forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrezero_transformer.py
360 lines (336 loc) · 14.7 KB
/
rezero_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based rezero-transformer block layer (Transformer with ReZero)."""
# pylint: disable=g-classes-have-attributes
from typing import Optional
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import block_sparse_attention
from official.nlp.modeling.layers import multi_query_attention
from official.nlp.modeling.layers import util
@tf_keras.utils.register_keras_serializable(package="Text")
@gin.configurable
class ReZeroTransformer(tf_keras.layers.Layer):
"""Transformer layer with ReZero.
This layer implements the Transformer from "Attention Is All You Need".
(https://arxiv.org/abs/1706.03762).
The residual connection implements the ReZero method.
(https://arxiv.org/abs/2003.04887)
Args:
num_attention_heads: Number of attention heads.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network.
dropout_rate: Dropout probability for the post-attention and output dropout.
attention_dropout_rate: Dropout probability for within the attention layer.
output_range: the sequence output range, [0, output_range) by slicing the
target sequence. `None` means the target sequence is not sliced.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
use_layer_norm: If add layer_norm on top of the ReZero.
share_rezero: If attention layer and FFN layer share the same alpha.
num_kv_heads: Number of key-value heads for multi-query attention. Refer to
`multi_query_attention.MultiHeadAttention` for more details.
src_block_size: Source block size. Refer to
`block_sparse_attention.MultiHeadAttention` for more details.
tgt_block_size: Target block size. Refer to
`block_sparse_attention.MultiHeadAttention` for more details.
"""
def __init__(self,
num_attention_heads,
inner_dim=768,
inner_activation=tf_utils.get_activation("gelu"),
dropout_rate=0.0,
attention_dropout_rate=0.0,
output_range=None,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
use_layer_norm=False,
share_rezero=True,
num_kv_heads=None,
src_block_size=None,
tgt_block_size=None,
linformer_dim=None,
linformer_shared_kv_projection=True,
use_sigmoid_attn=False,
sigmoid_attn_bias=None,
**kwargs):
# attention_dropout will override attention_dropout_rate.
# This is to unify the input params with TransformerEncoderBlock.
attention_dropout_rate = kwargs.pop("attention_dropout",
attention_dropout_rate)
dropout_rate = kwargs.pop("output_dropout", dropout_rate)
inner_dim = kwargs.pop("intermediate_size", inner_dim)
inner_activation = kwargs.pop("intermediate_activation", inner_activation)
util.filter_kwargs(kwargs)
super().__init__(**kwargs)
# Deprecation warning.
if output_range is not None:
logging.warning("`output_range` is avaliable as an argument for `call()`."
"The `output_range` as __init__ argument is deprecated.")
self._num_heads = num_attention_heads
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._attention_dropout_rate = attention_dropout_rate
self._dropout_rate = dropout_rate
self._output_range = output_range
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
self._use_layer_norm = use_layer_norm
self._share_rezero = share_rezero
self._num_kv_heads = num_kv_heads
self._src_block_size = src_block_size
self._tgt_block_size = tgt_block_size
self._linformer_dim = linformer_dim
self._linformer_shared_kv_projection = linformer_shared_kv_projection
self._use_sigmoid_attn = use_sigmoid_attn
self._sigmoid_attn_bias = sigmoid_attn_bias
if self._linformer_dim is not None or self._use_sigmoid_attn:
raise ValueError(
"Linformer and Sigmoid attention are not supported in ReZero"
" Transformer."
)
if self._num_kv_heads is not None and self._src_block_size is not None:
raise ValueError(
"Block sparse attention does not support Multi-query attention."
" Specify only one of them."
)
def build(self, input_shape):
if isinstance(input_shape, tf.TensorShape):
input_tensor_shape = input_shape
elif isinstance(input_shape, (list, tuple)):
input_tensor_shape = tf.TensorShape(input_shape[0])
else:
raise ValueError(
"The type of input shape argument is not supported, got: %s"
% type(input_shape)
)
if len(input_tensor_shape.as_list()) != 3:
raise ValueError(
"TransformerLayer expects a three-dimensional input of "
"shape [batch, sequence, width]."
)
batch_size, sequence_length, hidden_size = input_tensor_shape
if len(input_shape) == 2:
mask_tensor_shape = tf.TensorShape(input_shape[1])
expected_mask_tensor_shape = tf.TensorShape(
[batch_size, sequence_length, sequence_length]
)
if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
raise ValueError(
"When passing a mask tensor to TransformerLayer, the "
"mask tensor must be of shape [batch, "
"sequence_length, sequence_length] (here %s). Got a "
"mask tensor of shape %s."
