forked from optuna/optuna-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdask_ml_simple.py
58 lines (41 loc) · 1.94 KB
/
dask_ml_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"""
Optuna example that optimizes a classifier configuration for the Iris dataset using Dask-ML.
In this example, we optimize a logistic regression classifier configuration for the Iris dataset.
The classifier is from dask-ml while the dataset is from sklearn.
We optimize the choice of solver (admm, gradient descent, or proximal_grad),
the regularization (penalty) when relevant and its strength (C).
"""
import dask.array as da
import optuna
from dask_ml.linear_model import LogisticRegression
from dask_ml.model_selection import train_test_split
from sklearn.datasets import load_iris
# FYI: Objective functions can take additional arguments
# (https://optuna.readthedocs.io/en/stable/faq.html#objective-func-additional-args).
def objective(trial):
iris = load_iris()
X, y = iris.data, iris.target
X, y = da.from_array(X, chunks=len(X) // 5), da.from_array(y, chunks=len(y) // 5)
solver = trial.suggest_categorical("solver", ["admm", "gradient_descent", "proximal_grad"])
C = trial.suggest_float("C", 0.0, 1.0)
if solver == "admm" or solver == "proximal_grad":
penalty = trial.suggest_categorical("penalty", ["l1", "l2", "elastic_net"])
else:
# 'penalty' parameter isn't relevant for this solver,
# so we always specify 'l2' as the dummy value.
penalty = "l2"
classifier = LogisticRegression(max_iter=200, solver=solver, C=C, penalty=penalty)
X_train, X_valid, y_train, y_valid = train_test_split(X, y)
classifier.fit(X_train, y_train)
score = classifier.score(X_valid, y_valid)
return score
if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
print("Number of finished trials: ", len(study.trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))