forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_layers.py
738 lines (659 loc) · 31.8 KB
/
text_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras Layers for BERT-specific preprocessing."""
# pylint: disable=g-import-not-at-top
from typing import Any, Dict, List, Mapping, Optional, Text, Union
from absl import logging
import tensorflow as tf, tf_keras
try:
# pytype: disable=import-error
import tensorflow_text as text
from tensorflow_text.python.ops import bert_tokenizer
# pytype: enable=import-error
except ImportError:
text = None
bert_tokenizer = None
except tf.errors.NotFoundError as e:
logging.warn("Encountered error when importing tensorflow_text: %s", e)
text = None
bert_tokenizer = None
def _check_if_tf_text_installed():
if text is None:
raise ImportError("import tensorflow_text failed, please install "
"'tensorflow-text-nightly'.")
def _truncate_row_lengths(ragged_tensor: tf.RaggedTensor,
new_lengths: tf.Tensor) -> tf.RaggedTensor:
"""Truncates the rows of `ragged_tensor` to the given row lengths."""
new_lengths = tf.broadcast_to(new_lengths,
ragged_tensor.bounding_shape()[0:1])
def fn(x):
row, new_length = x
return row[0:new_length]
fn_dtype = tf.RaggedTensorSpec(dtype=ragged_tensor.dtype,
ragged_rank=ragged_tensor.ragged_rank - 1)
result = tf.map_fn(fn, (ragged_tensor, new_lengths), dtype=fn_dtype)
# Work around broken shape propagation: without this, result has unknown rank.
flat_values_shape = [None] * ragged_tensor.flat_values.shape.rank
result = result.with_flat_values(
tf.ensure_shape(result.flat_values, flat_values_shape))
return result
class BertTokenizer(tf_keras.layers.Layer):
"""Wraps TF.Text's BertTokenizer with pre-defined vocab as a Keras Layer.
Attributes:
tokenize_with_offsets: If true, calls
`text.BertTokenizer.tokenize_with_offsets()` instead of plain
`text.BertTokenizer.tokenize()` and outputs a triple of
`(tokens, start_offsets, limit_offsets)`.
raw_table_access: An object with methods `.lookup(keys) and `.size()`
that operate on the raw lookup table of tokens. It can be used to
look up special token synbols like `[MASK]`.
"""
def __init__(self, *,
vocab_file: str,
lower_case: Optional[bool] = None,
tokenize_with_offsets: bool = False,
tokenizer_kwargs: Optional[Mapping[Text, Any]] = None,
**kwargs):
"""Initialize a `BertTokenizer` layer.
Args:
vocab_file: A Python string with the path of the vocabulary file.
This is a text file with newline-separated wordpiece tokens.
This layer initializes a lookup table from it that gets used with
`text.BertTokenizer`.
lower_case: Optional boolean forwarded to `text.BertTokenizer`.
If true, input text is converted to lower case (where applicable)
before tokenization. This must be set to match the way in which
the `vocab_file` was created. If passed, this overrides whatever value
may have been passed in `tokenizer_kwargs`.
tokenize_with_offsets: A Python boolean. If true, this layer calls
`text.BertTokenizer.tokenize_with_offsets()` instead of plain
`text.BertTokenizer.tokenize()` and outputs a triple of
`(tokens, start_offsets, limit_offsets)`
insead of just tokens.
tokenizer_kwargs: Optional mapping with keyword arguments to forward to
`text.BertTokenizer`'s constructor.
**kwargs: Standard arguments to `Layer()`.
Raises:
ImportError: If importing `tensorflow_text` failed.
"""
_check_if_tf_text_installed()
