forked from D-Nilsson/GRFP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
163 lines (131 loc) · 7.13 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse, glob, os, cv2, sys, pickle
import numpy as np
import tensorflow as tf
import config as cfg
from models.stgru import STGRU
from models.lrr import LRR
from models.dilation import dilation10network
from models.flownet2 import Flownet2
from models.flownet1 import Flownet1
from tensorflow.python.framework import ops
sys.path.insert(0, os.path.join(cfg.cityscapes_scripts_root, 'evaluation'))
import evalPixelLevelSemanticLabeling
bilinear_warping_module = tf.load_op_library('./misc/bilinear_warping.so')
@ops.RegisterGradient("BilinearWarping")
def _BilinearWarping(op, grad):
return bilinear_warping_module.bilinear_warping_grad(grad, op.inputs[0], op.inputs[1])
def evaluate(args):
data_split = 'val'
nbr_classes = 19
im_size = [1024, 2048]
image_mean = [72.39,82.91,73.16] # the mean is automatically subtracted in some modules e.g. flownet2, so be careful
f = open('misc/cityscapes_labels.pckl')
cs_id2trainid, cs_id2name = pickle.load(f)
f.close()
assert args.static in ['dilation', 'lrr'], "Only dilation and LRR are supported for now."
if args.flow == 'flownet2':
with tf.variable_scope('flow'):
flow_network = Flownet2(bilinear_warping_module)
flow_img0 = tf.placeholder(tf.float32)
flow_img1 = tf.placeholder(tf.float32)
flow_tensor = flow_network(flow_img0, flow_img1, flip=True)
elif args.flow == 'flownet1':
with tf.variable_scope('flow'):
flow_network = Flownet1()
flow_img0 = tf.placeholder(tf.float32)
flow_img1 = tf.placeholder(tf.float32)
flow_tensor = flow_network.get_output_tensor(flow_img0, flow_img1, im_size)
RNN = STGRU([nbr_classes, im_size[0], im_size[1]], [7, 7], bilinear_warping_module)
input_images_tensor, input_flow, \
input_segmentation, prev_h, new_h, \
prediction = RNN.get_one_step_predictor()
if args.static == 'lrr':
static_input = tf.placeholder(tf.float32)
static_network = LRR()
static_output = static_network(static_input)
elif args.static == 'dilation':
static_input = tf.placeholder(tf.float32)
static_network = dilation10network()
static_output = static_network.get_output_tensor(static_input, im_size)
saver = tf.train.Saver([k for k in tf.global_variables() if not k.name.startswith('flow/')])
if args.flow in ['flownet1', 'flownet2']:
saver_fn = tf.train.Saver([k for k in tf.global_variables() if k.name.startswith('flow/')])
with tf.Session() as sess:
if args.ckpt != '':
saver.restore(sess, './checkpoints/%s' % (args.ckpt))
else:
if args.static == 'lrr':
saver.restore(sess, './checkpoints/lrr_grfp')
elif args.static == 'dilation':
saver.restore(sess, './checkpoints/dilation_grfp')
if args.flow == 'flownet1':
saver_fn.restore(sess, './checkpoints/flownet1')
elif args.flow == 'flownet2':
saver_fn.restore(sess, './checkpoints/flownet2')
L = glob.glob(os.path.join(cfg.cityscapes_dir, 'gtFine', data_split, "*", "*labelIds.png"))
for (progress_counter, im_path) in enumerate(L):
parts = im_path.split('/')[-1].split('_')
city, seq, frame = parts[0], parts[1], parts[2]
print("Processing sequence %d/%d" % (progress_counter+1, len(L)))
for dt in range(-args.frames + 1, 1):
first_frame = dt == -args.frames + 1
t = int(frame) + dt
frame_path = os.path.join(cfg.cityscapes_video_dir, 'leftImg8bit_sequence', data_split,
city, ("%s_%s_%06d_leftImg8bit.png" % (city, seq, t)))
im = cv2.imread(frame_path, 1).astype(np.float32)[np.newaxis,...]
# Compute optical flow
if not first_frame:
if args.flow == 'flownet2':
flow = sess.run(flow_tensor, feed_dict={flow_img0: im, flow_img1: last_im})
elif args.flow == 'flownet1':
flow = sess.run(flow_tensor, feed_dict={flow_img0: im, flow_img1: last_im})
flow = flow[...,(1, 0)]
elif args.flow == 'farneback':
im_gray = cv2.cvtColor(im[0], cv2.COLOR_BGR2GRAY)
last_im_gray = cv2.cvtColor(last_im[0], cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(im_gray, last_im_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
flow = flow[...,(1, 0)]
flow = flow[np.newaxis,...]
# Static segmentation
if args.static == 'dilation':
# augment a 186x186 border around the image and subtract the mean
im_aug = cv2.copyMakeBorder(im[0], 186, 186, 186, 186, cv2.BORDER_REFLECT_101)
im_aug = im_aug - image_mean
im_aug = im_aug[np.newaxis,...]
x = sess.run(static_output, feed_dict={static_input: im_aug})
elif args.static == 'lrr':
x = sess.run(static_output, feed_dict={static_input: im})
if first_frame:
# the hidden state is simple the static segmentation for the first frame
h = x
pred = np.argmax(h, axis=3)
else:
inputs = {
input_images_tensor: np.stack([last_im, im]),
input_flow: flow,
input_segmentation: x,
prev_h: h
}
# GRFP
h, pred = sess.run([new_h, prediction], feed_dict=inputs)
last_im = im
# save it
S = pred[0]
S_new = S.copy()
for (idx, train_idx) in cs_id2trainid.iteritems():
S_new[S == train_idx] = idx
output_path = '%s_%s_%s.png' % (city, seq, frame)
cv2.imwrite(os.path.join(cfg.cityscapes_dir, 'results', output_path), S_new)
# Evaluate using the official CityScapes code
evalPixelLevelSemanticLabeling.main([])
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evluate GRFP on the CityScapes validation set.')
parser.add_argument('--static', help='Which static network to use.', required=True)
parser.add_argument('--flow', help='Which optical flow method to use.', required=True)
parser.add_argument('--frames', type=int, help='Number of frames to use.', default=5, required=False)
parser.add_argument('--ckpt', help='Which checkpoint file to load from. Specify relative to the ./checkpoints/ directory.', default='', required=False)
args = parser.parse_args()
assert args.flow in ['flownet1', 'flownet2', 'farneback'], "Unknown flow method %s." % args.flow
assert args.static in ['dilation', 'dilation_grfp', 'lrr', 'lrr_grfp'], "Unknown static method %s." % args.static
assert args.frames >= 1 and args.frames <= 20, "The number of frames must be between 1 and 20."
evaluate(args)