-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
234 lines (188 loc) · 10.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
""" Construct the model """
import torch
import pickle
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from Layers import EncoderLayer, DecoderLayer
cudaid=0
def get_non_pad_mask(seq):
assert seq.dim() == 2
return seq.ne(0).type(torch.float).unsqueeze(-1)
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
''' Sinusoid position encoding table according to sin/cos '''
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.
return torch.FloatTensor(sinusoid_table)
def get_attn_key_pad_mask(seq_k, seq_q):
''' For masking out the padding part of key sequence. '''
len_q = seq_q.size(1)
# padding_mask = seq_k.eq(Constants.PAD)
padding_mask = seq_k.eq(0)
padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1) # b x lq x lk
return padding_mask
class Encoder(nn.Module):
""" A transformer encoder layer
len_max_seq: max length of the input sequence
embed_dim: embed dimension of the input
d_model: dimension of input, in the first layer, equal to embed_dim
d_inner:
n_layers:
"""
def __init__(self, len_max_seq, embed_dim, d_model, d_inner, n_layers, n_head,
d_k, d_v, dropout=0.1):
super().__init__()
n_position = len_max_seq + 1
self.position_enc = nn.Embedding.from_pretrained(
get_sinusoid_encoding_table(n_position, embed_dim, padding_idx=0),
freeze=True)
self.layer_stack = nn.ModuleList([
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)])
def forward(self, src_emb, src_pos, atten_mask=None, return_attns=False, needpos=False):
enc_slf_attn_list = []
# -- Prepare mask
# print("atten_mask: ", atten_mask)
if atten_mask == None:
slf_attn_mask = get_attn_key_pad_mask(seq_k=src_pos, seq_q=src_pos)
else:
slf_attn_mask = atten_mask
non_pad_mask = get_non_pad_mask(src_pos)
# -- Forward
if needpos:
enc_output = src_emb + self.position_enc(src_pos)
else:
enc_output = src_emb
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(
enc_output, non_pad_mask=non_pad_mask, slf_attn_mask=slf_attn_mask)
if return_attns:
enc_slf_attn_list += [enc_slf_attn]
if return_attns:
return enc_output, enc_slf_attn_list
return enc_output,
class Dynamic_Attention(nn.Module):
'''
attention layer
'''
def __init__(self):
super().__init__()
self.softmax = nn.Softmax(dim=1)
self.wq = nn.Linear(100, 256)
self.wk = nn.Linear(100, 256)
self.att = nn.Linear(256, 1)
def forward(self, q, k, pos, needmask=False):
query = q.unsqueeze(1).expand(-1,k.size(1),-1)
query, key= self.wq(query), self.wk(k)
attn = self.att(query + key).squeeze(2)
if needmask:
mask = pos.eq(0)
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn).unsqueeze(2)
#attn = self.dropout(attn)
output = torch.sum(attn*k, 1)
#output = torch.bmm(attn, v)
return output
class Contextual(nn.Module):
'''
The model FNPS
query: current query
doc1: positive document
doc2: negative document
features1: additional features of doc1
features2: additional features of doc2
delta: parameter of lambdarank loss
label: 0,1
long_history: user's long-term history
short_history: user's short-term history
short_pos: short-term history position, [1,2,3,...,0,0,0]
long_pos: long-term history position, [1,2,3,...,0,0,0]
lfriend_log: behavior-based friends' query log
lfriend_pos: behavior-based friends' query log position
lfriend_pos_mask: behavior-based friends' padding
lfriend_att_mask: behavior-based friends' adjacent matrix
sfriend_log: relation-based friends' query log
sfriend_pos: relation-based friends' query log position
sfriend_pos_mask: relation-based friends' padding
sfriend_att_mask: relation-based friends' adjacent matrix
cross_att_mask: adjacent matrix of cross attention
'''
def __init__(self, max_friendnum, max_lcircle_num, max_scircle_num, max_friendnum, max_sess_len, queryhis_len, embed_dim, batch_size, embed_path,
vocab_path, d_model=100, d_inner=512, n_layers=1, n_head=8, d_k=64, d_v=64, dropout=0.1):
super().__init__()
self.max_friendnum = max_friendnum # max number of friends in each circle
self.max_lcircle_num = max_lcircle_num # max number of behavior-based friend circle
self.max_scircle_num = max_scircle_num # max number of relation-based friend circle
self.max_sess_len = max_sess_len # max length of short-term history
self.queryhis_len = queryhis_len # max length of long-term history
self.embed_dim = embed_dim
self.batch_size = batch_size
