forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral_normalization.py
297 lines (242 loc) · 10.5 KB
/
spectral_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalization layers.
## References:
[1] Yuichi Yoshida, Takeru Miyato. Spectral Norm Regularization for Improving
the Generalizability of Deep Learning.
_arXiv preprint arXiv:1705.10941_, 2017. https://arxiv.org/abs/1705.10941
[2] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida.
Spectral normalization for generative adversarial networks.
In _International Conference on Learning Representations_, 2018.
[3] Henry Gouk, Eibe Frank, Bernhard Pfahringer, Michael Cree.
Regularisation of neural networks by enforcing lipschitz continuity.
_arXiv preprint arXiv:1804.04368_, 2018. https://arxiv.org/abs/1804.04368
"""
import numpy as np
import tensorflow as tf, tf_keras
class SpectralNormalization(tf_keras.layers.Wrapper):
"""Implements spectral normalization for Dense layer."""
def __init__(self,
layer,
iteration=1,
norm_multiplier=0.95,
training=True,
aggregation=tf.VariableAggregation.MEAN,
inhere_layer_name=False,
**kwargs):
"""Initializer.
Args:
layer: (tf_keras.layers.Layer) A TF Keras layer to apply normalization to.
iteration: (int) The number of power iteration to perform to estimate
weight matrix's singular value.
norm_multiplier: (float) Multiplicative constant to threshold the
normalization. Usually under normalization, the singular value will
converge to this value.
training: (bool) Whether to perform power iteration to update the singular
value estimate.
aggregation: (tf.VariableAggregation) Indicates how a distributed variable
will be aggregated. Accepted values are constants defined in the class
tf.VariableAggregation.
inhere_layer_name: (bool) Whether to inhere the name of the input layer.
**kwargs: (dict) Other keyword arguments for the layers.Wrapper class.
"""
self.iteration = iteration
self.do_power_iteration = training
self.aggregation = aggregation
self.norm_multiplier = norm_multiplier
# Set layer name.
wrapper_name = kwargs.pop('name', None)
if inhere_layer_name:
wrapper_name = layer.name
if not isinstance(layer, tf_keras.layers.Layer):
raise ValueError('`layer` must be a `tf_keras.layer.Layer`. '
'Observed `{}`'.format(layer))
super().__init__(
layer, name=wrapper_name, **kwargs)
def build(self, input_shape): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
super().build(input_shape)
self.layer.kernel._aggregation = self.aggregation # pylint: disable=protected-access
self._dtype = self.layer.kernel.dtype
self.w = self.layer.kernel
self.w_shape = self.w.shape.as_list()
self.v = self.add_weight(
shape=(1, np.prod(self.w_shape[:-1])),
initializer=tf.initializers.random_normal(),
trainable=False,
name='v',
dtype=self.dtype,
aggregation=self.aggregation)
self.u = self.add_weight(
shape=(1, self.w_shape[-1]),
initializer=tf.initializers.random_normal(),
trainable=False,
name='u',
dtype=self.dtype,
aggregation=self.aggregation)
self.update_weights()
def call(self, inputs, *, training=None):
training = self.do_power_iteration if training is None else training
if training:
u_update_op, v_update_op, w_update_op = self.update_weights(
training=training)
output = self.layer(inputs)
w_restore_op = self.restore_weights()
# Register update ops.
self.add_update(u_update_op)
self.add_update(v_update_op)
self.add_update(w_update_op)
self.add_update(w_restore_op)
else:
output = self.layer(inputs)
return output
def update_weights(self, *, training=True):
w_reshaped = tf.reshape(self.w, [-1, self.w_shape[-1]])
u_hat = self.u
v_hat = self.v
if training:
for _ in range(self.iteration):
v_hat = tf.nn.l2_normalize(tf.matmul(u_hat, tf.transpose(w_reshaped)))
u_hat = tf.nn.l2_normalize(tf.matmul(v_hat, w_reshaped))
sigma = tf.matmul(tf.matmul(v_hat, w_reshaped), tf.transpose(u_hat))
# Convert sigma from a 1x1 matrix to a scalar.
sigma = tf.reshape(sigma, [])
u_update_op = self.u.assign(u_hat)
v_update_op = self.v.assign(v_hat)
# Bound spectral norm to be not larger than self.norm_multiplier.
w_norm = tf.cond((self.norm_multiplier / sigma) < 1, lambda: # pylint:disable=g-long-lambda
(self.norm_multiplier / sigma) * self.w, lambda: self.w)
w_update_op = self.layer.kernel.assign(w_norm)
return u_update_op, v_update_op, w_update_op
def restore_weights(self):
"""Restores layer weights to maintain gradient update (See Alg 1 of [1])."""
return self.layer.kernel.assign(self.w)
class SpectralNormalizationConv2D(tf_keras.layers.Wrapper):
"""Implements spectral normalization for Conv2D layer based on [3]."""
def __init__(self,
layer,
iteration=1,
norm_multiplier=0.95,
training=True,
aggregation=tf.VariableAggregation.MEAN,
legacy_mode=False,
**kwargs):
"""Initializer.
