUVx08dR2xsbL30nPLhPq27qV7DhwxH3s48/PrXv0ZoaCj++c9/olevXsj9NpfTwsBpYZwWxj6iqWnZR9RiH+F7WvYRtdhHNC0t+4ha7CN8T8s+4iJv+oji4mIkt0tGUVGR23jMbEE9vTwhIQFhYWE4efKky/snT55EUlKSbt8TGRmJyMjIeu+3sLVwaRSeeJOmKWmdG6+eaZ03Nj3TOncODheqa3dcbdq0cRnpdpfWk8jwSESifv34m9YWZtM6YKvSRoRFaDsiPdOGh4Yj3OZd9+BL2rDQMK/bsC9pQ0NCDUkbEhJiSFrAuO2+ufUReqRlH+F7WvYRtdhHNC0t+4ha7CN8T8s+4iIJaSX3ETU2zyfVrBDU08ttNhsGDx6M7Oxs7T273Y7s7GyXkW+Sy3Gn8vHjx+PWW2uvDeL0ciIiIiIiChRBPdINANOnT8ekSZMwZMgQDBs2DC+99BLKysq0u5nffvvtSElJQVZWFoDam6/t3r1b+/3YsWPYvn07WrZsiW7dulm2Hs2V45FhERERvKabiIiIiIgCTtAH3ePHj8epU6fw1FNPIT8/HwMGDMDKlSu1m6sdOXJEC+aA2uvABw4cqP39wgsv4IUXXsCoUaOwdu1as7Pf7DmCbpvNpl0vxaCbiIiIiIgCRdAH3QDw4IMP4sEH3T8OoW4g3blzZ48X+ZP5HAH24sWLGXQTEREREVHAaRZBNwUux0i349nnAINuIiIiIiIKHAy6STRH0B0WFqa9x6CbiIiIiIgCRVDfvZwCm1JKe/55eHg4b6RGREREREQBh0E3ieUY5QZqg27HaLfdbofdbsdrr72GWbNm8Rp8IiIiIiISi9PLSazz589rv4eHh7sE11VVVZgyZQoA4Oc//zmfu05ERERERCJxpJvEcg66w8LCXK7rLigo0H7fv3+/qfkiIiIiIiLyFke6SSxH0B0REYG4uDjU1NRonx07dkz7/cCBA6bnjYiIiIiIyBsc6SaxHEF3ixYt8Pvf/x4PP/yw9tmPP/6o/Z6Xl2d63oiIiIiIiLzBoJvEcgTdUVFRAICQkBBtirlz0L17927zM0dEREREROQFBt0kluNxYY6gG6idag64Bt0nT540N2NERERERERe4jXdJJZjpPv8+fN48803XT5zvqa7qKgIdrtde443ERERERGRFAy6SSxH0K2UwokTJwDUTjEHXINupRSKi4sRHx9veh6JiIiIiIgawqDbSGVlgNNjrjRhYYDTlGmUlXleRmgoEB3dtLTl5YDTs61dhIQAMTFNS1tRAdjtnvPRokXT0p4/Dzjdofx8YSGA2md0O2jXdB896rKYc8eOIf5/U88B1Ob3fwE6KiuBCxc858GXtNHRteUMAFVVQHW1Pmmjoi62FV/SVlfXpvckMhJwlJ8vaS9cqC0LT2w2wFHevqStqamtZ08iImrT+5rWbq9ta3qkDQ+vLQugdpsoL9cnrS/bPfsI92nr9BF+pWUfUYt9hO9p2UfUYh/RtLTsI2qxj/A9LfuIi7zpIxpaDyso0l1RUZECoIpqm1b917XXuv5DTIz7dIBSo0a5pk1I8Jx2yBDXtJ06eU7bq5dr2l69PKft1Mk17ZAhntMmJLimHTXKc9qYGNe0117r8vlCQAFQnTp1Uk8//bR6+umnVevWrRUAZQsNVfjf5wBUbt1ll5ZeXO6kSZ7zAChVUHAx7QMPNJz28OGLaf/wh4bT5uVdTDt7dsNpN2++mPa55xpOu2bNxbSvvtpw2qVLL6Z9992G0y5adDHtokUNp3333Ytply5tOO2rr15Mu2ZNw2mfe+5i2s2bG047e/bFtHl5Daf9wx8upj18uOG0DzxwMW1BQcNpJ026mLa0tOG0t9yiXDSUln1E7auRPqLey9kttzScln1E7Yt9RO2LfUTti33ExRf7iNoX+4jaF/uI2lcA9RFFqI0RioqKlAS8CJbEcpybdB7pdtxIrarOGa1Ck/JERERERETkixCllLI6E8GmuLgYcXFxKDp+HLGxsfUTcMqH+7R1pnq9+c47+O3vfocePXpgwoQJAIB58+a5XM/t8PG//oWbb7zx4hucFlaL08J8T8tpYbUCoI/wKy37iFrsI3xPyz6iFvuIpqVlH1GLfYTvadlHXORFH1FcXIy45GQUFRW5j8dMxmu6jdSihWujaCidL8v0lnPj1TOt88amZ1rnzgGAo/t1N9Lt0LFjRxw5cgTnKio8l01k5MUOrTG+pLXZLnbAVqWNiLi4I9IzbXj4xR2nnmnDwrxvw76kDQ01Jm1IiDFpARlpA7yP0C0t+wjf07KPqMU+omlp2UfUYh/he1r2ERdJSCu5j2jopJoFOL2cxHLcvTwqKgrR0dGIjo52eWY3UBt0A0Dh/266RkREREREJAlHukksR9A9ePBgPPLIIwCALVu2YO/evVqa1NRUAMC5c+fMzyAREREREVEjONJNYjmPdDvE1Jma4hjpZtBNZqmsrMTbb7+NtLQ0jBgxAn/84x+xefNm2Bu69oiIiIiImi2OdJNYjQXdERERSEpKAsCgm4xXWFiIN954Ay+99BLy8/O193NycjB79mwkJCQgMzMTY8eOxfXXXy/iph1EREREZD0G3c3Q0aNHcfToUYwYMQLnz59Hbm4u+vXrh1atWlmdNReOoHvv3r145513EBISgsOHD2uft2rVCgkJCQCA06dPW5JHCn75+fl48cUX8cYbb6CkpAQAkJKSgmnTpiE+Ph4rVqzAqlWrcPr0aXzwwQf44IMPkJycjMWLF2PEiBEW556IiIiIrMaguxlyTMnetm0bXnzxRfzrX/8CUPs4rnvuucfKrLko+98jC8rKynD06FEAQIXTIxpatWqFdu3aAQBOnTplfgYp6O3btw8/+9nPcPz4cQBA7969MWPGDEyYMAG2/90Z9p577kF1dTU2bNiAlStXYuHChTh8+DBGjRqFF198EQ899BBCHI+SISIiIqJmh9d0B4CtW7fi/fff1325X3/9tRZwA8DkyZN1/w5/OKaMRzs9CsD5kWGxsbEMuskwe/fuxVVXXYXjx4+jZ8+eWLp0KXbs2IFJkyZpAbdDREQERo0ahaysLHz77bcYP348Lly4gKlTp2LChAkoLS21aC2IiIiIyGoMugPA0KFDcfvtt+O///2v1Vkx1dmzZwF4DrrrjnQrpczNIAWtPXv24Morr8SJEyfQt29ffPXVVxg3bhxCQxvvMlu1aoWPPvoIL7/8MsLDw7Fw4UIMGzYMe/bsMSHnRERERCQNg+4A8t133/m9DOfA9JVXXvF7eUbyJeiurq5GcXGxuRmkoLR7925ceeWVOHnyJPr164fVq1dr7cxbISEh+N3vfod169YhOTkZe/bswdChQ7Fo0SKDck1EREREUjHoDiBhYWF+L6OyslL7fd++fX4vz0jeBN1RUVFo2bIlAKCgoMDcDFLQycvLw5VXXomCggIMGDAAq1ev1m7W1xQjRozAtm3bcNVVV6GsrAzjx4/HtGnTUFVVpWOuiYiIiEgyBt0BRI+gu7y83Ou0R48etSw4UEo1GnS3b9/e5Sev6yZ/bN++HVdddRVOnTqFgQMH4ssvv0Tbtm39Xm779u3xn//8BzNnzgQAvPzyy7jqqqtw7Ngxv5dNRERERPLx7uUBxKyg2263Y+fOnRgwYADGjh2L5cuX+/29viovL9cC/tjYWISHhyMkJMQlAB8wYAAAoF27djh06BCDbh9cuHABGzduxNatW1FTUwMAiI+Px8iRI9GtW7dmd7ftr7/+GuPGjUNRUREGDRqEVatWoU2bNrotPzw8HFlZWRg+fDgmTZqEDRs2YNCgQfjoo4/ws5/9TLfvISIiIiJ5GHQLZ7fbtd/9CborKiqwbNkydOvWrcF0d955J+bPn6/9vWLFCmzevBnDhg1DdXW1y0hzU33xxRdo164dBg0a5DGNY5Q7IiICTz/9tBYEfvXVV1r+Bg4cCAC8g7mX7HY7vvzyS7z99tv44osvUFRU5DZdSkoKfvazn+Gqq67CVVddhc6dO5ubUZOtXLkSN910EyoqKnD55Zfj888/R3x8vCHfdcMNN2Dr1q24+eabsWPHDlx99dX4y1/+gkceecSrm7QRERERUeBpFkH3nDlz8PzzzyM/Px/9+/fHK6+8gmHDhnlMv3jxYjz55JP4/vvv0b17d/ztb3/Dtddea2KOL6qurnb7u7OqqiocPXoUR44cwfDhw7FkyRKcOXMGY8aMQW5uLi655BLMnDkT69evx69//esGv8854HZIS0vTfn/rrbdQVVWFOXPm4L333kP//v2xd+9e9O7dGwCwZMkS7N27F9OmTXMZld64cSN+/PFHJCUlYcyYMQgLC8Pw4cMRExODN954A126dNHS7tu3D19++SUAoE2bNi6jrs7XpPfp0wcAkJycDAA4dOiQS74XLlyI1157DS+88AKGDh3a4HoHK7vdjtzcXKxYsQLvv/8+Dhw4oH3Wtm1bjBw5Ursm/ocffsDGjRtx7NgxvP/++9pj6rp06aIF4GlpaejUqVO9R2Y5VFRU4Ny5c4iKikJ8fLzugWRFRQWqqqoQHR2NiIgIv0fkFy9ejIkTJ6K6uhpjxozB//t//w8xMTE65da9bt26IScnB/fffz/++c9/YtasWcjJycFbb73l8w3bApXdbkdlZSUqKytx/vz5er+HhoaiZcuW2qtFixYID28WuysiIiKqQymFiooKlJSUoKSkBMXFxS4/3f3uGMCTIkQF+XOWFi5ciNtvvx2vv/460tLS8NJLL2Hx4sXYt2+fdi2wsw0bNmDkyJHIysrCddddhw8//BB/+9vf8M0332hBXmOKi4sRFxeHoqIixMbG+pX/oqIibdSte/fu2LRpE1avXo0PP/wQn3zyiV/L1sMNN9yAzz77DAAQExOjTV+Pjo5GSkoKVq5ciUsuuQRJSUkoLCx0u4z77rsPc+fOBVAb+P3kJz9BRUUFAGDIkCHYsmWLlra8vBxDhw7FiBEjMG/ePADA22+/jXvuuQdXXHEFvvrqKwDArl27tPpq0aIF9uzZg9TUVLz77rvYs2cPHnroIaSmpgKoDeR27dqFAQMGeHVgr5TCkSNHkJycXG/kXymF3NxctGvXDp06dXL7/1999RX27t2L8+fP49prr3U7++DUqVPIycnBzp07ER4ejlGjRmHw4MFuZxpUVVVhx44d2Lp1K77//nvk5+fjxIkTyM/Px5EjR1zKPTY2FpMmTcLEiRMxZMiQerMnysvLkZOTg9WrV2PNmjXYsmULLly44JImNDQUl1xyCRISElBVVYXKykpUVFTgzJkzWr050rVp0waXXHIJrrnmGlx33XVIT0/3OXg6dOgQPv/8c3z++edYt26dlp+wsDDExMQgKSkJv/jFL3DbbbdhwIABXgfib7/9Nu69917Y7XbceuuteP/99z2eTDCCUgrz5s3DQw89hKqqKthsNvziF7/A5MmTcdVVV1k+8q2U0uq2oqIC58+f9/h7aWkpioqKGn050ns6gdiQyMhIl0Dc8UpISEBycrLbl+OEUjCw2+0oKyurd6BRXFyM4uJi7VnwERERCA8PR0REhNe/O/6OjIxEXFwcWrVqZXn7IyKiwKaUQllZmU+BckNpHZdD+kqPeEwPQR90p6WlYejQoXj11VcB1B64pKam4qGHHtJubORs/PjxKCsrw9KlS7X3hg8fjgEDBuD111/36jv9Cbr379+POXPmYPv27Vi3bp1P/yvRlClTMHr0aNx0000e07Ru3RpbtmxBSEgInn/+eZdyfuWVV9CmTRttmn1oaChuvfVWl8Dtu+++Q48ePQAAn376KcaMGYNbbrkFy5Yt09I8+OCDuOKKKzB+/HgAQFxcHDZv3oz4+HhkZmZi+/btSExMxPvvv4+rr74aSimsWLECR48exdVXX42uXbsCADZv3oyHHnoImzdvRkJCAu6//3488cQTsNlsWLNmDWbMmIHc3FwAwLBhw/D6669r0+DPnTuHBx54AAsWLNDyFRYWhokTJ2Ly5MkYOnQodu7ciXnz5mH+/Pn1bmLXsmVLXHHFFRg4cCBCQ0Nx7tw5bN26Fdu2bWvwhnetWrXC1Vdfjeuuuw633norWrRo0UCNuSotLcX69euxZs0arFmzBrt27Wr0vgChoaEul0U4a926NcaOHYvrrrsOmZmZbq+brqmpwcaNG7VAe/fu3V7nt0ePHpgwYQLGjRuH/v371ztJUVxcjE8++QQffPCBNpti8uTJmDt3ri73TGiKrVu34re//S2++eYb7b2uXbvi7rvvxh133KHN5PBVRUUFjh8/jtOnT2uvM2fO1Pu7vLzcYzBtlqioKERGRmovu92O0tJSlJaWNnknC9S2fecgvEOHDmjXrp32SkhI0H7GxsYaei8Du92unXk/e/Yszpw5o/3ueJ07d04LousedJSWlsKs3XVISAji4uIQFxeH+Ph4xMfHa7+7e6/u53FxcaaewLJKdXW1ts04/3ScWLpw4QIuXLiAmpoa7Xc9X3a7HWFhYQgLC0N4eLj2u5HvOZ+ocbxsNpvH9xz3YyEifSilUFNTo/Ux1dXVXv3uS1pf/6+ystJtoFxaWurxeNAfrVq1QqtWrRAbG9vg7+Hh4Xj00UcZdJuhqqoKMTEx+Pjjj3HjjTdq70+aNAmFhYXaCK2zjh07Yvr06Zg2bZr23uzZs7FkyRJ8++23Xn2vt0F3aWkpWrVq5fX6BJMNGzagXbt2uPLKK93exfn2229HixYt8Oyzz+L//u//XD6bNWuWywGdUgodOnTAyZMnXdKFhIRg7ty5uO+++9zmoX379igvL9dGiIDaEfo///nP+Pjjj5GTk6O9f/fddyMlJQV//etf64389unTB126dMHnn3+uLaOyshJ2ux2RkZH4/e9/j3bt2uFvf/sbCgoKEBYWhrFjx6KsrAxr1qxxya/z5tirVy8MGjQI5eXlWLt2bYPTZNq0aYNhw4ahR48e6NChA5KSkrSfP/nJT3S5Fh+oLeuCggIcOnQIZ8+e1YKk6OhotGnTBm3btkVsbCyqq6tx9uxZnD59Gnl5eVi2bBmWL1/usg5hYWFIT09HSkqKdqBWUVGBL7/8EqdPn3ZJN3LkSFx//fW47rrr0KlTJ5SXl2vB4vbt2/HRRx9h6dKlLpcfREdHY+jQoUhPT0ePHj2wYsUKfP755y7B5MyZM/HXv/5VxEHhN998g3nz5uHDDz/UnjnvaCvdunVDTEwMoqOj6/0sLCzEsWPHcOzYMfz444/a7+fOndMtb6GhoYiOjkZUVBSio6Pr/R4TE+MSpDl+r/uKiYlxCbCjoqIavExAKYWqqiotAC8rK9N+Ly0tRUlJCU6dOoXjx4/Xe5WUlPi0jjabDQkJCS6BeLt27WCz2aCUcvuy2+1u36+oqHAJps+cOYNz587pcvARFhamHVA4/3SM6ns6KGrogMnxd1NnIbgTHh6OmJgYtGjRwu+foaGhqKmpgd1u1+1ndXV1vWDZ04wOT5/5c0KoOXEE6w0F596+HxISgpCQEISGhrr96e17eqT3pi/w9H5T/seXZelNz32k3vtbqXlzBMZGBMGBJjQ01OtAue6+re57jn2CN/SceayHoA66jx8/jpSUFGzYsAHp6ena+4888gjWrVuHTZs21fsfm82G9957DxMmTNDee+211/DMM8/UC+ocHNcjOhQXFyM1NbXRSpZwoG+Fbt26Yf/+/QCAP//5z3jyySddPu/fvz+2bduGkJAQVFVVISsry+XzukE3ALz//vt4++23sX37du0GYTfffDMWL16Myy+/HBs2bAAAXH311Zg3bx4GDhyoBSWpqalYvnw5Hn30UZc7tUdHR2PQoEH4+uuvXb7rlltuwf/93/9h/fr1mDJliksged999+GPf/wjampqcO+992qBuEOPHj3wz3/+U7unwJYtWzBnzhx88sknKCkpQevWrTFy5EhMnz4dV1xxhdZG7HY7duzYgTVr1uDgwYPandwHDhyIYcOGoWvXruLbk2MEe+nSpVi6dCny8vI8po2Pj8e1116L66+/HmPGjPHqxmbFxcX47LPPsHjxYqxfv95j0NmzZ09MnDgRv/rVr7QZDJKUlZXh448/xrx58+q1PV9FR0ejffv2SEhIQNu2bbWg0vFq06YNWrZs6RJAuwuu9bh+3mwlJSU4ceKESyB+4sQJnDp1CqdPn8apU6e038vKykzLV4sWLdCmTRuXV9u2bdGmTRvthIXjAMNdcB0VFWVYXSilcP78eRQWFqKoqMjlp7fvOZ/EbE4cJx+joqK0bSY8PNzQV0hICGpqarSXY1Td0996vOd8oqa6uhpVVVUuf/NEBJE1fL2syPG7HmltNluDgXJMTIwlxxAMuk1kVtD99NNP45lnnqn3fmOVnJeXh759+/qySrooKirCY489hry8PCxZsgQPP/ww3nnnHSQkJKB///4YNmwYKioqUFpair1796KiogJKKURFReHChQto06YNqqqqUFZWhpSUFHTq1AkHDhxAly5d8N133+GWW27ByZMnMWDAAKxevRpHjhzB0KFDMWTIEDz66KOYM2eOdmOzmpoa/POf/0RkZCQOHTqETZs24eWXX9aCIW+DboeDBw/iwQcfxGWXXYZnnnkG8fHxOHv2LJ588kn8+OOPeOedd9C2bVvs2rULWVlZKCgowFtvvYWOHTvi/PnzeOWVV/DZZ5+hb9++ePLJJ5GcnIz169fj5Zdfht1ux5gxY3DPPfdonUd+fj4+//xznD59GldddRWGDx+u5UUphQ8//BDLly/HoUOH8Ktf/Qr33Xef21FnxzXRKSkpARfcNNUPP/yA1atXo6SkRDtwA4D09HT89Kc/9Wt03m6347vvvsOGDRuQk5ODPXv2IC0tDRMnTsTAgQMDpoz37NmDzz77DEVFRdrIvvMof3l5OWJjY5GSkuLyuuSSS5CSkoK4uLiAWVcrVVRUaIF43YC8urpaG+FyfjmPfNV9RUZGom3btlow7Xi1bt0aUVFRVq+uoS5cuICSkhKUl5ejrKzM55/u3lNKISwsDKGhoX79dP49PDzc5QRT3Z++fBYZGclr4P/HMYugocDc3XvepKmurnY7uus8ytvQe3r/T2N9QUN9hK//05Rl6UXPMEHvkENq3pRS2smxptxnw9f/CwsL477eDQbdJjJrenlTR7qpcb4G3URERERE1LxJC7qD+tSszWbD4MGDkZ2drb1nt9uRnZ3tMvLtLD093SU9AKxatcpjeqB2WpljKqDjRURERERERBT0Dz6dPn06Jk2ahCFDhmDYsGF46aWXUFZWhjvvvBNA7Q27UlJStNHUqVOnYtSoUXjxxRcxbtw4LFiwAFu3bsWbb75p5WoQERERERFRAAr6oHv8+PE4deoUnnrqKeTn52PAgAFYuXIlEhMTAQBHjhxxuRZrxIgR+PDDD/HEE0/gscceQ/fu3bFkyRKvn9ENXLwuxHEHYmq6qqqqeo8uKi4u5vRyIiIiIiJyyxGHSbmSOqiv6bbKoUOHcOmll1qdDSIiIiIiombr4MGDIp5WE/Qj3VZo06YNgNpR9Li4OItzQ41x3Pju6NGjvB4/QLDOAgvrK/CwzgIL6yvwsM4CC+sr8BQVFaFjx45aXGY1Bt0GcExXj4uL44YZQHgTvMDDOgssrK/AwzoLLKyvwMM6Cyysr8Aj5ZGOMnJBREREREREFIQYdBMREREREREZhEG3ASIjIzF79mxERkZanRXyAusr8LDOAgvrK/CwzgIL6yvwsM4CC+sr8EirM969nIiIiIiIiMggHOkmIiIiIiIiMgiDbiIiIiIiIiKDMOgmIiIiIiIiMgiDbiIiIiIiIiKDMOjW2Zw5c9C5c2dERUUhLS0NmzdvtjpLzcLTTz+NkJAQl1fPnj21z8+fP48pU6agbdu2aNmyJW6++WacPHnSZRlHjhzBuHHjEBMTg/bt22PGjBm4cOGCS5q1a9di0KBBiIyMRLdu3TB//nwzVi/gffXVV7j++uuRnJyMkJAQLFmyxOVzpRSeeuopdOjQAdHR0cjIyMD+/ftd0pw9exYTJ05EbGws4uPjcffdd6O0tNQlzY4dO3DFFVcgKioKqampeO655+rlZfHixejZsyeioqLQt29fLF++XPf1DQaN1dkdd9xRb5sbM2aMSxrWmXmysrIwdOhQtGrVCu3bt8eNN96Iffv2uaQxsx/kvrBh3tTXlVdeWW8bu++++1zSsL7MM3fuXPTr1w+xsbGIjY1Feno6VqxYoX3O7UuWxuqL25d8zz77LEJCQjBt2jTtvYDezhTpZsGCBcpms6l33nlH7dq1S02ePFnFx8erkydPWp21oDd79mzVu3dvdeLECe116tQp7fP77rtPpaamquzsbLV161Y1fPhwNWLECO3zCxcuqD59+qiMjAy1bds2tXz5cpWQkKBmzZqlpTl06JCKiYlR06dPV7t371avvPKKCgsLUytXrjR1XQPR8uXL1eOPP64++eQTBUB9+umnLp8/++yzKi4uTi1ZskR9++236uc//7nq0qWLqqio0NKMGTNG9e/fX23cuFH997//Vd26dVMTJkzQPi8qKlKJiYlq4sSJKi8vT3300UcqOjpavfHGG1qar7/+WoWFhannnntO7d69Wz3xxBMqIiJC7dy50/AyCDSN1dmkSZPUmDFjXLa5s2fPuqRhnZknMzNTvfvuuyovL09t375dXXvttapjx46qtLRUS2NWP8h9YeO8qa9Ro0apyZMnu2xjRUVF2uesL3P9+9//VsuWLVPfffed2rdvn3rsscdURESEysvLU0px+5Kmsfri9iXb5s2bVefOnVW/fv3U1KlTtfcDeTtj0K2jYcOGqSlTpmh/19TUqOTkZJWVlWVhrpqH2bNnq/79+7v9rLCwUEVERKjFixdr7+3Zs0cBUDk5OUqp2gAjNDRU5efna2nmzp2rYmNjVWVlpVJKqUceeUT17t3bZdnjx49XmZmZOq9NcKsbwNntdpWUlKSef/557b3CwkIVGRmpPvroI6WUUrt371YA1JYtW7Q0K1asUCEhIerYsWNKKaVee+011bp1a62+lFLq0UcfVT169ND+vvXWW9W4ceNc8pOWlqZ++9vf6rqOwcZT0H3DDTd4/B/WmbUKCgoUALVu3TqllLn9IPeFvqtbX0rVBgXOB5t1sb6s17p1a/XWW29x+woQjvpSituXZCUlJap79+5q1apVLvUU6NsZp5frpKqqCrm5ucjIyNDeCw0NRUZGBnJycizMWfOxf/9+JCcno2vXrpg4cSKOHDkCAMjNzUV1dbVL3fTs2RMdO3bU6iYnJwd9+/ZFYmKiliYzMxPFxcXYtWuXlsZ5GY40rF//HD58GPn5+S5lGxcXh7S0NJf6iY+Px5AhQ7Q0GRkZCA0NxaZNm7Q0I0eOhM1m09JkZmZi3759OHfunJaGdaiftWvXon379ujRowfuv/9+nDlzRvuMdWatoqIiAECbNm0AmNcPcl/YNHXry+GDDz5AQkIC+vTpg1mzZqG8vFz7jPVlnZqaGixYsABlZWVIT0/n9iVc3fpy4PYl05QpUzBu3Lh6ZRvo21l4k/+TXJw+fRo1NTUulQwAiYmJ2Lt3r0W5aj7S0tIwf/589OjRAydOnMAzzzyDK664Anl5ecjPz4fNZkN8fLzL/yQmJiI/Px8AkJ+f77buHJ81lKa4uBgVFRWIjo42aO2Cm6N83ZWtc9m3b9/e5fPw8HC0adPGJU2XLl3qLcPxWevWrT3WoWMZ5L0xY8bgpptuQpcuXXDw4EE89thjGDt2LHJychAWFsY6s5Ddbse0adPw05/+FH369AEA0/rBc+fOcV/oI3f1BQC/+tWv0KlTJyQnJ2PHjh149NFHsW/fPnzyyScAWF9W2LlzJ9LT03H+/Hm0bNkSn376KXr16oXt27dz+xLIU30B3L6kWrBgAb755hts2bKl3meBvh9j0E1BYezYsdrv/fr1Q1paGjp16oRFixYxGCYywG233ab93rdvX/Tr1w+XXnop1q5di9GjR1uYM5oyZQry8vKwfv16q7NCXvBUX/fee6/2e9++fdGhQweMHj0aBw8exKWXXmp2NglAjx49sH37dhQVFeHjjz/GpEmTsG7dOquzRR54qq9evXpx+xLo6NGjmDp1KlatWoWoqCirs6M7Ti/XSUJCAsLCwurdQe/kyZNISkqyKFfNV3x8PC677DIcOHAASUlJqKqqQmFhoUsa57pJSkpyW3eOzxpKExsby8DeD47ybWjbSUpKQkFBgcvnFy5cwNmzZ3WpQ26j/uvatSsSEhJw4MABAKwzqzz44INYunQp1qxZg0suuUR736x+kPtC33iqL3fS0tIAwGUbY32Zy2azoVu3bhg8eDCysrLQv39/vPzyy9y+hPJUX+5w+7Jebm4uCgoKMGjQIISHhyM8PBzr1q3DP/7xD4SHhyMxMTGgtzMG3Tqx2WwYPHgwsrOztffsdjuys7Ndrh8hc5SWluLgwYPo0KEDBg8ejIiICJe62bdvH44cOaLVTXp6Onbu3OkSJKxatQqxsbHaVKT09HSXZTjSsH7906VLFyQlJbmUbXFxMTZt2uRSP4WFhcjNzdXSrF69Gna7XdtRpqen46uvvkJ1dbWWZtWqVejRowdat26tpWEdGuPHH3/EmTNn0KFDBwCsM7MppfDggw/i008/xerVq+tN2zerH+S+0DuN1Zc727dvBwCXbYz1ZS273Y7KykpuXwHCUV/ucPuy3ujRo7Fz505s375dew0ZMgQTJ07Ufg/o7azJt2CjehYsWKAiIyPV/Pnz1e7du9W9996r4uPjXe6gR8Z4+OGH1dq1a9Xhw4fV119/rTIyMlRCQoIqKChQStU+YqBjx45q9erVauvWrSo9PV2lp6dr/+94xMA111yjtm/frlauXKnatWvn9hEDM2bMUHv27FFz5szhI8O8VFJSorZt26a2bdumAKi///3vatu2beqHH35QStU+Miw+Pl599tlnaseOHeqGG25w+8iwgQMHqk2bNqn169er7t27uzx+qrCwUCUmJqrf/OY3Ki8vTy1YsEDFxMTUe/xUeHi4euGFF9SePXvU7Nmz+fgpDxqqs5KSEvWHP/xB5eTkqMOHD6svv/xSDRo0SHXv3l2dP39eWwbrzDz333+/iouLU2vXrnV5BE55ebmWxqx+kPvCxjVWXwcOHFB//OMf1datW9Xhw4fVZ599prp27apGjhypLYP1Za6ZM2eqdevWqcOHD6sdO3aomTNnqpCQEPWf//xHKcXtS5qG6ovbV+Coe5f5QN7OGHTr7JVXXlEdO3ZUNptNDRs2TG3cuNHqLDUL48ePVx06dFA2m02lpKSo8ePHqwMHDmifV1RUqAceeEC1bt1axcTEqF/84hfqxIkTLsv4/vvv1dixY1V0dLRKSEhQDz/8sKqurnZJs2bNGjVgwABls9lU165d1bvvvmvG6gW8NWvWKAD1XpMmTVJK1T427Mknn1SJiYkqMjJSjR49Wu3bt89lGWfOnFETJkxQLVu2VLGxserOO+9UJSUlLmm+/fZbdfnll6vIyEiVkpKinn322Xp5WbRokbrsssuUzWZTvXv3VsuWLTNsvQNZQ3VWXl6urrnmGtWuXTsVERGhOnXqpCZPnlxvZ8Q6M4+7ugLg0keZ2Q9yX9iwxurryJEjauTIkapNmzYqMjJSdevWTc2YMcPlOcJKsb7MdNddd6lOnTopm82m2rVrp0aPHq0F3Epx+5Kmofri9hU46gbdgbydhSilVNPHyYmIiIiIiIjIE17TTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBmHQTURERERERGQQBt1EREREREREBgm3OgPByG634/jx42jVqhVCQkKszg4REREREVGzoZRCSUkJkpOTERpq/Tgzg24DHD9+HKmpqVZng4iIiIiIqNk6evQoLrnkEquzwaDbCK1atQJQW8mxsbEW54aIiIiIiKj5KC4uRmpqqhaXWY1BtwEcU8pjY2MZdBMREREREVlAyqW+1k9wJyIiIiIiIgpSDLqJiIiIqB4pI0RERIGOQTeRn0JCQnhgQkREQSUkJARKKe7fiIh0wKCbyE9KKauzQEREQUJSkCshLxLyQETkL95IjcgPUg4GnPPBkwBERIFLQh8uZd8GXCwPx8g7EVEgYtBNAUnCzrduoGtVniQdHBERkX/q9ulW7+sA6/a53L8RUbDg9HIKWFbvjJVS2svB6jxJyQMRUSCyuv+UEHA78uBuH2clXl9ORIGMQTcFHOedrlU7YMfN0xzf7xgFMPvgxPngiIiIms7qGVSe9mdWB5rO+zkrvtfT30REgYRBN/nE6p2eu++34u7hdUcAnK85M5tzHiQE33VPSBARBQoJ/ZZzX27ViQDn77R631J3f2tlHVl1AoKIAh+DbmpU3Z0Mdza1JJaDcx1ZkT+JZUJE1Ji6M6isGtWtG+zWzZtZ+bCau/KQMhOBx0JE1BQMuqlR7q6jsjKgs3pk13FA5um7zSobd9/jbvTdLJ5mIRARSSahn/LUX0uYveTMyrKy8v4pni7lsnrUnbPKiAIHg+4AIKFT9/SZ2dwFlGYH35IOgtzlhTtgIiLvWX0iF2i43zbzBmJWTyV31tCJCEn1ZPU+V0p9EVHDAj7onjNnDjp37oyoqCikpaVh8+bNHtPu2rULN998Mzp37oyQkBC89NJLfi/TaFZPp3IX3Ers4KVMv5Mwumx1/UhpI1YfCBFRYPB0x3Ar7hXijqT9m4S+HTD/EoC6J2asnFVWF0e7iQJDQAfdCxcuxPTp0zF79mx888036N+/PzIzM1FQUOA2fXl5Obp27Ypnn30WSUlJuizTSFZfn+ucB6t5kw8rdsBWaeyu5VLuoi5pNIKIqC4+AeIiKf2m1YMNdXk6BrPy2m7n75RUVkTkWYgK4K01LS0NQ4cOxauvvgoAsNvtSE1NxUMPPYSZM2c2+L+dO3fGtGnTMG3aNN2W6VBcXIy4uDgUFRUhNjbW9xWDnBFMb65dNiNfje2EJeVFCrMPJj2VixXlxQMSIvJGQ/0WYN4+xazv8jcfZuRV2j62sXW2Yl/r+D7u64g80yMe01PAjnRXVVUhNzcXGRkZ2nuhoaHIyMhATk6OmGX6w90NO6RMM5PGrGlv3hwMmFVPUuqnoRvLWT0CYFUeiMg7zjeDkjRN1uwAxpv9ioR8mEVKO5ByQsQT56nukrYfIqovYIPu06dPo6amBomJiS7vJyYmIj8/39RlVlZWori42OXlj4bOXEo7EDCDtJ2IN/kxuty8zYNZ9Sdlmrsn0toQEdWS9AgoapzV+xRnZgWZUvZjQON3UZeUVyJyFbBBtyRZWVmIi4vTXqmpqbou34qbl0gILH39Lik7YLPuNBsoO1cz77zrfOAh6UY3RFSf1SNzjfUPZvZd3pCUFykk9O3N+QS3xFkqRFIFbNCdkJCAsLAwnDx50uX9kydPerxJmlHLnDVrFoqKirTX0aNHm/T9QMNnK82cPuRLB95cOtrmsp6+CJQyCZR8EjVHkp59bDZv19WMoMrb75B0PbeRbcWXZZt5WZmkwLvuE24YfBN5FrBBt81mw+DBg5Gdna29Z7fbkZ2djfT0dFOXGRkZidjYWJdXoJN2IxNvGJ1fX85mSyk7M3aAUtbVwd0lGdJGrIiaO3eP6bJiRpeE/ktCHqQES7701Wbs8wON2ff9cf4+Ce3HQVJeiBzCrc6AP6ZPn45JkyZhyJAhGDZsGF566SWUlZXhzjvvBADcfvvtSElJQVZWFoDaG6Xt3r1b+/3YsWPYvn07WrZsiW7dunm1TKMFWnDgfGbTqB2UL8uVdAY+2PPhKzPyLeE5t0TkPel9mfT86cnbdTXy+mFJ+zdf8mLGsZu3+ZFQhlZfY271+hO5E9BB9/jx43Hq1Ck89dRTyM/Px4ABA7By5UrtRmhHjhxBaOjFwfzjx49j4MCB2t8vvPACXnjhBYwaNQpr1671aplGa6yzNCPIdXyPEWl91ZT1lLLDsToPQOCdxPGH1Tt5dyTmiciZlL7KQVJeHKSUkaM/NyIvvu7zjToO8XV5EurFQcITVMza53u64a/VjzCr+zg1Se2DKKCf0y2VGc+FM7Iz8TVQMDovUoLupl5rZvUmJqF+JDzb1ewdsLvps0TSWHVgavX2ygPyi5rSP0vZz0rLi1GkjXJbvf029L3OpNQfWYPP6SaPvL2mStqN1IwO/n0laecrocOXUD9GX68pbTTf6rP9RI1x3t+Yvf1I2169YVSeJZRFoO7bnOldjk0N/o2qT29HsK08sWw1afkhqiugp5cHI286TEeaQDwL64tAnxpt9ehyU9P7Qkr786atWJXXQG7D1HyYvT+xetROQh8qaR8uJR9NFej5b4wvbcWsWXbeTnO3sm4kbWNkLonHXhzpJtGa0lkacbY5kDttCQetRvO2vs28Q6/z6L7zNZBEVrOyHQbiNmDUCWAp+zcpJM0ok5IPQN424+ssN7MZPbPOG9LqrLmRWv4MuoWQcjbOn3wYMb1LCkl58ZVRB2m+LtPoMvTlLrNGcndNmYQz/kR11T04ldTPmb2dNsaokW4JmpoPKfk3gqTL2wKVmbMV3e1jrZ7dFszbBzUNg24hpAS6TSXhzKIzPfMipYyBpp0UkTTSbeT1bpI5XxIiqT1R8+Pp4NS5jRrJl32FlEt0HP8jhaT+Ts9ykbRe0ki4z47z8iXWlbs8ScwnGUvyIAeDbiF4VlU/RpxdDfSTInprSvAo4UZqZp1553ZJgcbsESm90xpN0hTmYC+XptCzTPxdloT6kbC/NUNjxyJmn+iu+1080W6toqIiq7PggkF3AJMUXOrN3/XScz2kHeRIIKWdOEjJT0PtREoeqflqaATAMXol7WBdSt9rxOVTEtbN30vbJKyDA0fdjSdtG26s37JqVF7CNHcrOfo3q/oHqWXOoFuAYN1p+UvKRiPlenug6WWi94kDSTe8kXLw6tDYHV0Bc7czaeVDtaTWi9GPPZJweYyEmUv+BAN6l4mUmXZSTrb7uxy9L2/z54Z7Vt8A0Ixjp8bW0arryq3Y3zu+z8qgV+J+TQoG3QJIuT5GjylVem1sEsrDwZ+8GBHs+pMXq0m5ptvInYKkHY5zXpy3T0l5bG7q9pNW3mjIHSP3R77uIyTNMpKynzaCv/s4CfRsK9KmlzdleXUDP71IqW8HSYMiQP3ysXqU3QpW3qBTyv7CEwbdAkjq4K3eWB2kbzje0nuHIKV+mkrSqJVRvAlqAOPbuKflM/C2jnN/IPWu4UaPjli9vfqzflJOoEqiZ6AraYRZkmBdL39JupeLtEvLrNy/OPexVoz2S95eGHSTbiQ1dCkHR3pPMwuWAzU9Sbmhmy8HjWZvK56+j+3JPM4nO9wdBEq5wZ+RbVPKJSlNna4rZR8XrLPKgomEvtWI6f/+jLobQeo+15kVl5NZ1f6cv9d5P8d+phaD7gAXjKOoeh3c6NHpSNhxOvhbJhLWxYidgZR225Sz6UbVibsdn5RyAqxti1ZM7XbHzOnKEk5MSeh//CFtqrte9LiOWkq5SDkRIem4TML+trkMGDRUNmavv5WXwzh/t+N3M9Y/ENoYg24BJB0M+0vKukja6elFUuAUDDcAMuK6O19vMGN0fdadyuz4TivaUd0z8FZOeXP8bkXQK+Gav8ZIOkiWkg+9Sal3aUGd1SStjx55kbDPDeb7IQCNl4nZ+xnn7zMz6G2MlNlcVmLQbTEe3BhHysYnqVwl5cVKRpRDoI0AmHmtVWPXl1tBQsBd9/1gvpYa8O+GUMFE0n5fCj3qWY/gQq/2ptdy9LjnD+/7Y33fala5NZdp9IGKQbcAkqYy+UvSRicpLxJIaSdS8qE3Ke3Nl2uozAj2Glu2WUF/3bP/Zl/7Fqzt3hdWn5iSEpDpsSwpl2AFW7uW0o87SClfPYJ/vflaNkZezuVNXqw6wS1hH2f0bAdp260nDLotJmXHCcjp3PWi15lzPZYRTAc3gdK5NUTKzZmMyoe0ae51v8vMtlx3OruZ17g35QSIUXnwhZS+Bgj+Rx5ZLZj2TYCcvATDftJZoE8RtzrvZk2tdreeZk0xb2y/yhk+DLotp9cOT8pZSCnXjkgj5bo5q3c8DhLWR9LNiPTk647NqB1h3eW6u5bZjPZY93p2d3mRUn9GlYfVJ4T8Pckhpd8CgitIlRRISdkG9eTPOum5j5RSx3rx514uVjH6u63efqz+fkBOv9oQBt0WC4RG4it/1knSzcL0nNIYTHeIlSKYysPKO8xKuJ7YyGl/DS3bzKDfW8HUrh140lF/epSJlLYmZb8vpTwAfYNlvdqKpMEdCe0FkD+13CxS6kM6Bt1BRMoOw598BOOGK+3GLP6QdPAbLJdmSBlRNGoar1VTq725gZnzZ3r3n01ZnhF5aGrZBuu11BJI2VcHI3+PP/TcX0tptxKOQSScRDDy5G5jjGwPvlzGZBRvy8AoUra1xjDoDiJSDvylCKYDvWA7+A2mURog8POi90wKR8Bm5bXMvi5fwnX+ep4AkDKlW0rfJel6Qin3CpFWx3qQNCuM+XBldT6svnxHQh9k5Yw2b9P4yuoy9QWDbgvpuQFKmb4H+D+9XM98SLimShI92omUUepgOmAMxtEVXxg1yuxLwG3EAVFTT4BICcoAGdsHIONu347lSJlmK4WkQFcSKcdC/pJynAr4f518sE7BtvoEty/LNuJyOknbS0MYdFtMwgGy3tdTWd2xOedDCikHjJJGRiQcuOoR4Oix/Uhoq0ZNL/cWy0B/Ek5uSTkRJOm6YQn5AGRsc4D120mwk9AP6MXf/kTK5VxWCcaRZqu/3xcMusmQA82mLNPKm0nVJakz1fskhoQOSkrZSiFhVNLKacASgl09z5ZLOKEkhZQy1ZOUk2xSTuY6SLvW1ldS8qE3f48hgmV/LWVE1MrjOQnrD8g63jcTg24iN6RtwBJuhAIEZ4ctZZ38pccsBqun3ukZoFm5DUvoP/SaCRIs24ckwdI+6pJ2E0er+XMSQs91kLLft/rEsp6knMSweoDLsSxfl2l1GViFQXcQCfSzzEZMQ5SyMUopY39JKU9ATl6k5MNfEu7rYPU1f3r9v9WXHEioSyNIOdCVRMq+RVr5BuqMG4dgPbEsKS9W0btufWlnVt9Mzog8BFKbYtBtEatHYowWSBuBO5KmvgTrgYC/ZSLloERKPgAZ7aypy5FyLwh/BVu/7u+2IWVEIxjalp6ktFOj6sXqEUDH8pq6zGDdbqzOi9U3LZWy3enF6stJAy2WYtBtESmNJJh3eP4IxptNBJNA62i9IeH6TCtHmvW8a7eUaa5NpUdZSFgXKYGDHv/vTNKIuz8nuegiSdPtpZGy7QByylRCHyDhhI6EAYtA6ssYdAeZplxXwQCzPkn5N+LsuwRSRjb92QYkjeTpQY+p1f6OZFg9PVwPVtejlDYpoS4AOX2NEfmQsF4OEqZ0O0jKSyCT0pfoRUJfoOeNFK0sU6vL0UFCu/KW6UF3ZWUlcnJy8Nlnn+H06dNmf31Qa8oGaORGY+WNFfzJh1GkjL5JGhmRUiYSztb6S0o+/CFh5+nvpQsS6kHSJQ96kjC65BDIQV0wzhSqK5DXz4i8SykPqy+BsjpQddDrpnJNWY7j/4LhcrZAY2rQ/Y9//AMdOnTA5Zdfjptuugk7duwAAJw+fRoJCQl45513zMyOpSQdyBgh0KeXG8GfDlIKvc96S1m3YNh56HVAEsg3ZOTdcY0hYRqjEctrqkDvLyTkQRoJN5hyCIZt34jlSZmO7O9JK6tnDzj+R4+bfVpdDoHWl5kWdL/77ruYNm0axowZg7ffftuloBISEvCzn/0MCxYsMCs79D+B1mDNYOR17hJmIkiYXiWNlPII5IBXL/6ejLHy2l8pB6h6H9RJmR0TTO1cT5LKRUpeAnk/J+W4zIgZEVYHaXqRcG261eWhR9Bu5f9bwbSg+8UXX8QNN9yADz/8ENdff329zwcPHoxdu3aZlR0ygS8bpLTpbsGcFylTuiWRNOoeqPSatiehHvxpD3reHbcppFw3LO2AXW9S8sKRVM98PQYxiqTy9oWk/aLe/ZrVQbPVAWew7KsDjWlB94EDBzB27FiPn7dp0wZnzpwxKztBixuB/6QcTDUHgT6CZkRQ0dy34UDe/qQEmYFchkaQUh5Stm0jp1JLCXR9ZWQb8bVMjCoXX5drxIkzCfdlkNAfSMiDv1P9JT1RIlCYFnTHx8c3eOO03bt3IykpyazsWErSjkZSXqSQVCa8zqy+YB5Ba+q6STgw0rN9SKkPq0nZ5qTURyBPGQZk9ecSGHlTK19PYEoa6Q7U+gwkVk9z96cvk9IH6jFaH+hl4CvTgu5rr70Wb775JgoLC+t9tmvXLsybNw8///nPzcqOpYw+o+ptY5Q0pdvofEjZQAM5H1LailEkrF9TRrr1DkQklENTSOjP9N6+rV4fByn9ViCfLATk5KW55EPK9uNLPqTkGQjuJ8r4E+zpkX+rg349cKTbd6YF3X/+859RU1ODPn364IknnkBISAjee+89/PrXv8aQIUPQvn17PPXUUz4vd86cOejcuTOioqKQlpaGzZs3N5h+8eLF6NmzJ6KiotC3b18sX77c5fM77rjD5Xb6ISEhGDNmjM/5aoiRB4e+LNvoqaxSzjL7ejZdyjQzI0nJh4Sdr4PVwa4/rB75lzLdX29W58Pq73eQMPsCkHWysCn9hRRG9v++rKek/ZCUMjG6nVjdDqXUuT+X7gTT9dBSLq0L1Dz4yrSgOzk5Gbm5uRgzZgwWLlwIpRTef/99fP7555gwYQI2btyIhIQEn5a5cOFCTJ8+HbNnz8Y333yD/v37IzMzEwUFBW7Tb9iwARMmTMDdd9+Nbdu24cYbb8SNN96IvLw8l3RjxozBiRMntNdHH33U5PV2R9JIt5EkbRBSOjhfSbm2q6n/0xhJ1zBLCSx8XaaU4EZPEtqFhP5LSpuUQsoTIJpKSt1IKhMJJPQ3ZjByOn+gaeoxkF7txN+nZOh193Mp99VpLkKURVvgqVOnYLfb0a5dO4SGNi32T0tLw9ChQ/Hqq68CAOx2O1JTU/HQQw9h5syZ9dKPHz8eZWVlWLp0qfbe8OHDMWDAALz++usAake6CwsLsWTJkiblCQCKi4sRFxeHoqIixMbG1vvcjLOq3ixfSj7MICUvUvIB+JYXKbMzJDEq374u18ib3VhZL1Lap7eMKjMJ6+ZrPiT1F1K2UyNJKRNfSTkGMWukW0KZe8vIPEtpf00hIe965qEpy9K7DIzMQ2PxmNlMG+muq127dkhMTGxywF1VVYXc3FxkZGRo74WGhiIjIwM5OTlu/ycnJ8clPQBkZmbWS7927Vq0b98ePXr0wP333x9wd1W3ukNwkHT22JeDRaOnupNcUtqrBFa3Vau/H/B9qqzVeZY0MybYSdq/Ad7XkYSgwcHofEhaTyl58YWUG/8ZsZ019VjP6nq0us8xasajr3mwuh6aKtzqDDTV6dOnUVNTg8TERJf3ExMTsXfvXrf/k5+f7zZ9fn6+9veYMWNw0003oUuXLjh48CAee+wxjB07Fjk5OQgLC3O73MrKSlRWVmp/FxcXN5h3M24a5s13BGqjNZqUM95GdyxS6t9x8ColP1bzdcTKqDxIGNm0ui8LtDZpZDlIuVZXwvYhjaQTAJJGdQNxvyJl9D/YSdlmfK0PvfPt677eiHKTMNpuloANuo1y2223ab/37dsX/fr1w6WXXoq1a9di9OjRbv8nKysLzzzzjFlZbFSgNcRA3XiaQkpHL00g1n+wHxj5eiCgN19vPsRpkDLyKynokpAHaSSNLktor4A57cTqE4hmLT+YSWivwXrTUl9ZXQ9NZdn0cn8lJCQgLCwMJ0+edHn/5MmTHp/3nZSU5FN6AOjatSsSEhJw4MABj2lmzZqFoqIi7XX06FEf1iS4SdkwJHUsgVgmgZjnpvBlZFcKCXUjYcqZUay+MaWUcvBlJEQKKf0FIKvPMJIv03bNCnYDRSDl1R++tBEpl/tJqhu9t5tAPFEWqAI26LbZbBg8eDCys7O19+x2O7Kzs5Genu72f9LT013SA8CqVas8pgeAH3/8EWfOnEGHDh08pomMjERsbKzLqyGSNt7mIhA7CUkHJM2lzRp9Tb/ezLgUwpt0Vt9wzShWj/b7Qkq7tbo9NFdSThj6cv2ylJMiZmw7gbRNmHFpmy8n8QKp7JrCyr5byuxLCXkwQ8AG3QAwffp0zJs3D++99x727NmD+++/H2VlZbjzzjsBALfffjtmzZqlpZ86dSpWrlyJF198EXv37sXTTz+NrVu34sEHHwQAlJaWYsaMGdi4cSO+//57ZGdn44YbbkC3bt2QmZlpyTo2BQOp+iSdeZdEyvpKaYtSykNKPqyuF28PCKwuL6NP1nhbBhJOwphxzxIpefGW1duRMyknc806OdPYd0g6SSSlbqTkQxojysXXZUppq3rydd8VyGUQ0Nd0jx8/HqdOncJTTz2F/Px8DBgwACtXrtRulnbkyBGXu6OPGDECH374IZ544gk89thj6N69O5YsWYI+ffoAAMLCwrBjxw689957KCwsRHJyMq655hr86U9/QmRkpC555hlV6zS2czVr5+vN95h1XaSU68wkkVAekg4ErWb1TQcDcVq1Eay+qZ5zPqTMwvD1BkQSmNG3SFlXoPH1DaS8BlM+pKwnICMv3jCqXiTNCPEmD4FSX+5Y9pzuYNbQc+GkBHZS8mEmSXkJJGaUm7ff0ZzqUMK6Mg+NC7QDN6Oxv7AmH1LWFfD+xLKU/Eoh5bhMUns1Mi+B1ncbmV+rB4N8aQ++5IHP6aZmxZuN2KyzZ4HSsQLmnVGUMtUs0Eg542t1PszIg9Xtr7H1M+OaQ6vr2UFKf+HLwZnRAqlMzCIpL1K2HaDhvEgJuJsTKfcf8GY/KuUEgdXfLyUPTcWg22RmNRZJjbKhzsTMm2R426lZnQ9AVv2ZxZv6kXKtmZSDaKunAEqoDzOCfqvz4A0JeTCLtyd7pPSjZtRNoNV/czsW8ubknRm86c+k7N+kbDcSti0JN5RrLieXjcSg22RmNioJDVjSWVUp+fCGpNF/KfchkFJ/Zo0we3NgZHQ+pAQ2VvZlEspAStv3hln9Bfuu+t/hzckhKSeXJRyfAObua6Vsx1LyIaENSCgLKX2Z1fXRHC5JYdBtMjNHdSU0Tgl5kEjCmWYKbGbd7KaxKZFGa+zaQyu/36w8NBYsWX2w5CAlHw5STghJKhcp+xYzj4WklL+UbVhKeTSGJyrM01hZG70dmTGIIAGD7iAlYVqog5QdjRRSzmpKI2mnJuWSCKtJOXlnNavvfiypDgLlhKGUfEjSHMtEUn9tdT/i7XdJmmlHsi59JP8w6CbDBULHamZwIWnanZTrqL3NixmkHJA09l1WT1k1sxysPliVcOJQyolUq+tCGinTy70h5aDa7HxIWe+GSMmjlHwAMmYRmaWhfa2U/sPKfEioIz0w6G6GmusOr7EARsq1XWafmZdULv58bhYJwY3ZpB4MWF0XUvo2KTdhknJCymxS8iKpD5UUREjZfqW0k8ZY3a87mHViWcL6SplB5C4fnPGmHwbdJmuOByVSNlZJByQNkTKC6EsaPUhpr4CcttAQq08SWX1iyOwRCqsDCCnbh5RtQ9KMFCuvhfSF2fmQ0lasnjHkzXdZ3Z9aobETeBKmVZsVcDq+o25ezCwHd+sppa0AcvoTfzDoNpHZZ4s8fVcwNFy9SepYzCapPUgZRZOCB2me8yBhhEJCfw7IqB9ATpuUUh4OUsqFXFndfziTUm+SysRMnk7sNjd1Z6hYMTsmmMudQTdZxuyTEJI2ZCln3gFZ5cIg0ztm75isPhCTcAbe6jJoCLeN+iTXl5Gk9KENkbLtSmrLUk7gmUnSHautns3l7vscZWNV/25VAOypHIIBg+4gJuEGSI7vk7DRSOrgJZEygtbYTbuaY91JOTnTHMu+LqtHQhraBprTCRhnbJf1SSoTSXlxR0pblnKpTGOfmZkPwPp7VVh1LbOjPUi5cZmE7URCHvTAoLsZsuLsnYSziA2RlBeSrbnefEfCGXDHd1pVJlbWhfQRTCmjl1aQcnJMGknrLqUf9UTKDDcpdSYhH1bnwYrA2+p1DvbBMQbdQc7q0Rlyz+qOLRA11zKTfsLKLM43mrHieu663ymlH22uJ4EA3rfEHUnrLmn0UAJPJyubW2DlIOG+HJ5YObVaSplYkRdH/2D1CXajMOg2iYTrIqwUbBuOkSSVlZSDASvyIeGAsaF8mKnuztfqAwOrRtnd3cytOZIQOEgj4Q77nvIhiVXthPeF8I6E9mP1TCqrWXEttzPH/t2quCVYA26AQbdprDpIdXdDAgn5sIr0G6pYUT+BcB21lHxIYPV1Zs2VhIN2CQKhD7WCpxkpUvZ9Ui7JkNJOADnHJZLKRAJJ240VpKy/hDwAcvKhBwbd1OxJORgBrLmepaHvlNLZScmHFequu4Sz3835INF5FKI5t0tnzXnKsERStk9324ikdiKlnKwgZVaZFLyMS45gLncG3WQZacGuBM19JoKEuzM7SNkJSzkwlBBsO8rf6vYq5VEqnt4zOx/BfvObxki5DMSRF6u3Dwd320lzbieeSNmvSJnSbWUbkXDncLrYjwVbPTDoJlNIuh5SykYsJR+AnBMRPPsuV91ruiXkw8rvbs5tUkp/ISUfVn6vNySdzJVSTpLKxApS8iEVTw5ZLxjrgEG3SaSM6lo9NdVBwqiZ1aSvv5Q2axVJbbTu47qsxIM1a1ld/5KwLbrnbr8v6Vp3K0jabiTkRcoJq7ptU+pjGcl8wVgfDLpN0tzPvrs7CJCSNyvrRspJEapPShute7LKShLKw2pS2gUg66ZhVqh7YkzSiTJprKoz1kd9ErYfyTeGtLp8JPXxFFwYdJukuY8aSjqbKekaM8kdu5S8STqQlpIPIrZFOX0UIKs+3D21xCqS8uL83VLajqT9m4QysToPVn8/BTcG3dTsSLqbquSdrZWjaBJnAFh9cxWrn91Jcljdb1j9/Q51t0krR6ikPJ7THSn5kERKGwY4C4GouWDQ3cxIOuNtFUk7Gill4o6VBwJSblglZWREcjshczkHllIujZFygk7KKCrAbdZBSrnUPSHD/YqcNurIh6RjMyIjMOg2gdWBrpQO3pmUfEgj6aDRKpKmIzqTkA9uNwTIGkWVsF1Qw6w+BnHOB9uLK+7zXduFlDwRGYFBd5Cre3DGDq2WcwfPMqmPZeJKSnlIyQdZS9pzsTlaJ6tOJO/XpIwwSzkRIQXLg8h4DLpNYPUBicSRbqs7eOfpmZIOAqTUj9WktFnH9iOhXqxuqySHhIDKuQ+VMlonafuQUEcOUvZxVrcVidPLpZC07RAFKwbdBoqLi9N+tzpwAKzv6K3+fnck5skqEne6VteP1AN6at4ktEUp24aEsnCQEtRJu0THeWaZpPqyipQysPokCFFzw6C7GbG6o5dyQELuSdz5Wt1OOLpMUlndLh0H7Fb3G1KmDEv4fonYh9bnvN1YXTZStmNHO7G6PIiMxKC7GZB2gwoJ+ZCQB/JM0hl4CQckROSelJlcgGteJORHCikBpoPV9SOlHByk5IfbDAU7Bt0mYEdSS1I5SNnJSAougYsHI1aXjyMPUsrG6vIgIs+k9BNS8gG4ngBg/1Ufy0Qe1gkFOwbdzYDVz3R1JuWgREpw6czqvEhqJ5JuYAbIabdE0kjZRgHr8+J8otDqvEjqs6wuCwerR7idSSkTgCdmiMzCoNtARUVFAKzvXLmTqU/StUNS8iGRhLbL+iFyT8psFEn9uRSSTqJKaCOAjLKQiOVCZA4G3QaTsLNhhyqfhHYijaR2KykvRJJI2Dak9J8cMXRP0nX3UkgZdZeSD6LmgEF3MyKlY+VBSX2SykRKO+EBLBF5Q9KIu7R+S0K5SCOpfoio+WDQbQLu9C6ScnAEsF7c4cEIEQUi9l31SToBICkvEkgpCyn5IGoOAj7onjNnDjp37oyoqCikpaVh8+bNDaZfvHgxevbsiaioKPTt2xfLly93+VwphaeeegodOnRAdHQ0MjIysH///ibnT8q1ZlJ2eJLyIQXz4p6EdkJE5CtJ/Si54n7FFdsqkXkCOuheuHAhpk+fjtmzZ+Obb75B//79kZmZiYKCArfpN2zYgAkTJuDuu+/Gtm3bcOONN+LGG29EXl6elua5557DP/7xD7z++uvYtGkTWrRogczMTJw/f96s1QpqUnZ4UvLhIGXHJ+UkERFRIJLWf0rZt5ArKfXCfT6ReUJUAG9taWlpGDp0KF599VUAgN1uR2pqKh566CHMnDmzXvrx48ejrKwMS5cu1d4bPnw4BgwYgNdffx1KKSQnJ+Phhx/GH/7wBwC1dyBPTEzE/Pnzcdttt3mVr+LiYsTFxaGoqAixsbE6rKn/pIwwSyGpPKQ8YoaIiIKHtP2clLxIwTIhMpa0eCxgR7qrqqqQm5uLjIwM7b3Q0FBkZGQgJyfH7f/k5OS4pAeAzMxMLf3hw4eRn5/vkiYuLg5paWkelwkAlZWVKC4udnlJw47dlaTykJQXIiIivXE/50pSwC1l1J0o2AVs0H369GnU1NQgMTHR5f3ExETk5+e7/Z/8/PwG0zt++rJMAMjKykJcXJz2Sk1N9Xl9qHmTsvMlIqLgwP2KXJLqRlJeiIJZwAbdksyaNQtFRUXa6+jRo1ZniYiIiIiIiAQI2KA7ISEBYWFhOHnypMv7J0+eRFJSktv/SUpKajC946cvywSAyMhIxMbGuryIiIiIiIiIAjbottlsGDx4MLKzs7X37HY7srOzkZ6e7vZ/0tPTXdIDwKpVq7T0Xbp0QVJSkkua4uJibNq0yeMyiYiIiIiIiDwJtzoD/pg+fTomTZqEIUOGYNiwYXjppZdQVlaGO++8EwBw++23IyUlBVlZWQCAqVOnYtSoUXjxxRcxbtw4LFiwAFu3bsWbb74JoPZmEtOmTcOf//xndO/eHV26dMGTTz6J5ORk3HjjjV7ny3F9jMQbqhEREREREQUzRxwm5r4FKsC98sorqmPHjspms6lhw4apjRs3ap+NGjVKTZo0ySX9okWL1GWXXaZsNpvq3bu3WrZsmcvndrtdPfnkkyoxMVFFRkaq0aNHq3379vmUp4MHDyoAfPHFF1988cUXX3zxxRdffFn0OnjwYJPjTD0F9HO6pSosLETr1q1x5MgRxMXFNXk5Q4cOxZYtW/zKix7LkJSX4uJipKam4ujRo35dOy9lfaTkRa9y1SMvkpahx3JYtsYtR1J/oNdypCxDUtkGW/2wbI1ZBvta45Yjqc3qtRwpeWHZGreMoqIidOzYEefOnUN8fLxfy9JDQE8vlyo0tPZS+bi4OL82oLCwML93HHosQ1peAPh9wzpJ6yMpL3rcCFDK+kiqH4Bla+RyJPQHei1HyjIcJJRtsNWPA8vWmLywrzVuORLarF7LkZQXgGVrxDIcHHGZ1WTkgtyaMmWKiGXotRy98qIHSesjKS96kLI+kupHL1LKJdjKVtL6SFmGXiStj6S86EHS+kjKix6krI+k+tGDpPWRlBc9SFofKcuQhtPLDVBcXIy4uDgUFRXx8WE6Y9kag+VqHJatcVi2xmHZGodlawyWq3FYtsZh2RpHWtlypNsAkZGRmD17NiIjI63OStBh2RqD5Woclq1xWLbGYdkah2VrDJarcVi2xmHZGkda2XKkm4iIiIiIiMggHOkmIiIiIiIiMgiDbiIiIiIiIiKDMOgmIiIiIiIiMgiDbiIiIiIiIiKDMOjW2Zw5c9C5c2dERUUhLS0NmzdvtjpLlvrqq69w/fXXIzk5GSEhIViyZInL50opPPXUU+jQoQOio6ORkZGB/fv3u6Q5e/YsJk6ciNjYWMTHx+Puu+9GaWmpS5odO3bgiiuuQFRUFFJTU/Hcc8/Vy8vixYvRs2dPREVFoW/fvli+fLnu62uWrKwsDB06FK1atUL79u1x4403Yt++fS5pzp8/jylTpqBt27Zo2bIlbr75Zpw8edIlzZEjRzBu3DjExMSgffv2mDFjBi5cuOCSZu3atRg0aBAiIyPRrVs3zJ8/v15+gqndz507F/369UNsbCxiY2ORnp6OFStWaJ+zXPXz7LPPIiQkBNOmTdPeY/k2zdNPP42QkBCXV8+ePbXPWa7+OXbsGH7961+jbdu2iI6ORt++fbF161btc+7LmqZz58712m1ISIj2jF6226apqanBk08+iS5duiA6OhqXXnop/vSnP8H53slss01XUlKCadOmoVOnToiOjsaIESOwZcsW7XOWrXcCKUbwJi+NUqSbBQsWKJvNpt555x21a9cuNXnyZBUfH69OnjxpddYss3z5cvX444+rTz75RAFQn376qcvnzz77rIqLi1NLlixR3377rfr5z3+uunTpoioqKrQ0Y8aMUf3791cbN25U//3vf1W3bt3UhAkTtM+LiopUYmKimjhxosrLy1MfffSRio6OVm+88YaW5uuvv1ZhYWHqueeeU7t371ZPPPGEioiIUDt37jS8DIyQmZmp3n33XZWXl6e2b9+urr32WtWxY0dVWlqqpbnvvvtUamqqys7OVlu3blXDhw9XI0aM0D6/cOGC6tOnj8rIyFDbtm1Ty5cvVwkJCWrWrFlamkOHDqmYmBg1ffp0tXv3bvXKK6+osLAwtXLlSi1NsLX7f//732rZsmXqu+++U/v27VOPPfaYioiIUHl5eUoplqteNm/erDp37qz69eunpk6dqr3P8m2a2bNnq969e6sTJ05or1OnTmmfs1yb7uzZs6pTp07qjjvuUJs2bVKHDh1SX3zxhTpw4ICWhvuypikoKHBps6tWrVIA1Jo1a5RSbLdN9Ze//EW1bdtWLV26VB0+fFgtXrxYtWzZUr388staGrbZprv11ltVr1691Lp169T+/fvV7NmzVWxsrPrxxx+VUixbbwVSjOBNXhrDoFtHw4YNU1OmTNH+rqmpUcnJySorK8vCXMlRd4Oy2+0qKSlJPf/889p7hYWFKjIyUn300UdKKaV2796tAKgtW7ZoaVasWKFCQkLUsWPHlFJKvfbaa6p169aqsrJSS/Poo4+qHj16aH/feuutaty4cS75SUtLU7/97W91XUerFBQUKABq3bp1SqnacoyIiFCLFy/W0uzZs0cBUDk5OUqp2s4uNDRU5efna2nmzp2rYmNjtbJ85JFHVO/evV2+a/z48SozM1P7uzm0+9atW6u33nqL5aqTkpIS1b17d7Vq1So1atQoLehm+Tbd7NmzVf/+/d1+xnL1z6OPPqouv/xyj59zX6afqVOnqksvvVTZ7Xa2Wz+MGzdO3XXXXS7v3XTTTWrixIlKKbZZf5SXl6uwsDC1dOlSl/cHDRqkHn/8cZZtE0mOEbzJizc4vVwnVVVVyM3NRUZGhvZeaGgoMjIykJOTY2HO5Dp8+DDy8/NdyiwuLg5paWlameXk5CA+Ph5DhgzR0mRkZCA0NBSbNm3S0owcORI2m01Lk5mZiX379uHcuXNaGufvcaQJlropKioCALRp0wYAkJubi+rqapd17tmzJzp27OhStn379kViYqKWJjMzE8XFxdi1a5eWpqFyC/Z2X1NTgwULFqCsrAzp6eksV51MmTIF48aNq1cGLF//7N+/H8nJyejatSsmTpyII0eOAGC5+uvf//43hgwZgl/+8pdo3749Bg4ciHnz5mmfc1+mj6qqKvzrX//CXXfdhZCQELZbP4wYMQLZ2dn47rvvAADffvst1q9fj7FjxwJgm/XHhQsXUFNTg6ioKJf3o6OjsX79epatTiSVozd58QaDbp2cPn0aNTU1Lh0/ACQmJiI/P9+iXMnmKJeGyiw/Px/t27d3+Tw8PBxt2rRxSeNuGc7f4SlNMNSN3W7HtGnT8NOf/hR9+vQBULu+NpsN8fHxLmnrlm1Ty624uBgVFRVB2+537tyJli1bIjIyEvfddx8+/fRT9OrVi+WqgwULFuCbb75BVlZWvc9Yvk2XlpaG+fPnY+XKlZg7dy4OHz6MK664AiUlJSxXPx06dAhz585F9+7d8cUXX+D+++/H7373O7z33nsAuC/Ty5IlS1BYWIg77rgDAPsDf8ycORO33XYbevbsiYiICAwcOBDTpk3DxIkTAbDN+qNVq1ZIT0/Hn/70Jxw/fhw1NTX417/+hZycHJw4cYJlqxNJ5ehNXrwR7nVKIhJpypQpyMvLw/r1663OStDo0aMHtm/fjqKiInz88ceYNGkS1q1bZ3W2At7Ro0cxdepUrFq1qt4oAfnHMYIFAP369UNaWho6deqERYsWITo62sKcBT673Y4hQ4bgr3/9KwBg4MCByMvLw+uvv45JkyZZnLvg8fbbb2Ps2LFITk62OisBb9GiRfjggw/w4Ycfonfv3ti+fTumTZuG5ORktlkdvP/++7jrrruQkpKCsLAwDBo0CBMmTEBubq7VWSPBONKtk4SEBISFhdW7q+bJkyeRlJRkUa5kc5RLQ2WWlJSEgoICl88vXLiAs2fPuqRxtwzn7/CUJtDr5sEHH8TSpUuxZs0aXHLJJdr7SUlJqKqqQmFhoUv6umXb1HKLjY1FdHR00LZ7m82Gbt26YfDgwcjKykL//v3x8ssvs1z9lJubi4KCAgwaNAjh4eEIDw/HunXr8I9//APh4eFITExk+eokPj4el112GQ4cOMB266cOHTqgV69eLu/95Cc/0abvc1/mvx9++AFffvkl7rnnHu09ttummzFjhjba3bdvX/zmN7/B73//e22GEdusfy699FKsW7cOpaWlOHr0KDZv3ozq6mp07dqVZasTSeXoTV68waBbJzabDYMHD0Z2drb2nt1uR3Z2NtLT0y3MmVxdunRBUlKSS5kVFxdj06ZNWpmlp6ejsLDQ5ezh6tWrYbfbkZaWpqX56quvUF1draVZtWoVevTogdatW2tpnL/HkSZQ60YphQcffBCffvopVq9ejS5durh8PnjwYERERLis8759+3DkyBGXst25c6dLh7Vq1SrExsZqB5iNlVtzafd2ux2VlZUsVz+NHj0aO3fuxPbt27XXkCFDMHHiRO13lq8+SktLcfDgQXTo0IHt1k8//elP6z2S8bvvvkOnTp0AcF+mh3fffRft27fHuHHjtPfYbpuuvLwcoaGuh/hhYWGw2+0A2Gb10qJFC3To0AHnzp3DF198gRtuuIFlqxNJ5ehNXrzi9S3XqFELFixQkZGRav78+Wr37t3q3nvvVfHx8S531WxuSkpK1LZt29S2bdsUAPX3v/9dbdu2Tf3www9Kqdpb8MfHx6vPPvtM7dixQ91www1uHwcwcOBAtWnTJrV+/XrVvXt3l8cBFBYWqsTERPWb3/xG5eXlqQULFqiYmJh6jwMIDw9XL7zwgtqzZ4+aPXt2QD1Woa77779fxcXFqbVr17o8bqW8vFxLc99996mOHTuq1atXq61bt6r09HSVnp6ufe541Mo111yjtm/frlauXKnatWvn9lErM2bMUHv27FFz5sxx+6iVYGr3M2fOVOvWrVOHDx9WO3bsUDNnzlQhISHqP//5j1KK5ao357uXK8XybaqHH35YrV27Vh0+fFh9/fXXKiMjQyUkJKiCggKlFMvVH5s3b1bh4eHqL3/5i9q/f7/64IMPVExMjPrXv/6lpeG+rOlqampUx44d1aOPPlrvM7bbppk0aZJKSUnRHhn2ySefqISEBPXII49oadhmm27lypVqxYoV6tChQ+o///mP6t+/v0pLS1NVVVVKKZattwIpRvAmL41h0K2zV155RXXs2FHZbDY1bNgwtXHjRquzZKk1a9YoAPVekyZNUkrV3ob/ySefVImJiSoyMlKNHj1a7du3z2UZZ86cURMmTFAtW7ZUsbGx6s4771QlJSUuab799lt1+eWXq8jISJWSkqKeffbZenlZtGiRuuyyy5TNZlO9e/dWy5YtM2y9jeauTAGod999V0tTUVGhHnjgAdW6dWsVExOjfvGLX6gTJ064LOf7779XY8eOVdHR0SohIUE9/PDDqrq62iXNmjVr1IABA5TNZlNdu3Z1+Q6HYGr3d911l+rUqZOy2WyqXbt2avTo0VrArRTLVW91g26Wb9OMHz9edejQQdlsNpWSkqLGjx/v8hxplqt/Pv/8c9WnTx8VGRmpevbsqd58802Xz7kva7ovvvhCAahXXkqx3TZVcXGxmjp1qurYsaOKiopSXbt2VY8//rjLY5PYZptu4cKFqmvXrspms6mkpCQ1ZcoUVVhYqH3OsvVOIMUI3uSlMSFKKeX9uDgREREREREReYvXdBMREREREREZhEE3ERERERERkUEYdBMREREREREZhEE3ERERERERkUEYdBMREREREREZhEE3ERERERERkUEYdBMREREREREZhEE3ERERERERkUEYdBMREREREREZhEE3ERERERERkUEYdBMREREREREZhEE3ERERERERkUH+P2AQ0qrTg5FwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sim.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can clearly see that the resonant angle of the MMR 4J-2S-1 does not librate. Therefore, Hektor is not trapped in this resonance." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ "## What's next\n", "\n", "- The examples of how the package can be used is in the [Examples](../examples) Section.\n", @@ -90,16 +697,11 @@ "- The description of default config values and how to change them is in [Config](../config).\n", "- A few examples of some tasks, i.e. identification of the resonances for the given asteroid, are in [Advanced](../console) Section." ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv", "language": "python", "name": "python3" }, @@ -113,14 +715,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.1" + "version": "3.11.9" }, - "orig_nbformat": 4, - "vscode": { - "interpreter": { - "hash": "cd427db76977a9ac7182f48fec693ea25b2d6de175c77dfc5a78e40d10994c7e" - } - } + "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 diff --git a/poetry.lock b/poetry.lock index 4a3d33a..baf1144 100644 --- a/poetry.lock +++ b/poetry.lock @@ -13,13 +13,13 @@ files = [ [[package]] name = "astdys" -version = "0.9.2" +version = "0.9.3" description = "AstDyS wrapper in python" optional = false python-versions = ">=3.9" files = [ - {file = "astdys-0.9.2-py3-none-any.whl", hash = "sha256:b6f19f37c30930a173b84d90f2e9b36267a46a4211527789c3167201ab7e0629"}, - {file = "astdys-0.9.2.tar.gz", hash = "sha256:ad02b0e1c679848cec8459cec700b85047885484b4a61d55295549addae40554"}, + {file = "astdys-0.9.3-py3-none-any.whl", hash = "sha256:2a0ace77e85f31af0a6602c62808239691b8f80265e0cd39b04f8b8c589d447a"}, + {file = "astdys-0.9.3.tar.gz", hash = "sha256:6411f8876a80382b220ee5b0caf37aa7ee7ac477821a57ec98bfa52c714bdcc9"}, ] [package.dependencies] @@ -29,59 +29,66 @@ pyarrow = ">=17.0.0,<18.0.0" [[package]] name = "astropy" -version = "6.1.2" +version = "6.1.7" description = "Astronomy and astrophysics core library" optional = false python-versions = ">=3.10" files = [ - {file = "astropy-6.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a64eb948c8c1c87545592ff5e3ba366f3a71615dea6532a96891874b03bd9a5d"}, - {file = "astropy-6.1.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c50fa9dcd4fbafd54c5da15092f8d9200b2c82711f8971dd23c139920c6c780c"}, - {file = "astropy-6.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f80865e18ffbe2f9901e59e6f750218b823b5c591f687c2bca3adf0f2a6af4e"}, - {file = "astropy-6.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:305433b7571d3dbcbc264dbf96ec334a89836ddd78d0d15f77821b90eef3f7b4"}, - {file = "astropy-6.1.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b2521be1a1e76c92444905da84cee541e052408632d7fc1fb853e57ef5190963"}, - {file = "astropy-6.1.2-cp310-cp310-win32.whl", hash = "sha256:8f846339fdd093b261dc33a85a78eafa04598b4d8f1807a18ceb0f6eb9a097ef"}, - {file = "astropy-6.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:18747bae9a1eee0e5a408907b82219ddc356198de0948a80bb7d27143e780b7d"}, - {file = "astropy-6.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4563a6d5643c321acb508792ccbec5f1c62302e3271109229ab023d69902a712"}, - {file = "astropy-6.1.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5f8cbd0e3d4b17715e508de2ef0f84057a810b3724b6219181f49d726c1d6436"}, - {file = "astropy-6.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:04eead3eb28021a5853edb620ed6f50311bd5d272ccad06ed82fee293441a834"}, - {file = "astropy-6.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5ee7e334a0601858fcd4b72490b0626174ac97fd591fc3408b496d20167f186"}, - {file = "astropy-6.1.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:99b1d4cb739ff5c20a76e4c42ed38478a8fbd8482fada504796e0d55d39cb5bd"}, - {file = "astropy-6.1.2-cp311-cp311-win32.whl", hash = "sha256:2e25057dd6b5fd8f543f2d08f46fcf6a3691135231f1c016da477df22a25e13b"}, - {file = "astropy-6.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:8bd518b0c94c48a74e95d8b949bd50bf6f72cf1dd56ed925c19c689a39aaaab4"}, - {file = "astropy-6.1.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4aaa06dc984ff3e409019a51935ac9c31875baa538de04c1634ab02f727dd52b"}, - {file = "astropy-6.1.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:12d292909a86f00316c9d3007ae8991906c23461400dba1cb6de63ad55449a32"}, - {file = "astropy-6.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d959819a695083f0653e0b28c661f4388fdb0c812ccc3f5c343626ec5a1708e5"}, - {file = "astropy-6.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:075c54dd9cd8eab52b2de4eddddec0543dfaf7879c231a811b9ba872514f87f6"}, - {file = "astropy-6.1.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8a32996e01553ba5469c0cebf9d7f6587ed11d691f88a0d0879b4ab0609e8f7f"}, - {file = "astropy-6.1.2-cp312-cp312-win32.whl", hash = "sha256:c39fcd493753e4f3628ee775171611fc1c0cc419bc61f7fe69b84ec02b117a54"}, - {file = "astropy-6.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:2d35bf528e8bc6b0f87db9d7ade428964bab51b7bbcf0f11ad3790fa60fcb279"}, - {file = "astropy-6.1.2.tar.gz", hash = "sha256:a2103d4e24e90389a820cfcdaaf4ca2d1ab22e5fd72978d147ff5cace54f1d3a"}, + {file = "astropy-6.1.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:be954c5f7707a089609053665aeb76493b79e5c4753c39486761bc6d137bf040"}, + {file = "astropy-6.1.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b5e48df5ab2e3e521e82a7233a4b1159d071e64e6cbb76c45415dc68d3b97af1"}, + {file = "astropy-6.1.