self.tokenize_with_offsets = tokenize_with_offsets
# TODO(b/177326279): Stop storing the vocab table initializer as an
# attribute when https://github.com/tensorflow/tensorflow/issues/46456
# has been fixed in the TensorFlow versions of the TF Hub users that load
# a SavedModel created from this layer. Due to that issue, loading such a
# SavedModel forgets to add .vocab_table._initializer as a trackable
# dependency of .vocab_table, so that saving it again to a second SavedModel
# (e.g., the final model built using TF Hub) does not properly track
# the ._vocab_table._initializer._filename as an Asset.
self._vocab_table, self._vocab_initializer_donotuse = (
self._create_vocab_table_and_initializer(vocab_file))
self._special_tokens_dict = self._create_special_tokens_dict(
self._vocab_table, vocab_file)
super().__init__(**kwargs)
tokenizer_kwargs = dict(tokenizer_kwargs or {})
if lower_case is not None:
tokenizer_kwargs["lower_case"] = lower_case
self._bert_tokenizer = text.BertTokenizer(self._vocab_table,
**tokenizer_kwargs)
@property
def vocab_size(self):
return self._vocab_table.size()
def _create_vocab_table_and_initializer(self, vocab_file):
vocab_initializer = tf.lookup.TextFileInitializer(
vocab_file,
key_dtype=tf.string, key_index=tf.lookup.TextFileIndex.WHOLE_LINE,
value_dtype=tf.int64, value_index=tf.lookup.TextFileIndex.LINE_NUMBER)
vocab_table = tf.lookup.StaticHashTable(vocab_initializer, default_value=-1)
return vocab_table, vocab_initializer
def call(self, inputs: tf.Tensor):
"""Calls `text.BertTokenizer` on inputs.
Args:
inputs: A string Tensor of shape `(batch_size,)`.
Returns:
One or three of `RaggedTensors` if `tokenize_with_offsets` is False or
True, respectively. These are
tokens: A `RaggedTensor` of shape
`[batch_size, (words), (pieces_per_word)]`
and type int32. `tokens[i,j,k]` contains the k-th wordpiece of the
j-th word in the i-th input.
start_offsets, limit_offsets: If `tokenize_with_offsets` is True,
RaggedTensors of type int64 with the same indices as tokens.
Element `[i,j,k]` contains the byte offset at the start, or past the
end, resp., for the k-th wordpiece of the j-th word in the i-th input.
"""
# Prepare to reshape the result to work around broken shape inference.
batch_size = tf.shape(inputs)[0]
def _reshape(rt):
values = rt.values
row_splits = rt.row_splits
row_splits = tf.reshape(row_splits, [batch_size + 1])
return tf.RaggedTensor.from_row_splits(values, row_splits)
# Call the tokenizer.
if self.tokenize_with_offsets:
tokens, start_offsets, limit_offsets = (
self._bert_tokenizer.tokenize_with_offsets(inputs))
tokens = tf.cast(tokens, dtype=tf.int32)
return _reshape(tokens), _reshape(start_offsets), _reshape(limit_offsets)
else:
tokens = self._bert_tokenizer.tokenize(inputs)
tokens = tf.cast(tokens, dtype=tf.int32)
return _reshape(tokens)
def get_config(self):
# Skip in tf.saved_model.save(); fail if called direcly.
raise NotImplementedError("TODO(b/170480226): implement")
def get_special_tokens_dict(self):
"""Returns dict of token ids, keyed by standard names for their purpose.
Returns:
A dict from Python strings to Python integers. Each key is a standard
name for a special token describing its use. (For example, "padding_id"
is what BERT traditionally calls "[PAD]" but others may call "<pad>".)
The corresponding value is the integer token id. If a special token
is not found, its entry is omitted from the dict.
The supported keys and tokens are:
* start_of_sequence_id: looked up from "[CLS]"
* end_of_segment_id: looked up from "[SEP]"
* padding_id: looked up form "[PAD]"
* mask_id: looked up from "[MASK]"
* vocab_size: one past the largest token id used
"""
return self._special_tokens_dict
def _create_special_tokens_dict(self, vocab_table, vocab_file):
special_tokens = dict(start_of_sequence_id="[CLS]",
end_of_segment_id="[SEP]",
padding_id="[PAD]",
mask_id="[MASK]")
with tf.init_scope():
if tf.executing_eagerly():
special_token_ids = vocab_table.lookup(
tf.constant(list(special_tokens.values()), tf.string))
vocab_size = vocab_table.size()
else:
# A blast from the past: non-eager init context while building Model.
# This can happen with Estimator or tf.compat.v1.disable_v2_behavior().
logging.warning(
"Non-eager init context; computing "
"BertTokenizer's special_tokens_dict in tf.compat.v1.Session")
with tf.Graph().as_default():
local_vocab_table, _ = self._create_vocab_table_and_initializer(
vocab_file)
special_token_ids_tensor = local_vocab_table.lookup(
tf.constant(list(special_tokens.values()), tf.string))
vocab_size_tensor = local_vocab_table.size()
init_ops = [tf.compat.v1.initialize_all_tables()]
with tf.compat.v1.Session() as sess:
sess.run(init_ops)
special_token_ids, vocab_size = sess.run(
[special_token_ids_tensor, vocab_size_tensor])
result = dict(
vocab_size=int(vocab_size) # Numpy to Python.