self.friend_attention = Dynamic_Attention()
self.personal_attention = Dynamic_Attention()
self.encoder_friends = Encoder(len_max_seq=friendnum+1, embed_dim=embed_dim, d_model=d_model, # GAT, masked transformer
d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, dropout=dropout)
self.encoder_session = Encoder(len_max_seq=max_sess_len, embed_dim=embed_dim, d_model=d_model, # short-term transformer
d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, dropout=dropout)
self.encoder_history = Encoder(len_max_seq=queryhis_len, embed_dim=embed_dim, d_model=d_model, # long-term transformer
d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, dropout=dropout)
self.cross_attention = Encoder(len_max_seq=max_lcircle_num+max_scircle_num, embed_dim=embed_dim, d_model=d_model, # cross-attention layer
d_inner=d_inner, n_layers=n_layers, n_head=n_head, d_k=d_k, d_v=d_v, dropout=dropout)
#self.feature_layer = nn.Sequential(nn.Linear(110, 1),nn.Tanh())
self.score_layer = nn.Sequential(nn.Linear(125, 1),nn.Tanh())
self.criterion = nn.CrossEntropyLoss()
def pairwise_loss(self, score1, score2):
return (1/(1+torch.exp(score2-score1)))
def forward(self, query, doc1, doc2, feature1, feature2, delta, label, long_history, long_pos, short_history, short_pos, lfriend_log, lfriend_pos, lfriend_pos_mask, lfriend_att_mask, sfriend_log, sfriend_pos, sfriend_pos_mask, sfriend_att_mask, cross_att_mask):
lfriend_log = lfriend_log.view(-1, self.queryhis_len, self.embed_dim)
lfriend_pos = lfriend_pos.view(-1, self.queryhis_len)
lfriend_log, *_ = self.encoder_history(lfriend_log, lfriend_pos)
lfriend_log = torch.mean(lfriend_log, 1).view(-1, self.friendnum+1, self.embed_dim)
lfriend_pos_mask = lfriend_pos_mask.view(-1, self.friendnum+1)
lfriend_log, *_ = self.encoder_friends(lfriend_log, lfriend_pos_mask, atten_mask=lfriend_att_mask)
lfriend_log = lfriend_log[:,-1:,:].view(-1, max_lcircle_num, self.embed_dim)
sfriend_log = sfriend_log.view(-1, self.queryhis_len, self.embed_dim)
sfriend_pos = sfriend_pos.view(-1, self.queryhis_len)
sfriend_log, *_ = self.encoder_history(sfriend_log, sfriend_pos, needpos=True)
sfriend_log = torch.mean(sfriend_log, 1).view(-1, self.friendnum+1, self.embed_dim)
sfriend_pos_mask = sfriend_pos_mask.view(-1, self.friendnum+1)
sfriend_log, *_ = self.encoder_friends(sfriend_log, sfriend_pos_mask, atten_mask=sfriend_att_mask)
sfriend_log = sfriend_log[:,-1:,:].view(-1, max_scircle_num, self.embed_dim)
friend_log = torch.cat([lfriend_log, sfriend_log], 1)
friend_pos = torch.ones(friend_log.size(0), friend_log.size(1)).cuda(cudaid)
friend_log, *_ = self.cross_attention(friend_log, friend_pos, atten_mask=cross_att_mask)
short_history = torch.cat([short_history, query.unsqueeze(1)], 1)
long_history, *_ = self.encoder_history(long_history, long_pos, needpos=True)
short_history, *_ = self.encoder_session(short_history, short_pos, needpos=True)
q_encode = short_history[:,-1:,:].squeeze()
friend_output = self.friend_attention(q_encode, friend_log, friend_pos)
personal_output = self.personal_attention(q_encode, long_history, long_pos, needmask=True)
# compute matching scores
score_pos_qs = torch.cosine_similarity(q_encode, doc1, dim=1).unsqueeze(1)
score_neg_qs = torch.cosine_similarity(q_encode, doc2, dim=1).unsqueeze(1)
score_pos_friend = torch.cosine_similarity(friend_output, doc1, dim=1).unsqueeze(1)
score_neg_friend = torch.cosine_similarity(friend_output, doc2, dim=1).unsqueeze(1)
score_pos_personal = torch.cosine_similarity(personal_output, doc1, dim=1).unsqueeze(1)
score_neg_personal = torch.cosine_similarity(personal_output, doc2, dim=1).unsqueeze(1)
# score_pos_q = torch.cosine_similarity(query, doc1, dim=1).unsqueeze(1)
# score_neg_q = torch.cosine_similarity(query, doc2, dim=1).unsqueeze(1)
# score_pos_feature = self.feature_layer(feature1)
# score_neg_feature = self.feature_layer(feature2)
score_pos = torch.cat([score_pos_qs, score_pos_friend, score_pos_personal, feature1], 1)
score_1 = self.score_layer(score_pos)
score_neg = torch.cat([score_neg_qs, score_neg_friend, score_neg_personal, feature2], 1)
score_2 = self.score_layer(score_neg)
score = torch.cat([score_1, score_2], 1)
p_score = torch.cat([self.pairwise_loss(score_1, score_2),
self.pairwise_loss(score_2, score_1)], 1)
preds = F.softmax(score, 1)
loss = self.criterion(p_score, label)
return score, preds, loss