forked from tensorlayer/DCGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·46 lines (38 loc) · 1.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from random import shuffle
import scipy.misc
import numpy as np
def center_crop(x, crop_h, crop_w=None, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return scipy.misc.imresize(x[j:j+crop_h, i:i+crop_w],
[resize_w, resize_w])
# def merge(images, size):
# h, w = images.shape[1], images.shape[2]
# img = np.zeros((h * size[0], w * size[1], 3))
# for idx, image in enumerate(images):
# i = idx % size[1]
# j = idx // size[1]
# img[j*h:j*h+h, i*w:i*w+w, :] = image
# return img
def transform(image, npx=64, is_crop=True, resize_w=64):
if is_crop:
cropped_image = center_crop(image, npx, resize_w=resize_w)
else:
cropped_image = image
return np.array(cropped_image)/127.5 - 1.
# def inverse_transform(images):
# return (images+1.)/2.
def imread(path, is_grayscale = False):
if (is_grayscale):
return scipy.misc.imread(path, flatten = True).astype(np.float)
else:
return scipy.misc.imread(path).astype(np.float)
# def imsave(images, size, path):
# return scipy.misc.imsave(path, merge(images, size))
def get_image(image_path, image_size, is_crop=True, resize_w=64, is_grayscale = False):
return transform(imread(image_path, is_grayscale), image_size, is_crop, resize_w)
# def save_images(images, size, image_path):
# return imsave(inverse_transform(images), size, image_path)