)
for k, v in zip(special_tokens, special_token_ids):
v = int(v)
if v >= 0:
result[k] = v
else:
logging.warning("Could not find %s as token \"%s\" in vocab file %s",
k, special_tokens[k], vocab_file)
return result
class SentencepieceTokenizer(tf_keras.layers.Layer):
"""Wraps `tf_text.SentencepieceTokenizer` as a Keras Layer.
Attributes:
tokenize_with_offsets: If true, calls
`SentencepieceTokenizer.tokenize_with_offsets()`
instead of plain `.tokenize()` and outputs a triple of
`(tokens, start_offsets, limit_offsets)`.
"""
def __init__(self,
*,
lower_case: bool,
model_file_path: Optional[str] = None,
model_serialized_proto: Optional[str] = None,
tokenize_with_offsets: bool = False,
nbest_size: int = 0,
alpha: float = 1.0,
strip_diacritics: bool = False,
**kwargs):
"""Initializes a SentencepieceTokenizer layer.
Args:
lower_case: A Python boolean indicating whether to lowercase the string
before tokenization. NOTE: New models are encouraged to build `*_cf`
(case folding) normalization into the Sentencepiece model itself and
avoid this extra step.
model_file_path: A Python string with the path of the sentencepiece model.
Exactly one of `model_file_path` and `model_serialized_proto` can be
specified. In either case, the Keras model config for this layer will
store the actual proto (not a filename passed here).
model_serialized_proto: The sentencepiece model serialized proto string.
tokenize_with_offsets: A Python boolean. If true, this layer calls
`SentencepieceTokenizer.tokenize_with_offsets()` instead of
plain `.tokenize()` and outputs a triple of
`(tokens, start_offsets, limit_offsets)` insead of just tokens.
Note that when following `strip_diacritics` is set to True, returning
offsets is not supported now.
nbest_size: A scalar for sampling:
nbest_size = {0,1}: No sampling is performed. (default)
nbest_size > 1: samples from the nbest_size results.
nbest_size < 0: assuming that nbest_size is infinite and samples
from the all hypothesis (lattice) using
forward-filtering-and-backward-sampling algorithm.
alpha: A scalar for a smoothing parameter. Inverse temperature for
probability rescaling.
strip_diacritics: Whether to strip diacritics or not. Note that stripping
diacritics requires additional text normalization and dropping bytes,
which makes it impossible to keep track of the offsets now. Hence
when `strip_diacritics` is set to True, we don't yet support
`tokenize_with_offsets`. NOTE: New models are encouraged to put this
into custom normalization rules for the Sentencepiece model itself to
avoid this extra step and the limitation regarding offsets.
**kwargs: standard arguments to `Layer()`.
Raises:
ImportError: if importing tensorflow_text failed.
"""
_check_if_tf_text_installed()
super().__init__(**kwargs)
if bool(model_file_path) == bool(model_serialized_proto):
raise ValueError("Exact one of `model_file_path` and "
"`model_serialized_proto` can be specified.")
# TODO(b/181866850): Support tokenize_with_offsets for strip_diacritics=True
if tokenize_with_offsets and strip_diacritics:
raise ValueError("`tokenize_with_offsets` is not supported when "
"`strip_diacritics` is set to True.")
if model_file_path:
self._model_serialized_proto = tf.io.gfile.GFile(model_file_path,
"rb").read()
else:
self._model_serialized_proto = model_serialized_proto
self._lower_case = lower_case
self.tokenize_with_offsets = tokenize_with_offsets
self._nbest_size = nbest_size
self._alpha = alpha
self._strip_diacritics = strip_diacritics
self._tokenizer = self._create_tokenizer()
self._special_tokens_dict = self._create_special_tokens_dict()
def _create_tokenizer(self):
return text.SentencepieceTokenizer(
model=self._model_serialized_proto,
out_type=tf.int32,
nbest_size=self._nbest_size,
alpha=self._alpha)
@property
def vocab_size(self):
return self._tokenizer.vocab_size()
def call(self, inputs: tf.Tensor):
"""Calls `text.SentencepieceTokenizer` on inputs.
