forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreuse_transformer.py
360 lines (340 loc) · 15.3 KB
/
reuse_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based TransformerEncoder block layer."""
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
from official.nlp.modeling.layers import reuse_attention as attention
class ReuseTransformer(tf_keras.layers.Layer):
"""Transformer layer.
This layer implements the ReuseTransformer Encoder from
"Leveraging redundancy in attention with Reuse Transformers".
(https://arxiv.org/abs/2110.06821)
"""
def __init__(self,
num_attention_heads,
inner_dim,
inner_activation,
head_size=None,
output_range=None,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
use_bias=True,
norm_first=False,
norm_epsilon=1e-12,
output_dropout=0.0,
attention_dropout=0.0,
inner_dropout=0.0,
attention_initializer=None,
attention_axes=None,
reuse_attention=0,
use_relative_pe=False,
pe_max_seq_length=512,
layer_idx=None,
max_reuse_layer_idx=None,
**kwargs):
"""Initializes `ReuseTransformer`.
Args:
num_attention_heads: Number of attention heads.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network.
head_size: Projection size of heads.
output_range: the sequence output range, [0, output_range) for slicing the
target sequence. `None` means the target sequence is not sliced.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
use_bias: Whether to enable use_bias in attention layer. If set False,
use_bias in attention layer is disabled.
norm_first: Whether to normalize inputs to attention and intermediate
dense layers. If set False, output of attention and intermediate dense
layers is normalized.
norm_epsilon: Epsilon value to initialize normalization layers.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: Dropout probability for within the attention layer.
inner_dropout: Dropout probability for the first Dense layer in a
two-layer feedforward network.
attention_initializer: Initializer for kernels of attention layers. If set
`None`, attention layers use kernel_initializer as initializer for
kernel.
attention_axes: axes over which the attention is applied. `None` means
attention over all axes, but batch, heads, and features.
reuse_attention: reuse_attention: An integer specifying number of heads
to reuse. -1 for all heads.
use_relative_pe: whether to use relative position bias.
pe_max_seq_length: used to set the size of the relative positin encodings.
layer_idx: the idx of this layer.
max_reuse_layer_idx: layer idx (if passed) greater than this value will
not reuse attention scores from previous layers.
**kwargs: keyword arguments.
"""
super().__init__(**kwargs)
self._num_heads = num_attention_heads
self._inner_dim = inner_dim
self._inner_activation = inner_activation
self._head_size = head_size
self._attention_dropout = attention_dropout
self._attention_dropout_rate = attention_dropout
self._output_dropout = output_dropout
self._output_dropout_rate = output_dropout
self._output_range = output_range
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._activity_regularizer = tf_keras.regularizers.get(activity_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
self._use_bias = use_bias
self._norm_first = norm_first
self._norm_epsilon = norm_epsilon
self._inner_dropout = inner_dropout
self._reuse_attention = reuse_attention
self._use_relative_pe = use_relative_pe
self._pe_max_seq_length = pe_max_seq_length
self._layer_idx = layer_idx
self._max_reuse_layer_idx = max_reuse_layer_idx
# Overwrite for the first layer and layers greater than max_reuse_layer_idx.
if self._layer_idx is not None and (
self._layer_idx == 0 or (self._max_reuse_layer_idx is not None and
self._max_reuse_layer_idx < self._layer_idx)):
self._reuse_attention = 0
if attention_initializer:
self._attention_initializer = tf_keras.initializers.get(
attention_initializer)
else:
self._attention_initializer = tf_utils.clone_initializer(
self._kernel_initializer)
self._attention_axes = attention_axes
def build(self, input_shape):
if isinstance(input_shape, tf.TensorShape):
input_tensor_shape = input_shape
elif isinstance(input_shape, (list, tuple)):
input_tensor_shape = tf.TensorShape(input_shape[0])
else:
raise ValueError(
"The type of input shape argument is not supported, got: %s" %
type(input_shape))
einsum_equation = "abc,cd->abd"
if len(input_tensor_shape.as_list()) > 3:
einsum_equation = "...bc,cd->...bd"
hidden_size = input_tensor_shape[-1]
if self._head_size is None:
if hidden_size % self._num_heads != 0:
raise ValueError(
"The input size (%d) is not a multiple of the number of attention "
"heads (%d)" % (hidden_size, self._num_heads))
self._attention_head_size = int(hidden_size // self._num_heads)
else:
self._attention_head_size = self._head_size
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
self._attention_layer = attention.ReuseMultiHeadAttention(
num_heads=self._num_heads,
key_dim=self._attention_head_size,
dropout=self._attention_dropout,
use_bias=self._use_bias,
kernel_initializer=self._attention_initializer,
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
attention_axes=self._attention_axes,
reuse_attention=self._reuse_attention,
use_relative_pe=self._use_relative_pe,
pe_max_seq_length=self._pe_max_seq_length,
name="self_attention",
**common_kwargs)
self._attention_dropout = tf_keras.layers.Dropout(
rate=self._output_dropout)