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55c78252633c644361e2f7092d71f80ef9c2e6649f08d97711d9f19af514aedc"}, + {file = "astropy-6.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:985e5e74489d23f1a11953b6b283fccde3f46cb6c68fee4f7228e5f6d8350ba9"}, + {file = "astropy-6.1.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dc2ea28ed41a3d92c39b1481d9c5be016ae58d68f144f3fd8cecffe503525bab"}, + {file = "astropy-6.1.7-cp310-cp310-win32.whl", hash = "sha256:4e4badadd8dfa5dca08fd86e9a50a3a91af321975859f5941579e6b7ce9ba199"}, + {file = "astropy-6.1.7-cp310-cp310-win_amd64.whl", hash = "sha256:8d7f6727689288ee08fc0a4a297fc7e8089d01718321646bd00fea0906ad63dc"}, + {file = "astropy-6.1.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:09edca01276ee63f7b2ff511da9bfb432068ba3242e27ef27d76e5a171087b7e"}, + {file = "astropy-6.1.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:072f62a67992393beb016dc80bee8fb994fda9aa69e945f536ed8ac0e51291e6"}, + {file = "astropy-6.1.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2706156d3646f9c9a7fc810475d8ab0df4c717beefa8326552576a0f8ddca20"}, + {file = "astropy-6.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fcd99e627692f8e58bb3097d330bfbd109a22e00dab162a67f203b0a0601ad2c"}, + {file = "astropy-6.1.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b0ebbcb637b2e9bcb73011f2b7890d7a3f5a41b66ccaad7c28f065e81e28f0b2"}, + {file = "astropy-6.1.7-cp311-cp311-win32.whl", hash = "sha256:192b12ede49cd828362ab1a6ede2367fe203f4d851804ec22fa92e009a524281"}, + {file = "astropy-6.1.7-cp311-cp311-win_amd64.whl", hash = "sha256:3cac64bcdf570c947019bd2bc96711eeb2c7763afe192f18c9551e52a6c296b2"}, + {file = "astropy-6.1.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f2a8bcbb1306052cc38c9eed2c9331bfafe2582b499a7321946abf74b26eb256"}, + {file = "astropy-6.1.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:eaf88878684f9d31aff36475c90d101f4cff22fdd4fd50098d9950fd56994df7"}, + {file = "astropy-6.1.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb8cd231e53556e4eebe0393ea95a8cea6b2ff4187c95ac4ff8b17e7a8da823"}, + {file = "astropy-6.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ad36334d138a4f71d6fdcf225a98ad1dad6c343da4362d5a47a71f5c9da3ca9"}, + {file = "astropy-6.1.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dd731c526869d0c68507be7b31dd10871b7c44d310bb5495476505560c83cd33"}, + {file = "astropy-6.1.7-cp312-cp312-win32.whl", hash = "sha256:662bacd7ae42561e038cbd85eea3b749308cf3575611a745b60f034d3350c97a"}, + {file = "astropy-6.1.7-cp312-cp312-win_amd64.whl", hash = "sha256:5b4d02a98a0bf91ff7fd4ef0bd0ecca83c9497338cb88b61ec9f971350688222"}, + {file = "astropy-6.1.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:fbeaf04427987c0c6fa2e579eb40011802b06fba6b3a7870e082d5c693564e1b"}, + {file = "astropy-6.1.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ab6e88241a14185b9404b02246329185b70292984aa0616b20a0628dfe4f4ebb"}, + {file = "astropy-6.1.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0529c75565feaabb629946806b4763ae7b02069aeff4c3b56a69e8a9e638500"}, + {file = "astropy-6.1.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c5ec347631da77573fc729ba04e5d89a3bc94500bf6037152a2d0f9965ae1ce"}, + {file = "astropy-6.1.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:dc496f87aaccaa5c6624acc985b8770f039c5bbe74b120c8ed7bad3698e24e1b"}, + {file = "astropy-6.1.7-cp313-cp313-win32.whl", hash = "sha256:b1e01d534383c038dbf8664b964fa4ea818c7419318830d3c732c750c64115c6"}, + {file = "astropy-6.1.7-cp313-cp313-win_amd64.whl", hash = "sha256:af08cf2b0368f1ea585eb26a55d99a2de9e9b0bd30aba84b5329059c3ec33590"}, + {file = "astropy-6.1.7.tar.gz", hash = "sha256:a405ac186306b6cb152e6df2f7444ab8bd764e4127d7519da1b3ae4dd65357ef"}, ] [package.dependencies] -astropy-iers-data = ">=0.2024.7.1.0.34.3" +astropy-iers-data = ">=0.2024.10.28.0.34.7" numpy = ">=1.23" packaging = ">=19.0" pyerfa = ">=2.0.1.1" PyYAML = ">=3.13" [package.extras] -all = ["asdf-astropy (>=0.3)", "astropy[recommended]", "astropy[typing]", "beautifulsoup4", "bleach", "bottleneck", "certifi", "dask[array]", "fsspec[http] (>=2023.4.0)", "h5py", "html5lib", "ipython (>=4.2)", "jplephem", "mpmath", "pandas", "pre-commit", "pyarrow (>=5.0.0)", "pytest (>=7.0)", "pytz", "s3fs (>=2023.4.0)", "sortedcontainers"] -docs = ["Jinja2 (>=3.1.3)", "astropy[recommended]", "matplotlib (>=3.9.1)", "numpy (<2.0)", "pytest (>=7.0)", "sphinx", "sphinx-astropy[confv2] (>=1.9.1)", "sphinx-changelog (>=1.2.0)", "sphinx-design", "sphinxcontrib-globalsubs (>=0.1.1)", "tomli"] -recommended = ["matplotlib (>=3.3,!=3.4.0,!=3.5.2)", "scipy (>=1.8)"] +all = ["asdf-astropy (>=0.3)", "astropy[recommended]", "astropy[typing]", "beautifulsoup4", "bleach", "bottleneck", "certifi", "dask[array]", "fsspec[http] (>=2023.4.0)", "h5py", "html5lib", "ipython (>=4.2)", "jplephem", "mpmath", "pandas", "pre-commit", "pyarrow (>=7.0.0)", "pytest (>=7.0)", "pytz", "s3fs (>=2023.4.0)", "sortedcontainers"] +docs = ["Jinja2 (>=3.1.3)", "astropy[recommended]", "matplotlib (>=3.9.1)", "numpy (<2.0)", "pytest (>=7.0)", "sphinx", "sphinx-astropy[confv2] (>=1.9.1)", "sphinx-changelog (>=1.2.0)", "sphinx_design", "sphinxcontrib-globalsubs (>=0.1.1)", "tomli"] +recommended = ["matplotlib (>=3.5.0,!=3.5.2)", "scipy (>=1.8)"] test = ["pytest (>=7.0)", "pytest-astropy (>=0.10)", "pytest-astropy-header (>=0.2.1)", "pytest-doctestplus (>=0.12)", "pytest-xdist", "threadpoolctl"] test-all = ["array-api-strict", "astropy[test]", "coverage[toml]", "ipython (>=4.2)", "objgraph", "sgp4 (>=2.3)", "skyfield (>=1.20)"] -typing = ["typing-extensions (>=4.0.0)"] +typing = ["typing_extensions (>=4.0.0)"] [[package]] name = "astropy-iers-data" -version = "0.2024.7.22.0.34.13" +version = "0.2025.2.10.0.33.26" description = "IERS Earth Rotation and Leap Second tables for the astropy core package" optional = false python-versions = ">=3.8" files = [ - {file = "astropy_iers_data-0.2024.7.22.0.34.13-py3-none-any.whl", hash = "sha256:567a6cb261dd62f60862ee8d38e70fb2c88dfad03e962bc8138397a22e33003d"}, - {file = "astropy_iers_data-0.2024.7.22.0.34.13.tar.gz", hash = "sha256:9bbb4bfc28bc8e834a6b3946a312ce3490c285abeab8fd9b1e98b11fdee6f92c"}, + {file = "astropy_iers_data-0.2025.2.10.0.33.26-py3-none-any.whl", hash = "sha256:e55fb8578bc3c5e54113aae624f94e111bb89bdb57220958c7e673784b5c3b68"}, + {file = "astropy_iers_data-0.2025.2.10.0.33.26.tar.gz", hash = "sha256:03d93817588ef2344e22d56f7a11cba2ecd877ddb2d0fc259a1daf3980c33c3e"}, ] [package.extras] @@ -90,54 +97,52 @@ test = ["hypothesis", "pytest", "pytest-remotedata"] [[package]] name = "asttokens" -version = "2.4.1" +version = "3.0.0" description = "Annotate AST trees with source code positions" optional = false -python-versions = "*" +python-versions = ">=3.8" files = [ - {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, - {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, ] -[package.dependencies] -six = ">=1.12.0" - [package.extras] -astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] -test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "attrs" -version = "23.2.0" +version = "25.1.0" description = "Classes Without Boilerplate" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-25.1.0-py3-none-any.whl", hash = "sha256:c75a69e28a550a7e93789579c22aa26b0f5b83b75dc4e08fe092980051e1090a"}, + {file = "attrs-25.1.0.tar.gz", hash = "sha256:1c97078a80c814273a76b2a298a932eb681c87415c11dee0a6921de7f1b02c3e"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "beautifulsoup4" -version = "4.12.3" +version = "4.13.3" description = "Screen-scraping library" optional = false -python-versions = ">=3.6.0" +python-versions = ">=3.7.0" files = [ - {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, - {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, + {file = "beautifulsoup4-4.13.3-py3-none-any.whl", hash = "sha256:99045d7d3f08f91f0d656bc9b7efbae189426cd913d830294a15eefa0ea4df16"}, + {file = "beautifulsoup4-4.13.3.tar.gz", hash = "sha256:1bd32405dacc920b42b83ba01644747ed77456a65760e285fbc47633ceddaf8b"}, ] [package.dependencies] soupsieve = ">1.2" +typing-extensions = ">=4.0.0" [package.extras] cchardet = ["cchardet"] @@ -148,33 +153,33 @@ lxml = ["lxml"] [[package]] name = "black" -version = "24.4.2" +version = "24.10.0" description = "The uncompromising code formatter." optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "black-24.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dd1b5a14e417189db4c7b64a6540f31730713d173f0b63e55fabd52d61d8fdce"}, - {file = "black-24.4.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e537d281831ad0e71007dcdcbe50a71470b978c453fa41ce77186bbe0ed6021"}, - {file = "black-24.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaea3008c281f1038edb473c1aa8ed8143a5535ff18f978a318f10302b254063"}, - {file = "black-24.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:7768a0dbf16a39aa5e9a3ded568bb545c8c2727396d063bbaf847df05b08cd96"}, - {file = "black-24.4.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:257d724c2c9b1660f353b36c802ccece186a30accc7742c176d29c146df6e474"}, - {file = "black-24.4.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bdde6f877a18f24844e381d45e9947a49e97933573ac9d4345399be37621e26c"}, - {file = "black-24.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e151054aa00bad1f4e1f04919542885f89f5f7d086b8a59e5000e6c616896ffb"}, - {file = "black-24.4.2-cp311-cp311-win_amd64.whl", hash = "sha256:7e122b1c4fb252fd85df3ca93578732b4749d9be076593076ef4d07a0233c3e1"}, - {file = "black-24.4.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:accf49e151c8ed2c0cdc528691838afd217c50412534e876a19270fea1e28e2d"}, - {file = "black-24.4.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:88c57dc656038f1ab9f92b3eb5335ee9b021412feaa46330d5eba4e51fe49b04"}, - {file = "black-24.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be8bef99eb46d5021bf053114442914baeb3649a89dc5f3a555c88737e5e98fc"}, - {file = "black-24.4.2-cp312-cp312-win_amd64.whl", hash = "sha256:415e686e87dbbe6f4cd5ef0fbf764af7b89f9057b97c908742b6008cc554b9c0"}, - {file = "black-24.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:bf10f7310db693bb62692609b397e8d67257c55f949abde4c67f9cc574492cc7"}, - {file = "black-24.4.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:98e123f1d5cfd42f886624d84464f7756f60ff6eab89ae845210631714f6db94"}, - {file = "black-24.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48a85f2cb5e6799a9ef05347b476cce6c182d6c71ee36925a6c194d074336ef8"}, - {file = "black-24.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:b1530ae42e9d6d5b670a34db49a94115a64596bc77710b1d05e9801e62ca0a7c"}, - {file = "black-24.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:37aae07b029fa0174d39daf02748b379399b909652a806e5708199bd93899da1"}, - {file = "black-24.4.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:da33a1a5e49c4122ccdfd56cd021ff1ebc4a1ec4e2d01594fef9b6f267a9e741"}, - {file = "black-24.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef703f83fc32e131e9bcc0a5094cfe85599e7109f896fe8bc96cc402f3eb4b6e"}, - {file = "black-24.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:b9176b9832e84308818a99a561e90aa479e73c523b3f77afd07913380ae2eab7"}, - {file = "black-24.4.2-py3-none-any.whl", hash = "sha256:d36ed1124bb81b32f8614555b34cc4259c3fbc7eec17870e8ff8ded335b58d8c"}, - {file = "black-24.4.2.tar.gz", hash = "sha256:c872b53057f000085da66a19c55d68f6f8ddcac2642392ad3a355878406fbd4d"}, + {file = "black-24.10.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e6668650ea4b685440857138e5fe40cde4d652633b1bdffc62933d0db4ed9812"}, + {file = "black-24.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1c536fcf674217e87b8cc3657b81809d3c085d7bf3ef262ead700da345bfa6ea"}, + {file = "black-24.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:649fff99a20bd06c6f727d2a27f401331dc0cc861fb69cde910fe95b01b5928f"}, + {file = "black-24.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:fe4d6476887de70546212c99ac9bd803d90b42fc4767f058a0baa895013fbb3e"}, + {file = "black-24.10.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5a2221696a8224e335c28816a9d331a6c2ae15a2ee34ec857dcf3e45dbfa99ad"}, + {file = "black-24.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9da3333530dbcecc1be13e69c250ed8dfa67f43c4005fb537bb426e19200d50"}, + {file = "black-24.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4007b1393d902b48b36958a216c20c4482f601569d19ed1df294a496eb366392"}, + {file = "black-24.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:394d4ddc64782e51153eadcaaca95144ac4c35e27ef9b0a42e121ae7e57a9175"}, + {file = "black-24.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b5e39e0fae001df40f95bd8cc36b9165c5e2ea88900167bddf258bacef9bbdc3"}, + {file = "black-24.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d37d422772111794b26757c5b55a3eade028aa3fde43121ab7b673d050949d65"}, + {file = "black-24.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:14b3502784f09ce2443830e3133dacf2c0110d45191ed470ecb04d0f5f6fcb0f"}, + {file = "black-24.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:30d2c30dc5139211dda799758559d1b049f7f14c580c409d6ad925b74a4208a8"}, + {file = "black-24.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1cbacacb19e922a1d75ef2b6ccaefcd6e93a2c05ede32f06a21386a04cedb981"}, + {file = "black-24.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1f93102e0c5bb3907451063e08b9876dbeac810e7da5a8bfb7aeb5a9ef89066b"}, + {file = "black-24.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ddacb691cdcdf77b96f549cf9591701d8db36b2f19519373d60d31746068dbf2"}, + {file = "black-24.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:680359d932801c76d2e9c9068d05c6b107f2584b2a5b88831c83962eb9984c1b"}, + {file = "black-24.10.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:17374989640fbca88b6a448129cd1745c5eb8d9547b464f281b251dd00155ccd"}, + {file = "black-24.10.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:63f626344343083322233f175aaf372d326de8436f5928c042639a4afbbf1d3f"}, + {file = "black-24.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfa1d0cb6200857f1923b602f978386a3a2758a65b52e0950299ea014be6800"}, + {file = "black-24.10.0-cp39-cp39-win_amd64.whl", hash = "sha256:2cd9c95431d94adc56600710f8813ee27eea544dd118d45896bb734e9d7a0dc7"}, + {file = "black-24.10.0-py3-none-any.whl", hash = "sha256:3bb2b7a1f7b685f85b11fed1ef10f8a9148bceb49853e47a294a3dd963c1dd7d"}, + {file = "black-24.10.0.tar.gz", hash = "sha256:846ea64c97afe3bc677b761787993be4991810ecc7a4a937816dd6bddedc4875"}, ] [package.dependencies] @@ -188,98 +193,112 @@ typing-extensions = {version = ">=4.0.1", markers = "python_version < \"3.11\""} [package.extras] colorama = ["colorama (>=0.4.3)"] -d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] +d = ["aiohttp (>=3.10)"] jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] uvloop = ["uvloop (>=0.15.2)"] [[package]] name = "bleach" -version = "6.1.0" +version = "6.2.0" description = "An easy safelist-based HTML-sanitizing tool." optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, - {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, + {file = "bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e"}, + {file = "bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f"}, ] [package.dependencies] -six = ">=1.9.0" webencodings = "*" [package.extras] -css = ["tinycss2 (>=1.1.0,<1.3)"] +css = ["tinycss2 (>=1.1.0,<1.5)"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2025.1.31" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe"}, + {file = "certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651"}, ] [[package]] name = "cffi" -version = "1.16.0" +version = "1.17.1" description = "Foreign Function Interface for Python calling C code." optional = false python-versions = ">=3.8" files = [ - {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, - {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, - {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, - {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, - {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, - {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, - {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, - {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, - {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, - {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, - {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, - {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, - {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, - {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, - {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, - {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, - {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, - {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, - {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, - {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, - {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, - {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, - {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, - {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, - {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, - {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, ] [package.dependencies] @@ -287,112 +306,114 @@ pycparser = "*" [[package]] name = "charset-normalizer" -version = "3.3.2" +version = "3.4.1" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." optional = false -python-versions = ">=3.7.0" +python-versions = ">=3.7" files = [ - {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, - {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, - {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, - {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, - {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, - {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, - {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, - {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win32.whl", hash = "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win32.whl", hash = "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765"}, + {file = "charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85"}, + {file = "charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3"}, ] [[package]] name = "click" -version = "8.1.7" +version = "8.1.8" description = "Composable command line interface toolkit" optional = false python-versions = ">=3.7" files = [ - {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, - {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, + {file = "click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2"}, + {file = "click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a"}, ] [package.dependencies] @@ -428,126 +449,147 @@ test = ["pytest"] [[package]] name = "contourpy" -version = "1.2.1" +version = "1.3.1" description = "Python library for calculating contours of 2D quadrilateral grids" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"}, - {file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"}, - {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"}, - {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"}, - {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"}, - {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"}, - {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"}, - {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"}, - {file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"}, - {file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"}, - {file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"}, - {file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"}, - {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"}, - {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"}, - {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"}, - {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"}, - {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"}, - {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"}, - {file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"}, - {file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"}, - {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"}, - {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"}, - {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"}, - {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"}, - {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"}, - {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"}, - {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"}, - {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"}, - {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"}, - {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"}, - {file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"}, - {file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"}, - {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"}, - {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"}, - {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"}, - {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"}, - {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"}, - {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"}, - {file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"}, - {file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"}, - {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"}, - {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"}, - {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"}, - {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595"}, + {file = "contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697"}, + {file = "contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f"}, + {file = "contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375"}, + {file = "contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d"}, + {file = "contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e"}, + {file = "contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1"}, + {file = "contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82"}, + {file = "contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53"}, + {file = "contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699"}, ] [package.dependencies] -numpy = ">=1.20" +numpy = ">=1.23" [package.extras] bokeh = ["bokeh", "selenium"] docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] -mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] -test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] +test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] [[package]] name = "coverage" -version = "7.6.0" +version = "7.6.12" description = "Code coverage measurement for Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "coverage-7.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dff044f661f59dace805eedb4a7404c573b6ff0cdba4a524141bc63d7be5c7fd"}, - {file = "coverage-7.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8659fd33ee9e6ca03950cfdcdf271d645cf681609153f218826dd9805ab585c"}, - {file = "coverage-7.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7792f0ab20df8071d669d929c75c97fecfa6bcab82c10ee4adb91c7a54055463"}, - {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4b3cd1ca7cd73d229487fa5caca9e4bc1f0bca96526b922d61053ea751fe791"}, - {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7e128f85c0b419907d1f38e616c4f1e9f1d1b37a7949f44df9a73d5da5cd53c"}, - {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a94925102c89247530ae1dab7dc02c690942566f22e189cbd53579b0693c0783"}, - {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dcd070b5b585b50e6617e8972f3fbbee786afca71b1936ac06257f7e178f00f6"}, - {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d50a252b23b9b4dfeefc1f663c568a221092cbaded20a05a11665d0dbec9b8fb"}, - {file = "coverage-7.6.0-cp310-cp310-win32.whl", hash = "sha256:0e7b27d04131c46e6894f23a4ae186a6a2207209a05df5b6ad4caee6d54a222c"}, - {file = "coverage-7.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dece71673b3187c86226c3ca793c5f891f9fc3d8aa183f2e3653da18566169"}, - {file = "coverage-7.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7b525ab52ce18c57ae232ba6f7010297a87ced82a2383b1afd238849c1ff933"}, - {file = "coverage-7.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4bea27c4269234e06f621f3fac3925f56ff34bc14521484b8f66a580aacc2e7d"}, - {file = "coverage-7.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed8d1d1821ba5fc88d4a4f45387b65de52382fa3ef1f0115a4f7a20cdfab0e94"}, - {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01c322ef2bbe15057bc4bf132b525b7e3f7206f071799eb8aa6ad1940bcf5fb1"}, - {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03cafe82c1b32b770a29fd6de923625ccac3185a54a5e66606da26d105f37dac"}, - {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0d1b923fc4a40c5832be4f35a5dab0e5ff89cddf83bb4174499e02ea089daf57"}, - {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4b03741e70fb811d1a9a1d75355cf391f274ed85847f4b78e35459899f57af4d"}, - {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a73d18625f6a8a1cbb11eadc1d03929f9510f4131879288e3f7922097a429f63"}, - {file = "coverage-7.6.0-cp311-cp311-win32.whl", hash = "sha256:65fa405b837060db569a61ec368b74688f429b32fa47a8929a7a2f9b47183713"}, - {file = "coverage-7.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:6379688fb4cfa921ae349c76eb1a9ab26b65f32b03d46bb0eed841fd4cb6afb1"}, - {file = "coverage-7.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f7db0b6ae1f96ae41afe626095149ecd1b212b424626175a6633c2999eaad45b"}, - {file = "coverage-7.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bbdf9a72403110a3bdae77948b8011f644571311c2fb35ee15f0f10a8fc082e8"}, - {file = "coverage-7.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc44bf0315268e253bf563f3560e6c004efe38f76db03a1558274a6e04bf5d5"}, - {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da8549d17489cd52f85a9829d0e1d91059359b3c54a26f28bec2c5d369524807"}, - {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0086cd4fc71b7d485ac93ca4239c8f75732c2ae3ba83f6be1c9be59d9e2c6382"}, - {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fad32ee9b27350687035cb5fdf9145bc9cf0a094a9577d43e909948ebcfa27b"}, - {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:044a0985a4f25b335882b0966625270a8d9db3d3409ddc49a4eb00b0ef5e8cee"}, - {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:76d5f82213aa78098b9b964ea89de4617e70e0d43e97900c2778a50856dac605"}, - {file = "coverage-7.6.0-cp312-cp312-win32.whl", hash = "sha256:3c59105f8d58ce500f348c5b56163a4113a440dad6daa2294b5052a10db866da"}, - {file = "coverage-7.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:ca5d79cfdae420a1d52bf177de4bc2289c321d6c961ae321503b2ca59c17ae67"}, - {file = "coverage-7.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d39bd10f0ae453554798b125d2f39884290c480f56e8a02ba7a6ed552005243b"}, - {file = "coverage-7.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:beb08e8508e53a568811016e59f3234d29c2583f6b6e28572f0954a6b4f7e03d"}, - {file = "coverage-7.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2e16f4cd2bc4d88ba30ca2d3bbf2f21f00f382cf4e1ce3b1ddc96c634bc48ca"}, - {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6616d1c9bf1e3faea78711ee42a8b972367d82ceae233ec0ac61cc7fec09fa6b"}, - {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4567d6c334c46046d1c4c20024de2a1c3abc626817ae21ae3da600f5779b44"}, - {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d17c6a415d68cfe1091d3296ba5749d3d8696e42c37fca5d4860c5bf7b729f03"}, - {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9146579352d7b5f6412735d0f203bbd8d00113a680b66565e205bc605ef81bc6"}, - {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:cdab02a0a941af190df8782aafc591ef3ad08824f97850b015c8c6a8b3877b0b"}, - {file = "coverage-7.6.0-cp38-cp38-win32.whl", hash = "sha256:df423f351b162a702c053d5dddc0fc0ef9a9e27ea3f449781ace5f906b664428"}, - {file = "coverage-7.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:f2501d60d7497fd55e391f423f965bbe9e650e9ffc3c627d5f0ac516026000b8"}, - {file = "coverage-7.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7221f9ac9dad9492cecab6f676b3eaf9185141539d5c9689d13fd6b0d7de840c"}, - {file = "coverage-7.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ddaaa91bfc4477d2871442bbf30a125e8fe6b05da8a0015507bfbf4718228ab2"}, - {file = "coverage-7.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4cbe651f3904e28f3a55d6f371203049034b4ddbce65a54527a3f189ca3b390"}, - {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:831b476d79408ab6ccfadaaf199906c833f02fdb32c9ab907b1d4aa0713cfa3b"}, - {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46c3d091059ad0b9c59d1034de74a7f36dcfa7f6d3bde782c49deb42438f2450"}, - {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4d5fae0a22dc86259dee66f2cc6c1d3e490c4a1214d7daa2a93d07491c5c04b6"}, - {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:07ed352205574aad067482e53dd606926afebcb5590653121063fbf4e2175166"}, - {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:49c76cdfa13015c4560702574bad67f0e15ca5a2872c6a125f6327ead2b731dd"}, - {file = "coverage-7.6.0-cp39-cp39-win32.whl", hash = "sha256:482855914928c8175735a2a59c8dc5806cf7d8f032e4820d52e845d1f731dca2"}, - {file = "coverage-7.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:543ef9179bc55edfd895154a51792b01c017c87af0ebaae092720152e19e42ca"}, - {file = "coverage-7.6.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:6fe885135c8a479d3e37a7aae61cbd3a0fb2deccb4dda3c25f92a49189f766d6"}, - {file = "coverage-7.6.0.tar.gz", hash = "sha256:289cc803fa1dc901f84701ac10c9ee873619320f2f9aff38794db4a4a0268d51"}, + {file = "coverage-7.6.12-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:704c8c8c6ce6569286ae9622e534b4f5b9759b6f2cd643f1c1a61f666d534fe8"}, + {file = "coverage-7.6.12-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ad7525bf0241e5502168ae9c643a2f6c219fa0a283001cee4cf23a9b7da75879"}, + {file = "coverage-7.6.12-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06097c7abfa611c91edb9e6920264e5be1d6ceb374efb4986f38b09eed4cb2fe"}, + {file = "coverage-7.6.12-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:220fa6c0ad7d9caef57f2c8771918324563ef0d8272c94974717c3909664e674"}, + {file = "coverage-7.6.12-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3688b99604a24492bcfe1c106278c45586eb819bf66a654d8a9a1433022fb2eb"}, + {file = "coverage-7.6.12-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d1a987778b9c71da2fc8948e6f2656da6ef68f59298b7e9786849634c35d2c3c"}, + {file = "coverage-7.6.12-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:cec6b9ce3bd2b7853d4a4563801292bfee40b030c05a3d29555fd2a8ee9bd68c"}, + {file = "coverage-7.6.12-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ace9048de91293e467b44bce0f0381345078389814ff6e18dbac8fdbf896360e"}, + {file = "coverage-7.6.12-cp310-cp310-win32.whl", hash = "sha256:ea31689f05043d520113e0552f039603c4dd71fa4c287b64cb3606140c66f425"}, + {file = "coverage-7.6.12-cp310-cp310-win_amd64.whl", hash = "sha256:676f92141e3c5492d2a1596d52287d0d963df21bf5e55c8b03075a60e1ddf8aa"}, + {file = "coverage-7.6.12-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:e18aafdfb3e9ec0d261c942d35bd7c28d031c5855dadb491d2723ba54f4c3015"}, + {file = "coverage-7.6.12-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:66fe626fd7aa5982cdebad23e49e78ef7dbb3e3c2a5960a2b53632f1f703ea45"}, + {file = "coverage-7.6.12-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ef01d70198431719af0b1f5dcbefc557d44a190e749004042927b2a3fed0702"}, + {file = "coverage-7.6.12-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07e92ae5a289a4bc4c0aae710c0948d3c7892e20fd3588224ebe242039573bf0"}, + {file = "coverage-7.6.12-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e695df2c58ce526eeab11a2e915448d3eb76f75dffe338ea613c1201b33bab2f"}, + {file = "coverage-7.6.12-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d74c08e9aaef995f8c4ef6d202dbd219c318450fe2a76da624f2ebb9c8ec5d9f"}, + {file = "coverage-7.6.12-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e995b3b76ccedc27fe4f477b349b7d64597e53a43fc2961db9d3fbace085d69d"}, + {file = "coverage-7.6.12-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b1f097878d74fe51e1ddd1be62d8e3682748875b461232cf4b52ddc6e6db0bba"}, + {file = "coverage-7.6.12-cp311-cp311-win32.whl", hash = "sha256:1f7ffa05da41754e20512202c866d0ebfc440bba3b0ed15133070e20bf5aeb5f"}, + {file = "coverage-7.6.12-cp311-cp311-win_amd64.whl", hash = "sha256:e216c5c45f89ef8971373fd1c5d8d1164b81f7f5f06bbf23c37e7908d19e8558"}, + {file = "coverage-7.6.12-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b172f8e030e8ef247b3104902cc671e20df80163b60a203653150d2fc204d1ad"}, + {file = "coverage-7.6.12-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:641dfe0ab73deb7069fb972d4d9725bf11c239c309ce694dd50b1473c0f641c3"}, + {file = "coverage-7.6.12-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e549f54ac5f301e8e04c569dfdb907f7be71b06b88b5063ce9d6953d2d58574"}, + {file = "coverage-7.6.12-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:959244a17184515f8c52dcb65fb662808767c0bd233c1d8a166e7cf74c9ea985"}, + {file = "coverage-7.6.12-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bda1c5f347550c359f841d6614fb8ca42ae5cb0b74d39f8a1e204815ebe25750"}, + {file = "coverage-7.6.12-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1ceeb90c3eda1f2d8c4c578c14167dbd8c674ecd7d38e45647543f19839dd6ea"}, + {file = "coverage-7.6.12-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f16f44025c06792e0fb09571ae454bcc7a3ec75eeb3c36b025eccf501b1a4c3"}, + {file = "coverage-7.6.12-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b076e625396e787448d27a411aefff867db2bffac8ed04e8f7056b07024eed5a"}, + {file = "coverage-7.6.12-cp312-cp312-win32.whl", hash = "sha256:00b2086892cf06c7c2d74983c9595dc511acca00665480b3ddff749ec4fb2a95"}, + {file = "coverage-7.6.12-cp312-cp312-win_amd64.whl", hash = "sha256:7ae6eabf519bc7871ce117fb18bf14e0e343eeb96c377667e3e5dd12095e0288"}, + {file = "coverage-7.6.12-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:488c27b3db0ebee97a830e6b5a3ea930c4a6e2c07f27a5e67e1b3532e76b9ef1"}, + {file = "coverage-7.6.12-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5d1095bbee1851269f79fd8e0c9b5544e4c00c0c24965e66d8cba2eb5bb535fd"}, + {file = "coverage-7.6.12-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0533adc29adf6a69c1baa88c3d7dbcaadcffa21afbed3ca7a225a440e4744bf9"}, + {file = "coverage-7.6.12-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:53c56358d470fa507a2b6e67a68fd002364d23c83741dbc4c2e0680d80ca227e"}, + {file = "coverage-7.6.12-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64cbb1a3027c79ca6310bf101014614f6e6e18c226474606cf725238cf5bc2d4"}, + {file = "coverage-7.6.12-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:79cac3390bfa9836bb795be377395f28410811c9066bc4eefd8015258a7578c6"}, + {file = "coverage-7.6.12-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:9b148068e881faa26d878ff63e79650e208e95cf1c22bd3f77c3ca7b1d9821a3"}, + {file = "coverage-7.6.12-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8bec2ac5da793c2685ce5319ca9bcf4eee683b8a1679051f8e6ec04c4f2fd7dc"}, + {file = "coverage-7.6.12-cp313-cp313-win32.whl", hash = "sha256:200e10beb6ddd7c3ded322a4186313d5ca9e63e33d8fab4faa67ef46d3460af3"}, + {file = "coverage-7.6.12-cp313-cp313-win_amd64.whl", hash = "sha256:2b996819ced9f7dbb812c701485d58f261bef08f9b85304d41219b1496b591ef"}, + {file = "coverage-7.6.12-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:299cf973a7abff87a30609879c10df0b3bfc33d021e1adabc29138a48888841e"}, + {file = "coverage-7.6.12-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:4b467a8c56974bf06e543e69ad803c6865249d7a5ccf6980457ed2bc50312703"}, + {file = "coverage-7.6.12-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2458f275944db8129f95d91aee32c828a408481ecde3b30af31d552c2ce284a0"}, + {file = "coverage-7.6.12-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a9d8be07fb0832636a0f72b80d2a652fe665e80e720301fb22b191c3434d924"}, + {file = "coverage-7.6.12-cp313-cp313t-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14d47376a4f445e9743f6c83291e60adb1b127607a3618e3185bbc8091f0467b"}, + {file = "coverage-7.6.12-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b95574d06aa9d2bd6e5cc35a5bbe35696342c96760b69dc4287dbd5abd4ad51d"}, + {file = "coverage-7.6.12-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:ecea0c38c9079570163d663c0433a9af4094a60aafdca491c6a3d248c7432827"}, + {file = "coverage-7.6.12-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2251fabcfee0a55a8578a9d29cecfee5f2de02f11530e7d5c5a05859aa85aee9"}, + {file = "coverage-7.6.12-cp313-cp313t-win32.whl", hash = "sha256:eb5507795caabd9b2ae3f1adc95f67b1104971c22c624bb354232d65c4fc90b3"}, + {file = "coverage-7.6.12-cp313-cp313t-win_amd64.whl", hash = "sha256:f60a297c3987c6c02ffb29effc70eadcbb412fe76947d394a1091a3615948e2f"}, + {file = "coverage-7.6.12-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e7575ab65ca8399c8c4f9a7d61bbd2d204c8b8e447aab9d355682205c9dd948d"}, + {file = "coverage-7.6.12-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8161d9fbc7e9fe2326de89cd0abb9f3599bccc1287db0aba285cb68d204ce929"}, + {file = "coverage-7.6.12-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a1e465f398c713f1b212400b4e79a09829cd42aebd360362cd89c5bdc44eb87"}, + {file = "coverage-7.6.12-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f25d8b92a4e31ff1bd873654ec367ae811b3a943583e05432ea29264782dc32c"}, + {file = "coverage-7.6.12-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a936309a65cc5ca80fa9f20a442ff9e2d06927ec9a4f54bcba9c14c066323f2"}, + {file = "coverage-7.6.12-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:aa6f302a3a0b5f240ee201297fff0bbfe2fa0d415a94aeb257d8b461032389bd"}, + {file = "coverage-7.6.12-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f973643ef532d4f9be71dd88cf7588936685fdb576d93a79fe9f65bc337d9d73"}, + {file = "coverage-7.6.12-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:78f5243bb6b1060aed6213d5107744c19f9571ec76d54c99cc15938eb69e0e86"}, + {file = "coverage-7.6.12-cp39-cp39-win32.whl", hash = "sha256:69e62c5034291c845fc4df7f8155e8544178b6c774f97a99e2734b05eb5bed31"}, + {file = "coverage-7.6.12-cp39-cp39-win_amd64.whl", hash = "sha256:b01a840ecc25dce235ae4c1b6a0daefb2a203dba0e6e980637ee9c2f6ee0df57"}, + {file = "coverage-7.6.12-pp39.pp310-none-any.whl", hash = "sha256:7e39e845c4d764208e7b8f6a21c541ade741e2c41afabdfa1caa28687a3c98cf"}, + {file = "coverage-7.6.12-py3-none-any.whl", hash = "sha256:eb8668cfbc279a536c633137deeb9435d2962caec279c3f8cf8b91fff6ff8953"}, + {file = "coverage-7.6.12.tar.gz", hash = "sha256:48cfc4641d95d34766ad41d9573cc0f22a48aa88d22657a1fe01dca0dbae4de2"}, ] [package.extras] @@ -570,33 +612,37 @@ tests = ["pytest", "pytest-cov", "pytest-xdist"] [[package]] name = "debugpy" -version = "1.8.2" +version = "1.8.12" description = "An implementation of the Debug Adapter Protocol for Python" optional = false python-versions = ">=3.8" files = [ - {file = "debugpy-1.8.2-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7ee2e1afbf44b138c005e4380097d92532e1001580853a7cb40ed84e0ef1c3d2"}, - {file = "debugpy-1.