Args:
inputs: A string Tensor of shape `(batch_size,)`.
Returns:
One or three of RaggedTensors if tokenize_with_offsets is False or True,
respectively. These are
tokens: A RaggedTensor of shape `[batch_size, (pieces)]` and type `int32`.
`tokens[i,j]` contains the j-th piece in the i-th input.
start_offsets, limit_offsets: If `tokenize_with_offsets` is True,
RaggedTensors of type `int64` with the same indices as tokens.
Element `[i,j]` contains the byte offset at the start, or past the
end, resp., for the j-th piece in the i-th input.
"""
if self._strip_diacritics:
if self.tokenize_with_offsets:
raise ValueError("`tokenize_with_offsets` is not supported yet when "
"`strip_diacritics` is set to True (b/181866850).")
inputs = text.normalize_utf8(inputs, "NFD")
inputs = tf.strings.regex_replace(inputs, r"\p{Mn}", "")
if self._lower_case:
inputs = text.case_fold_utf8(inputs)
# Prepare to reshape the result to work around broken shape inference.
batch_size = tf.shape(inputs)[0]
def _reshape(rt):
values = rt.values
row_splits = rt.row_splits
row_splits = tf.reshape(row_splits, [batch_size + 1])
return tf.RaggedTensor.from_row_splits(values, row_splits)
# Call the tokenizer.
if self.tokenize_with_offsets:
tokens, start_offsets, limit_offsets = (
self._tokenizer.tokenize_with_offsets(inputs))
return _reshape(tokens), _reshape(start_offsets), _reshape(limit_offsets)
else:
tokens = self._tokenizer.tokenize(inputs)
return _reshape(tokens)
def get_config(self):
# Skip in tf.saved_model.save(); fail if called direcly.
raise NotImplementedError("TODO(b/170480226): implement")
def get_special_tokens_dict(self):
"""Returns dict of token ids, keyed by standard names for their purpose.
Returns:
A dict from Python strings to Python integers. Each key is a standard
name for a special token describing its use. (For example, "padding_id"
is what Sentencepiece calls "<pad>" but others may call "[PAD]".)
The corresponding value is the integer token id. If a special token
is not found, its entry is omitted from the dict.
The supported keys and tokens are:
* start_of_sequence_id: looked up from "[CLS]"
* end_of_segment_id: looked up from "[SEP]"
* padding_id: looked up from "<pad>"
* mask_id: looked up from "[MASK]"
* vocab_size: one past the largest token id used
"""
return self._special_tokens_dict
def _create_special_tokens_dict(self):
special_tokens = dict(
start_of_sequence_id=b"[CLS]",
end_of_segment_id=b"[SEP]",
padding_id=b"<pad>",
mask_id=b"[MASK]")
with tf.init_scope():
if tf.executing_eagerly():
special_token_ids = self._tokenizer.string_to_id(
tf.constant(list(special_tokens.values()), tf.string))
inverse_tokens = self._tokenizer.id_to_string(special_token_ids)
vocab_size = self._tokenizer.vocab_size()
else:
# A blast from the past: non-eager init context while building Model.
# This can happen with Estimator or tf.compat.v1.disable_v2_behavior().
logging.warning(
"Non-eager init context; computing SentencepieceTokenizer's "
"special_tokens_dict in tf.compat.v1.Session")
with tf.Graph().as_default():
local_tokenizer = self._create_tokenizer()
special_token_ids_tensor = local_tokenizer.string_to_id(
tf.constant(list(special_tokens.values()), tf.string))
inverse_tokens_tensor = local_tokenizer.id_to_string(
special_token_ids_tensor)
vocab_size_tensor = local_tokenizer.vocab_size()
with tf.compat.v1.Session() as sess:
special_token_ids, inverse_tokens, vocab_size = sess.run(
[special_token_ids_tensor, inverse_tokens_tensor,
vocab_size_tensor])
result = dict(
vocab_size=int(vocab_size) # Numpy to Python.