% (expected_mask_tensor_shape, mask_tensor_shape)
)
if hidden_size % self._num_heads != 0:
raise ValueError(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, self._num_heads)
)
self._attention_head_size = int(hidden_size // self._num_heads)
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint,
)
attention_kwargs = dict(
num_heads=self._num_heads,
key_dim=self._attention_head_size,
dropout=self._attention_dropout_rate,
name="self_attention",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
)
if self._src_block_size is not None:
attention_kwargs.update(
src_block_size=self._src_block_size,
tgt_block_size=self._tgt_block_size,
name="block_sparse_attention",
)
attention_fn = block_sparse_attention.MultiHeadAttention
elif self._num_kv_heads is not None:
attention_kwargs.update(
num_kv_heads=self._num_kv_heads,
name="multi_query_attention",
)
attention_fn = multi_query_attention.MultiHeadAttention
else:
attention_fn = tf_keras.layers.MultiHeadAttention
self._attention_layer = attention_fn(**attention_kwargs, **common_kwargs)
self._attention_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
if self._use_layer_norm:
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self._attention_layer_norm = tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=1e-12,
dtype=tf.float32,
)
self._intermediate_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, self._inner_dim),
bias_axes="d",
name="intermediate",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
policy = tf.float32
self._inner_activation_layer = tf_keras.layers.Activation(
self._inner_activation, dtype=policy)
self._output_dense = tf_keras.layers.EinsumDense(
"abc,cd->abd",
output_shape=(None, hidden_size),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._output_dropout = tf_keras.layers.Dropout(rate=self._dropout_rate)
if self._use_layer_norm:
# Use float32 in layernorm for numeric stability.
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)
self._rezero_a = self.add_weight(
name="rezero_alpha",
initializer=tf_keras.initializers.Zeros(),
trainable=True,
dtype=tf.float32)
if self._share_rezero:
self._rezero_a_ffn = self._rezero_a
else:
self._rezero_a_ffn = self.add_weight(
name="rezero_alpha_ffn",
initializer=tf_keras.initializers.Zeros(),
trainable=True,
dtype=tf.float32)
super().build(input_shape)
def get_config(self):
config = {
"num_attention_heads":
self._num_heads,
"inner_dim":
self._inner_dim,
"inner_activation":
self._inner_activation,
"dropout_rate":
self._dropout_rate,
"attention_dropout_rate":
self._attention_dropout_rate,
"output_range":
self._output_range,
"use_layer_norm":
self._use_layer_norm,
"share_rezero":
self._share_rezero,
"num_kv_heads":
self._num_kv_heads,
"src_block_size":
self._src_block_size,
"tgt_block_size":
self._tgt_block_size,
"kernel_initializer":
tf_keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf_keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf_keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf_keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf_keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf_keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf_keras.constraints.serialize(self._bias_constraint),
"linformer_dim": self._linformer_dim,
"linformer_shared_kv_projection": (
self._linformer_shared_kv_projection
),
"use_sigmoid_attn": self._use_sigmoid_attn,
"sigmoid_attn_bias": self._sigmoid_attn_bias,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def reset_rezero(self):
self._rezero_a.assign(0.)
if not self._share_rezero:
self._rezero_a_ffn.assign(0.)
def call(self, inputs, output_range: Optional[tf.Tensor] = None) -> tf.Tensor:
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
key_value = None
elif len(inputs) == 3:
input_tensor, key_value, attention_mask = inputs
else:
raise ValueError("Unexpected inputs to %s with length at %d" %
(self.__class__, len(inputs)))
else:
input_tensor, key_value, attention_mask = (inputs, None, None)
if output_range is None:
output_range = self._output_range
if output_range:
target_tensor = input_tensor[:, 0:output_range, :]
if attention_mask is not None:
attention_mask = attention_mask[:, 0:output_range, :]
else:
target_tensor = input_tensor
if key_value is None:
key_value = input_tensor
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask)
attention_output = self._attention_dropout(attention_output)
attention_output = target_tensor + self._rezero_a * attention_output
if self._use_layer_norm:
attention_output = self._attention_layer_norm(attention_output)
else:
attention_output = tf.cast(attention_output, tf.float32)
intermediate_output = self._intermediate_dense(attention_output)
intermediate_output = self._inner_activation_layer(intermediate_output)
layer_output = self._output_dense(intermediate_output)
layer_output = self._output_dropout(layer_output)
# During mixed precision training, attention_output is from layer norm and
# is always fp32 for now. Cast layer_output to fp32 for the subsequent add.
layer_output = attention_output + tf.cast(self._rezero_a_ffn * layer_output,
tf.float32)
if self._use_layer_norm:
layer_output = self._output_layer_norm(layer_output)
return layer_output