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f8c3f7c53130a070f0fc845a0f2cee8ed88d220d6b04595897b66605df1edd6"}, - {file = "debugpy-1.8.2-cp310-cp310-win32.whl", hash = "sha256:f179af1e1bd4c88b0b9f0fa153569b24f6b6f3de33f94703336363ae62f4bf47"}, - {file = "debugpy-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:0600faef1d0b8d0e85c816b8bb0cb90ed94fc611f308d5fde28cb8b3d2ff0fe3"}, - {file = "debugpy-1.8.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:8a13417ccd5978a642e91fb79b871baded925d4fadd4dfafec1928196292aa0a"}, - {file = "debugpy-1.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acdf39855f65c48ac9667b2801234fc64d46778021efac2de7e50907ab90c634"}, - {file = "debugpy-1.8.2-cp311-cp311-win32.whl", hash = "sha256:2cbd4d9a2fc5e7f583ff9bf11f3b7d78dfda8401e8bb6856ad1ed190be4281ad"}, - {file = "debugpy-1.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:d3408fddd76414034c02880e891ea434e9a9cf3a69842098ef92f6e809d09afa"}, - {file = "debugpy-1.8.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:5d3ccd39e4021f2eb86b8d748a96c766058b39443c1f18b2dc52c10ac2757835"}, - {file = "debugpy-1.8.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62658aefe289598680193ff655ff3940e2a601765259b123dc7f89c0239b8cd3"}, - {file = "debugpy-1.8.2-cp312-cp312-win32.whl", hash = "sha256:bd11fe35d6fd3431f1546d94121322c0ac572e1bfb1f6be0e9b8655fb4ea941e"}, - {file = "debugpy-1.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:15bc2f4b0f5e99bf86c162c91a74c0631dbd9cef3c6a1d1329c946586255e859"}, - {file = "debugpy-1.8.2-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:5a019d4574afedc6ead1daa22736c530712465c0c4cd44f820d803d937531b2d"}, - {file = "debugpy-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40f062d6877d2e45b112c0bbade9a17aac507445fd638922b1a5434df34aed02"}, - {file = "debugpy-1.8.2-cp38-cp38-win32.whl", hash = "sha256:c78ba1680f1015c0ca7115671fe347b28b446081dada3fedf54138f44e4ba031"}, - {file = "debugpy-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:cf327316ae0c0e7dd81eb92d24ba8b5e88bb4d1b585b5c0d32929274a66a5210"}, - {file = "debugpy-1.8.2-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:1523bc551e28e15147815d1397afc150ac99dbd3a8e64641d53425dba57b0ff9"}, - {file = "debugpy-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e24ccb0cd6f8bfaec68d577cb49e9c680621c336f347479b3fce060ba7c09ec1"}, - {file = "debugpy-1.8.2-cp39-cp39-win32.whl", hash = "sha256:7f8d57a98c5a486c5c7824bc0b9f2f11189d08d73635c326abef268f83950326"}, - {file = "debugpy-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:16c8dcab02617b75697a0a925a62943e26a0330da076e2a10437edd9f0bf3755"}, - {file = "debugpy-1.8.2-py2.py3-none-any.whl", hash = "sha256:16e16df3a98a35c63c3ab1e4d19be4cbc7fdda92d9ddc059294f18910928e0ca"}, - {file = "debugpy-1.8.2.zip", hash = "sha256:95378ed08ed2089221896b9b3a8d021e642c24edc8fef20e5d4342ca8be65c00"}, + {file = "debugpy-1.8.12-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:a2ba7ffe58efeae5b8fad1165357edfe01464f9aef25e814e891ec690e7dd82a"}, + {file = "debugpy-1.8.12-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cbbd4149c4fc5e7d508ece083e78c17442ee13b0e69bfa6bd63003e486770f45"}, + {file = "debugpy-1.8.12-cp310-cp310-win32.whl", hash = "sha256:b202f591204023b3ce62ff9a47baa555dc00bb092219abf5caf0e3718ac20e7c"}, + {file = "debugpy-1.8.12-cp310-cp310-win_amd64.whl", hash = "sha256:9649eced17a98ce816756ce50433b2dd85dfa7bc92ceb60579d68c053f98dff9"}, + {file = "debugpy-1.8.12-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:36f4829839ef0afdfdd208bb54f4c3d0eea86106d719811681a8627ae2e53dd5"}, + {file = "debugpy-1.8.12-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a28ed481d530e3138553be60991d2d61103ce6da254e51547b79549675f539b7"}, + {file = "debugpy-1.8.12-cp311-cp311-win32.whl", hash = "sha256:4ad9a94d8f5c9b954e0e3b137cc64ef3f579d0df3c3698fe9c3734ee397e4abb"}, + {file = "debugpy-1.8.12-cp311-cp311-win_amd64.whl", hash = "sha256:4703575b78dd697b294f8c65588dc86874ed787b7348c65da70cfc885efdf1e1"}, + {file = "debugpy-1.8.12-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:7e94b643b19e8feb5215fa508aee531387494bf668b2eca27fa769ea11d9f498"}, + {file = "debugpy-1.8.12-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:086b32e233e89a2740c1615c2f775c34ae951508b28b308681dbbb87bba97d06"}, + {file = "debugpy-1.8.12-cp312-cp312-win32.whl", hash = "sha256:2ae5df899732a6051b49ea2632a9ea67f929604fd2b036613a9f12bc3163b92d"}, + {file = "debugpy-1.8.12-cp312-cp312-win_amd64.whl", hash = "sha256:39dfbb6fa09f12fae32639e3286112fc35ae976114f1f3d37375f3130a820969"}, + {file = "debugpy-1.8.12-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:696d8ae4dff4cbd06bf6b10d671e088b66669f110c7c4e18a44c43cf75ce966f"}, + {file = "debugpy-1.8.12-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:898fba72b81a654e74412a67c7e0a81e89723cfe2a3ea6fcd3feaa3395138ca9"}, + {file = "debugpy-1.8.12-cp313-cp313-win32.whl", hash = "sha256:22a11c493c70413a01ed03f01c3c3a2fc4478fc6ee186e340487b2edcd6f4180"}, + {file = "debugpy-1.8.12-cp313-cp313-win_amd64.whl", hash = "sha256:fdb3c6d342825ea10b90e43d7f20f01535a72b3a1997850c0c3cefa5c27a4a2c"}, + {file = "debugpy-1.8.12-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:b0232cd42506d0c94f9328aaf0d1d0785f90f87ae72d9759df7e5051be039738"}, + {file = "debugpy-1.8.12-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9af40506a59450f1315168d47a970db1a65aaab5df3833ac389d2899a5d63b3f"}, + {file = "debugpy-1.8.12-cp38-cp38-win32.whl", hash = "sha256:5cc45235fefac57f52680902b7d197fb2f3650112379a6fa9aa1b1c1d3ed3f02"}, + {file = "debugpy-1.8.12-cp38-cp38-win_amd64.whl", hash = "sha256:557cc55b51ab2f3371e238804ffc8510b6ef087673303890f57a24195d096e61"}, + {file = "debugpy-1.8.12-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:b5c6c967d02fee30e157ab5227706f965d5c37679c687b1e7bbc5d9e7128bd41"}, + {file = "debugpy-1.8.12-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a77f422f31f170c4b7e9ca58eae2a6c8e04da54121900651dfa8e66c29901a"}, + {file = "debugpy-1.8.12-cp39-cp39-win32.whl", hash = "sha256:a4042edef80364239f5b7b5764e55fd3ffd40c32cf6753da9bda4ff0ac466018"}, + {file = "debugpy-1.8.12-cp39-cp39-win_amd64.whl", hash = "sha256:f30b03b0f27608a0b26c75f0bb8a880c752c0e0b01090551b9d87c7d783e2069"}, + {file = "debugpy-1.8.12-py2.py3-none-any.whl", hash = "sha256:274b6a2040349b5c9864e475284bce5bb062e63dce368a394b8cc865ae3b00c6"}, + {file = "debugpy-1.8.12.tar.gz", hash = "sha256:646530b04f45c830ceae8e491ca1c9320a2d2f0efea3141487c82130aba70dce"}, ] [[package]] @@ -648,13 +694,13 @@ test = ["pytest (>=6)"] [[package]] name = "executing" -version = "2.0.1" +version = "2.2.0" description = "Get the currently executing AST node of a frame, and other information" optional = false -python-versions = ">=3.5" +python-versions = ">=3.8" files = [ - {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, - {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, + {file = "executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa"}, + {file = "executing-2.2.0.tar.gz", hash = "sha256:5d108c028108fe2551d1a7b2e8b713341e2cb4fc0aa7dcf966fa4327a5226755"}, ] [package.extras] @@ -662,13 +708,13 @@ tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipyth [[package]] name = "fastjsonschema" -version = "2.20.0" +version = "2.21.1" description = "Fastest Python implementation of JSON schema" optional = false python-versions = "*" files = [ - {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, - {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, + {file = "fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667"}, + {file = "fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4"}, ] [package.extras] @@ -676,13 +722,13 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc [[package]] name = "flake8" -version = "7.1.0" +version = "7.1.1" description = "the modular source code checker: pep8 pyflakes and co" optional = false python-versions = ">=3.8.1" files = [ - {file = "flake8-7.1.0-py2.py3-none-any.whl", hash = "sha256:2e416edcc62471a64cea09353f4e7bdba32aeb079b6e360554c659a122b1bc6a"}, - {file = "flake8-7.1.0.tar.gz", hash = "sha256:48a07b626b55236e0fb4784ee69a465fbf59d79eec1f5b4785c3d3bc57d17aa5"}, + {file = "flake8-7.1.1-py2.py3-none-any.whl", hash = "sha256:597477df7860daa5aa0fdd84bf5208a043ab96b8e96ab708770ae0364dd03213"}, + {file = "flake8-7.1.1.tar.gz", hash = "sha256:049d058491e228e03e67b390f311bbf88fce2dbaa8fa673e7aea87b7198b8d38"}, ] [package.dependencies] @@ -692,17 +738,17 @@ pyflakes = ">=3.2.0,<3.3.0" [[package]] name = "flake8-bugbear" -version = "24.4.26" +version = "24.12.12" description = "A plugin for flake8 finding likely bugs and design problems in your program. Contains warnings that don't belong in pyflakes and pycodestyle." optional = false python-versions = ">=3.8.1" files = [ - {file = "flake8_bugbear-24.4.26-py3-none-any.whl", hash = "sha256:cb430dd86bc821d79ccc0b030789a9c87a47a369667f12ba06e80f11305e8258"}, - {file = "flake8_bugbear-24.4.26.tar.gz", hash = "sha256:ff8d4ba5719019ebf98e754624c30c05cef0dadcf18a65d91c7567300e52a130"}, + {file = "flake8_bugbear-24.12.12-py3-none-any.whl", hash = "sha256:1b6967436f65ca22a42e5373aaa6f2d87966ade9aa38d4baf2a1be550767545e"}, + {file = "flake8_bugbear-24.12.12.tar.gz", hash = "sha256:46273cef0a6b6ff48ca2d69e472f41420a42a46e24b2a8972e4f0d6733d12a64"}, ] [package.dependencies] -attrs = ">=19.2.0" +attrs = ">=22.2.0" flake8 = ">=6.0.0" [package.extras] @@ -710,53 +756,61 @@ dev = ["coverage", "hypothesis", "hypothesmith (>=0.2)", "pre-commit", "pytest", [[package]] name = "fonttools" -version = "4.53.1" +version = "4.56.0" description = "Tools to manipulate font files" optional = false python-versions = ">=3.8" files = [ - {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, - {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, - {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, - {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, - {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, - {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, - {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, - {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, - {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, - {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, - {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, - {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, - {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, - {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, - {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, - {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, - {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, - {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, - {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, - {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, - {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, - {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, - {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, - {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, - {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, - {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, - {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, - {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, - {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, - {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, - {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, - {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, - {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, - {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, - {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, - {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, - {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, - {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, - {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, - {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, - {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, - {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, + {file = "fonttools-4.56.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:331954d002dbf5e704c7f3756028e21db07097c19722569983ba4d74df014000"}, + {file = "fonttools-4.56.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d1613abd5af2f93c05867b3a3759a56e8bf97eb79b1da76b2bc10892f96ff16"}, + {file = "fonttools-4.56.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:705837eae384fe21cee5e5746fd4f4b2f06f87544fa60f60740007e0aa600311"}, + {file = "fonttools-4.56.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc871904a53a9d4d908673c6faa15689874af1c7c5ac403a8e12d967ebd0c0dc"}, + {file = "fonttools-4.56.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:38b947de71748bab150259ee05a775e8a0635891568e9fdb3cdd7d0e0004e62f"}, + {file = "fonttools-4.56.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:86b2a1013ef7a64d2e94606632683f07712045ed86d937c11ef4dde97319c086"}, + {file = "fonttools-4.56.0-cp310-cp310-win32.whl", hash = "sha256:133bedb9a5c6376ad43e6518b7e2cd2f866a05b1998f14842631d5feb36b5786"}, + {file = "fonttools-4.56.0-cp310-cp310-win_amd64.whl", hash = "sha256:17f39313b649037f6c800209984a11fc256a6137cbe5487091c6c7187cae4685"}, + {file = "fonttools-4.56.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:7ef04bc7827adb7532be3d14462390dd71287644516af3f1e67f1e6ff9c6d6df"}, + {file = "fonttools-4.56.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ffda9b8cd9cb8b301cae2602ec62375b59e2e2108a117746f12215145e3f786c"}, + {file = "fonttools-4.56.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e993e8db36306cc3f1734edc8ea67906c55f98683d6fd34c3fc5593fdbba4c"}, + {file = "fonttools-4.56.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:003548eadd674175510773f73fb2060bb46adb77c94854af3e0cc5bc70260049"}, + {file = "fonttools-4.56.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:bd9825822e7bb243f285013e653f6741954d8147427aaa0324a862cdbf4cbf62"}, + {file = "fonttools-4.56.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b23d30a2c0b992fb1c4f8ac9bfde44b5586d23457759b6cf9a787f1a35179ee0"}, + {file = "fonttools-4.56.0-cp311-cp311-win32.whl", hash = "sha256:47b5e4680002ae1756d3ae3b6114e20aaee6cc5c69d1e5911f5ffffd3ee46c6b"}, + {file = "fonttools-4.56.0-cp311-cp311-win_amd64.whl", hash = "sha256:14a3e3e6b211660db54ca1ef7006401e4a694e53ffd4553ab9bc87ead01d0f05"}, + {file = "fonttools-4.56.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6f195c14c01bd057bc9b4f70756b510e009c83c5ea67b25ced3e2c38e6ee6e9"}, + {file = "fonttools-4.56.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fa760e5fe8b50cbc2d71884a1eff2ed2b95a005f02dda2fa431560db0ddd927f"}, + {file = "fonttools-4.56.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d54a45d30251f1d729e69e5b675f9a08b7da413391a1227781e2a297fa37f6d2"}, + {file = "fonttools-4.56.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:661a8995d11e6e4914a44ca7d52d1286e2d9b154f685a4d1f69add8418961563"}, + {file = "fonttools-4.56.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9d94449ad0a5f2a8bf5d2f8d71d65088aee48adbe45f3c5f8e00e3ad861ed81a"}, + {file = "fonttools-4.56.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f59746f7953f69cc3290ce2f971ab01056e55ddd0fb8b792c31a8acd7fee2d28"}, + {file = "fonttools-4.56.0-cp312-cp312-win32.whl", hash = "sha256:bce60f9a977c9d3d51de475af3f3581d9b36952e1f8fc19a1f2254f1dda7ce9c"}, + {file = "fonttools-4.56.0-cp312-cp312-win_amd64.whl", hash = "sha256:300c310bb725b2bdb4f5fc7e148e190bd69f01925c7ab437b9c0ca3e1c7cd9ba"}, + {file = "fonttools-4.56.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:f20e2c0dfab82983a90f3d00703ac0960412036153e5023eed2b4641d7d5e692"}, + {file = "fonttools-4.56.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f36a0868f47b7566237640c026c65a86d09a3d9ca5df1cd039e30a1da73098a0"}, + {file = "fonttools-4.56.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:62b4c6802fa28e14dba010e75190e0e6228513573f1eeae57b11aa1a39b7e5b1"}, + {file = "fonttools-4.56.0-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a05d1f07eb0a7d755fbe01fee1fd255c3a4d3730130cf1bfefb682d18fd2fcea"}, + {file = "fonttools-4.56.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0073b62c3438cf0058488c002ea90489e8801d3a7af5ce5f7c05c105bee815c3"}, + {file = "fonttools-4.56.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e2cad98c94833465bcf28f51c248aaf07ca022efc6a3eba750ad9c1e0256d278"}, + {file = "fonttools-4.56.0-cp313-cp313-win32.whl", hash = "sha256:d0cb73ccf7f6d7ca8d0bc7ea8ac0a5b84969a41c56ac3ac3422a24df2680546f"}, + {file = "fonttools-4.56.0-cp313-cp313-win_amd64.whl", hash = "sha256:62cc1253827d1e500fde9dbe981219fea4eb000fd63402283472d38e7d8aa1c6"}, + {file = "fonttools-4.56.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3fd3fccb7b9adaaecfa79ad51b759f2123e1aba97f857936ce044d4f029abd71"}, + {file = "fonttools-4.56.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:193b86e9f769320bc98ffdb42accafb5d0c8c49bd62884f1c0702bc598b3f0a2"}, + {file = "fonttools-4.56.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6e81c1cc80c1d8bf071356cc3e0e25071fbba1c75afc48d41b26048980b3c771"}, + {file = "fonttools-4.56.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9270505a19361e81eecdbc2c251ad1e1a9a9c2ad75fa022ccdee533f55535dc"}, + {file = "fonttools-4.56.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:53f5e9767978a4daf46f28e09dbeb7d010319924ae622f7b56174b777258e5ba"}, + {file = "fonttools-4.56.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9da650cb29bc098b8cfd15ef09009c914b35c7986c8fa9f08b51108b7bc393b4"}, + {file = "fonttools-4.56.0-cp38-cp38-win32.whl", hash = "sha256:965d0209e6dbdb9416100123b6709cb13f5232e2d52d17ed37f9df0cc31e2b35"}, + {file = "fonttools-4.56.0-cp38-cp38-win_amd64.whl", hash = "sha256:654ac4583e2d7c62aebc6fc6a4c6736f078f50300e18aa105d87ce8925cfac31"}, + {file = "fonttools-4.56.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:ca7962e8e5fc047cc4e59389959843aafbf7445b6c08c20d883e60ced46370a5"}, + {file = "fonttools-4.56.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a1af375734018951c31c0737d04a9d5fd0a353a0253db5fbed2ccd44eac62d8c"}, + {file = "fonttools-4.56.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:442ad4122468d0e47d83bc59d0e91b474593a8c813839e1872e47c7a0cb53b10"}, + {file = "fonttools-4.56.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3cf4f8d2a30b454ac682e12c61831dcb174950c406011418e739de592bbf8f76"}, + {file = "fonttools-4.56.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:96a4271f63a615bcb902b9f56de00ea225d6896052c49f20d0c91e9f43529a29"}, + {file = "fonttools-4.56.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:6c1d38642ca2dddc7ae992ef5d026e5061a84f10ff2b906be5680ab089f55bb8"}, + {file = "fonttools-4.56.0-cp39-cp39-win32.whl", hash = "sha256:2d351275f73ebdd81dd5b09a8b8dac7a30f29a279d41e1c1192aedf1b6dced40"}, + {file = "fonttools-4.56.0-cp39-cp39-win_amd64.whl", hash = "sha256:d6ca96d1b61a707ba01a43318c9c40aaf11a5a568d1e61146fafa6ab20890793"}, + {file = "fonttools-4.56.0-py3-none-any.whl", hash = "sha256:1088182f68c303b50ca4dc0c82d42083d176cba37af1937e1a976a31149d4d14"}, + {file = "fonttools-4.56.0.tar.gz", hash = "sha256:a114d1567e1a1586b7e9e7fc2ff686ca542a82769a296cef131e4c4af51e58f4"}, ] [package.extras] @@ -792,15 +846,18 @@ dev = ["flake8", "markdown", "twine", "wheel"] [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -847,13 +904,13 @@ test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio [[package]] name = "ipython" -version = "8.26.0" +version = "8.32.0" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.26.0-py3-none-any.whl", hash = "sha256:e6b347c27bdf9c32ee9d31ae85defc525755a1869f14057e900675b9e8d6e6ff"}, - {file = "ipython-8.26.0.tar.gz", hash = "sha256:1cec0fbba8404af13facebe83d04436a7434c7400e59f47acf467c64abd0956c"}, + {file = "ipython-8.32.0-py3-none-any.whl", hash = "sha256:cae85b0c61eff1fc48b0a8002de5958b6528fa9c8defb1894da63f42613708aa"}, + {file = "ipython-8.32.0.tar.gz", hash = "sha256:be2c91895b0b9ea7ba49d33b23e2040c352b33eb6a519cca7ce6e0c743444251"}, ] [package.dependencies] @@ -863,16 +920,16 @@ exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} jedi = ">=0.16" matplotlib-inline = "*" pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} -prompt-toolkit = ">=3.0.41,<3.1.0" +prompt_toolkit = ">=3.0.41,<3.1.0" pygments = ">=2.4.0" -stack-data = "*" +stack_data = "*" traitlets = ">=5.13.0" -typing-extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} +typing_extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} [package.extras] all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] black = ["black"] -doc = ["docrepr", "exceptiongroup", "intersphinx-registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing-extensions"] +doc = ["docrepr", "exceptiongroup", "intersphinx_registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing_extensions"] kernel = ["ipykernel"] matplotlib = ["matplotlib"] nbconvert = ["nbconvert"] @@ -885,32 +942,32 @@ test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "num [[package]] name = "jedi" -version = "0.19.1" +version = "0.19.2" description = "An autocompletion tool for Python that can be used for text editors." optional = false python-versions = ">=3.6" files = [ - {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, - {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, ] [package.dependencies] -parso = ">=0.8.3,<0.9.0" +parso = ">=0.8.4,<0.9.0" [package.extras] docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] -testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] [[package]] name = "jinja2" -version = "3.1.4" +version = "3.1.5" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ - {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, - {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, + {file = "jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"}, + {file = "jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb"}, ] [package.dependencies] @@ -942,13 +999,13 @@ format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339- [[package]] name = "jsonschema-specifications" -version = "2023.12.1" +version = "2024.10.1" description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, - {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, + {file = "jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf"}, + {file = "jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272"}, ] [package.dependencies] @@ -956,13 +1013,13 @@ referencing = ">=0.31.0" [[package]] name = "jupyter-client" -version = "8.6.2" +version = "8.6.3" description = "Jupyter protocol implementation and client libraries" optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, - {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, ] [package.dependencies] @@ -1009,13 +1066,13 @@ files = [ [[package]] name = "jupytext" -version = "1.16.3" +version = "1.16.7" description = "Jupyter notebooks as Markdown documents, Julia, Python or R scripts" optional = false python-versions = ">=3.8" files = [ - {file = "jupytext-1.16.3-py3-none-any.whl", hash = "sha256:870e0d7a716dcb1303df6ad1cec65e3315a20daedd808a55cb3dae2d56e4ed20"}, - {file = "jupytext-1.16.3.tar.gz", hash = "sha256:1ebac990461dd9f477ff7feec9e3003fa1acc89f3c16ba01b73f79fd76f01a98"}, + {file = "jupytext-1.16.7-py3-none-any.whl", hash = "sha256:912f9d9af7bd3f15470105e5c5dddf1669b2d8c17f0c55772687fc5a4a73fe69"}, + {file = "jupytext-1.16.7.tar.gz", hash = "sha256:fc4e97f0890e22062c4ef10313c7ca960b07b3767246a1fef7585888cc2afe5d"}, ] [package.dependencies] @@ -1027,295 +1084,267 @@ pyyaml = "*" tomli = {version = "*", markers = "python_version < \"3.11\""} [package.extras] -dev = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-cov (>=2.6.1)", "pytest-randomly", "pytest-xdist", "sphinx-gallery (<0.8)"] +dev = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-cov (>=2.6.1)", "pytest-randomly", "pytest-xdist", "sphinx (<8)", "sphinx-gallery (<0.8)"] docs = ["myst-parser", "sphinx", "sphinx-copybutton", "sphinx-rtd-theme"] test = ["pytest", "pytest-randomly", "pytest-xdist"] test-cov = ["ipykernel", "jupyter-server (!=2.11)", "nbconvert", "pytest", "pytest-cov (>=2.6.1)", "pytest-randomly", "pytest-xdist"] -test-external = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-randomly", "pytest-xdist", "sphinx-gallery (<0.8)"] +test-external = ["autopep8", "black", "flake8", "gitpython", "ipykernel", "isort", "jupyter-fs (>=1.0)", "jupyter-server (!=2.11)", "nbconvert", "pre-commit", "pytest", "pytest-randomly", "pytest-xdist", "sphinx (<8)", "sphinx-gallery (<0.8)"] test-functional = ["pytest", "pytest-randomly", "pytest-xdist"] test-integration = ["ipykernel", "jupyter-server (!=2.11)", "nbconvert", "pytest", "pytest-randomly", "pytest-xdist"] test-ui = ["calysto-bash"] [[package]] name = "kiwisolver" -version = "1.4.5" +version = "1.4.8" description = "A fast implementation of the Cassowary constraint solver" optional = false -python-versions = ">=3.7" +python-versions = ">=3.10" files = [ - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, - {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, - {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, - {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, - {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, - {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, - {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, - {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, - {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, - {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, - {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, - {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, - {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, - {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, - {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, - {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, - {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, - {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, - {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, - {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, - {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, - {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, - {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, - {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b"}, + {file = "kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e"}, ] [[package]] name = "lxml" -version = "5.2.2" +version = "5.3.1" description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API." optional = false python-versions = ">=3.6" files = [ - {file = "lxml-5.2.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:364d03207f3e603922d0d3932ef363d55bbf48e3647395765f9bfcbdf6d23632"}, - {file = "lxml-5.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50127c186f191b8917ea2fb8b206fbebe87fd414a6084d15568c27d0a21d60db"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74e4f025ef3db1c6da4460dd27c118d8cd136d0391da4e387a15e48e5c975147"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:981a06a3076997adf7c743dcd0d7a0415582661e2517c7d961493572e909aa1d"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aef5474d913d3b05e613906ba4090433c515e13ea49c837aca18bde190853dff"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e275ea572389e41e8b039ac076a46cb87ee6b8542df3fff26f5baab43713bca"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5b65529bb2f21ac7861a0e94fdbf5dc0daab41497d18223b46ee8515e5ad297"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bcc98f911f10278d1daf14b87d65325851a1d29153caaf146877ec37031d5f36"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:b47633251727c8fe279f34025844b3b3a3e40cd1b198356d003aa146258d13a2"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:fbc9d316552f9ef7bba39f4edfad4a734d3d6f93341232a9dddadec4f15d425f"}, - {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:13e69be35391ce72712184f69000cda04fc89689429179bc4c0ae5f0b7a8c21b"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3b6a30a9ab040b3f545b697cb3adbf3696c05a3a68aad172e3fd7ca73ab3c835"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a233bb68625a85126ac9f1fc66d24337d6e8a0f9207b688eec2e7c880f012ec0"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:dfa7c241073d8f2b8e8dbc7803c434f57dbb83ae2a3d7892dd068d99e96efe2c"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1a7aca7964ac4bb07680d5c9d63b9d7028cace3e2d43175cb50bba8c5ad33316"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ae4073a60ab98529ab8a72ebf429f2a8cc612619a8c04e08bed27450d52103c0"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ffb2be176fed4457e445fe540617f0252a72a8bc56208fd65a690fdb1f57660b"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e290d79a4107d7d794634ce3e985b9ae4f920380a813717adf61804904dc4393"}, - {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:96e85aa09274955bb6bd483eaf5b12abadade01010478154b0ec70284c1b1526"}, - {file = "lxml-5.2.2-cp310-cp310-win32.whl", hash = "sha256:f956196ef61369f1685d14dad80611488d8dc1ef00be57c0c5a03064005b0f30"}, - {file = "lxml-5.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:875a3f90d7eb5c5d77e529080d95140eacb3c6d13ad5b616ee8095447b1d22e7"}, - {file = "lxml-5.2.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:45f9494613160d0405682f9eee781c7e6d1bf45f819654eb249f8f46a2c22545"}, - {file = "lxml-5.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b0b3f2df149efb242cee2ffdeb6674b7f30d23c9a7af26595099afaf46ef4e88"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d28cb356f119a437cc58a13f8135ab8a4c8ece18159eb9194b0d269ec4e28083"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:657a972f46bbefdbba2d4f14413c0d079f9ae243bd68193cb5061b9732fa54c1"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b9ea10063efb77a965a8d5f4182806fbf59ed068b3c3fd6f30d2ac7bee734"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:07542787f86112d46d07d4f3c4e7c760282011b354d012dc4141cc12a68cef5f"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:303f540ad2dddd35b92415b74b900c749ec2010e703ab3bfd6660979d01fd4ed"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2eb2227ce1ff998faf0cd7fe85bbf086aa41dfc5af3b1d80867ecfe75fb68df3"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:1d8a701774dfc42a2f0b8ccdfe7dbc140500d1049e0632a611985d943fcf12df"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:56793b7a1a091a7c286b5f4aa1fe4ae5d1446fe742d00cdf2ffb1077865db10d"}, - {file = "lxml-5.2.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:eb00b549b13bd6d884c863554566095bf6fa9c3cecb2e7b399c4bc7904cb33b5"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1a2569a1f15ae6c8c64108a2cd2b4a858fc1e13d25846be0666fc144715e32ab"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:8cf85a6e40ff1f37fe0f25719aadf443686b1ac7652593dc53c7ef9b8492b115"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:d237ba6664b8e60fd90b8549a149a74fcc675272e0e95539a00522e4ca688b04"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0b3f5016e00ae7630a4b83d0868fca1e3d494c78a75b1c7252606a3a1c5fc2ad"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23441e2b5339bc54dc949e9e675fa35efe858108404ef9aa92f0456929ef6fe8"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:2fb0ba3e8566548d6c8e7dd82a8229ff47bd8fb8c2da237607ac8e5a1b8312e5"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:79d1fb9252e7e2cfe4de6e9a6610c7cbb99b9708e2c3e29057f487de5a9eaefa"}, - {file = "lxml-5.2.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6dcc3d17eac1df7859ae01202e9bb11ffa8c98949dcbeb1069c8b9a75917e01b"}, - {file = "lxml-5.2.2-cp311-cp311-win32.whl", hash = "sha256:4c30a2f83677876465f44c018830f608fa3c6a8a466eb223535035fbc16f3438"}, - {file = "lxml-5.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:49095a38eb333aaf44c06052fd2ec3b8f23e19747ca7ec6f6c954ffea6dbf7be"}, - {file = "lxml-5.2.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7429e7faa1a60cad26ae4227f4dd0459efde239e494c7312624ce228e04f6391"}, - {file = "lxml-5.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:50ccb5d355961c0f12f6cf24b7187dbabd5433f29e15147a67995474f27d1776"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc911208b18842a3a57266d8e51fc3cfaccee90a5351b92079beed912a7914c2"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33ce9e786753743159799fdf8e92a5da351158c4bfb6f2db0bf31e7892a1feb5"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec87c44f619380878bd49ca109669c9f221d9ae6883a5bcb3616785fa8f94c97"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08ea0f606808354eb8f2dfaac095963cb25d9d28e27edcc375d7b30ab01abbf6"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75a9632f1d4f698b2e6e2e1ada40e71f369b15d69baddb8968dcc8e683839b18"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74da9f97daec6928567b48c90ea2c82a106b2d500f397eeb8941e47d30b1ca85"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:0969e92af09c5687d769731e3f39ed62427cc72176cebb54b7a9d52cc4fa3b73"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:9164361769b6ca7769079f4d426a41df6164879f7f3568be9086e15baca61466"}, - {file = "lxml-5.2.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d26a618ae1766279f2660aca0081b2220aca6bd1aa06b2cf73f07383faf48927"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab67ed772c584b7ef2379797bf14b82df9aa5f7438c5b9a09624dd834c1c1aaf"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:3d1e35572a56941b32c239774d7e9ad724074d37f90c7a7d499ab98761bd80cf"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:8268cbcd48c5375f46e000adb1390572c98879eb4f77910c6053d25cc3ac2c67"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e282aedd63c639c07c3857097fc0e236f984ceb4089a8b284da1c526491e3f3d"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfdc2bfe69e9adf0df4915949c22a25b39d175d599bf98e7ddf620a13678585"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4aefd911793b5d2d7a921233a54c90329bf3d4a6817dc465f12ffdfe4fc7b8fe"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:8b8df03a9e995b6211dafa63b32f9d405881518ff1ddd775db4e7b98fb545e1c"}, - {file = "lxml-5.2.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f11ae142f3a322d44513de1018b50f474f8f736bc3cd91d969f464b5bfef8836"}, - {file = "lxml-5.2.2-cp312-cp312-win32.whl", hash = "sha256:16a8326e51fcdffc886294c1e70b11ddccec836516a343f9ed0f82aac043c24a"}, - {file = "lxml-5.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:bbc4b80af581e18568ff07f6395c02114d05f4865c2812a1f02f2eaecf0bfd48"}, - {file = "lxml-5.2.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e3d9d13603410b72787579769469af730c38f2f25505573a5888a94b62b920f8"}, - {file = "lxml-5.2.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38b67afb0a06b8575948641c1d6d68e41b83a3abeae2ca9eed2ac59892b36706"}, - {file = "lxml-5.2.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c689d0d5381f56de7bd6966a4541bff6e08bf8d3871bbd89a0c6ab18aa699573"}, - {file = "lxml-5.2.2-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:cf2a978c795b54c539f47964ec05e35c05bd045db5ca1e8366988c7f2fe6b3ce"}, - {file = "lxml-5.2.2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:739e36ef7412b2bd940f75b278749106e6d025e40027c0b94a17ef7968d55d56"}, - {file = "lxml-5.2.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:d8bbcd21769594dbba9c37d3c819e2d5847656ca99c747ddb31ac1701d0c0ed9"}, - {file = "lxml-5.2.2-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:2304d3c93f2258ccf2cf7a6ba8c761d76ef84948d87bf9664e14d203da2cd264"}, - {file = "lxml-5.2.2-cp36-cp36m-win32.whl", hash = "sha256:02437fb7308386867c8b7b0e5bc4cd4b04548b1c5d089ffb8e7b31009b961dc3"}, - {file = "lxml-5.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:edcfa83e03370032a489430215c1e7783128808fd3e2e0a3225deee278585196"}, - {file = "lxml-5.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:28bf95177400066596cdbcfc933312493799382879da504633d16cf60bba735b"}, - {file = "lxml-5.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a745cc98d504d5bd2c19b10c79c61c7c3df9222629f1b6210c0368177589fb8"}, - {file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b590b39ef90c6b22ec0be925b211298e810b4856909c8ca60d27ffbca6c12e6"}, - {file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b336b0416828022bfd5a2e3083e7f5ba54b96242159f83c7e3eebaec752f1716"}, - {file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:c2faf60c583af0d135e853c86ac2735ce178f0e338a3c7f9ae8f622fd2eb788c"}, - {file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:4bc6cb140a7a0ad1f7bc37e018d0ed690b7b6520ade518285dc3171f7a117905"}, - {file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7ff762670cada8e05b32bf1e4dc50b140790909caa8303cfddc4d702b71ea184"}, - {file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:57f0a0bbc9868e10ebe874e9f129d2917750adf008fe7b9c1598c0fbbfdde6a6"}, - {file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:a6d2092797b388342c1bc932077ad232f914351932353e2e8706851c870bca1f"}, - {file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:60499fe961b21264e17a471ec296dcbf4365fbea611bf9e303ab69db7159ce61"}, - {file = "lxml-5.2.2-cp37-cp37m-win32.whl", hash = "sha256:d9b342c76003c6b9336a80efcc766748a333573abf9350f4094ee46b006ec18f"}, - {file = "lxml-5.