)
for name, token_id, inverse_token in zip(special_tokens,
special_token_ids,
inverse_tokens):
if special_tokens[name] == inverse_token:
result[name] = int(token_id)
else:
logging.warning(
"Could not find %s as token \"%s\" in sentencepiece model, "
"got \"%s\"", name, special_tokens[name], inverse_token)
return result
class BertPackInputs(tf_keras.layers.Layer):
"""Packs tokens into model inputs for BERT."""
def __init__(self,
seq_length,
*,
start_of_sequence_id=None,
end_of_segment_id=None,
padding_id=None,
special_tokens_dict=None,
truncator="round_robin",
**kwargs):
"""Initializes with a target `seq_length`, relevant token ids and truncator.
Args:
seq_length: The desired output length. Must not exceed the max_seq_length
that was fixed at training time for the BERT model receiving the inputs.
start_of_sequence_id: The numeric id of the token that is to be placed
at the start of each sequence (called "[CLS]" for BERT).
end_of_segment_id: The numeric id of the token that is to be placed
at the end of each input segment (called "[SEP]" for BERT).
padding_id: The numeric id of the token that is to be placed into the
unused positions after the last segment in the sequence
(called "[PAD]" for BERT).
special_tokens_dict: Optionally, a dict from Python strings to Python
integers that contains values for `start_of_sequence_id`,
`end_of_segment_id` and `padding_id`. (Further values in the dict are
silenty ignored.) If this is passed, separate *_id arguments must be
omitted.
truncator: The algorithm to truncate a list of batched segments to fit a
per-example length limit. The value can be either `round_robin` or
`waterfall`:
(1) For "round_robin" algorithm, available space is assigned
one token at a time in a round-robin fashion to the inputs that still
need some, until the limit is reached. It currently only supports
one or two segments.
(2) For "waterfall" algorithm, the allocation of the budget is done
using a "waterfall" algorithm that allocates quota in a
left-to-right manner and fills up the buckets until we run out of
budget. It support arbitrary number of segments.
**kwargs: standard arguments to `Layer()`.
Raises:
ImportError: if importing `tensorflow_text` failed.
"""
_check_if_tf_text_installed()
super().__init__(**kwargs)
self.seq_length = seq_length
if truncator not in ("round_robin", "waterfall"):
raise ValueError("Only 'round_robin' and 'waterfall' algorithms are "
"supported, but got %s" % truncator)
self.truncator = truncator
self._init_token_ids(
start_of_sequence_id=start_of_sequence_id,
end_of_segment_id=end_of_segment_id,
padding_id=padding_id,
special_tokens_dict=special_tokens_dict)
def _init_token_ids(
self, *,
start_of_sequence_id,
end_of_segment_id,
padding_id,
special_tokens_dict):
usage = ("Must pass either all of start_of_sequence_id, end_of_segment_id, "
"padding_id as arguments, or else a special_tokens_dict "
"with those keys.")
special_tokens_args = [start_of_sequence_id, end_of_segment_id, padding_id]
if special_tokens_dict is None:
if any(x is None for x in special_tokens_args):
return ValueError(usage)
self.start_of_sequence_id = int(start_of_sequence_id)
self.end_of_segment_id = int(end_of_segment_id)
self.padding_id = int(padding_id)
else:
if any(x is not None for x in special_tokens_args):
return ValueError(usage)
self.start_of_sequence_id = int(
special_tokens_dict["start_of_sequence_id"])
self.end_of_segment_id = int(special_tokens_dict["end_of_segment_id"])
self.padding_id = int(special_tokens_dict["padding_id"])
def get_config(self) -> Dict[str, Any]:
config = super().get_config()
config["seq_length"] = self.seq_length
config["start_of_sequence_id"] = self.start_of_sequence_id
config["end_of_segment_id"] = self.end_of_segment_id
config["padding_id"] = self.padding_id
config["truncator"] = self.truncator
return config
def call(self, inputs: Union[tf.RaggedTensor, List[tf.RaggedTensor]]):
"""Adds special tokens to pack a list of segments into BERT input Tensors.
