-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdistributions.py
47 lines (40 loc) · 1.37 KB
/
distributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import random, pylab
#set line width
pylab.rcParams['lines.linewidth'] = 4
#set font size for titles
pylab.rcParams['axes.titlesize'] = 20
#set font size for labels on axes
pylab.rcParams['axes.labelsize'] = 20
#set size of numbers on x-axis
pylab.rcParams['xtick.labelsize'] = 16
#set size of numbers on y-axis
pylab.rcParams['ytick.labelsize'] = 16
#set size of ticks on x-axis
pylab.rcParams['xtick.major.size'] = 7
#set size of ticks on y-axis
pylab.rcParams['ytick.major.size'] = 7
#set size of markers, e.g., circles representing points
#set numpoints for legend
pylab.rcParams['legend.numpoints'] = 1
dist = []
for i in range(100000):
dist.append(random.gauss(0, 30))
pylab.hist(dist, 30)
#pylab.show()
import scipy.integrate
def gaussian(x, mu, sigma):
factor1 = (1.0/(sigma*((2*pylab.pi)**0.5)))
factor2 = pylab.e**-(((x-mu)**2)/(2*sigma**2))
return factor1*factor2
def checkEmpirical(numTrials):
for t in range(numTrials):
mu = random.randint(-10, 10)
sigma = random.randint(1, 10)
print('For mu =', mu, 'and sigma =', sigma)
for numStd in (1, 1.96, 3):
area = scipy.integrate.quad(gaussian,
mu-numStd*sigma,
mu+numStd*sigma,
(mu, sigma))[0]
print(' Fraction within', numStd, 'std =', round(area, 4))
checkEmpirical(3)