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b16db2770517b8799c79aa80f4053cd6f8b716f21f8aca962725a9565ce3ee40"}, - {file = "lxml-5.2.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7ed07b3062b055d7a7f9d6557a251cc655eed0b3152b76de619516621c56f5d3"}, - {file = "lxml-5.2.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f60fdd125d85bf9c279ffb8e94c78c51b3b6a37711464e1f5f31078b45002421"}, - {file = "lxml-5.2.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a7e24cb69ee5f32e003f50e016d5fde438010c1022c96738b04fc2423e61706"}, - {file = "lxml-5.2.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23cfafd56887eaed93d07bc4547abd5e09d837a002b791e9767765492a75883f"}, - {file = "lxml-5.2.2-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19b4e485cd07b7d83e3fe3b72132e7df70bfac22b14fe4bf7a23822c3a35bff5"}, - {file = "lxml-5.2.2-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7ce7ad8abebe737ad6143d9d3bf94b88b93365ea30a5b81f6877ec9c0dee0a48"}, - {file = "lxml-5.2.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e49b052b768bb74f58c7dda4e0bdf7b79d43a9204ca584ffe1fb48a6f3c84c66"}, - {file = "lxml-5.2.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d14a0d029a4e176795cef99c056d58067c06195e0c7e2dbb293bf95c08f772a3"}, - {file = "lxml-5.2.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:be49ad33819d7dcc28a309b86d4ed98e1a65f3075c6acd3cd4fe32103235222b"}, - {file = "lxml-5.2.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:a6d17e0370d2516d5bb9062c7b4cb731cff921fc875644c3d751ad857ba9c5b1"}, - {file = "lxml-5.2.2-cp38-cp38-win32.whl", hash = "sha256:5b8c041b6265e08eac8a724b74b655404070b636a8dd6d7a13c3adc07882ef30"}, - {file = "lxml-5.2.2-cp38-cp38-win_amd64.whl", hash = "sha256:f61efaf4bed1cc0860e567d2ecb2363974d414f7f1f124b1df368bbf183453a6"}, - {file = "lxml-5.2.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:fb91819461b1b56d06fa4bcf86617fac795f6a99d12239fb0c68dbeba41a0a30"}, - {file = "lxml-5.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d4ed0c7cbecde7194cd3228c044e86bf73e30a23505af852857c09c24e77ec5d"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54401c77a63cc7d6dc4b4e173bb484f28a5607f3df71484709fe037c92d4f0ed"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:625e3ef310e7fa3a761d48ca7ea1f9d8718a32b1542e727d584d82f4453d5eeb"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:519895c99c815a1a24a926d5b60627ce5ea48e9f639a5cd328bda0515ea0f10c"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c7079d5eb1c1315a858bbf180000757db8ad904a89476653232db835c3114001"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:343ab62e9ca78094f2306aefed67dcfad61c4683f87eee48ff2fd74902447726"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:cd9e78285da6c9ba2d5c769628f43ef66d96ac3085e59b10ad4f3707980710d3"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_ppc64le.whl", hash = "sha256:546cf886f6242dff9ec206331209db9c8e1643ae642dea5fdbecae2453cb50fd"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_s390x.whl", hash = "sha256:02f6a8eb6512fdc2fd4ca10a49c341c4e109aa6e9448cc4859af5b949622715a"}, - {file = "lxml-5.2.2-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:339ee4a4704bc724757cd5dd9dc8cf4d00980f5d3e6e06d5847c1b594ace68ab"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0a028b61a2e357ace98b1615fc03f76eb517cc028993964fe08ad514b1e8892d"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f90e552ecbad426eab352e7b2933091f2be77115bb16f09f78404861c8322981"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:d83e2d94b69bf31ead2fa45f0acdef0757fa0458a129734f59f67f3d2eb7ef32"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a02d3c48f9bb1e10c7788d92c0c7db6f2002d024ab6e74d6f45ae33e3d0288a3"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6d68ce8e7b2075390e8ac1e1d3a99e8b6372c694bbe612632606d1d546794207"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:453d037e09a5176d92ec0fd282e934ed26d806331a8b70ab431a81e2fbabf56d"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:3b019d4ee84b683342af793b56bb35034bd749e4cbdd3d33f7d1107790f8c472"}, - {file = "lxml-5.2.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:cb3942960f0beb9f46e2a71a3aca220d1ca32feb5a398656be934320804c0df9"}, - {file = "lxml-5.2.2-cp39-cp39-win32.whl", hash = "sha256:ac6540c9fff6e3813d29d0403ee7a81897f1d8ecc09a8ff84d2eea70ede1cdbf"}, - {file = "lxml-5.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:610b5c77428a50269f38a534057444c249976433f40f53e3b47e68349cca1425"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:b537bd04d7ccd7c6350cdaaaad911f6312cbd61e6e6045542f781c7f8b2e99d2"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4820c02195d6dfb7b8508ff276752f6b2ff8b64ae5d13ebe02e7667e035000b9"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a09f6184f17a80897172863a655467da2b11151ec98ba8d7af89f17bf63dae"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:76acba4c66c47d27c8365e7c10b3d8016a7da83d3191d053a58382311a8bf4e1"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b128092c927eaf485928cec0c28f6b8bead277e28acf56800e972aa2c2abd7a2"}, - {file = "lxml-5.2.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ae791f6bd43305aade8c0e22f816b34f3b72b6c820477aab4d18473a37e8090b"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a2f6a1bc2460e643785a2cde17293bd7a8f990884b822f7bca47bee0a82fc66b"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e8d351ff44c1638cb6e980623d517abd9f580d2e53bfcd18d8941c052a5a009"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bec4bd9133420c5c52d562469c754f27c5c9e36ee06abc169612c959bd7dbb07"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:55ce6b6d803890bd3cc89975fca9de1dff39729b43b73cb15ddd933b8bc20484"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8ab6a358d1286498d80fe67bd3d69fcbc7d1359b45b41e74c4a26964ca99c3f8"}, - {file = "lxml-5.2.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:06668e39e1f3c065349c51ac27ae430719d7806c026fec462e5693b08b95696b"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9cd5323344d8ebb9fb5e96da5de5ad4ebab993bbf51674259dbe9d7a18049525"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89feb82ca055af0fe797a2323ec9043b26bc371365847dbe83c7fd2e2f181c34"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e481bba1e11ba585fb06db666bfc23dbe181dbafc7b25776156120bf12e0d5a6"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d6c6ea6a11ca0ff9cd0390b885984ed31157c168565702959c25e2191674a14"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3d98de734abee23e61f6b8c2e08a88453ada7d6486dc7cdc82922a03968928db"}, - {file = "lxml-5.2.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:69ab77a1373f1e7563e0fb5a29a8440367dec051da6c7405333699d07444f511"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e17913c431f5ae01d8658dbf792fdc457073dcdfbb31dc0cc6ab256e664a8d"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05f8757b03208c3f50097761be2dea0aba02e94f0dc7023ed73a7bb14ff11eb0"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a520b4f9974b0a0a6ed73c2154de57cdfd0c8800f4f15ab2b73238ffed0b36e"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5e097646944b66207023bc3c634827de858aebc226d5d4d6d16f0b77566ea182"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b5e4ef22ff25bfd4ede5f8fb30f7b24446345f3e79d9b7455aef2836437bc38a"}, - {file = "lxml-5.2.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ff69a9a0b4b17d78170c73abe2ab12084bdf1691550c5629ad1fe7849433f324"}, - {file = "lxml-5.2.2.tar.gz", hash = "sha256:bb2dc4898180bea79863d5487e5f9c7c34297414bad54bcd0f0852aee9cfdb87"}, + {file = "lxml-5.3.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a4058f16cee694577f7e4dd410263cd0ef75644b43802a689c2b3c2a7e69453b"}, + {file = "lxml-5.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:364de8f57d6eda0c16dcfb999af902da31396949efa0e583e12675d09709881b"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:528f3a0498a8edc69af0559bdcf8a9f5a8bf7c00051a6ef3141fdcf27017bbf5"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db4743e30d6f5f92b6d2b7c86b3ad250e0bad8dee4b7ad8a0c44bfb276af89a3"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:17b5d7f8acf809465086d498d62a981fa6a56d2718135bb0e4aa48c502055f5c"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:928e75a7200a4c09e6efc7482a1337919cc61fe1ba289f297827a5b76d8969c2"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a997b784a639e05b9d4053ef3b20c7e447ea80814a762f25b8ed5a89d261eac"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:7b82e67c5feb682dbb559c3e6b78355f234943053af61606af126df2183b9ef9"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:f1de541a9893cf8a1b1db9bf0bf670a2decab42e3e82233d36a74eda7822b4c9"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:de1fc314c3ad6bc2f6bd5b5a5b9357b8c6896333d27fdbb7049aea8bd5af2d79"}, + {file = "lxml-5.3.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:7c0536bd9178f754b277a3e53f90f9c9454a3bd108b1531ffff720e082d824f2"}, + {file = "lxml-5.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:68018c4c67d7e89951a91fbd371e2e34cd8cfc71f0bb43b5332db38497025d51"}, + {file = "lxml-5.3.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:aa826340a609d0c954ba52fd831f0fba2a4165659ab0ee1a15e4aac21f302406"}, + {file = "lxml-5.3.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:796520afa499732191e39fc95b56a3b07f95256f2d22b1c26e217fb69a9db5b5"}, + {file = "lxml-5.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3effe081b3135237da6e4c4530ff2a868d3f80be0bda027e118a5971285d42d0"}, + {file = "lxml-5.3.1-cp310-cp310-win32.whl", hash = "sha256:a22f66270bd6d0804b02cd49dae2b33d4341015545d17f8426f2c4e22f557a23"}, + {file = "lxml-5.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:0bcfadea3cdc68e678d2b20cb16a16716887dd00a881e16f7d806c2138b8ff0c"}, + {file = "lxml-5.3.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e220f7b3e8656ab063d2eb0cd536fafef396829cafe04cb314e734f87649058f"}, + {file = "lxml-5.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f2cfae0688fd01f7056a17367e3b84f37c545fb447d7282cf2c242b16262607"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:67d2f8ad9dcc3a9e826bdc7802ed541a44e124c29b7d95a679eeb58c1c14ade8"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db0c742aad702fd5d0c6611a73f9602f20aec2007c102630c06d7633d9c8f09a"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:198bb4b4dd888e8390afa4f170d4fa28467a7eaf857f1952589f16cfbb67af27"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d2a3e412ce1849be34b45922bfef03df32d1410a06d1cdeb793a343c2f1fd666"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b8969dbc8d09d9cd2ae06362c3bad27d03f433252601ef658a49bd9f2b22d79"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5be8f5e4044146a69c96077c7e08f0709c13a314aa5315981185c1f00235fe65"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:133f3493253a00db2c870d3740bc458ebb7d937bd0a6a4f9328373e0db305709"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:52d82b0d436edd6a1d22d94a344b9a58abd6c68c357ed44f22d4ba8179b37629"}, + {file = "lxml-5.3.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b6f92e35e2658a5ed51c6634ceb5ddae32053182851d8cad2a5bc102a359b33"}, + {file = "lxml-5.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:203b1d3eaebd34277be06a3eb880050f18a4e4d60861efba4fb946e31071a295"}, + {file = "lxml-5.3.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:155e1a5693cf4b55af652f5c0f78ef36596c7f680ff3ec6eb4d7d85367259b2c"}, + {file = "lxml-5.3.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:22ec2b3c191f43ed21f9545e9df94c37c6b49a5af0a874008ddc9132d49a2d9c"}, + {file = "lxml-5.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7eda194dd46e40ec745bf76795a7cccb02a6a41f445ad49d3cf66518b0bd9cff"}, + {file = "lxml-5.3.1-cp311-cp311-win32.whl", hash = "sha256:fb7c61d4be18e930f75948705e9718618862e6fc2ed0d7159b2262be73f167a2"}, + {file = "lxml-5.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:c809eef167bf4a57af4b03007004896f5c60bd38dc3852fcd97a26eae3d4c9e6"}, + {file = "lxml-5.3.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e69add9b6b7b08c60d7ff0152c7c9a6c45b4a71a919be5abde6f98f1ea16421c"}, + {file = "lxml-5.3.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4e52e1b148867b01c05e21837586ee307a01e793b94072d7c7b91d2c2da02ffe"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a4b382e0e636ed54cd278791d93fe2c4f370772743f02bcbe431a160089025c9"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c2e49dc23a10a1296b04ca9db200c44d3eb32c8d8ec532e8c1fd24792276522a"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4399b4226c4785575fb20998dc571bc48125dc92c367ce2602d0d70e0c455eb0"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5412500e0dc5481b1ee9cf6b38bb3b473f6e411eb62b83dc9b62699c3b7b79f7"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c93ed3c998ea8472be98fb55aed65b5198740bfceaec07b2eba551e55b7b9ae"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:63d57fc94eb0bbb4735e45517afc21ef262991d8758a8f2f05dd6e4174944519"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:b450d7cabcd49aa7ab46a3c6aa3ac7e1593600a1a0605ba536ec0f1b99a04322"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:4df0ec814b50275ad6a99bc82a38b59f90e10e47714ac9871e1b223895825468"}, + {file = "lxml-5.3.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:d184f85ad2bb1f261eac55cddfcf62a70dee89982c978e92b9a74a1bfef2e367"}, + {file = "lxml-5.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b725e70d15906d24615201e650d5b0388b08a5187a55f119f25874d0103f90dd"}, + {file = "lxml-5.3.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a31fa7536ec1fb7155a0cd3a4e3d956c835ad0a43e3610ca32384d01f079ea1c"}, + {file = "lxml-5.3.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:3c3c8b55c7fc7b7e8877b9366568cc73d68b82da7fe33d8b98527b73857a225f"}, + {file = "lxml-5.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d61ec60945d694df806a9aec88e8f29a27293c6e424f8ff91c80416e3c617645"}, + {file = "lxml-5.3.1-cp312-cp312-win32.whl", hash = "sha256:f4eac0584cdc3285ef2e74eee1513a6001681fd9753b259e8159421ed28a72e5"}, + {file = "lxml-5.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:29bfc8d3d88e56ea0a27e7c4897b642706840247f59f4377d81be8f32aa0cfbf"}, + {file = "lxml-5.3.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c093c7088b40d8266f57ed71d93112bd64c6724d31f0794c1e52cc4857c28e0e"}, + {file = "lxml-5.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:b0884e3f22d87c30694e625b1e62e6f30d39782c806287450d9dc2fdf07692fd"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1637fa31ec682cd5760092adfabe86d9b718a75d43e65e211d5931809bc111e7"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a364e8e944d92dcbf33b6b494d4e0fb3499dcc3bd9485beb701aa4b4201fa414"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:779e851fd0e19795ccc8a9bb4d705d6baa0ef475329fe44a13cf1e962f18ff1e"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c4393600915c308e546dc7003d74371744234e8444a28622d76fe19b98fa59d1"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:673b9d8e780f455091200bba8534d5f4f465944cbdd61f31dc832d70e29064a5"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:2e4a570f6a99e96c457f7bec5ad459c9c420ee80b99eb04cbfcfe3fc18ec6423"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_28_ppc64le.whl", hash = "sha256:71f31eda4e370f46af42fc9f264fafa1b09f46ba07bdbee98f25689a04b81c20"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_28_s390x.whl", hash = "sha256:42978a68d3825eaac55399eb37a4d52012a205c0c6262199b8b44fcc6fd686e8"}, + {file = "lxml-5.3.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:8b1942b3e4ed9ed551ed3083a2e6e0772de1e5e3aca872d955e2e86385fb7ff9"}, + {file = "lxml-5.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:85c4f11be9cf08917ac2a5a8b6e1ef63b2f8e3799cec194417e76826e5f1de9c"}, + {file = "lxml-5.3.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:231cf4d140b22a923b1d0a0a4e0b4f972e5893efcdec188934cc65888fd0227b"}, + {file = "lxml-5.3.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:5865b270b420eda7b68928d70bb517ccbe045e53b1a428129bb44372bf3d7dd5"}, + {file = "lxml-5.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:dbf7bebc2275016cddf3c997bf8a0f7044160714c64a9b83975670a04e6d2252"}, + {file = "lxml-5.3.1-cp313-cp313-win32.whl", hash = "sha256:d0751528b97d2b19a388b302be2a0ee05817097bab46ff0ed76feeec24951f78"}, + {file = "lxml-5.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:91fb6a43d72b4f8863d21f347a9163eecbf36e76e2f51068d59cd004c506f332"}, + {file = "lxml-5.3.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:016b96c58e9a4528219bb563acf1aaaa8bc5452e7651004894a973f03b84ba81"}, + {file = "lxml-5.3.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82a4bb10b0beef1434fb23a09f001ab5ca87895596b4581fd53f1e5145a8934a"}, + {file = "lxml-5.3.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d68eeef7b4d08a25e51897dac29bcb62aba830e9ac6c4e3297ee7c6a0cf6439"}, + {file = "lxml-5.3.1-cp36-cp36m-manylinux_2_28_x86_64.whl", hash = "sha256:f12582b8d3b4c6be1d298c49cb7ae64a3a73efaf4c2ab4e37db182e3545815ac"}, + {file = "lxml-5.3.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2df7ed5edeb6bd5590914cd61df76eb6cce9d590ed04ec7c183cf5509f73530d"}, + {file = "lxml-5.3.1-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:585c4dc429deebc4307187d2b71ebe914843185ae16a4d582ee030e6cfbb4d8a"}, + {file = "lxml-5.3.1-cp36-cp36m-win32.whl", hash = "sha256:06a20d607a86fccab2fc15a77aa445f2bdef7b49ec0520a842c5c5afd8381576"}, + {file = "lxml-5.3.1-cp36-cp36m-win_amd64.whl", hash = "sha256:057e30d0012439bc54ca427a83d458752ccda725c1c161cc283db07bcad43cf9"}, + {file = "lxml-5.3.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:4867361c049761a56bd21de507cab2c2a608c55102311d142ade7dab67b34f32"}, + {file = "lxml-5.3.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dddf0fb832486cc1ea71d189cb92eb887826e8deebe128884e15020bb6e3f61"}, + {file = "lxml-5.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bcc211542f7af6f2dfb705f5f8b74e865592778e6cafdfd19c792c244ccce19"}, + {file = "lxml-5.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aaca5a812f050ab55426c32177091130b1e49329b3f002a32934cd0245571307"}, + {file = "lxml-5.3.1-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:236610b77589faf462337b3305a1be91756c8abc5a45ff7ca8f245a71c5dab70"}, + {file = "lxml-5.3.1-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:aed57b541b589fa05ac248f4cb1c46cbb432ab82cbd467d1c4f6a2bdc18aecf9"}, + {file = "lxml-5.3.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:75fa3d6946d317ffc7016a6fcc44f42db6d514b7fdb8b4b28cbe058303cb6e53"}, + {file = "lxml-5.3.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:96eef5b9f336f623ffc555ab47a775495e7e8846dde88de5f941e2906453a1ce"}, + {file = "lxml-5.3.1-cp37-cp37m-win32.whl", hash = "sha256:ef45f31aec9be01379fc6c10f1d9c677f032f2bac9383c827d44f620e8a88407"}, + {file = "lxml-5.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0611da6b07dd3720f492db1b463a4d1175b096b49438761cc9f35f0d9eaaef5"}, + {file = "lxml-5.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b2aca14c235c7a08558fe0a4786a1a05873a01e86b474dfa8f6df49101853a4e"}, + {file = "lxml-5.3.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae82fce1d964f065c32c9517309f0c7be588772352d2f40b1574a214bd6e6098"}, + {file = "lxml-5.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7aae7a3d63b935babfdc6864b31196afd5145878ddd22f5200729006366bc4d5"}, + {file = "lxml-5.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8e0d177b1fe251c3b1b914ab64135475c5273c8cfd2857964b2e3bb0fe196a7"}, + {file = "lxml-5.3.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:6c4dd3bfd0c82400060896717dd261137398edb7e524527438c54a8c34f736bf"}, + {file = "lxml-5.3.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f1208c1c67ec9e151d78aa3435aa9b08a488b53d9cfac9b699f15255a3461ef2"}, + {file = "lxml-5.3.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:c6aacf00d05b38a5069826e50ae72751cb5bc27bdc4d5746203988e429b385bb"}, + {file = "lxml-5.3.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5881aaa4bf3a2d086c5f20371d3a5856199a0d8ac72dd8d0dbd7a2ecfc26ab73"}, + {file = "lxml-5.3.1-cp38-cp38-win32.whl", hash = "sha256:45fbb70ccbc8683f2fb58bea89498a7274af1d9ec7995e9f4af5604e028233fc"}, + {file = "lxml-5.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:7512b4d0fc5339d5abbb14d1843f70499cab90d0b864f790e73f780f041615d7"}, + {file = "lxml-5.3.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5885bc586f1edb48e5d68e7a4b4757b5feb2a496b64f462b4d65950f5af3364f"}, + {file = "lxml-5.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1b92fe86e04f680b848fff594a908edfa72b31bfc3499ef7433790c11d4c8cd8"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a091026c3bf7519ab1e64655a3f52a59ad4a4e019a6f830c24d6430695b1cf6a"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8ffb141361108e864ab5f1813f66e4e1164181227f9b1f105b042729b6c15125"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3715cdf0dd31b836433af9ee9197af10e3df41d273c19bb249230043667a5dfd"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:88b72eb7222d918c967202024812c2bfb4048deeb69ca328363fb8e15254c549"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa59974880ab5ad8ef3afaa26f9bda148c5f39e06b11a8ada4660ecc9fb2feb3"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3bb8149840daf2c3f97cebf00e4ed4a65a0baff888bf2605a8d0135ff5cf764e"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_28_ppc64le.whl", hash = "sha256:0d6b2fa86becfa81f0a0271ccb9eb127ad45fb597733a77b92e8a35e53414914"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_28_s390x.whl", hash = "sha256:136bf638d92848a939fd8f0e06fcf92d9f2e4b57969d94faae27c55f3d85c05b"}, + {file = "lxml-5.3.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:89934f9f791566e54c1d92cdc8f8fd0009447a5ecdb1ec6b810d5f8c4955f6be"}, + {file = "lxml-5.3.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:a8ade0363f776f87f982572c2860cc43c65ace208db49c76df0a21dde4ddd16e"}, + {file = "lxml-5.3.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:bfbbab9316330cf81656fed435311386610f78b6c93cc5db4bebbce8dd146675"}, + {file = "lxml-5.3.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:172d65f7c72a35a6879217bcdb4bb11bc88d55fb4879e7569f55616062d387c2"}, + {file = "lxml-5.3.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e3c623923967f3e5961d272718655946e5322b8d058e094764180cdee7bab1af"}, + {file = "lxml-5.3.1-cp39-cp39-win32.whl", hash = "sha256:ce0930a963ff593e8bb6fda49a503911accc67dee7e5445eec972668e672a0f0"}, + {file = "lxml-5.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:f7b64fcd670bca8800bc10ced36620c6bbb321e7bc1214b9c0c0df269c1dddc2"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:afa578b6524ff85fb365f454cf61683771d0170470c48ad9d170c48075f86725"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67f5e80adf0aafc7b5454f2c1cb0cde920c9b1f2cbd0485f07cc1d0497c35c5d"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd0b80ac2d8f13ffc906123a6f20b459cb50a99222d0da492360512f3e50f84"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:422c179022ecdedbe58b0e242607198580804253da220e9454ffe848daa1cfd2"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:524ccfded8989a6595dbdda80d779fb977dbc9a7bc458864fc9a0c2fc15dc877"}, + {file = "lxml-5.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:48fd46bf7155def2e15287c6f2b133a2f78e2d22cdf55647269977b873c65499"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:05123fad495a429f123307ac6d8fd6f977b71e9a0b6d9aeeb8f80c017cb17131"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a243132767150a44e6a93cd1dde41010036e1cbc63cc3e9fe1712b277d926ce3"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c92ea6d9dd84a750b2bae72ff5e8cf5fdd13e58dda79c33e057862c29a8d5b50"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2f1be45d4c15f237209bbf123a0e05b5d630c8717c42f59f31ea9eae2ad89394"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:a83d3adea1e0ee36dac34627f78ddd7f093bb9cfc0a8e97f1572a949b695cb98"}, + {file = "lxml-5.3.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:3edbb9c9130bac05d8c3fe150c51c337a471cc7fdb6d2a0a7d3a88e88a829314"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2f23cf50eccb3255b6e913188291af0150d89dab44137a69e14e4dcb7be981f1"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df7e5edac4778127f2bf452e0721a58a1cfa4d1d9eac63bdd650535eb8543615"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:094b28ed8a8a072b9e9e2113a81fda668d2053f2ca9f2d202c2c8c7c2d6516b1"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:514fe78fc4b87e7a7601c92492210b20a1b0c6ab20e71e81307d9c2e377c64de"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8fffc08de02071c37865a155e5ea5fce0282e1546fd5bde7f6149fcaa32558ac"}, + {file = "lxml-5.3.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4b0d5cdba1b655d5b18042ac9c9ff50bda33568eb80feaaca4fc237b9c4fbfde"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3031e4c16b59424e8d78522c69b062d301d951dc55ad8685736c3335a97fc270"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb659702a45136c743bc130760c6f137870d4df3a9e14386478b8a0511abcfca"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a11b16a33656ffc43c92a5343a28dc71eefe460bcc2a4923a96f292692709f6"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c5ae125276f254b01daa73e2c103363d3e99e3e10505686ac7d9d2442dd4627a"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c76722b5ed4a31ba103e0dc77ab869222ec36efe1a614e42e9bcea88a36186fe"}, + {file = "lxml-5.3.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:33e06717c00c788ab4e79bc4726ecc50c54b9bfb55355eae21473c145d83c2d2"}, + {file = "lxml-5.3.1.tar.gz", hash = "sha256:106b7b5d2977b339f1e97efe2778e2ab20e99994cbb0ec5e55771ed0795920c8"}, ] [package.extras] cssselect = ["cssselect (>=0.7)"] -html-clean = ["lxml-html-clean"] +html-clean = ["lxml_html_clean"] html5 = ["html5lib"] htmlsoup = ["BeautifulSoup4"] -source = ["Cython (>=3.0.10)"] +source = ["Cython (>=3.0.11,<3.1.0)"] [[package]] name = "lxml-html-clean" -version = "0.1.1" +version = "0.4.1" description = "HTML cleaner from lxml project" optional = false python-versions = "*" files = [ - {file = "lxml_html_clean-0.1.1-py3-none-any.whl", hash = "sha256:58c04176593c9caf72ec92e033d2f38859e918b3eff0cc0f8051ad27dc2ab8ef"}, - {file = "lxml_html_clean-0.1.1.tar.gz", hash = "sha256:8a644ed01dbbe132fabddb9467f077f6dad12a1d4f3a6a553e280f3815fa46df"}, + {file = "lxml_html_clean-0.4.1-py3-none-any.whl", hash = "sha256:b704f2757e61d793b1c08bf5ad69e4c0b68d6696f4c3c1429982caf90050bcaf"}, + {file = "lxml_html_clean-0.4.1.tar.gz", hash = "sha256:40c838bbcf1fc72ba4ce811fbb3135913017b27820d7c16e8bc412ae1d8bc00b"}, ] [package.dependencies] @@ -1361,109 +1390,115 @@ testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] [[package]] name = "markupsafe" -version = "2.1.5" +version = "3.0.2" description = "Safely add untrusted strings to HTML/XML markup." optional = false -python-versions = ">=3.7" +python-versions = ">=3.9" files = [ - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, - {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, - {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, - {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, - {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, - {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, - {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, - {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win32.whl", hash = "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a"}, + {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, ] [[package]] name = "matplotlib" -version = "3.9.1" +version = "3.10.0" description = "Python plotting package" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "matplotlib-3.9.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:7ccd6270066feb9a9d8e0705aa027f1ff39f354c72a87efe8fa07632f30fc6bb"}, - {file = "matplotlib-3.9.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:591d3a88903a30a6d23b040c1e44d1afdd0d778758d07110eb7596f811f31842"}, - {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd2a59ff4b83d33bca3b5ec58203cc65985367812cb8c257f3e101632be86d92"}, - {file = "matplotlib-3.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fc001516ffcf1a221beb51198b194d9230199d6842c540108e4ce109ac05cc0"}, - {file = "matplotlib-3.9.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:83c6a792f1465d174c86d06f3ae85a8fe36e6f5964633ae8106312ec0921fdf5"}, - {file = "matplotlib-3.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:421851f4f57350bcf0811edd754a708d2275533e84f52f6760b740766c6747a7"}, - {file = "matplotlib-3.9.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b3fce58971b465e01b5c538f9d44915640c20ec5ff31346e963c9e1cd66fa812"}, - {file = "matplotlib-3.9.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a973c53ad0668c53e0ed76b27d2eeeae8799836fd0d0caaa4ecc66bf4e6676c0"}, - {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82cd5acf8f3ef43f7532c2f230249720f5dc5dd40ecafaf1c60ac8200d46d7eb"}, - {file = "matplotlib-3.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab38a4f3772523179b2f772103d8030215b318fef6360cb40558f585bf3d017f"}, - {file = "matplotlib-3.9.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2315837485ca6188a4b632c5199900e28d33b481eb083663f6a44cfc8987ded3"}, - {file = "matplotlib-3.9.1-cp311-cp311-win_amd64.whl", hash = "sha256:a0c977c5c382f6696caf0bd277ef4f936da7e2aa202ff66cad5f0ac1428ee15b"}, - {file = "matplotlib-3.9.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:565d572efea2b94f264dd86ef27919515aa6d629252a169b42ce5f570db7f37b"}, - {file = "matplotlib-3.9.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d397fd8ccc64af2ec0af1f0efc3bacd745ebfb9d507f3f552e8adb689ed730a"}, - {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26040c8f5121cd1ad712abffcd4b5222a8aec3a0fe40bc8542c94331deb8780d"}, - {file = "matplotlib-3.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d12cb1837cffaac087ad6b44399d5e22b78c729de3cdae4629e252067b705e2b"}, - {file = "matplotlib-3.9.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0e835c6988edc3d2d08794f73c323cc62483e13df0194719ecb0723b564e0b5c"}, - {file = "matplotlib-3.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:44a21d922f78ce40435cb35b43dd7d573cf2a30138d5c4b709d19f00e3907fd7"}, - {file = "matplotlib-3.9.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0c584210c755ae921283d21d01f03a49ef46d1afa184134dd0f95b0202ee6f03"}, - {file = "matplotlib-3.9.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:11fed08f34fa682c2b792942f8902e7aefeed400da71f9e5816bea40a7ce28fe"}, - {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0000354e32efcfd86bda75729716b92f5c2edd5b947200be9881f0a671565c33"}, - {file = "matplotlib-3.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db17fea0ae3aceb8e9ac69c7e3051bae0b3d083bfec932240f9bf5d0197a049"}, - {file = "matplotlib-3.9.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:208cbce658b72bf6a8e675058fbbf59f67814057ae78165d8a2f87c45b48d0ff"}, - {file = "matplotlib-3.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:dc23f48ab630474264276be156d0d7710ac6c5a09648ccdf49fef9200d8cbe80"}, - {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3fda72d4d472e2ccd1be0e9ccb6bf0d2eaf635e7f8f51d737ed7e465ac020cb3"}, - {file = "matplotlib-3.9.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:84b3ba8429935a444f1fdc80ed930babbe06725bcf09fbeb5c8757a2cd74af04"}, - {file = "matplotlib-3.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b918770bf3e07845408716e5bbda17eadfc3fcbd9307dc67f37d6cf834bb3d98"}, - {file = "matplotlib-3.9.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f1f2e5d29e9435c97ad4c36fb6668e89aee13d48c75893e25cef064675038ac9"}, - {file = "matplotlib-3.9.1.tar.gz", hash = "sha256:de06b19b8db95dd33d0dc17c926c7c9ebed9f572074b6fac4f65068a6814d010"}, + {file = "matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6"}, + {file = "matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6"}, + {file = "matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1"}, + {file = "matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683"}, + {file = "matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765"}, + {file = "matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8"}, + {file = "matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12"}, + {file = "matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf"}, + {file = "matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae"}, + {file = "matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e"}, + {file = "matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede"}, + {file = "matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef"}, + {file = "matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278"}, ] [package.dependencies] @@ -1478,7 +1513,7 @@ pyparsing = ">=2.3.1" python-dateutil = ">=2.7" [package.extras] -dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] +dev = ["meson-python (>=0.13.1,<0.17.0)", "pybind11 (>=2.13.2,!=2.13.3)", "setuptools (>=64)", "setuptools_scm (>=7)"] [[package]] name = "matplotlib-inline" @@ -1507,13 +1542,13 @@ files = [ [[package]] name = "mdit-py-plugins" -version = "0.4.1" +version = "0.4.2" description = "Collection of plugins for markdown-it-py" optional = false python-versions = ">=3.8" files = [ - {file = "mdit_py_plugins-0.4.1-py3-none-any.whl", hash = "sha256:1020dfe4e6bfc2c79fb49ae4e3f5b297f5ccd20f010187acc52af2921e27dc6a"}, - {file = "mdit_py_plugins-0.4.1.tar.gz", hash = "sha256:834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c"}, + {file = "mdit_py_plugins-0.4.2-py3-none-any.whl", hash = "sha256:0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636"}, + {file = "mdit_py_plugins-0.4.2.tar.gz", hash = "sha256:5f2cd1fdb606ddf152d37ec30e46101a60512bc0e5fa1a7002c36647b09e26b5"}, ] [package.dependencies] @@ -1645,13 +1680,13 @@ files = [ [[package]] name = "nbclient" -version = "0.10.0" +version = "0.10.2" description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." optional = false -python-versions = ">=3.8.0" +python-versions = ">=3.9.0" files = [ - {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, - {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, + {file = "nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d"}, + {file = "nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193"}, ] [package.dependencies] @@ -1662,8 +1697,8 @@ traitlets = ">=5.4" [package.extras] dev = ["pre-commit"] -docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] -test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] +docs = ["autodoc-traits", "flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "mock", "moto", "myst-parser", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling", "testpath", "xmltodict"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] [[package]] name = "nbconvert" @@ -1736,105 +1771,128 @@ files = [ [[package]] name = "numpy" -version = "2.0.1" +version = "2.2.3" description = "Fundamental package for array computing in Python" optional = false -python-versions = ">=3.9" +python-versions = ">=3.10" files = [ - {file = "numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0fbb536eac80e27a2793ffd787895242b7f18ef792563d742c2d673bfcb75134"}, - {file = "numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69ff563d43c69b1baba77af455dd0a839df8d25e8590e79c90fcbe1499ebde42"}, - {file = "numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:1b902ce0e0a5bb7704556a217c4f63a7974f8f43e090aff03fcf262e0b135e02"}, - {file = "numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:f1659887361a7151f89e79b276ed8dff3d75877df906328f14d8bb40bb4f5101"}, - {file = "numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4658c398d65d1b25e1760de3157011a80375da861709abd7cef3bad65d6543f9"}, - {file = "numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4127d4303b9ac9f94ca0441138acead39928938660ca58329fe156f84b9f3015"}, - {file = "numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e5eeca8067ad04bc8a2a8731183d51d7cbaac66d86085d5f4766ee6bf19c7f87"}, - {file = "numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9adbd9bb520c866e1bfd7e10e1880a1f7749f1f6e5017686a5fbb9b72cf69f82"}, - {file = "numpy-2.0.1-cp310-cp310-win32.whl", hash = "sha256:7b9853803278db3bdcc6cd5beca37815b133e9e77ff3d4733c247414e78eb8d1"}, - {file = "numpy-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:81b0893a39bc5b865b8bf89e9ad7807e16717f19868e9d234bdaf9b1f1393868"}, - {file = "numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75b4e316c5902d8163ef9d423b1c3f2f6252226d1aa5cd8a0a03a7d01ffc6268"}, - {file = "numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6e4eeb6eb2fced786e32e6d8df9e755ce5be920d17f7ce00bc38fcde8ccdbf9e"}, - {file = "numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:a1e01dcaab205fbece13c1410253a9eea1b1c9b61d237b6fa59bcc46e8e89343"}, - {file = "numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a8fc2de81ad835d999113ddf87d1ea2b0f4704cbd947c948d2f5513deafe5a7b"}, - {file = "numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a3d94942c331dd4e0e1147f7a8699a4aa47dffc11bf8a1523c12af8b2e91bbe"}, - {file = "numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15eb4eca47d36ec3f78cde0a3a2ee24cf05ca7396ef808dda2c0ddad7c2bde67"}, - {file = "numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b83e16a5511d1b1f8a88cbabb1a6f6a499f82c062a4251892d9ad5d609863fb7"}, - {file = "numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1f87fec1f9bc1efd23f4227becff04bd0e979e23ca50cc92ec88b38489db3b55"}, - {file = "numpy-2.0.1-cp311-cp311-win32.whl", hash = "sha256:36d3a9405fd7c511804dc56fc32974fa5533bdeb3cd1604d6b8ff1d292b819c4"}, - {file = "numpy-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:08458fbf403bff5e2b45f08eda195d4b0c9b35682311da5a5a0a0925b11b9bd8"}, - {file = "numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6bf4e6f4a2a2e26655717a1983ef6324f2664d7011f6ef7482e8c0b3d51e82ac"}, - {file = "numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7d6fddc5fe258d3328cd8e3d7d3e02234c5d70e01ebe377a6ab92adb14039cb4"}, - {file = "numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:5daab361be6ddeb299a918a7c0864fa8618af66019138263247af405018b04e1"}, - {file = "numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:ea2326a4dca88e4a274ba3a4405eb6c6467d3ffbd8c7d38632502eaae3820587"}, - {file = "numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:529af13c5f4b7a932fb0e1911d3a75da204eff023ee5e0e79c1751564221a5c8"}, - {file = "numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6790654cb13eab303d8402354fabd47472b24635700f631f041bd0b65e37298a"}, - {file = "numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:cbab9fc9c391700e3e1287666dfd82d8666d10e69a6c4a09ab97574c0b7ee0a7"}, - {file = "numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:99d0d92a5e3613c33a5f01db206a33f8fdf3d71f2912b0de1739894668b7a93b"}, - {file = "numpy-2.0.1-cp312-cp312-win32.whl", hash = "sha256:173a00b9995f73b79eb0191129f2455f1e34c203f559dd118636858cc452a1bf"}, - {file = "numpy-2.