Args:
layer: (tf_keras.layers.Layer) A TF Keras layer to apply normalization to.
iteration: (int) The number of power iteration to perform to estimate
weight matrix's singular value.
norm_multiplier: (float) Multiplicative constant to threshold the
normalization. Usually under normalization, the singular value will
converge to this value.
training: (bool) Whether to perform power iteration to update the singular
value estimate.
aggregation: (tf.VariableAggregation) Indicates how a distributed variable
will be aggregated. Accepted values are constants defined in the class
tf.VariableAggregation.
legacy_mode: (bool) Whether to use the legacy implementation where the
dimension of the u and v vectors are set to the batch size. It should
not be enabled unless for backward compatibility reasons.
**kwargs: (dict) Other keyword arguments for the layers.Wrapper class.
"""
self.iteration = iteration
self.do_power_iteration = training
self.aggregation = aggregation
self.norm_multiplier = norm_multiplier
self.legacy_mode = legacy_mode
# Set layer attributes.
layer._name += '_spec_norm'
if not isinstance(layer, tf_keras.layers.Conv2D):
raise ValueError(
'layer must be a `tf_keras.layer.Conv2D` instance. You passed: {input}'
.format(input=layer))
super().__init__(layer, **kwargs)
def build(self, input_shape): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
if not self.layer.built:
self.layer.build(input_shape)
self.layer.kernel._aggregation = self.aggregation # pylint: disable=protected-access
self._dtype = self.layer.kernel.dtype
# Shape (kernel_size_1, kernel_size_2, in_channel, out_channel).
self.w = self.layer.kernel
self.w_shape = self.w.shape.as_list()
self.strides = self.layer.strides
# Set the dimensions of u and v vectors.
batch_size = input_shape[0]
uv_dim = batch_size if self.legacy_mode else 1
# Resolve shapes.
in_height = input_shape[1]
in_width = input_shape[2]
in_channel = self.w_shape[2]
out_height = in_height // self.strides[0]
out_width = in_width // self.strides[1]
out_channel = self.w_shape[3]
self.in_shape = (uv_dim, in_height, in_width, in_channel)
self.out_shape = (uv_dim, out_height, out_width, out_channel)
self.v = self.add_weight(
shape=self.in_shape,
initializer=tf.initializers.random_normal(),
trainable=False,
name='v',
dtype=self.dtype,
aggregation=self.aggregation)
self.u = self.add_weight(
shape=self.out_shape,
initializer=tf.initializers.random_normal(),
trainable=False,
name='u',
dtype=self.dtype,
aggregation=self.aggregation)
super().build()
def call(self, inputs):
u_update_op, v_update_op, w_update_op = self.update_weights()
output = self.layer(inputs)
w_restore_op = self.restore_weights()
# Register update ops.
self.add_update(u_update_op)
self.add_update(v_update_op)
self.add_update(w_update_op)
self.add_update(w_restore_op)
return output
def update_weights(self):
"""Computes power iteration for convolutional filters based on [3]."""
# Initialize u, v vectors.
u_hat = self.u
v_hat = self.v
if self.do_power_iteration:
for _ in range(self.iteration):
# Updates v.
v_ = tf.nn.conv2d_transpose(
u_hat,
self.w,
output_shape=self.in_shape,
strides=self.strides,
padding='SAME')
v_hat = tf.nn.l2_normalize(tf.reshape(v_, [1, -1]))
v_hat = tf.reshape(v_hat, v_.shape)
# Updates u.
u_ = tf.nn.conv2d(v_hat, self.w, strides=self.strides, padding='SAME')
u_hat = tf.nn.l2_normalize(tf.reshape(u_, [1, -1]))
u_hat = tf.reshape(u_hat, u_.shape)
v_w_hat = tf.nn.conv2d(v_hat, self.w, strides=self.strides, padding='SAME')
sigma = tf.matmul(tf.reshape(v_w_hat, [1, -1]), tf.reshape(u_hat, [-1, 1]))
# Convert sigma from a 1x1 matrix to a scalar.
sigma = tf.reshape(sigma, [])
u_update_op = self.u.assign(u_hat)
v_update_op = self.v.assign(v_hat)
w_norm = tf.cond((self.norm_multiplier / sigma) < 1, lambda: # pylint:disable=g-long-lambda
(self.norm_multiplier / sigma) * self.w, lambda: self.w)
w_update_op = self.layer.kernel.assign(w_norm)
return u_update_op, v_update_op, w_update_op
def restore_weights(self):
"""Restores layer weights to maintain gradient update (See Alg 1 of [1])."""
return self.layer.kernel.assign(self.w)