Args:
inputs: A Python list of one or two RaggedTensors, each with the batched
values one input segment. The j-th segment of the i-th input example
consists of slice `inputs[j][i, ...]`.
Returns:
A nest of Tensors for use as input to the BERT TransformerEncoder.
"""
# BertPackInputsSavedModelWrapper relies on only calling bert_pack_inputs()
return BertPackInputs.bert_pack_inputs(
inputs, self.seq_length,
start_of_sequence_id=self.start_of_sequence_id,
end_of_segment_id=self.end_of_segment_id,
padding_id=self.padding_id,
truncator=self.truncator)
@staticmethod
def bert_pack_inputs(inputs: Union[tf.RaggedTensor, List[tf.RaggedTensor]],
seq_length: Union[int, tf.Tensor],
start_of_sequence_id: Union[int, tf.Tensor],
end_of_segment_id: Union[int, tf.Tensor],
padding_id: Union[int, tf.Tensor],
truncator="round_robin"):
"""Freestanding equivalent of the BertPackInputs layer."""
_check_if_tf_text_installed()
# Sanitize inputs.
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
if not inputs:
raise ValueError("At least one input is required for packing")
input_ranks = [rt.shape.rank for rt in inputs]
if None in input_ranks or len(set(input_ranks)) > 1:
raise ValueError("All inputs for packing must have the same known rank, "
"found ranks " + ",".join(input_ranks))
# Flatten inputs to [batch_size, (tokens)].
if input_ranks[0] > 2:
inputs = [rt.merge_dims(1, -1) for rt in inputs]
# In case inputs weren't truncated (as they should have been),
# fall back to some ad-hoc truncation.
num_special_tokens = len(inputs) + 1
if truncator == "round_robin":
trimmed_segments = text.RoundRobinTrimmer(seq_length -
num_special_tokens).trim(inputs)
elif truncator == "waterfall":
trimmed_segments = text.WaterfallTrimmer(
seq_length - num_special_tokens).trim(inputs)
else:
raise ValueError("Unsupported truncator: %s" % truncator)
# Combine segments.
segments_combined, segment_ids = text.combine_segments(
trimmed_segments,
start_of_sequence_id=start_of_sequence_id,
end_of_segment_id=end_of_segment_id)
# Pad to dense Tensors.
input_word_ids, _ = text.pad_model_inputs(segments_combined, seq_length,
pad_value=padding_id)
input_type_ids, input_mask = text.pad_model_inputs(segment_ids, seq_length,
pad_value=0)
# Work around broken shape inference.
output_shape = tf.stack([
inputs[0].nrows(out_type=tf.int32), # batch_size
tf.cast(seq_length, dtype=tf.int32)])
def _reshape(t):
return tf.reshape(t, output_shape)
# Assemble nest of input tensors as expected by BERT TransformerEncoder.
return dict(input_word_ids=_reshape(input_word_ids),
input_mask=_reshape(input_mask),
input_type_ids=_reshape(input_type_ids))
class FastWordpieceBertTokenizer(tf_keras.layers.Layer):
"""A bert tokenizer keras layer using text.FastWordpieceTokenizer.
See details: "Fast WordPiece Tokenization" (https://arxiv.org/abs/2012.15524)
"""
def __init__(self,
*,
vocab_file: str,
lower_case: bool,
tokenize_with_offsets: bool = False,
**kwargs):
"""Initializes a FastWordpieceBertTokenizer layer.
Args:
vocab_file: A Python string with the path of the vocabulary file. This is
a text file with newline-separated wordpiece tokens. This layer loads
a list of tokens from it to create text.FastWordpieceTokenizer.
lower_case: A Python boolean forwarded to text.BasicTokenizer. If true,
input text is converted to lower case (where applicable) before
tokenization. This must be set to match the way in which the vocab_file
was created.
tokenize_with_offsets: A Python boolean. If true, this layer calls
FastWordpieceTokenizer.tokenize_with_offsets() instead of plain
.tokenize() and outputs a triple of (tokens, start_offsets,
limit_offsets) insead of just tokens.
