forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtalking_heads_attention_test.py
158 lines (135 loc) · 6.86 KB
/
talking_heads_attention_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the attention layer."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import talking_heads_attention
# This test is revised base on attention.MultiHeadAttentionTest.
class TalkingHeadsAttentionTest(tf.test.TestCase, parameterized.TestCase):
@parameterized.named_parameters(
("key_value_same_proj", None, None, [40, 80]),
("key_value_different_proj", 32, 60, [40, 60]),
)
def test_non_masked_attention(self, value_dim, output_shape, output_dims):
"""Test that the attention layer can be created without a mask tensor."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12,
key_dim=64,
value_dim=value_dim,
output_shape=output_shape)
# Create a 3-dimensional input (the first dimension is implicit).
query = tf_keras.Input(shape=(40, 80))
value = tf_keras.Input(shape=(20, 80))
output = test_layer(query=query, value=value)
self.assertEqual(output.shape.as_list(), [None] + output_dims)
def test_non_masked_self_attention(self):
"""Test with one input (self-attenntion) and no mask tensor."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12, key_dim=64)
# Create a 3-dimensional input (the first dimension is implicit).
query = tf_keras.Input(shape=(40, 80))
output = test_layer(query=query, value=query)
self.assertEqual(output.shape.as_list(), [None, 40, 80])
def test_attention_scores(self):
"""Test attention outputs with coefficients."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12, key_dim=64)
# Create a 3-dimensional input (the first dimension is implicit).
query = tf_keras.Input(shape=(40, 80))
output, coef = test_layer(query=query, value=query,
return_attention_scores=True)
self.assertEqual(output.shape.as_list(), [None, 40, 80])
self.assertEqual(coef.shape.as_list(), [None, 12, 40, 40])
@parameterized.named_parameters(("with_bias", True), ("no_bias", False))
def test_masked_attention(self, use_bias):
"""Test with a mask tensor."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12, key_dim=2, use_bias=use_bias)
# Create a 3-dimensional input (the first dimension is implicit).
batch_size = 3
query = tf_keras.Input(shape=(4, 8))
value = tf_keras.Input(shape=(2, 8))
mask_tensor = tf_keras.Input(shape=(4, 2))
output = test_layer(query=query, value=value, attention_mask=mask_tensor)
# Create a model containing the test layer.
model = tf_keras.Model([query, value, mask_tensor], output)
# Generate data for the input (non-mask) tensors.
from_data = 10 * np.random.random_sample((batch_size, 4, 8))
to_data = 10 * np.random.random_sample((batch_size, 2, 8))
# Invoke the data with a random set of mask data. This should mask at least
# one element.
mask_data = np.random.randint(2, size=(batch_size, 4, 2))
masked_output_data = model.predict([from_data, to_data, mask_data])
# Invoke the same data, but with a null mask (where no elements are masked).
null_mask_data = np.ones((batch_size, 4, 2))
unmasked_output_data = model.predict([from_data, to_data, null_mask_data])
# Because one data is masked and one is not, the outputs should not be the
# same.
self.assertNotAllClose(masked_output_data, unmasked_output_data)
# Tests the layer with three inputs: Q, K, V.
key = tf_keras.Input(shape=(2, 8))
output = test_layer(
query=query, value=value, key=key, attention_mask=mask_tensor)
model = tf_keras.Model([query, value, key, mask_tensor], output)
masked_output_data = model.predict([from_data, to_data, to_data, mask_data])
unmasked_output_data = model.predict(
[from_data, to_data, to_data, null_mask_data])
# Because one data is masked and one is not, the outputs should not be the
# same.
self.assertNotAllClose(masked_output_data, unmasked_output_data)
if use_bias:
self.assertLen(test_layer._query_dense.trainable_variables, 2)
self.assertLen(test_layer._output_dense.trainable_variables, 2)
else:
self.assertLen(test_layer._query_dense.trainable_variables, 1)
self.assertLen(test_layer._output_dense.trainable_variables, 1)
def test_initializer(self):
"""Test with a specified initializer."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12,
key_dim=64,
kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
# Create a 3-dimensional input (the first dimension is implicit).
query = tf_keras.Input(shape=(40, 80))
output = test_layer(query=query, value=query)
self.assertEqual(output.shape.as_list(), [None, 40, 80])
@parameterized.named_parameters(
("4d_inputs_one_free_batch", [3, 4], [3, 2], [4, 2], (2,)),
("4D_inputs_2D_attention", [3, 4], [3, 2], [3, 4, 3, 2], (1, 2)),
("5D_inputs_2D_attention", [5, 3, 4], [5, 3, 2], [3, 4, 3, 2], (2, 3)))
def test_high_dim_attention(self, q_dims, v_dims, mask_dims, attention_axes):
"""Test with a mask tensor."""
test_layer = talking_heads_attention.TalkingHeadsAttention(
num_heads=12, key_dim=2, attention_axes=attention_axes)
batch_size, hidden_size = 3, 8
# Generate data for the input (non-mask) tensors.
query_shape = [batch_size] + q_dims + [hidden_size]
value_shape = [batch_size] + v_dims + [hidden_size]
mask_shape = [batch_size] + mask_dims
query = 10 * np.random.random_sample(query_shape)
value = 10 * np.random.random_sample(value_shape)
# Invoke the data with a random set of mask data. This should mask at least
# one element.
mask_data = np.random.randint(2, size=mask_shape).astype("bool")
output = test_layer(query=query, value=value, attention_mask=mask_data)
# Invoke the same data, but with a null mask (where no elements are masked).
null_mask_data = np.ones(mask_shape)
unmasked_output = test_layer(
query=query, value=value, attention_mask=null_mask_data)
# Because one data is masked and one is not, the outputs should not be the
# same.
self.assertNotAllClose(output, unmasked_output)
if __name__ == "__main__":
tf.test.main()