# Use float32 in layernorm for numeric stability.
# It is probably safe in mixed_float16, but we haven't validated this yet.
self._attention_layer_norm = (
tf_keras.layers.LayerNormalization(
name="self_attention_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32))
self._intermediate_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=(None, self._inner_dim),
bias_axes="d",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
name="intermediate",
**common_kwargs)
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
# bfloat16 causes BERT with the LAMB optimizer to not converge
# as well, so we use float32.
# TODO(b/154538392): Investigate this.
policy = tf.float32
self._intermediate_activation_layer = tf_keras.layers.Activation(
self._inner_activation, dtype=policy)
self._inner_dropout_layer = tf_keras.layers.Dropout(
rate=self._inner_dropout)
self._output_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=(None, hidden_size),
bias_axes="d",
name="output",
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
self._output_dropout = tf_keras.layers.Dropout(rate=self._output_dropout)
# Use float32 in layernorm for numeric stability.
self._output_layer_norm = tf_keras.layers.LayerNormalization(
name="output_layer_norm",
axis=-1,
epsilon=self._norm_epsilon,
dtype=tf.float32)
super(ReuseTransformer, self).build(input_shape)
def get_config(self):
config = {
"num_attention_heads":
self._num_heads,
"inner_dim":
self._inner_dim,
"inner_activation":
self._inner_activation,
"head_size":
self._head_size,
"output_dropout":
self._output_dropout_rate,
"attention_dropout":
self._attention_dropout_rate,
"output_range":
self._output_range,
"reuse_attention":
self._reuse_attention,
"use_relative_pe": self._use_relative_pe,
"pe_max_seq_length": self._pe_max_seq_length,
"max_reuse_layer_idx": self._max_reuse_layer_idx,
"kernel_initializer":
tf_keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf_keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf_keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf_keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf_keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf_keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf_keras.constraints.serialize(self._bias_constraint),
"use_bias":
self._use_bias,
"norm_first":
self._norm_first,
"norm_epsilon":
self._norm_epsilon,
"inner_dropout":
self._inner_dropout,
"attention_initializer":
tf_keras.initializers.serialize(self._attention_initializer),
"attention_axes": self._attention_axes,
}
base_config = super(ReuseTransformer, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs):
"""Transformer self-attention encoder block call.
Args:
inputs: a single tensor or a list of tensors.
`input tensor` as the single sequence of embeddings.
[`input tensor`, `attention mask`] to have the additional attention
mask.
[`query tensor`, `attention mask`, `attention scores`] to have
additional attention scores for reuse computation. If `attention scores`
is None, the reuse_attention flag will be ignored.
Returns:
An output tensor with the same dimensions as input/query tensor.
Attention scores if return_attention_scores is true.
"""
if isinstance(inputs, (list, tuple)):
if len(inputs) == 2:
input_tensor, attention_mask = inputs
reuse_attention_scores = None
elif len(inputs) == 3:
input_tensor, attention_mask, reuse_attention_scores = inputs
else:
raise ValueError("Unexpected inputs to %s with length at %d" %
(self.__class__, len(inputs)))
else:
input_tensor, attention_mask, reuse_attention_scores = (inputs, None,
None)
key_value = None
if self._reuse_attention != 0 and reuse_attention_scores is None:
raise ValueError(
"reuse_attention_scores cannot be None when reuse_attention != 0.")
if self._output_range:
if self._norm_first:
source_tensor = input_tensor[:, 0:self._output_range, :]
input_tensor = self._attention_layer_norm(input_tensor)
if key_value is not None:
key_value = self._attention_layer_norm(key_value)
target_tensor = input_tensor[:, 0:self._output_range, :]
if attention_mask is not None:
attention_mask = attention_mask[:, 0:self._output_range, :]
if reuse_attention_scores is not None:
reuse_attention_scores = reuse_attention_scores[:, :,
0:self._output_range, :]
else:
if self._norm_first:
source_tensor = input_tensor
input_tensor = self._attention_layer_norm(input_tensor)
if key_value is not None:
key_value = self._attention_layer_norm(key_value)
target_tensor = input_tensor
if key_value is None:
key_value = input_tensor
attention_output = self._attention_layer(
query=target_tensor, value=key_value, attention_mask=attention_mask,
reuse_attention_scores=reuse_attention_scores,
return_attention_scores=True)
attention_output, attention_scores = attention_output
attention_output = self._attention_dropout(attention_output)
if self._norm_first:
attention_output = source_tensor + attention_output
else:
attention_output = self._attention_layer_norm(target_tensor +
attention_output)
if self._norm_first:
source_attention_output = attention_output
attention_output = self._output_layer_norm(attention_output)
inner_output = self._intermediate_dense(attention_output)
inner_output = self._intermediate_activation_layer(inner_output)
inner_output = self._inner_dropout_layer(inner_output)
layer_output = self._output_dense(inner_output)
layer_output = self._output_dropout(layer_output)
if self._norm_first:
return source_attention_output + layer_output, attention_scores
# During mixed precision training, layer norm output is always fp32 for now.
# Casts fp32 for the subsequent add.
layer_output = tf.cast(layer_output, tf.float32)
layer_output = self._output_layer_norm(layer_output + attention_output)
return layer_output, attention_scores