**kwargs: standard arguments to Layer().
"""
super().__init__(**kwargs)
logging.info("Initialize a FastWordpieceBertTokenizer.")
self.tokenize_with_offsets = tokenize_with_offsets
self._basic_tokenizer = bert_tokenizer.BasicTokenizer(lower_case=lower_case)
# Read the vocab file into a list of tokens to create `fast_wp_tokenizer`.
self._vocab = [line.rstrip() for line in tf.io.gfile.GFile(vocab_file)]
self._fast_wp_tokenizer = text.FastWordpieceTokenizer(
vocab=self._vocab, token_out_type=tf.int32, no_pretokenization=True)
self._special_tokens_dict = self._create_special_tokens_dict()
@property
def vocab_size(self):
return len(self._vocab)
def get_config(self):
# Skip in tf.saved_model.save(); fail if called direcly.
# We cannot just put the original, user-supplied vocab file name into
# the config, because the path has to change as the SavedModel is copied
# around.
raise NotImplementedError("Not implemented yet.")
def get_special_tokens_dict(self):
"""Returns dict of token ids, keyed by standard names for their purpose.
Returns:
A dict from Python strings to Python integers. Each key is a standard
name for a special token describing its use. (For example, "padding_id"
is what BERT traditionally calls "[PAD]" but others may call "<pad>".)
The corresponding value is the integer token id. If a special token
is not found, its entry is omitted from the dict.
The supported keys and tokens are:
* start_of_sequence_id: looked up from "[CLS]"
* end_of_segment_id: looked up from "[SEP]"
* padding_id: looked up form "[PAD]"
* mask_id: looked up from "[MASK]"
* vocab_size: one past the largest token id used
"""
return self._special_tokens_dict
def _create_special_tokens_dict(self):
"""Creates dict of token ids, keyed by standard names for their purpose."""
special_tokens = {"vocab_size": self.vocab_size}
def add_special_token(key, token):
try:
token_id = self._vocab.index(token)
special_tokens[key] = token_id
except ValueError:
# Similar as nlp.modeling.layers.BertTokenizer, if a special token
# is not found, its entry is omitted from the dict.
logging.warning("Could not find %s as token \"%s\" in vocab file", key,
token)
add_special_token("start_of_sequence_id", "[CLS]")
add_special_token("end_of_segment_id", "[SEP]")
add_special_token("padding_id", "[PAD]")
add_special_token("mask_id", "[MASK]")
return special_tokens
def _tokenize_with_offsets(self, text_input: tf.Tensor):
tokens, begin, _ = self._basic_tokenizer.tokenize_with_offsets(text_input)
wordpieces, wp_begin, wp_end = (
self._fast_wp_tokenizer.tokenize_with_offsets(tokens))
begin_expanded = tf.expand_dims(begin, axis=2)
final_begin = begin_expanded + wp_begin
final_end = begin_expanded + wp_end
return wordpieces, final_begin, final_end
def _tokenize(self, text_input: tf.Tensor):
tokens = self._basic_tokenizer.tokenize(text_input)
return self._fast_wp_tokenizer.tokenize(tokens)
def call(self, inputs: tf.Tensor):
"""Calls text.BertTokenizer on inputs.
Args:
inputs: A string Tensor of shape [batch_size].
Returns:
One or three of RaggedTensors if tokenize_with_offsets is False or True,
respectively. These are
tokens: A RaggedTensor of shape [batch_size, (words), (pieces_per_word)]
and type int32. tokens[i,j,k] contains the k-th wordpiece of the
j-th word in the i-th input.
start_offsets, limit_offsets: If tokenize_with_offsets is True,
RaggedTensors of type int64 with the same indices as tokens.
Element [i,j,k] contains the byte offset at the start, or past the
end, resp., for the k-th wordpiece of the j-th word in the i-th input.
"""
# Prepare to reshape the result to work around broken shape inference.
batch_size = tf.shape(inputs)[0]
def _reshape(rt):
values = rt.values
row_splits = rt.row_splits
row_splits = tf.reshape(row_splits, [batch_size + 1])
return tf.RaggedTensor.from_row_splits(values, row_splits)
if self.tokenize_with_offsets:
tokens, start_offsets, limit_offsets = self._tokenize_with_offsets(inputs)
return _reshape(tokens), _reshape(start_offsets), _reshape(limit_offsets)
else:
tokens = self._tokenize(inputs)
return _reshape(tokens)