forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral_normalization_test.py
86 lines (68 loc) · 3.05 KB
/
spectral_normalization_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for normalization layers.
## References:
[1] Hanie Sedghi, Vineet Gupta, Philip M. Long.
The Singular Values of Convolutional Layers.
In _International Conference on Learning Representations_, 2019.
"""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import spectral_normalization
DenseLayer = tf_keras.layers.Dense(10)
Conv2DLayer = tf_keras.layers.Conv2D(filters=64, kernel_size=3, padding='valid')
def _compute_spectral_norm(weight):
if weight.ndim > 2:
# Computes Conv2D via FFT transform as in [1].
weight = np.fft.fft2(weight, weight.shape[1:3], axes=[0, 1])
return np.max(np.linalg.svd(weight, compute_uv=False))
class NormalizationTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(NormalizationTest, self).setUp()
self.num_iterations = 1000
self.norm_multiplier = 0.95
@parameterized.named_parameters(
('Dense',
(None, 10), DenseLayer, spectral_normalization.SpectralNormalization),
('Conv2D', (None, 32, 32, 3), Conv2DLayer,
spectral_normalization.SpectralNormalizationConv2D))
def test_spec_norm_magnitude(self, input_shape, layer, norm_wrapper):
"""Tests if the weights spectral norm converges to norm_multiplier."""
layer.build(input_shape)
sn_layer = norm_wrapper(
layer,
iteration=self.num_iterations,
norm_multiplier=self.norm_multiplier)
# Perform normalization.
sn_layer.build(input_shape)
sn_layer.update_weights()
normalized_kernel = sn_layer.layer.kernel.numpy()
spectral_norm_computed = _compute_spectral_norm(normalized_kernel)
spectral_norm_expected = self.norm_multiplier
self.assertAllClose(
spectral_norm_computed, spectral_norm_expected, atol=1e-1)
# Test that the normalized layer is K-Lipschitz. In particular, if the layer
# is a function f, then ||f(x1) - f(x2)||_2 <= K * ||(x1 - x2)||_2, where K
# is the norm multiplier.
new_input_shape = (16,) + input_shape[1:]
new_input = tf.random.uniform(new_input_shape)
delta_vec = tf.random.uniform(new_input_shape)
output1 = sn_layer(new_input)
output2 = sn_layer(new_input + delta_vec)
delta_input = tf.norm(tf.reshape(delta_vec, (-1,))).numpy()
delta_output = tf.norm(tf.reshape(output2 - output1, (-1,))).numpy()
self.assertLessEqual(delta_output, self.norm_multiplier * delta_input)
if __name__ == '__main__':
tf.test.main()