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:bb2124fdc6e62baae159ebcfa368708867eb56806804d005860b6007388df171"}, - {file = "numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bfc085b28d62ff4009364e7ca34b80a9a080cbd97c2c0630bb5f7f770dae9414"}, - {file = "numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8fae4ebbf95a179c1156fab0b142b74e4ba4204c87bde8d3d8b6f9c34c5825ef"}, - {file = "numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:72dc22e9ec8f6eaa206deb1b1355eb2e253899d7347f5e2fae5f0af613741d06"}, - {file = "numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:ec87f5f8aca726117a1c9b7083e7656a9d0d606eec7299cc067bb83d26f16e0c"}, - {file = "numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f682ea61a88479d9498bf2091fdcd722b090724b08b31d63e022adc063bad59"}, - {file = "numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8efc84f01c1cd7e34b3fb310183e72fcdf55293ee736d679b6d35b35d80bba26"}, - {file = "numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3fdabe3e2a52bc4eff8dc7a5044342f8bd9f11ef0934fcd3289a788c0eb10018"}, - {file = "numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:24a0e1befbfa14615b49ba9659d3d8818a0f4d8a1c5822af8696706fbda7310c"}, - {file = "numpy-2.0.1-cp39-cp39-win32.whl", hash = "sha256:f9cf5ea551aec449206954b075db819f52adc1638d46a6738253a712d553c7b4"}, - {file = "numpy-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:e9e81fa9017eaa416c056e5d9e71be93d05e2c3c2ab308d23307a8bc4443c368"}, - {file = "numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:61728fba1e464f789b11deb78a57805c70b2ed02343560456190d0501ba37b0f"}, - {file = "numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:12f5d865d60fb9734e60a60f1d5afa6d962d8d4467c120a1c0cda6eb2964437d"}, - {file = "numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eacf3291e263d5a67d8c1a581a8ebbcfd6447204ef58828caf69a5e3e8c75990"}, - {file = "numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2c3a346ae20cfd80b6cfd3e60dc179963ef2ea58da5ec074fd3d9e7a1e7ba97f"}, - {file = "numpy-2.0.1.tar.gz", hash = "sha256:485b87235796410c3519a699cfe1faab097e509e90ebb05dcd098db2ae87e7b3"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716"}, + {file = "numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b"}, + {file = "numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3"}, + {file = "numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52"}, + {file = "numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b"}, + {file = "numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027"}, + {file = "numpy-2.2.3-cp310-cp310-win32.whl", hash = "sha256:5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094"}, + {file = "numpy-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a"}, + {file = "numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636"}, + {file = "numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d"}, + {file = "numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb"}, + {file = "numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2"}, + {file = "numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b"}, + {file = "numpy-2.2.3-cp311-cp311-win32.whl", hash = "sha256:1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5"}, + {file = "numpy-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea"}, + {file = "numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532"}, + {file = "numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e"}, + {file = "numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe"}, + {file = "numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021"}, + {file = "numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8"}, + {file = "numpy-2.2.3-cp312-cp312-win32.whl", hash = "sha256:4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe"}, + {file = "numpy-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1"}, + {file = "numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5"}, + {file = "numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2"}, + {file = "numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1"}, + {file = "numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304"}, + {file = "numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d"}, + {file = "numpy-2.2.3-cp313-cp313-win32.whl", hash = "sha256:136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693"}, + {file = "numpy-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94"}, + {file = "numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0"}, + {file = "numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610"}, + {file = "numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76"}, + {file = "numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a"}, + {file = "numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf"}, + {file = "numpy-2.2.3-cp313-cp313t-win32.whl", hash = "sha256:cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef"}, + {file = "numpy-2.2.3-cp313-cp313t-win_amd64.whl", hash = "sha256:aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e"}, + {file = "numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4"}, + {file = "numpy-2.2.3.tar.gz", hash = "sha256:dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020"}, ] [[package]] name = "packaging" -version = "24.1" +version = "24.2" description = "Core utilities for Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, - {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, ] [[package]] name = "pandas" -version = "2.2.2" +version = "2.2.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = false python-versions = ">=3.9" files = [ - {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, - {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, - {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, - {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, - {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, - {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, - {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, ] [package.dependencies] @@ -1924,116 +1982,107 @@ ptyprocess = ">=0.5" [[package]] name = "pillow" -version = "10.4.0" +version = "11.1.0" description = "Python Imaging Library (Fork)" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, - {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, - {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, - {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, - {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, - {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, - {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, - {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, - {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, - {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, - {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, - {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, - {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, - {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, - {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, - {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, - {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, - {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, - {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, - {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, - {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, - {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, - {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, - {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, - {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, - {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, - {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, - {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, - {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, - {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, - {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, - {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, - {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, - {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, - {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, - {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, - {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, - {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, - {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, + {file = "pillow-11.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e1abe69aca89514737465752b4bcaf8016de61b3be1397a8fc260ba33321b3a8"}, + {file = "pillow-11.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c640e5a06869c75994624551f45e5506e4256562ead981cce820d5ab39ae2192"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07dba04c5e22824816b2615ad7a7484432d7f540e6fa86af60d2de57b0fcee2"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e267b0ed063341f3e60acd25c05200df4193e15a4a5807075cd71225a2386e26"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bd165131fd51697e22421d0e467997ad31621b74bfc0b75956608cb2906dda07"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:abc56501c3fd148d60659aae0af6ddc149660469082859fa7b066a298bde9482"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:54ce1c9a16a9561b6d6d8cb30089ab1e5eb66918cb47d457bd996ef34182922e"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:73ddde795ee9b06257dac5ad42fcb07f3b9b813f8c1f7f870f402f4dc54b5269"}, + {file = "pillow-11.1.0-cp310-cp310-win32.whl", hash = "sha256:3a5fe20a7b66e8135d7fd617b13272626a28278d0e578c98720d9ba4b2439d49"}, + {file = "pillow-11.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:b6123aa4a59d75f06e9dd3dac5bf8bc9aa383121bb3dd9a7a612e05eabc9961a"}, + {file = "pillow-11.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:a76da0a31da6fcae4210aa94fd779c65c75786bc9af06289cd1c184451ef7a65"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:e06695e0326d05b06833b40b7ef477e475d0b1ba3a6d27da1bb48c23209bf457"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:96f82000e12f23e4f29346e42702b6ed9a2f2fea34a740dd5ffffcc8c539eb35"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3cd561ded2cf2bbae44d4605837221b987c216cff94f49dfeed63488bb228d2"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f189805c8be5ca5add39e6f899e6ce2ed824e65fb45f3c28cb2841911da19070"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dd0052e9db3474df30433f83a71b9b23bd9e4ef1de13d92df21a52c0303b8ab6"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:837060a8599b8f5d402e97197d4924f05a2e0d68756998345c829c33186217b1"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:aa8dd43daa836b9a8128dbe7d923423e5ad86f50a7a14dc688194b7be5c0dea2"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0a2f91f8a8b367e7a57c6e91cd25af510168091fb89ec5146003e424e1558a96"}, + {file = "pillow-11.1.0-cp311-cp311-win32.whl", hash = "sha256:c12fc111ef090845de2bb15009372175d76ac99969bdf31e2ce9b42e4b8cd88f"}, + {file = "pillow-11.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd43429d0d7ed6533b25fc993861b8fd512c42d04514a0dd6337fb3ccf22761"}, + {file = "pillow-11.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f7955ecf5609dee9442cbface754f2c6e541d9e6eda87fad7f7a989b0bdb9d71"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:2062ffb1d36544d42fcaa277b069c88b01bb7298f4efa06731a7fd6cc290b81a"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a85b653980faad27e88b141348707ceeef8a1186f75ecc600c395dcac19f385b"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9409c080586d1f683df3f184f20e36fb647f2e0bc3988094d4fd8c9f4eb1b3b3"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fdadc077553621911f27ce206ffcbec7d3f8d7b50e0da39f10997e8e2bb7f6a"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:93a18841d09bcdd774dcdc308e4537e1f867b3dec059c131fde0327899734aa1"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9aa9aeddeed452b2f616ff5507459e7bab436916ccb10961c4a382cd3e03f47f"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3cdcdb0b896e981678eee140d882b70092dac83ac1cdf6b3a60e2216a73f2b91"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:36ba10b9cb413e7c7dfa3e189aba252deee0602c86c309799da5a74009ac7a1c"}, + {file = "pillow-11.1.0-cp312-cp312-win32.whl", hash = "sha256:cfd5cd998c2e36a862d0e27b2df63237e67273f2fc78f47445b14e73a810e7e6"}, + {file = "pillow-11.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a697cd8ba0383bba3d2d3ada02b34ed268cb548b369943cd349007730c92bddf"}, + {file = "pillow-11.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:4dd43a78897793f60766563969442020e90eb7847463eca901e41ba186a7d4a5"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae98e14432d458fc3de11a77ccb3ae65ddce70f730e7c76140653048c71bfcbc"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cc1331b6d5a6e144aeb5e626f4375f5b7ae9934ba620c0ac6b3e43d5e683a0f0"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:758e9d4ef15d3560214cddbc97b8ef3ef86ce04d62ddac17ad39ba87e89bd3b1"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b523466b1a31d0dcef7c5be1f20b942919b62fd6e9a9be199d035509cbefc0ec"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:9044b5e4f7083f209c4e35aa5dd54b1dd5b112b108648f5c902ad586d4f945c5"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:3764d53e09cdedd91bee65c2527815d315c6b90d7b8b79759cc48d7bf5d4f114"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31eba6bbdd27dde97b0174ddf0297d7a9c3a507a8a1480e1e60ef914fe23d352"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b5d658fbd9f0d6eea113aea286b21d3cd4d3fd978157cbf2447a6035916506d3"}, + {file = "pillow-11.1.0-cp313-cp313-win32.whl", hash = "sha256:f86d3a7a9af5d826744fabf4afd15b9dfef44fe69a98541f666f66fbb8d3fef9"}, + {file = "pillow-11.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:593c5fd6be85da83656b93ffcccc2312d2d149d251e98588b14fbc288fd8909c"}, + {file = "pillow-11.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:11633d58b6ee5733bde153a8dafd25e505ea3d32e261accd388827ee987baf65"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:70ca5ef3b3b1c4a0812b5c63c57c23b63e53bc38e758b37a951e5bc466449861"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:8000376f139d4d38d6851eb149b321a52bb8893a88dae8ee7d95840431977081"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ee85f0696a17dd28fbcfceb59f9510aa71934b483d1f5601d1030c3c8304f3c"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:dd0e081319328928531df7a0e63621caf67652c8464303fd102141b785ef9547"}, + {file = "pillow-11.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e63e4e5081de46517099dc30abe418122f54531a6ae2ebc8680bcd7096860eab"}, + {file = "pillow-11.1.0-cp313-cp313t-win32.whl", hash = "sha256:dda60aa465b861324e65a78c9f5cf0f4bc713e4309f83bc387be158b077963d9"}, + {file = "pillow-11.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:ad5db5781c774ab9a9b2c4302bbf0c1014960a0a7be63278d13ae6fdf88126fe"}, + {file = "pillow-11.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:67cd427c68926108778a9005f2a04adbd5e67c442ed21d95389fe1d595458756"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:bf902d7413c82a1bfa08b06a070876132a5ae6b2388e2712aab3a7cbc02205c6"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c1eec9d950b6fe688edee07138993e54ee4ae634c51443cfb7c1e7613322718e"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e275ee4cb11c262bd108ab2081f750db2a1c0b8c12c1897f27b160c8bd57bbc"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db853948ce4e718f2fc775b75c37ba2efb6aaea41a1a5fc57f0af59eee774b2"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:ab8a209b8485d3db694fa97a896d96dd6533d63c22829043fd9de627060beade"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:54251ef02a2309b5eec99d151ebf5c9904b77976c8abdcbce7891ed22df53884"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5bb94705aea800051a743aa4874bb1397d4695fb0583ba5e425ee0328757f196"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:89dbdb3e6e9594d512780a5a1c42801879628b38e3efc7038094430844e271d8"}, + {file = "pillow-11.1.0-cp39-cp39-win32.whl", hash = "sha256:e5449ca63da169a2e6068dd0e2fcc8d91f9558aba89ff6d02121ca8ab11e79e5"}, + {file = "pillow-11.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:3362c6ca227e65c54bf71a5f88b3d4565ff1bcbc63ae72c34b07bbb1cc59a43f"}, + {file = "pillow-11.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:b20be51b37a75cc54c2c55def3fa2c65bb94ba859dde241cd0a4fd302de5ae0a"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c730dc3a83e5ac137fbc92dfcfe1511ce3b2b5d7578315b63dbbb76f7f51d90"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7d33d2fae0e8b170b6a6c57400e077412240f6f5bb2a342cf1ee512a787942bb"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8d65b38173085f24bc07f8b6c505cbb7418009fa1a1fcb111b1f4961814a442"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:015c6e863faa4779251436db398ae75051469f7c903b043a48f078e437656f83"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:d44ff19eea13ae4acdaaab0179fa68c0c6f2f45d66a4d8ec1eda7d6cecbcc15f"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d3d8da4a631471dfaf94c10c85f5277b1f8e42ac42bade1ac67da4b4a7359b73"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4637b88343166249fe8aa94e7c4a62a180c4b3898283bb5d3d2fd5fe10d8e4e0"}, + {file = "pillow-11.1.0.tar.gz", hash = "sha256:368da70808b36d73b4b390a8ffac11069f8a5c85f29eff1f1b01bcf3ef5b2a20"}, ] [package.extras] -docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] fpx = ["olefile"] mic = ["olefile"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +tests = ["check-manifest", "coverage (>=7.4.2)", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout", "trove-classifiers (>=2024.10.12)"] typing = ["typing-extensions"] xmp = ["defusedxml"] [[package]] name = "platformdirs" -version = "4.2.2" +version = "4.3.6" description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." optional = false python-versions = ">=3.8" files = [ - {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, - {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] -type = ["mypy (>=1.8)"] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] [[package]] name = "pluggy" @@ -2052,13 +2101,13 @@ testing = ["pytest", "pytest-benchmark"] [[package]] name = "prompt-toolkit" -version = "3.0.47" +version = "3.0.50" description = "Library for building powerful interactive command lines in Python" optional = false -python-versions = ">=3.7.0" +python-versions = ">=3.8.0" files = [ - {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, - {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, + {file = "prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198"}, + {file = "prompt_toolkit-3.0.50.tar.gz", hash = "sha256:544748f3860a2623ca5cd6d2795e7a14f3d0e1c3c9728359013f79877fc89bab"}, ] [package.dependencies] @@ -2066,32 +2115,26 @@ wcwidth = "*" [[package]] name = "psutil" -version = "6.0.0" -description = "Cross-platform lib for process and system monitoring in Python." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" -files = [ - {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, - {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, - {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, - {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, - {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, - {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, - {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, - {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, - {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, - {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, - {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, - {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, - {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +version = "7.0.0" +description = "Cross-platform lib for process and system monitoring in Python. NOTE: the syntax of this script MUST be kept compatible with Python 2.7." +optional = false +python-versions = ">=3.6" +files = [ + {file = "psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25"}, + {file = "psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34"}, + {file = "psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993"}, + {file = "psutil-7.0.0-cp36-cp36m-win32.whl", hash = "sha256:84df4eb63e16849689f76b1ffcb36db7b8de703d1bc1fe41773db487621b6c17"}, + {file = "psutil-7.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:1e744154a6580bc968a0195fd25e80432d3afec619daf145b9e5ba16cc1d688e"}, + {file = "psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99"}, + {file = "psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553"}, + {file = "psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456"}, ] [package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] +dev = ["abi3audit", "black (==24.10.0)", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest", "pytest-cov", "pytest-xdist", "requests", "rstcheck", "ruff", "setuptools", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] [[package]] name = "ptyprocess" @@ -2171,13 +2214,13 @@ test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] [[package]] name = "pycodestyle" -version = "2.12.0" +version = "2.12.1" description = "Python style guide checker" optional = false python-versions = ">=3.8" files = [ - {file = "pycodestyle-2.12.0-py2.py3-none-any.whl", hash = "sha256:949a39f6b86c3e1515ba1787c2022131d165a8ad271b11370a8819aa070269e4"}, - {file = "pycodestyle-2.12.0.tar.gz", hash = "sha256:442f950141b4f43df752dd303511ffded3a04c2b6fb7f65980574f0c31e6e79c"}, + {file = "pycodestyle-2.12.1-py2.py3-none-any.whl", hash = "sha256:46f0fb92069a7c28ab7bb558f05bfc0110dac69a0cd23c61ea0040283a9d78b3"}, + {file = "pycodestyle-2.12.1.tar.gz", hash = "sha256:6838eae08bbce4f6accd5d5572075c63626a15ee3e6f842df996bf62f6d73521"}, ] [[package]] @@ -2193,26 +2236,26 @@ files = [ [[package]] name = "pyerfa" -version = "2.0.1.4" +version = "2.0.1.5" description = "Python bindings for ERFA" optional = false python-versions = ">=3.9" files = [ - {file = "pyerfa-2.0.1.4-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ff112353944bf705342741f2fe41674f97154a302b0295eaef7381af92ad2b3a"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:900b266a3862baa9560d6b1b184dcc14e0e76d550ff70d32336d3989b2ed18ca"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:610d2bc314e140d876b93b1287c7c81685434873c8700cc3e1596193f77d1071"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e4508dd7ffd7b27b7f67168643764454887e990ca9e4584824f0e3ab5884c0f"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:83a44ba84ebfc3244412ecbf1065c087c382da84f1c3eee1f2a0638d9046ac96"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-win32.whl", hash = "sha256:46d3bed0ac666f08d8364b34a00b8c6595358d6c4f4532da8d13fac0e5227baa"}, - {file = "pyerfa-2.0.1.4-cp39-abi3-win_amd64.whl", hash = "sha256:bc3cf45967ac1af77a777deb050fb08bbc75256dd97ca6005e4d385358b7af40"}, - {file = "pyerfa-2.0.1.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:88a8d0f3608a66871615bd168fcddf674dce9f7568c239a03cf8d9936161d032"}, - {file = "pyerfa-2.0.1.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9045e9f786c76cb55da86ada3405c378c32b88f6e3c6296cb288496ab374b068"}, - {file = "pyerfa-2.0.1.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:39cf838c9a21e40d4e3183bead65b3ce6af763c4a727f87d84909c9be7d3a33c"}, - {file = "pyerfa-2.0.1.4.tar.gz", hash = "sha256:acb8a6713232ea35c04bc6e40ac4e461dfcc817d395ef2a3c8051c1a33249dd3"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:b282d7c60c4c47cf629c484c17ac504fcb04abd7b3f4dfcf53ee042afc3a5944"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:be1aeb70390dd03a34faf96749d5cabc58437410b4aab7213c512323932427df"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0603e8e1b839327d586c8a627cdc634b795e18b007d84f0cda5500a0908254e"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e43c7194e3242083f2350b46c09fd4bf8ba1bcc0ebd1460b98fc47fe2389906"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:07b80cd70701f5d066b1ac8cce406682cfcd667a1186ec7d7ade597239a6021d"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-win32.whl", hash = "sha256:d30b9b0df588ed5467e529d851ea324a67239096dd44703125072fd11b351ea2"}, + {file = "pyerfa-2.0.1.5-cp39-abi3-win_amd64.whl", hash = "sha256:66292d437dcf75925b694977aa06eb697126e7b86553e620371ed3e48b5e0ad0"}, + {file = "pyerfa-2.0.1.5-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4991dee680ff36c87911d8faa4c7d1aa6278ad9b5e0d16158cf22fa7d74ba25c"}, + {file = "pyerfa-2.0.1.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690e258294202c86f479e78e80fd235cd27bd717f7f60062fccc3dbd6ef0b1a9"}, + {file = "pyerfa-2.0.1.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:171ce9676a448a7eb555f03aa19ad5c749dbced1ce4f9923e4d93443c4a9c612"}, + {file = "pyerfa-2.0.1.5.tar.gz", hash = "sha256:17d6b24fe4846c65d5e7d8c362dcb08199dc63b30a236aedd73875cc83e1f6c0"}, ] [package.dependencies] -numpy = ">=1.19" +numpy = ">=1.19.3" [package.extras] docs = ["sphinx-astropy (>=1.3)"] @@ -2231,13 +2274,13 @@ files = [ [[package]] name = "pygments" -version = "2.18.0" +version = "2.19.1" description = "Pygments is a syntax highlighting package written in Python." optional = false python-versions = ">=3.8" files = [ - {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, - {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, + {file = "pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"}, + {file = "pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f"}, ] [package.extras] @@ -2263,13 +2306,13 @@ extra = ["pygments (>=2.12)"] [[package]] name = "pyparsing" -version = "3.1.2" +version = "3.2.1" description = "pyparsing module - Classes and methods to define and execute parsing grammars" optional = false -python-versions = ">=3.6.8" +python-versions = ">=3.9" files = [ - {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, - {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, + {file = "pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1"}, + {file = "pyparsing-3.2.1.tar.gz", hash = "sha256:61980854fd66de3a90028d679a954d5f2623e83144b5afe5ee86f43d762e5f0a"}, ] [package.extras] @@ -2277,13 +2320,13 @@ diagrams = ["jinja2", "railroad-diagrams"] [[package]] name = "pytest" -version = "8.3.2" +version = "8.3.4" description = "pytest: simple powerful testing with Python" optional = false python-versions = ">=3.8" files = [ - {file = "pytest-8.3.2-py3-none-any.whl", hash = "sha256:4ba08f9ae7dcf84ded419494d229b48d0903ea6407b030eaec46df5e6a73bba5"}, - {file = "pytest-8.3.2.tar.gz", hash = "sha256:c132345d12ce551242c87269de812483f5bcc87cdbb4722e48487ba194f9fdce"}, + {file = "pytest-8.3.4-py3-none-any.whl", hash = "sha256:50e16d954148559c9a74109af1eaf0c945ba2d8f30f0a3d3335edde19788b6f6"}, + {file = "pytest-8.3.4.tar.gz", hash = "sha256:965370d062bce11e73868e0335abac31b4d3de0e82f4007408d242b4f8610761"}, ] [package.dependencies] @@ -2311,98 +2354,118 @@ files = [ [package.dependencies] six = ">=1.5" +[[package]] +name = "python-dotenv" +version = "1.0.1" +description = "Read key-value pairs from a .env file and set them as environment variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "python-dotenv-1.0.1.tar.gz", hash = "sha256:e324ee90a023d808f1959c46bcbc04446a10ced277783dc6ee09987c37ec10ca"}, + {file = "python_dotenv-1.0.1-py3-none-any.whl", hash = "sha256:f7b63ef50f1b690dddf550d03497b66d609393b40b564ed0d674909a68ebf16a"}, +] + +[package.extras] +cli = ["click (>=5.0)"] + [[package]] name = "pytz" -version = "2024.1" +version = "2025.1" description = "World timezone definitions, modern and historical" optional = false python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2025.1-py2.py3-none-any.whl", hash = "sha256:89dd22dca55b46eac6eda23b2d72721bf1bdfef212645d81513ef5d03038de57"}, + {file = "pytz-2025.1.tar.gz", hash = "sha256:c2db42be2a2518b28e65f9207c4d05e6ff547d1efa4086469ef855e4ab70178e"}, ] [[package]] name = "pywin32" -version = "306" +version = "308" description = "Python for Window Extensions" optional = false python-versions = "*" files = [ - {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, - {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, - {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, - {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, - {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, - {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, - {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, - {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, - {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, - {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, - {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, - {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, - {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, - {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, ] [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] @@ -2421,99 +2484,120 @@ pyyaml = "*" [[package]] name = "pyzmq" -version = "26.0.3" +version = "26.2.1" description = "Python bindings for 0MQ" optional = false python-versions = ">=3.7" files = [ - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, - {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, - {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, - {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, - {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, - {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, - {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, - {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, - {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, - {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, - {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, - {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, - {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, - {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, - {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, - {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, - {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, - {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, - {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, - {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, - {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, - {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, - {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, - {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, - {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, - {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, - {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, - {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, - {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, - {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, - {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, - {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, - {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, - {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, + {file = "pyzmq-26.2.1-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:f39d1227e8256d19899d953e6e19ed2ccb689102e6d85e024da5acf410f301eb"}, + {file = "pyzmq-26.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a23948554c692df95daed595fdd3b76b420a4939d7a8a28d6d7dea9711878641"}, + {file = "pyzmq-26.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:95f5728b367a042df146cec4340d75359ec6237beebf4a8f5cf74657c65b9257"}, + {file = "pyzmq-26.2.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95f7b01b3f275504011cf4cf21c6b885c8d627ce0867a7e83af1382ebab7b3ff"}, + {file = "pyzmq-26.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80a00370a2ef2159c310e662c7c0f2d030f437f35f478bb8b2f70abd07e26b24"}, + {file = "pyzmq-26.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:8531ed35dfd1dd2af95f5d02afd6545e8650eedbf8c3d244a554cf47d8924459"}, + {file = "pyzmq-26.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:cdb69710e462a38e6039cf17259d328f86383a06c20482cc154327968712273c"}, + {file = "pyzmq-26.2.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e7eeaef81530d0b74ad0d29eec9997f1c9230c2f27242b8d17e0ee67662c8f6e"}, + {file = "pyzmq-26.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:361edfa350e3be1f987e592e834594422338d7174364763b7d3de5b0995b16f3"}, + {file = "pyzmq-26.2.1-cp310-cp310-win32.whl", hash = "sha256:637536c07d2fb6a354988b2dd1d00d02eb5dd443f4bbee021ba30881af1c28aa"}, + {file = "pyzmq-26.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:45fad32448fd214fbe60030aa92f97e64a7140b624290834cc9b27b3a11f9473"}, + {file = "pyzmq-26.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:d9da0289d8201c8a29fd158aaa0dfe2f2e14a181fd45e2dc1fbf969a62c1d594"}, + {file = "pyzmq-26.2.1-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:c059883840e634a21c5b31d9b9a0e2b48f991b94d60a811092bc37992715146a"}, + {file = "pyzmq-26.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed038a921df836d2f538e509a59cb638df3e70ca0fcd70d0bf389dfcdf784d2a"}, + {file = "pyzmq-26.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9027a7fcf690f1a3635dc9e55e38a0d6602dbbc0548935d08d46d2e7ec91f454"}, + {file = "pyzmq-26.2.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d75fcb00a1537f8b0c0bb05322bc7e35966148ffc3e0362f0369e44a4a1de99"}, + {file = "pyzmq-26.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0019cc804ac667fb8c8eaecdb66e6d4a68acf2e155d5c7d6381a5645bd93ae4"}, + {file = "pyzmq-26.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:f19dae58b616ac56b96f2e2290f2d18730a898a171f447f491cc059b073ca1fa"}, + {file = "pyzmq-26.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f5eeeb82feec1fc5cbafa5ee9022e87ffdb3a8c48afa035b356fcd20fc7f533f"}, + {file = "pyzmq-26.2.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:000760e374d6f9d1a3478a42ed0c98604de68c9e94507e5452951e598ebecfba"}, + {file = "pyzmq-26.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:817fcd3344d2a0b28622722b98500ae9c8bfee0f825b8450932ff19c0b15bebd"}, + {file = "pyzmq-26.2.1-cp311-cp311-win32.whl", hash = "sha256:88812b3b257f80444a986b3596e5ea5c4d4ed4276d2b85c153a6fbc5ca457ae7"}, + {file = "pyzmq-26.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:ef29630fde6022471d287c15c0a2484aba188adbfb978702624ba7a54ddfa6c1"}, + {file = "pyzmq-26.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:f32718ee37c07932cc336096dc7403525301fd626349b6eff8470fe0f996d8d7"}, + {file = "pyzmq-26.2.1-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:a6549ecb0041dafa55b5932dcbb6c68293e0bd5980b5b99f5ebb05f9a3b8a8f3"}, + {file = "pyzmq-26.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0250c94561f388db51fd0213cdccbd0b9ef50fd3c57ce1ac937bf3034d92d72e"}, + {file = "pyzmq-26.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ee4297d9e4b34b5dc1dd7ab5d5ea2cbba8511517ef44104d2915a917a56dc8"}, + {file = "pyzmq-26.2.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2a9cb17fd83b7a3a3009901aca828feaf20aa2451a8a487b035455a86549c09"}, + {file = "pyzmq-26.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:786dd8a81b969c2081b31b17b326d3a499ddd1856e06d6d79ad41011a25148da"}, + {file = "pyzmq-26.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:2d88ba221a07fc2c5581565f1d0fe8038c15711ae79b80d9462e080a1ac30435"}, + {file = "pyzmq-26.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c84c1297ff9f1cd2440da4d57237cb74be21fdfe7d01a10810acba04e79371a"}, + {file = "pyzmq-26.2.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:46d4ebafc27081a7f73a0f151d0c38d4291656aa134344ec1f3d0199ebfbb6d4"}, + {file = "pyzmq-26.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:91e2bfb8e9a29f709d51b208dd5f441dc98eb412c8fe75c24ea464734ccdb48e"}, + {file = "pyzmq-26.2.1-cp312-cp312-win32.whl", hash = "sha256:4a98898fdce380c51cc3e38ebc9aa33ae1e078193f4dc641c047f88b8c690c9a"}, + {file = "pyzmq-26.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:a0741edbd0adfe5f30bba6c5223b78c131b5aa4a00a223d631e5ef36e26e6d13"}, + {file = "pyzmq-26.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:e5e33b1491555843ba98d5209439500556ef55b6ab635f3a01148545498355e5"}, + {file = "pyzmq-26.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:099b56ef464bc355b14381f13355542e452619abb4c1e57a534b15a106bf8e23"}, + {file = "pyzmq-26.2.1-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:651726f37fcbce9f8dd2a6dab0f024807929780621890a4dc0c75432636871be"}, + {file = "pyzmq-26.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57dd4d91b38fa4348e237a9388b4423b24ce9c1695bbd4ba5a3eada491e09399"}, + {file = "pyzmq-26.2.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d51a7bfe01a48e1064131f3416a5439872c533d756396be2b39e3977b41430f9"}, + {file = "pyzmq-26.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7154d228502e18f30f150b7ce94f0789d6b689f75261b623f0fdc1eec642aab"}, + {file = "pyzmq-26.2.