forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtn_transformer_test.py
210 lines (184 loc) · 8.68 KB
/
tn_transformer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for TN-BERT transformer."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers.tn_transformer_expand_condense import TNTransformerExpandCondense
@parameterized.named_parameters(('tn', TNTransformerExpandCondense))
class TransformerLayerTest(tf.test.TestCase, parameterized.TestCase):
def tearDown(self):
super(TransformerLayerTest, self).tearDown()
tf_keras.mixed_precision.set_global_policy('float32')
def test_layer_creation(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
def test_layer_creation_with_mask(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output_tensor.shape.as_list())
def test_layer_creation_with_incorrect_mask_fails(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length - 3))
with self.assertRaisesRegex(ValueError, 'When passing a mask tensor.*'):
_ = test_layer([data_tensor, mask_tensor])
def test_layer_invocation(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output_tensor = test_layer(data_tensor)
# Create a model from the test layer.
model = tf_keras.Model(data_tensor, output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 16 * np.random.random_sample(
(batch_size, sequence_length, width))
_ = model.predict(input_data)
def test_layer_invocation_with_mask(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = 16 * np.random.random_sample(
(batch_size, sequence_length, width))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
def test_layer_output_range(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
batch_size = 6
input_data = 16 * np.random.random_sample(
(batch_size, sequence_length, width))
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
output_tensor = test_layer([input_data, mask_data])
# The layer only attends to the first token and outputs the first token
# embeeding.
new_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu',
output_range=1)
_ = new_layer([input_data, mask_data])
new_layer.set_weights(test_layer.get_weights())
new_output_tensor = new_layer([input_data, mask_data])
self.assertAllClose(
new_output_tensor, output_tensor[:, 0:1, :], atol=5e-5, rtol=0.003)
def test_layer_invocation_with_float16_dtype(self, transformer_cls):
tf_keras.mixed_precision.set_global_policy('mixed_float16')
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu')
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
# Create a 2-dimensional input (the first dimension is implicit).
mask_tensor = tf_keras.Input(shape=(sequence_length, sequence_length))
output_tensor = test_layer([data_tensor, mask_tensor])
# Create a model from the test layer.
model = tf_keras.Model([data_tensor, mask_tensor], output_tensor)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size = 6
input_data = (16 * np.random.random_sample(
(batch_size, sequence_length, width)))
# The attention mask should be of shape (batch, from_seq_len, to_seq_len),
# which here is (batch, sequence_length, sequence_length)
mask_data = np.random.randint(
2, size=(batch_size, sequence_length, sequence_length))
_ = model.predict([input_data, mask_data])
def test_transform_with_initializer(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu',
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
sequence_length = 21
width = 256
# Create a 3-dimensional input (the first dimension is implicit).
data_tensor = tf_keras.Input(shape=(sequence_length, width))
output = test_layer(data_tensor)
# The default output of a transformer layer should be the same as the input.
self.assertEqual(data_tensor.shape.as_list(), output.shape.as_list())
def test_dynamic_layer_sequence(self, transformer_cls):
test_layer = transformer_cls(
num_attention_heads=16,
intermediate_size=2048,
intermediate_activation='relu',
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
# Create a 3-dimensional input (the first dimension is implicit).
width = 256
input_tensor = tf_keras.Input(shape=(None, width))
output_tensor = test_layer(input_tensor)
model = tf_keras.Model(input_tensor, output_tensor)
input_length = 17
input_data = np.ones((1, input_length, width))
output_data = model.predict(input_data)
self.assertAllEqual([1, input_length, width], output_data.shape)
if __name__ == '__main__':
tf.test.main()