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:f1f31661a80cc46aba381bed475a9135b213ba23ca7ff6797251af31510920ce"}, + {file = "pyzmq-26.2.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:290c96f479504439b6129a94cefd67a174b68ace8a8e3f551b2239a64cfa131a"}, + {file = "pyzmq-26.2.1-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:f2c307fbe86e18ab3c885b7e01de942145f539165c3360e2af0f094dd440acd9"}, + {file = "pyzmq-26.2.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:b314268e716487bfb86fcd6f84ebbe3e5bec5fac75fdf42bc7d90fdb33f618ad"}, + {file = "pyzmq-26.2.1-cp313-cp313-win32.whl", hash = "sha256:edb550616f567cd5603b53bb52a5f842c0171b78852e6fc7e392b02c2a1504bb"}, + {file = "pyzmq-26.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:100a826a029c8ef3d77a1d4c97cbd6e867057b5806a7276f2bac1179f893d3bf"}, + {file = "pyzmq-26.2.1-cp313-cp313-win_arm64.whl", hash = "sha256:6991ee6c43e0480deb1b45d0c7c2bac124a6540cba7db4c36345e8e092da47ce"}, + {file = "pyzmq-26.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:25e720dba5b3a3bb2ad0ad5d33440babd1b03438a7a5220511d0c8fa677e102e"}, + {file = "pyzmq-26.2.1-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:9ec6abfb701437142ce9544bd6a236addaf803a32628d2260eb3dbd9a60e2891"}, + {file = "pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e1eb9d2bfdf5b4e21165b553a81b2c3bd5be06eeddcc4e08e9692156d21f1f6"}, + {file = "pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:90dc731d8e3e91bcd456aa7407d2eba7ac6f7860e89f3766baabb521f2c1de4a"}, + {file = "pyzmq-26.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6a93d684278ad865fc0b9e89fe33f6ea72d36da0e842143891278ff7fd89c3"}, + {file = "pyzmq-26.2.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:c1bb37849e2294d519117dd99b613c5177934e5c04a5bb05dd573fa42026567e"}, + {file = "pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:632a09c6d8af17b678d84df442e9c3ad8e4949c109e48a72f805b22506c4afa7"}, + {file = "pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:fc409c18884eaf9ddde516d53af4f2db64a8bc7d81b1a0c274b8aa4e929958e8"}, + {file = "pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:17f88622b848805d3f6427ce1ad5a2aa3cf61f12a97e684dab2979802024d460"}, + {file = "pyzmq-26.2.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3ef584f13820d2629326fe20cc04069c21c5557d84c26e277cfa6235e523b10f"}, + {file = "pyzmq-26.2.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:160194d1034902937359c26ccfa4e276abffc94937e73add99d9471e9f555dd6"}, + {file = "pyzmq-26.2.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:574b285150afdbf0a0424dddf7ef9a0d183988eb8d22feacb7160f7515e032cb"}, + {file = "pyzmq-26.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44dba28c34ce527cf687156c81f82bf1e51f047838d5964f6840fd87dfecf9fe"}, + {file = "pyzmq-26.2.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:9fbdb90b85c7624c304f72ec7854659a3bd901e1c0ffb2363163779181edeb68"}, + {file = "pyzmq-26.2.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a7ad34a2921e8f76716dc7205c9bf46a53817e22b9eec2e8a3e08ee4f4a72468"}, + {file = "pyzmq-26.2.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:866c12b7c90dd3a86983df7855c6f12f9407c8684db6aa3890fc8027462bda82"}, + {file = "pyzmq-26.2.1-cp37-cp37m-win32.whl", hash = "sha256:eeb37f65350d5c5870517f02f8bbb2ac0fbec7b416c0f4875219fef305a89a45"}, + {file = "pyzmq-26.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4eb3197f694dfb0ee6af29ef14a35f30ae94ff67c02076eef8125e2d98963cd0"}, + {file = "pyzmq-26.2.1-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:36d4e7307db7c847fe37413f333027d31c11d5e6b3bacbb5022661ac635942ba"}, + {file = "pyzmq-26.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1c6ae0e95d0a4b0cfe30f648a18e764352d5415279bdf34424decb33e79935b8"}, + {file = "pyzmq-26.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5b4fc44f5360784cc02392f14235049665caaf7c0fe0b04d313e763d3338e463"}, + {file = "pyzmq-26.2.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:51431f6b2750eb9b9d2b2952d3cc9b15d0215e1b8f37b7a3239744d9b487325d"}, + {file = "pyzmq-26.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdbc78ae2065042de48a65f1421b8af6b76a0386bb487b41955818c3c1ce7bed"}, + {file = "pyzmq-26.2.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d14f50d61a89b0925e4d97a0beba6053eb98c426c5815d949a43544f05a0c7ec"}, + {file = "pyzmq-26.2.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:004837cb958988c75d8042f5dac19a881f3d9b3b75b2f574055e22573745f841"}, + {file = "pyzmq-26.2.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0b2007f28ce1b8acebdf4812c1aab997a22e57d6a73b5f318b708ef9bcabbe95"}, + {file = "pyzmq-26.2.1-cp38-cp38-win32.whl", hash = "sha256:269c14904da971cb5f013100d1aaedb27c0a246728c341d5d61ddd03f463f2f3"}, + {file = "pyzmq-26.2.1-cp38-cp38-win_amd64.whl", hash = "sha256:31fff709fef3b991cfe7189d2cfe0c413a1d0e82800a182cfa0c2e3668cd450f"}, + {file = "pyzmq-26.2.1-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:a4bffcadfd40660f26d1b3315a6029fd4f8f5bf31a74160b151f5c577b2dc81b"}, + {file = "pyzmq-26.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e76ad4729c2f1cf74b6eb1bdd05f6aba6175999340bd51e6caee49a435a13bf5"}, + {file = "pyzmq-26.2.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8b0f5bab40a16e708e78a0c6ee2425d27e1a5d8135c7a203b4e977cee37eb4aa"}, + {file = "pyzmq-26.2.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e8e47050412f0ad3a9b2287779758073cbf10e460d9f345002d4779e43bb0136"}, + {file = "pyzmq-26.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f18ce33f422d119b13c1363ed4cce245b342b2c5cbbb76753eabf6aa6f69c7d"}, + {file = "pyzmq-26.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ceb0d78b7ef106708a7e2c2914afe68efffc0051dc6a731b0dbacd8b4aee6d68"}, + {file = "pyzmq-26.2.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ebdd96bd637fd426d60e86a29ec14b8c1ab64b8d972f6a020baf08a30d1cf46"}, + {file = "pyzmq-26.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:03719e424150c6395b9513f53a5faadcc1ce4b92abdf68987f55900462ac7eec"}, + {file = "pyzmq-26.2.1-cp39-cp39-win32.whl", hash = "sha256:ef5479fac31df4b304e96400fc67ff08231873ee3537544aa08c30f9d22fce38"}, + {file = "pyzmq-26.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:f92a002462154c176dac63a8f1f6582ab56eb394ef4914d65a9417f5d9fde218"}, + {file = "pyzmq-26.2.1-cp39-cp39-win_arm64.whl", hash = "sha256:1fd4b3efc6f62199886440d5e27dd3ccbcb98dfddf330e7396f1ff421bfbb3c2"}, + {file = "pyzmq-26.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:380816d298aed32b1a97b4973a4865ef3be402a2e760204509b52b6de79d755d"}, + {file = "pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:97cbb368fd0debdbeb6ba5966aa28e9a1ae3396c7386d15569a6ca4be4572b99"}, + {file = "pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abf7b5942c6b0dafcc2823ddd9154f419147e24f8df5b41ca8ea40a6db90615c"}, + {file = "pyzmq-26.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3fe6e28a8856aea808715f7a4fc11f682b9d29cac5d6262dd8fe4f98edc12d53"}, + {file = "pyzmq-26.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bd8fdee945b877aa3bffc6a5a8816deb048dab0544f9df3731ecd0e54d8c84c9"}, + {file = "pyzmq-26.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ee7152f32c88e0e1b5b17beb9f0e2b14454235795ef68c0c120b6d3d23d12833"}, + {file = "pyzmq-26.2.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:baa1da72aecf6a490b51fba7a51f1ce298a1e0e86d0daef8265c8f8f9848eb77"}, + {file = "pyzmq-26.2.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:49135bb327fca159262d8fd14aa1f4a919fe071b04ed08db4c7c37d2f0647162"}, + {file = "pyzmq-26.2.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8bacc1a10c150d58e8a9ee2b2037a70f8d903107e0f0b6e079bf494f2d09c091"}, + {file = "pyzmq-26.2.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:09dac387ce62d69bec3f06d51610ca1d660e7849eb45f68e38e7f5cf1f49cbcb"}, + {file = "pyzmq-26.2.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:70b3a46ecd9296e725ccafc17d732bfc3cdab850b54bd913f843a0a54dfb2c04"}, + {file = "pyzmq-26.2.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:59660e15c797a3b7a571c39f8e0b62a1f385f98ae277dfe95ca7eaf05b5a0f12"}, + {file = "pyzmq-26.2.1-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0f50db737d688e96ad2a083ad2b453e22865e7e19c7f17d17df416e91ddf67eb"}, + {file = "pyzmq-26.2.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a003200b6cd64e89b5725ff7e284a93ab24fd54bbac8b4fa46b1ed57be693c27"}, + {file = "pyzmq-26.2.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:f9ba5def063243793dec6603ad1392f735255cbc7202a3a484c14f99ec290705"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1238c2448c58b9c8d6565579393148414a42488a5f916b3f322742e561f6ae0d"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8eddb3784aed95d07065bcf94d07e8c04024fdb6b2386f08c197dfe6b3528fda"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f0f19c2097fffb1d5b07893d75c9ee693e9cbc809235cf3f2267f0ef6b015f24"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0995fd3530f2e89d6b69a2202e340bbada3191014352af978fa795cb7a446331"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:7c6160fe513654e65665332740f63de29ce0d165e053c0c14a161fa60dd0da01"}, + {file = "pyzmq-26.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:8ec8e3aea6146b761d6c57fcf8f81fcb19f187afecc19bf1701a48db9617a217"}, + {file = "pyzmq-26.2.1.tar.gz", hash = "sha256:17d72a74e5e9ff3829deb72897a175333d3ef5b5413948cae3cf7ebf0b02ecca"}, ] [package.dependencies] @@ -2601,18 +2685,19 @@ files = [ [[package]] name = "referencing" -version = "0.35.1" +version = "0.36.2" description = "JSON Referencing + Python" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, - {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, + {file = "referencing-0.36.2-py3-none-any.whl", hash = "sha256:e8699adbbf8b5c7de96d8ffa0eb5c158b3beafce084968e2ea8bb08c6794dcd0"}, + {file = "referencing-0.36.2.tar.gz", hash = "sha256:df2e89862cd09deabbdba16944cc3f10feb6b3e6f18e902f7cc25609a34775aa"}, ] [package.dependencies] attrs = ">=22.2.0" rpds-py = ">=0.7.0" +typing-extensions = {version = ">=4.4.0", markers = "python_version < \"3.13\""} [[package]] name = "requests" @@ -2637,157 +2722,172 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rpds-py" -version = "0.19.1" +version = "0.22.3" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "rpds_py-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:aaf71f95b21f9dc708123335df22e5a2fef6307e3e6f9ed773b2e0938cc4d491"}, - {file = "rpds_py-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ca0dda0c5715efe2ab35bb83f813f681ebcd2840d8b1b92bfc6fe3ab382fae4a"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81db2e7282cc0487f500d4db203edc57da81acde9e35f061d69ed983228ffe3b"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1a8dfa125b60ec00c7c9baef945bb04abf8ac772d8ebefd79dae2a5f316d7850"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:271accf41b02687cef26367c775ab220372ee0f4925591c6796e7c148c50cab5"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9bc4161bd3b970cd6a6fcda70583ad4afd10f2750609fb1f3ca9505050d4ef3"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0cf2a0dbb5987da4bd92a7ca727eadb225581dd9681365beba9accbe5308f7d"}, - {file = "rpds_py-0.19.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b5e28e56143750808c1c79c70a16519e9bc0a68b623197b96292b21b62d6055c"}, - {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c7af6f7b80f687b33a4cdb0a785a5d4de1fb027a44c9a049d8eb67d5bfe8a687"}, - {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e429fc517a1c5e2a70d576077231538a98d59a45dfc552d1ac45a132844e6dfb"}, - {file = "rpds_py-0.19.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d2dbd8f4990d4788cb122f63bf000357533f34860d269c1a8e90ae362090ff3a"}, - {file = "rpds_py-0.19.1-cp310-none-win32.whl", hash = "sha256:e0f9d268b19e8f61bf42a1da48276bcd05f7ab5560311f541d22557f8227b866"}, - {file = "rpds_py-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:df7c841813f6265e636fe548a49664c77af31ddfa0085515326342a751a6ba51"}, - {file = "rpds_py-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:902cf4739458852fe917104365ec0efbea7d29a15e4276c96a8d33e6ed8ec137"}, - {file = "rpds_py-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f3d73022990ab0c8b172cce57c69fd9a89c24fd473a5e79cbce92df87e3d9c48"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3837c63dd6918a24de6c526277910e3766d8c2b1627c500b155f3eecad8fad65"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cdb7eb3cf3deb3dd9e7b8749323b5d970052711f9e1e9f36364163627f96da58"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:26ab43b6d65d25b1a333c8d1b1c2f8399385ff683a35ab5e274ba7b8bb7dc61c"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75130df05aae7a7ac171b3b5b24714cffeabd054ad2ebc18870b3aa4526eba23"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c34f751bf67cab69638564eee34023909380ba3e0d8ee7f6fe473079bf93f09b"}, - {file = "rpds_py-0.19.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f2671cb47e50a97f419a02cd1e0c339b31de017b033186358db92f4d8e2e17d8"}, - {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3c73254c256081704dba0a333457e2fb815364018788f9b501efe7c5e0ada401"}, - {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4383beb4a29935b8fa28aca8fa84c956bf545cb0c46307b091b8d312a9150e6a"}, - {file = "rpds_py-0.19.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:dbceedcf4a9329cc665452db1aaf0845b85c666e4885b92ee0cddb1dbf7e052a"}, - {file = "rpds_py-0.19.1-cp311-none-win32.whl", hash = "sha256:f0a6d4a93d2a05daec7cb885157c97bbb0be4da739d6f9dfb02e101eb40921cd"}, - {file = "rpds_py-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:c149a652aeac4902ecff2dd93c3b2681c608bd5208c793c4a99404b3e1afc87c"}, - {file = "rpds_py-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:56313be667a837ff1ea3508cebb1ef6681d418fa2913a0635386cf29cff35165"}, - {file = "rpds_py-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6d1d7539043b2b31307f2c6c72957a97c839a88b2629a348ebabe5aa8b626d6b"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e1dc59a5e7bc7f44bd0c048681f5e05356e479c50be4f2c1a7089103f1621d5"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b8f78398e67a7227aefa95f876481485403eb974b29e9dc38b307bb6eb2315ea"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ef07a0a1d254eeb16455d839cef6e8c2ed127f47f014bbda64a58b5482b6c836"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8124101e92c56827bebef084ff106e8ea11c743256149a95b9fd860d3a4f331f"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:08ce9c95a0b093b7aec75676b356a27879901488abc27e9d029273d280438505"}, - {file = "rpds_py-0.19.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0b02dd77a2de6e49078c8937aadabe933ceac04b41c5dde5eca13a69f3cf144e"}, - {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4dd02e29c8cbed21a1875330b07246b71121a1c08e29f0ee3db5b4cfe16980c4"}, - {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:9c7042488165f7251dc7894cd533a875d2875af6d3b0e09eda9c4b334627ad1c"}, - {file = "rpds_py-0.19.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:f809a17cc78bd331e137caa25262b507225854073fd319e987bd216bed911b7c"}, - {file = "rpds_py-0.19.1-cp312-none-win32.whl", hash = "sha256:3ddab996807c6b4227967fe1587febade4e48ac47bb0e2d3e7858bc621b1cace"}, - {file = "rpds_py-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:32e0db3d6e4f45601b58e4ac75c6f24afbf99818c647cc2066f3e4b192dabb1f"}, - {file = "rpds_py-0.19.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:747251e428406b05fc86fee3904ee19550c4d2d19258cef274e2151f31ae9d38"}, - {file = "rpds_py-0.19.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:dc733d35f861f8d78abfaf54035461e10423422999b360966bf1c443cbc42705"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbda75f245caecff8faa7e32ee94dfaa8312a3367397975527f29654cd17a6ed"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bd04d8cab16cab5b0a9ffc7d10f0779cf1120ab16c3925404428f74a0a43205a"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2d66eb41ffca6cc3c91d8387509d27ba73ad28371ef90255c50cb51f8953301"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fdf4890cda3b59170009d012fca3294c00140e7f2abe1910e6a730809d0f3f9b"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1fa67ef839bad3815124f5f57e48cd50ff392f4911a9f3cf449d66fa3df62a5"}, - {file = "rpds_py-0.19.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b82c9514c6d74b89a370c4060bdb80d2299bc6857e462e4a215b4ef7aa7b090e"}, - {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c7b07959866a6afb019abb9564d8a55046feb7a84506c74a6f197cbcdf8a208e"}, - {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4f580ae79d0b861dfd912494ab9d477bea535bfb4756a2269130b6607a21802e"}, - {file = "rpds_py-0.19.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:c6d20c8896c00775e6f62d8373aba32956aa0b850d02b5ec493f486c88e12859"}, - {file = "rpds_py-0.19.1-cp313-none-win32.whl", hash = "sha256:afedc35fe4b9e30ab240b208bb9dc8938cb4afe9187589e8d8d085e1aacb8309"}, - {file = "rpds_py-0.19.1-cp313-none-win_amd64.whl", hash = "sha256:1d4af2eb520d759f48f1073ad3caef997d1bfd910dc34e41261a595d3f038a94"}, - {file = "rpds_py-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:34bca66e2e3eabc8a19e9afe0d3e77789733c702c7c43cd008e953d5d1463fde"}, - {file = "rpds_py-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:24f8ae92c7fae7c28d0fae9b52829235df83f34847aa8160a47eb229d9666c7b"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71157f9db7f6bc6599a852852f3389343bea34315b4e6f109e5cbc97c1fb2963"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1d494887d40dc4dd0d5a71e9d07324e5c09c4383d93942d391727e7a40ff810b"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7b3661e6d4ba63a094138032c1356d557de5b3ea6fd3cca62a195f623e381c76"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97fbb77eaeb97591efdc654b8b5f3ccc066406ccfb3175b41382f221ecc216e8"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4cc4bc73e53af8e7a42c8fd7923bbe35babacfa7394ae9240b3430b5dcf16b2a"}, - {file = "rpds_py-0.19.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:35af5e4d5448fa179fd7fff0bba0fba51f876cd55212f96c8bbcecc5c684ae5c"}, - {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3511f6baf8438326e351097cecd137eb45c5f019944fe0fd0ae2fea2fd26be39"}, - {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:57863d16187995c10fe9cf911b897ed443ac68189179541734502353af33e693"}, - {file = "rpds_py-0.19.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:9e318e6786b1e750a62f90c6f7fa8b542102bdcf97c7c4de2a48b50b61bd36ec"}, - {file = "rpds_py-0.19.1-cp38-none-win32.whl", hash = "sha256:53dbc35808c6faa2ce3e48571f8f74ef70802218554884787b86a30947842a14"}, - {file = "rpds_py-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:8df1c283e57c9cb4d271fdc1875f4a58a143a2d1698eb0d6b7c0d7d5f49c53a1"}, - {file = "rpds_py-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:e76c902d229a3aa9d5ceb813e1cbcc69bf5bda44c80d574ff1ac1fa3136dea71"}, - {file = "rpds_py-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:de1f7cd5b6b351e1afd7568bdab94934d656abe273d66cda0ceea43bbc02a0c2"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fc5a84777cb61692d17988989690d6f34f7f95968ac81398d67c0d0994a897"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:74129d5ffc4cde992d89d345f7f7d6758320e5d44a369d74d83493429dad2de5"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5e360188b72f8080fefa3adfdcf3618604cc8173651c9754f189fece068d2a45"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13e6d4840897d4e4e6b2aa1443e3a8eca92b0402182aafc5f4ca1f5e24f9270a"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f09529d2332264a902688031a83c19de8fda5eb5881e44233286b9c9ec91856d"}, - {file = "rpds_py-0.19.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d4b52811dcbc1aba08fd88d475f75b4f6db0984ba12275d9bed1a04b2cae9b5"}, - {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dd635c2c4043222d80d80ca1ac4530a633102a9f2ad12252183bcf338c1b9474"}, - {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f35b34a5184d5e0cc360b61664c1c06e866aab077b5a7c538a3e20c8fcdbf90b"}, - {file = "rpds_py-0.19.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d4ec0046facab83012d821b33cead742a35b54575c4edfb7ed7445f63441835f"}, - {file = "rpds_py-0.19.1-cp39-none-win32.whl", hash = "sha256:f5b8353ea1a4d7dfb59a7f45c04df66ecfd363bb5b35f33b11ea579111d4655f"}, - {file = "rpds_py-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:1fb93d3486f793d54a094e2bfd9cd97031f63fcb5bc18faeb3dd4b49a1c06523"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7d5c7e32f3ee42f77d8ff1a10384b5cdcc2d37035e2e3320ded909aa192d32c3"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:89cc8921a4a5028d6dd388c399fcd2eef232e7040345af3d5b16c04b91cf3c7e"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bca34e913d27401bda2a6f390d0614049f5a95b3b11cd8eff80fe4ec340a1208"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5953391af1405f968eb5701ebbb577ebc5ced8d0041406f9052638bafe52209d"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:840e18c38098221ea6201f091fc5d4de6128961d2930fbbc96806fb43f69aec1"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6d8b735c4d162dc7d86a9cf3d717f14b6c73637a1f9cd57fe7e61002d9cb1972"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce757c7c90d35719b38fa3d4ca55654a76a40716ee299b0865f2de21c146801c"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a9421b23c85f361a133aa7c5e8ec757668f70343f4ed8fdb5a4a14abd5437244"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:3b823be829407393d84ee56dc849dbe3b31b6a326f388e171555b262e8456cc1"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:5e58b61dcbb483a442c6239c3836696b79f2cd8e7eec11e12155d3f6f2d886d1"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39d67896f7235b2c886fb1ee77b1491b77049dcef6fbf0f401e7b4cbed86bbd4"}, - {file = "rpds_py-0.19.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:8b32cd4ab6db50c875001ba4f5a6b30c0f42151aa1fbf9c2e7e3674893fb1dc4"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1c32e41de995f39b6b315d66c27dea3ef7f7c937c06caab4c6a79a5e09e2c415"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1a129c02b42d46758c87faeea21a9f574e1c858b9f358b6dd0bbd71d17713175"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:346557f5b1d8fd9966059b7a748fd79ac59f5752cd0e9498d6a40e3ac1c1875f"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:31e450840f2f27699d014cfc8865cc747184286b26d945bcea6042bb6aa4d26e"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:01227f8b3e6c8961490d869aa65c99653df80d2f0a7fde8c64ebddab2b9b02fd"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69084fd29bfeff14816666c93a466e85414fe6b7d236cfc108a9c11afa6f7301"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d2b88efe65544a7d5121b0c3b003ebba92bfede2ea3577ce548b69c5235185"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ea961a674172ed2235d990d7edf85d15d8dfa23ab8575e48306371c070cda67"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:5beffdbe766cfe4fb04f30644d822a1080b5359df7db3a63d30fa928375b2720"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:720f3108fb1bfa32e51db58b832898372eb5891e8472a8093008010911e324c5"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:c2087dbb76a87ec2c619253e021e4fb20d1a72580feeaa6892b0b3d955175a71"}, - {file = "rpds_py-0.19.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2ddd50f18ebc05ec29a0d9271e9dbe93997536da3546677f8ca00b76d477680c"}, - {file = "rpds_py-0.19.1.tar.gz", hash = "sha256:31dd5794837f00b46f4096aa8ccaa5972f73a938982e32ed817bb520c465e520"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf"}, + {file = "rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652"}, + {file = "rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a"}, + {file = "rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64"}, + {file = "rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7"}, + {file = "rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627"}, + {file = "rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f"}, + {file = "rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de"}, + {file = "rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:378753b4a4de2a7b34063d6f95ae81bfa7b15f2c1a04a9518e8644e81807ebea"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3445e07bf2e8ecfeef6ef67ac83de670358abf2996916039b16a218e3d95e97e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b2513ba235829860b13faa931f3b6846548021846ac808455301c23a101689d"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eaf16ae9ae519a0e237a0f528fd9f0197b9bb70f40263ee57ae53c2b8d48aeb3"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:583f6a1993ca3369e0f80ba99d796d8e6b1a3a2a442dd4e1a79e652116413091"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4617e1915a539a0d9a9567795023de41a87106522ff83fbfaf1f6baf8e85437e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2fa4331c200c2521512595253f5bb70858b90f750d39b8cbfd67465f8d1b596d"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:214b7a953d73b5e87f0ebece4a32a5bd83c60a3ecc9d4ec8f1dca968a2d91e99"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f47ad3d5f3258bd7058d2d506852217865afefe6153a36eb4b6928758041d831"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f276b245347e6e36526cbd4a266a417796fc531ddf391e43574cf6466c492520"}, + {file = "rpds_py-0.22.3-cp39-cp39-win32.whl", hash = "sha256:bbb232860e3d03d544bc03ac57855cd82ddf19c7a07651a7c0fdb95e9efea8b9"}, + {file = "rpds_py-0.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfbc454a2880389dbb9b5b398e50d439e2e58669160f27b60e5eca11f68ae17c"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bb47271f60660803ad11f4c61b42242b8c1312a31c98c578f79ef9387bbde21c"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:70fb28128acbfd264eda9bf47015537ba3fe86e40d046eb2963d75024be4d055"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44d61b4b7d0c2c9ac019c314e52d7cbda0ae31078aabd0f22e583af3e0d79723"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0e260eaf54380380ac3808aa4ebe2d8ca28b9087cf411649f96bad6900c728"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b25bc607423935079e05619d7de556c91fb6adeae9d5f80868dde3468657994b"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb6116dfb8d1925cbdb52595560584db42a7f664617a1f7d7f6e32f138cdf37d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a63cbdd98acef6570c62b92a1e43266f9e8b21e699c363c0fef13bd530799c11"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b8f60e1b739a74bab7e01fcbe3dddd4657ec685caa04681df9d562ef15b625f"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:2e8b55d8517a2fda8d95cb45d62a5a8bbf9dd0ad39c5b25c8833efea07b880ca"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2de29005e11637e7a2361fa151f780ff8eb2543a0da1413bb951e9f14b699ef3"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:666ecce376999bf619756a24ce15bb14c5bfaf04bf00abc7e663ce17c3f34fe7"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5246b14ca64a8675e0a7161f7af68fe3e910e6b90542b4bfb5439ba752191df6"}, + {file = "rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d"}, ] [[package]] name = "scipy" -version = "1.14.0" +version = "1.15.1" description = "Fundamental algorithms for scientific computing in Python" optional = false python-versions = ">=3.10" files = [ - {file = "scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7e911933d54ead4d557c02402710c2396529540b81dd554fc1ba270eb7308484"}, - {file = "scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:687af0a35462402dd851726295c1a5ae5f987bd6e9026f52e9505994e2f84ef6"}, - {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:07e179dc0205a50721022344fb85074f772eadbda1e1b3eecdc483f8033709b7"}, - {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a9c9a9b226d9a21e0a208bdb024c3982932e43811b62d202aaf1bb59af264b1"}, - {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076c27284c768b84a45dcf2e914d4000aac537da74236a0d45d82c6fa4b7b3c0"}, - {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42470ea0195336df319741e230626b6225a740fd9dce9642ca13e98f667047c0"}, - {file = "scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:176c6f0d0470a32f1b2efaf40c3d37a24876cebf447498a4cefb947a79c21e9d"}, - {file = "scipy-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:ad36af9626d27a4326c8e884917b7ec321d8a1841cd6dacc67d2a9e90c2f0359"}, - {file = "scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e"}, - {file = "scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb"}, - {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf"}, - {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86"}, - {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8"}, - {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74"}, - {file = "scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb"}, - {file = "scipy-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc"}, - {file = "scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9"}, - {file = "scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4"}, - {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0"}, - {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f"}, - {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209"}, - {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14"}, - {file = "scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159"}, - {file = "scipy-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20"}, - {file = "scipy-1.14.0.tar.gz", hash = "sha256:b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b"}, + {file = "scipy-1.15.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:c64ded12dcab08afff9e805a67ff4480f5e69993310e093434b10e85dc9d43e1"}, + {file = "scipy-1.15.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:5b190b935e7db569960b48840e5bef71dc513314cc4e79a1b7d14664f57fd4ff"}, + {file = "scipy-1.15.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:4b17d4220df99bacb63065c76b0d1126d82bbf00167d1730019d2a30d6ae01ea"}, + {file = "scipy-1.15.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:63b9b6cd0333d0eb1a49de6f834e8aeaefe438df8f6372352084535ad095219e"}, + {file = "scipy-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f151e9fb60fbf8e52426132f473221a49362091ce7a5e72f8aa41f8e0da4f25"}, + {file = "scipy-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21e10b1dd56ce92fba3e786007322542361984f8463c6d37f6f25935a5a6ef52"}, + {file = "scipy-1.15.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5dff14e75cdbcf07cdaa1c7707db6017d130f0af9ac41f6ce443a93318d6c6e0"}, + {file = "scipy-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:f82fcf4e5b377f819542fbc8541f7b5fbcf1c0017d0df0bc22c781bf60abc4d8"}, + {file = "scipy-1.15.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:5bd8d27d44e2c13d0c1124e6a556454f52cd3f704742985f6b09e75e163d20d2"}, + {file = "scipy-1.15.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:be3deeb32844c27599347faa077b359584ba96664c5c79d71a354b80a0ad0ce0"}, + {file = "scipy-1.15.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:5eb0ca35d4b08e95da99a9f9c400dc9f6c21c424298a0ba876fdc69c7afacedf"}, + {file = "scipy-1.15.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:74bb864ff7640dea310a1377d8567dc2cb7599c26a79ca852fc184cc851954ac"}, + {file = "scipy-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:667f950bf8b7c3a23b4199db24cb9bf7512e27e86d0e3813f015b74ec2c6e3df"}, + {file = "scipy-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:395be70220d1189756068b3173853029a013d8c8dd5fd3d1361d505b2aa58fa7"}, + {file = "scipy-1.15.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce3a000cd28b4430426db2ca44d96636f701ed12e2b3ca1f2b1dd7abdd84b39a"}, + {file = "scipy-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fe1d95944f9cf6ba77aa28b82dd6bb2a5b52f2026beb39ecf05304b8392864b"}, + {file = "scipy-1.15.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c09aa9d90f3500ea4c9b393ee96f96b0ccb27f2f350d09a47f533293c78ea776"}, + {file = "scipy-1.15.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0ac102ce99934b162914b1e4a6b94ca7da0f4058b6d6fd65b0cef330c0f3346f"}, + {file = "scipy-1.15.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:09c52320c42d7f5c7748b69e9f0389266fd4f82cf34c38485c14ee976cb8cb04"}, + {file = "scipy-1.15.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:cdde8414154054763b42b74fe8ce89d7f3d17a7ac5dd77204f0e142cdc9239e9"}, + {file = "scipy-1.15.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c9d8fc81d6a3b6844235e6fd175ee1d4c060163905a2becce8e74cb0d7554ce"}, + {file = "scipy-1.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fb57b30f0017d4afa5fe5f5b150b8f807618819287c21cbe51130de7ccdaed2"}, + {file = "scipy-1.15.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:491d57fe89927fa1aafbe260f4cfa5ffa20ab9f1435025045a5315006a91b8f5"}, + {file = "scipy-1.15.1-cp312-cp312-win_amd64.whl", hash = "sha256:900f3fa3db87257510f011c292a5779eb627043dd89731b9c461cd16ef76ab3d"}, + {file = "scipy-1.15.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:100193bb72fbff37dbd0bf14322314fc7cbe08b7ff3137f11a34d06dc0ee6b85"}, + {file = "scipy-1.15.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:2114a08daec64980e4b4cbdf5bee90935af66d750146b1d2feb0d3ac30613692"}, + {file = "scipy-1.15.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:6b3e71893c6687fc5e29208d518900c24ea372a862854c9888368c0b267387ab"}, + {file = "scipy-1.15.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:837299eec3d19b7e042923448d17d95a86e43941104d33f00da7e31a0f715d3c"}, + {file = "scipy-1.15.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82add84e8a9fb12af5c2c1a3a3f1cb51849d27a580cb9e6bd66226195142be6e"}, + {file = "scipy-1.15.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:070d10654f0cb6abd295bc96c12656f948e623ec5f9a4eab0ddb1466c000716e"}, + {file = "scipy-1.15.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:55cc79ce4085c702ac31e49b1e69b27ef41111f22beafb9b49fea67142b696c4"}, + {file = "scipy-1.15.1-cp313-cp313-win_amd64.whl", hash = "sha256:c352c1b6d7cac452534517e022f8f7b8d139cd9f27e6fbd9f3cbd0bfd39f5bef"}, + {file = "scipy-1.15.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0458839c9f873062db69a03de9a9765ae2e694352c76a16be44f93ea45c28d2b"}, + {file = "scipy-1.15.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:af0b61c1de46d0565b4b39c6417373304c1d4f5220004058bdad3061c9fa8a95"}, + {file = "scipy-1.15.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:71ba9a76c2390eca6e359be81a3e879614af3a71dfdabb96d1d7ab33da6f2364"}, + {file = "scipy-1.15.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14eaa373c89eaf553be73c3affb11ec6c37493b7eaaf31cf9ac5dffae700c2e0"}, + {file = "scipy-1.15.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f735bc41bd1c792c96bc426dece66c8723283695f02df61dcc4d0a707a42fc54"}, + {file = "scipy-1.15.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2722a021a7929d21168830790202a75dbb20b468a8133c74a2c0230c72626b6c"}, + {file = "scipy-1.15.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bc7136626261ac1ed988dca56cfc4ab5180f75e0ee52e58f1e6aa74b5f3eacd5"}, + {file = "scipy-1.15.1.tar.gz", hash = "sha256:033a75ddad1463970c96a88063a1df87ccfddd526437136b6ee81ff0312ebdf6"}, ] [package.dependencies] -numpy = ">=1.23.5,<2.3" +numpy = ">=1.23.5,<2.5" [package.extras] dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] -doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] -test = ["Cython", "array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] +doc = ["intersphinx_registry", "jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.16.5)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<8.0.0)", "sphinx-copybutton", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict (>=2.0,<2.1.1)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] [[package]] name = "seaborn" @@ -2812,24 +2912,24 @@ stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] [[package]] name = "six" -version = "1.16.0" +version = "1.17.0" description = "Python 2 and 3 compatibility utilities" optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" files = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, ] [[package]] name = "soupsieve" -version = "2.5" +version = "2.6" description = "A modern CSS selector implementation for Beautiful Soup." optional = false python-versions = ">=3.8" files = [ - {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, - {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, ] [[package]] @@ -2853,13 +2953,13 @@ tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] [[package]] name = "tinycss2" -version = "1.3.0" +version = "1.4.0" description = "A tiny CSS parser" optional = false python-versions = ">=3.8" files = [ - {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, - {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, + {file = "tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289"}, + {file = "tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7"}, ] [package.dependencies] @@ -2871,35 +2971,86 @@ test = ["pytest", "ruff"] [[package]] name = "tomli" -version = "2.0.1" +version = "2.2.1" description = "A lil' TOML parser" optional = false -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, + {file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"}, + {file = "tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8"}, + {file = "tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff"}, + {file = "tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e"}, + {file = "tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98"}, + {file = "tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744"}, + {file = "tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec"}, + {file = "tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69"}, + {file = "tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc"}, + {file = "tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff"}, ] [[package]] name = "tornado" -version = "6.4.1" +version = "6.4.2" description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." optional = false python-versions = ">=3.8" files = [ - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, - {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, - {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, - {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, - {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, - {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, - {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, +] + +[[package]] +name = "tqdm" +version = "4.67.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2"}, + {file = "tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2"}, ] +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["nbval", "pytest (>=6)", "pytest-asyncio (>=0.24)", "pytest-cov", "pytest-timeout"] +discord = ["requests"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + [[package]] name = "traitlets" version = "5.14.3" @@ -2928,24 +3079,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2025.1" description = "Provider of IANA time zone data" optional = false python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2025.1-py2.py3-none-any.whl", hash = "sha256:7e127113816800496f027041c570f50bcd464a020098a3b6b199517772303639"}, + {file = "tzdata-2025.1.tar.gz", hash = "sha256:24894909e88cdb28bd1636c6887801df64cb485bd593f2fd83ef29075a81d694"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.3.0" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df"}, + {file = "urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"}, ] [package.extras] @@ -2956,43 +3107,41 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "watchdog" -version = "4.0.1" +version = "6.0.0" description = "Filesystem events monitoring" optional = false -python-versions = ">=3.8" +python-versions = ">=3.9" files = [ - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"}, - {file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"}, - {file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"}, - {file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"}, - {file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"}, - {file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"}, - {file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"}, - {file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"}, - {file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"}, - {file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"}, - {file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"}, - {file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"}, - {file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"}, - {file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"}, + {file = "watchdog-6.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d1cdb490583ebd691c012b3d6dae011000fe42edb7a82ece80965b42abd61f26"}, + {file = "watchdog-6.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc64ab3bdb6a04d69d4023b29422170b74681784ffb9463ed4870cf2f3e66112"}, + {file = "watchdog-6.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c897ac1b55c5a1461e16dae288d22bb2e412ba9807df8397a635d88f671d36c3"}, + {file = "watchdog-6.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6eb11feb5a0d452ee41f824e271ca311a09e250441c262ca2fd7ebcf2461a06c"}, + {file = "watchdog-6.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ef810fbf7b781a5a593894e4f439773830bdecb885e6880d957d5b9382a960d2"}, + {file = "watchdog-6.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:afd0fe1b2270917c5e23c2a65ce50c2a4abb63daafb0d419fde368e272a76b7c"}, + {file = "watchdog-6.0.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:bdd4e6f14b8b18c334febb9c4425a878a2ac20efd1e0b231978e7b150f92a948"}, + {file = "watchdog-6.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c7c15dda13c4eb00d6fb6fc508b3c0ed88b9d5d374056b239c4ad1611125c860"}, + {file = "watchdog-6.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f10cb2d5902447c7d0da897e2c6768bca89174d0c6e1e30abec5421af97a5b0"}, + {file = "watchdog-6.0.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:490ab2ef84f11129844c23fb14ecf30ef3d8a6abafd3754a6f75ca1e6654136c"}, + {file = "watchdog-6.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:76aae96b00ae814b181bb25b1b98076d5fc84e8a53cd8885a318b42b6d3a5134"}, + {file = "watchdog-6.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a175f755fc2279e0b7312c0035d52e27211a5bc39719dd529625b1930917345b"}, + {file = "watchdog-6.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e6f0e77c9417e7cd62af82529b10563db3423625c5fce018430b249bf977f9e8"}, + {file = "watchdog-6.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:90c8e78f3b94014f7aaae121e6b909674df5b46ec24d6bebc45c44c56729af2a"}, + {file = "watchdog-6.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e7631a77ffb1f7d2eefa4445ebbee491c720a5661ddf6df3498ebecae5ed375c"}, + {file = "watchdog-6.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:c7ac31a19f4545dd92fc25d200694098f42c9a8e391bc00bdd362c5736dbf881"}, + {file = "watchdog-6.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9513f27a1a582d9808cf21a07dae516f0fab1cf2d7683a742c498b93eedabb11"}, + {file = "watchdog-6.0.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7a0e56874cfbc4b9b05c60c8a1926fedf56324bb08cfbc188969777940aef3aa"}, + {file = "watchdog-6.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:e6439e374fc012255b4ec786ae3c4bc838cd7309a540e5fe0952d03687d8804e"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7607498efa04a3542ae3e05e64da8202e58159aa1fa4acddf7678d34a35d4f13"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:9041567ee8953024c83343288ccc458fd0a2d811d6a0fd68c4c22609e3490379"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:82dc3e3143c7e38ec49d61af98d6558288c415eac98486a5c581726e0737c00e"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:212ac9b8bf1161dc91bd09c048048a95ca3a4c4f5e5d4a7d1b1a7d5752a7f96f"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:e3df4cbb9a450c6d49318f6d14f4bbc80d763fa587ba46ec86f99f9e6876bb26"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:2cce7cfc2008eb51feb6aab51251fd79b85d9894e98ba847408f662b3395ca3c"}, + {file = "watchdog-6.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:20ffe5b202af80ab4266dcd3e91aae72bf2da48c0d33bdb15c66658e685e94e2"}, + {file = "watchdog-6.0.0-py3-none-win32.whl", hash = "sha256:07df1fdd701c5d4c8e55ef6cf55b8f0120fe1aef7ef39a1c6fc6bc2e606d517a"}, + {file = "watchdog-6.0.0-py3-none-win_amd64.whl", hash = "sha256:cbafb470cf848d93b5d013e2ecb245d4aa1c8fd0504e863ccefa32445359d680"}, + {file = "watchdog-6.0.0-py3-none-win_ia64.whl", hash = "sha256:a1914259fa9e1454315171103c6a30961236f508b9b623eae470268bbcc6a22f"}, + {file = "watchdog-6.0.0.tar.gz", hash = "sha256:9ddf7c82fda3ae8e24decda1338ede66e1c99883db93711d8fb941eaa2d8c282"}, ] [package.extras] @@ -3023,4 +3172,4 @@ files = [ [metadata] lock-version = "2.0" python-versions = ">=3.10,<3.12" -content-hash = "b9130744a9f7a5b7f3911f9c528e7242ed7f64641f1abd9a92c36480c711d1b1" +content-hash = "5d65a0fc4b13feeb06bbbedc9d6fa054cdef58d85bee75da37506ae7b72e1f34" diff --git a/pyproject.toml b/pyproject.toml index 0baae2b..07a94b7 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "resonances" -version = "0.3.0" +version = "0.4.0" description = "Identification of mean-motion resonances" authors = ["Evgeny Smirnov "] license = "MIT" @@ -29,10 +29,12 @@ seaborn = "^0.13.2" astropy = "^6.1.2" rebound = "^3.23.2" # rebound = "^4.4.2" -astdys = ">=0.9.2" +astdys = ">=0.9.3" mkdocs = "1.4.2" mkdocs-jupyter = "0.22.0" -lxml-html-clean = "^0.1.1" +lxml-html-clean = ">=0.1.1,<0.5.0" +tqdm = "^4.66.5" +python-dotenv = "^1.0.1" [tool.poetry.dev-dependencies] pytest = "^8.3.1" @@ -47,11 +49,14 @@ coverage = "^7.6.0" ipykernel = "^6.21.3" [tool.coverage.run] -omit = [".*", "tests/resonances/*", "*/site-packages/*"] +omit = [".*", "tests/*", "*/site-packages/*"] [tool.pytest.ini_options] testpaths = ["tests/resonances"] - +filterwarnings = [ + "ignore::DeprecationWarning:rebound", + "ignore::RuntimeWarning:rebound.horizons", +] [tool.coverage.report] fail_under = 80 omit = [".*", "tests/resonances/*", "*/site-packages/*"] diff --git a/resonances/.env.dist b/resonances/.env.dist new file mode 100644 index 0000000..381caff --- /dev/null +++ b/resonances/.env.dist @@ -0,0 +1,48 @@ +# Libration settings +LIBRATION_FILTER_CUTOFF=0.0005 +LIBRATION_FILTER_ORDER=2 +LIBRATION_FREQ_MIN=0.00001 +LIBRATION_FREQ_MAX=0.002 +LIBRATION_CRITICAL=0.1 +LIBRATION_SOFT=0.05 +LIBRATION_PERIOD_MIN=500 +LIBRATION_PERIOD_CRITICAL=20000 +LIBRATION_MONOTONY_CRITICAL=0.4,0.6 + +# Integration settings +INTEGRATION_TMAX=628319 +INTEGRATION_DT=1.0 +INTEGRATION_INTEGRATOR=SABA(10,6,4) +INTEGRATION_SAFE_MODE=0 +INTEGRATION_CORRECTOR=17 + +# File paths +SOLAR_SYSTEM_FILE=cache/solar.bin +SAVE_MODE=nonzero +SAVE_SUMMARY=True +SAVE_ADDITIONAL_DATA=True +SAVE_PATH=cache +PLOT_PATH=cache +PLOT_MODE=nonzero +PLOT_TYPE=save +PLOT_IMAGE_TYPE=png + +# Data and catalog settings +DATA_SOURCE=nasa +CATALOG_PATH=cache/allnum.csv +ASTDYS_URL=https://newton.spacedys.com/~astdys2/catalogs/allnum.cat +ASTDYS_CATALOG=cache/allnum.cat + +# Matrix settings +MATRIX_3BODY_PRIMARY_MAX=8 +MATRIX_3BODY_COEF_MAX=7 +MATRIX_3BODY_ORDER_MAX=6 +MATRIX_3BODY_FILE=cache/mmr-3body.csv +MATRIX_2BODY_PRIMARY_MAX=12 +MATRIX_2BODY_COEF_MAX=11 +MATRIX_2BODY_ORDER_MAX=10 +MATRIX_2BODY_FILE=cache/mmr-2body.csv + +# Logging +LOG_FILE=cache/resonances.log +LOG_LEVEL=info diff --git a/resonances/__init__.py b/resonances/__init__.py index 508c23c..69a74eb 100644 --- a/resonances/__init__.py +++ b/resonances/__init__.py @@ -1,4 +1,4 @@ -__version__ = '0.1.1' +__version__ = '0.4.0' import logging from .config import config @@ -21,3 +21,4 @@ from resonances.finder import find from resonances.finder import check from resonances.finder import find_asteroids_in_mmr +from resonances.finder import find_resonances diff --git a/resonances/body.py b/resonances/body.py index d41f4c3..f4a436e 100644 --- a/resonances/body.py +++ b/resonances/body.py @@ -71,7 +71,7 @@ def mmr_to_dict(self, mmr: MMR, times: np.ndarray): df_data['a_filtered'] = self.axis_filtered df_data['a_periodogram'] = np.append(self.axis_periodogram_power, np.zeros(len_diff)) except Exception as e: - logger.error(f'Error in mmr_to_dict for body={self.name} and mmr={mmr.to_s()}: {e}') + logger.error(f'Error in mmr_to_dict function for body={self.name} and mmr={mmr.to_s()}: {e}') return None return df_data diff --git a/resonances/config.json b/resonances/config.json deleted file mode 100644 index 3d00665..0000000 --- a/resonances/config.json +++ /dev/null @@ -1,41 +0,0 @@ -{ - "libration.oscillation.filter.cutoff": 0.0005, - "libration.oscillation.filter.order": 2, - "libration.periodogram.frequency.min": 0.00001, - "libration.periodogram.frequency.max": 0.002, - "libration.periodogram.critical": 0.1, - "libration.periodogram.soft": 0.05, - "libration.period.min": 500, - "libration.period.critical": 20000, - "libration.monotony.critical": [ 0.4, 0.6 ], - "integration.tmax": 628319, - "integration.dt": 0.1, - "integration.integrator": "SABA(10,6,4)", - "integration.integrator.safe_mode": 0, - "integration.integrator.corrector": 17, - "solar_system_file": "cache/solar.bin", - "save": "resonant", - "save.summary": true, - "save.additional.data": true, - "save.path": "cache", - "plot.path": "cache", - "plot": "resonant", - "plot.type": "save", - "plot.image_type": "png", - "data.source": "astdys", - "catalog": "cache/allnum.csv", - "catalog.date": "2020-12-17 00:00", - "astdys.catalog.url": "https://newton.spacedys.com/~astdys2/catalogs/allnum.cat", - "astdys.catalog": "cache/allnum.cat", - "astdys.date": "2020-12-17 00:00", - "matrix.3body.primary_max": 8, - "matrix.3body.coefficients_max": 7, - "matrix.3body.max_order": 6, - "matrix.3body.file": "cache/mmr-3body.csv", - "matrix.2body.primary_max": 12, - "matrix.2body.coefficients_max": 11, - "matrix.2body.max_order": 10, - "matrix.2body.file": "cache/mmr-2body.csv", - "log.file": "cache/resonances.log", - "log.level": "info" -} diff --git a/resonances/config.py b/resonances/config.py index 920ce85..fc834b7 100644 --- a/resonances/config.py +++ b/resonances/config.py @@ -1,5 +1,6 @@ -import json from pathlib import Path +from dotenv import dotenv_values +import os def static_init(cls): @@ -10,39 +11,54 @@ def static_init(cls): @static_init class config: - config = None + config = {} @classmethod def get(cls, key, default=None): try: value = cls.config[key] - except Exception: + except KeyError: if default is not None: return default - raise Exception('There is no config with key = {}. The full config: {}'.format(key, json.dumps(cls.config))) + raise Exception(f'There is no config with key = {key}. The full config: {cls.config}') return value @classmethod def has(cls, key): - if key in cls.config: - return True - return False + return key in cls.config @classmethod def set(cls, key, value): if not cls.has(key): - raise Exception('There is no config with key = {}. The full config: {}'.format(key, json.dumps(cls.config))) - + raise Exception(f'There is no config with key = {key}. The full config: {cls.config}') cls.config[key] = value @classmethod def static_init(cls): - config_file_dir = Path(__file__).parent.resolve() - config_file_path = '{}/config.json'.format(str(config_file_dir)) - config_file = Path(config_file_path) + """ + 1) Load default values from .env.dist (in the package). + 2) Override with real OS environment variables. + 2) Override them with .env (in current working directory), if present. + """ + package_env_path = Path(__file__).parent / ".env.dist" + user_env_path = Path.cwd() / ".env" + + # 1. Load defaults from your package's .env.dist + if not package_env_path.exists(): # pragma: no cover + raise FileNotFoundError(f"Missing .env.dist at: {package_env_path}") + default_config = dotenv_values(package_env_path) + + # 2. Load user-local .env if available + user_config = {} + if user_env_path.exists(): # pragma: no cover + user_config = dotenv_values(user_env_path) + + # 3. Get actual environment variables + # (os.environ is a live mapping; turn it into a dict copy here) + env_vars = dict(os.environ) - if not config_file.exists(): # pragma: no cover - raise Exception('No config.json presented. Looking at {} Cannot continue working.'.format(config_file_path)) + # Merge them: left to right means the rightmost wins in conflicts + # default_config < env_vars < user_config + merged = {**user_config, **default_config, **env_vars, **user_config} - with open(config_file_path, "r") as read_file: - cls.config = json.load(read_file) + cls.config = merged diff --git a/resonances/data/util.py b/resonances/data/util.py index 784061a..9ebc478 100644 --- a/resonances/data/util.py +++ b/resonances/data/util.py @@ -1,4 +1,6 @@ +from typing import Union from resonances.data import const +import datetime def axis_from_mean_motion(mean_motion): @@ -7,3 +9,39 @@ def axis_from_mean_motion(mean_motion): def mean_motion_from_axis(a): return const.K / a ** (3.0 / 2) + + +def datetime_from_string(date: Union[str, datetime.datetime]) -> datetime.datetime: + """ + Convert string to datetime object. + This function is based on the REBOUND package date conversion utilities. It converts a date string to a datetime object using various format patterns. + Args: + date (Union[str, datetime.datetime]): Input date either as string or datetime object. + Accepted string formats are: + - "YYYY-MM-DD" + - "YYYY-MM-DD HH:MM" + - "YYYY-MM-DD HH:MM:SS" + Returns: + datetime.datetime: Converted datetime object + Raises: + AttributeError: If the input string format doesn't match any of the accepted formats + Example: + >>> datetime_from_string("2023-01-01") + datetime.datetime(2023, 1, 1, 0, 0) + >>> datetime_from_string("2023-01-01 13:45") + datetime.datetime(2023, 1, 1, 13, 45) + >>> datetime_from_string("2023-01-01 13:45:05") + datetime.datetime(2023, 1, 1, 13, 45, 05) + """ + + if isinstance(date, datetime.datetime): + return date + elif isinstance(date, str): + formats = ["%Y-%m-%d", "%Y-%m-%d %H:%M", "%Y-%m-%d %H:%M:%S"] + for f in formats: + try: + tmp = datetime.datetime.strptime(date, f) + return tmp + except ValueError: + continue + raise AttributeError("An error occured while calculating the date. Use one of ".join(formats)) diff --git a/resonances/experiment/finder.py b/resonances/experiment/finder.py deleted file mode 100644 index 214446c..0000000 --- a/resonances/experiment/finder.py +++ /dev/null @@ -1,36 +0,0 @@ -import math -import astdys -import resonances - - -def run(mmr: resonances.MMR, dump=100, max_iterations=1000, plot=False): - df = astdys.search_by_axis(mmr.resonant_axis) - asteroids = df['num'].tolist() - - num_particles = len(asteroids) - num_iterations = int(math.ceil(num_particles / dump)) - for j in range(num_iterations): - if j > (max_iterations - 1): - resonances.logger.info( - 'Terminating because the app has reached the limit specified in max_iterations parameter ({}).'.format(max_iterations) - ) - break - - sim = resonances.Simulation() - sim.save, sim.save_path, sim.plot, sim.save_only_undetermined = False, 'cache/finder', plot, True - sim.create_solar_system() - - # Find the number of calculations for a given step. It varies for the last one. - if j < num_iterations - 1: - num = dump - else: - num = num_particles % dump - if num == 0: - num = dump - - for i in range(num): - key = j * dump + i - sim.add_body(asteroids[key], mmr, '{}-{}'.format(asteroids[key], key)) - - sim.run() - resonances.logger.info('Iteration {} has finished. Processed from {}. Starting the new one.'.format(j, j * dump)) diff --git a/resonances/finder.py b/resonances/finder.py index f51a5b6..beb6751 100644 --- a/resonances/finder.py +++ b/resonances/finder.py @@ -1,36 +1,39 @@ import resonances import astdys from typing import Union, List +from datetime import datetime + +import resonances.horizons def convert_input_to_list(asteroids: Union[int, str, List[Union[int, str]]]) -> List[str]: if isinstance(asteroids, str) or isinstance(asteroids, int): asteroids = [asteroids] - if (asteroids is not None) and (len(asteroids) > 0): - asteroids = list(map(str, asteroids)) - else: + elif asteroids is None: asteroids = [] return asteroids -def find(asteroids: Union[int, str, List[Union[int, str]]], planets=None) -> resonances.Simulation: - sim = resonances.Simulation() +def find( + asteroids: Union[int, str, List[Union[int, str]]], planets=None, name: str = None, sigma2: float = 0.1, sigma3: float = 0.02 +) -> resonances.Simulation: + now = datetime.now() + sim = resonances.Simulation(name=name) sim.create_solar_system() asteroids = convert_input_to_list(asteroids) - elems = astdys.search(asteroids) for asteroid in asteroids: - elem = elems[asteroid] - mmrs = resonances.ThreeBodyMatrix.find_resonances(elem['a'], planets=planets) - mmrs2 = resonances.TwoBodyMatrix.find_resonances(elem['a'], planets=planets) - mmrs = mmrs + mmrs2 - sim.add_body(elem, mmrs, f"{asteroid}") - resonances.logger.info('Adding a possible resonance for an asteroid {} - {}'.format(asteroid, ', '.join(map(str, elems.values())))) - - # default settings - sim.dt = 1 - sim.plot = 'nonzero' + elem = resonances.horizons.get_body_keplerian_elements(asteroid, sim=sim.sim, date=now) + mmrs = find_resonances(elem['a'], planets=planets, sigma2=sigma2, sigma3=sigma3) + if len(mmrs) > 0: + sim.add_body(elem, mmrs, f"{asteroid}") + resonances.logger.info( + 'Adding a possible resonance for an asteroid {} - {}'.format(asteroid, ', '.join(map(str, elem.values()))) + ) + else: + resonances.logger.warning('No resonances found for an asteroid {}'.format(asteroid)) + return sim @@ -43,20 +46,19 @@ def check(asteroids: Union[int, str, List[Union[int, str]]], mmr: Union[resonanc asteroids = convert_input_to_list(asteroids) - elems = astdys.search(asteroids) - for asteroid in asteroids: - elem = elems[asteroid] - sim.add_body(elem, mmr, f"{asteroid}") + sim.add_body(asteroid, mmr, name=f"{asteroid}") resonances.logger.info('Adding a possible resonance for an asteroid {} - {}'.format(asteroid, mmr.to_s())) - # default settings - sim.dt = 1 - sim.plot = 'nonzero' return sim -def find_asteroids_in_mmr(mmr: Union[resonances.MMR, str], sigma=0.1, per_iteration=500): # pragma: no cover +def find_asteroids_in_mmr( + mmr: Union[resonances.MMR, str], + sigma=0.1, + per_iteration: int = 500, + name: str = None, +): # pragma: no cover if isinstance(mmr, str): mmr = resonances.create_mmr(mmr) @@ -66,19 +68,9 @@ def find_asteroids_in_mmr(mmr: Union[resonances.MMR, str], sigma=0.1, per_iterat num_chunks = len(chunks) data = [] - save_path = None - plot_path = None for i, chunk in enumerate(chunks): - sim = resonances.Simulation() + sim = resonances.Simulation(name=name, source='astdys', date=astdys.catalog_time) sim.create_solar_system() - sim.dt = 1 - sim.plot = 'nonzero' - if save_path is not None: - sim.save_path = save_path - sim.plot_path = plot_path - else: - save_path = sim.save_path - plot_path = sim.plot_path resonances.logger.info(f"Iteration {i+1}/{num_chunks}: Going to process a chunk of {len(chunk)} asteroids.") for asteroid in chunk: @@ -87,3 +79,40 @@ def find_asteroids_in_mmr(mmr: Union[resonances.MMR, str], sigma=0.1, per_iterat data.append(sim.get_simulation_summary()) return data + + +def find_resonances(a: float, planets=None, sigma2=0.1, sigma3=0.02, sigma=None) -> List[resonances.MMR]: + """Find Two and Three-Body Mean Motion Resonances (MMR) for a given semi-major axis. + This function identifies both two-body and three-body mean motion resonances + near the specified semi-major axis value. If a single sigma value is provided, + it overrides both sigma2 and sigma3 parameters. + Parameters + ---------- + a : float + Semi-major axis value to search for resonances around + planets : List[Planet], optional + List of planets to consider for resonance search. If None, uses default planets + sigma2 : float, default=0.1 + Width parameter for two-body resonance search. Ignored if sigma is provided + sigma3 : float, default=0.02 + Width parameter for three-body resonance search. Ignored if sigma is provided + sigma : float, optional + If provided, overrides both sigma2 and sigma3 with this single width parameter + Returns + ------- + List[resonances.MMR] + Combined list of found two-body and three-body mean motion resonances + Notes + ----- + The function uses ThreeBodyMatrix and TwoBodyMatrix classes to identify resonances, + combining their results into a single list. + """ + + if sigma is not None: + sigma2 = sigma + sigma3 = sigma + + mmrs = resonances.ThreeBodyMatrix.find_resonances(a, planets=planets, sigma=sigma3) + mmrs2 = resonances.TwoBodyMatrix.find_resonances(a, planets=planets, sigma=sigma2) + mmrs = mmrs + mmrs2 + return mmrs diff --git a/resonances/horizons.py b/resonances/horizons.py new file mode 100644 index 0000000..1c45480 --- /dev/null +++ b/resonances/horizons.py @@ -0,0 +1,30 @@ +import datetime +from typing import Union +import rebound.horizons +from rebound.units import units_convert_particle, hash_to_unit + + +def get_body_keplerian_elements(s, sim: rebound.Simulation, date: Union[str, datetime.datetime], G=1) -> dict: + if isinstance(s, int): + s = str(s) + ';' + + p: rebound.Particle = rebound.horizons.getParticle(s, date=date) + units_convert_particle( + p, + 'km', + 's', + 'kg', + hash_to_unit(sim.python_unit_l), + hash_to_unit(sim.python_unit_t), + hash_to_unit(sim.python_unit_m), + ) + p = p.calculate_orbit(primary=sim.particles[0], G=G) + elem = { + 'a': p.a, + 'e': p.e, + 'inc': p.inc, + 'Omega': p.Omega, + 'omega': p.omega, + 'M': p.M, + } + return elem diff --git a/resonances/logger.py b/resonances/logger.py index 82c9607..a33c998 100644 --- a/resonances/logger.py +++ b/resonances/logger.py @@ -13,7 +13,7 @@ def static_init(cls): class logger: # pragma: no cover @classmethod def static_init(cls): - log_file_path = resonances.config.get('log.file') + log_file_path = resonances.config.get('LOG_FILE') log_dir = Path(log_file_path).parent.resolve() Path(log_dir).mkdir(parents=True, exist_ok=True) logging.basicConfig( @@ -25,7 +25,7 @@ def static_init(cls): @classmethod def get_logging_level(cls): - config_level = resonances.config.get('log.level') + config_level = resonances.config.get('LOG_LEVEL') if 'debug' == config_level: return logging.DEBUG elif 'warning' == config_level: diff --git a/resonances/matrix/matrix.py b/resonances/matrix/matrix.py index 956a2ed..655736c 100644 --- a/resonances/matrix/matrix.py +++ b/resonances/matrix/matrix.py @@ -18,8 +18,18 @@ def dump(cls): @classmethod def catalog_full_filename(cls) -> str: - catalog_file = f"{os.getcwd()}/{resonances.config.get(cls.catalog_file)}" - return catalog_file + """ + If the config value is an absolute path (starts with '/'), use it as is. + Otherwise, interpret it relative to the current working directory. + """ + filename = resonances.config.get(cls.catalog_file) + path_obj = Path(filename) + + # If it's not already absolute, prepend current working directory + if not path_obj.is_absolute(): + path_obj = Path(os.getcwd()) / path_obj + + return str(path_obj) @classmethod def load(cls, reload=False): diff --git a/resonances/matrix/three_body_matrix.py b/resonances/matrix/three_body_matrix.py index 1fbdf79..a5f22fd 100644 --- a/resonances/matrix/three_body_matrix.py +++ b/resonances/matrix/three_body_matrix.py @@ -9,13 +9,13 @@ class ThreeBodyMatrix(Matrix): - catalog_file = 'matrix.3body.file' + catalog_file = 'MATRIX_3BODY_FILE' @classmethod def build(cls): - primary_max = resonances.config.get('matrix.3body.primary_max') - m_max = resonances.config.get('matrix.3body.coefficients_max') - q_max = resonances.config.get('matrix.3body.max_order') + primary_max = int(resonances.config.get('MATRIX_3BODY_PRIMARY_MAX')) + m_max = int(resonances.config.get('MATRIX_3BODY_COEF_MAX')) + q_max = int(resonances.config.get('MATRIX_3BODY_ORDER_MAX')) if (cls.planets is None) or (len(cls.planets) == 0): planets = resonances.data.const.SOLAR_SYSTEM else: diff --git a/resonances/matrix/two_body_matrix.py b/resonances/matrix/two_body_matrix.py index 9552a79..e8f16e5 100644 --- a/resonances/matrix/two_body_matrix.py +++ b/resonances/matrix/two_body_matrix.py @@ -6,13 +6,13 @@ class TwoBodyMatrix(Matrix): - catalog_file = 'matrix.2body.file' + catalog_file = 'MATRIX_2BODY_FILE' @classmethod def build(cls): - primary_max = resonances.config.get('matrix.2body.primary_max') - m_max = resonances.config.get('matrix.2body.coefficients_max') - q_max = resonances.config.get('matrix.2body.max_order') + primary_max = int(resonances.config.get('MATRIX_2BODY_PRIMARY_MAX')) + m_max = int(resonances.config.get('MATRIX_2BODY_COEF_MAX')) + q_max = int(resonances.config.get('MATRIX_2BODY_ORDER_MAX')) if (cls.planets is None) or (len(cls.planets) == 0): planets = resonances.data.const.SOLAR_SYSTEM else: diff --git a/resonances/resonance/factory.py b/resonances/resonance/factory.py index 4fc6b1a..53028b4 100644 --- a/resonances/resonance/factory.py +++ b/resonances/resonance/factory.py @@ -2,7 +2,56 @@ import resonances -def create_mmr(coeff, planets_names=None): +def create_mmr(coeff, planets_names=None): # noqa: C901 + """Create Mean Motion Resonance (MMR) object(s) based on the input format. + This function serves as a factory method for creating MMR objects. It supports multiple input formats + and provides a universal interface for MMR creation. + + Args: + coeff: Input that defines the resonance(s). Can be: + - An MMR instance (returned as-is) + - A string in format "2J-1" (two-body) or "4M-2J-1" (three-body) + - A list of coefficients: 4 elements for two-body or 6 elements for three-body resonance + - A list of strings, each in format "2J-1" or "4M-2J-1" + - A list of MMR objects (returned as-is) + planets_names (list, optional): List of planet names when using coefficient list format. + Defaults to None. + Returns: + resonances.MMR or list[resonances.MMR]: A single MMR object or list of MMR objects + Raises: + Exception: If the input format is invalid or the number of coefficients doesn't match + required format (2 or 3 bodies) + Examples: + >>> create_mmr("2J-1") # Creates two-body resonance from string + >>> create_mmr([1, 2, -3, 4]) # Creates two-body resonance from coefficients + >>> create_mmr("4M-2J-1") # Creates three-body resonance from string + >>> create_mmr(['4J-2S-1', '1J-1']) # Creates list of resonances from strings + >>> create_mmr(existing_mmr) # Returns existing MMR instance as-is + >>> create_mmr([mmr1, mmr2]) # Returns list of MMR instances as-is + """ + + if isinstance(coeff, resonances.MMR): + return coeff + + if isinstance(coeff, list): + if len(coeff) == 0: + raise Exception('If input is a list, it should contain a string representation of MMRs, MMR objects, or coefficients.') + if isinstance(coeff[0], resonances.MMR): + return coeff + if isinstance(coeff[0], str): + return [create_mmr(c) for c in coeff] + size = len(coeff) + if 6 == size: + return resonances.ThreeBody(coeff, planets_names) + elif 4 == size: + return resonances.TwoBody(coeff, planets_names) + else: + raise Exception( + 'Cannot create a resonance because the number of coefficients is wrong. It should be equal to 2 or 3. Given {}.'.format( + len(coeff) + ) + ) + if isinstance(coeff, str): tmp = re.split('-|\\+', coeff) size = len(tmp) @@ -17,18 +66,6 @@ def create_mmr(coeff, planets_names=None): coeff ) ) - elif isinstance(coeff, list): - size = len(coeff) - if 6 == size: - return resonances.ThreeBody(coeff, planets_names) - elif 4 == size: - return resonances.TwoBody(coeff, planets_names) - else: - raise Exception( - 'Cannot create a resonance because the number of coefficients is wrong. It should be equal to 2 or 3. Given {}.'.format( - len(coeff) - ) - ) raise Exception( 'The argument should be either a string if you use the short notation (i.e. 2J-1) or a list containing 2 or 3 elements.' diff --git a/resonances/resonance/libration.py b/resonances/resonance/libration.py index 3e227a8..020ae22 100644 --- a/resonances/resonance/libration.py +++ b/resonances/resonance/libration.py @@ -36,7 +36,9 @@ def pure(cls, y): # not working for librations that are not around 0 or +/- np. return False @classmethod - def monotony_estimation(cls, data, crit=np.pi): + def monotony_estimation(cls, data, crit=np.pi) -> float: + if len(data) <= 1: # it can be the case for testing purposes mostly + return 0.0 num = 0 prev = data[0] for elem in data: @@ -227,8 +229,7 @@ def butter_lowpass_filter(cls, data, cutoff, fs, order, nyq): @classmethod def body(cls, sim, body: resonances.Body): - - integration_time = round(sim.tmax / (2 * np.pi)) + integration_time = abs(round(sim.tmax / (2 * np.pi))) # abs for backward integration fs = sim.Nout / integration_time # sample rate, Hz || Nout/time, i.e. 10000/100000 cutoff = sim.oscillations_cutoff # should be a little bit more than needed nyq = 0.5 * fs # Nyquist Frequency diff --git a/resonances/resonance/plot.py b/resonances/resonance/plot.py index efe144e..0add30f 100644 --- a/resonances/resonance/plot.py +++ b/resonances/resonance/plot.py @@ -19,22 +19,22 @@ def body(sim, body: resonances.Body, mmr: resonances.MMR, image_type='png'): axs[0].set_xlim([0, sim.tmax_yrs]) axs[0].xaxis.set_major_locator(plt.MultipleLocator(10000)) axs[0].xaxis.set_minor_locator(plt.MultipleLocator(2000)) - axs[0].plot(sim.times / (2 * np.pi), body.angle(mmr), linestyle='', marker=',') + axs[0].plot(sim.times / (2 * np.pi), body.angle(mmr), linestyle='', marker=',', color='black') if body.angles_filtered[mmr.to_s()] is not None: # pragma: no cover axs[1].set_title('Filtered resonant angle') - axs[1].plot(sim.times / (2 * np.pi), body.angles_filtered[mmr.to_s()], linestyle='', marker=',') + axs[1].plot(sim.times / (2 * np.pi), body.angles_filtered[mmr.to_s()], linestyle='', marker=',', color='black') else: axs[1].set_title('Again resonant angle (no filtered available)') - axs[1].plot(sim.times / (2 * np.pi), body.angle(mmr), linestyle='', marker=',') + axs[1].plot(sim.times / (2 * np.pi), body.angle(mmr), linestyle='', marker=',', color='black') axs[1].sharex(axs[0]) if body.axis_filtered is not None: # pragma: no cover axs[2].set_title('Filtered semi-major axis') - axs[2].plot(sim.times / (2 * np.pi), body.axis_filtered, linestyle='', marker=',') + axs[2].plot(sim.times / (2 * np.pi), body.axis_filtered, linestyle='', marker=',', color='black') else: axs[2].set_title('Semi-major axis') - axs[2].plot(sim.times / (2 * np.pi), body.axis, linestyle='', marker=',') + axs[2].plot(sim.times / (2 * np.pi), body.axis, linestyle='', marker=',', color='black') axs[2].sharex(axs[0]) axs[3].set_xlim(0, 40000) @@ -50,11 +50,13 @@ def body(sim, body: resonances.Body, mmr: resonances.MMR, image_type='png'): for peak_width in body.periodogram_peaks[mmr.to_s()]['position']: axs[3].axvline(x=peak_width[0], color='gray', linestyle="dashed") axs[3].axvline(x=peak_width[1], color='gray', linestyle='--') - axs[3].plot(1.0 / body.periodogram_frequency[mmr.to_s()][peaks], body.periodogram_power[mmr.to_s()][peaks], 'x', color='orange') - axs[3].plot(1.0 / body.periodogram_frequency[mmr.to_s()], body.periodogram_power[mmr.to_s()]) + axs[3].plot( + 1.0 / body.periodogram_frequency[mmr.to_s()][peaks], body.periodogram_power[mmr.to_s()][peaks], 'x', color='blue', markersize=10 + ) + axs[3].plot(1.0 / body.periodogram_frequency[mmr.to_s()], body.periodogram_power[mmr.to_s()], color='black') - axs[3].set_title('Periodogram (semi-major axis)') - axs[4].set_title('Periodogram (the resonant angle)') + axs[3].set_title('Periodogram (the resonant angle)') + axs[4].set_title('Periodogram (semi-major axis)') axs[4].set_xlim(0, 40000) # axs[3].set_ylim(0, 0.2) axs[4].axhline(y=0.05, color='r', linestyle='--') @@ -68,15 +70,22 @@ def body(sim, body: resonances.Body, mmr: resonances.MMR, image_type='png'): for peak_width in body.axis_periodogram_peaks['position']: axs[4].axvline(x=peak_width[0], color='gray', linestyle="dashed") axs[4].axvline(x=peak_width[1], color='gray', linestyle='--') - axs[4].plot(1.0 / body.axis_periodogram_frequency[peaks], body.axis_periodogram_power[peaks], 'x', color='orange') - axs[4].plot(1.0 / body.axis_periodogram_frequency, body.axis_periodogram_power) + axs[4].plot(1.0 / body.axis_periodogram_frequency[peaks], body.axis_periodogram_power[peaks], 'x', color='blue', markersize=10) + axs[4].plot(1.0 / body.axis_periodogram_frequency, body.axis_periodogram_power, color='black') axs[4].sharex(axs[3]) axs[5].set_title('Eccentricity') - axs[5].plot(sim.times / (2 * np.pi), body.ecc, linestyle='', marker=',') + axs[5].plot(sim.times / (2 * np.pi), body.ecc, linestyle='', marker=',', color='black') axs[5].sharex(axs[0]) + axs[0].set_ylabel(r"$\sigma$ (rad)", fontsize=12) + axs[1].set_ylabel(r"$\sigma_f$ (rad)", fontsize=12) + axs[2].set_ylabel(r"$a_f$ (AU)", fontsize=12) + axs[3].set_ylabel(r"$p_{\sigma}$", fontsize=12) + axs[4].set_ylabel(r"$p_{a}$", fontsize=12) + axs[5].set_ylabel("e", fontsize=12) + plt.tight_layout() if sim.plot_type in ['both', 'save']: diff --git a/resonances/resonance/three_body.py b/resonances/resonance/three_body.py index 567f32b..a4a8039 100644 --- a/resonances/resonance/three_body.py +++ b/resonances/resonance/three_body.py @@ -29,6 +29,9 @@ def calc_angle(self, body, planets): ) return angle + def order(self): + return abs((0 - self.coeff[0] - self.coeff[1] - self.coeff[2])) + def init_from_short_notation(self, s): tmp = re.split('-|\\+', s) if 3 != len(tmp): diff --git a/resonances/resonance/two_body.py b/resonances/resonance/two_body.py index eafaa5b..5e0d222 100644 --- a/resonances/resonance/two_body.py +++ b/resonances/resonance/two_body.py @@ -25,6 +25,9 @@ def calc_angle(self, body, planets): ) return angle + def order(self): + return abs((0 - self.coeff[0] - self.coeff[1])) + def init_from_short_notation(self, s): tmp = re.split('-|\\+', s) if 2 != len(tmp): diff --git a/resonances/simulation.py b/resonances/simulation.py index 0818e77..d2746e7 100644 --- a/resonances/simulation.py +++ b/resonances/simulation.py @@ -1,20 +1,107 @@ +import datetime import numpy as np import pandas as pd import rebound from pathlib import Path import os from typing import List, Union +import tqdm import resonances import astdys -import datetime + +import resonances.data +import resonances.data.util +import resonances.horizons +from resonances.config import config as c class Simulation: - def __init__(self, name=None): + def __init__( # noqa: C901 + self, + name=None, + date: Union[str, datetime.datetime] = None, + source=None, + tmax=None, + integrator: str = None, + integrator_safe_mode: int = None, + integrator_corrector: int = None, + dt: float = None, + save: str = None, + save_path: str = None, + save_summary: bool = None, + plot: str = None, + plot_path: str = None, + plot_type: str = None, + image_type: str = None, + ): self.name = name if self.name is None: self.name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + self.Nout = None + + self.source = source + if self.source is None: + self.source = c.get('DATA_SOURCE') + + if date is not None: + self.date = resonances.data.util.datetime_from_string(date) + if self.source == 'astdys': + if self.date.strftime("%Y-%m-%d %H:%M:%S") != astdys.datetime().strftime("%Y-%m-%d %H:%M:%S"): + resonances.logger.error( + "Date specified by the user is not the same as the catalog time, which may cause issues: " + f"{self.date.strftime('%Y-%m-%d %H:%M:%S')} != {astdys.catalog_time()}" + ) + elif source == 'astdys': + self.date = astdys.datetime() + else: + self.date = datetime.datetime.combine(datetime.datetime.today(), datetime.time.min) + + if tmax is None: + self.tmax = int(c.get('INTEGRATION_TMAX')) + else: + self.tmax = tmax + + self.integrator = integrator + if self.integrator is None: + self.integrator = c.get('INTEGRATION_INTEGRATOR') + + self.dt = dt + if self.dt is None: + self.dt = float(c.get('INTEGRATION_DT')) + + self.integrator_corrector = integrator_corrector + if self.integrator_corrector is None: + self.integrator_corrector = int(c.get('INTEGRATION_CORRECTOR')) + + self.save = save + if self.save is None: + self.save = c.get('SAVE_MODE') + + now = datetime.datetime.now() + self.save_path = save_path + if self.save_path is None: + self.save_path = f"{c.get('SAVE_PATH')}/{now.strftime('%Y-%m-%d_%H:%M:%S')}" + + self.save_summary = save_summary + if self.save_summary is None: + self.save_summary = bool(c.get('SAVE_SUMMARY')) + + self.plot = plot + if self.plot is None: + self.plot = c.get('PLOT_MODE') + + self.plot_type = plot_type + if self.plot_type is None: + self.plot_type = c.get('PLOT_TYPE') + + self.plot_path = plot_path + if self.plot_path is None: + self.plot_path = f"{c.get('PLOT_PATH')}/{now.strftime('%Y-%m-%d_%H:%M:%S')}" + + self.image_type = image_type + if self.image_type is None: + self.image_type = c.get('PLOT_IMAGE_TYPE') self.planets = self.list_of_planets() @@ -22,86 +109,115 @@ def __init__(self, name=None): self.bodies: List[resonances.Body] = [] self.particles = [] - self.bodies_date = resonances.config.get('catalog.date') + if self.source == 'astdys': + self.bodies_date = astdys.datetime() + else: + self.bodies_date = self.date # Libration and filtering settings - self.oscillations_cutoff = resonances.config.get('libration.oscillation.filter.cutoff') - self.oscillations_filter_order = resonances.config.get('libration.oscillation.filter.order') + self.oscillations_cutoff = float(resonances.config.get('LIBRATION_FILTER_CUTOFF')) + self.oscillations_filter_order = int(resonances.config.get('LIBRATION_FILTER_ORDER')) + + self.periodogram_frequency_min = float(resonances.config.get('LIBRATION_FREQ_MIN')) + self.periodogram_frequency_max = float(resonances.config.get('LIBRATION_FREQ_MAX')) + self.periodogram_critical = float(resonances.config.get('LIBRATION_CRITICAL')) + self.periodogram_soft = float(resonances.config.get('LIBRATION_SOFT')) - self.periodogram_frequency_min = resonances.config.get('libration.periodogram.frequency.min') - self.periodogram_frequency_max = resonances.config.get('libration.periodogram.frequency.max') - self.periodogram_critical = resonances.config.get('libration.periodogram.critical') - self.periodogram_soft = resonances.config.get('libration.periodogram.soft') + self.libration_period_critical = int(resonances.config.get('LIBRATION_PERIOD_CRITICAL')) + self.libration_monotony_critical = [float(x.strip()) for x in resonances.config.get('LIBRATION_MONOTONY_CRITICAL').split(",")] - self.libration_period_critical = resonances.config.get('libration.period.critical') - self.libration_monotony_critical = resonances.config.get('libration.monotony.critical') - self.libration_period_min = resonances.config.get('libration.period.min') + self.libration_period_min = int(resonances.config.get('LIBRATION_PERIOD_MIN')) self.sim = None - self.Nout = None - self.tmax = resonances.config.get('integration.tmax') - self.integrator = resonances.config.get('integration.integrator') - self.dt = resonances.config.get('integration.dt') - if resonances.config.has('integration.integrator.safe_mode'): - self.integrator_safe_mode = resonances.config.get('integration.integrator.safe_mode') + if integrator_safe_mode is not None: + self.integrator_safe_mode = integrator_safe_mode else: # pragma: no cover self.integrator_safe_mode = 1 - if resonances.config.has('integration.integrator.corrector'): - self.integrator_corrector = resonances.config.get('integration.integrator.corrector') - else: # pragma: no cover - self.integrator_corrector = None - - self.save = resonances.config.get('save') - self.save_path = f"{resonances.config.get('save.path')}/{self.name}" - self.save_summary = resonances.config.get('save.summary') - - self.plot = resonances.config.get('plot') - self.plot_type = resonances.config.get('plot.type', 'both') - self.plot_path = f"{resonances.config.get('plot.path')}/{self.name}/images" - - self.image_type = resonances.config.get('plot.image_type', 'png') - self.data_source = resonances.config.get('data.source', 'astdys') - def solar_system_full_filename(self) -> str: - catalog_file = f"{os.getcwd()}/{resonances.config.get('solar_system_file')}" + timestamp = int(self.date.timestamp()) + catalog_file = f"{os.getcwd()}/{c.get('SOLAR_SYSTEM_FILE')}" + catalog_file = catalog_file.replace('.bin', f'-{timestamp}.bin') return catalog_file - def create_solar_system(self, date: str = ''): + def create_solar_system(self, force=False): + """ + Creates or loads the Solar System to rebound Simulation. + This method either loads an existing Solar System simulation from a file or creates a new one + if the file doesn't exist or if forced to do so. The simulation includes major planets based + on the specified date or default configuration. + + Parameters + ---------- + force : bool, optional + If True, forces creation of new simulation even if file exists. Defaults to False. + Returns + ------- + None + Updates self.sim with the created/loaded REBOUND simulation. + Notes + ----- + - If a saved simulation file exists and force=False, loads from file + - Otherwise creates new simulation with planets at specified date + - Saves newly created simulation to file for future use + """ + solar_file = Path(self.solar_system_full_filename()) - if solar_file.exists(): + if solar_file.exists() and not force: self.sim = rebound.Simulation(self.solar_system_full_filename()) - else: # pragma: no cover + else: self.sim = rebound.Simulation() - if date != '': - self.sim.add(self.list_of_planets(), date=date) - elif self.data_source == 'astdys': - self.sim.add(self.list_of_planets(), date=f"{astdys.catalog_time()} 00:00") # date of AstDyS current catalogue - else: - self.sim.add(self.list_of_planets()) + self.sim.add(self.list_of_planets(), date=self.date) self.sim.save(self.solar_system_full_filename()) def add_body(self, elem_or_num, mmr: Union[str, resonances.MMR, List[resonances.MMR]], name='asteroid'): + """ + Add a celestial body to the simulation with its corresponding mean motion resonance(s). + Parameters + ---------- + elem_or_num : Union[int, str, dict] + Either an integer/string representing the asteroid's number, + or a dictionary containing orbital elements with optional mass. + If dictionary, must contain keys: 'a', 'e', 'inc', 'Omega', 'omega', 'M' + Optional key: 'mass' + mmr : Union[str, resonances.MMR, List[resonances.MMR]] + Mean motion resonance(s) to analyze for this body. Can be: + - String representation of MMR (e.g. "4J-2S-1") + - Single MMR object + - List of MMR objects + At least one resonance must be provided. + name : str, optional + Name identifier for the body. Defaults to 'asteroid'. + source : str, optional + Source of orbital elements data. Two options are available: 'nasa' or 'astdys'. Defaults to 'nasa'. + Raises + ------ + Exception + If no resonances are provided or if elem_or_num is invalid type. + Notes + ----- + - If elem_or_num is an ID, orbital elements are fetched from NASA catalog + - If elem_or_num is a dict, it must contain all required orbital elements + - Added body is stored in self.bodies list + - For each MMR, planet indices in simulation are calculated and stored + + Examples + -------- + >>> sim.add_body(1, "4J-2S-1", name="Asteroid 1", source="nasa") # Add by NASA id + >>> sim.add_body({"a": 3.2, "e": 0.1, "omega": 0.1, "Omega": 0.1, "M": 0.1}, "3J-1") # Add by orbital elements + """ body = resonances.Body() - if isinstance(mmr, str): + if isinstance(mmr, list): + mmr = resonances.create_mmr(mmr) + else: mmr = [resonances.create_mmr(mmr)] - if isinstance(mmr, resonances.MMR): - mmr = [mmr] + elem = self.get_body_elements(elem_or_num) - if len(mmr) == 0: - raise Exception('You have to provide at least one resonance') - - if isinstance(elem_or_num, int) or (isinstance(elem_or_num, str)): - elem = astdys.search(elem_or_num) - elif isinstance(elem_or_num, dict): - elem = elem_or_num - if 'mass' in elem: - body.mass = elem['mass'] - else: - raise Exception('You can add body only by its number or all orbital elements') + if 'mass' in elem: + body.mass = elem['mass'] body.initial_data = elem body.name = name @@ -109,8 +225,21 @@ def add_body(self, elem_or_num, mmr: Union[str, resonances.MMR, List[resonances. for elem in body.mmrs: elem.index_of_planets = self.get_index_of_planets(elem.planets_names) + self.bodies.append(body) + def get_body_elements(self, elem_or_num: int) -> dict: + if isinstance(elem_or_num, int) or (isinstance(elem_or_num, str)): + if self.source == 'astdys': + elem = astdys.search(elem_or_num) + else: + elem = resonances.horizons.get_body_keplerian_elements(elem_or_num, self.sim, date=self.date) + elif isinstance(elem_or_num, dict): + elem = elem_or_num + else: + raise Exception('You can add body only by its number or all orbital elements') + return elem + def add_bodies_to_simulation(self): for body in self.bodies: self.add_body_to_simulation(body) @@ -143,7 +272,7 @@ def setup_integrator(self, N_active=10): # pragma: no cover self.sim.move_to_com() - def run(self): + def run(self, progress=False): self.add_bodies_to_simulation() for body in self.bodies: body.setup_vars_for_simulation(self.Nout) @@ -153,7 +282,11 @@ def run(self): ps = self.sim.particles - for i, time in enumerate(self.times): + iterations = list(enumerate(self.times)) + if progress: # pragma: no cover + iterations = tqdm.tqdm(iterations, total=len(iterations)) + + for i, time in iterations: self.sim.integrate(time) os = self.sim.calculate_orbits(primary=ps[0]) @@ -324,7 +457,7 @@ def tmax(self, value): self.__tmax = value self.tmax_yrs = self.__tmax / (2 * np.pi) if self.Nout is None: - self.Nout = int(self.__tmax / 100) + self.Nout = abs(int(self.__tmax / 100)) # abs for backward integration case @tmax.deleter def tmax(self): # pragma: no cover diff --git a/tests/resonances/data/test_util.py b/tests/resonances/data/test_util.py index 3105164..96d2c88 100644 --- a/tests/resonances/data/test_util.py +++ b/tests/resonances/data/test_util.py @@ -1,8 +1,42 @@ -import resonances.data.util as util import pytest +import resonances +import datetime +from resonances.data.util import datetime_from_string def test_axis_from_mean_motion_and_back(): axis = 1.0 - assert axis == pytest.approx(util.axis_from_mean_motion(util.mean_motion_from_axis(axis))) - assert 1 == 1 + assert axis == pytest.approx(resonances.data.util.axis_from_mean_motion(resonances.data.util.mean_motion_from_axis(axis))) + + +def test_datetime_from_string_date_only(): + date_str = "2023-01-01" + expected = datetime.datetime(2023, 1, 1) + assert datetime_from_string(date_str) == expected + + +def test_datetime_from_string_date_time(): + date_str = "2023-01-01 13:45" + expected = datetime.datetime(2023, 1, 1, 13, 45) + assert datetime_from_string(date_str) == expected + + +def test_datetime_from_string_date_time_seconds(): + date_str = "2023-01-01 13:45:30" + expected = datetime.datetime(2023, 1, 1, 13, 45, 30) + assert datetime_from_string(date_str) == expected + + +def test_datetime_from_string_invalid_format(): + with pytest.raises(AttributeError): + datetime_from_string("01/01/2023") + + +def test_datetime_from_string_datetime_input(): + dt = datetime.datetime(2023, 1, 1) + assert datetime_from_string(dt) == dt + + +def test_datetime_from_string_empty(): + with pytest.raises(AttributeError): + datetime_from_string("") diff --git a/tests/resonances/matrix/test_three_body_matrix.py b/tests/resonances/matrix/test_three_body_matrix.py index 6f7cd8a..a4d8609 100644 --- a/tests/resonances/matrix/test_three_body_matrix.py +++ b/tests/resonances/matrix/test_three_body_matrix.py @@ -9,7 +9,7 @@ @pytest.fixture(autouse=True) def run_around_tests(): - resonances.config.set('matrix.3body.file', 'cache/tests/mmr-3body-test.csv') + resonances.config.set(ThreeBodyMatrix.catalog_file, 'cache/tests/mmr-3body-test.csv') Path('cache/tests').mkdir(parents=True, exist_ok=True) yield shutil.rmtree('cache/tests') diff --git a/tests/resonances/resonance/test_create_resonance.py b/tests/resonances/resonance/test_factory.py similarity index 61% rename from tests/resonances/resonance/test_create_resonance.py rename to tests/resonances/resonance/test_factory.py index 2ca14a9..426ba1b 100644 --- a/tests/resonances/resonance/test_create_resonance.py +++ b/tests/resonances/resonance/test_factory.py @@ -2,18 +2,35 @@ from resonances.resonance.three_body import ThreeBody from resonances.resonance.two_body import TwoBody +from resonances.resonance.mmr import MMR from resonances.resonance.factory import create_mmr def test_create_mmr(): mmr = create_mmr('4J-2S-1') assert isinstance(mmr, ThreeBody) is True - mmr = create_mmr('2J-1') - assert isinstance(mmr, TwoBody) is True - mmr = create_mmr([4, -2, -1, 0, 0, -1], planets_names=['Jupiter', 'Saturn']) + + mmr = create_mmr(mmr) + assert isinstance(mmr, MMR) is True assert isinstance(mmr, ThreeBody) is True - mmr = create_mmr([2, -1, 0, -1], planets_names=['Jupiter']) - assert isinstance(mmr, TwoBody) is True + + mmr1 = create_mmr('2J-1') + assert isinstance(mmr1, TwoBody) is True + mmr2 = create_mmr([4, -2, -1, 0, 0, -1], planets_names=['Jupiter', 'Saturn']) + assert isinstance(mmr2, ThreeBody) is True + mmr3 = create_mmr([2, -1, 0, -1], planets_names=['Jupiter']) + assert isinstance(mmr3, TwoBody) is True + + mmrs = create_mmr([mmr1, mmr2, mmr3]) + assert 3 == len(mmrs) + assert isinstance(mmrs[0], TwoBody) is True + assert isinstance(mmrs[1], ThreeBody) is True + assert isinstance(mmrs[2], TwoBody) is True + + mmrs = create_mmr(['4J-2S-1', '1J-1']) + assert 2 == len(mmrs) + assert isinstance(mmrs[0], ThreeBody) is True + assert isinstance(mmrs[1], TwoBody) is True with pytest.raises(Exception) as exception: mmr = create_mmr('5J-2S-1U-1') diff --git a/tests/resonances/resonance/test_libration.py b/tests/resonances/resonance/test_libration.py index 8de143a..2bd3699 100644 --- a/tests/resonances/resonance/test_libration.py +++ b/tests/resonances/resonance/test_libration.py @@ -28,8 +28,8 @@ def test_resolve(): overlapping = [[100, 102]] empty = [] - lib_crit = resonances.config.get('libration.period.critical') - mon_crit = resonances.config.get('libration.monotony.critical') + lib_crit = float(resonances.config.get('LIBRATION_PERIOD_CRITICAL')) + mon_crit = [float(x.strip()) for x in resonances.config.get('LIBRATION_MONOTONY_CRITICAL').split(",")] # pure libration with libration for both angle and axis at the same frequency assert 2 == resonances.libration.resolve(True, overlapping, 100000, lib_crit, 0.5, mon_crit) @@ -52,6 +52,9 @@ def test_monotony_estimation(): data = [1, 2, 3, 4, 5] assert 0.0 == resonances.libration.monotony_estimation(data) + data = [1, 2, 3, 4, 5] + assert 0.0 == resonances.libration.monotony_estimation(data) + data = [5, 4, 3, 2, 1] assert 1.0 == resonances.libration.monotony_estimation(data) @@ -63,3 +66,6 @@ def test_monotony_estimation(): data = [1, 2, 3, 4, 5, 6, 1, 6, 1, 6, 1] assert 0.2 == resonances.libration.monotony_estimation(data) + + data = [1] + assert 0.0 == resonances.libration.monotony_estimation(data) diff --git a/tests/resonances/resonance/test_plot.py b/tests/resonances/resonance/test_plot.py index 45a625a..6d3aa2a 100644 --- a/tests/resonances/resonance/test_plot.py +++ b/tests/resonances/resonance/test_plot.py @@ -8,12 +8,12 @@ @pytest.fixture(autouse=True) def run_around_tests(): - resonances.config.set('plot', None) - resonances.config.set('plot.type', None) + resonances.config.set('PLOT_MODE', None) + resonances.config.set('PLOT_TYPE', None) Path('cache/tests').mkdir(parents=True, exist_ok=True) yield - resonances.config.set('plot', 'resonant') - resonances.config.set('plot.type', 'save') + resonances.config.set('PLOT_MODE', 'nonzero') + resonances.config.set('PLOT_TYPE', 'save') shutil.rmtree('cache/tests') diff --git a/tests/resonances/resonance/test_three_body.py b/tests/resonances/resonance/test_three_body.py index 84600b1..751fe9c 100644 --- a/tests/resonances/resonance/test_three_body.py +++ b/tests/resonances/resonance/test_three_body.py @@ -2,6 +2,17 @@ import pytest +def test_order(): + mmr = resonances.ThreeBody('4J-2S-1') + assert 1 == mmr.order() + + mmr = resonances.ThreeBody('3J-2S-1') + assert 0 == mmr.order() + + mmr = resonances.ThreeBody('6J-1S-1') + assert 4 == mmr.order() + + def test_full_create(): mmr = resonances.ThreeBody([4, -2, -1, 0, 0, -1]) assert 4 == mmr.coeff[0] diff --git a/tests/resonances/resonance/test_two_body.py b/tests/resonances/resonance/test_two_body.py index 29785cc..ee7aef8 100644 --- a/tests/resonances/resonance/test_two_body.py +++ b/tests/resonances/resonance/test_two_body.py @@ -2,6 +2,17 @@ import pytest +def test_order(): + mmr = resonances.TwoBody('4J-1') + assert 3 == mmr.order() + + mmr = resonances.TwoBody('1J-1') + assert 0 == mmr.order() + + mmr = resonances.TwoBody('1J+1') + assert 2 == mmr.order() + + def test_full_create(): mmr = resonances.TwoBody([2, -1, 0, -1]) assert 2 == mmr.coeff[0] diff --git a/tests/resonances/test_body.py b/tests/resonances/test_body.py index b295a7e..f0847d2 100644 --- a/tests/resonances/test_body.py +++ b/tests/resonances/test_body.py @@ -59,7 +59,6 @@ def test_mmr_to_dict(): body.periodogram_power[mmr.to_s()] = np.array([0, 1, 2, 3, 4]) result = body.mmr_to_dict(mmr, times) - print(result) assert isinstance(result, dict) assert len(result['angle']) == len(times) diff --git a/tests/resonances/test_config.py b/tests/resonances/test_config.py index 3a477d4..9b4673c 100644 --- a/tests/resonances/test_config.py +++ b/tests/resonances/test_config.py @@ -3,26 +3,26 @@ def test_get_and_has(): - assert resonances.config.has('save.path') is True - assert 'cache' == resonances.config.get('save.path') + assert resonances.config.has('SAVE_PATH') is True + assert 'cache' == resonances.config.get('SAVE_PATH') - assert resonances.config.has('plot.path') is True - assert 'cache' == resonances.config.get('plot.path') + assert resonances.config.has('PLOT_PATH') is True + assert 'cache' == resonances.config.get('PLOT_PATH') - assert resonances.config.has('plot') is True - assert resonances.config.get('plot') == 'resonant' + assert resonances.config.has('SAVE_MODE') is True + assert resonances.config.get('SAVE_MODE') == 'nonzero' - assert resonances.config.has('save') is True - assert resonances.config.get('save') == 'resonant' + assert resonances.config.has('PLOT_MODE') is True + assert resonances.config.get('PLOT_MODE') == 'nonzero' - assert resonances.config.has('save.summary') is True - assert resonances.config.get('save.summary') is True + assert bool(resonances.config.has('SAVE_SUMMARY')) is True + assert bool(resonances.config.get('SAVE_SUMMARY')) is True - assert resonances.config.has('integration.dt') - assert 0.1 == resonances.config.get('integration.dt') + assert resonances.config.has('INTEGRATION_DT') + assert 1.0 == float(resonances.config.get('INTEGRATION_DT')) - assert resonances.config.has('catalog') is True - assert 'cache/allnum.csv' == resonances.config.get('catalog') + assert resonances.config.has('CATALOG_PATH') is True + assert 'cache/allnum.csv' == resonances.config.get('CATALOG_PATH') assert resonances.config.has('This is the house that Jack built') is False @@ -46,9 +46,9 @@ def test_default(): def test_set(): catalog = 'cache/allnum.csv' - assert catalog == resonances.config.get('catalog') - resonances.config.set('catalog', 'tests/fixtures/small.csv') - assert 'tests/fixtures/small.csv' == resonances.config.get('catalog') + assert catalog == resonances.config.get('CATALOG_PATH') + resonances.config.set('CATALOG_PATH', 'tests/fixtures/small.csv') + assert 'tests/fixtures/small.csv' == resonances.config.get('CATALOG_PATH') def test_config_exception(): diff --git a/tests/resonances/test_finder.py b/tests/resonances/test_finder.py index 03e09c8..a18ad02 100644 --- a/tests/resonances/test_finder.py +++ b/tests/resonances/test_finder.py @@ -3,9 +3,8 @@ def test_convert_input_to_list(): - # Test case 1: asteroids as an integer asteroids = 1 - expected_output = ['1'] + expected_output = [1] assert convert_input_to_list(asteroids) == expected_output asteroids = '2' @@ -13,7 +12,7 @@ def test_convert_input_to_list(): assert convert_input_to_list(asteroids) == expected_output asteroids = [1, 2, 3] - expected_output = ['1', '2', '3'] + expected_output = [1, 2, 3] assert convert_input_to_list(asteroids) == expected_output asteroids = ['4', '5', '6'] @@ -21,7 +20,7 @@ def test_convert_input_to_list(): assert convert_input_to_list(asteroids) == expected_output asteroids = [7, '8', 9, '10'] - expected_output = ['7', '8', '9', '10'] + expected_output = [7, '8', 9, '10'] assert convert_input_to_list(asteroids) == expected_output asteroids = [] @@ -33,31 +32,11 @@ def test_convert_input_to_list(): assert convert_input_to_list(asteroids) == expected_output -def test_find(): - asteroids = [1, 2] - planets = ['Jupiter', 'Saturn'] +def test_find_resonances(): + mmrs = resonances.find_resonances(a=2.39) - sim = resonances.find(asteroids, planets) + mmrs_s = [] + for mmr in mmrs: + mmrs_s.append(mmr.to_short()) - assert isinstance(sim, resonances.Simulation) - assert 2 == len(sim.bodies) - - sim = resonances.find(asteroids) - assert 2 == len(sim.bodies) - - sim = resonances.find(asteroids[0]) - assert 1 == len(sim.bodies) - - -def test_check(): - asteroids = [1, 2, '3', 4] - mmr = resonances.create_mmr('2J-1') - - sim = resonances.check(asteroids, mmr) - assert isinstance(sim, resonances.Simulation) - assert 4 == len(sim.bodies) - - asteroids = [1, 2] - sim = resonances.check(asteroids, '2J-1') - assert isinstance(sim, resonances.Simulation) - assert 2 == len(sim.bodies) + assert '4J-2S-1' in mmrs_s diff --git a/tests/resonances/test_simulation.py b/tests/resonances/test_simulation.py index 1e6d41e..803f794 100644 --- a/tests/resonances/test_simulation.py +++ b/tests/resonances/test_simulation.py @@ -1,9 +1,13 @@ +import datetime +import astdys import numpy as np +import pandas as pd import rebound import tests.tools as tools import shutil from pathlib import Path import pytest +import os import resonances @@ -15,11 +19,186 @@ def run_around_tests(): # shutil.rmtree('cache/tests') +def test_solar_system_full_filename(): + fixed_date_str = "2020-01-01 00:00:00" + sim = resonances.Simulation(date=fixed_date_str) + + expected_timestamp = int(sim.date.timestamp()) + expected_filename = f"{os.getcwd()}/{resonances.config.get('SOLAR_SYSTEM_FILE')}".replace(".bin", f"-{expected_timestamp}.bin") + actual_filename = sim.solar_system_full_filename() + print(expected_filename) + print(actual_filename) + assert actual_filename == expected_filename, f"Expected '{expected_filename}', got '{actual_filename}'" + + +def test_create_solar_system_file_exists(): + """ + Covers the 'if solar_file.exists() and not force:' branch. + We artificially create the file so that solar_system_full_filename() + points to an existing file. + """ + resonances.config.set('SOLAR_SYSTEM_FILE', 'tests/solar_test.bin') + sim = resonances.Simulation() + path = Path(sim.solar_system_full_filename()) + + path.parent.mkdir(parents=True, exist_ok=True) + sim.create_solar_system(force=True) + assert sim.sim is not None + assert path.exists() + + path.unlink() + resonances.config.set('SOLAR_SYSTEM_FILE', 'cache/solar.bin') + + +def test_astdys_catalog_mismatch(): + # Force a date we know won't match the current astdys.datetime() + mismatch_date = "1872-01-01" + sim = resonances.Simulation(date=mismatch_date, source="astdys") + assert sim.date.strftime("%Y-%m-%d") == "1872-01-01" + + +def test_integrator_safe_mode_default(): + sim = resonances.Simulation() + assert sim.integrator_safe_mode == 1 + + +def test_get_simulation_summary_exception(): + sim = resonances.Simulation() + mmr = resonances.create_mmr('4J-2S-1') + + body = resonances.Body() + body.mmrs = [mmr] + body.periodogram_peaks_overlapping = {} # missing mmr key => KeyError + body.libration_metrics = {} # missing mmr key => KeyError + + sim.bodies.append(body) + + df = sim.get_simulation_summary() + assert isinstance(df, pd.DataFrame) + + +def test_identify_librations_exception(monkeypatch): + """ + Covers the except-block inside identify_librations(), verifying we log an error + and re-raise. We'll mock resonances.libration.body to raise an exception. + """ + + def mock_libration_body(simulation, body): + raise ValueError("Mock error from libration.body()") + + sim = resonances.Simulation() + sim.bodies.append(resonances.Body()) # A single body is enough + monkeypatch.setattr(resonances.libration, "body", mock_libration_body) + + # Because identify_librations re-raises, we expect ValueError + with pytest.raises(ValueError, match="Mock error"): + sim.identify_librations() + + +def test_tmax_deleter(): + """ + Covers the lines in the tmax deleter by explicitly calling 'del sim.tmax'. + """ + sim = resonances.Simulation(tmax=1000) + assert sim.tmax == 1000 + del sim.tmax + + # Now, accessing sim.tmax should raise an AttributeError + with pytest.raises(AttributeError): + _ = sim.tmax + + def test_init(): - resonances.config.set('integration.tmax', 100) + tmax_default = resonances.config.get('INTEGRATION_TMAX') + resonances.config.set('INTEGRATION_TMAX', 100) sim = resonances.Simulation() sim.Nout = 10 sim.tmax_yrs = 100 / (2 * np.pi) + resonances.config.set('INTEGRATION_TMAX', tmax_default) + + +def test_simulation_init(): + # Test default initialization + sim = resonances.Simulation() + assert sim.name.startswith('20') # Current date format + assert sim.Nout == 6283 + assert sim.source == resonances.config.get('DATA_SOURCE') + assert sim.date.date() == datetime.datetime.today().date() + assert sim.tmax == int(resonances.config.get('INTEGRATION_TMAX')) + assert sim.integrator == resonances.config.get('INTEGRATION_INTEGRATOR') + assert sim.dt == float(resonances.config.get('INTEGRATION_DT')) + assert sim.integrator_corrector == int(resonances.config.get('INTEGRATION_CORRECTOR')) + assert sim.save == resonances.config.get('SAVE_MODE') + assert resonances.config.get('SAVE_PATH') in sim.save_path + assert sim.save_summary == bool(resonances.config.get('SAVE_SUMMARY')) + assert sim.plot == resonances.config.get('PLOT_MODE') + assert sim.plot_type == resonances.config.get('PLOT_TYPE') + assert resonances.config.get('PLOT_PATH') in sim.plot_path + assert sim.image_type == resonances.config.get('PLOT_IMAGE_TYPE') + assert sim.integrator_safe_mode == 1 + assert len(sim.planets) == 10 # Sun + 9 planets + assert len(sim.bodies) == 0 + assert len(sim.times) == 0 + assert len(sim.particles) == 0 + + # Test initialization with custom parameters + custom_date = "2023-01-01" + custom_sim = resonances.Simulation( + name="test_sim", + date=custom_date, + source="nasa", + tmax=1000, + integrator="whfast", + integrator_safe_mode=0, + integrator_corrector=3, + dt=0.1, + save="all", + save_path="custom_path", + save_summary=True, + plot="resonant", + plot_path="plot_path", + plot_type="custom", + image_type="png", + ) + + assert custom_sim.name == "test_sim" + assert custom_sim.date.strftime("%Y-%m-%d") == custom_date + assert custom_sim.source == "nasa" + assert custom_sim.tmax == 1000 + assert custom_sim.Nout == 10 + assert custom_sim.integrator == "whfast" + assert custom_sim.integrator_safe_mode == 0 + assert custom_sim.integrator_corrector == 3 + assert custom_sim.dt == 0.1 + assert custom_sim.save == "all" + assert custom_sim.save_path == "custom_path" + assert custom_sim.save_summary is True + assert custom_sim.plot == "resonant" + assert custom_sim.plot_path == "plot_path" + assert custom_sim.plot_type == "custom" + assert custom_sim.image_type == "png" + + # Test AstDys source + astdys_sim = resonances.Simulation(source="astdys") + assert astdys_sim.source == "astdys" + assert astdys_sim.bodies_date == astdys.datetime() + + # Test libration settings + assert isinstance(custom_sim.oscillations_cutoff, float) + assert isinstance(custom_sim.oscillations_filter_order, int) + assert isinstance(custom_sim.periodogram_frequency_min, float) + assert isinstance(custom_sim.periodogram_frequency_max, float) + assert isinstance(custom_sim.periodogram_critical, float) + assert isinstance(custom_sim.periodogram_soft, float) + assert isinstance(custom_sim.libration_period_critical, int) + assert isinstance(custom_sim.libration_monotony_critical, list) + assert isinstance(custom_sim.libration_period_min, int) + + # Test tmax property + custom_sim = resonances.Simulation(tmax=2000) + assert custom_sim.tmax == 2000 + assert custom_sim.tmax_yrs == 2000 / (2 * np.pi) + assert custom_sim.Nout == int(2000 / 100) def test_solar_system(): @@ -61,7 +240,7 @@ def test_add_body(): except Exception as e: assert str(e) == exception_text - exception_text = 'You have to provide at least one resonance' + exception_text = 'If input is a list, it should contain a string representation of MMRs, MMR objects, or coefficients.' try: sim.add_body(2, []) raise AssertionError(exception_text) @@ -149,6 +328,13 @@ def test_saving_summary(): assert Path('cache/tests/summary.csv').exists() is False +def test_add_body_astdys(): + sim = tools.create_test_simulation_for_solar_system(save=True) + sim.source = 'astdys' + sim.add_body('1', resonances.create_mmr('4J-2S-1'), name='asteroid') + assert 'asteroid' == sim.bodies[0].name + + def test_get_simulation_summary(): sim = tools.create_test_simulation_for_solar_system(save=True) tools.add_test_asteroid_to_simulation(sim) diff --git a/tests/test_backward.py b/tests/test_backward.py new file mode 100644 index 0000000..875984b --- /dev/null +++ b/tests/test_backward.py @@ -0,0 +1,29 @@ +import resonances +from .tools import set_fast_integrator, reset_fast_integrator + + +def test_backward_integration(): + asteroids = [463, 490] + planets = ['Jupiter', 'Saturn'] + + set_fast_integrator() + + sim = resonances.find(asteroids, planets) + sim.dt = -1.0 + sim.tmax = -100000 + sim.save = 'none' + sim.plot = 'none' + # timestamp = int(time.time()) + # sim.save_path = f'cache/test_{timestamp}' + # sim.plot_path = f'cache/test_{timestamp}' + + assert isinstance(sim, resonances.Simulation) + assert 2 == len(sim.bodies) + + sim.run(progress=True) + summary = sim.get_simulation_summary() + status463 = summary.loc[(summary['name'] == '463') & (summary['mmr'] == '4J-2S-1+0+0-1'), 'status'].iloc[0] + + assert 2 == status463 + + reset_fast_integrator() diff --git a/tests/test_finder.py b/tests/test_finder.py new file mode 100644 index 0000000..5bf6103 --- /dev/null +++ b/tests/test_finder.py @@ -0,0 +1,40 @@ +import resonances +from .tools import set_fast_integrator, reset_fast_integrator + + +def test_find(): + asteroids = [463, 490] + planets = ['Jupiter', 'Saturn'] + + set_fast_integrator() + + sim = resonances.find(asteroids, planets) + + assert isinstance(sim, resonances.Simulation) + assert 2 == len(sim.bodies) + + sim.run() + summary = sim.get_simulation_summary() + status463 = summary.loc[(summary['name'] == '463') & (summary['mmr'] == '4J-2S-1+0+0-1'), 'status'].iloc[0] + status490 = summary.loc[(summary['name'] == '490') & (summary['mmr'] == '5J-2S-2+0+0-1'), 'status'].iloc[0] + + assert 2 == status463 + assert 1 == status490 + + reset_fast_integrator() + + +def test_check(): + set_fast_integrator() + + sim = resonances.check(463, '4J-2S-1') + assert isinstance(sim, resonances.Simulation) + assert 1 == len(sim.bodies) + + sim.run() + + summary = sim.get_simulation_summary() + status = summary.loc[(summary['name'] == '463') & (summary['mmr'] == '4J-2S-1+0+0-1'), 'status'].iloc[0] + assert 2 == status + + reset_fast_integrator() diff --git a/tests/test_nasa.py b/tests/test_nasa.py new file mode 100644 index 0000000..3cfd58d --- /dev/null +++ b/tests/test_nasa.py @@ -0,0 +1,21 @@ +import pytest +import resonances +import resonances.horizons +import tests.tools as tools + + +def test_add_body_nasa(): + sim = tools.create_test_simulation_for_solar_system(save=True) + sim.add_body('99942', resonances.create_mmr('7E-6'), name='Apophis') + + +def test_horizon(): + sim = tools.create_test_simulation_for_solar_system(save=True) + elem = resonances.horizons.get_body_keplerian_elements('Hektor', sim.sim, '2025-01-01') + assert 'a' in elem + assert 'e' in elem + assert 'inc' in elem + assert 'omega' in elem + assert 'Omega' in elem + assert 'M' in elem + assert 5.2 == pytest.approx(elem['a'], 0.2) diff --git a/tests/test_real_mmrs.py b/tests/test_real_mmrs.py new file mode 100644 index 0000000..948990e --- /dev/null +++ b/tests/test_real_mmrs.py @@ -0,0 +1,62 @@ +import resonances +import astdys +from resonances.matrix.three_body_matrix import ThreeBodyMatrix +from .tools import set_fast_integrator, reset_fast_integrator + + +def test_find(): + set_fast_integrator() + sim = resonances.find(463, ['Jupiter', 'Saturn'], sigma3=0.1) + sim.run() + + summary = sim.get_simulation_summary() + + assert 2 == summary.loc[summary['mmr'] == '4J-2S-1+0+0-1', 'status'].values[0] + assert 0 == summary.loc[summary['mmr'] == '5J-4S-1+0+0+0', 'status'].values[0] + + reset_fast_integrator() + + +def test_trojans(): + set_fast_integrator() + asteroids = [624, 588, 617] + + sim = resonances.find(asteroids, ['Jupiter']) + sim.run() + summary = sim.get_simulation_summary() + + assert 2 == summary.loc[(summary['mmr'] == '1J-1+0+0') & (summary['name'] == '624'), 'status'].iloc[0] + assert 0 == summary.loc[(summary['mmr'] == '1J+1+0-2') & (summary['name'] == '624'), 'status'].iloc[0] + + assert 2 == summary.loc[(summary['mmr'] == '1J-1+0+0') & (summary['name'] == '588'), 'status'].iloc[0] + assert 0 == summary.loc[(summary['mmr'] == '1J+1+0-2') & (summary['name'] == '588'), 'status'].iloc[0] + + assert 2 == summary.loc[(summary['mmr'] == '1J-1+0+0') & (summary['name'] == '617'), 'status'].iloc[0] + assert 0 == summary.loc[(summary['mmr'] == '1J+1+0-2') & (summary['name'] == '617'), 'status'].iloc[0] + + reset_fast_integrator() + + +def test_3body(): + set_fast_integrator() + + asteroids = [463] + + sim = resonances.Simulation() + sim.create_solar_system() + + num = asteroids[0] + astdys_elem = astdys.search(str(num)) + + mmrs = ThreeBodyMatrix.find_resonances(astdys_elem['a'], sigma=0.1, planets=['Jupiter', 'Saturn']) + for mmr in mmrs: + for asteroid in asteroids: + sim.add_body(num, mmr, name='{}, resonance={}'.format(str(asteroid), mmr.to_short())) + + sim.run() + summary = sim.get_simulation_summary() + + assert 2 == summary.loc[summary['name'] == '463, resonance=4J-2S-1', 'status'].values[0] + assert 0 == summary.loc[summary['name'] == '463, resonance=5J-4S-1', 'status'].values[0] + + reset_fast_integrator() diff --git a/tests/test_real_sim.py b/tests/test_real_sim.py deleted file mode 100644 index 302700e..0000000 --- a/tests/test_real_sim.py +++ /dev/null @@ -1,59 +0,0 @@ -import resonances -import astdys -from resonances.matrix.three_body_matrix import ThreeBodyMatrix -from resonances.matrix.two_body_matrix import TwoBodyMatrix - - -def test_trojans(): - asteroids = [624, 588, 617] - - sim = resonances.Simulation() - sim.create_solar_system() - - num = 624 - astdys_elem = astdys.search(str(num)) - - mmrs = TwoBodyMatrix.find_resonances(astdys_elem['a'], sigma=0.1, planets=['Jupiter']) - for mmr in mmrs: - for asteroid in asteroids: - sim.add_body(num, mmr, name='{}, resonance={}'.format(str(asteroid), mmr.to_short())) - print(f"asteroid={asteroid}, MMR={mmr.to_short()}") - - sim.dt = 1 - sim.plot = False - sim.run() - summary = sim.get_simulation_summary() - - print(summary) - - assert 2 == summary.loc[summary['name'] == '624, resonance=1J-1', 'status'].values[0] - assert 0 == summary.loc[summary['name'] == '624, resonance=1J+1', 'status'].values[0] - assert 2 == summary.loc[summary['name'] == '588, resonance=1J-1', 'status'].values[0] - assert 0 == summary.loc[summary['name'] == '588, resonance=1J+1', 'status'].values[0] - assert 2 == summary.loc[summary['name'] == '617, resonance=1J-1', 'status'].values[0] - assert 0 == summary.loc[summary['name'] == '617, resonance=1J+1', 'status'].values[0] - - -def test_3body(): - asteroids = [463] - - sim = resonances.Simulation() - sim.create_solar_system() - - num = asteroids[0] - astdys_elem = astdys.search(str(num)) - - mmrs = ThreeBodyMatrix.find_resonances(astdys_elem['a'], sigma=0.1, planets=['Jupiter', 'Saturn']) - for mmr in mmrs: - for asteroid in asteroids: - sim.add_body(num, mmr, name='{}, resonance={}'.format(str(asteroid), mmr.to_short())) - print(f"asteroid={asteroid}, MMR={mmr.to_short()}") - - sim.dt = 1 - sim.plot = False - sim.run() - summary = sim.get_simulation_summary() - - print(summary) - assert 2 == summary.loc[summary['name'] == '463, resonance=4J-2S-1', 'status'].values[0] - assert 0 == summary.loc[summary['name'] == '463, resonance=5J-4S-1', 'status'].values[0] diff --git a/tests/tools.py b/tests/tools.py index 6d0f106..ab39d7e 100644 --- a/tests/tools.py +++ b/tests/tools.py @@ -30,9 +30,8 @@ def get_2body_elements_sample(): def create_test_simulation_for_solar_system(save=None, plot=None, save_summary=False): - sim = resonances.Simulation() - - sim.create_solar_system(date=astdys.util.convert_mjd_to_date(60000.0)) + sim = resonances.Simulation(date=astdys.util.convert_mjd_to_datetime(60000)) + sim.create_solar_system() # create to speedup sim.tmax = 20 @@ -50,8 +49,26 @@ def create_test_simulation_for_solar_system(save=None, plot=None, save_summary=F return sim -def add_test_asteroid_to_simulation(sim): +def add_test_asteroid_to_simulation(sim: resonances.Simulation): elem = get_3body_elements_sample() mmr = resonances.create_mmr('4J-2S-1') sim.add_body(elem, mmr, name='asteroid') return sim + + +def set_fast_integrator(): + resonances.config.set('INTEGRATION_INTEGRATOR', 'whfast') + resonances.config.set('INTEGRATION_DT', 1.0) + resonances.config.set('INTEGRATION_SAFE_MODE', 0) + resonances.config.set('INTEGRATION_CORRECTOR', 11) + resonances.config.set('PLOT_MODE', None) + resonances.config.set('SAVE_MODE', None) + + +def reset_fast_integrator(): + resonances.config.set('INTEGRATION_INTEGRATOR', 'SABA(10,6,4)') + resonances.config.set('INTEGRATION_DT', 1.0) + resonances.config.set('INTEGRATION_SAFE_MODE', 0) + resonances.config.set('INTEGRATION_CORRECTOR', 17) + resonances.config.set('PLOT_MODE', 'nonzero') + resonances.config.set('SAVE_MODE', 'nonzero')